

MYLYNSDP: AIDING SOFTWARE PROCESS EXECUTION WITH ARTIFACT

FILTERING, DEGREE OF INTEREST FUNCTION AND TASK CONTEXT

Ivens da Silva Portugal

Dissertação de Mestrado apresentada ao

Programa de Pós-Graduação em Engenharia de

Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

título de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Toacy Cavalcante de Oliveira

Rio de Janeiro

Junho de 2014

ii

MYLYNSDP: AIDING SOFTWARE PROCESS EXECUTION WITH ARTIFACT

FILTERING, DEGREE OF INTEREST FUNCTION AND TASK CONTEXT

Ivens da Silva Portugal

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM

CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

__

Prof. Toacy Cavalcante de Oliveira, D.Sc.

__

Profa. Cláudia Maria Lima Werner, D.Sc.

__

Prof. Leonardo Gresta Paulino Murta, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JUNHO DE 2014

iii

Portugal, Ivens da Silva

MylynSDP: Aiding Software Process Execution with

Artifact Filtering, Degree of Interest Function and Task Context /

Ivens da Silva Portugal – Rio de Janeiro: UFRJ/COPPE, 2014.

XII, 119 p.: il.; 29,7 cm.

Orientador: Toacy Cavalcante de Oliveira.

Dissertação (Mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2014.

Referências Bibliográficas: p. 96-102.

1. Processo de Software. 2. Execução de Processo. 3.

Gerência de Execução do Processo de Software. 4. Automação

de Execução do Processo de Software. I. Toacy Cavalcante de

Oliveira II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III. Título.

iv

Acknowledgements

I would like to thank my parents Alberto and Miriam and my brother Erlon for
supporting me throughout all of the years of this Master’s Degree. They highly
contributed to the conclusion of this study by encouraging me on the good moments
and assisting me on the difficult ones. Their valuable teachings about responsibility,
perseverance and friendliness definitely made the difference during the most significant
phases passed on this Master’s Degree study.

Moreover, I would like to thank the relatives of my family. They have always
taken part in my entire life and they have certainly collaborated on my education and
wellness. These two key factors were unquestionably decisive during several ups and
downs that I went through during the study of this Master’s Degree.

Furthermore, I would like to thank my advisor Prof. Toacy for patiently guiding
me towards this milestone in my academic life. Indubitably, his vision and experience
led me to the right path when hope for a solution seemed to vanish or when the best
next step in the study was yet unknown. His peculiar orientation, which is a mixture of
responsibility, entertainment and creativity, has indeed taken part on the efforts
required to finish this Master’s Degree.

In addition, I would like to thank every professor that directly or indirectly
contributed to my education, especially the ones I got in touch with during the classes
and studies for this degree. The concepts taught helped me not only in academic life,
but also in professional and even on personal life. I assure that these concepts will
remain within my experience for an indefinite amount of time.

Last, but not least, I would like to thank every single friend I interacted with
during this Master’s Degree years. This includes friends I met during Bachelor’s
Degree as well as the ones I met during this Master’s Degree. This also includes
friends related to academic life and other friends that I fortunately met in the course of
my life. Every conversation, discussion and giggle was totally useful to either relieve
the stress caused by this study or enhance my strengths to keep studying until the end
of this Master’s Degree.

v

Agradecimentos

Eu gostaria de agradecer aos meus pais Alberto e Miriam e meu irmão Erlon
por ter me apoiado durante todos os anos do Mestrado. Eles fortemente contribuiram
para a conclusão desse estudo me incentivando nos bons momentos e me ajudando
nos mais difíceis. Seus valiosos ensinamentos sobre responsabilidade, perseverança
e amizade definitivamente fizeram a diferença durante as fases mais significantes do
estudo deste Mestrado.

Além disso, eu gostaria de agradecer aos meus familiares. Eles sempre
participaram de toda a minha vida e eles certamente colaboraram na minha educação
e bem-estar. Esses dois fatores foram inquestionavelmente decisivos durante vários
altos e baixos que eu tive durante o estudo desse Mestrado.

Ainda, eu gostaria de agradecer ao meu orientador Prof. Toacy por
pacientemente me orientar para esse marco na minha vida acadêmica. Sem dúvidas,
sua visao e experiência me levaram para o caminho correto quando a esperança por
uma solução parecia sumir ou quando o melhor próximo passo do estudo ainda era
desconhecido. Sua orientação singular, que é uma mistura de responsabilidade,
divertimento e criatividade, contribuiu de fato nos esforços necessários para terminar
esse Mestrado.

Adicionalmente, eu gostaria de agradecer a todo professor que direta ou
indiretamente contribuiu para a minha educação, especialmente aqueles que eu tive
contato durante as aulas e estudos para esse Mestrado. Os conceitos ensinados me
ajudaram não somente na vida acadêmica, mas também na vida professional e até na
vida pessoal. Eu tenho certeza que esses conceitos permanecerão comigo por tempo
indeterminado.

Por último, mas não menos importante, eu gostaria de agradecer a todo amigo
com quem eu interagi durante os anos de Mestrado. Isso inclui amigos que eu conheci
durante a Graduação bem como amigos que eu conheci durante o Mestrado. Isso
também inclui amigos relacionados a vida acadêmica e outros amigos que felizmente
eu conheci no curso da minha vida. Toda conversa, discussão e risada foi totalmente
útil para aliviar o estresse causado pelo estudo ou para aumentar minhas forças para
continuar estudando até o fim desse Mestrado.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

MYLYNSDP: AUXILIO A EXECUÇÃO DE PROCESSO DE SOFTWARE COM

FILTRAGEM DE ARTEFATOS, FUNÇÃO DE GRAU DE INTERESSE E CONTEXTO

DE TAREFA

Ivens da Silva Portugal

Junho/2014

Orientador: Toacy Cavalcante de Oliveira

Programa: Engenharia de Sistemas e Computação

Executar processos de software pode ser difícil quando o número de artefatos
é alto. Nesse caso, ao executar uma atividade, engenheiros de software devem
procurar determinados artefatos entre muitos outros disponíveis. O conjunto de
artefatos relacionados a uma atividade é chamado contexto de atividade. Sua busca
pode ser exaustiva, propensa a erro e demorada. Além disso, a execução de uma
atividade pode ser interrompida por outra prioritária ou por execução em paralelo,
resultando em uma troca de contexto. Esse problema afeta a produtividade do
engenheiro de software pois ele investe tempo e esforço adicionais em trabalhos de
suporte em vez da execução da atividade. Uma função de grau de interesse (DOI) é
um mecanismo que pontua e destaca elementos de acordo com regras predefinidas.
Ela é útil para descobrir o contexto de atividade. A implementação de uma função DOI
pode ser encontrada em Mylyn. Porém, a função DOI do Mylyn é voltada apenas para
tarefas de implementação e não considera um processo de software. Então, essa
Dissertação de Mestrado propõe uma modificação na execução de processo de
software com a utilização de uma função DOI para auxiliar engenheiros de software na
localização de artefatos relevantes para uma atividade. A função DOI proposta é uma
extensão da função DOI do Mylyn e lida com atividades e artefatos de todas as fases
do processo. Além disso, ela é sensível ao processo pois considera o processo de
software em seu funcionamento. A implementação final foi nomeada MylynSDP. Um
estudo de validação foi conduzido para avaliar os conceitos discutidos nesse trabalho.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

MYLYNSDP: AIDING SOFTWARE PROCESS EXECUTION WITH ARTIFACT

FILTERING, DEGREE OF INTEREST FUNCTION AND TASK CONTEXT

Ivens da Silva Portugal

June/2014

Advisor: Toacy Cavalcante de Oliveira

Department: Computer Science and Systems Engineering

Software process executions may be complex when the number of artifacts is
high. In that case, to execute a software process activity, software engineers must
search for suitable artifacts among several other available ones. The set of artifacts
related to the execution of an activity is called activity context. The search for an
activity context may be tiring, error-prone and time consuming. Moreover, activity
execution may be interrupted by high priority activities or parallel execution, which
results in a context change. That problem affects software engineers’ productivity
because they spend additional time and effort on support work rather than activity
execution. A Degree of Interest (DOI) function is a mechanism that scores and
highlights elements according to predefined rules. It is useful to discover the context of
an activity. An implementation of a DOI function can be found on Mylyn. However,
Mylyn’s DOI function is aimed at implementation tasks only and it does not take into
consideration the underlying software process that guides the development of the
software product. Thus, this Master’s Degree Dissertation proposes a modification in
software process execution with the use of a DOI function in order to help software
engineer better locate artifacts relevant to a software process execution activity. The
proposed DOI function is an extension of Mylyn’s DOI function and deals with activities
and artifacts from all phases of software process. Moreover, the proposed DOI function
is process-aware because it takes into consideration the executing software process in
its workings. The final implementation was named MylynSDP. A validation study has
been conducted to assess the concepts discussed in this work.

viii

TABLE OF CONTENTS

1	 Introduction ... 1	
1.1	 Motivation .. 1	
1.2	 Problem ... 2	
1.3	 Goals ... 5	
1.4	 Work Methodology ... 6	
1.5	 Organization .. 6	

2	 Theoretical Foundation ... 8	
2.1	 Introduction .. 8	
2.2	 Software Process ... 8	
2.3	 Software Process Representation ... 11	

2.3.1	 BPMN ... 12	
2.4	 Conclusion ... 15	

3	 Related Work .. 16	
3.1	 Introduction .. 16	
3.2	 Presto and Placeless Projects ... 17	
3.3	 Task Tracer .. 18	
3.4	 UMEA .. 19	
3.5	 PSEE ... 20	
3.6	 WebAPSEE ... 21	
3.7	 TABA Station ... 23	
3.8	 Software Traceability ... 25	
3.9	 Mylyn ... 26	

3.9.1	 Overview ... 26	
3.9.2	 Characteristics .. 28	

3.10	 Conclusion ... 39	
4	 MylynSDP ... 40	

4.1	 Introduction .. 40	
4.2	 Overview .. 40	
4.3	 Concepts .. 42	
4.4	 Characteristics ... 44	

4.4.1	 Interface .. 45	
4.4.2	 Software Process Specification Import Mechanism 48	
4.4.3	 Recovery Mechanism ... 50	
4.4.4	 DOI function .. 54	
4.4.5	 Saving Mechanism ... 70	

4.5	 Conclusion ... 72	
5	 Validation Study .. 74	

5.1	 Introduction .. 74	
5.2	 Software Process ... 75	
5.3	 Participants .. 76	
5.4	 Training .. 77	
5.5	 Validation Study Exercises .. 78	
5.6	 Technology Acceptance Model .. 81	
5.7	 Analysis ... 82	
5.8	 Threats to Validity .. 87	
5.9	 Conclusion ... 88	

6	 Conclusion .. 89	

ix

6.1	 Conclusions ... 89	
6.2	 Limitations .. 93	
6.3	 Future Work ... 94	

BIBLIOGRAPHIC REFERENCES .. 96	
APPENDIX A – SIGA EPCT SOFTWARE PROCESS AUTHORIZATION OF
UTILIZATION AND SPECIFICATION .. 103	

A.1.	 SIGA EPCT Software Process Authorization of Utilization 103	
A.2.	 SIGA EPCT Software Process Specification .. 104	

APPENDIX B – VALIDATION STUDY DOCUMENTS ... 105	
B.1	 Consent Form .. 105	
B.2	 Characterization Questionnaire ... 106	
B.3	 Time Record Form .. 107	
B.4	 Validation Study Exercises .. 111	
B.5	 Final Questionnaire ... 115	

x

INDEX OF FIGURES

Figure 2.1 - A process modeled using BPMN notation. .. 15	
Figure 3.1 – Presto’s interface. Image extracted from (DOURISH et al., 1999). 18	
Figure 3.2 - Task Tracer's interface. Image extracted from (DRAGUNOV et al., 2005).
 .. 19	
Figure 3.3 - UMEA's interface. Image extracted from (KATPELININ, 2003). 20	
Figure 3.4 - Main Interface of Manager Console and Task Agenda. Image extracted
from (REIS & REIS, 2007). ... 23	
Figure 3.5 - AdaptPro - a software process adaptation aid tool. Image extracted from
(ROCHA et al., 2005). .. 24	
Figure 3.6 - A traceability matrix being used to trace software requirements. 25	
Figure 3.7 - Mylyn's components and their relationship. .. 29	
Figure 3.8 - Mylyn's interface. ... 30	
Figure 3.9 - An example of Mylyn's DOI function usage. A task interaction process
example is three steps on the left and a task interaction process example in two steps
on the right. ... 34	
Figure 4.1 - An extract of an example of a software process. The same artifact symbol
is used to specify several documents from the execution of a software process. 42	
Figure 4.2 - MylynSDP's components and their relationship. 45	
Figure 4.3 - MylynSDP's interface. ... 46	
Figure 4.4 - New task creation wizard. ... 46	
Figure 4.5 - New artifact creation wizard. ... 47	
Figure 4.6 - An example of an importable software process specification XML
document. ... 49	
Figure 4.7 - An example of a "restore.xml" document. ... 53	
Figure 4.8 - Explanation of the concepts used to create an initial task context. 57	
Figure 4.9 - Class diagram of a part of MylynSDP. Some classes are highlighted. 58	
Figure 4.10 - An example of Mylyn's DOI function usage. A task interaction process
example in four steps on the left and a task interaction process example in three steps
on the right. ... 67	
Figure 4.11 - Folder structure managed. .. 70	
Figure 5.1 - Percentage of answers given by participants on the questionnaire. 84	

xi

INDEX OF TABLES

Table 2.1 - Main elements from EPC notation. ... 11	
Table 2.2 – Main elements from SPEM notation. ... 12	
Table 2.3 - Main elements of BPMN notation. .. 13	
Table 3.1 - Data about one interaction event captured by Mylyn 35	
Table 3.2 - Types of interaction captured by Mylyn. ... 36	
Table 4.1 – Main methods of MylynSDPRestoreXML class. .. 51	
Table 4.2 - MylynSDP's types of interaction event. .. 55	
Table 4.3 - Interaction event types and their scores. .. 57	
Table 4.4 - Summary of the description of the six algorithms characterized on this
section. ... 69	
Table 5.1 - Exercises of validation study. ... 80	
Table 5.2 - Statements of the validation study alongside the metrics observed. 82	
Table 5.3 - First goal of validation study. .. 83	
Table 5.4 - Second goal of validation study. ... 83	
Table 5.5 - Execution times for each of the participants on each of the exercises. 86	
Table 6.1 - MylynSDP's features and related work's drawbacks put in a nutshell for
comparison purposes. .. 90	
	

xii

INDEX OF ALGORITHMS

Algorithm 3.1 - Algorithm of Mylyn's Degree of Interest (DOI) function. 34	
Algorithm 4.1 - Recovery Mechanism code snippet. .. 54	
Algorithm 4.2 - InteractionContextScaling class' code snippet. 59	
Algorithm 4.3 - InteractionContextManager class' code snippet. 60	
Algorithm 4.4 - InteractionContext class' code snippet. .. 61	
Algorithm 4.5 - InteractionEvent class' code snippet. ... 62	
Algorithm 4.6 - InteractionContextElement class' code snippet. 63	
Algorithm 4.7 - DegreeOfInterest class' code snippet. ... 64	
Algorithm 4.8 - Code snippet with the registration of a Specification interaction event. 72

1

1 Introduction

This chapter introduces the context of this work, the motivation for

this research and the research question. It also introduces the

objectives, the methodology and the organization of this text.

1.1 Motivation

Nowadays, computer software plays an important role in society daily life. At

homes, word processors help students to write school papers, spreadsheets help

families to create household monthly budget and games entertain people of all ages. In

the case of Academic or Business Organizations, computer systems help them with

task automation, report generation and staff control, for example. The dependence on

computer software became high and beneficial. Complex activities, which used to

demand a great deal of effort, high level of attention, sheer number of employees and

significant financial resources, are currently easily performed with some clicks due to

the ease provided by technology and suitable software. Moreover, the number of

workers allocated to a given task lowered, due to the fact that several tasks may now

be automated (PARASURAMAN & RILEY, 1997). This also led to a low usage of

financial resources. The advantages of the use of computer software are numerous.

