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Abstract

This article considers the minimum sum-of-squares clustering (MSSC)problem.
The mathematical modeling of this problem leads to a min — sum — min
formulation which, in addition to its intrinsic bi-level nature, has the signif-
icant characteristic of being strongly nondifferentiable. To overcome these
difficulties, the proposed resolution method, called Hyperbolic Smoothing,
adopts a smoothing strategy using a special C* differentiable class func-
tion. The final solution is obtained by solving a sequence of low dimension
differentiable unconstrained optimization subproblems which gradually ap-
proach the original problem. This paper introduces the method of partition
of the set of observations into two non overlapping groups: ”data in fron-
tier” and ”data in gravitational regions”. The resulting combination of the
two methotologies for the MSSC problem has interesting properties, which
drastically simplify the computational tasks.

Keywords: Cluster Analysis, Pattern Recognition, Min-Sum-
Min Problems, Nondifferentiable Programming, Smoothing



1 Introduction

Cluster analysis deals with the problems of classification of a set of pat-
terns or observations, in general represented as points in a multidimensional
space, into clusters, following two basic and simultaneous objectives: pat-
terns in the same clusters must be similar to each other (homogeneity ob-
jective) and different from patterns in other clusters (separation objective)
[Anderberg (1973), Hartingan (1975) and Spath (1980)].

Clustering is an important problem that appears in a broad spectrum
of applications, whose intrinsic characteristics engender many approaches to
this problem, as described by Dubes and Jain (1976), Jain and Dubes (1988)
and Hansen and Jaumard (1997).

Clustering analysis has been used traditionally in disciplines such as: bi-
ology, biometry, psychology, psychiatry, medicine, geology, marketing and
finance. Clustering is also a fundamental tool in modern technology ap-
plications, such as: pattern recognition, data mining, web mining, image
processing, machine learning and knowledge discovering.

In this paper, a particular clustering problem formulation is considered.
Among many criteria used in cluster analysis, the most natural, intuitive
and frequently adopted criterion is the minimum sum-of-squares cluster-
ing (MSSC). This criterion corresponds to the minimization of the sum-of-
squares of distances of observations to their cluster means, or equivalently,
to the minimization of within-group sum-of-squares. It is a criterion for both
the homogeneity and the separation objectives. According to the Huygens
Theorem, minimizing the within-cluster inertia of a partition (homogeneity
within the cluster) is equivalent to maximizing the between-cluster inertia
(separation between clusters).

The minimum sum-of-squares clustering (MSSC) formulation produces
a mathematical problem of global optimization. It is both a nondifferen-
tiable and a nonconvex mathematical problem, with a large number of local
minimizers.

There are two main strategies for solving clustering problems: hierarchical
clustering methods and partition clustering methods. Hierarchical methods
produce a hierarchy of partitions of a set of observations. Partition meth-
ods, in general, assume a given number of clusters and, essentially, seek the



optimization of an objective function measuring the homogeneity within the
clusters and/or the separation between the clusters.

For the sake of completeness, we present first the Hyperbolic Smothing
Clustering Method (HSCM), Xavier (2010). Basically the method performs
the smoothing of the nondifferentiable min — sum — min  problem en-
gendered by the modeling of the clustering problem. This technique was
developed through an adaptation of the hyperbolic penalty method origi-
nally introduced by Xavier (1982). By smoothing, we fundamentally mean
the substitution of an intrinsically nondifferentiable two-level problem by a
C> unconstrained differentiable single-level alternative.

Additionally, the paper presents a new, faster, methodology. The basic
idea is the partition of the set of observations into two non overlapping parts.
By using a conceptual presentation, the first set corresponds to the obser-
vation points relatively close to two or more centroids. This set of observa-
tions, named boundary band points, can be managed by using the previously
presented smoothing approach. The second set corresponds to observation
points significantly closer to a single centroid in comparison with others. This
set of observations, named gravitational points, is managed in a direct and
simple way, offering much faster performance.

