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Abstract

We consider the problem K(z)uz, = uy , 0 < z < 1, ¢t > 0,
with boundary condition u(0,t) = g(t) € L? and u,(0,t) = 0, where
K(x) is continuous and does not come close to zero. This is an ill-
posed problem in the sense that, if the solution exists, it does not
depend continuously on g. Considering the existence of a solution
u(z,-) belonging to the Sobolev space H!(R) and using a wavelet
Galerkin method with Meyer multiresolution analysis, we regularize
the ill-posedness of the problem approaching it by well-posed problems
in the scaling spaces.



1 Introduction

In a previous work [2], we studied the following parabolic partial differential
equation problem with variable coefficients:

K(2)uge(x,t) = w(z,t), t>0, 0<zx<l1
u(0,) =g, u,(0,-)=0
0<a<K(z)<+4oo, K continuous.

Under the hypothesis of the existence of a solution for this problem, using a
wavelet Galerkin method, we constructed a sequence of well-posed approxi-
mating problems in the scaling spaces of the Meyer multiresolution analysis,
which has the property to filter away the high frequencies. We had shown the
convergence of the method, applied to this problem, and we gave an estimate
of the solution error.

In this work, we will extend those results to the problem:

K(2)uge(z,t) = up(z,t), t>0,0<x<1
u(0,-) =g, uy(0,-)=0 (1.1)
0 <a<|K(x)| < +oo, K continuous.

This problem will be hyperbolic when K(z) > 0 and elliptic when
K(x) < 0. We assume g € L? (R), when it is extended as vanishing for ¢ < 0,
and the problem to have a solution u(z,-) in the Sobolev space!

mm={rerm | Lrerm)

when it is extended as vanishing for ¢ < 0.

Our approach follows quite closely to the one used in and [2].

In note 1 we show that (1.1) is an ill-posed problem in the sense that a
small disturbance on the boundary specification g, can produce a big alter-
ation on its solution, if it exists.

We consider the Meyer multiresolution analysis. The advantage in making
use of Meyer’s wavelets is its good localization in the frequency domain, since
its Fourier transform has compact support. Orthogonal projections onto
Meyer’s scaling spaces, can be considered as low pass filters, cutting off the
high frequencies.

Lwhere the derivate is in the distribution sense



From the variational formulation of the approximating problem in the
scaling space V;, we get an infinite-dimensional system of second order ordi-
nary differential equations with variable coefficients. An estimate obtained
for the solution of this evolution problem, is used to regularize the ill-posed
problem approaching it by well-posed problems. Using an estimate obtained
for the difference between the exact solution of problem (1.1) and its orthog-
onal projection onto V;, we get an estimate for the difference between the
exact solution of problem (1.1) and the orthogonal projection, onto Vj, of the
solution of the approximating problem defined in the scaling space V;_;.

In section 2, we construct the Meyer multiresolution analysis. In section 3,
we get the estimates of the numerical stability and in section 4 we regularize
(1.1).

For a function h € L'(R)(L*(R) its Fourier Transform is given by
h(€) = Je h(z)e~ ¢ dz. We use the notation e* and exp z indistinctly.

2 Meyer Multiresolution analysis

Definition A Multiresolution analysis, as defined in [1], is a sequence of
closed subspaces V; in L*(R), called scaling spaces, satisfying:

(M1) V; C Vj_, for all j € Z

(M2) ;e Vj is dense in L*(R)

(M3) Vyez Vs = 10}

(M4) f eV if and only if f(27-) € Vj

(M5) f € Vpif and only if f(- — k) € V, for all k € Z
(MG6)

M6) There exists ¢ € Vj such that {¢, : k € Z} is an orthonormal basis in
Vo, where ¢ji(z) = 279/2¢(2792 — k) for all j, k € Z. The function ¢ is
called the scaling function of the Multiresolution analysis.

The scaling function of the Meyer Multiresolution Analysis is the function
@ defined by its Fourier Transform:



L <z
56) =4 cos[r(ZKI-1], F<l<¥
0, €] > 4z

where v is a differentiable function satisfying

foif z<o
V(x)—{ -

if v>1

and
viz)+v(l—z)=1

The associated mother wavelet 1, called Meyer’s Wavelet, is given by (see

[1])
wrano(Za1)]. xemcs

0, €] > &8

\

FO=1 e s {gy(—yg\ )] e <t

We will consider the Meyer Multiresolution Analysis with scaling function ¢.