However, software development may not be an easy task. Depending on the

functionality that will be offered by the computer software, software development can

be slow, complex and difficult to be tested. These factors contribute to software failures

and make users’ job harder instead of helping them. If a database management system

reports a flaw and fails to record an Organization’s major sell, all Organization’s income

and outcome calculations are compromised, which leads to employees rework and

stress. While regarding software complexity and possible negative scenarios that a bad

software behavior may cause, software engineers aimed their efforts to define policies

to ensure high quality software development and thus lower the chances of software

faults. One of the research directions, focused to increase software quality, is related to

the software process on which software development is based.

In order to increase the chances of developing software with quality, a software

process is often used. A software process can be defined as the coherent set of

policies, organizational structures, technologies, procedures, and artifacts that are

2

needed to conceive, develop, deploy and maintain a software product (FUGGETTA,

2000). In other words, a software process is comprised of a set of activities, the

relationship between them and associated artifacts, which are useful to the activities’

execution. Software processes are described, modeled and, once they are finished,

they are executed, that is, each activity is carried on. The work performed on each

activity, their order and the use and production of the suitable artifacts yield a software

product. As an example, a software process activity can be “collect system

requirements” and it can have the artifacts “requirements questionnaire” and “system

development contract” as associated artifacts. From the execution of this activity, an

artifact is produced: “system requirement list”.

A software process is not always simple and easy to be executed. Some

software process executions are highly complex and difficult to deal with. This requires

additional attention from the software engineer, the specialist charged to manage

software process executions. One of the factors that increase the complexity of

software process executions is the number of existing activities and artifacts, either

consumed or produced, which can be too high. For example, the Rational Unified

Process (RUP), owned by IBM, defines more than a hundred types of artifacts (IBM,

2012). Complex cases like this one makes software process executions difficult to be

managed, increases the chances of failure and negatively affects the quality of the final

software product (ANNOSI et al., 2008).

1.2 Problem

When executing one of the activities of a software process, software engineers

access and use some suitable artifacts. The set of artifacts related to the execution of

an activity, either because artifacts were needed or produced during the execution, is

called an activity context, or just context (KERSTEN & MURPHY, 2006). Usually, an

activity context is a small subset of all available artifacts. In order to find an activity

context during a software process execution, software engineers need to perform a

search on several available artifacts. However, two concers should be addressed. The

first one relates to artifact search. As artifacts that belong to an activity context are not

distinguished from other artifacts that are not important at the given moment, software

engineers must deal with an excess of artifacts on his work environment when building

the context for an activity, which can be tiring, error-prone and time consuming. This is

an important issue for software engineers because it may affect their productivity.

When browsing a sheer number of available artifacts in order to find the suitable ones

for the execution of an activity, software engineers may spend additional time and effort

3

on the search of artifacts rather than on the work of the activity itself. Once they have

all or some of the suitable artifacts, they can then start the execution of that activity.

A second concern during the execution of a software process relates to the

change of the activity being executed, and thus the change of its context. The

execution of a given activity may be interrupted if a high priority activity arises. The

artifacts a software engineer is using may be closed, in order to give place to the new

activity context. When the software engineer returns to the previous activity, he then

needs to perform a search to recover the artifacts he was using. That requires time and

effort that are not used to the execution of the activity, but to supporting tasks.

Whenever a context change happens, the search for an activity context is necessary,

and then the productivity of the software engineer is negatively affected.

A possible solution for the artifact search and the context change problems is

the use of a degree of interest (DOI) function (KERSTEN, 1999). A DOI function is a

mechanism that scores elements according to some predefined rules. By doing this, a

DOI function is able to distinguish which elements are relevant from other elements

that are not and thus helps its user in different ways. Software engineers may benefit

from a DOI function during the search of suitable artifacts for the execution of a

particular activity. A DOI function is able to score artifacts with interest points that

indicate that a particular artifact is interesting for the execution of an activity. After

scoring artifacts, DOI function is able to select artifacts that have the highest points.

They are considered to be relevant to the execution of that activity. Once DOI function

has the set of interesting artifacts, it can highlight them, which then creates the context

of that activity, and show them to software engineers.

Moreover, the DOI function helps Mylyn to persist each set of artifacts related to

a given task to disk. As a result, software engineers may be able to switch from one

activity to another without the need to worry about difficulties in restoring the activity

context that was being used before the interruption. The assistance provided to

software engineers avoids wasting time with support work and increases the time they

spend working on the effective work of the activity, which improves his productivity.

An implementation of a DOI function can be found on a work done by

researchers of the University of British Columbia, Canada. They foresaw both artifact

search and context change problems on the software implementation field. Therefore,

the group of researchers launched on 2005 an open-source application aimed at aiding

programmers that use the Eclipse platform. The application was named Mylyn

(KERSTEN & MURPHY, 2005). Mylyn is an Eclipse plugin, which implements a DOI

function that deals with Java class search and task change problems in the

implementation step of a software development. Mylyn uses the concept of task

4

context. A task context is the set of all classes, either used or created, during the

execution of a coding task. For instance, in order to change the functionality of a class

method, a programmer needs to check and edit some other classes on which that

method is used. The set of classes edited in this task is said to be the context of that

task.

Mylyn’s DOI function automatically creates a task context based on how

programmers interact with the code. Initially, a programmer selects the task that will be

performed among all other tasks that can be performed, in an Eclipse view. During the

execution of the task, several classes and methods are created, edited, accessed or

deleted. Based on the frequency of selection or edition of those classes, Mylyn’s DOI

function calculates their interest value in relation to the execution of the current task. In

other words, if the programmer selects a given class, its interest value is increased,

which means that this class is important to that task. The same behavior applies to

class edition during a task execution. When all artifacts of the project have an interest

value associated, DOI function is able to select the most important classes for that

task. By creating the set of classes most relevant to a task execution, DOI function

creates the context of that task.

Coding tasks may also be interrupted by another task, which forces the

programmer to change the task being executed and thus to lose the current task

context. Mylyn also persists every task context to disk. So, whenever a task change

happens, programmers are able to recover the interrupted task context effortlessly and

within a shorter amount of time than if they had to recover it without the aid of Mylyn’s

DOI function.

The context of a task is used by Mylyn to facilitate the search and recovery of

suitable classes related to the execution of a particular task. Mylyn’s interface aims to

display classes in a way to simplify their visualization and in a task-based way (GOTH,

2009).

Nevertheless, Mylyn and its DOI function solve the class search and the context

change problems for the implementation phase of the development of a system. Other

phases such as planning, modeling, requirements definition and testing, are not

supported by the concepts used by that mechanism. In addition to that, task definition

is done in an ad-hoc way. That means that every task is created as the need for that

task arises. A more interesting approach is to consider the software process on which

the development of the system is based as the starting point of the discovery of tasks

to be executed as well as what artifacts are related to an activity (or task). This is

possible because a software process usually relates activities and artifacts, thus

highlighting the importance of some project artifacts on the execution of activities. In

5

other words, the tasks or activities performed by the programmer may be based on the

software process.

1.3 Goals

This Master’s Degree Dissertation proposes a way to execute a software

process by aiding software engineers in the search for artifacts to execute a software

process activity with the use of a DOI function. A DOI function is able to solve artifact

the search problem and the context change problem in all phases of the execution of

software development processes by scoring artifacts during execution of activities

based on the interaction software engineers have with them. The more an artifact

suffers interactions, the more it is interesting to the context of the current activity. Thus,

from any phase of the software process execution, activities will have their most

important artifacts highlighted from the other artifacts by a DOI function in order to

facilitate artifact search. Moreover, context of activities may be persisted in order to aid

software engineers during the recovery of the most important artifacts after a context

change. These two features, scoring artifacts and persisting context activities, help

software engineers to focus on the activity to be executed rather than support work

(such as the search of suitable artifacts). In addition to the two features just mentioned,

this work also aids software engineers during the execution of a software process with

the introduction of the ability to be process-based to the DOI function. This means that

DOI function is able to take into consideration the relation between activities and

artifacts already described on software processes. Hence, the initial definition of activity

contexts can be drawn from the underlying software process being executed.

In short, this Dissertation aims at improving productivity of software engineers

with three main features:

• A solution to the artifact search problem with the score of software

process artifacts done by DOI function extended from Mylyn

• A solution to the context change problem by persisting activity contexts

for later retrieval done by the same DOI function

• The ability to access software process specification to DOI function in

order to better create activity contexts.

 An implementation of the concepts discussed in this work was made in the

form of an Eclipse plugin. The proposed DOI function is an extended version of Mylyn’s

DOI function and the final implementation was named MylynSDP. In order to validate

the concepts introduced in this work, a validation study has been conducted.

6

1.4 Work Methodology

The study and the work proposed and done on this Dissertation followed a

methodology that is divided in problem identification, problem investigation, solution,

validation and a final Dissertation to conclude the studies (PEFFERS et al., 2007). The

problem, which relates to the sheer number of artifacts available to deal with when

executing a software process and how it affects the work of software engineers, was

identified based on artifact handling problems reported in (ANDERSON et al., 2002,

ANTONIOL et al., 2002, ASUNCION et al., 2010, MURPHY, 2009). Following this, an

informal review of literature was performed in order to find out projects that have dealt

with similar problems. Projects found were significantly important because they helped

to get insights about the problem and its possible solutions as well as ideas for future

developments. During literature review, one project is pointed out: Mylyn project. When

studying this project, it was acknowledged that it partially solved the problems identified

for this Dissertation with the use of a Degree of Interest (DOI) function. Therefore,

some opportunities for extension on Mylyn work along with its DOI function were

identified and the work of this Dissertation begun. Next steps were to access and

download Mylyn’s code and study it. This phase was particularly meticulous due to the

size of Mylyn project, in terms of code, which is comprised of more than 200 Java

projects and even more Java packages. After identifying suitable parts of the code

appropriate to be edited and to directly help software engineers, a new code was

implemented and tested. The first publication of an international short paper was done,

right after that step, explaining the work done and the implications of the study. Next, a

validation study was conducted with some software engineers in order to assess

concepts introduced and to get feedback from people with different experiences. Once

again, an international full paper was prepared and published with the results of the

validation. Finally, this Dissertation was written with details from the research studied,

the work done and the results concluded.

1.5 Organization

The remaining of this Dissertation is divided in five more chapters. In Chapter 2,

this work explains the concepts that comprise the theoretical foundation needed to

understand this document. It is mainly focused on the underlying explanation of a

software process, its history, its importance and notations used to create one. In

Chapter 3, related works that helped in the conception of this Master’s Degree work are

presented. Also, in Chapter 3, there is an image of the interface of each related work

describing them. Moreover, a paragraph is dedicated to the limitations of each project

7

found. Due to its importance, Mylyn project is described in a separate section of this

Chapter. In Chapter 4, the work of this Master’s Degree, named MylynSDP, is

presented and detailed. Modifications made to the original Mylyn are explained and

how each component Interacts with each other. Also in this chapter, DOI function is

introduced, its code is displayed and it is explained with examples. In Chapter 5, the

validation study is presented and discussed. Therefore, this chapter includes details

about participants, documents, exercises performed and how the validation study has

been conducted. Finally, in Chapter 6, a conclusion is draw and presented. In addition

to it, a final consideration is made and limitations of this work are discussed. Future

work associated with concepts studied is also listed on this chapter with expectations of

further contributions to the software engineering field.

8

2 Theoretical Foundation

On this chapter, the theoretical foundation for comprehension of the

concepts to be discussed in this Dissertation is introduced. The

definition of a software process, its importance, main existing

notations and their characteristics are mostly discussed.

2.1 Introduction

Software processes are created and executed everyday by software engineers

on Organizations following some guidelines. However, according to (FUGGETA, 2000),

software processes date back to the late 70s when computer specialists were

discussing the creation of a software lifecycle. The importance of software processes

on the development of software is understood when studying the steps that were

performed in the history until the creation and popularization of software processes

among software engineers. This is particularly important for this Dissertation because

its main focus is on the role software engineers play when executing a software

process having their work based on software process specifications. Concepts such as

activities and artifacts are presented from the perspective of three main notations used

to create software processes: EPC, SPEM and BPMN. This chapter is divided in three

other sections. Section 2.2 shows the history, importance and definition of software

processes, the underlying concepts of this Dissertation. Section 2.3 describes the main

elements from three notations used to model software processes. Section 2.4

concludes this Chapter.

2.2 Software Process

Some decades ago, the majority of daily life activities were performed without

the aid of a computer. For instance, in order to make cash withdrawal, clients had to

wait in a line for some time, and after that, they should ask a bank representative to

withdraw the money. The bank representative then checked some paper profiles with

personal information about clients, organized alphabetically in files and, after checking

that no problem was found on the profile of those clients, he allowed the withdrawal to

be made by giving the money to the clients along with information about the new

account balance. All of these actions used to take a lot of time and few of them were

9

automated. Similarly, a project approval process inside an Organization used to be

costly in terms of time and financial resources, because it used to take time and thus

delay the financial income. The manager needed to sign a lot of papers, send several

documents to numerous departments, which sometimes were geographically distant.

Besides, a staff member, specifically allocated for the matter, carefully used to do the

document archive and management process.

Technology development allowed the arrival of computers, and alongside it,

computer systems that could help practitioners to better organize work information and

automate some repetitive tasks. Nowadays, cash withdrawals can be made relatively

quickly on one of the several automated teller machines (ATMs) spread all over the

city. Starting from the decision of a client’s decision to make cash withdrawal, the ATM

embedded system check the client’s bank account data included on the ATM card’s

chip and send them, through a secure internet connection to a centralized system

situated miles away. The distant system authenticates client’s data and allows the

money to be withdrawn. The entire process, which used to be manually performed, is

now fully automated and done in seconds. A project’s approval process also benefited

from the arrival of specific computer aided systems. With a single click, a manager

automatically sends documents to his workers, no matter where they actually are,

without leaving his office. Furthermore, digital signatures allow managers to sign and

authenticate documents in a simple and efficient way. Other existing computer systems

on Organizations also aid staff members on document organization, archive and

recover. Within some seconds, a work report made for a given month is persisted in a

database, accessible by stakeholders and easily recoverable.

The benefits introduced by technology evolution are countless and they really

changed they way society deals with information. Gadgets, such as computers, mobile

phones or tablets, with computer software running on them, help the execution of daily

tasks, which slowly makes society dependent on these systems.

However, in order to maintain computer systems as a tool that provides easy

and quick ways to perform tasks, professionals that develop them, i.e. software

engineers, must have a well developed logical thinking in order to find the best solution

to task automation. They also have to have good perception on user’s needs to

develop intuitive interfaces and have discipline to implement the software code using a

programming language. Aiming at organizing the development of a software product,

researches made in the 60’s and 70’s were focused on the creation of a software

lifecycle (FUGGETTA, 2000, MARCINIAK, 2002).

A software lifecycle defines each different step a system may undertake during

its development and usage, or lifecycle. Usually, these steps are Requirements

10

Analysis and Specification, Design, Implementation, Verification and Validation,

Delivery, Maintenance and Retirement (FUGGETTA, 2000). These steps consist of

both a high level guide and the principles that software engineers follow when

executing software development activities.

Nevertheless, a software lifecycle does not define in details the flow of

execution of tasks, tools, participants, restrictions, documenting policies, software

delivery and information exchange between Organization and client during the

development of software. Software lifecycle defines the steps to build a software

product, but not the effective work that should be done in order to actually develop it

with quality.

In addition to the lack of orientation, software lifecycles must deal with the

software complexity problem. In most cases, the client does not know what he wants or

needs, which makes the requirements gathering a difficult task. Moreover, the

understanding of the software that is about to be developed may be complex, which

results in the difficulty of elaboration of the description of its components, through either

text or images. Implementation requires technical knowledge and advanced

technologies, sometimes unavailable. Meeting performance requirements and other

software metrics, although essential, demands an extra effort from software engineers.

In short, two factors, the high complexity of computer software and the lack of

orientation of its development, contribute to the unexpected and undesired behavior of

computer software. In other words, the system may fail (BARJIS, 2008).

This problem has several negative consequences. A computer system that

monitors the arrival and depart time of the staff of a company, when in failure, does not

record important data about the work time of their workers. Thus, the calculation of the

work time during the life of a project may be affected, positively or negatively, which

results in financial complications to the Organization (in salary payments, for instance).

