
LAZY WORK STEALING FOR CONTINUOUS HIERARCHY TRAVERSAL

ON DEFORMABLE BODIES

Vińıcius da Silva

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Claudio Esperança

Rio de Janeiro

Março de 2013

LAZY WORK STEALING FOR CONTINUOUS HIERARCHY TRAVERSAL

ON DEFORMABLE BODIES

Vińıcius da Silva

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE

SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Claudio Esperança, Ph.D.

Prof. Ricardo Guerra Marroquim, D.Sc.

Prof. Luiz Henrique de Figueiredo, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2013

Silva, Vińıcius da

Lazy Work Stealing for Continuous Hierarchy Traversal

on Deformable Bodies/Vińıcius da Silva. – Rio de Janeiro:

UFRJ/COPPE, 2013.

X, 48 p.: il.; 29, 7cm.

Orientador: Claudio Esperança

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2013.

Bibliography: p. 45 – 48.

1. Continuous Collision Detection. 2. Deformable

Bodies. 3. Hierarchy based methods. 4. GPGPU. I.

Esperança, Claudio. II. Universidade Federal do Rio de

Janeiro, COPPE, Programa de Engenharia de Sistemas e

Computação. III. T́ıtulo.

iii

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

LAZY WORK STEALING FOR CONTINUOUS HIERARCHY TRAVERSAL

ON DEFORMABLE BODIES

Vińıcius da Silva

Março/2013

Orientador: Claudio Esperança

Programa: Engenharia de Sistemas e Computação

Este estudo apresenta os resultados de pesquisa em balanceamento de carga

dinâmico para Detecção de Colisão Cont́ınua (CCD) usando Hierarquias de Volumes

Envoltórios (BVHs) em Unidades de Processamento Gráfico (GPUs). A travessia

de hierarquia é um problema desafiador para a computação em GPU, pois a carga

de trabalho de percurso tem uma natureza muito dinâmica. Pesquisas atuais re-

sultaram em métodos para dinamicamente balancear a carga conforme a travessia

é executada. Infelizmente, a atual interface baseada em grade para computação

em GPU não é totalmente adequada para este tipo de computação e o código de

balanceamento de carga pode gerar sobrecarga excessiva. Este trabalho compara

métodos de balanceamento de carga conhecidos, apontando prós e contras e apre-

senta um novo algoritmo para resolver alguns dos problemas mais notórios.

O algoritmo usa o novo conceito de roubo preguiçoso de trabalho, que tenta obter

o máximo de paralelismo através de roubo ganancioso de trabalho e transferência

preguiçosa. Além disso, o algoritmo é projetado para aumentar o uso de memória

compartilhada por bloco e diminuir a penalidade de troca de contexto entre CPU e

GPU.

iv

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

LAZY WORK STEALING FOR CONTINUOUS HIERARCHY TRAVERSAL

ON DEFORMABLE BODIES

Vińıcius da Silva

March/2013

Advisor: Claudio Esperança

Department: Systems Engineering and Computer Science

This study presents the results of research in dynamic load balancing for Con-

tinuous Collision Detection (CCD) using Bounding Volumes Hierarchies (BVHs) on

Graphics Processing Units (GPUs). Hierarchy traversal is a challenging problem

for GPU computing, since the work load of traversal has a very dynamic nature.

Current research resulted in methods to dynamically balance load as the traversal is

evaluated. Unfortunatelly, current grid-based GPU computing interface is not well

suited for this type of computing and load balancing code can generate excessive

overhead. This work compares known load balancing methods, pointing pros and

cons and presents a novel algorithm to address some of the most glaring problems.

The algorithm uses the new concept of lazy work stealing, which tries to get the

most out of the parallel capabilities of GPUs by greedy work stealing and lazy work

evaluation. Also, the algorithm is designed to augment shared memory usage per

block and diminish CPU-GPU context exchange penalties.

v

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Related Work 3

2.1 General Purpose Computing on GPU (GPGPU) 3

2.2 Discrete and Continuous Collision Detection 5

2.3 BVHs . 5

2.3.1 Hierarchy Creation and Update 7

2.3.2 Elemental Tests . 9

2.3.3 BVH Traversal . 14

3 Hierarchy Traversal Load Balancing 20

3.1 Static Task List . 20

3.2 Task Stealing . 22

3.3 Lazy Work Stealing Algorithm for Load Balancing on GPU 28

4 Implementation Details and Experiments 38

4.1 Implementation Details . 38

4.2 Experiments . 39

4.3 Comparison and Analysis . 41

5 Conclusion 43

5.1 Limitations . 43

5.2 Future Work . 43

Bibliography 45

vi

List of Figures

2.1 CUDA grid of thread blocks as shown in NVIDIA (2012) 4

2.2 CUDA memory hierarchy as shown in NVIDIA (2012)) 6

2.3 BVH concept (KIM et al. (2009)) . 7

2.4 Morton curve . 8

2.5 Morton code . 9

2.6 Newton-Raphson method, as in PRESS et al. (2007) 11

2.7 Deforming triangle, vertex and projected distance, as shown in TANG

et al. (2010a) . 12

2.8 Deforming edges and projected distance, as shown in TANG et al.

(2010a) . 13

2.9 Boundary orphan features. (a) shows orphan vertex v, which makes

an orphan pair with face a5. (b) shows edge e, which makes an orphan

pair with e0 and other features. Picture reproduced from TANG et al.

(2008). 16

2.10 Internal orphan features. (a) shows vertex v, which is orphan because

it is the shared vertex of the triangle fan, (b) a tetrahedron, where

each vertex and opposite face form an orphan pair. The same happens

with the 4-sided pyramid (c). As shown in TANG et al. (2008). . . . 16

2.11 BVH and associated BVTT for an intra-collision traversal. The

marked nodes in the BVTT are the front, i.e., the nodes where the

collision traversal ended. As shown in (TANG et al. (2010b)). 18

2.12 Front tracking representation. The front saved from previous frame

is used as the starting point for traversal in the current frame. This

traversal generates the front used in the next frame. This process

continues until the front is considered outdated and rebuilt. As shown

in (TANG et al. (2010b)). 19

3.1 LAUTERBACH et al. (2010) load balancing for hierarchy traversal

scheme. 22

3.2 ARORA et al. (1998) deque representation. 28

vii

3.3 Lazy work acquisition scheme. First, threads try to pop from their

block’s shared stack (1). If not successful, they try to pop from its

global deque (2). If not successful, enough nodes (if any) are trans-

ferred from lazily stolen nodes (3). If there are no more nodes from

lazy steal, all other block deques are stolen (4). 31

4.1 NVIDIA CUDA cache hierarchy . 39

4.2 Lazy Work Stealing time chart for the Cloth/Ball benchmark. 42

viii

List of Tables

4.1 Lazy Work Stealing performance results. Times in ms. 40

4.2 Lazy Work Stealing speedup. 40

4.3 Lazy Work Stealing average number of processed front nodes per frame. 40

4.4 gProximity performance results. Times in ms. 41

4.5 gProximity speedup. 41

ix

List of Algorithms

2.1 BVH inter and intra collision traversal. In both cases it is assumed

that the root node is bounding the entire scene. 15

2.2 FindVFOrphan: Find all orphan pairs built on vertex v as showed in

(OrphanSets) . 17

2.3 FindEEOrphan: Find all orphan pairs built on edge e as showed in

(OrphanSets) . 17

3.1 gProximity traversal and load balancing - CPU level 22

3.2 gProximity traversal kernel - GPU level 23

3.3 gProximity balancing kernel declarations - GPU level. 24

3.4 gProximity balancing kernel - GPU level. 25

3.5 ARORA et al. (1998) task stealing algorithm 26

3.6 ARORA et al. (1998) task stealing inner functions 27

3.7 Novel algorithm traversal and front acquisition 32

3.8 Shared stacks compaction related functions. compactStacks receives

both bvtt and front items generated in the current traversal iteration

separated per thread. It compacts these items and push them into

the stack. 33

3.9 Novel lazy steal popWork device function. Each thread tries to pop

a node in a 3 level approach until successful or all deques are inactive. 34

3.10 Level 2 pop function. Pop from the deque owned by the block. 34

3.11 Level 3 pop function. Lazy work steal. 35

3.12 Novel algorithm pushWork device function. Pushes data to global

memory if the number of nodes in the shared stack is greater than a

predetermined threshold . 36

3.13 Novel algorithm inner deque/stack device functions. Change deque

pointers . 37

x

Chapter 1

Introduction

Collision Detection has been a topic of great interest in computer graphics. The

problem of detection of interfering objects appears in many applications such as

robotics, games, and other simulations. The original Collision Detection approaches

restricted the solution to the scope of Rigid Bodies discrete intersection. More

recent investigation developed methods to address the problem in less restricted

environments such as when objects are susceptible to deformable motion and when

Continuous Collision Detection is considered. Also, work has been done to achieve

better performance, exploiting some avenues of optimization techniques.

Several approaches have been proposed and they can be mainly divided in

Bounding Volume Hierarchies, Distance Fields, Spatial Partitioning, Image-Space

and Stochastic methods, as discussed in TESCHNER et al. (2004). Bounding Vol-

ume Hierarchy techniques organize the scene as a hierarchy of volumes that bound

a group of objects, primitives or other volumes. The intersection against these vol-

umes is easier to compute and this fact provide fast culling of parts of the scene.

Distance Field is an implicit represention of objects which defines a field of distances

for the entire proximity of the object. The object itself is defined at the zero level

set, i. e. the places where the distance is equal to 0. Spatial Partitioning is the

idea of subdividing the space in cells. Some approaches make this division based

on the object itself, such as BSP trees, Octrees or Kd-trees, while others are object

independent, such as Regular Grids. Image-Space techniques detect collisions using

the projection of objects. Finaly, Stochastic methods are inexact and degrade the

precision in favor of performance.

The present work documents the results of research in the area of load balanc-

ing for Continuous Collision Detection (CCD) using Bounding Volume Hierarchies

(BVHs) on Graphics Processing Units (GPUs). Load balancing for GPUs is a chal-

lenge because current GPU programming interfaces are not well suited to problems

with dynamically generated data or with uneven data distribution among proces-

sors. CCD using BVHs is such a problem, since the work load of BVH traversal is

1

very dynamic in nature.