We have
Vr(§) :/%k(w)@_mgd%
R
= / 2_%w(2_jx — k)e "dw
R
= [ 20y - Kje vy
R
_ 2j/2/¢(t)6—i2j(t+k)§dt
R
— 9i/2 / w(t)e—mtffmkgdt _ 2]'/267@'2%517’/;(23'5)
Since supp = {¢: 2r <|¢] < ¥x} we have that
8
supp %k {¢; —7T2 I<|El < 7T2 Y VkeZ
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Furthermore,
4
supp(@sr) = {& €] < wz Y VkeZ (2.2)

Now we consider the orthogonal prOJeCtIOH onto V;, P : L*(R) — V},

Pif(t) = Z<f7 @ik)Pjn(t)
keZ
The hypothesis M1 and M2 imply that lim;_,_, P;f = f, for all f € L*(R).
This means that from a representation of f in a given scale, we can get f by
adding details which are given at higher frequencies. From (2.2), we see that

P; filters away the frequencies higher than 37277 (low pass filter).
We have, for all f € L?(R),

f = Pf=PFf+f=PFf+UI-F)f

= S oo+ DD bu)vu

keZ 1<j kezZ

Since, by (2.1), @m(f) =0foralll <jand|{] < %7‘(’2_j, this implies

B7(€) = J€) for[¢] < Sn2 (2.3

Considering the corresponding orthogonal projections in the frequency
space, P;: L*(R) — V; = span{cfaj\k}kez,

Pf Z f Pik) Pik

kEZ

we have 1
Pif = Z %<f7@>@\k = Z<f7 ©ik) Pk = Pif
kez kez
Then (2.3) implies that

=)

1 1 ~
——|[(1 = P 1" = —=(I = P))
V2T V2T (2.4)

_ %27”“ — P)x; Il < I £

I =P fIl =

where y; is the characteristic function in (—oco, —27279] U [27277, +00).
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3  Stability

In this section we prove that the approximating problems, in the scaling
spaces, are well-posed, and we get the estimates of the numerical stability.
The next lemma is given in [2].

Lemma 3.1. Letu and v be positive continuous functions, x > a and ¢ > 0.
Ifu(z) <c+ f f T)drds then

x) < cexp / / des

Applying the Fourier Transform with respect to time in Problem (1.1),
we obtain the following problem in the frequency space:

l,) = 50

6(0,5) = 9(5)7 ax(()? ) =0

whose solution satisfies

i) <@+ [ [ itn e irds

Then, by lemma 3.1, for g(£) # 0, we have

.1 < e [¢ [ [ e dras] (3)

u(z, &), 0<zx<l, £€R

Lemma 3.2. The operator D;(x) defined by

(Dauteler, vez = [ 7777 o0

IE€Z,kEL
satisfies the following three conditions:

1) (Dj)u(x) = (Dj)m(z)

2) (D;)ix(x) = (Dj)a—ryp(x). Hence, (D;)u(x) is a Toplitz matriz.

3) | D)) < T




Proof. 1) Since ¢ and ¢’ are reals and p;x(z) — 0, ¢ (z) — 0, when
r — 00, two integrations by parts give the result.
2) Since ¢ (t) = 279/2¢(277t — m), the substitution 27/s = 279t — k in
(D;)u(z) gives:

1 1

(Dj)w(z) = m/ﬂ@@?z(ﬂ@m(ﬂdt = W/RSO}/(HC)(S)SOJ'O(SWS

= (D) -kyo(z)
3) We have

12,1 = | 52551 = Ty 181

where (B;)i. = (¢}, pjx). From results 1) and 2), we have (B;)ix = (B;)u,

(Bj)lk _ _% fR gze—i(l—k)§2j|@(§)|2d§ = (Bj)(l—k)o and (Bj)lk is a Toplitz
matrix. We will show that ||B;]| < 72477%1. Thus, we will have

For |t| <7277,
Tj(t) = —277[(t — 277 )| @jo(t — 277 )| + ] @j0(0)
(27 + 27 )
Extend I'; periodically to R and expand it in Fourier series as