Some of the loss caused by a software failure, for example, may happen in financial

area, time management, communication of the Organization’s members, denial of

important data registration, or even the death of workers (when a failure happens in a

system that monitors large structures, such as platforms).

As a result, researchers and industry professionals explore topics related to

software quality with the aim of lowering the chances of a software failure, and as a

consequence, lower the risks inherent to this event. One of the research directions is

studying software development processes (also named software processes). It is

believed that a well-developed and well-specified software process, which describes

tasks, their relationships and the people involved by making use of a level of detail

11

understandable enough by all stakeholders, increases the chances of developing

computer software with high quality (ASHRAFI, 2003, GREEN et al., 2005).

According to (FUGGETTA, 2000) and (PRESSMAN, 2010), a software process

may be defined as the coherent set of policies, organizational structures, technologies,

procedures, and artifacts that are needed to conceive, develop, deploy, and maintain a

software product. In other words, a software process is a wide and understandable

concept of the activities, their relationships, the workflow and organizational factors that

are related to the development of a computer system. The organization of the

development of software in a software process view helps managing each one of the

executed tasks and using suitable corrective measures in order to solve problems.

The efforts in defining software processes resulted in studies in the best

practices area and frameworks to design software processes (AALST, 2007).

Researchers created specific languages to deal with the modeling and specification of

software processes, named notations (CAMPOS & OLIVEIRA, 2012). Furthermore,

another group of researchers aimed at the definition of generic software processes,

which are suitable to several cases, such as RAD (MARTIN, 1991), SCRUM

(SCRUM.org, 2011) and RUP (IBM, 2012).

2.3 Software Process Representation

A software process is useful to specify the activities and their relationships,

which will be executed to develop a software product. It is based on a software process

that an Organization, its workers, and the client must understand each other in relation

to the steps executed during the development of the software. The Academy created

some notations and the most important ones are described here.

Event-driven Process Chain (EPC) (AALST, 1999) was created focused to

general processes rather than specifically to software processes. This notation allows

the representation of the entire Organization’s structure as well as project elaboration

and execution steps through drawings. To display them. a framework named ARIS

(Architecture for Integrated Information Systems) is used. Table 2.1 presents the main

elements used in process modeling by EPC.

Table 2.1 - Main elements from EPC notation.

Image	 Name	

	

Event	

12

	

Function	

	

Connectors	

	

Flow	

SPEM (Software and Systems Process Engineering Meta-Model) notation

(OMG, 2008) was created with the objective of defining software processes and their

components. Differently from EPC, SPEM is aimed at a specific area: the software

engineering domain. Therefore, SPEM is aimed at aiding software engineers on

software process specification and development. In 2002, Object Management Group

(OMG), the international regulator of open patterns to object-oriented applications,

adopted SPEM and defined utilization patterns that are used until now. OMG defines

SPEM as a UML profile, that is, a generic extension mechanism to customize domain-

specific UML models. The main elements used by SPEM notation are illustrated on

Table 2.2.

Table 2.2 – Main elements from SPEM notation.

Image	 Name	

	

Work	 Product	

	

Work	 Definition	

	
Activity	

	
Process	 Role	

	

Document	

2.3.1 BPMN

Software Processes are created and managed, so Institutions develop their

work with efficiency, clarity and in an organized way (AALST et al., 2003). They specify

13

the existing participants, their projects and their responsibility. This is quite similar to

business processes and their management. For that reason, a business process

feature used on the creation and management of this kind of process should be

studied: its notation.

In order to aid the specification of a business process, the Business Process

Management Initiative (BPMI) developed the Business Process Model Notation

(BPMN) (OMG, 2011). Later, in 2002, OMG defined a standard for BPMN. Nowadays,

BPMN is owned by OMG because in 2005, BPMI and OMG merged together. Since

March 2011, the available release of BPMN is version 2.0.

As it is written on the BPMN specification document, its main objective is to

offer a notation that is easily comprehensible by all business users, from business

analysts, which create the first version of processes, to technical developers, which are

responsible for implementing the technology that will execute these processes, and

finally to business professionals, which manage and monitor processes (OMG, 2011).

General process modeling is comprised of tasks and workflow. In addition, there

are elements to represent departments and Organizations. Studies show that BPMN is

one of the most suitable notations to represent software processes due to its simplicity

and intuitiveness to model and understand processes (PILLAT et al., 2012).

Thanks to the importance and ease of representing general processes using

BPMN, studies are performed with the objective to provide resources not yet available

to BPMN, but existent in other notations. It is the case of the refinement of processes,

which is featured in SPEM notation (PILLAT et al., 2012).

Table 2.3 exposes the main components of BPMN notation.

Table 2.3 - Main elements of BPMN notation.

Image	 Name	

	

Pool	

	
Task	

	
Subprocess	

	

Event	

14

	
Gateway	

	 Sequence	 Flow	

	 Message	 Flow	

	 Association	

	

Data	 Object	

Pool represents an Organization. It is inside a Pool that processes will be

modeled. Pools can represent not only the Organization that executes the process but

also another Organization, along with data and artifacts that are exchanged during the

execution processes.

Tasks performed during process execution are modeled with the use of Activity

element. An Activity may represent, for example, the execution of tests on a software

product to verify possible errors. The linking of several Activity elements in an

execution flow inside a Pool that represents an Organization describes a process to be

performed.

In some situations, the number of tasks in sequence is high, which affects the

process understanding. For that reason, the Subprocess element groups some Activity

elements on a lower level of detail, and then omits some process activities, which

improves the process readability. The omitted tasks and the relationship between them

are visible in a low level of detail.

An Event element represents an event that occurs during process execution

and affects the workflow in any way. Events are classified as initial, which is the one

who initiates a process, final, which is the one that finishes a process, and

intermediary, which occurs between an initial and a final event, but does not finish a

process execution. In order to control a process execution flow, one must use the

Gateway element. This element diverges and converges execution flow. Tasks may

need or produce data as a result of their execution. Contracts, codes, or any other

artifact type, either textual or not, that are relevant to the process are represented by

BPMN with Data Object element.

In order to link all elements explained until now, three elements are used:

Sequence Flow, Message Flow and Association. A Sequence Flow element is used to

connect Activity, Subprocess, Event and Gateway elements, and set the order that

each task will be executed, that is, the software process execution flow. The Message

Flow element is used when it is needed to represent the flow of messages between two

15

participants (Pool). Finally, an Association element connects an artifact and its

respective producer or consumer element.

Figure 2.1 shows an example of a process modeled using BPMN notation.

Figure 2.1 - A process modeled using BPMN notation.

2.4 Conclusion

Software engineering field is aimed at helping software developers to better

develop their systems. Therefore, research and study is extensively performed in order

to find ways and opportunities to improve software development in any way. This

Dissertation proposes modifications that relates to software processes when

developing computer software. Specifically, modifications deals with gathering data

from software process specifications and manipulating their activities and artifacts.

Therefore, this Dissertation has dedicated a chapter to explanations of concepts that

surround processes such as their history, importance, formal definition and notations.

Next chapter will continue investigation of proposed solutions to similar problems found

on the literature with the description of an informal review. Right after that, this

Dissertation exposes, describes and discusses the main study of this Master’s Degree,

on Chapter 4.

16

3 Related Work

On this chapter, it is presented an informal literature review of main

research projects that were found during the elaboration of this

Dissertation. They all comprise the related work of this Dissertation.

Their concepts contributed to develop insights for this research.

Seven research projects and Mylyn were investigated and they are

described in the following sections.

3.1 Introduction

A user, when executing activities on a computer, needs some related artifacts.

For example, a researcher who is writing a paper about a specific topic needs a set of

files, which are the articles he has read and he needs to read, a word processor to

write the article, image files to add to the paper, sites with research related content.

Similarly, a software engineer that deals with software process execution requires a list

on a file with the main activities to be executed, requirement documents with essential

requirements to be followed, use cases to be written and any other document related to

the development phase the software is in. All of these documents are accessed by the

software engineer from time to time in order develop the computer system.

As it was explained, the set of artifacts needed to the execution of an activity

plus the artifacts produced on the execution of that activity forms an activity context.

For activities that belong to a large and complex software process, with a great amount

of specified artifacts, the activity context identification may be slow, tedious and, as a

consequence, time-consuming. Researches on a way to better create task contexts are

important and have been done.

In order to find relevant studies that dealt with problems similar to the ones

discussed in this Dissertation, an informal literature review has been performed.

Therefore, this Chapter is responsible for displaying the main projects found on the

review and discussing their main concepts and limitations. These works were found

after talks with close software engineers and after searches for projects that deals with

similar concepts. This Chapter is divided in nine sections, besides this one. Each

section describes a project studied. Section 3.2 is related to Presto and Placeless

projects and Section 3.3 characterizes Task Tracer project. Section 3.4 details UMEA

project. Section 3.5 explains the concept of Process-centered Software Engineer

17

Environment (PSEE), which is an important research field for software process related

projects. Section 3.6 illustrates WebAPSEE, a project that uses concepts from PSEE.

Section 3.7 analyzes TABA station project and Section 3.8 justifies the main reason for

not using a Traceability Matrix to solve the problems of this Master’s Degree research.

Finally, Section 3.9 depicts Mylyn, the project on which this research was based.

Section 3.10 concludes this Chapter.

3.2 Presto and Placeless Projects

The concept of dealing with artifacts in a way to associate them with a context

and facilitate their recovery to the execution of a task is used on Presto and Placeless

from Xerox PARC (DOURISH et al., 1999). Researchers from Xerox Palo Alto

Research Center (PARC) started the actual ways of managing and organizing

documents. According to the research done, there are three types of data associated to

a document: its content, its properties and its localization on the system. A document’s

properties are data inherent to it and are barely explicitly described. For example, a

given document is used by software engineers in a project. Data about which groups of

professionals use that document or data about the project to which that document

belongs is not properly described in a computer readable way. Researchers then

concluded that currently the location of the document is mostly emphasized for its

management, organization and recovery, rather than its characteristics, represented by

its properties. By emphasizing a document’s properties, contexts can be created, which

are useful to the execution of tasks. The recovery of suitable documents for a specific

project may be free of effort, as well as the gathering of documents produced by a

group of software engineers on a given day. In projects developed by Xerox PARC,

properties of documents are defined manually by the user in a key-value fashion

through a tag mechanism as in “project=placeless”. After setting the most relevant and

important properties on all documents, documents and files related to Placeless project

can be recovered by the use of a smart search on the file system and then be used on

the execution of an activity. This approach creates a context for an activity by adding

properties to the documents. Figure 3.1 shows Presto’s interface. Although this way of

dealing with documents is useful, it is necessary that all documents be manually

classified. Moreover, at each new category creation, the entire set of documents that

belong to that category may be updated.

18

Figure 3.1 – Presto’s interface. Image extracted from (DOURISH et al., 1999).

3.3 Task Tracer

Another related work is Task Tracer (DRAGUNOV et al., 2005) developed in

Oregon University. Researchers created a computer system that automatically builds

the task context of the task being executed based on data collected from past and

executing tasks. They named that task context as task profile. Task profile creation, or

task context creation, also helps user on what is referred to as recovery after

interruption. Thus, the less effort is required in the creation and recreation of contexts,

which means more focus on the effective work of the task. Task Tracer monitors

activities related to Microsoft Office, Visual Studio and Internet Explorer, it stores

relevant data in a database and use them to infer a task context, or task profile. Figure

3.2 shows TaskExplorer’s interface, which is used to select tasks when dealing with

TaskTracer. Although the majority of computer professional activities use tools from

Microsoft Office package and Internet Explorer browser, activities related to software

engineering are not like this. The integration between the development environment

and the activities of a software engineer usually happens on other applications such as

19

Eclipse IDE and diagram modelers and deals with several types of artifacts, such as

documents, spreadsheets, diagrams and images. Task Tracer does not support this

type of activity, which makes it inadequate for that type of professional.

Figure 3.2 - Task Tracer's interface. Image extracted from (DRAGUNOV et al., 2005).

3.4 UMEA

In a broader sense, UMEA (KAPTELININ, 2003) work is highlighted. Computer

science department of University of Umeå, in Sweden, developed UMEA. The system

focus on monitoring user activities on computer desktop and, by doing it, it aims to

organize a task context for the task being executed. UMEA names that context as

project space. In order to work, UMEA creates a virtual work environment to monitor

activities. This work environment integrates typical professional daily services such as

document access, folders, URLs, calendars, contacts. They all are available to the user

from the virtual work environment. UMEA also solves context change problem because

it stores a user interaction history on a database. By storing those data, UMEA is able

to recreate a task context at any given time. UMEA’s interface is shown in Figure 3.3.

UMEA’s limitation is the lack of integration with new technologies. If the user, during his

workday, needs to use a tool that UMEA does not support, then task context will not be

created.

20

Figure 3.3 - UMEA's interface. Image extracted from (KATPELININ, 2003).

3.5 PSEE

Two decades ago, researchers that understood the importance of the execution

of a software process started to notice that there was no suitable computer aid to

support software engineers during software process execution. Then several of them

focused their efforts in the definition of a mechanism that would enable software

process to be managed systematically. The mechanism would able to help software

engineers during some work related to software processes. The same researchers

then created an environment able not only to model software processes, but also to

execute them and facilitate analysis. The environment was named Process-Centered

Software Engineering Environment (PSEE) (FUGGETTA & GHEZZI, 1994). PSEEs

consist of software development environments that allow the modeling and execution

of software processes in a certain degree of automation.

If software processes are expressed in a formal notation, PSEEs can be used to

support a variety of activities such as process analysis, simulation and enactment.

PSEEs, like computer systems, allow software engineers to follow activity deadlines,

artifact creation and consumption, and by doing so, it allows them to coordinate the

activities of software development groups (REIS & REIS, 2007).

21

Several works (AMBRIOLA et al., 1997, ARBAOUI et al., 2002, FUGGETTA,

1996, MATINNEJAD & RAMSIN, 2012) have studied the architecture and functionality

of the so-called PSEEs. They have also compared existing frameworks in order to find

trends and/or just to present a review of them to the public.

Moreover, a deep investigation of the history and the future of Process

Centered Environments can be found in (GRUHN, 2002).

PSEEs represent a direction of investigation towards the understanding of how

software engineers manipulate software process artifacts and how the mechanism can

be improved. Thus, a PSEE that deals with software process modeling and execution

as well as activity and artifact creation and manipulation was found and it was

investigated in order to provide insights for the solution of the problems of this Master’s

Degree Dissertation.

3.6 WebAPSEE

On 2005, a partnership between FINEP (Financiadora de Estudos e Projetos)

and SERPRO (Serviço Federal de Processamento de Dados) from Belém, Pará,

started a project that resulted in the creation of a PSEE named WebAPSEE (REIS,

2003). Its development was coordinated by Software Engineering Lab from the

University of Pará (LABES-UFPA) with the participation of SERPRO-Belém,

Eletronorte (Centrais Elétricas do Norte do Brasil S/A) and Universität Stuttgart, in

Germany. On October 2nd, 2006, WebAPSEE version 1.0 was publicly introduced to

the Free Software Community.

According to (REIS & REIS, 2007), WebAPSEE environment is based on three

underlying assumptions:

• Software process execution and automation – The automated aid for software

process execution facilitates the work performed during the execution of a

software process and makes software process models a reality in software

organizations. Thus, an aid in software process introduction to organization is

offered.

• Flexibility – Software models describe software processes in a generic way and,

for that reason, they are static. They do not update as the software process

execution goes on. However, flexible representations of the software process

are necessary to keep activity consistency. Hence, it is necessary to provide a

software process flexibility level suitable for the dynamic characteristic of a

software process execution.

22

• Registered information richness (metrics and decisions) – Not only a higher

number of tasks are automated, but also a higher volume of data is registered,

which facilitates decision making during a software process execution.

For these reasons, WebAPSEE environment has as its objective to provide

automation and flexibility simultaneously during software process management.

Therefore, WebAPSEE allows visual modeling and execution of software processes.

Furthermore, other functionalities are supported such as process reuse aid, artifact

version control (SALES et al., 2008), besides typical project management field

functionalities like process visualization as a Grantt chart, critical path generation,

exhibition of the analytic structure of the project and management report generation

(FRANÇA et al., 2009).