This work is organized in the following way. A step-by-step definition
of the minimum sum-of-squares clustering problem is presented in the next
section. The original smoothing hyperbolic smoothing approach and the
derived algorithm are presented in section 3. The boundary and gravitational
regions partition scheme and the new derived algorithm are presented in
section 4. Computational results are presented in section 5. Brief conclusions
are drawn in section 6.

2 The Minimum Sum-of-Squares Clustering
Problem

Let S ={s1,...,8n} denote a set of m patterns or observations from
an Euclidean n-space, to be clustered into a given number ¢ of disjoint
clusters. To formulate the original clustering problem as a min— sum—min
problem, we proceed as follows. Let z;,7 =1,...,q be the centroids of the
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clusters, where each x; € R™. The set of these centroid coordinates will be
represented by X € R"™. Given a point s; of S, we initially calculate the
Euclidian distance from s; to the center in X that is nearest. This is given

by

5= min |ls; — ail 1)

The most frequent measurement of the quality of a clustering associated
to a specific position of ¢ centroids is provided by the sum of the squares
of these distances, which determines the MSSC problem:

m
minimize Zz? (2)
j=1
subject to  z; = min ||s; —xill, J=1,....m

Z':L“"q

3 The Hyperbolic Smoothing Clustering Method

Considering its definition, each z; must necessarily satisfy the following set
of inequalities:

zi—lsj —xlls <0, i=1,....¢q (3)

Substituting these inequalities for the equality constraints of problem (2),
it is produced the relaxed problem:

m
minimize ZZJQ (4)
j=1
subject to  z; — ||s; — ][ <0, j=1,...,m, i=1,...,q.



Since the variables z; are not bounded from below, the optimum solution
of the relaxed problem will be z; =0, 7 =1,...,m. In order to obtain the
desired equivalence, we must, therefore, modify problem (4). We do so by
first letting (y) denote maxz{0,y} and then observing that, from the set
of inequalities in (4), it follows that

q
Dol —lsy—aill:) =0, j=1,....m. ()
i=1

Using (5) in place of the set of inequality constraints in (4), we would
obtain an equivalent problem maintaining the undesirable property that
zj, 7 = 1,...,m still has no lower bound. Considering, however, that the
objective function of problem (4) will force each z;, 7 = 1,...,m, down-
ward, we can think of bounding the latter variables from below by including
an ¢ perturbation in (5). So, it is obtained the following modified problem:

m

minimize Z z (6)

J=1

q
subject to ZSO(ZJ’_HS]‘—CU’L‘”Q) > e, j=1,....m
i=1

for e > 0. Since the feasible set of problem (2) is the limit of that of (6) when
e — 04, we can then consider solving (2) by solving a sequence of problems
like (6) for a sequence of decreasing values for e that approaches 0.

Analyzing the problem (6), the definition of function ¢ endows it with an
extremely rigid nondifferentiable structure, which makes its computational
solution very hard. In view of this, the numerical method we adopt for
solving problem (1), takes a smoothing approach. From this perspective, let
us define the function:

oly.) = (y+ V7 ) /2 (7)
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for ye R and 7> 0.

Function ¢ has the following properties:

(a) oy, 7) > @ly), V7 >0;
(0) }111(1) oy, 7) = ¢(v);

(¢) ¢(y,7) is an increasing convex C'*° function in variable y.

By using function ¢ in the place of function ¢, the problem

m
minimize Z z (8)
=1

q
subject to Zgb(z] —ls; = xill2,7) >, j=1
i=1

is produced.

yeey M.

To obtain a differentiable problem, it is still necessary to smooth the
Euclidean distance ||s; — x;|[2. For this purpose, let us define the function

9<Sj7mi7’7> = Z(S.l]_l»i)Q_’_,yQ (9)
=1

for v > 0.

Function # has the following properties:

(a) Tim O(s;, 2, 7) = llsj = @ill2 5
y—

(b) 6 isa C* function.

