Towards a Theory of Web Effort Estimation

Emilia Mendesl, Simon Baker’

! Computer Science Department, The University of Auckland,
Private Bag 92019, Auckland, New Zealand
emilia@cs.auckland.ac.nz
Bolsista CAPES/Brazil at COPPE/Sistemas, Federal University of Rio de Janeiro, Brazil
? Global Business Services, IBM
55 Pyrmont Street, Sydney, 2009, NSW, Australia
bakesim@aul.ibm.com

Abstract. Reliable Web effort estimation is one of the cornerstones of good Web project
management. Hence the need to fully understand which factors affect, and how they affect, a
project’s outcome, and their causal relationships. The aim of this paper is to propose a
mechanism to obtain an empirical generalization of four different causal process form type of
theories for Web effort estimation. Each one of these theories was constructed using a hybrid
approach to theory building, based on existing knowledge elicited from several domain experts,
data on past completed Web projects, and a technique that enables the modeling of causal
relationships and their uncertainty. The aggregation methodology used to combine these
theories was the same one we employed previously with causal maps, which extends previous
work by adding a mapping scheme to handle complex domains (e.g. effort estimation), and in
addition also uses an aggregation process that preserves all the causal relations from the original
theories. The resultant empirical generalization contains 70 concepts (variables), and highlights
several patterns amongst the four theories used as input, thus providing a starting point to a
more general theory of Web effort estimation.
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1 Introduction

The topic relating to the research detailed herein — Web effort estimation, falls within the
field of “Web Engineering”?, term that, despite being first published in 1996 in a conference
paper by Gellersen et al [19], was only defined in 2001 by Murugesan and Deshpande [51],
as follows:

“the use of scientific, engineering, and management principles and systematic
approaches with the aim of successfully developing, deploying and maintaining high
quality Web-based systems and applications”.

Scientific knowledge represents a “system for description [of concepts] and explanation [of
why events occur]” [55], which should provide: i) a typology, or system of classification -
method that organises and categorises concepts (variables); ii) predictions of future events;
iii) explanations of past events; iv) a sense of understanding about what causes these events;

1 We would also like to point out that in our view Web and software development differ in a number of areas, such as:
Application Characteristics, Primary Technologies Used, Approach to Quality Delivered, Development Process Drivers,
Availability of the Application, Customers (Stakeholders), Update Rate (Maintenance Cycles), People Involved in
Development, Architecture and Network, Disciplines Involved, Legal, Social, and Ethical Issues, and Information Structuring
and Design. A detailed discussion on this issue is provided in [31].
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and optionally v) the potential for control of phenomena. Within the scope of this work we
also support the view put forward by Dubin that the terms model and system can be used as
synonyms of theory [10].
A scientific body of knowledge is generally built using one of two strategies: Research-Then-
Theory, and Theory-Then-Research [55].
The Research-Then-Theory strategy consists of the following steps [55]:
1. Toselect a phenomenon and list all of its characteristics;
2. To measure all the characteristics of the phenomenon identified in step 1) in as many
as possible varied situations;
3. To analyse very carefully the data gathered in step 2) in order to verify whether there
are any regular patterns in the data that deserve further attention;
4. To formalise the patterns identified in step 3) as theoretical statements (e.g. laws,
axioms, propositions, hypotheses and empirical generalisations) [55].

And the Theory-Then-Research strategy comprises the following sequence of tasks:

1. To build up an explicit theory in either axiomatic or process description form;

2. To choose a statement produced by the theory created in step 1) to be compared with
the results from empirical research (validating the statement);

3. To carry out an empirical investigation in order to assess the correspondence between
the statement chosen in step 2) with the results from empirical research;

4. To return to step 2) in case there are other statements to be chosen for validation OR
return to step 2) in case the research results from step 3) do not support the
statement investigated in that step. Prior to returning to step 2) changes need to be
made to either the theory, or to the empirical investigation’s design. It is also
applicable during this step to identify the situations to which the theory developed in
step 1) does not apply.

Although these two strategies are widely used, both present problems. Here we will only
document the problems considered to be the most fundamental for each of these strategies;
however a detailed discussion is provided in [55]:

Research-Then-Theory: The great difficulty in identifying up front all the variables that
should be measured within the context of the phenomenon being investigated, given this
can be an awfully long list; and the enormous challenge in selecting the significant causal
relationships amongst all possible relationships.

Theory-Then-Research: The great difficulty in inventing the initial theory.

Reynolds [55] suggests the use of a composite (hybrid) approach to scientific theory building,
where scientific activity is split into three stages — Exploratory, Descriptive, and Explanatory.
Each is detailed below:

1. Exploratory. This step entails one to freely explore the phenomenon under
investigation, and to develop suggestive ideas. This activity differs from that
employed in the usual Research-Then-Theory strategy because here the data that is
gathered is very much influenced by the investigator’s hunches and insights. Ideally
this step should also provide direction for the actions to take place during stage 2.

2. Descriptive. This step entails building up explicit descriptions of patterns that were
conjectured during step 1). The purpose may be seen as one of developing inter-
subjective descriptions, i.e., descriptions of a phenomenon that were personally



experienced (subjectively) by more than one subject. These are also understood as
empirical generalisations. These descriptions are then used as input to the next step,
where a theory is built up.
3. Explanatory. This step entails the refinement of a theory that can be used to explain

the descriptions identified in step 2). This is a continuous cycle of:

a. Theory construction;

b. Theory testing, where empirical research is used in an attempt to falsify the

proposed Theory;
c. Theory reformulation, back to step 3a.

The main research contribution of this paper is to propose a mechanism to obtain an
empirical generalisation of four different causal process form type of theories for Web effort
estimation. However, each of these four different theories are also research contributions,
as no previous study to date in either Web or Software Engineering has argued that a
validated Bayesian Network model can be taken as a causal process type of theory.

Web effort estimation is the process by which effort is forecasted and used as basis to
predict project costs and allocate resources effectively, so enabling projects to be delivered
on time and within budget [1]. It is one of the cornerstones of Web project management,
and a very complex domain where the relationship between factors is non-deterministic and
has an inherently uncertain nature.