Two unique features of WebAPSEE are software process execution flexibility,

which allows a user to define, change and delete software process elements (artifacts,

activities, etc) at runtime, and the technologies used in its conception, which are open-

source, starting from Java language, passing through frameworks to develop

components, and also the database management system and external integrated tools

(COSTA et al., 2007).

The progress of a software process execution is accomplished through

notifications between participants, which tell them what activities are being executed or

finished. In order to keep consistency of an executed software process between

participants, WebAPSEE provides two interaction interfaces. The first of them is

Manager Console, present in Figure 3.4-a. In this interface, managers are able to

visualize the entire software process. Software process activities are displayed in

ellipses and different colors are used for different activity states. An activity may be

“ready”, “cancelled” or “failed”. Figure 3.4-b shows the second interaction interface

used by WebAPSEE, which is named Task Agenda. There are two types of that

interface: Web and Desktop ones. Regardless of its type, by making use of that

interface, software engineers are able to set activity states that are under their

responsibility, check activity completeness in a list view and manage artifacts of

activities.

WebAPSEE automates and thus facilitates much of the work of the

management of software processes. However, it should be noted that the association

between an artifact that has been already imported to the system’s repository and

activities that use that artifact during their execution is manually done by software

engineers, even though most of this information is presented in the software process

that underlines the development of the software. The manually allocation of artifacts to

the suitable contexts may not solve the artifact search and context change problems

23

because much work and time will still be spent on support work and not on the

execution of the activity.

Figure 3.4 - Main Interface of Manager Console and Task Agenda. Image extracted from (REIS
& REIS, 2007).

3.7 TABA Station

TABA station is a meta-environment, from which it is possible to define software

processes and then, based on a particular software process, generate a software

development environment fully adapted to specific project particularities (ROCHA et al.,

1990). TABA was developed in Computer and System Engineering Program of

COPPE/UFRJ and it distinguishes itself from other works not only by providing aid to

software engineers when performing software process activities, but also by providing

a way of executing those software processes in a customized and adapted way

(VILLELA et al., 2001).

TABA’s main objectives are to provide help to project management activities, to

improve software product quality and to increase productivity, from the automated

creation and availability of a suitable software development environment in order to

allow software engineers to control the project and measure the evolution of activities

24

based on data collected as development takes place. The integration with tools is

another feature. TABA offers a tool integration infrastructure that aids users during the

execution of software processes (TRAVASSOS, 1994). TABA Station also features a

repository that stores software project data collected during its lifecycles in order to

allow analysis to be made, such as an evaluation of a software process (GOMES et al.,

2001).

Figure 3.5 illustrates AdaptPro tool (BERGER, 2003). It is this tool, which is a

component of TABA Station, that an Organization may use to instantiate a specific

software development environment to aid a software process execution. In short,

software engineers may characterize and plan the software project that will underline

the project execution based on an organizational default process and, finally,

instantiate a software development environment to aid planned software process

execution.

Figure 3.5 - AdaptPro - a software process adaptation aid tool. Image extracted from (ROCHA
et al., 2005).

However, modifications that may happen on software process specification will

not really affect the execution of the process until a new software development

25

environment is created to that new software process. Thus, when software process

receives modifications, its impacts may be costly.

3.8 Software Traceability

A useful approach to manage an activity context, that is, the relationship

between one activity and its related artifacts, is the use of a traceability matrix. Indeed,

artifact traceability during software development has been under study. In general, the

objective of traceability is to increase software quality by providing a way to analyze

change, maintenance and evolution effects that may happen during a software

lifecycle. Furthermore, traceability also plays an important role in identifying and

comparing new and already known software requirements, artifacts reuse (when new

artifacts are similar or equal to others that already exist), testing and inspection of the

entire software being developed. Artifact traceability, and as a consequence,

traceability matrices, provide clear communication between users and developers,

which improves the produced documentation and software acceptance

(SPANOUDAKIS & ZISMAN, 2005). Figure 3.6 shows an example of a traceability

matrix.

Figure 3.6 - A traceability matrix being used to trace software requirements.

The best way to improve software artifact traceability is the creation of a matrix

that represents the association between each activity and artifacts (SUNDARAN et

26

al.,2010). Nevertheless, traceability matrix is not usually used with efficiency. The

difficulty of an efficient use arises from the fact that the creation of traceability relations

is not generally an automated process. Besides, it is costly, in terms of efficiency,

because it takes a considerable amount of time to be performed, and it can easily fail

because analysts perform it with minimal computer aid. In most of the cases, a

spreadsheet is used or it is manually done. In addition to it, the possible automation of

this procedure requires a considerable processing capacity because it takes into

consideration a scenario with a lot of artifacts and activities presented in a software

process. Moreover, difficulties get worse when software process flexibility takes place,

because new artifacts may be created in new contexts or activities can be re-executed.

In this case, the entire traceability matrix needs to be reprocessed (SPANOUDAKIS &

ZISMAN, 2005).

3.9 Mylyn

3.9.1 Overview

Researches done in the last years by scientists from the University of British

Columbia, Canada, explored the way programmers have been dealing with

implementation activities when using Eclipse IDE, specifically code edition tasks

(KERSTEN & MURPHY, 2005, KERSTEN & MURPHY, 2006). The results show that

the majority of code modifications performed on software projects affects more than

one file. That is, when a programmer is warned that an edition will be made on a

specific code element (renaming a class, method, variable, etc), he carefully updates, if

needed, all of other elements that deals with the given edited code element, which may

result in further modifications. This behavior usually is the result of a natural

interdependency contained in a software code, when classes are interconnected either

due to modeling problems or due to programming language characteristics. The fix of

the consequences of a code edition can be a complex task because it is not easy to

find the elements that were affected by the edition. Thankfully, IDEs available in the

market facilitates this job by pointing out elements that were affected by a given code

edition, or even by updating them automatically, which is the case of the Eclipse IDE.

That research raises a discussion about two main important points: code edition

and the search for files related to the code edition. These activities are usual in a

workday of programmers. The first of the two points is related to the code edition itself.

When the task of modifying a specific part of the code is informed to a programmer, the

first step taken is to identify where the code edition will take place. As it was shown by

27

the research done by the Canadian university, chances are low that a programmer will

modify only one class, or file. He must first identify all of the files that will directly be

affected by the edition. Usually, these files are spread within the project structure in

several different locations. This results in a search for those files and, as a

consequence, an additional time spent.

The second important observed point is related to the search of the files

indirectly affected by the first class edited. Commonly, the edition of a part of the code

has consequences in other parts and that characteristic may be treated. If the used IDE

does not provide support for the type of modification being performed, programmers

once more need to spend an additional time and effort to search for classes affected by

the edition. That constant search for related files and the time and effort spent on that

task raise a question: is the representation of all of the project files, which is actually in

a tree structure, suitable and sufficient? For projects with a few files, it may be easy to

search for files by browsing that structure. In the most common cases, where there is a

lot of project files, that ease is not verified. Classes affected by an edition made by a

programmer may be spread across several other folders, which may be spread across

several other packages. In short, the search for files related to a task to be performed

is not always easy and, once these files are found, it is not guaranteed that it will be

simple to perform the proposed task, because it will have consequences, such as more

editions to other files to be made.

That scenario considers the edition of one task. The most common situation is

that programmers need to perform several tasks at the same time, which results in

stopping the execution of a task to perform another, either because the second one

has a higher priority or because the first one does not have all of its required resources

available at that moment. Changing tasks results in a context change, which is the

change of files relevant to that task execution. One may note that programmers are

constantly engaged to the search and maintenance of the current task context.

Therefore, two critical factors negatively affect the productivity of a programmer when

considering the sheer number of files spread on the software project and the difficulty

in the search for those files to build a context: high amount of information and task

context maintenance (MURPHY, 2009, KERSTEN & MURPHY, 2006).

For those reasons, the creation of a mechanism to deal with information is

important. Then, researchers from the University of British Columbia developed a

mechanism that captures, models and persists relevant elements and relations for the

execution of a task and named that mechanism as Mylyn (KERSTEN, 1999).

Introduced in 2005, Mylyn is an application for programmers that write Java

code and use Eclipse platform. Later, developers of Mylyn started a company and

28

initiated the development of Tasktop (TASKTOP, 2014), a commercial version of

Mylyn, which was introduced in 2008, and currently exists.

Mylyn’s objective is to solve the two problems discussed, allow programmers to

spend more time working on tasks assigned to them and spend less time searching for

classes associated with that task. This is achieved by facilitating the search for classes

of that task, which represents a small subset of the classes of the project.

In order to let the search of a task context easier and highlight its classes to

programmers, Mylyn has a degree of interest (DOI) function implemented. That

function is responsible for monitoring the work performed during code implementation

and maintenance and calculate the importance of each class in relation to the task

being performed. For example, when a programmer edits a given method during a task

execution and then needs to access another class, the DOI function considers both

classes as relevant to that task execution. That relevance is reflected in a model

maintained by the DOI function. Based on that data, Mylyn is able to filter out data

shown to the programmer, presented in the structured views of Eclipse IDE, and

display only classes that are important to the execution of the current task. Mylyn has

been highly accepted by programmers on their academic and professional work, and

currently it is used by thousands of programmers daily (KERSTEN & MURPHY, 2006).

3.9.2 Characteristics

Mylyn aids programmers on implementation and maintenance of software code

when performed on Eclipse IDE. Based on the programmer’s interaction with the code,

Mylyn’s DOI function creates task contexts, in other words, it notes what are the

classes and parts of the codes relevant to the task currently being executed. Once this

is finished, Mylyn manages views included in Eclipse and filters not relevant classes,

displaying only classes of the task context to programmers. Interface becomes clean,

objective and focused on the task executed. This increases the productivity of

programmers, once they do not need to spend additional time and effort on the search

for classes of a task context, either during a task execution or during a task change.

For these concepts to function, Mylyn has four main components that work

together. They are: Interface, DOI function, Working mechanism and Context and Task

Import and Export mechanism. Each one of the components mentioned has a different

function on Mylyn workings. Figure 3.7 illustrates each one of these components and

the relationship with other Mylyn’s components.

Interface component is responsible for displaying tasks and classes. It is the

work area of a programmer. It is where class filtering takes place according to the task

context and programmers’ interactions. DOI function is the component that scores and

29

decides what classes belong to a given task context, so visual filtering can be made.

Saving Mechanism persists to disk data related to task contexts. For that reason,

programmers are able to change tasks or close the IDE window without the need to

rebuild a task context again. That mechanism is also responsible for saving interactions

that were performed during the work of a programmer. At last, Context and Task Import

and Export Mechanism allows the export of data saved by Saving Mechanism and

thus, these data can be used in another instance of the IDE. It is also that mechanism

that performs the import of data in another instance of the IDE. Each one of these

components will be described in detail in the following sections.

Figure 3.7 - Mylyn's components and their relationship.

3.9.2.1 Interface

When using Mylyn during the development of a system, a programmer

increases its productivity once the main, most important and necessary classes to

perform a given task are highlighted and accessible in an easier way on a task-based

interface. The way data are displayed is one important characteristic of Mylyn. Eclipse

IDE has plugins that makes work environment more suitable to Java developers. These

30

plugins belong to a tool called Eclipse Java Development Tool (JDT). That tool is the

one responsible for coloring some reserved Java words during code implementation, to

run Java Virtual Machine (JVM) on a code execution and, most importantly, to manage

user’s interface. JDT manages views that help programmers in code implementation.

These views are Package Explorer, Type Hierarchy View, Java Outline View, and

others. However, these views are not configurable to display only what is important to

the task being performed. Thus, it is said that the interface is not task-based. Mylyn’s

views are: Mylyn Package Explorer (Figure 3.8-a), Mylyn Problems List (Figure 3.8-b),

Mylyn Outline (Figure 3.8-c) and Mylyn Tasks (Figure 3.8-d).

Figure 3.8 - Mylyn's interface.

The first of these views, Mylyn Package Explorer, shows the project structure

with the filtering of irrelevant artifacts to the current task. On the hierarchical structure

shown on Mylyn Package Explorer, besides the names of the elements that contain

other elements (a package, for example), there is a number that indicates how many

classes are being displayed. Mylyn shows on Mylyn Problem List the list of most

relevant problems to the executing task. So, programmers may focus on the main

problems that affect their actual work, and also efficiently recover them if needed, when

compared to the way it was done in the past, when all problems were displayed and

there was no classification. Mylyn also has Mylyn Outline view. That view is useful to

large classes with a lot of methods and variables. With Mylyn filtering, only code

elements relative and relevant to the task being executed are displayed on this view,

31

which allows the programmer to better locate some particular code elements to access

by searching for their names. Mylyn also introduces a new view for Eclipse IDE: Mylyn

Tasks. In this view, all tasks are listed and displayed. It is also possible to create and

delete a task, to set its beginning and to inform that it is finished.

3.9.2.2 DOI

Mylyn’s objective is to display only relevant classes to the current task in

execution and, as a consequence, lower time and effort spent in the search for relevant

code elements. This has a positive impact on programmers’ productivity because their

efforts will be focused to the task to be performed. Thus, a classification of project files

must be done. Mylyn needs to know what are the files that are mostly being used, and

then highlight them from the remaining files.

The way file classification is done deals with the monitoring of programmers’

interactions and the use of a DOI function applied to elements of the project. For

example, when a programmer is executing a given task, and he selects or edits a

class, Mylyn’s DOI function recognizes the affected class and increases the interest

value associated with that element, which means that this element is more important

than others to the current task. After classifying all project elements, DOI function can

apply a filter, and based on the interest value of each element, it is possible to choose

some elements. Thus, Mylyn is able to show only the most important project files to

that programmer.

Mylyn’s DOI function maintains two important structures so that an interest

value may be calculated for Java classes. The first structure is an interaction event list

that represents the interaction history that a programmer had with the code. At each

class selection or edition, for example, it is added an entry to that list with data about

the interaction. This allows DOI function to calculate the interest value based on the

history of interaction events. Besides, Mylyn maintains in memory a list of objects,

which references project classes. An interest value is associated to each object

presented in the list. That interest value is a floating point number that representas the

actual interest for that class. When a programmer selects or edits a class, Mylyn adds

entries to the interactions history list and calculates the interest value of that class to

the current task, which usually results in the increase of that class’ interest value. As

the time passes by, if that class is not selected or edited, its interest value is gradually

lowered. Therefore, at any given time, a class’ interest value reflects that class’

importance to the current task.

Mylyn’s DOI function’s classification mechanism, by default, classifies files with

negative interest value as not interesting and omits them from the programmer’s view.

32

If a programmer selects a file, that action contributes with 1 point to the increase of that

class’ interest value, by default. If the programmer is editing that class, each keystroke,

that is each character being typed during the edition, corresponds to an increment of

0.7 points in the interest value associated to that class. Each selection and edition

event performed by the programmer on a project file affects the interest value of other

classes. Thus, the interest values of other classes are decreased by 0.017 points by

default. For that reason, if a class is not used during the execution of a particular task,

DOI function classifies it as not interesting and omits it from the programmer’s view.

The set of all interactions a programmer may perform as well as their contributions to

the interest value of a class are described later in this section.

Algorithm 3.1 represents concepts of interest value calculation done by DOI

function that Mylyn uses to classify project classes. The objective of the algorithm is to

know all types of interaction events ever performed with a given class and add up all

positive scores that these interactions contribute to that file. After that, scores related to

other interaction events are subtracted from the partial interest value. The final value is

then returned. On Algorithm 3.1, “getValue()” is the method called to start the

calculation of the interest value of a given class. The algorithm is divided in two parts:

additions and subtractions. “getEncodedValue()” method is responsible for calculating

the additions. Thus, it adds to the variable “value” the scores given by each of the five

possible interaction events. These interaction events are explained in Section 3.9.2.2.1.

“getDecayValue()” method is responsible for calculating the decay of interest value of

the given class. That method has two values to work with. The first one is

“eventCountOnCreation”. This value is an ordinal number associated with the

interaction event that added that class in the current task context. The second value is

“userEventCount”. This value is an ordinal number associated with the last performed

interaction event. By calculating the difference between those numbers, the method is

able to determine how many events took place since the addition of the class in the

task context. The decay value is calculated based on this value. A multiplication of this

value to a constant of decay is done and the decay calculation is finished. Finally,

“getValue()” calculates the difference between the addition of points and the decay

value to find out the final interest value.