By using function 6 in place of the distance ||s; — z;||2, the following
completely differentiable problem is now obtained:



m

minimize Zz? (10)
j=1
subject to Z(b 0(sj,zi,7),7) >¢€, j=1,...,m.

i=1

So, the properties of functions ¢ and 6 allow us to seek a solution to
problem (6) by solving a sequence of subproblems like problem (10), produced
by the decreasing of the parameters v —0 , 7 — 0, and ¢ — 0.

Since z; > 0, j =1,...,m, the objective function minimization process
will work for reducing these values to the utmost. On the other hand, given
any set of centroids w;, i = 1,...,q, due to property (c) of the hyperbolic
smoothing function ¢, the constraints of problem (10) are a monotonically
increasing function in z;. So, these constraints will certainly be active and
problem (10) will at last be equivalent to problem:

minimize Zz? (11)
j—1
subject to  hj(z;,x Zqzﬁ 0(s;,zi,v),7) —e =0, j=1...,m.

The dimension of the variable domain space of problem (11) is (ng+m).
As, in general, the value of the parameter m, the cardinality of the set S of
the observations s;, is large, problem (11) has a large number of variables.
However, it has a separable structure, because each variable z; appears only
in one equality constraint. Therefore, as the partial derivative of h(z;,z)

with respect to z;, j = 1,...,m is not equal to zero, it is possible to use the
Implicit Function Theorem to calculate each component z;, 7 =1,...,m
as a function of the centroid variables xz;,7 = 1,...,q. In this way, the

unconstrained problem

minimize f(x Z zj(x (12)

j=1



is obtained, where each z;(z) results from the calculation of a zero of each
equation

q

hi(zj,x) = Zqﬁ(zj —0(sj,z;,7),7) —e =0, j=1,...,m. (13)

i=1

Due to property (c) of the hyperbolic smoothing function, each term ¢
above is strictly increasing with variable z; and therefore the equation has
a single zero.

Again, due to the Implicit Function Theorem, the functions z;(x) have
all derivatives with respect to the variables xz;, 7@ = 1,...,q, and therefore
it is possible to calculate the gradient of the objective function of problem
(12),

Z 2 2j(z) V() (14)

where
O hj(zj, x)
Dzj

while V hj(z;,xz) and 0h;(z;,2)/0%; are obtained from equations (7), (9)
and (13).

Vzj(x) = = Vhy(z,2) / (15)

In this way, it is easy to solve problem (12) by making use of any method
based on first order derivative information. At last, it must be emphasized
that problem (12) is defined on a (ng)—dimensional space, so it is a small
problem, since the number of clusters, ¢, is, in general, very small for real
applications.

The solution of the original clustering problem can be obtained by us-
ing the Hyperbolic Smoothing Clustering Algorithm, described below in a
simplified form.



The Simplified HSC Algorithm

Initialization Step:  Choose initial values: 2°, ', 71, &l

Choose values 0<py <1, 0<pa <1, 0<p3<l1; let k=1.

Main Step:  Repeat until a stopping rule is attained

k

Solve problem (12) with v =~* 7=17% and ¢ =&*, starting at the

initial point 2*~! and let 2* be the solution obtained.

Let ¥l = piAF | 7= pyrh = paeb | ki=k+1. =

Just as in other smoothing methods, the solution to the clustering prob-
lem is obtained, in theory, by solving an infinite sequence of optimization
problems. In the HSC algorithm, each problem to be minimized is uncon-

strained and of low dimension.

Notice that the algorithm causes 7 and +~ to approach 0, so the
constraints of the subproblems as given in (10) tend to those of (6). In
addition, the algorithm causes e to approach 0, so, in a simultaneous
movement, the solved problem (6) gradually approaches the original MSSC
problem (2).

4 The Accelerated Hyperbolic Smoothing Clus-
tering Method

The calculation of the objective function of the problem (12) demands the
determination of the zeros of m equations (13), one equation for each
observation point. This is a relevant computational task associated to HSC
Algorithm.

In this section, it is presented a faster procedure. The basic idea is the
partition of the set of observations into two non overlapping regions. By using
a conceptual presentation, the first region corresponds to the observation
points that are relatively close to two or more centroids. The second region
corresponds to the observation points that are significantly close to a unique
centroid in comparison with the other ones.