The research about the aforementioned topic resulted in a novel approach to

balance workload while traversing BVHs using GPUs. This document aims at de-

scribing this new idea and how it was conceived, providing the background concepts

and the methodology to achieve the described results.

The next chapters are organized as follows. Chapter 2 comments all related

work and introduces the concepts related to this dissertation. Chapter 3 focuses

on the motivations and results in the proposal of a new method to address the

presented problem. Chapter 4 discusses about the implementation details, shows the

experiments and comparisons. Finally, Chapter 5 concludes this work, commenting

about the limitations of the proposal and the directions for future work.

2

Chapter 2

Related Work

The present chapter is an introduction to the concepts that surround this dis-

sertation, mainly Continuous Collision Detection (CCD) for Deformable Bodies

(DBs) based on Bounding Volume Hierarchies (BVH) on Graphics Processing Units

(GPUs). They are briefly explained in the next sections.

2.1 General Purpose Computing on GPU

(GPGPU)

In recent years GPUs have evolved from configurable graphics processors to pro-

grammable graphics processors. This fact provided researchers and programmers

with a cost-efficient many-core architecture for parallel computing (NICKOLLS and

DALLY (2010)). Formerly, to use GPUs for generic computing, programmers should

suit their problems to the programmable shaders pipeline. This activity requires

representing generic data as graphic entities, such as textures, vertices and pixels,

which is not user-friendly in some cases. The demand for generic programming

in GPU has resulted in the development of GPGPU platforms and APIs, such as

CUDA (NVIDIA (2012) , NICKOLLS et al. (2008)), OpenCL (GROUP (2012))

and Direct-Compute (NI (2009)). The nomenclature of concepts is different among

APIs, so CUDA will be the focus from now on.

The CUDA architecture is based on Streaming Multiprocessors (SMs) . Each

SM can run a predefined maximum number of threads that are grouped on two

levels: warps and blocks. Warps are the low-level automatic grouping and are the

SM scheduling unit. A warp executes one common instruction at a time, so full

efficiency occurs when all threads in a warp agree on their execution path. If a

data-dependent conditional divergent branch occurs, thread execution is serialized

until convergence (NVIDIA (2012)).

Blocks are the high-level grouping and are defined by the programmer, who must

3

configure them depending on the problem and GPU resources available. Blocks are

viewed by the GPU as a grid, so this is the way that a programmer must organize

his problem and data for efficient solution using CUDA programs that are called

kernels. Figure 2.1 shows the grid of thread blocks.

Figure 2.1: CUDA grid of thread blocks as shown in NVIDIA (2012)

4

CUDA devices have a memory hierarchy that reflects the logical organization of

data inside the grid. It is divided in global, shared and local memory. The global

memory is accessible by all threads in all blocks. It is more abundant, but has high

latency. On the other hand, the shared memory is accessible inside a block. It is

faster but scarcer. The local memory is accessible only inside a thread. Figure 2.2

shows the hierarchy.

2.2 Discrete and Continuous Collision Detection

Collision Detection (CD) is the research area of Computer Graphics that studies

the problem of intersecting bodies in dynamic graphics simulations. For real-time

environments, the simulations are supposed to be divided in frames fi where the

time interval between frames fi and fi+1 is equal ∆ti (ERICSON (2004)). Several

methods to approach the problem have been proposed and they can be classified as

either Discrete Collision Detection (DCD) or Continuous Collision Detection (CCD).

DCD evaluates intersection by considering the positions of bodies at one single

instant of each frame only, i.e., discarding what happens in any other instant in ∆ti.

The algorithms are fast, but their correctness depends on ∆ti, i.e., collisions can be

missed.

CCD evaluates intersection continuously in all of ∆ti. Thus, CCD methods

correctness does not depend on ∆ti, but they are costly if compared with DCD

methods. However, if GPGPU is taken into consideration, the performance cost of

CCD methods can be used to mask memory latency, since CCD has heavier math

than DCD. This aspect makes CCD cost-benefit on GPUs greater if a relation of

culling efficiency and performance is considered.

2.3 BVHs

BVHs are a common used method to accelerate CD. The main idea behind this

approach is to approximate geometry by a coarse representation called Bounding

Volumes (BVs) , for which collision can be evaluated easily. These volumes spatially

wrap a group of primitives or other BVs of a mesh. The BVs used naturally have a

parent-child relationship and in consequence a tree can be used as a data structure

to represent them. For shallow levels, the representation is coarser, while for deep

levels the representation is more accurate. Using this approach the CD can benefit

from fast geometry culling and space coherence, which is inherent to the problem.

Figure 2.3 shows the concept.

BVHs can be classified by the type of BVs used. Oriented Bounding Boxes

(OBBs) (GOTTSCHALK et al. (1996)) are reported as a good choice for use in

5

Figure 2.2: CUDA memory hierarchy as shown in NVIDIA (2012))

GPUs because they provide a better cost-benefit in respect with culling efficiency and

computational overhead (LAUTERBACH et al. (2010)). The BVH data structure

must be maintained during the whole simulation. This task is divided into BVH

6

Figure 2.3: BVH concept (KIM et al. (2009))

creation, traversal for BV collision evaluation, primitive collision (elemental tests)

and hierarchy update between frames. Several approaches can be used to accomplish

each of these tasks.

2.3.1 Hierarchy Creation and Update

The methods for BVH construction consist of space division and are mainly top-

down or bottom-up. Top-down approaches start with a BV enclosing all space. The

BV is recursively divided until the number of enclosed primitives reaches a given

predefined threshold. Bottom-up approaches start creating a BV for each primitive

(or a predefined number of primitives) and each tree level is constructed by grouping

BVs in the level immediately below. The differences between methods usually are

the heuristics used to determine how to subdivide or to group bounding volumes

and the number of allowed children for each parent. With respect of parallelism,

top-down methods usually have less parallelism at the beginning of the construction,

while bottom-up methods have less parallelism at the end of the construction.

The prototype associated with this dissertation creates OBBs by the usual covari-

ance matrix eigenvalue method (GOTTSCHALK et al. (1996)). The mathematical

proofs are beyond the scope of this text, but the process is briefly described here.

For each node of the hierarchy the covariance matrix is generated using the primitive

vertices if it is a leaf node or using the vertices of its children OBBs. The eigenvalues

of the covariance matrix determine the OBB length, whereas the eigenvectors are

used as the OBB axes. To solve the generated symmetric eigen system the approach

described in PRESS et al. (2007) is used. First the Householder algorithm is applied

to tridiagonalize the system matrix. Then, the QL algorithm with implicit shifts is

used to finish the diagonalization. The eigenvalues are the remaining diagonal and

the eigenvectors are formed by the accumulated transformation matrix of the QL

algorithm.

The prototype discussed in this dissertation uses the approach described in

LAUTERBACH et al. (2009) for hierarchy construction in GPU. It uses a grid

subdivision of the space to generate a space-filling Morton curve and reduce the

construction to a sorting problem. The prerequisites are previous knowledge of the

7

space boundaries of the entire geometry and the bounding volumes of all primitives

(computed as described in the last paragraph). The space boundaries are used to

compute how the space is quantized, i.e., the size of the grid node. The bounding

volume barycenter of each primitive is used to compute its associated Morton index

code, which indicates the node that contains the primitive. This code is formed by

interleaved bits that indicate the side where the primitive is with respect to the

division axis. Sorting primitives by their associated code also sorts them in the

Morton curve. To achieve better parallelism, a radix sort by least significant bit al-

gorithm is used to sort primitives. AJMERA et al. (2008) explains it in more detail.

Figure 2.4 shows a Morton curve example, while figure Figure 2.5 represents the

corresponding generated Morton codes.

Figure 2.4: Morton curve

For each adjacent pair of primitives i, i + 1 in the sorted sequence, their least

common ancestor – the node farthest from the root whose subtree contains both –

is determined by finding the most significant bit in which their Morton codes differ.

If they differ in position h, a split among these primitives must be done at each

hierarchy level from h to the max depth of the tree. This split list is recorded as

[(i, h), (i, h+ 1), ..., (i,maxdepth)]. The lists of each primitive pair are concatenated

to form a split list sorted by the primitive index in the Morton curve. Then, this list

is sorted by h (level). This final list has the information of how the primitives must

be split at each level. The hierarchy can finally be constructed by linking child and

parent nodes, removing side-effect singleton inner nodes, which can appear because

split lists go until max depth, and updating the hierarchy so that each BV is big

enough to enclose the primitives pointed by the split list (LAUTERBACH et al.

(2009)).

8

Figure 2.5: Morton code

There are several approaches to update the BVH. The prototype associated

with this dissertation just refits each BV, recreating them with the new primitive

or children OBBs vertex positions for the current frame.

2.3.2 Elemental Tests

Primitive pairs found to be potentially colliding must be evaluated with precise in-

tersection elemental tests. In this section the elemental tests used among primitives

are described in detail. The potentially primitive pairs are assumed to be already

known and the process of finding them is not described in this section, but in section

2.3.3.

These tests depend on the type of mesh elements, and here we follow com-

mon practice by assuming triangular meshes, so the focus will be on continuous

triangle×triangle intersection.

PROVOT (1997) described how to mathematically model the continuous

triangle×triangle intersection problem and the discussion below follows in exactly

same lines. There are two types of collision involved: a vertex intersecting a triangle

(vertex-face collision) and an edge intersecting another edge (edge-edge collision).

9

A triangle×triangle intersection is reduced to 6 vertex-face tests (1 for each triangle

vertex) and 9 edge-edge tests (each triangle edge against each edge in the other

triangle). Let t0 be the start of the time interval [t0, t0 + ∆t] and assume that the

positions and velocities in t0 are known. Assume also that the velocities are constant

in the interval.

Vertex-face Collision

Let P (t) be the vertex and A(t), B(t), C(t) the vertices of the triangle. Let also
~V , ~VA, ~VB, ~VC be their respective constant velocities during the time interval. Thus,

A(t) = A(t0) + t ~VA, B(t) = B(t0) + t ~VB, C(t) = C(t0) + t ~VC . If there is collision,

then
∃t ∈ [t0, t0 + ∆t] such that

∃u, v ∈ [0, 1], u + v = 1, ~AP (t) = u ~AB(t) + v ~AC(t)
(2.1)

Equation 2.1 just shows that in the collision time t, P must be inside the triangle.