Mylyn’s DOI function’s interest value model is aware of the case in which there

is a misinterpretation of a code element’s interest value. If a programmer considers that

a given class is not relevant to the current task’s execution and if the class is in that

task’s context, or even if the programmer knows that a particular class is important to

the current task, but it is not currently being displayed, he is able to manually set that

class’ interest value.

33

Figure 3.9 shows a flow of one example of the use of Mylyn. Mylyn’s DOI

function usage may start with the creation of either tasks or artifacts. In this example, a

task is firstly created. Mylyn provides a task creation wizard for programmers. They

must indicate that a new task is about to be created. Once a new task appears on

Mylyn’s Tasks list, programmers are able to erase the “new task” default name and

register a new name for the task. If needed, programmers may also set task

parameters such as the time that task may finish and its priority. It is important to notice

that the context associated with the new task is empty. It happens not only because

there is any class created, but because no context are initially created for a new task.

Mylyn’s artifacts are elements that programmers interact with, which are Java

classes. The creation of artifacts starts with the use of Eclipse Java class creation

wizard. After programmers create a Java project, a package and a class, Mylyn’s DOI

function recognizes the existence of the class in its model and associates to it the

number zero as interest value. It needs to be mentioned that Mylyn’s DOI function will

only associate an interest value to a just created class if any task is active and the

interest value will be associated to the new class in relation to the active task. If no task

is being executed, then the new artifact will not belong to any context and will not

receive any interest value. If a programmer performs a selection to the class he just

created, assuming that this class belongs to a task context, then the interest value of

that artifact will receive the number of selection interaction events times the points

selection interaction events contribute to artifact’s interest value. In this example, this

number is 1 x 1 = 1. As said, other interaction events negatively affect a particular

interest value when they contribute to the decay value. In this example, it is assumed

that a programmer performed ten selections on other artifacts created later. Thus, the

interest value associated with the first artifact (or class) has to be updated. As

explained, Mylyn’s DOI function gets the difference between the ordinal numbers that

represent the event on the creation of the artifact and the last event performed by the

programmer and then multiplies it to a constant of decay. They decay final value is then

subtracted from the actual interest value associated to that artifact and then this value

is finally updated. In numbers, the final interest value is (1 x 1) – (10 x 0.017) = 0.83

points of interest.

After some interactions with other Java classes, that interest value will become

negative, which is interpreted as if this class is no longer interesting to the current task

and it will be deleted from that task context and also omitted from the programmer’s

view.

34

Figure 3.9 - An example of Mylyn's DOI function usage. A task interaction process example is
three steps on the left and a task interaction process example in two steps on the right.

Algorithm 3.1 - Algorithm of Mylyn's Degree of Interest (DOI) function.

3.9.2.2.1 Interactions with Task Context

Mylyn’s DOI function monitors the interactions of a programmer during the

implementation and maintenance of the code of a system. By doing that, DOI function

35

is able to capture relevant data about programmer’s actions and then create a model

with project classes and associated values that represent the interest for that file in

relation to the current task. Based on it, Mylyn automatically identifies a task context

and manages the interface to facilitate the activities of a programmer when

implementing a system.

Regardless of what action a programmer performs, Mylyn’s DOI function

registers on its model six pieces of information, described in Table 3.1. Every

interaction event performed by programmers happens at a given time and has a target

element. DOI function captures those data and organizes them for easy maintenance

of interest values and, as a consequence, of task contexts. The time when an

interaction event took place is registered. The type of interaction, according to Table

3.2, is also captured.

Each interaction event has an Origin, that is, the tool used to cause the

interaction event. The Content Type, that stores data about the element that received

the interaction, is also registered, alongside a reference to the Target element. Finally,

a field is reserved to the registration of data related to state change that took place

during the interaction event, named as Delta.

Table 3.1 - Data about one interaction event captured by Mylyn

Name	 Description	
Time	 The	 time	 the	 event	 took	 place.	
Type	 The	 type	 of	 the	 interaction	 event.	
Origin	 A	 reference	 to	 the	 tool	 that	 caused	 the	 interaction	 event.	

Content	 Type	 A	 reference,	 with	 the	 description,	 to	 the	 element	 that	 received	 the	
interaction.	

Target	 A	 reference	 to	 the	 element	 that	 received	 the	 interaction	 event.	
Delta	 State	 change	 that	 happened	 with	 the	 interaction	 event.	

Some interaction events represent a consequence of a direct action of a

programmer that deals with the code. For example, if a programmer selects and opens

a class to visualize the code it contains, a Selection interaction event was performed

directly by the programmer and Mylyn’s DOI function register the suitable data.

Nevertheless, there are other types of interaction events that may occur during the

implementation of a system: the indirect interaction events. These events happen

without a programmer’s interference and DOI function also registers them. An example

of an indirect interaction event is when a programmer decides to rename a class that is

open. In order to avoid syntax errors on the code that is being implemented, Java

plugins existent on Eclipse IDE update references to the class that was just renamed.

36

By doing that, some interaction events, or some edits, take place without the direct

intervention of the programmer. In this example, the interaction event described is the

Propagation interaction event. Mylyn’s DOI function captures both direct and indirect

interaction events and takes both into consideration on the creation of a task context.

Researchers of the University of British Columbia, when developing Mylyn,

identified five types of interaction events that a programmer may perform on the code.

Mylyn’s DOI function monitors and captures them. These interaction events are

described in Table 3.2. Direct events are Selection, Edition and Command. Selection

interaction event consists of using mouse or keyboard to make code-editing window,

after opened, the working window of the programmer, in other words, make it the main

window. Edition interaction event corresponds to the change of the code of a class or

method, either by adding new pieces of information or by taking them. The interaction

event named as Command represents actions that a programmer might apply on

classes according to the use of the Eclipse IDE. Some Command interaction event

examples are saving or compiling a code. There are two indirect interaction events

studied: Propagation and Prediction. Propagation interaction event occurs when any

interaction event affects other project elements that are somehow related to the target

element of the first interaction event. For instance, a method renaming may cause

editions on another classes that have references to that specific method. Prediction

interaction event is a consequence of the registration of historical data done by DOI

function during the execution of tasks. Mylyn’s DOI function, when checking that history

list, is able to predict what files, classes, methods or variables may be relevant to the

current task’s execution.

Table 3.2 - Types of interaction captured by Mylyn.

Type	 Interaction	 Event	 Description	

Direct	
Selection	 Select	 the	 code	 with	 the	 mouse	 or	 the	 keyboard.	
Edition	 Textual	 code	 editions.	

Command	 Interaction	 events	 such	 as	 save,	 compile,	 etc.	

Indirect	
Propagation	 Interaction	 event	 that	 propagates	 to	 other	

related	 elements.	
Prediction	 Ability	 to	 predict	 what	 elements	 will	 be	 useful.	

3.9.2.3 Saving Mechanism

Mylyn’s Saving Mechanism is different from Eclipse IDE’s Saving Mechanism.

Mylyn’s Saving Mechanism, which is the subject of this section, is responsible to

persist to disk data about tasks and contexts from time to time. By doing that, a

37

programmer that is dealing with the code is able to perform a task change, and a

context change, with success. When he returns to the interrupted task, the set of

classes that he was working with will be available the same way it was before the task

change. It is important to note that the Saving Mechanism persists data to disk about

the tasks, their contexts and the interactions that are performed by the programmer

whenever one of the tasks is activated.

In addition to it, it is important to mention that the functioning of Saving

Mechanism is indifferent to the number of projects or classes in a workspace. A same

directory, in each workspace, is used to persist all data to disk. In other words, each

workspace has a specific directory to which the Mylyn’s Saving Mechanism saves all

interesting data. The directory [WORKSPACE]/.METADATA/.MYLYN/tasks stores an

XML file with a list of all tasks (and additional data about them, such as name and

status of completeness) that are existent on Mylyn to that workspace. The directory

[WORKSPACE]/.MYLYN/contexts stores one or several XML files with data about the

context of each task along with data about classes, methods and variables contained at

each task context. Moreover, the interest value of each code element and data about

the last interactions performed are stored on this XML file.

3.9.2.4 Task and Context Import and Export Mechanism

If a programmer wants to or needs to export all data about task contexts and

interest values either for a backup or to take it to another workspace, he needs to use

Context and Task Import and Export Mechanism. As the name implies, this mechanism

import and export data from contexts and tasks. When exporting, it creates a zip file

with all files that Saving Mechanism uses to persist data to disk and it makes it

available in the directory pointed by the programmer that is exporting the data. If the

operation requested is to import data, the mechanism process data included in the

export zip and updates tasks and contexts with a new set of data. After importing, the

programmer may continue his job in another workspace. If the new workspace do not

have one of more classes that are existent in a particular task context, DOI function,

which is responsible to score classes, methods and variables, continues to work

normally and also decreases the interest value of those not-encountered classes

according to the occurrence of other interaction events.

3.9.2.5 Drawbacks

Mylyn helps to increase a programmer’s productivity when it facilitates the

recovery of some project elements that are important to a codification task. This lowers

the time and effort spent by a programmer in support tasks that are not the main task.

38

However, when developing a software product, the software undergoes a path

with several steps, which starts from its conception, passes through the coding phase

and finishes on its delivery, maintenance and possible retirement of it. These steps are

described by software lifecycle. Mylyn aids programmers in one of these steps: the

implementation of the code. That step is an important one on the development of a

software product, but it is not the only one. The other steps have their own relevance,

difficulties and particularities that make them require attention to the way they are

performed.

Besides, in a software development project, several documents are produced.

They contribute to the systems’ quality, validity, and verification, among other

functionalities. Code documents, that are software classes, are important, essential

and do contribute to the creation of the software. Mylyn aids programmers on creation

and maintenance of code documents, but Mylyn is aimed at the implementation step

only. A desirable scenario is aiding the creation and maintenance of all of the project’s

documents, trying to guarantee a high quality level. It may be importante to note that

Tasktop, the commercial version of Mylyn, does manage other types of project

documents that may be present on other steps of the software development process

other than implementation. However, it still lacks a direct integration with the software

process and does not base its workings on that process for task context definition, as it

will be explained in the following paragraphs.

Mylyn creates task contexts automatically based on interaction events

performed by programmers with the code. When selecting a task, Mylyn associates

some data that is considered important, according to DOI function, to that task.

However, in order to task displaying and data association to tasks work well, it is

necessary that this task belong to the field of codification. Tasks that don’t relate to

code implementation do not need to be registered on Mylyn. In other words, Mylyn aids

tasks related to coding software. Other several tasks that are performed before, or in

parallel to, the implementation are not being aided.

Not only it lacks the management of tasks existent in other steps of the

development of the system, but it also lacks a software process onto base the definition

of tasks. What happens is that a programmer manually does the definition of tasks

through the IDE. There is no justification about the origin of the task. If tasks were

based on a software process, tasks could be derived from a software process. If so,

tasks would have a reason to exist and the software process that creates them would

justify their existence. Besides, tasks would not need to be manually created, as it is

actually done. One would just need to check the software process and display the

proposed tasks. This could be done by syncing Mylyn to a repository of tasks based on

39

a software process. However, software process artifacts and their relationship with

tasks may not be present on the repository.

Finally, Mylyn does not take into consideration the concept of software

development process. For that reason, it is aimed at software implementation step

only. The consideration of a software process development results in a better base for

software creation activities and, as a consequence, for coding activities.

3.10 Conclusion

The entire set of research projects described in this Chapter in any way deals

with problematic situations similar to the one studied by this Master’s Degree research.

Either by aiding users on executing tasks and dealing with artifacts or by aiding

software engineers during software process execution, each project represents a

significant contribution to several different areas of software engineering field. The

main problem that could be observed after observing each project studied is the lack of

automation when dealing with a sheer number of artifacts. Moreover, although some

projects are specifically aimed to the software engineer field, and related to software

process concept, most of them are not directed to this field and have their contributions

focused to general task management field. As a consequence, any of these projects

considered a software process, or any other process, as a base for executing tasks. In

the next chapter, this Dissertation exposes and details the main research made.

40

4 MylynSDP

On this chapter, MylynSDP is introduced and detailed. Hence,

Mylyn’s components are pictured and explained, as well as their

relationships. A special attention is brought to MylynSDP’s DOI

function, as it is the mechanism that solves the problems identified

on this Master’s Degree research project. MylynSDP and its DOI

function has code snippets illustrated and their working explained

with examples.

4.1 Introduction

Mylyn’s DOI function, although limited, proves to be a starting point for the

development of an expansion of its concepts. The way it deals with both artifact search

(Java classes, in the case) and context change problems are significantly important for

the solution proposed by the research of this Dissertation. As a consequence, Mylyn

had its code gathered, studied and modified, so its benefits to programmer could be

expanded to software engineers from all phases of a software development process.

The final implementation, which features a new DOI function, was named MylynSDP.

This chapter is organized as follows. Section 4.2 presents an overview

explaining a bit more about the situation that the concepts discussed in this

Dissertation are in. Next, Section 4.3 formally defines the main concepts and

nomenclature used when referring to this research. Section 4.4 describes

characteristics of MylynSDP, including its components and the new DOI function.

Several code snippets of main classed important to the comprehension of this project

are illustrated on figures. Most of them were modified from the original version. Section

4.5 concludes this Chapter.

4.2 Overview

For some years, researchers from the field of software engineering have been

studying the relation between the quality of computer software and the software

process that underlies its creation. The idea is that a software process with high quality,

when executed, increases the chances of the development of a high quality software

41

product. As a consequence, efforts focused on definition and on improvement of

software processes have been initiated.

A software development process is the set of policies, practices, definitions,

activities and artifacts that together rule the creation of a system. Generally, a software

process is a textual or graphic document with the description of the steps to be

followed so that the development of the software will be carried out as desired. In that

document, there are elements that define what are the software development activities

and, moreover, there is the representation of the order of those elements. Besides, as

each activity may consume or produce artifacts, other textual or graphical elements

represent those artifacts. The relation between artifacts and the activities must be

specified as well. That is, there is a representation of what artifacts are consumed and

produced by each on of the activities either by textual or graphical description.

However, as the development of a system may be complex, the creation and

definition of its software development process may also be. A software process that

has dozens of activities, represented in the form of text or even graphical, and has

other dozens of artifacts is difficult to be understood. Whenever a software engineer

accesses the document with the software process specification, he needs additional

time and effort to understand what are the next activities to be executed and to

understand what artifacts he needs to access to perform a given task.

Besides, the descriptive and theoric nature of a software process specification

document creates a discrepancy between its modeling and its execution. In other

words, what is modeled not necessarily represents what is acutally executed, because

there are differences between the theory and the practice. A software process

specification works as a model for the development of a software and a software

process execution represents an instance of that model, with particularities that

happens only during the execution.

Figure 4.1 shows an extract of an example of a software process model. There

is an activity named “Develop Test Case” on the model. One may note that “Develop

Test Case” activity needs two artifacts, which are called “Use Case” and “Test Case”,

and produces the artifact named “Test Case”. Although that specification is clear and

objective, its execution may not be. Generally, a system has several use case and test

case documents. However, software process specifications use one symbol to

represent an undetermined number of documents. During the execution of “Develop

Test Case” activity, a software engineer may have to search for use case and test case

documents among several others project documents. Another unwanted situation is

that not all use case and test case documents are useful to the execution of a particular

task. Rarely, a software process specification document indicates what particular

42

documents are necessary to the execution of a task. It only indicates the type of the

document. This requires the software engineer to search, among use case and test

case documents, the ones that will aid him to execute the proposed task.

Figure 4.1 - An extract of an example of a software process. The same artifact symbol is used
to specify several documents from the execution of a software process.

4.3 Concepts

Under the concepts of this Master’s Degree’s Dissertation, an activity is

recognized as the representation on a software process specification of a finite job

performed within a given time. On the other hand, a task is a finite job performed during

the execution of a software process by a software engineer within a given time in order

to achieve an objective. An activity, from the software process specification, represents

a task that a software engineer performs during the execution of a software process.