We employed Reynolds’ composite approach to construct each of those theories, based on
existing knowledge elicited from separate single-company Web effort estimation domain
experts, data on past completed Web projects, and a technique that enables the modeling of
causal relationships and their uncertainty. The empirical generalisation presented herein
summarises, in general form, the patterns in each of the theories used as input to this
generalisation. In order to use the aggregation mechanism we employ to ‘transform’ the
resulting empirical generalisation into a causal process form type of general theory of Web
effort estimation we would also need to: i) ‘merge’ the probabilities from all input theories,
and ii) validate the theory empirically using hard evidence from past projects. In relation to
item ii), we have all the validation sets employed when validating each of the four theories
used herein; however, when it comes to item i), this is unfortunately a task that at this stage
is impossible to carry out given the diverse quantifications from the original theories.

We also conjecture that as more theories are aggregated to the initial empirical
generalisation, the greater the confidence one has that the patterns that were observed will
be repeated in a concrete situation in the future if the same conditions were to recur.

The remainder of this paper is structured as follows: Section 2 provides readers with some
background on Web effort estimation and related work, followed by an introduction to
Bayesian Networks and the methodology employed to build each of the four causal process
form type of theories in Section 3. Section 4 describes the aggregation mechanism employed
to create the empirical generalisation, followed by the results from this empirical
generalisation in Section 5, comments on threats to the validity of our work in Section 6, and
finally conclusions in Section 7.



2 Background & Related Work

Web development is a rapidly growing industry, where the number of Web development
companies in the United States alone increased from less than 1000 businesses in 1995 to
over 30,000 in 2005 [22]. In addition, by 2010 the Web development industry was expected
to experience a further growth of over 20%. This suggests that some of the existing research
in Web Engineering should be geared towards helping Web companies understand, control
and improve their current processes. One of such processes is Web effort estimation.

There have been numerous previous attempts to model effort estimation of Web projects,
but none to date aimed at building a theory of Web effort estimation. Mendes and Counsell
[32] were the first to investigate this field by building a model using machine-learning
techniques with data from student-based Web projects, and size measures harvested late in
the project’s life cycle. Mendes and collaborators also carried out a series of consecutive
studies (e.g. [7]-[16],[25]-[49]) where models were built using multivariate regression and
machine-learning techniques and used data on industrial Web projects. Later they proposed
and validated size measures harvested early in a project’s life cycle, therefore better suited
to effort estimation [43] when compared to other Web effort predictors previously proposed
[25]. Reifer [54] proposed an extension of an existing software engineering resource model,
and a single size measure harvested late in the project’s life cycle. None were validated
empirically. This size measure was later used by Ruhe et al. [56], who further extended a
software engineering hybrid estimation technique to Web projects, using a small data set of
industrial projects, with this technique mixing expert judgement and multivariate regression.
Baresi et al. [4],[5] and Mangia et al. [24] investigated effort estimation models and size
measures for Web projects based on a specific Web development method. More recently
there have been a number of studies describing causal maps for Web effort estimation
[2],[26]-[29], where, except for [2], their causal relationships were identified by a domain
expert, using only the set of factors that are part of the Tukutuku database [38]. Baker and
Mendes [2] proposed a mechanism to aggregate several causal maps for Web effort
estimation to help Web companies elicit their tacit knowledge relating to effort estimation.
This same mechanism is employed herein to obtain an empirical generalisation from four
Web effort estimation theories. Other more recent studies compared Web effort prediction
techniques, based on existing datasets [7]-[13].

None of these previous studies investigated explicitly the issue relating to building a theory
of Web effort estimation. In addition, most studies, when identifying important factors for
Web effort estimation, focused solely on factors that presented a cause & effect relationship
with effort, i.e., they included any factors correlated with effort. In addition, when surveying
companies to identify suitable effort predictors, those studies did not assess how good these
companies were at estimating effort for their Web projects.

As part of a NZ government-funded research, Mendes elicited several company-specific
expert-driven Web effort estimation causal maps from NZ Web companies [26]. The
elicitation process employed is detailed in [26], and also introduced in Section 3. A total of
10 causal maps were elicited with Web companies in New Zealand; many were later used as
part of corresponding larger models, built using Bayesian Networks (technique detailed
later), each providing a representation of the Web effort estimation domain from the
perspective of the single Web company from which that model had been elicited. All
participating companies were consulting companies that developed different types of Web
applications (e.g. static application, applications that used a content management system,



database-driven Web applications). Four Bayesian models were built and validated
empirically. These are the ones used herein. Within the context of this work we conjectured
that consulting companies would have experience managing a much broader range of Web
projects, thus contributing more strongly towards more ‘generic’ representations of the Web
effort estimation phenomenon, when compared with Web companies that do not provide
consulting services.

3 Building Bayesian Networks
3.1 Introduction to Bayesian Networks

A Bayesian Network (BN) is a probabilistic model that allows for reasoning under
uncertainty. A BN is made up of two components [21]. The first is a graphical causal map,
depicted by a Directed Acyclic Graph (DAG) (see Figure 1). The DAG’s nodes represent the
relevant variables (factors/concepts) in the domain being modelled, which can be of
different types (e.g. observable or latent, categorical). The DAG’s arcs represent the causal
relationships between variables, where relationships are quantified probabilistically. These
graphs may be simple (as in the example in Figure 1), or very complex in terms of nodes and
relations.

Number of Web pages (NWP) Number of Features (NF)

Low 250 mm Low 20.0
Medium 50.0 p— Medium 55.0
High 250mm High 250

Total Effort (TE)
Low 27.6 mm
Medium  42.8
High 20.6 -

Fig. 1. A small Bayesian Network model and its CPTs

The second component of a BN is the quantitative part: a Conditional Probability Table (CPT)
associated to each node in the network. A parent node’s CPT describes the relative
probability of each state (value) (Fig. 1 CPTs for nodes ‘Number of Web pages’ and ‘Number
of Features’); a child node’s CPT describes the relative probability of each state conditional
on every combination of states of its parents (Fig. 1 CPT for node ‘Total Effort’). Each row in
a CPT represents a conditional probability distribution and therefore its values sum up to
one [21].

Once a BN is specified, evidence (e.g. values) can be entered into any node, and probabilities
for the remaining nodes automatically calculated using Bayes’ rule [21]. Therefore BNs can
be used for different types of reasoning, such as predictive and “what-if” analyses to
investigate the impact that changes on some nodes have on others [13]. A description of the
generic process employed to build the four BNs part of the research presented herein, and
its correspondence to Reynolds’ composite approach is detailed below.

