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Abstract

Energy-efficient computer systems are making increas-
ing use of processors that have multiple core units,
DVFS, and virtualization support. However, current sys-
tem clocks have not been usually designed to cope with
the capacity of such mechanisms to decelerate/acceler-
ate the passage of time, which increases the time drifts in
the system and produces two adverse side effects. First,
a reduction in the precision of the system clocks, which
makes it infeasible to run applications that are dependent
on precise time measurements. Second, increasing the
rate of system resynchronization with an external global
clock, which counteracts the attainment of a desirable en-
ergy efficiency.

As an alternative to a system clock, we propose an
original virtual clock, named RVEC, with the property
that the time count is strictly increasing and precise.
Furthermore, we used RVEC to build a High-Precision
Global Clock (HPGC) solution which was free from
resynchronization for a cluster of energy-efficient com-
puters.

Our experimental evaluation of an implementation of
RVEC in both the Linux system and the OpenVZ vir-
tualization system as well as HPGC in Linux by us-
ing a reference cluster of three energy-efficient com-
puter systems showed that RVEC had negligible over-
head and was highly precise in comparison with rep-
resentative Linux system clocks. In addition, our re-
sults indicated that the HPGC synchronization solution is
highly-scalable as it can synchronize up to 1,000 nodes/s
and also that it can be performed offline, which can ben-
efit energy-limited embedded systems, as well. These
preliminary results suggest that RVEC and HPGC can
be highly effective alternatives to the system clock and
global clock,respectively, especially for EE computer
systems.

Resumo

Sistemas de computacdo energeticamente eficientes (EE)
utilizam crescentemente processadores com multiplos
ntcleos, DVFS e suporte para virtualizacio. Entretanto,
os atuais reldgios de sistema nfo sdo usualmente proje-
tados para lidar com a capacidade de tais mecanismos
de desacelerar/acelerar a passagem do tempo, o que au-
menta os desvios de tempo no sistema e produz dois
efeitos adversos. Primeiro, a reducdo da precisdo dos
relégios do sistema, o que inviabiliza a execugdo de
aplicacdes dependentes de medidas de tempo precisas.
Segundo, aumentar a taxa de resincroniza¢do com um
relégio global externo, contrapondo-se a alcancar uma
desejada eficiéncia energética.

Como uma alternativa para o relégio de sistema,
nés propomos um original relégio virtual, denominado
RVEC, com a propriedade de contagem de tempo ser es-
tritamente crescente e precisa. Mais ainda, né usamos
RVEC para construir uma solucio de relégio global de
alta precisao (HPGC) que € livre de resincronizacao.

Nossa avaliacdo experimental de uma implementacio
do RVEC e HPGC em Linux e do RVEC no sistema
de Virtualizacdo OpenVZ usando um cluster de referen-
cia com trés computadores EE, mostraram que o RVEC
tem sobrecarga negligivel e foi altamente preciso em
comparagdo com dois relégios de sistemas representa-
tivos do Linux. No OpenVZ, RVEC permitiu Mem-
perf, uma aplicacdo dependente de temporizagdo precisa,
ser migrada entre niicleos sem afetar suas medicdes, em
contraste com os parcos resultados usando o relégio de
sistema padrdo. Adicionalmente, nossos resultados in-
dicaram que a solucio HPGC € altamente escaldvel pois
consegue sincronizar até 1.000 nés/s e também que pode
ser realizada offline. Estes resultados preliminares sug-
erem que RVEC e HPGC conseguem ser alternativas al-
tamente efetivas para o relégio do sistema e o reldgio
global, respectivamente, especialmente para sistemas de
computacgdo energeticamente eficientes.



1 Introduction

In computer systems, the system clocks, such as the High
Performance Event Timer (HPET) [4], allow applica-
tions and systems software to measure execution times
and to implement synchronization operations on a cluster
of computer systems using an external source for a global
clock. However, the precision of such system clocks de-
pends on both the amount of time drifting that has oc-
curred (e.g., lost interrupts) in the system and the intrin-
sic variation in the time intervals between interrupts.