But it is non-linear since u, v, t are unknown and there are factors that depend on

two of them. To solve this, another condition is considered: that the triangle normal

is orthogonal to the triangle. Thus

~AP (t) · ~N(t) = 0, where ~N(t) is the triangle normal. (2.2)

It is important to note that Equation 2.2 is not sufficient to verify the collision

since it is true if A,B,C, P are coplanar. However it calculates t and therefore

eliminates Equation 2.1 dependency on this variable and turns it linear. ~N(t) is a

t2 term and ~AP (t) is a t term, so Equation 2.2 is cubic. The approach to solve it

is described in Section 2.3.2. Equation 2.2 can result in three values for t. The

lowest positive value t′ for which P (t′) ∈ ABC(t′) is chosen as the final result.

Edge-edge Collision

The ideas in Section 2.3.2 can be used in the edge-edge collision case with minor

changes. Let AB(t) be one edge and CD(t) be the other one. The collision occurs

if and only if

∃t ∈ [t0, t0 + ∆t] such that

∃u, v ∈ [0, 1], u ~AB(t) = v ~CD(t)
(2.3)

Once again, this is a nonlinear system. The relation used to calculate t is that

A,B,C,D must be coplanar, like before.

(~AB(t)× ~CD(t)) · ~AC(t) = 0 (2.4)

10

This also is a cubic equation, which can lead to 3 values for t. The lowest

positive value that makes it possible for Equation 2.3 to be solved is chosen as the

final result.

Cubic Equations Solver

The prototype associated with this dissertation uses the combination of Newton-

Raphson and bisection methods as described in PRESS et al. (2007). The bisection

method gets an interval [a, b], where the root is known to be, i.e., f(a) and f(b) have

opposite signals. The algorithm iterates by dividing the interval at the midpoint,

reducing interval to [a′, b′] as a result, and evaluating f(a′) and f(b′). This is done

until the error in the root value is acceptable. The bisection method is assured to

find the root, but has slower convergence than other methods. On the other hand,

the Newton-Raphson uses the derivative of the function to refine a root guess. If

f is the function and a is the root guess, the Newton-Raphson method iterates by

evaluating the zero crossing of the tangent line of f passing through f(a). The new

root guess will be the abscissa of this zero crossing. Figure 2.6 shows the method.

It converges fast, but has some special cases that can lead to divergence or cycling.

Figure 2.6: Newton-Raphson method, as in PRESS et al. (2007)

The approach of PRESS et al. (2007) suggests using Newton-Raphson while

it is converging fast enough and bisection otherwise. This allows fast and safe

convergence.

11

Culling Methods

There are several culling methods for primitive pair collision. They aim to eliminate

false positives and redundant computations. In the prototype of this dissertation the

Non-penetration Filter algorithm (TANG et al. (2010a)) is used. It eliminates the

need for solving the cubic equation of a vertex-face pair (p, t) when point p remains

on the same side of triangle t during all time interval. Similarly, an edge-edge pair

can be culled if they cannot be coplanar during the time interval. These relations

were originally presented as theorems and are reproduced here for convenience, with

their consequences explained later. The mathematical proofs of the theorems are

beyond the scope of this work, but can be viewed in the aforementioned paper.

For the vertex-face case, consider a vertex Pt and a triangle Tt. The projected

distance between them along the normal nt indicates if they can be coplanar (Figure

2.7).

Figure 2.7: Deforming triangle, vertex and projected distance, as shown in TANG
et al. (2010a)

Non-coplanar Theorem for VF tests: For a triangle Tt and a vertex Pt

defined by the start and end positions during the interval [0, 1], these positions

are linearly interpolated in the interval with respect to the time variable, t. If the

following four scalar values: A,B, 2∗C+F
3

and 2∗D+E
3

have the same sign, Tt and Pt

will not be coplanar during the interval:

A = (P0 − a0) · n0, B = (P1 − a1) · n1, C = (P0 − a0) · n̂,
D = (P1 − a1) · n̂, E = (P0 − a0) · n1, F = (P1 − a1) · n0

And:

n0 = (b0 − a0)× (c0 − a0), n1 = (b1 − a1)× (c1 − a1)

12

n̂ = (n0+n1−(~vb− ~va)×(~vc− ~va)
2

~va = a1 − a0, ~vb = b1 − b0, ~vc = c1 − c0

TANG et al. (2010a) show that the projected distance of Pt and Tt is:

(Pt−at) ·nt = A∗B3
0(t) +

2 ∗ C + F

3
∗B3

1(t) +
2 ∗D + E

3
∗B3

2(t) +B ∗B3
3(t), (2.5)

where B3
i (t) is the ith basis function of the Bernstein polynomials of degree 3.

Equation 2.5 is a Bézier curve and the values A,B, 2∗C+F
3

and 2∗D+E
3

are its

control vertices. Since they are scalars, they can be thought of as delimiting an

interval in the Real axis. The curve can be constructed varying t. The convex hull

property of the control points states that any generated curve point is bounded by

them. Thus, if A,B, 2∗C+F
3

and 2∗D+E
3

have the same sign, the projected distance

cannot be equal to 0 in the time interval and no collision occurs.

The same concepts can be extended to the edge-edge collision. Consider two

edges E1 and E2 (defined by u0, v0 and k0, l0 at t = 0, u1, v1 and k1, l1 at t = 1).

Figure 2.8 shows the concepts.

Figure 2.8: Deforming edges and projected distance, as shown in TANG et al.
(2010a)

Non-coplanar Theorem for EE tests: For two deforming edges E1 and E2

defined by the start and end positions during the interval [0, 1], these positions

are linearly interpolated in the interval with respect to the time variable, t. If the

following four scalar values: A′, B′, 2∗C
′+F ′

3
and 2∗D′+E′

3
have the same sign, E1 and

E2 will not be coplanar during the interval:

13

A′ = (l0 − k0) · n′0, B′ = (l1 − k1) · n′1, C ′ = (l0 − k0) · n̂′,
D′ = (l1 − k1) · n̂′, E ′ = (l0 − k0) · n′1, F ′ = (l1 − k1) · n′0
and

n′0 = (u0 − k0)× (v0 − k0), n
′
1 = (u1 − k1)× (v1 − k1)

n̂′ =
(n′0+n′1−(~vu− ~vk)×(~vv− ~vk)

2

~vk = k1 − k0, ~vu = u1 − u0, ~vv = v1 − v0

As in Equation 2.5, the projected distance can be represented as a Bézier curve

using the new control points and the coplanarity tests can be done in the same way.

2.3.3 BVH Traversal

The tree traversal is the operation that actually evaluates collision and generates a

potentially colliding primitive pair list. This list is refined later by more precise ele-

mental tests as described in Section 2.3.2. The traversal can evaluate inter-collision,

intra-collision or both. Inter-collision occurs when different trees or subtrees inter-

sect. On the other hand, intra-collision occurs when the intersection happens in the

same tree or subtree. Algorithm 2.1 shows the traversal.

It is important to note that intra-collision is much more expensive to compute

than inter-collision, mainly because adjacent primitives can lead to a huge number of

false-positives. This fact is a consequence of the use of conservative representations

such as BVs. Several culling heuristics have been proposed to address this problem

(HEO et al. (2010) , TANG et al. (2008)).

The prototype of this dissertation uses the concept of Orphan Sets defined

in TANG et al. (2008) to ignore adjacent triangle intersections in traversal. The

method relies in a preprocessing step on the mesh geometry to find all elemental

tests generated by adjacent triangle pairs that cannot be generated by non-adjacent

triangle pairs. Two auxiliary concepts are used to generate the Orphan Sets: Orphan

Incident Set (OIS) and Orphan Adjacent Set (OAS) . OIS is the set of incident tri-

angles of a mesh feature, while OAS is the set of adjacent triangles of a mesh feature.

These concepts are illustrated in Figure 2.9.

There are two types of orphan features: boundary and interior. Each vertex and

edge on the boundary of a mesh will be orphan as shown in Figure 2.9. Interior

orphans can arise from some special cases, in which every triangle is adjacent to

every other triangle or in triangle fans. Figure 2.10 shows such cases.

Algorithms 2.2 and 2.3 are used to create the Orphan Set for vertices and edges

respectively. The generated orphan tests can be refined using other techniques, such

as the Continuous Normal Cone (CNC) (TANG et al. (2008)) or feature bounding

volumes or they can be concatenated in the elemental tests list generated after each

traversal. It is important to remember that the triangle bounding volumes cannot be

14

Algorithm 2.1 BVH inter and intra collision traversal. In both cases it is assumed
that the root node is bounding the entire scene.

1: function traverseIntra(bvh)
2: node0← bvh.root
3: node1← bvh.root
4: traverseTree(node0 , node1)
5: end function

6: function traverseInter(bvh)
7: node0← bvh.root.leftChild
8: node1← bvh.root.rightChild
9: traverseTree(node0 , node1)

10: end function

11: function traverseTree(node0, node1)
12: if node0 = node1 then . Intra-collision
13: left← node0.leftChild
14: right← node0.rightChild
15: traverseTree(left, right)
16: if NOT left.isLeaf then
17: traverseTree(left, left)

18: if NOT right.isLeaf then
19: traverseTree(right, right)

20: else . Inter-collision
21: BV 0← node0.bv
22: BV 1← node1.bv
23: if collide(node0 , node1) then
24: if node0.isLeaf AND node1.isLeaf then
25: primitivePair ← (node0.primitive, node1.primitive)
26: primitivePairList.addPair(primitivePair)
27: else
28: if node0.isLeaf OR BV 1.volume > BV 0.volume then . Node1

is greater, check its children
29: traverseTree(node0, node1.leftChild)
30: traverseTree(node0, node1.rightChild)
31: else . Node0 is greater, check its children
32: traverseTree(node1, node0.leftChild)
33: traverseTree(node1, node0.rightChild)

34: end function

15

Figure 2.9: Boundary orphan features. (a) shows orphan vertex v, which makes an
orphan pair with face a5. (b) shows edge e, which makes an orphan pair with e0 and
other features. Picture reproduced from TANG et al. (2008).

Figure 2.10: Internal orphan features. (a) shows vertex v, which is orphan because
it is the shared vertex of the triangle fan, (b) a tetrahedron, where each vertex and
opposite face form an orphan pair. The same happens with the 4-sided pyramid (c).
As shown in TANG et al. (2008).

used to refine the tests since they would always point to a collision among adjacent

triangle pairs.