3.2 Process Employed to Build Bayesian Networks

The process employed to build all four BNs is an adaptation of the Knowledge Engineering of
Bayesian Networks (KEBN) process proposed in [60] (see Fig. 2). In Fig. 2 arrows represent



flows through the different processes, depicted by rectangles. Such processes are executed
either by people — the Knowledge Engineer (KE) and the Domain Experts (DEs) (white
rectangles), or by automatic algorithms (dark grey rectangles). Within the context of this
paper the first author was the KE, and Web project managers from four well-established
Web companies in Auckland were the DEs. This Figure also presents the correspondence
between the phases that are part of the adapted KEBN process, and Reynolds’ stages. Note
that the adapted KEBN process enables iteration through all phases, whereas Reynolds’
approach only prescribes iteration during the Explanatory stage, and a sequential flow from
the Exploratory to the Descriptive stage, and from the Descriptive to the Explanatory stage.
However, we contend that when applied to a real situation, the sequential flow is replaced
by an iterative flow as part of theory construction. This was indeed what we have observed
in practice.

The three main steps within the adapted KEBN process are the Structural Development,
Parameter Estimation, and Model Validation (see Fig. 2). This process iterates over these
steps until a complete BN is built and validated. Each of these three steps is detailed below:

Structural Development: This step represents the qualitative component of a BN, which
results in a graphical structure comprised of, in our case, the factors (concepts, variables)
and causal relationships identified as fundamental for effort estimation of Web projects. In
addition to identifying variables, their types (e.g. query variable, evidence variable) and
causal relationships, this step also comprises the identification of the states (values) that
each variable should take, and if they are discrete or continuous. In practice, currently
available BN tools require that continuous variables be discretised by converting them into
multinomial variables [60], also the case with the BN software used in this study. The BN’s
structure is refined through an iterative process. This structure construction process has
been validated in previous studies [12][13][23][60] and uses the principles of problem
solving employed in data modelling and software development [58]. During this step, both
the brainstorming that takes place and also the decisions that are made (e.g. choice of
variables and discretisation) are documented using a digital voice recorder and a text editor.
This is done in order to provide evidence relating to the explicit descriptions of the models
(patterns) identified during this step. The evidence obtained corresponds to the actions that
characterise the Descriptive step, according to Reynolds’ approach.

As will be detailed later, existing literature in Web effort estimation, and knowledge from
the domain experts were employed to elicit the Web effort BNs’ structure. Throughout this
step the knowledge engineer(s) also evaluate(s) the structure of the BN, done in two stages.
The first entails checking whether [60]: variables and their values have a clear meaning; all
relevant variables have been included; variables are named conveniently; all states are
appropriate (exhaustive and exclusive); a check for any states that can be combined. The
second stage entails reviewing the BN’s graph structure (causal structure) to ensure that any
identified d-separation dependencies comply with the types of variables used and causality
assumptions. D-separation dependencies are used to identify variables influenced by
evidence coming from other variables in the BN [21]. Once the BN structure is assumed to be
close to final knowledge engineers may still need to optimise this structure to reduce the
number of probabilities that need to be elicited or learnt for the network. If optimisation is
needed then techniques that change the causal structure are employed [12][21].




Parameter Estimation: This step represents the quantitative component of a BN, where
conditional probabilities corresponding to the quantification of the relationships between
variables are obtained. Such probabilities can be attained via Expert Elicitation, automatically
from data, from existing literature, or using a combination of these. When probabilities are
elicited from scratch, or even if they only need to be revisited, this step can be very time
consuming. In order to minimise the number of probabilities to be elicited some techniques
have been proposed in the literature [11][12][59].

Model Validation: This step validates the BN that results from the two previous steps, and
determines whether it is necessary to re-visit any of those steps. Two different validation
methods are generally used - Model Walkthrough and Predictive Accuracy. This step
corresponds quite clearly to the Explanatory step suggested by Reynolds, given that the data
employed to validate the BN model (proposed Theory) comprises the empirical research
used in an attempt to falsify this theory; in addition, the data is also used to re-calibrate the
initial model (whenever needed), and this can be taken as representing a theory
reformulation.

Model walkthrough represents the use of real case scenarios that are prepared and used by
domain experts to assess if the predictions provided by a BN correspond to the predictions
experts would have chosen based on their own expertise. Success is measured as the
frequency with which the BN’s predicted value for a target variable (e.g. quality, effort) that
has the highest probability corresponds to the experts’ own assessment.

Predictive Accuracy uses past data (e.g. past project data), rather than scenarios, to obtain
predictions. Data (evidence) is entered on the BN model, and success is measured as the
frequency with which the BN’s predicted value for a target variable (e.g. quality, effort) that
has the highest probability corresponds to the actual past data. However, previous literature
also documents a different measure of success, proposed by Pendharkar et al. [52], and later
used by Mendes [27][26][29], and Mendes and Mosley [28]. Herein, an effort point forecast
for each past project being used for validation is obtained by computing estimated effort as
the sum of the probability (o) of a given effort scale point multiplied by its related mean

effort (u), after normalising the probabilities such that their sum equals one. Therefore,

assuming that Estimated Effort is measured using a 5-point scale (Very Low to Very High), we
have:

Estimated (Effort) = PveryLow HveryLow T PLowHLow T PMedium HMedium t PHigh HHigh + PveryHigh HveryHigh (1)

Within the context of Web effort estimation and to some extent software effort estimation,
the challenge using Predictive Accuracy is the lack of reliable effort data gathered by Web
and Software companies. Most companies, who claim to collect effort data, use manually
entered electronic timesheets (or even paper!) which is unreliable when staff rely on their
memory and complete their timesheets at the end of the day. Collecting manually entered
timesheets every 5 minutes (assume 1 minute/entry) in a bid to improve data accuracy
increases data collection cost by as much as 10 fold. The problem here is that “effort
accuracy” is inversely related to productivity, i.e., the longer one takes filling out timesheets
the less time one has to do the real work!
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3.3 Process Employed to Build Bayesian Networks

This sub-Section revisits the adapted KEBN process (see Fig. 2), detailing the tasks carried out
for each of the three main steps that form part of that process. Before starting the elicitation
of the Web effort BN model, the Domain Experts (DEs) from all participating Web companies
were presented with an overview of Bayesian Network models, and examples of “what-if”
scenarios using a made-up BN. This, we believe, facilitated the entire process as the use of
an example, and the brief explanation of each of the steps in the KEBN process, provided a
concrete understanding of what to expect. We also made it clear that the knowledge
Engineers were facilitators of the process, and that the Web companies’ commitment was
paramount for the success of the process. The effort required by each company to have their
BN models created, and the characteristics of each model, are detailed in Table 2.