So, the first part Jp is the set of boundary observations and the second
is the set Jgs of gravitational observations. Considering this partition,
equation (12) can be expressed in the following way:

minimize f(x Z zi(x Z zi(z)? + Z zi(z)?, (16)

Jj=1 J€JB Jj€Ja

so, the objective function can be presented in the form:

minimize f(x) = fp(z) + fo(x), (17)
where the two components are completely independent.

The first part of expression (17), associated with the boundary observa-

tions, can be calculated by using the previous presented smoothing approach,
see (12) and (13):

minimize fgp(x Z zi()*, (18)

je€JB

where each z;(z) results from the calculation of a zero of each equation
Zj7 Z¢ Sj7x177)77-) — &= 07 jEJB- (19>

The second part of expression (17) can be calculated by using a faster
procedure, as we will show right away.

Let us define the two parts in a more rigorous form. Let be
T;, 1 =1,...,q be a referential position of centroids of the clusters taken in
the iterative process.

The boundary concept in relation to the referential point = can be easily
specified by defining a d band zone between neighboring centroids. For a
generic point s € R", we define the first and second nearest distances from
s to the centroids:

di(5,7) = s =7 || = min[|s — 7| (20)
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dy(s,T) = ||s — T, | = minfls =] , (21)
i#£i1

where 47 and iy are the labeling indexes of these two nearest centroids.

By using the above definitions, let us define precisely the 6 boundary
band zone:

Z5(@) = {s €R" | do(5,T) — di(5,7) < 26}  (22)

and the gravity region, this is the complementary space:

G5(T) = {s e R" — Z;(7) }. (23)

Figure 1 illustrates in R? the Zs5(z) and Gs(T) partitions. The
central lines form the Voronoy polygon associated with the referential cen-
troids x;, ¢ = 1,...,q. The region between two parallel lines to Voronoy
lines constitutes the boundary band zone Z;(T).

Figure 1: The Zs(ZT) and Gs(T) partitions.
Now, the sets Jp and Jg can be defined in a precise form:
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Js(@) ={j=1,....m|s; € Zs(T)} (24)

Je@ ={j=1,...,m|s; € Gs()}. (25)

Proposition 1:

Let s be a generic point belonging to the gravity region Gs(Z), with
nearest centroid ¢;. Let x be the current position of the centroids. Let
Az = max; ||r; — T;|| be the maximum displacement of the centroids.

If Az < § then s will continue to be nearest to centroid x;, than to
any other one,so

min || s — ;|| — ||s =z, || > 0. (26)
111
Proof.
miinHS—fﬂiH—HS—% | = finil.nHS—TiJrTi—xiH—HS—fil + Ty — || >
1 1
(27)
min || s = Z;|| = [|Ti — || = |s =7 || = 7o, — 20 | 2> (28)
10
26 — 2Az > 0 . (29)

Since 6 > Az, Proposition 1 makes it possible to calculate exactly
expression (16) in a very fast way. First, let us define the subsets of gravity
observations associated with each referential centroid:

5@ ={ i€ el min s -ml = s ==l G0

The center of the observations in each non-empty subset is given by

1 .
vi:stj, Vi=1,...,q. (31)

SjGJi
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Let us consider the second sum in expression (16). It will be computed
by taking into account the centers defined above.

q

minimize fg(x) = Z zi(z)? = Z Z s, —x |)* = (32)

JjE€Ja =1 jeJ;

q

ZZ||3j_Ui+Ui_Ii”2: (33)
i=1 jeJ;

q

DD sy —wil? +2(vi—a) Y (s5—vi) + Y [l —vi |

i=1 L jeJ; Jje€Ji jedi
(34)

Equation (31) implies that

> (sj—wi) =0, (35)

and then:

q q
minimize fg(x) = Z Z | s; — v 1> + Z | Ti| [ @i — v || (36)
i=1

i=1 jcJ;

When the position of centroids z;,2 = 1,...,q moves during the iterative
process, the value of the first sum in (36) assumes a constant value, since the
vectors s and v are fixed. On the other hand, for the calculation of the
second sum, it is only necessary to calculate ¢ distances, |v; —z; ||, i =
1,...,q.