() = Y e

keZ

We have v, = by for all k, where b, is the element in diagonal k of B;. In
fact, since @jo(t) =0 for [¢t| > 3727, it follows that

! = ikt27
T2 Lj(t)e ™ dt
Tk 2—]+17T /71-2—]' ]( )6
1 w2~ ' | | |
= —5n | = 2mIgg (2 ) e e
—m2~7
1 72— ) o
- (1) [Pe— 2 gt
27 ) _o-i |2j0(t)]
72— |
Cor ,(t + 27]+17T)|95j\0(t + 27]+17T)|267zkt22dt
—m2=7



Making a change of variable, we obtain:

1 e 2 —ikt2d 1 2 2 —ikt2d

= —— tloio(t TRt — — tloio(t TRt
wo= g | HERbPe el LI
1 3277 . e
o [ tlE)Pe ™ dr
w27

1 37277 Lt
= —— t|@o0(t)2e*2 qt

o7 s |2j0(t) e

1 I
— o t /\ t 2 —ZthJdt — b
5 | e k

Now, || Bj|| = supysy | B; fIl where | f||* = 3", [ ful?. Let F(t) =325 fretkt?
and define W (t) = IL';(¢)F(t). We have

W(t) = Zwkeiktzj and  wy = Zbkflfl = (B f )k

kez ZGZ
Hence
1 727
2 2 )
- = - W (t)[2dt
ol = Ykl = 555 [ e
keZ
1 2= )
- » L. () F(t)|dt
2m2—J /_ng‘ (O F ()]
9 1 2= )
< swp |T( ' / F(t)2dt
|t\S7r2*j’ ()] 2w2J —7r2*j‘ (t)]
= sup |T;(6) | f]?
[t|<m2—7
Then

1Bill < sup [T';(t)]

|t|<m2-3

On the other hand, I'; is an odd function. Hence

sup |[;(1)[ = sup |T(¢)|
[t|<m2—7 0<t<m2—J

But, for 0 <t <7277, we have t4+ 7277 > 7277t and t — w279+ < —7277,
Hence

Pio(t+m27*) =0 and |gj(t — 7277 < [@j0()]*
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for t € [0,7277]. Thus

sup [[5()] < 277 sup [+ (t — 727 @0(0)

0<t<m2=J 0<t<n2=J
< 27T sup (gn(t))
0<t<n2-7
= w4 sup (B
0<t<m2—J
= 747 sup |@(s)P
0<s<m

By definition of ¢ we have |p(s)|> <1 for 0 < s < 7. Then

sup  |T;(t)| < w247

0<t<m2-i
Thus
1 1 w24+
1D;(x)|| = 1Bjl| < 757 sup |T;(1)] <
! (K ()| 7 K (@)] jyen2s K ()]
which completes the proof of lemma 3.2. 0

Let us now consider the following approximating problem? in V;:

K(x) Upy(2,t) = Pjuy(x,t), t>0, 0<z<l1

u(0,-) = B
u((o )_) ) Og (3.2)
u(x,t) €'V

Its variational formulation is
(K (x) Uy —ug , @jr) =0
<U(07 ) ) %‘k> = <Pjg7 %’k) ) <uz<07 ) ) (ij> = <07 %’k) ) keZz

where @ is the orthonormal basis of V; given by the scaling function
¢. Consider u; a solution of the approximating problem (3.2), given by

2The projection in the first equation of (3.2) is needed because we can have ¢ € V;
with ¢ ¢ V; (see note 2 below).



uj(z,t) = 3 cpwi(x)pj(t). Then, we have (u;)u(w,t) = D5 wi(z)e} (1)
and (U)o (2, t) = > ,cp wi'(2)@j(t). Therefore,

K () (u))ae (2, ) = (up)u(w, ) = K(2) Y wf/(x)pu(t) = > wiz)gl(t

= =
Hence
(K () (t)aa — (1), o50) = 0= O K(@)wfon— Y wigh, o) =0
= =
— Z K wl ijlu Spjk Z wyq gpjl, Spjk
leZ leZ
= Zwl<(ﬁ;‘/l> o) k€L
=
d2
_w’f = sz %Zv Pik) oWk = %Z:wz(Dj)zk(:v)-

where, as defined before, (D;);(x) = ﬁ(cp}'l, @;k). Thus, we get an infinite-
dimensional system of ordinary differential equations:
d> W = DJ (x)w
w(0) = (3.3)
w'(0) = 0
where v is given by