Table 1. Characteristics of the BNs created & companies involved

Company B Company C Company G Company H
Number of DEs 1 1 2 2
Number of 3-hours | 12 6 8 12
elicitation sessions
Total hours to elicit | 36 hours 18 hours 24 hours 36 hours

& validate model

Effort to elicit & | 72 person/hours | 36 person/hours 72 person/hours 108 person/hours
validate model

Number of factors 14 13 34 33
Number of | 18 12 41 60
relationships

Validation set 22 projects 8 projects 11 projects 22 projects

The DEs who took part in this case study were project managers of four well-established
Web companies in Auckland (New Zealand). All four companies were of small size, where all
of their project managers had each worked in Web development for at least 10 years. In
addition, all four companies developed a wide range of Web applications, from static &
multimedia-like to very large e-commerce solutions. They also used a wide range of Web
technologies, thus enabling the development of Web 2.0 applications. They were all looking
at improving their current effort estimates.

Detailed Structural Development and Parameter Estimation: In order to identify the
fundamental factors that the DEs took into account when preparing a project quote we used
the set of variables from the Tukutuku dataset [43] as a starting point (see Table 1). We first
sketched them out on a white board, each one inside an oval shape, and then explained
what each one meant within the context of the Tukutuku project. Our previous experience
eliciting BNs in other domains (e.g. ecology, resource estimation) suggested that it was best
to start with a few factors (even if they were not to be reused by the DE), rather than to use
a “blank canvas” as a starting point [29].

Table 2. Tukutuku variables

Variable Name Description
TypeProj Type of project (new or enhancement).
nLang Number of different development languages used

Pr
oje




DocProc If project followed defined and documented process.
Prolmpr If project team involved in a process improvement programme.
Metrics If project team part of a software metrics programme.
DevTeam Size of a project’s development team.
TeamExp Average team experience with the development language(s)
employed.
TotWpP Total number of Web pages (new and reused).
NewWpP Total number of new Web pages.
< Totimg Total number of images (new and reused).
2 Newlmg Total number of new images created.
_g Num_Fots Number of features reused without any adaptation.
E-_ HFotsA Number of reused high-effort features/functions adapted.
_: Hnew Number of new high-effort features/functions.
§ TotHigh Total number of high-effort features/functions
Num_FotsA Number of reused low-effort features adapted.
New Number of new low-effort features/functions.
TotNHigh Total number of low-effort features/functions

Within the context of the Tukutuku project, based on collected data, a new high-effort
feature/function and a high-effort adapted feature/function require respectively at least 15
and 4 hours to be developed by one experienced developer.

Once the Tukutuku variables had been sketched out and explained, the next step was to
remove all variables that were not relevant for the DEs, followed by adding to the white
board any additional variables (factors) suggested by them. This entire process was
documented using digital voice recorders and also text editors. We also documented
descriptions and rationale for each factor proposed by the DEs. The factors proposed were
indeed influenced by DEs’ hunches and insights; however DEs decisions and choices were
also very much influenced by their solid previous experience managing Web projects, and
estimating development effort.

Next, we identified the possible states that each factor would take. All states were discrete.
Whenever a factor represented a measure of effort (e.g. Total effort), we also documented
the effort range corresponding to each state, to avoid any future ambiguity. For example, to
one of the participating Web companies, ‘very low’ Total effort corresponded to 4+ to 10
person hours, etc. Once all states were identified and thoroughly documented, it was time to
elicit the cause and effect relationships. As a starting point to this task we used a simple
medical example from [21] (see Fig. 3).

Lung cancer

Fig. 3. A small BN model and two CPTs

This example clearly introduces one of the most important points to consider when
identifying cause and effect relationships — timeline of events. If smoking is to be a cause of



lung cancer, it is important that the cause precedes the effect. This may sound obvious with
regard to the example used; however, it is our view that the use of this simple example
significantly helped the DEs understand the notion of cause and effect, and how this related
to Web effort estimation and the BNs being elicited. Once the cause and effect relationships
were identified, we worked on the elicitation of probabilities to quantify each of the cause
and effect relationships previously identified. In all four cases, there was an iterative process
between the structural development and parameter elicitation steps.

Detailed Model Validation: Both Model walkthrough and Predictive accuracy were used to
validate all four Web Effort BN models, where the former was the first type of validation to
be employed in all cases. DEs used different scenarios to check whether the node
Total_effort would provide the highest probability to the effort state that corresponded to
the DE’s own suggestion. However, it was also necessary to use data from past projects, for
which total effort was known, in order to check the model’s calibration. Table 1 details the
number of projects used by each company as validation set. In all cases, DEs were asked to
use as validation set a range of projects presenting different sizes and levels of complexity,
and being representative of the types of projects developed by their Web company.

For each project in a validation set, evidence was entered in the BN model, and the effort
range corresponding to the highest probability provided for ‘Total Effort’ was compared to
that project’s actual effort. Whenever actual effort did not fall within the effort range
associated with the category with the highest probability, there was a mismatch; this meant
that some probabilities needed to be adjusted. In order to know which nodes to target first
we used a Sensitivity Analysis report, which provided the effect of each parent node upon a
given query node. Within our context, the query node was ‘Total Effort’.

Whenever probabilities were adjusted, we re-entered the evidence for each of the projects
in the validation set that had already been used in the validation step to ensure that the
calibration already carried out had not affected. This was done to ensure that each
calibration would always be an improved upon the previous one. Once all projects were used
to calibrate the model the DEs assumed that the Validation step was complete.

All four BNs have been in production for over a year.

Figs 4 to 7 show the BNs used herein.
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4 Building an Empirical Generalisation
4.1 Problems Relating to the Aggregation of Typologies?

It is often recommended that typologies be constructed through elicitation from different

domain experts in order to derive a comprehensive and accurate model [1],[50],[17],[18].

However, it is difficult to combine the beliefs of different experts in a coherent and impartial

manner.