The gradient of the second part of the objective function is easily calcu-
lated by:

q

Vfalx) = Y 2|0l (2 = v), (37)

i=1
where the vector (v; — ;) must be in R™, so it has the first (i — 1)g
components and the last [ = ig+ 1,...,ng components equal zero.
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Therefore, if it is observed that 0 > Az within the iterative process,
the calculation of the expression 7. ; z;(x)? and its gradient can be
computed exactly by very fast procedures, equations (36) and (37) .

By using the above results, it is possible to construct a procedure, the
Accelerated Hyperbolic Smoothing Clustering Algorithm, which has concep-
tual properties that offer a faster computational performance for solving the
clustering problem given by formulation (16).

A fundamental question is the proper choice of the boundary parameter
0. Moreover, there are two main options for updating the boundary param-
eter ¢, inside the internal minimization procedure or after it. For simplicity
sake, the AHSC-L2 algorithm, the hyperbolic smoothing approach connected
with the partition scheme, presented below adopts the second option, which
offers a better computational performance, in spite of an eventual violation
of the 9 > Ax condition, which is corrected in the next partition update.

The Simplified AHSC-L2 Algorithm

Initialization Step:

Choose initial start point: %;

Choose parameter values: ~!, 71, &l;
Choose reduction factors: 0<p; <1, 0<ps <1, 0<p3<l;
Specify the boundary band width: &?;

Let k=1.

Main Step:  Repeat until an arbitrary stopping rule is attained

For determining the Zs(Z) and G4(T) partitions, given by (22) and
(23), use T =21 and § = ",

Calculate the centers v;,i = 1,...,q of gravitational regions by using
(31).

Solve problem (17) starting at the initial point x
the solution obtained:

k=1 and let zF be

For solving the equations (19), associated to the first part given
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by (19), take the smoothing parameters: v =~* 7 =7 and ¢ =¥,

For solving the second part, given by (36), use the above calculated
centers of the observations.

Updating procedure:

Let y** = piof , M= pyrt M= py et
Redefine the boundary value: §¢+1
Let k:=k+ 1. n

The above algorithm does not include any procedure for considering the
occurrence of empty gravitational regions. This possibility can be overcome
by simply moving the centroids.

The efficiency of the AHSC-1L.2 (HSC Method Connected with the Bound-
ary and Gravitational Regions Partition Scheme) depends strongly on the pa-
rameter 6. A choice of a small value for it will imply an improper definition
of the set G4(T) and frequent violation of the basic condition Az < 4§, for
the validity of Proposition 1. Otherwise, a choice of a large value will imply
a decrease in the number of gravitational observation points and, therefore,
the computational advantages given by formulation (36) will be reduced.

As a general strategy, within first iterations, larger ¢ values must be
used, because the centroid displacements are more expressive. The § values
must be gradually decreased in the same proportion of the decrease of these
displacements.

5 Computational Results

The computational results presented below were obtained from a prelimi-
nary implementation of the AHSC-L2 algorithm. The numerical experiments
have been carried out on a PC Intel Celeron with 2.7GHz CPU and 512MB
RAM. The programs are coded with Compac Visual FORTRAN, Version 6.1.
The unconstrained minimization tasks were carried out by means of a Quasi-
Newton algorithm employing the BFGS updating formula from the Harwell
Library, obtained in the site: (http://www.cse.scitech.ac.uk/nag/hsl/).
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In order to show the distinct performance of the AHSC-L2 algorithm,
results obtained by solving a set of the largest problems of the TSP collection,
Reinelt(1991) (http://www.iwr.uni-heidelberg.de/groups/comopt /software),
are shown below.