Recently, the problem of system clock precision has
been augmented by energy-efficient computer systems
that employ increasing numbers of processors with mul-
tiple core units, DVFS, and virtualization support. In
fact, current system clocks usually have not been de-
signed to cope with the capacity of such mechanisms to
decelerate/accelerate the passage of time. Specifically,
processors with DVFS can reduce the frequency of one
or more core units for the purpose of energy savings,
while a virtualization support mechanism allows virtual
machines to migrate between core units for the purpose
of load balancing. However, the operation of both mech-
anisms are exposed to system interrupts, which con-
tribute to increasing the amount of time drifts and further
reducing the precision of the system clocks.

Current system clocks usually have not been designed
to cope with the capacity of such mechanisms to deceler-
ate/accelerate the passage of time. Specifically, proces-
sors with DVFES can reduce the frequency of one or more
core units for the purpose of energy savings, while a vir-
tualization support mechanism allows virtual machines
to migrate between core units for the purpose of load
balancing. However, the operation of both mechanisms
are exposed to system interrupts, which contribute to in-
creasing the amount of time drifts and further reducing
the precision of the system clocks.

For example, TSC is frequently used as a system clock
solution for computer systems with a single CPU, in
combination with an external source for the global time,
such as an NTP Server [8]. In spite of being simple and
efficient, such a combination solution might not be ap-
plicable to a multicore processor, in which each core has
its own time counter and in which a system clock must
address the synchronization of multiple local counters;
additionally, there is an issue with interference over the
passage of time that results from the use of DVFS and
virtualization support.

In addition, the use of an NTP Server as a global
clock offers low precision and further exposure to time
drifts; thus, this alternative could become inappropriate
for real-time distributed applications and parallel appli-
cations [6, 5]. Such an alternative also increases the en-
ergy consumption that results from extra messages and

interrupts [7], thus diminishing the performance of the
embedded systems when there is a restriction in the en-
ergy consumption. In the case of virtualization systems,
a global clock is necessary for synchronizing the system
clocks for the source and destination nodes in virtual ma-
chine migration; therefore, the low precision time count
of an NTP Server is usually not sufficient.

As an alternative to the system clock, we propose an
original virtual clock, named the RVEC, that has the
property of strictly increasing and precise (SIP) ! time
counting, which resulted from the RVEC operation being
protected from the time drifts of such a computer system.
Furthermore, we show that the nodes in a cluster of com-
puters using RVEC can stay synchronized globally after
initially synchronizing their RVECs by using a remote
synchronization client-server algorithm. As a result of
this synchronization step, every node will have built a lo-
cal High Precision Global Clock (HPGC), which will not
only be synchronized with the HPGC of the synchroniza-
tion server but will also be synchronized globally with all
of the other HPGC:s in the cluster. Most importantly, all
of the HPGC:s are free from the need for resynchroniza-
tion.

We evaluated the performance of an implemen-
tation of RVEC in both the Linux system and
the OpenVZ virtualization system as well as HPGC
in Linux in by using a reference cluster of three
EE computers, each of which uses quad-core Intel
Xeon processors with DVFS and virtualization sup-
port. In comparison with CLOCK_MONOTONIC and
CLOCK_PROCESS_CPU _TIME representative Linux
system clocks and TSC, our results showed that RVEC
was highly precise and added negligible overhead to the
Linux kernel. In addition, our results indicated that the
HPGC synchronization solution is highly-scalable as it
can synchronize up to 1,000 nodes/s and also that it can
be performed offline, which can benefit energy-limited
embedded systems, as well. These preliminary results
suggest that RVEC and HPGC can be effective alterna-
tives to the system clock and global clock,respectively,
especially for EE computer systems.

The main contributions of this paper are as follows:

1. Proposal of the RVEC virtual clock, as an original
solution for system clock;

2. Development and experimental evaluation of an im-
plementation of RVEC in a Linux kernel and the
OpenVZ virtualization system for multicore proces-
sors with DVFS and virtualization support;

3. Using and evaluating the RVEC solution to build a
high-precision global clock that is free from resyn-
chronization in a cluster of energy-efficient com-
puter systems.



The remainder of this paper has the following organi-
zation. Section 2 presents related work. In Section 3,
we identify the potential sources of time drifts in both
the Linux kernel and the OpenVZ for multicore proces-
sors with DVFS and virtualization support; additionally,
we describe the organization and integration of RVEC
to keep it protected from time drifts in such systems.
In Section 4, we explain how we build a high-precision
global clock using RVEC and a remote synchronization
client-server algorithm in a cluster of such processors.
In Section 5, we describe an experimental evaluation of
RVEC, and we discuss our results. Finally, in Section 6,
we present our conclusion and ongoing work.