The prototype of this dissertation also implements the concept of front-based de-

composition (TANG et al. (2010b)). This concept allows the usage of time coherence

in BVH traversal by saving the front of the Bounding Volume Test Tree (BVTT)

related with the traversal. The BVTT is the tree that represents the collision tests

performed in the traversal and the front consists of the BVTT nodes where the

traversal ends. The front can be used as the starting point for the traversal in the

next frame, saving computational time and providing more parallelism. The front

can be acquired while in traversal by saving the pairs of BVH nodes in which the

traversal ends. These pairs are those whose collision is evaluated as false or leaf

pairs. The concepts are shown in Figure 2.11. The blue nodes are the original

BVH. The yellow nodes are the test tree for an arbitrary intra-collision traversal.

The front is marked in gray and is formed by all colliding or non-colliding BVH leaf

pairs and any other pair that is non-colliding.

16

Algorithm 2.2 FindVFOrphan: Find all orphan pairs built on vertex v as showed
in (OrphanSets)

1: Create OIS for v
2: Create OAS for v
3: for all Triangle ta ∈ OAS do
4: adjacent = TRUE
5: for all Triangle ti ∈ OIS do
6: if ta not adjacent ti then
7: adjacent = FALSE
8: break
9: if adjacent == TRUE then
10: Add orphan pair {v, ta}

Algorithm 2.3 FindEEOrphan: Find all orphan pairs built on edge e as showed in
(OrphanSets)

1: Create OIS for e
2: Create OAS for e
3: Create ES, the set of all edges in OAS
4: for all Edge ea ∈ ES do
5: if ea is incident to e then
6: continue
7: Create OISa for ea
8: adjacent = TRUE
9: for all Triangle pair {ti, ta}, ti ∈ OIS & ta ∈ OISa do
10: if ta not adjacent ti then
11: adjacent = FALSE
12: break
13: if adjacent == TRUE then
14: Add orphan pair {e, ea}

17

The front saved from previous frame fp can be used as the starting point for the

traversal in the current frame. This operation is called front tracking and is shown

in Figure 2.12. To execute it, the collision must be evaluated for each front node

(x, y) in fp. If x and y are both BVH leaf nodes, they must be added in the current

frame front fc, since leafs are in the front by definition, and their triangles must be

added to the potentially colliding triangle pair list if their BVs collide. If x or y is a

BVH internal node, then if x and y remain non-colliding, they are just added to fc.

Otherwise, the pair (x, y) is added to the traversal work list so the BVTT traversal

is resumed from this node.

The prototype associated with this dissertation uses an heuristic to evaluate

when the BVTT front is considered outdated and must be rebuilt. It consists of

comparing the number of nodes in the front n(fc) at the current frame fc and the

number of nodes in the front n(fc−p) at a reference previous frame fc−p. If fc
fc−p

< rt,

where rt is a rebuild threshold, the front does not have changed too much at the

last frames and is considered outdated, i.e., it is too deep for the current scene state

and in consequence is generating more computations than the desirable. The best

values for p and rt are model dependent. Rebuilding the front means traversing the

hierarchy againg from the root.

Figure 2.11: BVH and associated BVTT for an intra-collision traversal. The marked
nodes in the BVTT are the front, i.e., the nodes where the collision traversal ended.
As shown in (TANG et al. (2010b)).

18

Figure 2.12: Front tracking representation. The front saved from previous frame is
used as the starting point for traversal in the current frame. This traversal generates
the front used in the next frame. This process continues until the front is considered
outdated and rebuilt. As shown in (TANG et al. (2010b)).

19

Chapter 3

Hierarchy Traversal Load

Balancing

The main difficulty that arises when designing CCD BVH algorithms for GPUs

is the fact that workload can be generated on-the-fly during hierarchy traversal.

Usually, problems are better suited for running on GPUs when the workload is

completely known a priori and thus can be evenly divided among GPU cores before

kernel calls. However, researchers have studied this load balancing problem and have

proposed approaches for achieving better performance and flexibility. In particular,

four different approaches for load balancing on GPUs are worthy of mention: Static

Task List, Blocking Dynamic Task Queue, Lock-free Dynamic Task Queue and Task

Stealing. A discussion about these approaches can be found in (CEDERMAN and

TSIGAS (2009)).

This chapter focuses on the concepts of Static Task List and Task Stealing and

how they can be used for hierarchy traversal. A novel load balancing algorithm for

hierarchy traversal is presented, based on the task stealing load balancing approach

discussed in CEDERMAN and TSIGAS (2009). The algorithm is also compared

with the load balancing scheme used in gProximity (LAUTERBACH et al. (2010)).

3.1 Static Task List

This method is the simplest load balancing scheme mentioned in CEDERMAN and

TSIGAS (2009). It does the balancing before issuing all work and is inherently

inflexible because of this. In terms of dynamically generated workload, this scheme

can lead to extremely unbalanced cases when all cores finish their issued work quickly

except a core which has the most time-consuming task. From the point of view of

hierarchy traversal, this case arises when one core needs to perform a deep hierarchy

traversal while all others finish their traversal fast. In this case, we have almost

20

all cores in an idle state, and thus wasting useful resources. Specifically, let (ai, bi)

denote a hierarchy node pair which is to be processed in core i, where 0 ≤ i < N ,

N being the number of available cores. Also, suppose function C(x, y) evaluates

collision between the nodes x and y. Clearly, if C(a0, b0) = true and C(ai, bi) = false

∀i 6= 0, then core 0 will have all the work thereafter and the other cores will be idle.

LAUTERBACH et al. (2010) proposed an algorithm to address the inflexibility

of the Static Task List method. The idea is to redistribute nodes if the number

of unused cores is more than a predefined threshold. Each core has its own stack

where nodes can be pushed in or popped out. Using CUDA terminology, in this

algorithm a core is defined as a CUDA block and the traversal and load balancing

kernels are used to fulfill the related tasks. The threshold of unused cores is passed

as a parameter for the traversal kernel. In this section, the terms “block” and “core”

are used interchangeably.

The algorithm proceeds on two levels: CPU and GPU. The CPU code stays

in a loop, calling two CUDA kernels in sequence: one for hierarchy traversal and

another for load balancing. This continues until all the traversal is done. A scheme

of how kernels correlate, as presented in LAUTERBACH et al. (2010), is depicted

in Figure 3.1. The algorithms are presented in Algorithms 3.1 to 3.4. All ker-

nel parameters are assumed to be in GPU global memory. Also, the function

assignShared(sharedData, value) is suposed to use one thread to assign value to

a block shared variable sharedData. Finally, all SYNC calls are supposed to do the

synchronization of threads inside a block.

In the traversal kernel, a block stays in a loop until stalled by the condition of

excessive number of idle blocks or if its stack is empty (no more nodes) or full (no

more space to generate new nodes). The number of unused cores is maintained by a

global counter. The loop consists first of verifying the global counter and stalling if

the condition of excessive unused blocks is met. Otherwise the block pops traversal

nodes from its stack to feed threads, processes them, possibly generating new nodes

on-the-fly, and pushes the new nodes back to its stack. Afterwards, the block checks

the condition of its stack being empty or full and stalls if it is the case. A block

stall means incrementing the global counter of unused blocks, pushing all remaining

nodes on local stack to a global memory list and returning all threads in block.

The global memory list is segmented and each block has its own space to save its

stack. It is important to note that blocks that still have useful nodes are forced to

stall if the excessive unused cores condition is met. The algorithm is described in

Algorithm 3.2.

The second kernel balances the load, receiving as input the list of stack nodes

saved on the segmented global memory and the list of counters per stack from previ-

ous traversal. The output is a new list which will have the nodes rearranged evenly

21

and a list of counters that reflects the changes. To achieve this, the kernel first

copies the list of stack counters to shared memory. Then it does a parallel reduction

operation (NGUYEN (2007)) which computes the total of nodes. Afterwards, the

number of cores per stack is calculated by dividing the total of nodes by the number

of cores. Finally, for each stack in the segment input list, node positions are rear-

ranged so all stacks have the same number of nodes. The algorithm declarations are

described in Algorithm 3.3, while the kernel is described in Algorithm 3.4.

Figure 3.1: LAUTERBACH et al. (2010) load balancing for hierarchy traversal
scheme.

Algorithm 3.1 gProximity traversal and load balancing - CPU level

1: while gTotalNodes > 0 do
2: traverseTree(gStacks , gTriPairs , gIdleCores)
3: balanceWorkList(gStacks , gOutStacks , gTotalNodes)
4: swap(gStacks , gOutStacks)

3.2 Task Stealing

According to CEDERMAN and TSIGAS (2009), task stealing is a popular load

balancing scheme where each processing unit is given a set of tasks and when it has

completed them it tries to steal a task from another processing unit which has not

yet completed its assigned tasks. If a unit creates a new task it is added to its own

local set of tasks.

The scheme studied in the aforementioned paper is an adaption for GPUs of

ARORA et al. (1998) task stealing method using non-blocking double ended queues

(deques). It was designed in the scope of multiprocessor systems so we will define

process as an instance of a computer program which can run one thread at a time.

Also, it assumes that processes can run in parallel or concurrently. Each process has

22

Algorithm 3.2 gProximity traversal kernel - GPU level

1: function traverseTree(gStacks , gTriPairs , gIdleCores)
2: Parameters (global memory):
3: gStacks . BVTT stacks
4: gTriPairs . Triangle pairs for elemental tests
5: gIdleCores . Number of idle cores
6: Block shared memory variables:
7: sWorkCount . Deque work element count
8: sAborted . gIdleCores as visible for this block
9: Thread local memory variables:

10: block . Block index in the grid
11: thread . Thread index in the grid
12: nThreads . Number of threads per block
13: nActive . Number of active threads for the current iteration
14: workItem . BVTT node

15: assignShared(sWorkCount , gStacks[block].count)
16: sync . Synchronizes with threads in the same block.
17: if sWorkCount = 0 then
18: callAbort(gIdleCores) . Increment gIdleCores once
19: return
20: sync
21: while sWorkCount > 0 do
22: nActive← min(nThreads, sWorkCount)
23: workItem← INV ALID
24: if thread < sWorkCount then
25: workItem← gStacks[block].deque[sWorkCount−nActive+ thread]

26: sync
27: assignShared(sWorkCount , sWorkCount− nActive)
28: sync
29: if workItem 6= INV ALID then
30: checkCollision(workItem.x , workItem.y) . Can generate nodes

31: sync
32: if (sWorkCount >= THRESHOLD) OR (sWorkCount = 0) then
33: callAbort(gIdleCores) . Abort if stack is full or empty
34: break
35: assignShared(sAborted , gIdleCores)
36: sync
37: if sAborted > CORES FOR ABORT then
38: callAbort(gIdleCores) . Abort if have too many idle cores
39: break
40: assignShared(gStacks[block].count , sWorkCount)
41: end function

23

Algorithm 3.3 gProximity balancing kernel declarations - GPU level.