The relation between an activity and a task is not a one-to-one relation. An activity can

be instantiated more than once in several different tasks. Each one of these tasks has

a logical reference to the activity that based its creation. Furthermore, a task, from the

execution of a software process, has one source activity only. For example, the activity

43

A can be the source of tasks A’ and A’’, but A’ have only activity A as its source. Task

A’ cannot be created from activities A and B.

Some software development process notations, such as SPEM, have activity

and task concepts in a different way. These notations considers tasks as

decompositions of activities. This approach differs from the one used on this

Dissertation which considers tasks as instances of activities.

The name “artifact” is used to define the documents, or files of any kind, that are

used, either consumed or produced, during the execution of an activity or task. On a

software process specification document, an artifact is a theoretical concept, it

represents one or more documents and it is related to software process activities. it can

be described either in text or graphically. During the execution of a software process,

an artifact is a document that exists. It may be digital and can be manipulated by a

software engineer when creating, editing or deleting the file. Similarly to activities and

tasks, a software process specification artifact may be instantiated into several

software process execution artifacts.

Having it in mind, a task context is defined as the set of all artifacts used during

the execution of a task, either by consuming or producing that artifact. This is similar to

what happens to an activity context. Both contexts may diverge due to the natural

difference between theory and practice. This divergence can be verified in a case

where A’ is from type A that uses an artifact T1’ from type T1, and it now also uses

another artifact T1’’ from the same type T1. Alternatively, task A’ may now use an

artifact T2’ from type T2, which is a situation that was not initially modeled on the

software process specification.

As a consequence of this Master’s Degree’s study and for the validation of the

study, an extended DOI function has been developed with the implementation of the

concept task context and software process in order to provide better ways to search

software process execution artifacts to the software engineer. This allows the increase

of his productivity by lowering the time and effort dedicated to search of artifacts related

to the execution of a software process. Initially, a software engineer selects a task from

a set of tasks and artifacts relevant to that task, which are in a greater set of artifacts,

are highlighted. The highlight is made with the omission of non-relevant artifacts. It is

always possible for the software engineer to find the other available artifacts so he can

use them, which means that a task context do not faithfully reproduce an activity

context modeled on a software process specification.

Two important concepts are defined: a degree of interest function and contexts

based on the process. Studies performed during the Master’s Degree created a DOI

function to filter and highlight artifacts on a software process execution. This function

44

takes into consideration particularities inherent to all steps of a software process

execution. It works on existing artifacts and calculates a value that is associated to the

artifact and that represents its interest to the task being executed. The DOI function

and its algorithm are presented in Section 4.4.4.

An innovation that the study brings to the software process execution field in

software engineering is the context being based on the software process. The entire

initial configuration of the available data to the software engineer is based on the

software process. Thus, he is aided on the definition and selection of tasks, on the

filtering and highlight of the artifacts associated to these tasks, and also on the

calculation of the interest of these artifacts in relation to the tasks, once all of these

data are initially gathered from the underlying software process.

4.4 Characteristics

The study performed on this Master’s Degree aids software engineers during

the execution of the software process with a degree of interest function that classifies

artifacts based on their interactions with artifacts and based on the software process

specification. It results on the highlight of the most relevant artifacts in relation to the

task being executed.

This facilitates artifact visualization, because it reduces non-relevant data being

displayed to software engineers. As a consequence, they are able to focus on what is

more important to the work being executed.

The implementation developed on this Master’s Degree study is based on

Mylyn, which is explained on Section 3.9. Indeed, Mylyn adopts similar concepts to

solve information overflow and context creation problems. However, its functioning is

aimed at implementation only and there is no initial base for contexts, which results in

no task contexts initially created.

For the development of the implementation of this Master’s Degree study,

Mylyn’s code has been accessed, some useful parts of that code were modified, some

contributions and functionalities were added and the code was recompiled. The final

implementation was named MylynSDP (PORTUGAL & OLIVEIRA, 2013, PORTUGAL

& OLIVEIRA, 2014).

Figure 4.2 shows components of MylynSDP and their relationship. There are

five components: Interface, Software Process Specification Import Mechanism, Restore

Mechanism, Saving Mechanism and Degree of Interest Function. Interface is where

tasks and artifacts are viewed and where the work is done. Software Process

Specification Import Mechanism, as the name implies, imports the software process

45

specification, while recognizing activities, artifacts and their relationships. Restore

Mechanism manages the relationship between tasks and their types (the activities from

the software process specification), as well as the relationship between artifacts and

their types. The Saving Mechanism persists to disk data about context, interest values

and software engineer’s interactions with the artifacts. Finally, DOI function is

responsible to classify artifacts according to that artifact’s interest in relation to the task

being executed, as well as define initial contexts based on the imported software

process specification. All of the five components were briefly described here are

detailed in the next sections.

Figure 4.2 - MylynSDP's components and their relationship.

4.4.1 Interface

The interface is where tasks and artifacts are listed and that software engineers

perform tasks. Figure 4.3 shows MylynSDP’s interface. On the right column of Figure

4.3-a, one may find the task list. Besides each task, there is a button so that software

engineers may signal whether a task is being executed. On that column, there is a

button for the creation of a new task. During the creation, a wizard helps software

engineers to set parameters such as task name and type (Figure 4.4).

46

Figure 4.3 - MylynSDP's interface.

Figure 4.4 - New task creation wizard.

47

The left column, Figure 4.3-b, shows the artifact list. Initially, no task is marked

as active, or having its execution started. Therefore, the artifact list shows all task of

the project without any filtering. From the moment that a software engineer activates a

task, that is, marks its execution as started, artifacts that do not belong to that task’s

context, according to the software process specification, are omitted from the software

engineer’s view. The creation of an artifact is similar to the creation of a common file on

the Eclipse IDE. However, as the type of the artifact must be captured, a wizard was

developed for that purpose. During the creation of a new artifact, the software engineer

sets the name, local and type of the artifact. The wizard is illustrated in Figure 4.5.

MylynSDP has been designed to work with one artifact per file. Although it is possible

to have several content types in a single artifact (such as an use case artifact with the

description of several use cases in it) it is not desirable to have a situation like that.

MylynSDP does not consider sections of artifacts because of the sheer number of

types of artifacts that it may encounter.

The central area of the interface (Figure 4.3-c) is where artifacts are opened,

edited and tasks are executed. If artifacts are opened and the software engineer

decides to change the current task, and as a consequence change the context, all of

the saved artifacts are closed to make room for the artifacts of the new task.

Figure 4.5 - New artifact creation wizard.

48

4.4.2 Software Process Specification Import Mechanism

All of MylynSDP’s working is based on the specification of the software process,

starting on the definition of a type for each task and artifact, to the definition of initial

task contexts at the moment of task creation. Therefore, all of the facilities provided by

MylynSDP starts by importing a software process specification to the plugin.

However, a software process specification document may exist in several

formats, such as textual or graphical, or both. For that reason, it was defined that the

software process must be imported to MylynSDP in an XML format. Then, XML rules

were created for the definition and creation of the software process specification

document. These rules are specific for that purpose and are easy to learn and

understand. Conversion between the original software process specification document

and the XML format is left for the software engineer. A software process specification

XML file supported by MylynSDP is illustrated on Figure 4.6. Some XML tags had their

content omitted for the sake of simplicity.

The XML document starts with a <process> tag that has the name of the

software process as a parameter. Inside that tag, the XML document is divided in two

groups by <activitiesSpecification> tag and <artifactsSpecification> tag. The first one of

these tags groups all information about the activities of the software process. <activity>

tag is used for this purpose. That tag has “id” and “name” as parameters, which are

responsible to set a unique id and a name for the activity, respectively.

Activities may have a relation to artifacts, consuming or producing them, during

their execution. Moreover, activities may contain other activities. To represent both

cases, <artifactID> and <subactivityID> are nested on <activity> tag. <artifactID> tag

indicates that a given artifact is used during the execution of the activity that contains it.

This tag has “type” parameter to indicate if the artifact is consumed (type = “input”) or

produced (type = “output”). On the contents of <artifactID> tag is the unique ID of an

artifact. <subactivityID> tag represents an activity that is inside another one. It does not

have any parameters and its contents shows the unique ID of the contained task.

The second part of the software process specification XML document is defined

by <artifactsSpecification> tag. It is on this part that information about artifacts is

described. Each artifact is represented by <artifact> tag nested inside

<artifactsSpecification>. <artifact> tag has the parameter “id” to store a unique id and

the parameter “name” that is filled with the name of the artifact.

Software Process Specification Import Mechanism is a modification of the Mylyn’s

Context and Task Import and Export Mechanism, explained in Section 3.9.2.4.

49

Although the purpose of both mechanisms is to import an XML, so the plugin may

work, the way it is done changes dramatically. MylynSDP’s import mechanism

accesses the XML to gather information about activities, artifacts and associated

contexts, if any. Once this is done, the mechanism allocates space on the workspace

of Eclipse IDE to persist the software process specification, so it can be accessed later.

After that, the new import mechanism creates a small folder structure in a zip file that

contains the software process specification so the import operation may normally

continue and Mylyn’s import mechanism can create the required workspace structures

to keep on with the work.

Figure 4.6 - An example of an importable software process specification XML document.

50

4.4.3 Recovery Mechanism

Recovery Mechanism is a brand new functionality, when compared to the

original Mylyn. The purpose of this mechanism is to provide a way to browse a

software process specification in order to gather some information, keep track of what

tasks and artifacts were created and allow a logical relationship between task or artifact

and its type (activity or artifact included in the software process specification,

respectively).

In order to understand how it keeps track of created tasks, one must know that

Mylyn uses a unique internal identification named “handle” for tasks. It is through a

“handle” that MylynSDP is able to locate a task’s context, to know if a given task is

active or to apply a command on it, such as activating it. For that reason, it is

necessary to persist that unique id along with data about the creation of a new task.

Thus, in a future moment, such as to verify if a given task is active, MylynSDP’s code

may properly make reference to a particular task. The same applies to artifacts. Mylyn

uses a unique compound identifier to make reference to a given artifact. It is formed by

the concatenation of the address (folder hierarchy) from the root to the folder that

contains the artifact and the name of the artifact. It is possible to use this address as an

id because, on Eclipse IDE, two files in the same folder are not allowed to have the

same name. Therefore, Recovery Mechanism persists the address of the artifact as

well as its name, and also other relevant data such as the type of the artifact at the

moment of its creation.

All information described is persisted to disk in a XML file called “restore.xml”.

This file is created by Software Process Specification Import Mechanism in the current

Eclipse IDE’s workspace1. Its complete address on the file system depend on the

workspace being used and is [workspace]/.metadata/.mylyn/.restore.xml. There is only

one “restore.xml” file for each workspace, regardless of the numbers of projects on this

workspace.

Figure 4.7 shows an example of a “restore.xml” document. It can be noted from

the start that this document is similar to the imported software process specification

document. Indeed, the software process specification is integrally copied, by the

suitable import mechanism, to “restore.xml” file. However, after

<activitiesSpecification> tag and <artifactsSpecification> tag, which store information

1 Workspace is a folder created and used by Eclipse IDE in order to store project’s documents

and configuration files. Mylyn and MylynSDP accesses files contained on that folder to get

information about artifacts and to store permanent data about software process execution.

51

about activities and artifacts from the software process specification, respectively, there

are two other tags: <tasksExecution> and <artifactsExecution> tags. The first one

contains information about created tasks. It is common that there are more tasks than

the ones specified on the software process specification because an activity may be re-

executed in two more different tasks. At the moment of the creation of a task on the

Interface, the software engineer sets the name and the type of the task. By confirming

the tasks’s creation, Recovery Mechanism immediately creates a <task> tag nested

inside <tasksExecution> with the parameters “name”, which contains the task name,

and “type”, which contains the task type. This Mechanism also creates a parameter

called “handle” and fills it with the unique id Mylyn just used to set the new task. This

process is repeated to each new task created.

A similar situation happens with the creation of artifacts. When using the

specific wizard to create artifacts, a software engineer sets a directory, a name and a

type for the artifact that is being created. After a confirmation, Recovery Mechanism

creates an <artifact> tag nested inside <artifactsExecution> tag on “restore.xml”

document with the parameters “url” and “type”. The first one of the parameters is filled

with the concatenation of the address and the name of the artifacts. The second

parameter is filled with the type of the artifact.

The class that contains the code for the Recovery Mechanism is

“MylynSDPRestoreXML” and it has several methods that provide different

functionalities. These methods are used to interact with “restore.xml” file. Most of them

are used by DOI function when registering a new task, artifact or when building up a

task context based on data from software process specification. Among the methods

included in the class, it can be cited the ones from Table 4.1.

Table 4.1 – Main methods of MylynSDPRestoreXML class.

Method Name Method Description

createRestoreXml

This method creates, on a specific folder,

“restore.xml” file, which is used to store the

software process specification as well as data

from software process execution such as

which artifacts were either used or produced

on each activity.

saveTask

This method saves a new task to “restore.xml”

file, along its name, “handle” and after linking

it to its type (software process activity).

52

saveArtifact

This method saves a new artifact to

“restore.xml” file, after getting its unique

identifier, which is its location address in the

project hierarchy, and after linking it to its type

(software process artifact)

getTaskType

This method accesses “restore.xml” file and

returns the type of a task based on the

“handle” provided. It is useful when linking

tasks and activities.

getArtifactType

This method accesses “restore.xml” file and

returns the type of a task based on the “url”

and artifact type provided. It is useful when

linking execution and specification artifacts.

getTaskTypes

This method accesses “restore.xml” file and

returns a list of all existing task types

alongside their names. It is useful to discover

what tasks have (or should have) a particular

artifact in their context.

getArtifactTypes

This method accesses “restore.xml” file and

returns a list of all existing artifact types

alongside their names. It is useful to discover

what artifacts belong (or should belong) to a

particular task context.

getArtifactsIDsForActivitySpecification

This method returns the unique identifier of

artifacts that are associated to an activity

context. It is particularly useful to create task

contexts when a Specification interaction

event is performed because it helps on the

linkage between specification activity contexts

and execution task contexts.

deleteTask

This methods accesses “restore.xml” file and

delete an entry for a given task. It is useful

when a software engineer deletes a task.

deleteArtifact

This method accesses “restore.xml” file and

delete an entry for a given artifact. It is useful

when a software engineer deletes an artifact.

53

The Algorithm 4.1 shows a snippet of the code of Recovery Mechanism. The

method shown is “saveTask()” method, which is used when a software engineer

creates a new task, with the aid of a suitable wizard. This method accesses the

“restore.xml” file, looks for the suitable location among XML tasks and registers a new

XML tag that represents the created task. The parameters of the new XML tag are filled

with information offered by the software engineer about that new task.

Figure 4.7 - An example of a "restore.xml" document.

54

Algorithm 4.1 - Recovery Mechanism code snippet.

4.4.4 DOI function

The objective of this Master’s Degree study is to aid software engineers during

the execution of software processes with the creation of task contexts to facilitate the

visualization of a list of artifacts available to be accessed and by omitting artifacts that

55

do not belong to the current task context. However, in order to make it, it is essential

the use of a classification mechanism according to a predefined criteria. The

referenced mechanism is a degree of interest (DOI) function. DOI function classifies

artifacts as belonging or not to the task context being executed. This mechanism does

that based on two criteria: the interaction events performed by a software engineer with

the artifacts and the software process specification document.

DOI function is responsible to gather information of each software engineer’s

interaction with the artifacts. It is also responsible to access the software process

specification to define initial task context to the new tasks being created.

The DOI function modeled and implemented within this Master’s Degree work is

an extension of the DOI function used by Mylyn. For that reason, the main

functionalities (mapped interactions, interaction scores) that the Mylyn’s DOI function

had are included in the MylynSDP’s DOI function. New functionalities were added so

that the new DOI function was able to adapt itself to the new reality of software

process, such as the ability to access the software process specification and a new

type of interaction event.

Table 4.2 shows interaction types that a software engineer may have with

artifacts. Besides the name of each interaction event, there is a short description

illustrating when each interaction event happens. There are no significant modifications

for the five first interaction types. However, it can be noted that a new type of

interaction is introduced: the Specification interaction event. This new type is useful for

two new functionalities that were introduced in the new DOI function, which is

explained below.

Table 4.2 - MylynSDP's types of interaction event.