Table 1 presents the results for the TSPLIB-3038 data set. It exhibits the
results produced by the AHSC-L2 algorithm and, for comparison, those of
two algorithms presented by Bagirov (2008). The first two columns show the
number of clusters (q), and the best known value for the global optimum
(fopt) taken from Bagirov (2008). The next columns show the error (E)
for the best solution produced (fpest), and the mean CPU time (Time)
given in seconds associated to three algorithms: multi-start k-means (MS
k-means), modified global k-means (MGKM) and the proposed AHSM-L2.
The errors are calculated in the following way: E = 100 (fgest — fopt) / fopt-

The multi-start k-means algorithm is the traditional k-means algorithm
with multiple initial starting points. In this experiment, to find ¢ clusters,
100 times ¢ starting points were randomly chosen in the MS k-means
algorithm. The global k-means algorithm, introduced by Likas et alli (2003),
is a significant improvement of the k-means algorithm. The MGKS is an
improved version of the Likas algorithm proposed by Bagirov(2008). The
AHSC-L2 solutions were produced by using 10 starting points in all cases,
except ¢ = 40 and ¢ = 50, where 20 and 40 starting points were taken,
respectively.

It is possible to observe in each row of Table 1 that the best solution
produced by the new AHSC-L2 algorithm becomes significantly smaller than
that by MS k-means when the number of clusters ¢ increases. In fact,
this algorithm does not perform well for big instances, despite being one of
most used algorithms. Wu et alli (2008) present the top 10 data mining
algorithms identified by the IEEE International Conference on Data Mining
in December 2006. The k-means assumes the second place in this list. The
comparison between AHSC-L2 and MGKM solutions demonstrates similar
superiority of proposed algorithm. In the same way, the comparison of time
columns shows a consistent speed advantage of the proposed algorithm over
the older ones.

On the other hand, the best solution produced by the AHSC-L2 algorithm
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q fopt MS k-means MGKM AHSC-L2 Algorithm
E | Time E | Time E Time
2 | 0.31688E10 | 0.00 | 12.97 | 0.00 | 0.86 0.05 0.07
10 | 0.56025E09 | 0.00 | 11.52 | 0.58 | 3.30 0.01 0.28
20 | 0.26681E09 | 0.42 | 14.53 | 0.48 | 5.77 0.05 0.59
30 | 0.17557E09 | 1.16 | 19.09 | 0.67 | 8.25 0.31 0.86
40 | 0.12548E09 | 2.24 | 22.28 | 1.35 | 10.70 | -0.11 1.09
50 | 0.98400E08 | 2.60 | 23.55 | 1.41 | 13.23 | 0.44 1.36
60 | 0.82006E08 | 5.56 | 27.64 | 0.98 | 15.75 | -0.80 1.91
80 | 0.61217E08 | 4.84 | 30.02 | 0.63 | 20.94 | -0.73 6.72
100 | 0.48912E08 | 5.99 | 33.59 | 0.00 | 26.11 | -0.60 9.79

Table 1: Results for the TSPLIB-3038 Instance

is very close to the putative global minimum, the best known solution of
the TSPLIB-3038 instance. Moreover, in this preliminary experiment, by
using a relatively small number of initial starting points, four new putative
global minimum results (¢ = 40, ¢ = 60, ¢ = 80 and ¢ = 100) have been
established.

q foalculated Algorithm HSC Algorithm AHSC-L2
Occur. | Epfean | Timeptean | Occur. | Eyrean | Timensean

2 | 0.37491E16 4 0.86 23.07 5 0.58 3.65
3 | 0.22806E16 10 0.00 47.41 7 0.04 4.92
4 | 0.15931E16 10 0.00 76.34 10 0.00 5.76
5 | 0.13397E16 1 0.80 124.32 1 1.35 7.78
6 | 0.11366E16 8 0.12 173.44 2 1.25 7.87
7 | 0.97110E15 4 0.42 254.37 1 0.87 9.33
8 | 0.83774E15 8 0.55 353.61 4 0.37 12.96
9 | 0.74660E15 3 0.68 438.71 1 0.25 13.00
10 | 0.68294E15 4 0.29 551.98 3 0.46 14.75