1: Parameters (global memory):
2: gStackIn . Input stack
3: gStackOut . Output stack
4: gTotalNodes . Output the total number of nodes
5: Block shared memory variables:
6: sNThreads . Number of threads per block
7: sSum[nThreads] . Prefix sum array
8: sSizes[nThreads] . Stack sizes
9: Thread local memory variables:

10: block . Block index in the grid
11: thread . Thread index in the grid
12: nodesLeft . Number of total nodes left to be copied
13: nodesPerStack . Nodes per stack (nodesLeft/sNThreads)
14: iOffset . Input stack offset
15: oOffset . Output stack offset
16: inStack . Input stack reference
17: nodesLocal . Number of left nodes to be copied in the current inputStack
18: nodesToWrite . Number of nodes to be copied to the current output stack

its own local thread deque and can acquire threads by popping from it. A process

can generate work on-the-fly by pushing threads on its local deque. Each process

stays in a loop, popping a thread from its local deque and doing computations by

dispatching the assigned thread. If the local deque is empty, a process yields the

processor to avoid starving others and steals work from the deque of another process.

To minimize parallelization penalties, steals are done by popping from top pointers

while usual thread acquisition is done on local deque bottom pointers. In addition,

work is generated by pushing local bottom pointer only. The algorithm finishes

when there is no more work to do. Algorithms 3.5 and 3.6 explain this process in

more detail.

Since this algorithm is lock-free there are some details on the deque manipulation

inner functions, namely pushBottom(), popBottom() and popTop(), that must be

noted. First, all operations on deque top pointers can result in race conditions and

are resolved by atomic operations. On the other hand, operations on bottom (bot)

pointers are fully parallel unless the deque pointers must be reset in consequence of

emptiness, since just the block that owns the deque is allowed to change bot. The

algorithm uses Compare And Swap (CAS) instructions to handle the race conditions

(HERLIHY (1991)).

The compare-and-swap instruction cas operates as follows. It takes three

operands: a register addr that holds an address and two other registers, old and

new, holding arbitrary values. The instruction cas(addr, old, new) compares the

value stored in memory location addr with old and if they are equal, the value

24

Algorithm 3.4 gProximity balancing kernel - GPU level.

1: function balanceWorkList(gStackIn, gStackOut, gTotalNodes)
2: nodesLeft← gStackIn.numberOfStacks
3: iOffset← thread
4: sSum[thread]← 0
5: while thread < nodesLeft do . Loop to init sSizes and prepare reduction
6: stackSize← gStackIn[iOffset].count
7: sSizes[iOffset] = stackSize
8: sSum[thread]+ = stackSize
9: iOffset+ = sNThreads

10: nodesLeft− = sNThreads

11: sync
12: reduce(sSum, thread, sNThreads) . Result is copied to index 0
13: nodesLeft← sSum[0]
14: nodesPerStack ← ceil(nodesLeft/sNThreads)
15: assignShared(totalEntries , nodesLeft) . Output total to global mem
16: iOffset← 0 , oOffset← 0
17: inStack ← gStackIn.beforeFirst, inStack.count← 0
18: for all Stack s ∈ gStackOut do
19: nodesLocal← min(nodesLeft, nodesPerStack)
20: oOffset← thread
21: assignShared(s.count , nodesLocal) . Final counter output per stack
22: while nodesLocal > 0 do
23: if inStack.count <= 0 then
24: inStack ← inStack.next
25: iOffset← thread
26: continue
27: nodesToWrite← min(nodesLocal, inStack.count , sNThreads)
28: if thread < nodesToWrite then
29: s[oOffset] = inStack[iOffset]

30: nodesLocal− = nodesToWrite
31: iOffset+ = nodesToWrite
32: oOffset+ = nodesToWrite
33: inStack.count− = nodesToWrite
34: nodesLeft− = nodesToWrite
35: sync
36: end function

25

Algorithm 3.5 ARORA et al. (1998) task stealing algorithm

1: assignedThread← NULL
2: if self = processZero then
3: assignedThread← rootThread . Assign root thread to process zero

4: while computationIsNotDone do . Scheduling loop
5: while assignedThread 6= NULL do
6: dispatch(assignedThread) . Execute until terminate or block
7: assignedThread← self.deque popBottom . Get next thread

8: yield . Before steal, yield processor
9: victim← randomProcess . Select victim process at random
10: assignedThread← victim.deque. popTop . Try to steal thread

stored in memory location addr is swapped with new. In this case, we say the cas

succeeds. Otherwise, it loads the value stored in memory location addr into new,

without modifying the memory location addr. In this case, we say the cas fails

(ARORA et al. (1998)).

In the scope of the algorithm, CAS instructions serve to verify if a thread

complete reading a deque pointer and changing it without interference from other

threads. This is assured by reading a pointer to old, saving changes on new and

doing a cas(pointer, old, new). If the cas succeeds, then the change on pointer also

succeeds. Otherwise, the cas fails and the pointer remains unchanged, which means

that the whole operation is aborted. Note that this way the inner functions assure

that exactly one thread can do the pointer modification at a time.

Another detail in the inner functions is about resetting the queue pointers when

a deque becomes empty. This occurs only in popBottom(), since popTop() is not

allowed to empty a deque (see Algorithm 3.6, function popTop(), line 3). Resetting

means changing both pop and top pointers to 0 and this operation can lead to

race conditions. For example, suppose that a process i is preempted in popTop()

after stealing a thread from process j (Algorithm 3.6, function popTop(), line 6)

but before doing the cas verification (Algorithm 3.6, function popTop(), line 8).

Other operations can empty deque dj, leading to dj pointers resetting. In this case,

another set of operations can restore dj pointers to their original state. When process

i is resumed the cas verification will wrongly succeed since the acquired thread is

outdated.

To overcome the aforementioned problem, the pointer age is defined to replace

the usual top pointer on deques. age has two fields: the usual top pointer and a tag.

In practice, tag is implemented by adapting the “bounded tags” algorithm (MOIR

(1997)) as a wraparound counter which is incremented every time top is changed.

This way even if the set of deque operations mentioned in the above example can

lead to equal top values, tags will be different and the final cas verification will fail.

26

Algorithm 3.6 ARORA et al. (1998) task stealing inner functions

1: function pushBottom(Thread ∗ thr)
2: local← bot
3: deque[localBot]← thr
4: localBot + +
5: bot← localBot
6: end function

1: function popTop
2: oldAge← age
3: localBot← bot
4: if localBot ≤ oldAge.top then
5: returnNULL
6: thr ← deq[oldAge.top]
7: newAge← oldAge
8: newAge.top + +
9: cas(age, oldAge, newAge)
10: if oldAge = newAge then
11: return thr
12: return NULL
13: end function

1: function popBottom
2: localBot← bot
3: if localBot = 0 then
4: returnNULL
5: localBot−−
6: bot← localBot
7: thr ← deq[localBot]
8: oldAge← age
9: if localBot > oldAge.top then
10: return thr
11: bot← 0
12: newAge.top← 0
13: newAge.tag ← oldAge.tag + 1
14: if localBot = oldAge.top then
15: cas(age, oldAge, newAge)
16: if oldAge = newAge then return thr

17: age← newAge
18: return NULL
19: end function

27

Also, age is implemented as an integral type to suit the cas function and its fields

are written and read using bitwise operations. The number of bits of the tag field

must be chosen wisely to avoid premature wraparound, which can lead to the same

problem that it is trying to address. Figure 3.2 shows the deque schematic with all

pointers and fields.

Figure 3.2: ARORA et al. (1998) deque representation.

The inner functions algorithms are depicted in Algorithm 3.6. As stated before,

it is important to note that just age changes can lead to problems in parallelism

and therefore all modifications on it are followed by a cas call. So pushBottom()

is very straight-forward, since it just modifies the bot pointer. popTop() reads age

and bot and verifies if the operations did not empty the deque. If it does, the

operation returns a NULL thread since we do not want this operation to empty

deques. Otherwise, a thread is assigned for return, top is incremented and the cas

verification is performed. popBottom() is also very straight forward. Until line 9, bot

is changed and a thread is assigned for return if the deque is not empty. Otherwise,

from line 10 on deque pointers are reset and a thread is returned if the cas succeeds.

3.3 Lazy Work Stealing Algorithm for Load Bal-

ancing on GPU

The main objective of this novel algorithm is to be more flexible than other methods

by diminishing the overhead of load balancing and thus freeing GPU to do the actual

work, i.e., the traversal itself. We identified some optimization possibilities in the

gProximity approach of LAUTERBACH et al. (2010) which will guide our novel

algorithm.

1. Working blocks may halt. The idea of totally halting a block working on

traversal in favor of others that are idle does not seem reasonable. This is

28

confirmed by the experiment results of CEDERMAN and TSIGAS (2009).

Ideally, a block should be able to get more traversal nodes with a minimal

performance hit on other working blocks.

2. Number of blocks: the predefined number of blocks launched for traversal is

crucial to the algorithm performance. If it is too low, the balancing kernel is

called too often and a great amount of GPU time is used on balancing instead

of traversal. Also a lot of CPU-GPU context change is done, which we want to

avoid. Ideally, we want to minimize the balancing calls and context changes.

3. Available shared memory per block: the amount of shared memory per block

is also ruled by the number of blocks. If we have a large number of blocks

launched in a traversal, the amount of shared memory is diminished per block

and, if the stacks are implemented in shared memory, a block is more suscep-

tible to halting by full stack. Ideally, we should be able to launch a minimum

of blocks, increasing shared memory per block and reducing the number of

halts by full stack in case of a shared memory stack implementation. An al-

ternative is implementing traversal without shared memory, using just global

memory. But this leads to lesser coalescent global memory accesses, since

shared memory can be used to organize data before pushing it to global mem-

ory (NVIDIA (2012)). In addition, front decomposition TANG et al. (2010b),

which is a method commonly used to exploit temporal coherence and accel-

erate hierarchy traversal can benefit greatly from using shared memory, since

the method is memory bound in essence.