Interaction	 Events	 Description	

Selection	 Perform	 the	 selection	 of	 an	 artifact	 with	 the	 use	 of	 a	 mouse	 or	
keyboard.	

Edition	 Editions	 and	 modifications	 in	 the	 context	 of	 artifacts.	
Command	 Interaction	 events	 such	 as	 saving.	

Propagation	 Interaction	 type	 that	 propagates	 to	 other	 related	 artifacts.	 Applicable	
to	 Java	 class	 artifacts	 only.	

Prediction	 Event	 used	 to	 predict	 possible	 useful	 artifacts	 for	 the	 current	
executing	 task.	

Specification	
Interaction	 event	 performed	 on	 artifacts	 when	 the	 initial	 context	 of	 a	
task	 in	 being	 created	 based	 on	 the	 imported	 software	 process	
specification.	

56

DOI function considers that artifacts with a positive interest value are

interesting, that these artifacts belong to the current task context and that they should

be displayed in the software engineer’s view. As expected, negative interest values or

values equal to zero are not considered interesting to the current task being executed

and then they are omitted, and as a consequence, they are excluded from the context.

It should be noted that there is not a superior limit one artifact’s interest value.

As it was said before, the initial definition of a task context is done based on the

software process specification imported when MylynSDP started to be used. Therefore,

when a software engineer creates a new task, the DOI function accesses the software

process specification, through the Recovery Mechanism, and gathers a list of execution

artifacts that initially belongs to the task context of that task. This list is obtained

following concepts illustrated on Figure 4.8: once DOI function knows the unique

identifier of executing tasks (in the case, the task being created), it is possible to

access the “restore.xml” document (that keeps every relationship between types and

their instances) and: (1) obtain an activity’s definition, included on the software process

specification, from which the task has been instantiated. By having data about the

activity, DOI function; (2) accesses the software process specification to know which

specification artifacts are related to this activity. That list of artifacts represents the

context of the activity. Based on that specification artifact list, DOI function accesses

“restore.xml” document again to; (3) find what execution artifacts are instances of those

specification artifacts. That new list of execution artifacts forms the task context being

searched.

A similar procedure happens on the creation of the artifacts. When a given

artifact is created, its type is set, and the DOI function is able to access “restore.xml”

document, through Recover Mechanism, and obtain a list of artifacts whose contexts

should have the given task.

Consequently, if a new task is being created, some artifacts need to have their

interest value increased, so they may be added to the new task context. If the software

engineer is creating an artifact, that artifact needs to belong to some contexts. In order

to introduce some artifacts to some contexts, their interest values in relation to that

context need to be increased. However, as no interaction event has ever been

performed on that artifact, this would not be possible. Therefore, a new interaction type

was introduced: the Specification interaction event. The new interaction event is an

indirect event performed by DOI function to increase the interest value of some

artifacts. For example, when the creation of a task or artifact is being carried on, DOI

function performs a Specification interaction event on the artifacts that must have their

interest value increased.

57

Figure 4.8 - Explanation of the concepts used to create an initial task context.

Specification interaction type needs to increase an artifact’s interest value more

than other interaction types score contributions in order to guarantee that this artifact

will be added to the suitable context and it will remain there for some time even if it is

not frequently interacted at first. Therefore, it is a special interaction event that causes

a high increase on the interest value of an artifact. Table 4.3 shows the scores that are

added to interest values of each interaction event that a software engineer may

perform on a software process artifact.

Table 4.3 - Interaction event types and their scores.

Interaction	 Event	 Type	 Score	
Selection	 1	 point	
Edition	 0.7	 points	
Command	 1	 point	
Propagation	 1	 point	
Prediction	 1	 point	
Specification	 5	 points	

58

Figure 4.9 shows the class diagram of a small part of MylynSDP’s entire

implementation. Variables and methods were omitted for the sake of visualization

simplicity.

Figure 4.9 - Class diagram of a part of MylynSDP. Some classes are highlighted.

Although there are several classes on the diagram, some of them are

highlighted either because they had their implementation modified or because they are

important to the understanding of the working logic of DOI function.

“ContextCorePlugin” class is responsible to manage everything related to task

59

contexts, user interactions and interest points. It has a relationship with

“InteractionContextScaling” class and another relationship with

“InteractionContextManager” class. The latter class has a relationship with an object of

the “CompositeInteractionContext” class, which is comprised of objects of

“InteractionContext” class. “InterationContext” class has a relationship with objects from

“InteractionEvent” class and it is also comprised of objects from

“InteractionContextElement” class, which finally has a relationship with an object from

“DegreeOfInterest” class.

Part of the code of “InteractionContextScaling” class is illustrated in Algorithm

4.2. This class contains constants to the calculation of the score given by each

interaction event. It can be noted that the variable “DEFAULT_EVENT”, which is 1, is

the score constant of an event. However, in the case of an edition interaction event, the

score constant is considered 0.7. This value is expressed by the variable

“DEFAULT_EVENT_EDIT”. Besides, the limit value between an interesting artifact and

a non-interesting value is defined by “DEFAULT_INTERESTING” variable. Interest

values greater than zero are considered interesting and should belong to the task

context. It is known that, when software engineers do not interact with a given artifact,

its interest value decreases according to the rate of other interaction events are being

perfomed. The decay constant is defined by “DEFAULT_DECAY” variable and has the

value 0.4. “DEFAULT_DECAY” constant was modified from 0.017 to 0.4 in order to

better filter out results when few interactions are performed during a task execution.

Thus, artifacts are filtered more quickly.

Algorithm 4.2 - InteractionContextScaling class' code snippet.

60

The main class responsible to manage the entire set of information about task

contexts, artifacts, interaction events and interest values and calculation is

“InteractionContextManager”. This class has important methods such as

“activateContext()”, “addInteractionEvent()” and “deleteContext()”, used to manage

contexts. “InteractionContextManager” class also maintains a variable to store the

current task context being executed. The variable is “activeContext”. Algorithm 4.3 is a

snippet of the implementation of this class. Methods had their codes omitted in order to

display as many methods as possible on algorithm image. “InteractionContextManager”

full implementation has more than 30 methods and more then 1500 lines of code.

Algorithm 4.3 - InteractionContextManager class' code snippet.

“InteractionContext” class represents a task context. It is that class that stores

what artifacts belongs to a given context. The variable that holds the representation of

61

artifacts is “elementMap”. Moreover, “InteractionContext” class has a variable called

“numUserEvents”. This variable is used as a counter to the number of interactions that

happens in a given context. Calculation of an artifact’s interest value uses that variable

to estimate the decay of this value. A code snippet from “InteractionContext” class is

shown in Algorithm 4.4. Two other important variables found on this class are

“interactionHistory” and “contextScaling”. The former stores interactions that took place

when that context was active while the latter is a reference to the class that holds

default values for the calculation of artifact interest. Although a new type of interaction

must be recorded on “interactionHistory” and modifications were made to

“InteractionContextScaling” class, no major modifications were made to

“InteractionContext” class because the new interaction event was designed to work just

as existing interaction events do and because “contextScaling” variable is passed to

objects of “InteractionContextElement” classes, so they can calculate their interest

value.

Algorithm 4.4 - InteractionContext class' code snippet.

On Algorithm 4.5, it is illustrated the definition of the variables of

“InteractionEvent” class. This class is used to represent an interaction event that

software engineers are able to perform on artifacts during software process execution.

It is important to note a variable named “interestContrubution”. It is responsible to store

the contribution value a given interaction event will give to the affected artifact’s interest

62

value. The effective contribution, that is, the increase in points that will happen on the

artifact, is the result of the multiplication of “interestContribution” by the value of the

score constant related to that interaction event. “interestContribution” variable is useful

when interaction events are combined, for saving purposes for example. Thus, their

values are also added up, which reflects on the value of this variable. It can be noted,

on this class’ code snippet, the creation and initial definition of Specification interaction

event alongside the definition of other interaction events.

Algorithm 4.5 - InteractionEvent class' code snippet.

An element of a context, that is, an artifact that belongs to a task context, is

represented by “InteractionContextElement” class. It is important to note that, if a

software process execution artifact belongs to two different task contexts, two different

objects from “InteractionContextElement” are created and associated to different task

contexts. It allows each object of “IntreactionContextElement” to have its own specific

interest value in relation to a task context. An artifact’s interest value is represented by

the variable “interest”, which is an object from “DegreeOfInterest” class. A code snippet

63

from “InteractionContextElement” class, as well as the definition of its variables, is

shown in Algorithm 4.6. The two most important methods of this class are shown in

Algorithm 4.6: “getInterest()” and “getContext()” methods. As expected, the former

method returns the interest value associated with the artifact in relation to a given task

context and the latter method returns an object from “InteractionContext” class that

represents the task context that this artifact belongs to. Although there have not been

final modifications on this class, “getInterest()” and “getContext()” methods were edited

during implementation of MylynSDP in order to preview the results of modifications on

other parts of the code.

Algorithm 4.6 - InteractionContextElement class' code snippet.

The class that contains the code of DOI function is “DegreeOfInterest”. As it

was explained, in order to allow DOI function to classify artifacts, the working of other

classes, and thus other components, is essential. Algorithm 4.7 shows the algorithm

that governs the operation of DOI function. By examining Algorithm 4.7, it can be noted

that the algorithm is divided in three functional parts. The first one is the information

storage done by variables. This information is the number of the times that each

interaction event type was performed on a given artifact. Variables “edits”, “selections”,

“commands” store it. Variables “predictedBias”, “propagatedBias” are used to increase

an interest value if either that artifact suffers an indirect interaction event.

“manipulationBias” variable is used when a not interesting artifact that once belonged

to a particular task context is set to be part of that context again.

64

Algorithm 4.7 - DegreeOfInterest class' code snippet.

65

The new “specificationBias” variable exists to cover the case when an artifact

belongs to a newly created task context having a software process specification as a

base. Every variable described here starts with the value zero. It is noted the presence

of the variable “contextScaling”. That variable is the one that allows DOI function to

obtain the score constants related to each of the interaction events. The variable

“eventCountOnCreation” stores the ordinal value of the interaction event that happened

when the artifact was added to that context. This value is used to calculate the decay of

the artifact’s interest value. An object from “InteractionContext” value that represents

the context manages the decay value.

The second part of DOI function’s algorithm is more functional. It is responsible

to update the number of selections, editions or any other interaction types that are

being performed on that artifact. The main method of this part is “updateEventState()”,

which will be explained in detail later. The third part of the code is the calculation of that

artifacts’ interest value itself. This part includes three methods: “getValue()”,

“getEncodedValue()” and “getDecayValue()”. Together, these methods are able to

return an interest value to the current artifact.

The concept behind of the algorithm of DOI function is as follows. First, each

interaction event is multiplied by its score constant. After that, each final result is added

up to define a partial interest value. However, as an artifact’s interest value decreases

as the software engineer performs other interaction events, the algorithm calculates a

decay value to be subtracted from the partial interaction value. After the subtraction,

the artifact has a final interest value defined.

The work of the DOI function starts with the interaction events performed by the

software engineer. At each interaction event performed, “updateEventState()” function

of the artifact on which the interaction event was performed is called. This function

receives the object of the “InteractionEvent” class that represents the interaction event,

checks the type of interaction event and updates the corresponding variable.

“getInterestContribution()” method returns that interest event’s contribution value as it

was explained.

Artifacts’ interest values are updated at each interaction event performed by the

software engineer, or from time to time, if he does not interact with the artifacts. In

order to access an artifact’s interest value, “getValue()” method must be used. As it can

be seen in Algorithm 4.7, the variable “value” is filled with the final value of

“getEncodedValue()” method. The first instruction of the second method is to define the

value zero for “value” variable. Just after this, multiplication between the number of

selections that artifact has suffered and the selection interaction event score constant

is made. The referenced constant is a number obtained through “get()” method of

66

“contextScaling” variable, which is an object instantiated from

“InteractionContextScaling” class. That is the class that contains all constants. The

same multiplication is performed for edition and selection interaction event types. Next,

value of “manipulationBias” variable is added to “value” variable. This is particular

useful when that artifact is about to be added to that task context other then the first

time. Once it is done, the multiplication between the variable “specificationBias” and its

score constant, which is 5, is added to the partial interest value. “specificationBias”

variable does not have a value other than zero or 1. Initially, its value is zero, and it is

changed to 1 only if a Specification interest event has happened. A Specification

interest event type is performed on one or more specific artifacts right after the creation

of a new task or the creation of a new artifact when Recovery Mechanism, after

accessing the software process specification, discovers that some given artifacts

should belong to some given task contexts. The occurrence of this interaction event

indicates that the artifacts whose interest values are being calculated must belong to

the task context of the task being executed, as it was defined in the software process

specification. Therefore, if the value of “specificationBias” variable is 1, the interest

value will be largely increased. Currently, its value is increased by roughly 5 points.

This value is arbitrary and it was reached from observations and tests applied to the

DOI function. After the increase or not of this value, the artifact’s interest value is

decreased.

In order to calculate the decay value of a given artifact’s interest value,

“getDecayValue()” method is used. This method needs to know how many interaction

events happened since the creation of that artifact. Thus, it calculates the difference

between the ordinal number of the last happened interaction event (stored in “context”

variable) and the ordinal number of the interaction event that happened at the moment

of the creation of the artifact (stored in “eventCountOnCreation” variable). The resulting

value is then multiplied by the decay constant contained in “contextScaling” variable.

However, in order to address the issue of low interactions on some task contexts,

“getDecayValue()” method was modified from the original method. Right before

calculating decay value, a subtraction between the ordinal number of the last

interaction event and the ordinal number of the interaction event that added that artifact

to the current task context is made. It is useful to discover how many interactions

events were performed until the current moment. Depending on the result of that

subtraction, “getDecayValue()” method may have its final decay value reduced to its

half or not. If reduced, it means that the method’s power will be a bit weaker, which is

suitable for low interacted contexts. After that, “getDecayValue()” methods returns a

partial value. “getEncodedValue()” method is then able to subtract from “value” the

67

interest’s decay value. Once it is done, “value” is returned to “getValue()” method, so it

can be added to the values of the variables “predictedBias” and “propagatedBias”. This

happens when the artifact is the subject of a propagation indirect interaction event or

when it has been predicted that it will be used in another context. Finally, “value”, which

stores the interest value of that artifact, is returned to the suitable parts, and DOI

function algorithm is over until the next software engineer’s interaction, which restarts

all calculations all over again.

Figure 4.10 shows the execution flow of the creation and use of tasks and

artifacts on MylynSDP.

Figure 4.10 - An example of Mylyn's DOI function usage. A task interaction process example in
four steps on the left and a task interaction process example in three steps on the right.

MylynSDP’s usage may start with the creation of either a task or an artifact.

When creating a task, software engineers must use MylynSDP’s Task Creation wizard

that was specifically designed to it. An entry will be listed in MylynSDP’s Task view but

no context is created until that moment. Next, software engineers may give a name to

the new task or set any other parameters such as the expiration date or the priority of

the task. Right after that, and most importantly, software engineers should set the task

type, which is the software process activity on which that task is based. There is a list

of task types, based on the software process imported before any task or artifact

creation. Once a task type is set, it cannot be changed later. Following the setting of a

68

task type, DOI function performs some actions. First, it checks the task type set.

Second, it accesses the software process specification and looks for the activity that

represents the new task. Third, DOI function seeks what are the artifact types that

relates to that activity, which is that activity context. Finally, DOI function scans the list

of already created artifacts and look for software execution artifacts with that type.

Once those artifacts are found, MylynSDP’s DOI function performs a specification

interaction event on them, so their interest value can be increased, which makes these

artifacts belong to the new task’s context and creates an initial context for that task.