In order to arrive at a comprehensive Typology we would need to consult domain experts,

many of whom working for different and perhaps competing companies, and thus likely to

have a different prospective about the Web development domain. Therefore, the difficulty
in combining expert-based typologies increases for the following reasons:

e Identifying Common Variables: Different experts might represent semantically equivalent
concepts in their typologies using different variable names (e.g. 'Number of Developers'
vs. 'Project Human Resources'). Furthermore, experts might use a different number of
variables to represent the same concept.

e Conflicting Causal Relations: Variables might have contradictory causal relations according
to different experts. Two kinds of causal relation conflicts can occur: the first when there
is a causal influence between two variables according to an expert’s belief, which is
strictly prohibited by another expert’s belief. The other type of conflict is the occurrence
of cycles (which is ruled out within the context of this work in order to keep the resulting
aggregated typology consistent with all the four individual typologies being used as input,
which were all Directed Acyclic Graphs (DAGSs)).

e Collaboration Constraints: One feasible way to construct a generic model for Web effort
estimation is to elicit a single typology from a group of domain experts from a
representative sample of Web development companies. This would need to be done in
stages, and such approach might work well with small groups of domain experts but will
likely to be impractical when additional typologies are included in the unified model.
However, within the context of this research, any form of collaboration between domain
experts is not feasible because all of the participating companies compete in the same
market. This means that, by collaborating with other experts, they would be forced to
share sensitive business information that they are not willing to disclose.

Therefore, it is vital to apply a methodology for combining different expert-elicited

typologies that solves the difficulties abovementioned. In this work we use the same

methodology employed in our previous work [1][2], which solves many of the affiliated
challenges in combining expert-elicited models that have not been sufficiently addressed in

prior work. A detailed explanation of this methodology is given in [1].

4.2 Problems Relating to the Aggregation of Typologies

We proposed a qualitative methodology that pragmatically addresses the shortcomings of

previous studies as follows:

1. Introducing a mapping scheme, i.e., a way to identify similar existing variables in the
participating companies’ typologies.

2 Typology here is equivalent to the qualitative component of a BN, i.e., its causal map



2. Instead of using a simple union/intersection, which can only include a common node or
edge exactly once, we attempt to aggregate the causal structures. By aggregation, we
imply that all edges and nodes in the original typologies are preserved. As more
typologies are aggregated, the most common variables and causal links emerge, thereby
simulating in our view a form of consensus between the different companies’ typologies.

We termed the resultant aggregated graph as a Causal Structure Aggregation Model (CSAM).
Strictly speaking, it is not a unified model, but it is a tool for discovering a consensual model.
A CSAM is a graph that represents the cumulative addition of individual typologies according
to a node mapping scheme. The aim of a structure aggregation model is to identify causal
commonalties between independently developed typologies that share the same domain.
Consider the three typologies presented in Figure 3. All are used to estimate the total effort
required to develop a Web application. Since they all share the same domain, it is possible to
assume that the nodes in two different typologies portray the same factor. For example,
nodes Al, B1, and C1 all model the same factor - the number of developers required to
develop a Web application, and therefore, it is possible to map those three nodes into a
single factor.

Model A:

Al : Development Team
Size
A2 : Number of Web
Pages

A3 : Effort to produce
Requirement
Documentation

A0 : Total Effort

Model B:

B1 : Number of
Developers
B2 : Administration Effort
B3 : Number of
Webpages

Model C:

C1 : Number of
Developers
C2 : Project management
effort
C3 : Effort to Gather
Requirements

Fig. 8. Three Basic Examples of Models

BO : Total Effort

CO : Total Effort




Some nodes are more subjective in their definition, e.g., nodes B2 and C2 both attempt to
model the effort required to develop a Web application, but the exact details of how to
measure this effort might vary between the two companies. However, because both
typologies share the same domain, both B2 and C2 are likely to portray the same underlying
concept. By performing this type of mapping between the three typologies, we can produce
the CSAM presented in Figure 9.

The left partition of a CSAM’s node represents a factor of interest, while the right partition
contains a list of nodes from the original typologies that map to this factor. All the causal
links from the original typologies are preserved in the CSAM, i.e., if there is a link between
two nodes in one of the original models (for example from A2 to A0), then in the CSAM there
must be an edge from every node that contains A2 in its mapping to every node that
contains AO in its mapping. The numbers attached to the edges in the CSAM represent the
cardinality of their mapping. For example, the edge from node (1) to node (0) has a
cardinality of three; this is because there are three original edges that map to it: A1 to AO, B1
to BO, and C1 to CO. The cardinality of a node is the number of 'original' nodes that it maps
to (i.e. the number of nodes listed in its right partition). The example in Figure 9 has a simple
one-to-one mapping between the CSAM factors and the nodes from the example typologies.
It is possible to have a many-to-many mapping to resolve more ambiguous situations.

Factor Mapping of Original Nodes
Al: Development Team Size

(1) Number of B1: Number of Developers
Developers C1: Number of Developers 3

A2: Number of Web Pages 2

(2) Number of Web B3: Number of Web Pages

Pages

AO0: Total Effort

(3) Requirement A2: Effort to produce BO: Total Effort

Documentation Effort Requirement Documentation (0) Total Effort CO: Total Effort
B2: Administration Effort 2

(4) Project Administration

Effort C2: Project Management Effort {

C3: Effort to Gather

(5) Requirement Requirements

Gathering Effort

Fig. 9. CSAM model

4.3 Methodology

The main goal of this work is to build a CSAM to obtain an empirical generalization of four
different causal process form type of theories for Web effort estimation. The methodology



used to combine these theories comprised a six-step process (detailed below) combining
both linear and iterative approaches (see Fig. 10).

\ Step 2:
Remove Optimisation

\ Nodes

Step 1:
Format Bayesian
Network Structures

Step 3:
Produce Input
Table

Step 4:
Aggregation Algorithm

YES Step 5:.

Aggregation graph contains
N:les?

NO

NO Step 6:

All the nodes in every BNS
wapped?

YES

END

Fig. 10. Process Flow Diagram for Producing a CSAM

1) Formatting of the companies’ models

The companies’ typologies were first formatted so they could be handled by the aggregation
algorithm (step 4). The formatting consisted of the following steps:

Each node in every typology was given a unique ldentifier. The identifiers chosen for our
research represented a concatenation between a company’s model identifier and a unique
natural number (a number only valid within the context of a single typology). Each typology
was represented in a parseable format, where the format chosen herein was CSV (Comma
Separated Values).