2 Related work

The correction of time drifts and the maintenance of sys-
tem clock precision are usually made with an NTP dae-
mon running in a system that periodically resynchronizes
with a remote NTP server [8]. However, a local com-
puter under a heavy workload will delay the NTP dae-
mon execution, causing time drifts to system clocks that
can achieve tens of seconds [9]. In addition, such time
precision maintenance does not guarantee that a system
clock has the SIP property if the time intervals between
consecutive readings of the system clock are less than
tens of milliseconds.

The work on High-Precision Relative Clock Synchro-
nization Using Time Stamps Counters [13] involved the
development of a global clock using TSC as the base
clock together with a remote synchronization algorithm
that is similar to that of NTP. Owing to the direct use
of TSC, such a global clock cannot work correctly with
processors that have DVFS or multiple core units.

The RADClock [11, 14] is a stateless distributed syn-
chronization system that is built on system clocks (e.g.,
HPET) or time counters (e.g., TSC), which provide infor-
mation on global time as well as the absolute global time
to the synchronization network nodes. However, RAD-
Clock depends on a daemon for periodic resynchroniza-
tion; additionally, the direct use of TSC limits its appli-
cability in multicore processors. The work in [1] used
the RADClock solution to propose a timekeeping archi-
tecture for virtualization systems with the advantage of
reducing the number of time violations in comparison
with Clocksource Xen and NTP. However, the proposed
solution had the same RADClock limitations regarding
DVFS and multicore processors.

In [3], the authors proposed an auxiliary hardware
synchronization network using a remote pulse generator.
In a computer cluster, such a synchronization network
assured that all of the cluster nodes simultaneously re-
ceived the remote clock pulse and used it to update the
node local clock without involving the operating system.

In spite of guaranteeing the SIP property of local clocks,
the proposed solution depended on dedicated hardware.

3 Strictly Increasing and Precise Virtual
Clock

The main objective of an implementation of RVEC is
to protect it from the time drifts of a computer system,
to make it obey the strictly increasing and precise prop-
erty. First, we chose TSC as the reference for the SIP
time counter because it operates without interrupts and
is internal to a specific core unit. As a result of the TSC
choice, the operation control of both multiple core units
and changes in the core unit frequency became the only
two potential sources of time drifts to protect RVEC from
as will be shown.

Code 1: RVEC data structure

struct tb{
u64 base_counter;
u64 age_time_ns;}

Our solution was to build RVEC as a virtual clock such
that its structure stored two values, the value of the last
reading of the TSC that was taken by the RVEC control
logic and the value of the consolidated passage of time
up to the instant of the RVEC’s last update operation. To
this end, we represent RVEC by the struct tb data struc-
ture shown in Code 1, where the base_counter data field
stores the latest TSC value and age_time_ns keeps the
consolidated time that is effected by the program code
shown in Code 2 (which will be explained shortly).

Figure 1 ilustrates the time count using RVEC. At tick
A, an instance of RVEC is initialized by storing the cur-
rent TSC value 10 into the RVEC’s base_counter field
and the value 0 into the RVEC’s age_time_ns field. At
tick B, the core frequency is changed from 2 to 1 which
causes the execution of the program Code 2 to update the
values of the RVEC fields base_counter and age_time_ns
to 20 and 5 * 10%ns, respectively. Note that the RVEC in-
stance cannot be read over the B-B’ time interval of the
program Code 2 execution.

Code 2: RVEC update procedure

void update_rvec (struct tb =#ptb, long CoreHZ){
aux_tsc = get_counter ();
ptb—>age_time_ns += (aux_-tsc — ptb—>
base_counter)/CoreHZ;
ptb—>base_counter = aux_tsc;}

Therefore, RVEC allows the creation of a time count
abstraction for a specific process since the instant of its
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Figure 1: Time count using RVEC: initialization (tick A)
and update (tick B)

creation and for other instances of the same process, with
the RVEC of each process subjected to update points.
Specifically, such update points are the instants in which
either a core unit frequency is changed or a process mi-
grates to another core unit. However, it is more important
to insert such points in the appropriate places of an oper-
ating system so that during its execution, all of the RVEC
instances become protected from potential time drifts.