Pig=> vei=Y (9.95:)¢;

2EZ 2E€ZL

Lemma 3.3. If w is a solution of the evolution problem of second order

(3.3), then

. €T S 1
w(z)|| < [|v|lexp 4”1#2/ / dr ds
(@)l < 17l exp ] me )

10



Proof. Since w(z) =~ + [; [ (D (1) drds,

lo(@) < [l + / x / 1Dy () ()| dr ds

By lemma 3.2 this implies

4 +1 2
lw@)]| < 7] + / / T e ds.

Then by lemma 3.1 we have

. x S 1
w(z)|| < ||v|l exp 47“7?2/ / drds
(@)l < il exp ( ] )

which completes the proof. |

Theorem 3.4 (Stability of the wavelet Galerkin method). Let u; and
v; be solutions in V; of the approzimating problems (3.2) for the boundary
specifications g and g, respectively. If ||g — g|| < € then
4—i+12

() = v, )| < eexp (

where « satisfies 0 < o < |K( )| < 400 as in the definition of the problem
(1.1). For j such that 47 < 23 loge™! we have

— a2
g, ) = vy, )] < €
Proof. w,(r.1) = Yy wi(@)on(t). vy(e.t) = ey @la)on(t) where w

and w are solutions of the Galerkin problem (3.3) with conditions w(0) = ~y
and w(0) = 7, respectively. So, by lemma 3.3 and linearity of (3.3) we have

iz, ) — v )| = lw(e) — @)
< by — 7 exp(a-it1a? / / ﬁdm@

eexp(47T! 2/ / —drds)

= cexp(4™’

IN
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For j = j(e) such that 47 < ;% loge™!, we have

[u;(z,-) = v;(x,-)|| < eexp(z®loget) = =

which completes the proof. O

4 Reguralization

In this section we consider (1.1), for the functions g € L?*(R) such that
(&) exp(€%/(2a)) € L*(R), where g is the Fourier Transform of g. The In-

2
verse Fourier Transform of exp(—w), for instance, satisfies this condition.

2a
Define
2

f =3O e () € I(R) (a.1)

Proposition 4.1. If u(x,t) is a solution of problem (1.1), then

27 .
lulz, ) = Pru(z, )|l < [Ifllza@) exp(—5— 471 — %)

where f is given by (4.1).
Proof. From (2.4) and (3.1), we have
I = Pyulz, )| < [Ix;ulz, )]
Y R GIRG R
\§|>%7r2—j

SN2 ox o [T 7 1 dr dsld 1/2
<(f o O o || gy arasa
Then
2
1= P, )| < /IS o, O e ae)
2 2
= [/I§|>§7r2j |f(f)‘2exp(—%)exp(%xQ)d§]1/2

2

2 5 2
= exp(——(1—= d

1/2

12



For |z| < 1,

4/9)m24-7
I = Pute )| < [ 1P exp(- S50 )
2
<l exp(—5 471~ %)
which completes the proof. O

Proposition 4.2. If u is a solution of problem (1.1) and w;_; is a solution
of the approximating problem in V;_y then

e, &) = Bya(r, &) forlé] < 3n27 (42

Consequently,
Pyu(z,-) = Pjuj(z,-) (4.3)

Proof. Let A(z,§) = u(x,&) — wj—1(z,§). We will show that A(z,&) =0
for €] < %7r2_j. Consider the approximating problem in Vj_;:

K(m)(u]’—l)xm = j—l(uj—1>tt t e R, 0<z<l
uj—l(oa ) = Pj—lg7 (uj—l)w(ov ) =0
uj—1(z,-) € Vi

Applying the Fourier transform with respect to time, we have
K (2)(@-1)e0(2,€) = Pial(u-a)u] (2,€) = Pya (=051 (2,€))

for 0 < z < 1, £ € R, with the conditions: u;_1(0,&) = 133-,1@\(5) and

(ﬂj71>1'(07 ) = 0. Now, by (23)7
Py (=€ 1(x,€)) = =T (x,6) and  P@(0,€) = 1(0,€)
for |¢] < w277, Thus, for [£] < 37277, we have