The choice relating to the identifiers’ representation and parsing format to use was informed
by the tool implemented to help with this aggregation process.

2) Removal of optimisation nodes

Optimisation nodes are intermediate nodes that were inserted into a causal structure to
partition large CPTs in order to reduce their probability elicitation effort. In general, such



nodes are not part of the original model elicited with the domain experts; rather, they are
suggested by the Knowledge Engineer, and approved by the experts. The purpose of our
CSAM was to only aggregate the factors and causal relationships originally modelled by the
experts, and as such, the inclusion of optimisation nodes was deemed inappropriate.
Optimisation nodes were first identified from the documentation available for each of the
companies' theories. To remove an optimisation node we connected all of its incoming
edges (coming from its parent nodes) directly to all of its child nodes, followed by the
removal of this optimisation node and all of its outgoing edges (see Fig. 11):

During this operation BNs' existing graph rules must always hold. For example, only a single
edge could have the same source and destination nodes; therefore, if the removal of an
optimisation node resulted in adding an edge between two nodes that were already directly
linked, then the resultant edge had to be discarded.

Fig. 11. Removing an Optimization node

3) Creation of an Input Table

Each node in our CSAM corresponded to a semantically equivalent node originating from
one of more of the typologies used as input. Sometimes different typologies would contain
the same node however named differently; when carrying out the mapping (as detailed
below) we checked for the semantic equivalence between nodes across typologies. These
mappings were documented using a Table, where each row was used to map a CSAM node
to all the other semantically equivalent nodes originating from models. The table’s first
column represented a CSAM node (factor), identified by a unique ID; the remaining columns
contained node identifiers associated with the nodes contained in the input typologies.
Given a company’s input typology, the first node to be mapped was the most-posterior
node, which within our context always happened to be the Total Effort. We chose this node
because it was part of all the participating companies’ typologies, and therefore we believed
it to be the easiest node to identify and map. Once Total Effort was mapped, the remaining
nodes were mapped according to the following steps:
1.  Selection of a node (factor) from a company’s typology that had not yet been mapped.
2. Identification of the contextual meaning of the factor selected in (1), which usually
involved interpreting the underlying concept that the DE employed when that factor
was elicited. We first identified the units and quantification used to measure the
factor, followed by looking at the supporting documentation from the elicitation
sessions, which contained examples, additional commentary about the DEs’ beliefs,



and digitally recorded voice records documenting all the elicitation process. In the rare
cases where a factor’s contextual meaning was still ambiguous, the DEs were
contacted for clarification.

3.  Attempt to map the factor identified in (1) (I ) to a factor, or set of factors, already
present in our CSAM. Whenever there was no corresponding factor(s) clearly mapping
to ', we created a new factor(s) within our CSAM to match that given factor 7 .

There were no strict rules as to whether an original node was mapped to one or more
factors within our CSAM; however, we always aimed to keep as much of the original context
as possible through the mapping. Thus the reason why our methodology is iterative and not
linear is because mappings often change as new factors are created and old ones are
revised.

In order to minimise the effort of constantly changing the mappings as the aggregation map
was populated, we decided to map the original nodes in different iterations rather than
mapping all nodes at once. This gave us the opportunity to run the aggregation algorithm
(see step 4 below) and generate the CSAM several times, containing incomplete aggregation
models, and then to look for faults and inconsistencies (e.g. cycles). The first iteration
involved mapping every prior node from all the companies’ typologies. The second iteration
involved mapping all the nodes from all the companies’ typologies that were directly pointed
to by all prior nodes, and so on until the most posterior (the Total Effort Node) was reached.

4) Aggregation algorithm

The Table prepared in step 3 was used as input to an aggregation algorithm that produced a
graphical representation of the CSAM. The algorithm worked by first merging the prior
nodes according to the mapping specified in the Table, and continuing until all nodes in all
the companies’ typologies were processed [1].

Whenever the Table from Step 3 did not include mappings for some of the nodes in the
inputted typologies, then these nodes were represented in the CSAM by placeholder nodes.
The purpose of the placeholder node was so that we were aware of which nodes still
required mapping in the next iteration of this process (see Step 6).

5) Check if the Aggregation Graph contains cycles

The aggregation algorithm allowed for the occurrence of cycles since it simply followed what
was documented in the Table used as input. Therefore, when the generated CSAM graph
contained cycles, the input Table needed to be modified so that all of the documented cycles
were broken. Cycles could be broken by changing the mapping of one or more nodes that
made up the cycle, which could be achieved by either removing or adding factors to the
input Table. However, because all the companies' typologies were independent of one
another and yet shared the same domain, it is theoretically possible, in theory, to have
cycles occurring that may not be resolved. This would occur whenever nodes in their original
typologies did not form cycles, but ended up contributing to a cycle in the CSAM due to
conflicting contexts.

6) Check if all nodes are mapped



The final step in the process was to check whether every node (except for optimisation
nodes) in all the companies’ typologies had been mapped in the CSAM. For this we looked
for the existence of placeholder nodes in the CSAM outputted by the algorithm. If found, we
mapped the map’s nodes identified by the placeholder nodes by referring back to Step 3;
conversely, if there were no placeholder nodes, we considered that the CSAM was complete
according to our mapping.

5 Results

In this section, we present our results from aggregating four independently elicited single-
company BNs. These elicited models varied in their sizes, as previously summarised in Table
1.

The CSAMS3 resulting from our 6-step methodology (presented in Section 4) enabled us to
identify common patterns, in terms of variables (factors) and causal relations, shared
amongst the four independent causal process form type of theories (single-company BNs).
This CSAM presented 70 nodes in total, encompassing all the factors identified by all four
participating companies via their BNs. This empirical generalisation, which is characterised
by a combined list of factors, brought us one step closer to determining all the causal factors
in our target domain (Web development effort estimation) that are significant for Web
effort estimation, and therefore closer to a unified causal process form type of theory for
Web effort estimation. Table 3 lists the Factors? in our CSAM and their cardinality, which
corresponds to the number of input BNs that contained that factor. Therefore, a factor’s
cardinality is an indication of how common this factor was as a predictor amongst the four
participating companies.