3.1 RVEC in Linux

In Linux, RVEC was integrated with the sub-systems of
both core management and kernel task management. For
this purpose, the creation of RVEC, configured for multi-
ple core units, was integrated into the Linux initialization
procedure. Additionally, this integration allowed the sys-
tem to simultaneously offer RVEC support for threads at
both the kernel and user levels. Therefore, the resulting
RVEC enabled the building of new RVEC instances af-
terward, when necessary.

Code 3: Read procedure of RVEC for a selected core

return uint64 rvec_core_gettime (void){
aux_tsc = (get_counter () — ptb—>base_counter)

return ptb—>age_time_ns + aux_tsc/get_CoreHZ

O}

We integrated RVEC into the kernel management sub-
system by inserting struct tb into the execution queue
of each core unit. In this way, such a structure is up-
dated at the core unit initialization and whenever a core
unit has its operation frequency changed. Upon a fre-
quency change, it is necessary to guarantee RVEC cor-
rectness. This guarantee is performed by updating the
fields base_counter and age_time_ns while using the pro-
gram code in Code 2, which was implemented in the
Linux DVFS (CPUFreq) driver. RVEC structure also
maintains the consolidated time since the initialization
of a core unit, which is calculated using the values of

the TSC readings over the passage of time, the current
frequency of the core unit, and the RVEC fields that are
associated with the core unit, as shown in Code 3.

The additional control logic in the CPUfreq
code extended rvec_cpu_freq_change_pre() and
rvec_cpu_freq_change_pos(), of original function code
acpi_cpufreq_target() in each core unit. Because this
part of the Linux code addresses architecture-specific
codes, we implemented only RVEC support in the Intel
Xeon driver.

To implement the thread level RVEC in the Linux ker-
nel, we created a struct tb instance for each task (thread).
Specifically, upon the initialization of a new task to run
in a specific core unit, the current value of RVEC associ-
ated with this core unit will be copied and stored in the
base_counter field of RVEC that is associated with the
new task. Then, an update of base_counter is performed
whenever the task suffers migration between core units,
thus guaranteeing RVEC the SIP property. Most im-
portantly, this update control is performed in the Linux
scheduling sub-system in such a way that RVEC is pro-
tected from such a potential source of time drifts.

However, an update operation will generate a call to a
remote core unit, which in an overloaded Linux system
can cause a kernel panic 2. As a result, we adapted RVEC
migration control to postpone updating both the RVEC
base_counter and age_time_ns, as follows.

We introduced two new fields, namely status and
last_cpu, into the original RVEC process structure,
where the status indicates whether any migration oc-
curred and last _cpu stores the last core unit used to main-
tain RVEC. Therefore, we changed the procedures to up-
date the base_counter and age_time_ns fields at the mo-
ment at which a process checks the current value of its
RVEC instance, and if the process finishes without mak-
ing another access to RVEC, the data structure will not
be updated unnecessarily. However, if upon an RVEC ac-
cess the status field indicates that a migration occurred,
then an access is made to RVEC in the core unit queue in-
dicated by last _cpu to update the age_time_ns field and to
store in the base_counter field the current value of RVEC
from the current core unit queue and set the status to
no migration and the last_cpu field to the current core.

The RVEC implementation allows different threads in
the system to check their associated RVECs through the
clock_gettime() system call, which goes directly into the
Linux timekeeping sub-system. In this case, an applica-
tion accesses that function with the clock identifier of the
desired CLOCK _RVEC as the input parameter.

We plan to submit the RVEC implementation to fur-
ther scalability tests, after which the RVEC source code
will be freely available 3.



3.2 RVEC in the OpenVZ virtualization
system

OpenVz implements virtualization at the operating sys-
tem level, through resource containers [10], and also pro-
vides a controlled environment that allows us to evaluate
the adapted migration algorithm with RVEC. RVEC im-
plementation works in a shared-cluster computer envi-
ronment, where all of the nodes are always found with
a maximum load(PlanetLab [9]). Specifically, we intro-
duced both the data structures and the control logic that
was necessary for RVEC to work in the OpenVZ kernel.
For this purpose, we modified the OpenVZ control appli-
cations running at the user level to use the new function-
alities for performing migrations between cluster nodes.

We used Linux Kernel version 2.6.18 with OpenVZ
patch 028stab057.2 and the previous RVEC implemen-
tation in Linux. Specifically, we changed the struct
ve_struct data structure that stores the container informa-
tion by inserting a struct ve_struct entry for the RVEC
instance initialized at the container creation. This struc-
ture is accessed from outside of the kernel, by internal
processes of the container, through CLOCK_RVEC_VZ
clockid.