The idea of adapting ARORA et al. (1998) task stealing algorithm for GPU pre-

sented in CEDERMAN and TSIGAS (2009) can be used to explore these problems

on static list load balancing.

The problem of working blocks halting is almost totally addressed by using this

algorithm, since given two blocks b0 and b1, b0 can call pushBottom() or popBottom()

on its deque at the same time that b1 can call popTop() on b0 deque to steal nodes,

unless a pointer reset must be done. Some of the problems related with number of

blocks and shared memory are also solved by setting the number of launched blocks

for the traversal kernel as a number of blocks that can actually run in parallel on

the device and give best device occupancy. This way we achieve maximum shared

memory per block and no resource waste since all multiprocessors will be busy. It

is important to note that even if a kernel can be launched with a huge number of

blocks, just a few reside at the same time on the device and this information can be

queried on all current CUDA enabled devices.

Unfortunately not all problems are solved using this approach. The algorithm

requires that all blocks with empty deques keep pooling another block deques in a

29

round robin fashion attempting to steal nodes. In this case even if the multiprocessor

is busy it may not actually be doing useful work. Thus, we propose an improved

method by performing slight modifications to better suit the stealing part of the

algorithm to GPUs.

1. A three-pass approach is used for node management since the amount of shared

memory per block can be augmented. In each traversal loop iteration each

thread pops one node, evaluates it and all generated work nodes or front

nodes are saved in local thread memory (pass 1). Continuing in the same loop

iteration, all nodes generated in a block are saved in a shared memory stack.

This is achieved by using a prefix-sum (SENGUPTA et al. (2007)) approach

(pass 2). Ending the iteration, part of the shared stack is pushed to global

memory if the shared stack is near full (pass 3).

2. In the pop pass (pass 1), a three-level pop approach is used. First pop attempt

is on the shared stack (level 1). If not successful, an attempt to pop from the

block’s deque is done (level 2). If it fails, work is stolen from the deques of

other blocks (level 3) and the block resumes traversal. If no work can be stolen,

the traversal ends.

3. The operations in all deques are done in batch to avoid excessive increments

on global memory deque pointers. Just one thread in a block is responsible

to do the actual operation on deque pointers. The other threads just help to

push or pop the affected nodes.

4. A lazy approach is used to acquire stolen nodes (pop level 3). Since a block

has a reasonable number of threads running in parallel, the stealing part of

the algorithm calls popTop() on all deques at the same time, each thread

changing the age pointer from one global deque. However, just the nodes

from the first stolen deque are actually transferred to the block stack at this

time. The transfer is done in little batches to ensure saving shared stack

size for traversal. To achieve this lazy transfer, it is necessary to save the

deque indices and sizes of all successful popTop() operations of a task steal

and not letting popBottom() operations reset pointers. It is important to note

that these changes aim at maximizing stolen nodes in a stealing attempt and

maximizing stack size available for future traversal. Specifically, if a block bi

successfully calls popTop() on blocks bj and bk, saves stealing info (indices and

sizes) to pij and pik and j < k, then nodes from global deque dk are transferred

to local stack si only after all global deque dj nodes are pushed, processed and

si as well as global deque di become empty again.

30

Figure 3.3 shows the overall schematic of the algorithm. The traversal with

front generation (TANG et al. (2010b)) is detailed in Algorithms 3.7 to 3.13. The

traversal algorithm can be used to perform full hierarchy traversal, i.e., from root

node, or from work generated in a front update pass before traversal (TANG et al.

(2010b)). It is assumed that all variables declared volatile can bypass incoherent

cache in memory operations and that all non declared variables have local scope.

Also, all SYNC calls are supposed to do the synchronization of threads inside a

block.

Figure 3.3: Lazy work acquisition scheme. First, threads try to pop from their
block’s shared stack (1). If not successful, they try to pop from its global deque (2).
If not successful, enough nodes (if any) are transferred from lazily stolen nodes (3).
If there are no more nodes from lazy steal, all other block deques are stolen (4).

31

Algorithm 3.7 Novel algorithm traversal and front acquisition

1: function traverse(gBvtt , gFront)
2: Parameters (global memory):
3: gBvtt . BVTT work deques
4: gFront . BVTT front deques
5: Block shared memory:
6: sBvtt . BVTT work shared: stack and prefix-sum data
7: sFront . BVTT front shared: stack and prefix-sum data
8: Thread local memory variables:
9: tBvtt[3] . generated work nodes

10: tFront . generated front node
11: thread . Thread index. Declared once here for all algorithms.
12: block . Block index. Declared once here for all algorithms.

13: loop
14: if NOT(popWork(gBvtt , sBvtt , tBvtt)) then . Pass 1
15: pushRemainingFront
16: return TRAVERSAL END
17: if NOT(tBvtt.empty) then
18: evaluateCollision(tBvtt , tFront)

19: compactStacks(sBvtt , tBvtt , sFront , tFront) . Pass 2
20: if NOT(pushWork(gBvtt , sBvtt) then . Pass 3: BVTT work
21: return OVERFLOW
22: if NOT(pushWork(gFront , sFront) then . Pass 3: BVTT front
23: return OVERFLOW
24: end loop
25: end function

32

Algorithm 3.8 Shared stacks compaction related functions. compactStacks receives
both bvtt and front items generated in the current traversal iteration separated per
thread. It compacts these items and push them into the stack.

1: function compactStacks(sBvtt , tBvtt , sFront , tFront)
2: sBvtt.threadCounters[thread]← tBvtt.count
3: sFront.threadCounters[thread]← tFront.count
4: sync
5: prefixSumCompaction(sBvtt , tBvtt)
6: prefixSumCompaction(sFront , tFront)
7: sync
8: finalBvttBot← sBvtt.stack.bottom + sBvtt.totalTNodes
9: finalFrontBot← sFront.stack.bottom + sBvtt.totalTNodes

10: assignShared(sBvtt.stack.bottom, finalBvttBot)
11: assignShared(sFront.stack.bottom, finalFrontBot)
12: sync
13: end function

1: function prefixSumCompaction(sData , tItems)
2: offset←prefixSum(sData.threadCounters , thread , tItems.count)
3: for i = 0→ tItems.count do
4: stack = sData.stack
5: stack[stack.bottom + offset + i]← tItems[i]

6: if thread = lastThread then . Last thread calc the total from prefix-sum
7: sData.totalTNodes← offset + tItems.count

8: end function

33

Algorithm 3.9 Novel lazy steal popWork device function. Each thread tries to pop
a node in a 3 level approach until successful or all deques are inactive.

1: function popWork(gBvtt , sBvtt , tBvtt)
2: Block shared memory:
3: pFlag[3] . Pop results for each level pass
4: pStrtIdx[NDEQUES] . Saved pop start indices
5: pSizes[NDEQUES] . Saved pop sizes
6: victim . Current work stealing victim
7: nDeques . Number of deques. Declared once here for all algorithms

8: if thread = firstThread then . Level 1, pop from shared stack
9: stack ← sBvtt.stack

10: pF lag[L1]← stack.popBottom(pStrtIdx[block] , pSizes[block])
11: pF lag[L3]← bPopF lag[L1]

12: Sync
13: if pF lag[L1] then
14: if thread < pSizes[block] then
15: tBvtt← sBvtt.stack[pStrtIdx[block] + thread]

16: else
17: level2Pop(gBvtt , pF lag , pStrtIdx , pSizes , victim)
18: sync
19: if NOT (pF lag[L2]) then . Work stealing
20: level3Pop(gBvtt , pF lag , pStrtIdx , pSizes , victim)

21: sync
22: if pF lag[L3] AND thread < pSizes[block] then
23: tBvtt← gBvtt.deque[victim][pStrtIdx[block] + thread]

24: return pFlag[L3]
25: end function

Algorithm 3.10 Level 2 pop function. Pop from the deque owned by the block.

1: function level2Pop(gBvtt , pF lag , pStrtIdx , pSizes , victim)
2: Global memory:
3: gBvtt.active[] is volatile

4: if thread = firstThread then
5: deque← gBvtt.deque[block]
6: pF lag[L2]← deque.popBottom(pStrtIdx[block] , pSizes[block])
7: if pF lag[L2] then
8: victim← block
9: else

10: gBvtt.active[block]← INV ALID . Not eligible as victim
11: pStrtIdx[block]←∞
12: victim←∞
13: pF lag[L3]← pF lag[L2]

14: end function

34

Algorithm 3.11 Level 3 pop function. Lazy work steal.

1: function level3Pop(gBvtt , pF lag , pStrtIdx , pSizes , victim)
2: Global memory:
3: gBvtt.active[] is volatile
4: Block shared memory:
5: activeDequesFlag . Mark if there are active blocks.