The most common factor in our CSAM, presenting the highest cardinality on the list, was the
‘Project Management Effort’. This is in our view a very interesting result as it suggests that
the companies that participated in this research present some level of maturity in their
processes, and consider that managing projects effectively is a very important aspect of
delivering applications on time and within budget.

3 The resultant CSAM is available here: http://www.cs.auckland.ac.nz/~emilia/Theory/CSAM.pdf

4 description of all CSAM factors is given here:
http://www.cs.auckland.ac.nz/~emilia/Theory/Factors.pdf



Table 3. List of CSAM Factors and their cardinality

0 Total Effort person hours 4
5 Average Project Team Experience with Technology years 3
8 Client Personality Difficulty UD (e.g. Low, Medium, High; good, normal, bad) 3
66 Effort to Program Features person hours 3
59 Project Management Effort person hours 3
1 Adaptation Effort of Features off the shelf person hours 2
13 Development Effort of New Features person hours 2
17 Effort producing Animations using Software person hours 2
18 Effort programming Animations person hours 2
56 Effort Template Look & Feel person hours 2
64 Effort to Develop User Interface person hours 2
67 Effort to Implement the Web application person hours 2
61 Effort to Produce Requirements Documentation person hours 2
63 Effort to Produce Template Mock-up person hours 2
60 Effort to Produce Web Pages person hours 2
74 How much Technical planning UD (e.g. low, normal, high) 2
21 Number of Features off the shelf Integer 2
22 Number of Features off the shelf Adapted Integer 2
34 Number of New Web Pages integer 2
UD (e.g. client in-house, shared, dedicated, in-
52 Web Company's Hosting Control house) 2
87 Project Risk Factor UD (e.g. low, medium, high) 2
106 Effort Production testing person hours 2
107 Effort Post-release testing person hours 2
49 Amount of text per Application UD (e.g. low, medium, High) 1
72 Client Application Domain Literacy UD (e.g. low, medium, High) 1
70 Client's Existing online presence UD (e.g. small, extensive, none) 1




75 Deployment time UD (e.g. short, normal) 1
14 Development Process Model UD (e.g. conventional, waterfall, extreme) 1
15 Development team size integer 1
16 Effort Images Manipulation person hours 1
68 Effort to Integrate New and Reused Features person hours 1
19 Is Development Process Documented? Yes/No 1
23 Number of Features requiring High effort to create Integer 1
25 Number of Features requiring Low effort to create Integer 1
69 Number of Features requiring Medium effort to create Integer 1
29 Number of Images requiring High effort to manipulate integer 1
30 Number of Images requiring Low effort to manipulate integer 1
31 Number of Images requiring Medium effort to manipulate integer 1
51 Number of Key Client's people Integer 1
35 Number of Reused Web Pages integer 1
Integer (e.g. sub-contractors, printing, SMS
gateways, hosting providers, domain registration,
71 Number of third parties involved payment providers) 1
37 Number of Web Page Templates integer 1
77 Quality of In-house Existing Code UD (e.g. low, normal, high) 1
76 Quality of Project Management UD (e.g. abysmal, low, normal, high) 1
50 Quality of Third Party Deliverables UD (e.g. low, high) 1
73 Technical planning effort person hours 1
46 Type of Project UD (e.g. New, Enhancement) 1
79 Level of Usability UD (e.g. low, medium, high) 1
UD (similarity of domain/functionality/design;
80 Similarity to Previous Projects e.g.: low, medium, high) 1
82 Legacy browser support UD (e.g. yes, no) 1
83 Effort to Implement Accessibility person hours 1
84 Level of Integration between Features UD (e.g. low, medium, high) 1
85 Number of Natural Languages Used integer 1
86 Total third party inexperience UD (e.g. low, medium, high) 1
88 unknown technology risk UD (boolean) 1




89 Forum Feature UD (boolean) 1
90 User sign up feature UD (boolean) 1
91 Auction system feature UD (boolean) 1
92 types of Listing features UD catagories 1
93 Gallery feature (number of controls) UD (number of widgets) 1
94 shopping cart feature UD (boolean) 1
95 event calander feature UD (boolean) 1
96 Number of Blogs Integer 1
97 Number of Poll integer 1
98 Mailling List feature UD (boolean) 1
99 Effort to produce user documentation person hours 1
100 Tight schedule Bollean 1
UD (e.g. Template Standard, Template High,
103 Template design uniqueness Custom-medium, Custom-high 1
104 Effort to Design Content person hours 1
105 Effort to Implement the Template person hours 1
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Fig. 12. A sub-graph of the resultant CSAM with all edges having cardinality greater than two

Fig. 12 shows a sub-graph of the resultant CSAM with all edges having cardinality greater
than two. Factors were grouped into higher level categories (grey boxes) in order to aid
readers understand it. These categories are: Implementation-oriented factors, Ul Design-
oriented factors, Documentation-oriented factors, and Project-oriented factors. Note that
most factors measure the effort required to carry out a particular task (e.g. manage projects,
produce requirements documentation). This figure can be described as an aggregated
intersection of all the causal edges in the inputted Typologies. The higher the weight value of
an edge the more common the causal relation is. This figure is therefore very useful as it
indicates likely relationships that exist between factors within the Web development
domain. We believe that as we further aggregate other typologies to our resultant CSAM, a
more informative and decisive consensus will emerge relating to its empirical generalisation,
thus also strengthening the external validity of this model. In other words, a CSAM is a
maturing model, providing further certainty as further typologies are aggregated.

Note that when we consider the four BNs that were aggregated (see Figs. 4 to 7), they
present numerous effort-related factors, suggesting that their factors and corresponding
causal relationships also seem to relate to their Web effort estimation workflow. This is in
our view quite an interesting aspect as it was a recurring theme in three of the four BNs
employed herein. Another observation is that factors that perhaps may have higher
importance in conventional software development also seemed to be common amongst the




participating companies; for example, factors related to requirements engineering and
documentation.

Figure 13 shows the proportion of factors according to their equivalent nodal cardinality.
We can see that approximately 67% of all factors appeared in only a single company’s BN,
and 26% of factors were common to at least two BNs. The percentage of nodes decreased as
the cardinality increased, suggesting that the total number of factors available in the target
domain significantly outnumbered the factors being considered by individual companies.
Likewise, the percentage of causal edges also rapidly decreases with respect to edge
cardinality, which suggests that there are many causal relationships not considered by
individual companies.