In OpenVZ, a container migration occurs between dif-
ferent nodes; thus, we integrated the RVEC update al-
gorithm in the migration process. The main difference
is that we now calculate the time during which a con-
tainer was suspended during its migration and add this
time value into age_time_ns at the end of its migration.

It was also necessary to integrate RVEC calls with
control applications executed by the root user to man-
age the system containers, particularly the creation and
migration process of virtual environments as well as the
vzctl and vzmigrate management applications. Vzctl
is an application that establishes the interface between
users and the management system, which was modified
to create both the migration server and the migration
client, while vzmigrate was changed to use the new vzctl.

4 High-Precision Global Clock

We used RVEC to build a High-Precision Global Clock
(HPGQC) that is based on a client-server model, in which
each client node must synchronize only once with the
node chosen as the HPGC server in the cluster. Specif-
ically, we used a client-server synchronization proba-
bilistic algorithm [2] to determine the HPGC of a node
through the equation 1.

RVECserver(J) = (RVECciien; (j) +RTT /2),(j = 1,m(i))
(0

In equation 1, RVECs,y., is the RVEC of the HPGC
server node and RV ECcjjepy; is the RVEC of client node
i; j is the j-th RVEC measure that is transmitted from
client i to the HPGC server. The round-trip time RTT of
a message is estimated by using Equation 2 and assuming
that x,y are the minimum RTTs between the client i and
the HPGC server; then, RT T, and RT T, tend to a constant
value K; after exchanging m(i) messages with the HPGC
server.

Vecsyez, (RTT, — RTTy|) = K )

Our HPGC synchronization algorithm for a client
node works basically as follows. The HPGC server, upon
receiving a request from a client, will read RVEC and
send its current value to the client. The client exchange
requests with the HPGC server until the RTT standard
deviation becomes less than a pre-defined value. At this
point, the client forms its HPGC structure, which con-
tains the minimum RTT, the server RVEC value, and the
client RVEC value. From this point onward, the client
can compute a global time value locally by using the
function shown in Code 4.

Code 4: HPGC get_time function

u64 get_global_time (...){

time_now = get_time (...) — (gC.initTimeLocal
+ gC.minimalRTT/2) ;
time_-now = time_now + gC.initTimeRemote;

return time_now;}

Note that the above synchronization algorithm allowed
us to synchronize a client node with an HPGC server
node in a cluster. By assuming that the HPGC server
node is the HPGC server of the cluster, it will be used
by all of the other client nodes to determine its local
HPGC. In the case of multiple client nodes, the HPGC
server will process the synchronization requests in as-
cending order of request arrival time. Through the SIP
property of RVECs, however, all such local HPGCs will
be synchronized with the HPGC server’s RVEC as well
as among themselves. Moreover, the cluster nodes will
stay synchronized globally without requiring any resyn-
chronization operation over time. From now on we will
refer to the syncronization algorithm execution by each
node simply as the node’s HPGC bootstrap.

5 Experimental Evaluation

In this section, we present the results of an experimen-
tal evaluation of RVEC and HPGC with five objectives:
1) to compare the overhead and precision of RVEC with
those of representative system clocks of Linux; 2) to as-
sess whether RVEC works correctly with DVFS oper-




ation together with and without program migration; 3)
to verify RVEC’s SIP property with and without migra-
tion between core units; 4) To evaluating RVEC in the
OpenVZ virtualization system, and 5) to verify whether
HPGC remains correct and precise without resynchro-
nization. The experiments were conducted on a reference
cluster of energy-efficient computers with 3 nodes, each
having 2 quad-core 64-bit Intel Xeon E5410, 2.33 GHz,
Linux (Ubuntu 11.10 com kernel 3.1.10), and a 1 Gb/s
Ethernet switch. Additionally, we used HPET as the
hardware circuit for the system clocks. Our results are
presented with the average value and standard deviation
given in microseconds (us) for a 99.9% confidence inter-
val.

5.1 RVEC versus Linux system clocks

In the first experiment, we measured the RVEC overhead
by using RDTSC hardware instructions to access TSC,
which provides the best available precision for a system
clock. Because RDTSC cannot be freely used either in a
multicore system or when a core unit performs a DVFS
operation, it was necessary to guarantee that all of the
core units operated with the fixed maximum frequency.