6: if thread < nDeques then . Lazy node acquisition
7: if pStrtIdx[thread] 6= INV ALID then
8: victim← atomicMin(victim , thread)
9: pF lag[L3]← TRUE

10: sync
11: if thread = victim then
12: pStrtIdx[block]← pStrtIdx[thread]
13: pSizes[block]← pSizes[thread]
14: pStrtIdx[thread]← INV ALID . Mark lazy steal as done for the victim

15: while NOT (pF lag[L3]) do . No more work for lazy steal.
16: sync
17: assignShared(activeDequesF lag , FALSE) . No active deques found
18: sync
19: if thread < nDeques then
20: if gBvtt.active[thread] = TRUE then
21: activeDequesF lag ← TRUE . Found an active deque
22: deque← gBvtt.deque[thread]
23: if deque.popTop(pStrtIdx[thread] , pSizes[thread]) then
24: gBvtt.active[block]← TRUE . Work found
25: victim← atomicMin(victim , thread)
26: pF lag[L3]← TRUE

27: sync
28: if activeDequesF lag = FALSE then . All deques inactive.
29: break
30: if thread = victim then . Lazy steal the first found deque
31: pStrtIdx[block]← pStrtIdx[thread]
32: pSizes[block]← pSizes[thread]
33: pStrtIdx[thread]← INV ALID

34: sync
35: end function

35

Algorithm 3.12 Novel algorithm pushWork device function. Pushes data to global
memory if the number of nodes in the shared stack is greater than a predetermined
threshold
1: function pushNodes(gBvtt , sBvtt)
2: bottom← sBvtt.stack.bottom
3: if bottom ≥ THRESHOLD then
4: NPushLoops← bottom/nThreads
5: for i = 0→ NPushLoops do
6: stackOffset← bottom− (i + 1) ∗ nThreads + thread
7: dequeOffset← gBvtt.deque[block].bottom
8: dequeOffset+ = i ∗NTHREADS + thread
9: gBvtt.deque[block][dequeOffset]← sBvtt.stack[stackOffset]

10: sync
11: if thread = firstThread then
12: gBvtt.deque[block].bottom+ = NPushLoops ∗ nThreads
13: sBvtt.stack.bottom− = NPushLoops ∗ nThreads
14: memoryFence . Cache coherence
15: end function

36

Algorithm 3.13 Novel algorithm inner deque/stack device functions. Change
deque pointers

1: function deque.popTop(pStrtIdx , pSize)
2: Global memory:
3: top is volatile
4: bottom is volatile

5: oldTop← top
6: localBot← bottom
7: if localBot− oldTop < 2 ∗ POP SIZE + 1 then
8: return FAIL . popTop is not allowed to empty the list

9: size← min(POP SIZE , localBot - oldTop)
10: newTop = oldTop + size
11: atomicCAS(top , oldTop , newTop)
12: if oldTop = newTop then
13: pStrtIdx← index
14: pSize← size
15: return SUCESSFUL
16: else
17: return FAIL
18: end function

1: function deque.popBottom(pStrtIdx , pSize)
2: Global memory:
3: top is volatile
4: bottom is volatile

5: localTop← top
6: localBot← bottom
7: if localBot = localTop then
8: return FAIL
9: localBot− = POP SIZE

10: if localBot > localTop then
11: pSize← POP SIZE
12: pStrtIdx← localBot
13: bottom← localBot
14: else . Fix pStrtIdx, pSize and bottom if bottom pass top
15: pSize← localBot + POP SIZE − localTop
16: pStrtIdx← localTop
17: bottom← localTop

18: return SUCESSFUL
19: end function

37

Chapter 4

Implementation Details and

Experiments

This chapter describes the implementation details of the proposed algorithm, mainly

the concerns about memory coherence and inter-block communication. Also the

experimental methodology and performance results used to evaluate the algorithm

are presented. Finally the method is compared with the load balancing approach

used in gProximity LAUTERBACH et al. (2010).

4.1 Implementation Details

The algorithm was implemented using NVIDIA CUDA technology (NVIDIA

(2012)). As discussed in Section 2.1, CUDA architecture is based on a memory

hierarchy composed of a high latency abundant global memory and an on-chip low

latency scarce shared memory. To achieve better performance on global memory

accesses, two levels of low latency cache memory are used. Figure 4.1 shows the

cache memory hierarchy for global memory. The green boxes represent the device

memory and the blue box represents the system memory. The GPU Memory box

represents the device’s global memory and above it the cache memory levels L2 and

L1. It is important to remark that access to L2 is coherent, while L1 is incoher-

ent. This means that a change in global memory done by a SM is not assured to

be seen by another SM. This aspect forbids design of algorithms using inter-block

communication, since blocks can run in any SM.

To overcome this problem, CUDA provides programmers with some options. The

first is compiling code with L1 cache deactivated using flag -Xptxas -dlcm=cg. This

solution has an overall performance penalty since all code is affected, even parts that

could benefit using L1 cache. The second is the usage of atomic operations which

by definition propagates changes to higher level cache. The third is coding using the

38

Figure 4.1: NVIDIA CUDA cache hierarchy

volatile keyword on specific data pointers. This keyword tells the compiler to bypass

L1 cache in memory accesses related with that pointer. Another option is to use

threadfence() calls to force threads to propagate write accesses to upper level cache.

The choice of how to use these tools depends on some hardware aspects, such as the

code target architecture. For instance, atomic operations have better performance

on newer architectures. As can be seen in Algorithms 3.7 to 3.13 the design choice

was to use a mix of atomic operations, volatile keyword and threadfence().

4.2 Experiments

The algorithm was tested in two systems. The first uses a GeForce GTS 450 card,

which has 57.7 GB/s memory bandwidth and 4 SMs (streaming multiprocessors),

each one with 48 CUDA cores, resulting in a total of 192 CUDA cores. The sec-

ond uses a GeForce GT 520 card, which has 14.4 GB/s memory bandwidth and 1

SM, resulting in a total of 48 CUDA cores. Several commonly benchmarks were

used, namely the BART (BAR (2013)), Funnel, Cloth/Ball and N-body models

(GOVINDARAJU et al. (2013)). The BART benchmark evaluates inter-collisions,

and we have used four different resolutions (64, 256 , 1024 and 4096 triangles). The

Funnel benchmark has 18.5K triangles and tests self-collision in deformable motion.

Cloth/Ball benchmark evaluates the same type of collision, but has a heavier work-

load with 92K triangles. The N-body benchmark has 146K triangles and mainly

tests collision in rigid body motion; this benchmark was tested only in the GeForce

39

GT520, since the memory footprint was prohibitive for the other system.

Table 4.1 shows the performance results for each benchmark. The numbers

include time for hierarchy refit, front update, front-based traversal, load balancing

and triangle pair intersection. The implementation uses the non-penetration filters

TANG et al. (2010a) and orphan sets TANG et al. (2008) culling methods. Table 4.2

shows the ratio of the GTS 450 and the GT520 timings and demonstrates how the

algorithm scales.

Table 4.3 shows the average number of processed front nodes per frame. This

information depicts well the amount of resources necessary to compute CCD for

high density models and the differences in timings among benchmarks.

Table 4.1: Lazy Work Stealing performance results. Times in ms.

Model Triangles GTS 450 GT 520

BART64 64 2.6 1.6
BART256 256 3.4 3.5
BART1024 1024 8.4 19.7
BART4096 4096 51.3 169.9

Funnel 18.5K 17.4 48.2
Cloth/Ball 92K 77.3 225.7

N-body 146K - 1172.2

Table 4.2: Lazy Work Stealing speedup.

Model Triangles Speedup

BART64 64 0.61
BART256 256 1.03
BART1024 1024 2.34
BART4096 4096 3.31

Funnel 18.5K 2.77
Cloth/Ball 92K 2.92

Table 4.3: Lazy Work Stealing average number of processed front nodes per frame.

Model Front nodes

BART64 807.996
BART256 9.15953K
BART1024 127.394K
BART4096 2.15626M

Funnel 493.391K
Cloth/Ball 2.48204M

N-body 18.3137M

40

4.3 Comparison and Analysis

The Lazy Work Stealing algorithm is compared with gProximity LAUTERBACH

et al. (2010) in an implementation done by the author of this paper. Table 4.4

shows the performance timings of the gProximity implementation for all systems

and benchmarks, whereas Table 4.5 indicates the scalability of the algorithm with

respect to the resources available in both systems.

It is important to note that the Table 4.1 and Table 4.4 have numbers generated

with similar code for refit and triangle intersection. The only noticeable changes are

in the load balancing, front update and traversal code. Also, this implementation

uses the same culling methods used in the Lazy Work Stealing implementation.

Figure 4.2 shows how the processing time is distributed in the BVH management

for the novel Lazy Work Stealing algorithm.

Table 4.4: gProximity performance results. Times in ms.

Model Triangles GTS 450 GT 520

BART64 64 3.1 1.6
BART256 256 3.6 3.1
BART1024 1024 7.5 14.7
BART4096 4096 47.6 173.4

Funnel 18.5K 16.3 49.0
Cloth/Ball 92K 68.6 238.3

N-body 146K - 1269.5

Table 4.5: gProximity speedup.

Model Triangles Speedup

BART64 64 0.51
BART256 256 1.16
BART1024 1024 1.96
BART4096 4096 3.64

Funnel 18.5K 3.00
Cloth/Ball 92K 3.47

Based on the collected data, the algorithms seem to have similar performance

for the analyzed benchmarks. Which algorithm performs better depends on the

benchmark. Both algorithms seem to scale well. The GTS 450 system has 4 times

more resources than the GT520 system and and both systems have a near 3 times

speedup, with gProximity having a peak of 3.47 speedup for the Cloth/Ball bench-

mark. The BART64 and BART256 examples showed poor scalability because of

the lack of work available. Also it was observed that most of the time for BVH

management is spent with the front update. This is mainly because of the number

41

Figure 4.2: Lazy Work Stealing time chart for the Cloth/Ball benchmark.

of nodes that a front can have. For instance, the peaks in the number of processed

front nodes pass 10 million for the Cloth/Ball benchmark and 22 million for the

N-body benchmark.

42

Chapter 5

Conclusion

In this work, the Lazy Work Stealing algorithm for load balance of continuous colli-

sion detection on GPUs is presented. The algorithm relies on heavy usage of device

shared memory to diminish the overhead of node management on traversal. Also,

it tries to diminish work acquisition overhead using a greedy steal, lazy transfer

approach. This chapter is a report of the algorithm limitations, some directions for

future work and further conclusions.

5.1 Limitations

The proposed algorithm has some limitations. First, it is highly memory bound.

Thus, the performance is very dependent of the device memory bandwidth, mainly

because of the front update pass. Second, the best size of the shared stacks depends

on the model. If the model has a lighter workload, setting a higher stack size can

forbid nodes to get to the global deques and in consequence forbid blocks to steal

work. Analogously, if the model has a heavier workload, setting a lesser stack size

can forbid blocks to benefit from the performance of the shared memory latency.

Finally, the requirements of global memory size are higher when compared with

methods that use deques that can be reset.

5.2 Future Work

The immediate plans for future work include the implementation of more culling

methods, such as Representative Triangles CURTIS et al. (2008) and Continuous

Normal Cones TANG et al. (2008), to achieve better performance. Another path

of development is to test the algorithm with more modern GPUs, such as NVidia’s

Kepler compute architecture.

In addition, a more deep comparison of Lazy Work Stealing with other load

43

balancing approaches could be an interesting topic as well as the usage of this load

balancing algorithm on other problems where work loads depend on the geometry,

such as Ray Tracing.