Table 2: Results for the P1a85900 Instance

Table 2 presents the results for the Pla85900 data set. Ten different
randomly chosen starting points were used. The first column presents the
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specified number of clusters (¢). The second column presents the best
objective function value (fcoacuatea) produced by the HSC algorithm and by
the AHSC-L2 algorithm, both alternatives obtained the same results within
a b decimal digits precision. The following three columns give the particular
data associated to the original HSC algorithm: the number of occurrences of
the best solution, the average error of the 10 solutions (Fjseqn) in relation
to the best solution obtained and CPU mean time given in seconds. The last
three columns give the same data associated to the new AHSC-L2 algorithm

The results presented in Table 2 show a coherent performance of both
algorithms. It was impossible to find any record of solutions of this instance.
Indeed, the clustering literature seldom considers instances with such num-
ber of observations. The high number of occurrences of the best solution
(Occur.) and the low values presented in columns (Ejpseqn) show a con-
sistent performance of both algorithms. The principal issue, the comparison
between the mean CPU time values, shows clearly the extra performance of
the new proposed AHSC-L2 algorithm resulting from the very fast procedures
associated to equations (36) and (37).

Instance q=2>5 q=10
farSC—L25..; | EMean | Timentean | fansC—L25.. | EMean | TiMmepsean
FL3795 0.368283E09 6.18 0.18 0.106394E09 2.30 0.26
FNL4461 0.181667E10 0.43 0.31 0.853304E09 0.36 0.52
RL5915 0.379585E11 1.01 0.45 0.187794E11 0.41 0.74
RL5934 0.393650E11 1.69 0.39 0.191761E11 2.35 0.76
Pla7397 0.506247E14 1.94 0.34 0.243486E14 2.10 0.80
RL11849 0.809552E11 1.11 0.83 0.369192E11 0.53 1.55
USA13509 | 0.329511E14 0.01 1.01 0.149816E14 1.39 1.69
BRD14051 | 0.122288E11 1.20 0.82 0.593928E10 1.17 2.00
D15112 0.132707E12 0.00 0.88 0.644901E11 0.71 2.27
BRD18512 | 0.233416E11 1.30 1.25 0.105912E11 1.05 2.24
Pla33810 0.335680E15 0.22 3.54 0.164824E15 0.68 5.14

Table 3: Results for larger instances of the TSPLIB collection

Table 3 presents the computational results produced by the AHSC-L2
algorithm for the largest instances of the Symmetric Traveling Salesman
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Problem (TSP) collection: FL3795, FNL4461, RL5915, RL5934, Pla7397,
RL11849, USA13509, BRD14051, D15112, BRD18512 and Pla33810. For
each instance, two cases are presented : ¢ = 5 and ¢ = 10. Ten dif-
ferent randomly chosen starting points were used. For each case, the table
presents: the best objective function value produced by the AHSC-L2 algo-
rithm (famsc-r2p..,), the average error of the 10 solutions in relation to
the best solution obtained (Fjeqn) and CPU mean time given in seconds
(Timensean)-

It was impossible to perform a comparison, given the lack of records of
solutions of these instances . Indeed, the clustering literature seldom consid-
ers instances with such number of observations. Only a possible remark: the
low values presented in columns (Ejyjeqn) show a consistent performance of
the proposed algorithm.

6 Conclusions

In this paper, a new method for the solution of the minimum sum-of-
squares clustering problem is proposed. It is a natural development that
improves the global performance of the original HSC method presented by
Xavier (2010). The robustness of the performance of the AHSC-L2 algorithm
can be attributed to the complete differentiability of the approach. The high
speed of the AHSC-L2 algorithm can be attributed to the partition of the
set of observations into two non overlapping parts. This approach offers a
drastic simplification of computational tasks.

It must be observed that the AHSC-L2 algorithm, as here presented, is
firmly linked to the MSSC problem formulation. Thus, each different problem
formulation requires a specific methodology to be developed, in order to apply
the partition into boundary and gravitational regions.

Finally, it must be remembered that the MSSC problem is a global opti-
mization problem with several local minima, so that both algorithms can only
produce local minima. The obtained computational results exhibit a deep
local minima property, which is well suited to the requirements of practical
applications.
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