This experiment was repeated 100 times and involved
measuring the execution time of a for loop with 5,000
arithmetic instructions, with and without using a system
clock past 2,500 instructions, i.e., in the middle of the
loop. The for loop was executed 10,000 times, and
in each iteration, we evaluated TSC using an RDTSC
call, as well as MONOTONIC, PROCESS_CPUTIME
system clocks and RVEC using the clock_gettime() sys-
tem call. We included the Base clock, which measured
the test program execution time without using a system
clock.

Table 1: Execution time vs. Clock option

Clock option uus)  ous)
Base 10.063  0.762

TSC 10.320 0.701
MONOTONIC 10.638  0.652
PROCESS_CPUTIME 10.571 0.627
RVEC 10.483 0.623

Table 1 shows that the TSC’s average execution time
of 10.320 us represents a 2.55% overhead in relation to
the Base clock. In addition, RVEC with 10.7 ws had the
smallest overhead in comparison with that of the two sys-
tem clocks, even when both were equally protected from
system time drifts, e.g., running a Linux task scheduler.
The results of RVEC’s time stability indicate that RVEC
can be used as an alternative high-precision clock system
in Linux. Moreover, we observe that RVEC’s execution
overhead, like the overhead of the two system clocks, is

negligible because RVEC also shares the same code path
in the kernel.

In the second experiment, we compared the time
precision of RVEC, MONOTONIC, and PRO-
CESS_CPUTIME system clocks against that of the
TSC.

Table 2: Time precision vs. Clock option

Clock option uus)  o(us)
TSC 9.989  0.668
MONOTONIC 10.307 1.033
PROCESS_CPUTIME 10.221 1.058
RVEC 10.262  1.047
RVEC+Mig 10.323  1.007

In Table 2, we can see that the test program’s av-
erage execution time was 9.989 us and 10.262 us us-
ing TSC and RVEC, respectively; thus, RVEC devi-
ated only 2.73% from TSC whereas MONOTONIC
and PROCESS_CPUTIME deviated 3.18% and 2.32%
from TSC, respectively. Furthermore, under the test
program migration, RVEC changed only to 10.323 us.
These values of RVEC precision confirm that it can be
an alternative high-precision system clock with the ad-
vantage of allowing a running application to migrate be-
tween core units without losing its time precision.

Table 3: DVFS operation effects on RVEC

Test u(us)  Standard deviation
RVEC without program migration  30.652 2.331
RVEC with program migration 30.803 2.267

In the third experiment we assessed whether RVEC
works correctly with DVFS operation together with and
without program migration. We built our test program
by replicating the arithmetic instruction block of the pre-
vious experiment, where the first and the second block
was executed at maximum frequency and half of that fre-
quency, respectively. The request for DVFS operation to
change frequency was performed at the end of execution
of the first block. The results are shown in Table 3. As
expected the program executon time nearly tripled the
value of previous experiment, and maintained fast exe-
cution under program migration; however, the standard
deviation increased due to the frequency change.

Finally, we used TSC to verify whether RVEC obeys
the SIP property. Note that the other system clocks were
excluded from this experiment because they depended on
resynchronization with an external global clock source.
To assess TSC, we limited the test program process to
stay within only one core unit without using DVFS, and
for RVEC, we present results for both with and without
process migration. This experiment was executed 100
times for each of the RVC and TSC configurations.
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Figure 2: Assessing the RVEC’s SIP property

Figure 2 presents the execution time results for TSC,
RVEC, and RVEC with process migration (RVEC+Mig).
It is important to note that no time violation occurred for
any of the individual execution times or for the consol-
idated average execution times. Therefore, in the case
of RVEC+mig, our results confirmed that RVEC obeyed
the SIP property, as is shown more clearly in the time
interval zoom of Figure 2. Surprisingly, the RVEC av-
erage execution time without migration is greater than
that with migration. The explanation is that, in the latter,
Linux selected the less overloaded core unit, aiming at
load balancing.

5.2 Evaluating RVEC in an OpenVZ virtu-
alization system

In this section, we evaluate the performance of RVEC in
an OpenVZ virtualization system. Initially, we checked
whether the passage of time measured by RVEC obeyed
the SIP property for an OpenVZ container. Our ex-
periment was to run a test program that performed 100
calls to RVEC(CLOCK_RVEC_VZ)using an OpenVZ
container and if any of such calls returned a value that
was less than or equal to the value of the previous call,
the program stopped running.