44

Bibliography

2013, “Benchmark for Animated Ray Tracing”, Available at: <http://www.ce.

chalmers.se/research/group/graphics/BART/>.

AJMERA, P., GORADIA, R., CHANDRAN, S., et al., 2008, “Fast, parallel, GPU-

based construction of space filling curves and octrees”. In: Proceedings

of the 2008 symposium on Interactive 3D graphics and games, I3D ’08,

pp. 10:1–10:1, New York, NY, USA. ACM. ISBN: 978-1-59593-983-8.

doi: 10.1145/1342250.1357022. Available at: <http://doi.acm.org/

10.1145/1342250.1357022>.

ARORA, N. S., BLUMOFE, R. D., PLAXTON, C. G., 1998, “Thread schedul-

ing for multiprogrammed multiprocessors”. In: Proceedings of the tenth

annual ACM symposium on Parallel algorithms and architectures, SPAA

’98, pp. 119–129, New York, NY, USA. ACM. ISBN: 0-89791-989-0. doi:

10.1145/277651.277678. Available at: <http://doi.acm.org/10.1145/

277651.277678>.

CEDERMAN, D., TSIGAS, P., 2009, “On sorting and load balancing on GPUs”,

SIGARCH Comput. Archit. News, v. 36, n. 5 (jun.), pp. 11–18. ISSN:

0163-5964. doi: 10.1145/1556444.1556447. Available at: <http://doi.

acm.org/10.1145/1556444.1556447>.

CURTIS, S., TAMSTORF, R., MANOCHA, D., 2008, “Fast collision detection

for deformable models using representative-triangles”. In: Haines, E.,

McGuire, M. (Eds.), Proceedings of the 2008 Symposium on Interactive

3D Graphics, SI3D 2008, February 15-17, 2008, Redwood City, CA, USA,

pp. 61–69. ACM. ISBN: 978-1-59593-983-8. doi: http://doi.acm.org/10.

1145/1342250.1342260.

ERICSON, C., 2004, Real-Time Collision Detection (The Morgan Kaufmann Se-

ries in Interactive 3-D Technology) (The Morgan Kaufmann Series in

Interactive 3D Technology). San Francisco, CA, USA, Morgan Kaufmann

Publishers Inc. ISBN: 1558607323.

45

http://www.ce.chalmers.se/research/group/graphics/BART/
http://www.ce.chalmers.se/research/group/graphics/BART/
http://doi.acm.org/10.1145/1342250.1357022
http://doi.acm.org/10.1145/1342250.1357022
http://doi.acm.org/10.1145/277651.277678
http://doi.acm.org/10.1145/277651.277678
http://doi.acm.org/10.1145/1556444.1556447
http://doi.acm.org/10.1145/1556444.1556447

GOTTSCHALK, S., LIN, M. C., MANOCHA, D., 1996, “OBBTree: a hierar-

chical structure for rapid interference detection”. In: Proceedings of the

23rd annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’96, pp. 171–180, New York, NY, USA. ACM. ISBN: 0-

89791-746-4. doi: 10.1145/237170.237244. Available at: <http://doi.

acm.org/10.1145/237170.237244>.

GOVINDARAJU, N., KABUL, I., REDON, S., et al., 2013, “UNC Dynamic Scene

Benchmarks”, Available at: <http://gamma.cs.unc.edu/DYNAMICB/>.

GROUP, K., 2012. “The OpenCL Specification Version: 1.2 Document Re-

vision: 19”. Available at: <http://www.khronos.org/registry/cl/

specs/opencl-1.2.pdf>.

HEO, J.-P., SEONG, J.-K., KIM, D., et al., 2010, “FASTCD: Fracturing-Aware

Stable Collision Detection”. In: Popovic, Z., Otaduy, M. A. (Eds.), Pro-

ceedings of the 2010 Eurographics/ACM SIGGRAPH Symposium on Com-

puter Animation, SCA 2010, Madrid, Spain, 2010, pp. 149–158. Euro-

graphics Association. ISBN: 978-3-905674-27-9. doi: http://dx.doi.org/

10.2312/SCA/SCA10/149-158.

HERLIHY, M., 1991, “Wait-free synchronization”, ACM Trans. Program. Lang.

Syst., v. 13, n. 1 (jan.), pp. 124–149. ISSN: 0164-0925. doi: 10.1145/

114005.102808. Available at: <http://doi.acm.org/10.1145/114005.

102808>.

KIM, D., HEO, J.-P., HUH, J., et al., 2009, “HPCCD: Hybrid Parallel Contin-

uous Collision Detection using CPUs and GPUs”, Computer Graphics

Forum (Pacific Graphics). Available at: <http://sglab.kaist.ac.kr/

HPCCD/>.

LAUTERBACH, C., GARL, M., SENGUPTA, S., et al., 2009, “Fast bvh construc-

tion on gpus”. In: In Proc. Eurographics ’09.

LAUTERBACH, C., MO, Q., MANOCHA, D., 2010, “gProximity: Hierarchical

GPU-based Operations for Collision and Distance Queries”. In: Proceed-

ing of Eurographics 2010.

MOIR, M., 1997, “Practical implementations of non-blocking synchronization

primitives”. In: Proceedings of the sixteenth annual ACM symposium on

Principles of distributed computing, PODC ’97, pp. 219–228, New York,

NY, USA. ACM. ISBN: 0-89791-952-1. doi: 10.1145/259380.259442.

Available at: <http://doi.acm.org/10.1145/259380.259442>.

46

http://doi.acm.org/10.1145/237170.237244
http://doi.acm.org/10.1145/237170.237244
http://gamma.cs.unc.edu/DYNAMICB/
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://doi.acm.org/10.1145/114005.102808
http://doi.acm.org/10.1145/114005.102808
http://sglab.kaist.ac.kr/HPCCD/
http://sglab.kaist.ac.kr/HPCCD/
http://doi.acm.org/10.1145/259380.259442

NGUYEN, H., 2007, Gpu gems 3. Addison-Wesley Professional. ISBN:

9780321545428.

NI, T., 2009. “DirectCompute”. Available at: <http://www.gputechconf.com/

object/gtc2009-on-demand.html#session1015>.

NICKOLLS, J., DALLY, W. J., 2010, “The GPU Computing Era”, IEEE Micro,

v. 30, n. 2 (mar.), pp. 56–69. ISSN: 0272-1732. doi: 10.1109/MM.2010.41.

Available at: <http://dx.doi.org/10.1109/MM.2010.41>.

NICKOLLS, J., BUCK, I., GARLAND, M., et al., 2008, “Scalable Parallel Pro-

gramming with CUDA”, Queue, v. 6, n. 2 (mar.), pp. 40–53. ISSN: 1542-

7730. doi: 10.1145/1365490.1365500. Available at: <http://doi.acm.

org/10.1145/1365490.1365500>.

NVIDIA, 2012, NVIDIA CUDA Programming Guide. Available at: <http://

docs.nvidia.com/cuda/cuda-c-programming-guide/index.html>.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., et al., 2007, Nu-

merical Recipes 3rd Edition: The Art of Scientific Computing. 3 ed.

New York, NY, USA, Cambridge University Press. ISBN: 0521880688,

9780521880688.

PROVOT, X., 1997, “Collision and self-collision handling in cloth model dedicated

to design garments”. In: Graphics Interface 97, pp. 177–179.

SENGUPTA, S., HARRIS, M., ZHANG, Y., et al., 2007, “Scan primi-

tives for GPU computing”. In: Proceedings of the 22nd ACM SIG-

GRAPH/EUROGRAPHICS symposium on Graphics hardware, GH ’07,

pp. 97–106, Aire-la-Ville, Switzerland, Switzerland. Eurographics Asso-

ciation. ISBN: 978-1-59593-625-7. Available at: <http://dl.acm.org/

citation.cfm?id=1280094.1280110>.

TANG, M., CURTIS, S., YOON, S.-E., et al., 2008, “Interactive continuous

collision detection between deformable models using connectivity-based

culling”. In: SPM ’08: Proceedings of the 2008 ACM symposium on Solid

and physical modeling, pp. 25–36, New York, NY, USA. ACM. ISBN:

978-1-60558-106-2. doi: http://doi.acm.org/10.1145/1364901.1364908.

TANG, M., MANOCHA, D., TONG, R., 2010a, “Fast continuous collision detec-

tion using deforming non-penetration filters”. In: Proceedings of the 2010

ACM SIGGRAPH symposium on Interactive 3D Graphics and Games,

47

http://www.gputechconf.com/object/gtc2009-on-demand.html#session1015
http://www.gputechconf.com/object/gtc2009-on-demand.html#session1015
http://dx.doi.org/10.1109/MM.2010.41
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://dl.acm.org/citation.cfm?id=1280094.1280110
http://dl.acm.org/citation.cfm?id=1280094.1280110

I3D ’10, pp. 7–13, New York, NY, USA, a. ACM. ISBN: 978-1-60558-939-

8. doi: 10.1145/1730804.1730806. Available at: <http://doi.acm.org/

10.1145/1730804.1730806>.

TANG, M., MANOCHA, D., TONG, R., 2010b, “MCCD: Multi-Core collision

detection between deformable models using front-based decomposition”,

Graphical Models, v. 72, n. 2, pp. 7–23. ISSN: 1524-0703. doi: DOI:

10.1016/j.gmod.2010.01.001.

TESCHNER, M., KIMMERLE, S., ZACHMANN, G., et al., 2004. “Collision De-

tection for Deformable Objects”. Available at: <http://www-evasion.

imag.fr/Publications/2004/TKZHRFCFMS04>.

48

http://doi.acm.org/10.1145/1730804.1730806
http://doi.acm.org/10.1145/1730804.1730806
http://www-evasion.imag.fr/Publications/2004/TKZHRFCFMS04
http://www-evasion.imag.fr/Publications/2004/TKZHRFCFMS04

	List of Figures
	List of Tables
	Introduction
	Related Work
	General Purpose Computing on GPU (GPGPU)
	Discrete and Continuous Collision Detection
	BVHs
	Hierarchy Creation and Update
	Elemental Tests
	BVH Traversal

	Hierarchy Traversal Load Balancing
	Static Task List
	Task Stealing
	Lazy Work Stealing Algorithm for Load Balancing on GPU

	Implementation Details and Experiments
	Implementation Details
	Experiments
	Comparison and Analysis

	Conclusion
	Limitations
	Future Work

	Bibliography