Edge Cardinality Node Cardinality

95%
67%

26%

(]
4% 1% I

1 2 3 4

Fig. 13. Distribution of node and edge cardinalities in our CSAM

There were 158 causal edges our CSAM. We were able to determine the most common
causal relations by selecting all the matched causal relations in the CSAM, that is, all causal
edges with a cardinality of two or more. Our results showed that 26% of all causal relations
were shared between at least two BNs. The most prevalent causal relationship was between
factors 'Project Management Effort' and ‘Total Effort’ whereby 66.6% of the participating
companies included such relationships in their causal maps. Other common causal
relationships identified were:

e Relationship from ‘Effort to Implement the Web Application' directly influencing 'Total
Effort’.

Relationship from 'Effort to Produce Web Pages' directly influencing 'Total Effort’.
Relationship from ‘Effort to Program Features' directly influencing 'Total Effort’.
Relationship from ‘Effort to Produce Template Mock-up' directly influencing 'Total Effort’.
Relationship from ‘Effort to Produce Requirements Documentation' directly influencing
'Total Effort’.

e Relationship from ‘Average Project Team Experience with Technology' directly influencing
'Total Effort’.

Each of the six causal relations listed above appeared in 50% of the companies’ BNs. Edges
with higher cardinality tended to be closer to the most posterior node (‘Total Effort’). Fig. 14
shows a falling trend in the mean and median average distances to the Total Effort node. An
average mean distance = 0.95 for edges with cardinality of 1, and mean distance = 0.14 for
edges with cardinality of 2. This is in our view an important outcome because 'effort’ is what
all the BNs used in this research aim to predict; it is therefore advantageous to know which




factors were likely to have a direct effect upon effort, since this would be the focal point of
any future consensus-based BN.
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Fig. 14. Average Distance by edge cardinality to Total Effort node

6 Threats to Validity

There are a few threats to the validity of our work. One is the mapping of original nodes (i.e.
creating the aggregation map as part of the third step in our methodology, as detailed in
Section 4). The mapping was performed by the researchers (i.e. knowledge engineers), not
the domain experts; therefore, there is always the possibility of bias being introduced.
However, it is important to note that many steps were undertaken to mitigate this risk. All
mappings were based on an extensive documentation provided by the experts, and for cases
where there was still ambiguity, the experts were contacted directly for further clarification.
Another threat is that our methodology does not in any way guarantee that the final CSAM is
free of cycles. Although for the four company typologies, all potential cycles were resolved
by further investigation and remapping; this might not always be the case. It is always
possible to have intrinsically contradictory typologies, rendering it impossible to resolve
cycles unless at least one edge is omitted from the CSAM.

Finally, for the CSAM to be fully comprehensive in terms of domain factors, it is necessary to
aggregate a large number of typologies. For our case, the aggregation of four typologies is
not enough to represent all factors and causal relations that impact effort estimation in the
Web development domain. However, we note that the resultant CSAM is a maturing
empirical generalisation, and we plan to aggregate further typologies as part of our future
work.



7 Conclusions

The aim of this paper was to obtain an empirical generalisation comprising important factors
for Web effort estimation and their cause and effect relationships by aggregating the
Typologies from four single-company Web effort estimation BNs. We also contend that each
of the BNs used here represents a causal process form type of theories for Web effort
estimation, where each of these theories was previously built using a hybrid approach to
theory construction, based on existing knowledge elicited from several domain experts, data
on past completed Web projects, and a technique that enables the modeling of causal
relationships and their uncertainty.

To build such an aggregated model presents numerous challenges, namely identifying
common variables, resolving causal relation conflicts, and company collaboration
constraints. However, we believe that one can overcome some of these challenges by
applying an aggregation process that can yield the most common patterns shared between
single-company typologies [2]. Our proposal for building an aggregated map was based on
an earlier proposition by Sagrado et al. [57], which attempted to combine BNs’ typologies
using intersection/union of DAGs forming a consensus causal structure. Our proposal
improved upon this proposition in two ways: first by introducing a mapping mechanism for
grouping related variables from different single-company typologies, and secondly by using
an aggregation of nodes and edges instead of a simple union/intersection, thus preserving all
edges and nodes from the original typologies. We termed the aggregated causal map as a
Causal Structure Aggregation Model (CSAM), and its chief rationale was to identify structural
commonalities (common factors and causal relations) found in the original typologies.

We have constructed a CSAM using four expert-driven single-company typologies (part of
single-company BNs), all of which elicited from local Web development companies in
Auckland, NZ. This CSAM contained 70 factors and 158 causal edges.

The resultant CSAM revealed the following patterns: i) 33% of the CSAM factors were shared
between at least 2 single-company typologies; ii) The most common factor was 'Project
Management Effort’; iii) The proportion of nodes rapidly decreased as cardinality increased,
implying that the total number of factors relevant in the Web effort estimation domain
significantly outnumbers the number of factors being considered by individual companies;
iv) 5% of all causal relations found in the CSAM were shared between at least two single-
company maps; v) The most common causal relationship in our CSAM was between factors
'Project Management Effort' and ‘Total Effort’, included in 66.6% of the single-company
maps; vi) Six other common causal relationships which were evident were: ‘Effort to
Implement the Web Application', ' Effort to Produce Web Pages’, ‘Effort to Program Features
’, ‘Effort to Produce Template Mock-up', ‘Effort to Produce Requirements Documentation’,
and ‘Average Project Team Experience with Technology', all of which directly influenced
‘Total Effort’; vii) Edges with higher cardinality tended to be closer to the most posterior
node, suggesting that most factors influenced total effort directly.

The abovementioned points show that even with a small number of companies we can
already see reasonable commonality in terms of factors and causality. The CSAM is a
maturing model, which means that as more typologies are aggregated; the more common
factors and causal links will emerge, hence providing an improved consensus on its empirical
generalisation. The aggregation process presented herein can be used to aggregate other
typologies. In addition, to our knowledge this is the first time that a study in either Web or



Software Engineering describes argues that BNs and their documentation in fact represent
causal process form type of theories, and an empirical generalisation via the aggregation of
several single-company typologies. Our future work involves the aggregation of other
expert-driven single-company typologies, and later the proposal of a general causal process
form type of theory for Web effort estimation.
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