We ran four experiments, each of which used a differ-
ent time interval of O ms, 1 ms, 10 ms, and 1 s between the
call to CLOCK_RVEC_VZ for the 1st, 2nd, 3rd, and 4th
experiment, respectively. Each experiment was repeated
10 times, and at each time, 100 CLOCK _RVEC_V Z calls
were performed. Again, the test program stopped run-
ning if the RVEC SIP property was violated when re-
turning from any RVEC(CLOCK_RVEC_VZ) call.

The first experiment enabled us to investigate whether
RVEC would work correctly under a stressed condition,
while in the other experiments, the time intervals that
we used represented traditional real-time programs. For
reasons of space, we will show only the results for the

3rd experiment with 1ms, which we consider to be rep-
resentative because, in all four experiments, the RVEC
SIP property was obeyed. More specifically, the results
shown in Figure 3 were obtained for the 3rd experiment
over the first fifteen interactions of the experiment, con-
firming that the RVEC values were always increasing and
precise.

Execution Time
ms)
[
=]
88

Loop Iteraction

Figure 3: RVEC SIP property in the OpenVZ with 10ms
time interval between RVEC(CLOCK _RVEC_VZ) calls

We validated the correctness of the OpenVZ migration
algorithm that was adapted to include RVEC through a
test program running in an OpenVZ container that peri-
odically called 100 times CLOCK_RVEC_VZ and stop
running if the RVEC SIP property was violated. The
test program ran 200 times; each time, its container mi-
grated twice, used 2 s and 5 s time intervals between
CLOCK _RVEC_VZ calls, and always initialized the TSC
of the destination node before migrating. Both of the
tests concluded successfully; notably in the second test,
the TSC value of the destination was always smaller than
that of the source node.

5.3 Running applications that are depen-
dent on the precise time count in
OpenVZ

To understand the effects of time drifts on container mi-
gration in a practical application, we ran Memperf [12],
an application that characterizes the performance of the
memory hierarchy and uses the RDTSC instruction for
time measurements. However, Memperf discards time
measures that are less than 75% of the average time val-
ues, to avoid inserting “noise” into the time measurement
set. In the first test, Memperf ran in a container that
did not migrate. In the second test, the Memperfs con-
tainer migrated among the computer nodes. In the third
and last test, the memperfs container also migrated, but
it was modified to use CLOCK_RVEC_VZ calls instead
of the RDTSC instruction. The experiment comprised 20
Memperf runs with 100 time measurements for each test;
except for the first test, the Memperf container migrated
twice within each run. To avoid the cache effect, each
Memperf run was preceded by 1,000 NOP instructions.



Table 4 shows that the number of discarded values was
approximately 5 and 53 for the tests without migration
and with migrations, respectively; in other words, the
Memperfs container migrations led to 10 times more dis-
carded measures. The reason for such a large increase
in the measurement “noise” was that, during Memperf
migrations, the TSC registers of the source and desti-
nation nodes were not synchronized. However, in the
third test, the number of discarded values, 5, was equal
to that for the first test without Memperf migration be-
cause CLOCK _RVEC_VZ was used by Memperf.

Table 4: Experiments with the Memperf application

Test No. discarded values  Standard deviation
Lst Test (RDTSC) 5.10 0.79
2nd Test (RDTSC + Migration) 53.15 9.16
3rd Test (RVEC + Migration) 5.15 0.99

Clearly, these results also support the use of RVEC
as an effective system clock for applications that suffer
from migrations in virtualization systems and that de-
pend on precise time measures. Indeed, RVEC’s perfor-
mance reveals that it works with applications that were
originally written to run with RDTSC call instructions,
such as Memperf.

5.4 Global synchronization using HPGC in
a computer cluster

Next, we present results on using HPGC’s capability
to synchronize the nodes of a computer cluster running
Linux without requiring resynchronization. Our experi-
ment used one HPGC server node and two client nodes.
The HPGC server program first receive a synchroniza-
tion requests from each the client and process it in a FIFO
order, for each client once synchronization has started
the server needed only to retransmit the messages that
were sent by the clients, whereas the client algorithm is
shown in Code 5, with the usleep() function added to
avoid message flooding in the network.