K (2)Ago(,€) + A (2, €)
= K(x)azz(x7€) - K(x)(aj—l)m:(w7£) + fQ[a($7£) - aj—l(xvg)] =0

A(0,€) = T(0,€) — Tj—1(0,€) = @(0,€) — P1G(€) = (0,€) — P_y(0,€) = 0

13



Aa:(oag) = a:c(ovf) - (aj—l)x(ovg) =0
Hence, for [¢| < §W2_j, fixed, A(z, ) is solution on 0 < z < 1 of the problem

K(2)Apo(2,6) + EN,6) =0, 0<a<1
A<07€) =0, Am(o’g) =0

This problem has an unique solution A(x,§) =0, for all x € [0,1). Thus,
4 .
(e, ) = i 1(2,€) for Je] < 37277
Now, (4.3) is consequence of (4.2) and the definition of ]3] O

Theorem 4.3 (Regularization). Let u be a solution of (1.1) with the con-
dition u(0,-) = g, and let f be given by (4.1). Let v;_y be a solution of (3.2)
in Vi_1 for the boundary specification g such that ||g —g|| < e. If j = j(e) is
such that 477 = 5z log el then

,x 11w
|Pvj—1(z,) — u(@, )| < + [|fllram - e
Proof.

1Pyv-a(e, ) — ule, | < [Py, ) = Pyule, ) + Pu(e, ) — ule, )|
< [Bvyoa () = Py, | + [ Prula, ) — ulz, ).

Let u;_1 be a solution of (3.2) in V;_; for the boundary specification g. By
(4.3), Pju(z,-) = Pjuj_1(x,-). Thus, by theorem 3.4, we have

| Pjvj—1(x, ) — Pyu(x,-)|| = || Pjvj-1(x, ) — Pjuj_1(,-)]
< wj1(z, ) —uj1(z,-)]| < =

Now, by proposition 4.1,

271'2 s L (1—p2
[P, ) = e, M < o exp(=5— 477(1 = %) < || flloe - 5507

Then || Pyv;1(z, ) — u(z, )| < = + || ]| coye = O

14



Conclusion

We have considered solutions u(z,-) € H'(R) for the problem K (x)u, = uy,
0<z<1, t>0,with boundary specification ¢ and wu,(0,-) = 0, where
K (z) is continuous, 0 < a < |K ()| < 400, and g(&§) exp(£2/(2)) € L*(R).
Utilizing a wavelet Galerkin method with the Meyer multiresolution analysis,
we regularize the ill-posedness of the problem, approaching it by well-posed
problems in the scaling spaces and we shown the convergence of the wavelet
Galerkin method applied to our problem, with an estimate error. The results
obtained apply to the hyperbolic (K(x) > 0) and to the elliptic (K (x) < 0)
case.

Notes: 1) Consider the problem

Uge(T,1) = uy(z,t), t>0,0<z<1
w(0,+) = gn, u.(0,-) =0,

where

(1) = n~2cosV2nt, if0<t<t,
I =0, if > tg.

The solution of this problem is

-2 . (\/inx)% .
Up (2, t) = 25=0m cos(v/2nt + jm) Gy H0<t<t
0, i1 > 1.

Note that g,(t) converges uniformly to zero as n tends to infinity, while for
x > 0, the solution u,(z,t) does not tend to zero.

Now consider the Laplace equation with Cauchy conditions on x:

Upe (2, ) + ug(z,6) =0, t>0,0<z<1
u(07 ) = Gn, ux(ov ) = 07

where
(1) = n~2cosv2nt, if0<t<t,
I =0, if > tg.

15



The solution of this problem is

o0 - (vV2nx)% .
U (2, 1) = ijon 2 cos(ﬁmﬁ) IR if0<t<tg
0, ittt >t.

We have that g, (t) converges uniformly to zero as n tends to infinity, while
for > 0, the solution u,(x,t) does not tend to zero.

2) Note that (¢;)" ¢ V;. In fact, if (¢;)" € V; then (¢;)" = > 1, arvii-

Hence o
()" = s
keZ

So, we would have

—2j/26_i2jl€§2@(2j§) — Zaij/Qe—i2j/2§@<2j§)
keZ

This equality implies £ =", _, — e 2 (k=DE],
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