Code 5: HPGC - the client algorithm

void exp04_Client (...){

for (i = 0; i < 10000; i++) {
usleep (1)
timel = clock_gettime (clk_id);

sendto (...) ;

recvfrom (...) ;

time2 = clock_gettime (clk_-id);
#(results+i) = (time2 — timel)/2;}}

We repeated the experiment 200 times and measured
the necessary number of messages for the variations of
RTT /2 to be smaller than K = 500 ns, which we chose

to build HPGC. The HPGC server first initiated node
A before B, computing the RT7T /2 from nodes A and
B to the HPGC server at times equal to 44.51 s and
44.47 us, respectively. In relation to the synchronization
bootstrap, each of the two nodes A and B exchanged 481
messages with the HPGC server in less than 1 ms using
1 us time interval between each client-server interaction
and 3 messages per interaction. After the HPGC syn-
chronization bootstrap, each of nodes A and B used its
HPGC to send 2,000 timestamp messages to the HPGC
server. Figure 4 plots the global timestamps of the mes-
sages sent by A and B. We can see in this Figure that
node A always ran first and sent the n-th message with a
smaller HPGC value than that of HPGC of the n-th mes-
sage from node B, which confirmed that the three cluster
nodes stayed synchronized globally.
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Figure 4: global synchronization using HPGC

5.5 Theoretical scalability of HPGC algo-
rithms

In the case of a cluster of computer nodes interconnected
by a non-blocking network, the HPGC synchronization
algorithm can theoretically offers an extremely scalable
global synchronization solution. Assume that any client
node after its synchronization bootstrap can turn into an
HPGC server of another group of client nodes which
are waiting for performing its synchronization bootstrap.
Equation 3 indicates that a 2-level HPGC algorithm can
synchronize more than 500,000 nodes whereas the ex-
pressions 4 show that a totally hierarchical HPGC algo-
rithm can synchronize 10°°! nodes in one second, by as-
suming a cost of 1 ms per node’ synchronization boot-
strap.
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Figure 5: Theoretical scalability of three HPGC algo-
rithms

In practice, a 1,000-node cluster can stay synchronized
globally within 1 second by requiring each of the nodes
to initially run the HPGC bootstrap. In contrast, an NTP
solution offers much lower precision as well as it re-
quires each of the 1,000 nodes to resynchronize every
10 seconds with the NTP server by exchanging 4 mes-
sages/resynchronizaton. Another significant advantage
of the HPGC bootstrap is that it can be performed offline,
which also can benefit energy-limited embedded systems
such as wireless sensor networks. Figure 5 illustrates the
scalability results for the three HPGC algorithms.

6 Conclusion

System clocks are not usually designed to cope with
time drifts that are generated by processors with DVES,
virtualization support, and multiple core units used in
energy-efficient computer systems. However, accumu-
lating time drifts in a system can reduce the precision of
system clocks, preventing correct execution of applica-
tions that are dependent on precise time measurements

and increasing the resynchronization rate with an exter-
nal global clock source, which counteracts the attainment
of a desirable energy efficiency.

As an alternative to the system clock, we proposed
RVEC, an original virtual clock with the property that the
time count is strictly increasing and precise. Moreover,
we used RVEC to build a High-Precision Global Clock
(HPGC) solution which was free from resynchronization
for a cluster of energy-efficient computers.

Our experimental evaluation of an implementation of
RVEC in both the Linux system and the OpenVZ vir-
tualization system as well as HPGC in Linux using a
reference cluster of three energy-efficient computer sys-
tems showed that RVEC had negligible overhead and
was highly precise. In addition, our results indicated that
the HPGC synchronization solution is highly-scalable as
it can synchronize up to 1,000 nodes/s and also that it
could be performed offline, which could benefit energy-
limited embedded systems as well. These preliminary
results suggest that RVEC and HPGC can be an effective
system clock and an effective global clock, respectively,
especially for energy-efficient computer systems. How-
ever, more extensive evaluations are necessary. In par-
ticular, we intend to evaluate the impact of using RVEC
and HPGC on large clusters of energy-efficient computer
systems for distributed and parallel computing.
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Notes

LA system clock with the SIP property assures that two consecutive
clock readings, 77 and 7>, will return time measurements 7, > T; for
any time interval between the two readings

2This hazard occurs due to the Linux migration procedure that is
executed on task scheduling

3http://www.compasso.ufrj.br