When creating an artifact, software engineers may use MylynSDP’s file creation

wizard. At the second screen of the wizard, software engineers set the software

process artifact on which the current artifact is based. Once it is finished, an entry is

created on MylynSDP’s Artifact view for the new artifact. In addition to it, MylynSDP’s

DOI function may begin to act. If no task was active at the creation moment, then DOI

function does nothing. However, if any task was active, it means that the creation of the

artifacts is relevant for that task’s execution. For that reason, DOI function needs to

increase the interest value of the new artifact in relation to the current task. DOI

function does this by performing a specification interaction event. It should be noted

that DOI function does that even if the new artifact does not belong to that task context

according to the software process specification. If there are no tasks created, then DOI

function cannot work. Once the new artifact received a specification interaction event,

its interest value goes to 5 points. When supposing that a software engineer performed

one selection to the just created artifact, its interest value is increased by the number of

interactions performed times the points that this interaction contributes to the interest

value. Up to the moment, that artifact’s interest value is (1 x 5) + (1 x 1) = 6. It is then

assumed that the software engineer performed ten other interaction events on other

artifacts that were created earlier. Every one of these interactions contributes to a

decrease in the interest value of the artifact used in this example. DOI function

calculates the decay value as the multiplication of a constant of decay by a value that

represents the number of interactions performed since the creation of that artifact,

excluding the creation interaction event. The final interest value is then the subtraction

of the current interest value and the decay value. When put in numbers, calculations

happens as follows (1 x 5) + (1 x 1) – (10 x 0.4) = 2 points of interest.

After a certain number of interactions performed to another artifacts,

MylynSDP’s DOI function notes that the interest value of the artifact used in this

example is negative and decides to exclude it from the current task context regardless

if it should belong to it according to the software process specification. For that reason,

69

differences in the execution and the specification of a software process may be

verified.

Indeed, all of the algorithms described in this section are important to the full

understanding of DOI function and MylynSDP workings. However, not all of them had

modifications on their code for the final version of MylynSDP. The ones who were

modified had their modifications explained on their respective descriptions. In any case,

the Table 4.4 below summarizes what classes have been edited for MylynSDP

implementation and, for the classes that were not edited, it shows the reason they were

included in the Dissertation.

Table 4.4 - Summary of the description of the six algorithms characterized on this section.

Classes Modifications

InteractionContextScaling
Modifications made on constants such as

DEFAULT_EVENT_EDIT and DEFAULT_DECAY.

InteractionContextManager

No modifications – This class was described due to its

importance for the system, which can be noticed by

checking its name and size.

InteractionContext
No modifications – This class was described for

understanding purporses.

InteractionEvent

Modifications on the registration of Specification

interaction event. It is decided on this class when this

event occurs and how it is saved and treated.

InteractionContextElement

No modifications – This class was described for

understanding purposes. It is important to know how

elements relate to contexts and how they store their

interest value.

DegreeOfInterest

Modifications made on this class includes:

• Changes to the way of calculating interest values

• Consideration of changes for interaction event

constants

• Consideration of Specification interaction event.

70

4.4.5 Saving Mechanism

Mylyn and MylynSDP aid software engineers to execute their jobs. While Mylyn

is focused on the implementation of a system, MylynSDP, described in this

Dissertation, aims to work on all steps of a software process. The way software

engineers are aided is with the filtering of some artifacts that are non-relevant to the

task being executed, that is, artifacts that do not belong to that task’s context. The task

change is a procedure that forces software engineers to release some artifacts, which

will be reused later. The release of artifacts also happens when software engineers

have to leave their workspace and close the IDE, the Eclipse IDE in the case. In both

cases, the presence of a mechanism that is able to persist to disk data about the usage

of task contexts is important.

Saving Mechanism is the component responsible to persist to disk information

about the existence of tasks, information about their contexts, as well as information

about every interaction event that happens during the execution of work on the IDE. It

is from that information persistence that a task context can be recreated after a task

change, or at the moment a software engineer reopens the Eclipse IDE. Mylyn, the

framework on which MylynSDP was based, keeps a hidden folder structure on the

workspace in use. It is on that structure that Saving Mechanism works. Figure 4.11

shows this folder structure.

Figure 4.11 - Folder structure managed.

71

It can be noted the existence of three folders and two files. “repository.xml.zip”

file keeps an .xml file with data about repositories that are being used. Although Mylyn

supports the use of remote repositories, MylynSDP is aimed at the local repository, that

is, the workspace used by Eclipse IDE. “tasks.xml.zip” file contains an XML file with the

main information about the task list and its tasks. Information about created tasks is

stored on the parameters of a <Task> tag nested under a <TaskList> tag on this file. It

is also stored on this document whether a task is active or not, the type of the

repository where that task is stored, the task’s creation date, finish date, estimated

time, name and priority. All of these parameters can be set at the moment of the

creation of a task. It is also persisted an identifier for that task. “tasks” folder contains

as much XML files as there are tasks created by a software engineer. Mylyn uses this

space to store the name of the files that were opened at the moment of a task context

was finished, either because of a task change or because of Eclipse shut down.

“contexts” folder also has one XML file to each task created by a software

engineer. It is on this folder that some information about task contexts is persisted.

Opposed to general intuition, neither Mylyn nor MylynSDP persist what artifacts

belongs to a given context. Instead, their suitable Saving Mechanism stores data about

what interaction events were performed while that task was active. By doing that, every

interest value of every artifact of a task context are recalculated at each task change or

at each start of Eclipse IDE. However, it would be computationally expensive if

information about every single interaction event that happened in a task context were

stored. For that reason, Mylyn and MylynSDP group interaction events that have the

same type and the same target element. This grouping creates a compound interaction

event whose score contribution in an interest value is the addition the contribution

value of each grouped interaction event. Information saved on XML files existent on

“context” folder are stored on the parameters of <interactionEvent> tag and are related

to the instant when the interaction event happened, the instant when the interaction

event finished (for the case of grouped interaction events), target artifact, interaction

event type, interest value’s contribution, ordinal number that represents the order of

this interaction event among all events ever performed and the number of grouped

events, if applicable.

It should be noted that all of this information, displayed on the folder structure

described, are imported and exported by Mylyn’s Context and Task Import and Export

Import Mechanism. Moreover, MylynSDP’s Software Process Specification Import

Mechanism converts the imported XML document to a Mylyn readable format, as it was

explained on Section 3.9.2.4, and saves it on that folder structure.

72

Major modifications were not made on the code of this mechanism. The main

contribution was the adaptations that had to be performed so a new interaction event

was considered valid by this mechanism. Therefore, the new interaction event type was

registered on “InteractionEvent” class and a call for the method

“processInteractionEvent()” is performed right after the creation of a new task or a new

artifact. Saving Mechanism treats the new Specification interaction event as a normal

event. It also stores it and gets it when necessary, the same way it is done with other

interaction events. Algorithm 4.8 shows the code snippet of the registration of an

interaction event of the type Specification.

Algorithm 4.8 - Code snippet with the registration of a Specification interaction event.

4.5 Conclusion

On this chapter, MylynSDP was introduced. MylynSDP is an extension of Mylyn

Eclipse plugin developed to solve artifact search and context change problems in all

phases of a software process execution and thus help software engineers to be more

productive. MylynSDP features a new Degree of Interest (DOI) function that monitors

interaction events performed by software engineers with artifacts and that infers a

particular artifact interest in relation to an activity being executed. As explained on this

chapter, MylynSDP’s DOI function work is based on the software process specification

imported at the beginning of the execution.

Some meaningful modifications to Mylyn and its DOI function’s original code

were implemented. Four main differences can be spotted. Firstly, MylynSDP has the

ability to import software process specifications and to process what activities and

artifacts are included on a specification as well as their relationship. This information

constitutes an initial activity context and it is used on creation of task contexts.

73

Secondly, two wizards were implemented to assist software engineers when creating

tasks and artifacts for software process execution. Both wizards are necessary to link

execution elements (tasks and artifacts) to specification elements that represent their

types (activities and artifacts). Thirdly, the Specification Interaction event was

introduced in order to help DOI function create initial contexts for new tasks or new

artifacts. Fourthly, Mylyn’s DOI function calculations were reviewed and some values

were changed. This was done to cover new realities where artifacts are less or more

interacted.

74

5 Validation Study

On this chapter, a validation study is presented and explained in

details. This validation study was conducted following formal

guidelines from experimental studies but cannot be considered one

due to the lack of comparison of results to a treatment. This

validation study is based on TAM questionnaire and its results are

also described here.

5.1 Introduction

This Master’s Degree Dissertation studies a way to help software engineers

better find interesting artifacts related to the task being performed during the execution

of a software process. When a sheer number of artifacts are available to be used on a

software process task, software engineers need to spend additional time and effort in

the search for the suitable artifacts rather than spend them on the work proposed by

the task. As a consequence, their productivity may decrease. DOI function is a

mechanism that helps software engineers to automatically locate suitable artifacts

related to the task being executed by classifying them according to their interest to the

current task. An extended version of Mylyn’s DOI function was implemented featuring

two aspects: the ability to deal with any software process artifact, from conception to

delivery and maintenance phases, and the ability to access the underlying software

process to create initial task contexts, which makes it a process-based DOI function.

The final implementation was named MylynSDP.

As explained in the previous section, MylynSDP is an Eclipse plugin that

contains the DOI function subject of this Master’s Degree study. The underlying

assumption that motivated its study is that the search for artifacts during a software

process execution may negatively affect the productivity of software engineers. Thus,

after implementing the DOI function with the new concepts, an experimentation study

should be conducted to assess the assumptions predefined when the study has been

initiated. However, due to time difficulties and shortage of participants, it was decided

to conduct a formal validation study rather than an experimental one.

For that reason, a validation study was carried out from October 2013 to

November 2013 in order to validate the concepts introduced by this Master’s Degree

study. The validation study consisted of three steps. The first one was a training phase

75

on which participants were taught concepts needed to understand the validation study

such as the DOI function mechanism, the project they were about to deal with and the

software process they would be executing. The second step asked participants to

interact with MylynSDP and its DOI function when executing a software process by

performing and solving five guided exercises, in which they had to access multiple

artifacts. On the second step, participants were asked to answer a questionnaire about

their experience when dealing with MylynSDP’s DOI function. Moreover, the time each

participant took to execute each task was recorded for analysis purposes. In addition to

time, comments were noted in order to help to draw conclusion about each participant’s

behavior when executing the proposed exercises and dealing with artifacts. The

validation study has been tested twice before its execution, and improvements were

made on the text of the exercises to avoid misunderstandings and on the

implementation of DOI to better filter results. The validation study is described in detail

in the next paragraphs.

This chapter is divided in nine more sections. Section 5.2 explains the software

process used on the validation study and its origin. Section 5.3 describes participants

that took part in this validation study, as well as their knowledge degree of Eclipse’s

working and level of expertise with software processes. Section 5.4 is about the

training phase participants went through so they could better understand what was the

study about and what were some particularities of the chosen software process, such

as artifact naming convention. Section 5.5 is related to the explanation of validation

study exercises that participants had to solve. Each exercise is described in detail

along with the goal of proposing that exercise. Section 5.6 describes Technology

Acceptance Model (TAM) questionnaire and the statements participants had to judge.

Section 5.7 is concerned with analysis done to validation study results. Answers to

TAM questionnaire and the time measured during execution of exercises are displayed

and discussed. Section 5.8 presents threats that could affect the validation of the study.

Section 5.9 concludes this chapter.

5.2 Software Process

In the middle of 2013, a real software process, with a great number of artifacts,

was searched in order to conduct the validation study. The chosen software process

comes from SIGA/EPCT project (SIGA EPCT, 2014). SIGA/EPCT project is managed

by federal academic institutions in Brazil and it aims at developing an integrated

system to manage academic institutional routine processes. The final objective is to

manage all academic data of federal institutions in Brazil that includes information

76

about student and professor registrations, institutes, departments, teaching rooms,

classes, teaching materials, attendance ratings, researches being conducted and

research papers. The project is endorsed and sponsored by Brazilian Government.

The system being developed is also named SIGA/EPCT. Brazilian federal

academic institutions are currently developing it for their own use, which makes them

their own client. In other words, they are the ones that are developing the systems and,

at the same time, they are the ones that will use it. The system is being developed

using open-source technology and it works online, which means that a user needs a

browser and an Internet connection to access it. One of the available functionalities of

the current version of the system is the ability that students and federal academic

workers have to register for an ID that proves that they study or work on that institution.

The system is online in full-time.

Access for the software process that is guiding the development of SIGA/EPCT

was granted for the purpose of this Master’s Degree research. An authorization is

attached at the end of this Dissertation on APPENDIX A. As the development of the

system was being carried out by the time the software process was accessed, it is

possible that the software process taken for this research differs from the software

process that is being used right now on the project because modifications were made

to the software process after the access made to gather it. Additionally, several

artifacts were copied, as they were currently, to be used on the validation study of this

Master’s Degree. Copied artifacts include Use Case documents, Requirement

documents, Business Rule documents, Test Cases documents, Glossary, Interface

Project, Database Models and SQL scripts.

The software process specification accessed from SIGA/EPCT has 10 activities

and 14 types of artifacts. Each of the activities included in the software process is

executed for a single use case and, when finished, the process is restarted for another

use case. Participants had a copy of the software process printed in paper and they

had another copy of the software process in a digital file. During the validation study,

participants had to deal with more than 350 available artifacts, which is the real number

of artifacts on the chosen project. Artifacts were not modified and they had their name

and content preserved. The software process specification of SIGA/EPCT project is

attached on APPENDIX A at the end of this Master’s Degree Dissertation.

5.3 Participants

Invitations were sent to students with software engineering background and

seven of them were able to participate in the validation study of this Master’s Degree.

77

Therefore, an appointment has been scheduled with each one of them so they could

operate a computer with Eclise’s plugin MylynSDP and the new DOI function installed.

During the months of October 2013 and November 2013, each of the seven

participants attended to the invitation. The validation study has been conducted with six

Doctorate students and one Master’s Degree student of software engineer.

All participants were students with the Software Engineering group at COPPE

Department at the Federal University of Rio de Janeiro (UFRJ) in Brazil at the time of

the execution of the validation study. Their experience with software development

process ranges from theoretical classes to actually working as a group in industry.

Three of the participants have already worked with software development process in a

real-world environment in industry either by modeling or executing them. Other three

participants stated that their experience with software processes are academic-related

and was carried out on a course. One participant described its experience with

software process as limited to a subject-related course in the past.

In addition, participants were asked about their experience with Eclipse IDE.

Five of them answered that they have used Eclipse either on industry-related projects

or on their own projects. Two participants did not have practical experience with

Eclipse though. One of them answered that their experience is limited to studying it on

class or on textbooks. Another participant declared that their experience with Eclipse

was none.

5.4 Training

After choosing the software process and selecting participants, it was time to

start the validation study training. It was carried out individually, like the validation study

itself, at Federal University of Rio de Janeiro (UFRJ) with each of the seven

participants. Some documents were prepared in order to help the researcher to gather

data about the study. The documents were Time Record Form, Validation Study’s

Exercises document, printed Software Process Specification, Characterization

Questionnaire, Consent Form and Final Questionnaire. Each of these documents is

attached on APPENDIX B at the end of this Master’s Degree Dissertation.

Initially, participants were asked to read and sign the Consent Form. This

document represents an authorization provided by participants to use the data

collected for academic purposes only and this document assures that the study is

confidential, though no personal information will be shared. Once participants agreed in

taking part of the validation study, they were given the Characterization Questionnaire.

The objective of this document is to learn about participants’ experience with Eclipse

78

IDE and software development processes as well as their level of education. Next,

participants went under a training, which will be detailed in the next paragraph, to learn

about the concepts they were about to deal with. At the end of the training, participants

had access to the software process, both on paper and digitally, and then the validation

study effectively started. While reading the exercises proposed on the Validation

Study’s Exercises document and performing tasks on the MylynSDP on a computer,

the researcher was able to register task execution time on the Time Record Form as

well as some comments. Finally, when the execution of the tasks has finished,

participants were asked to answer a final questionnaire comprised of twelve questions.

The final questionnaire is detailed in Section 5.6. The entire validation study took

approximately one hour for each participant.

The training step took place moments before participants were able to perform

tasks. A short presentation was created to explain what a software process is, its

importance, the problem that motivated this study and the solution provided. The

presentation also explained how to operate MylynSDP, that is, how to start and finish

an activity, where tasks and activities are and what one should do if an artifact is not

found on a task context. In addition to it, the training phase explains SIGA/EPCT

project, its objective and the naming convention used for artifacts. Participants were

free to interrupt the explanation being given to ask questions whenever they wanted.

Furthermore, at the end of the presentation, participants were asked if they had any

question before starting the validation study.

5.5 Validation Study Exercises

After the training step, the Validation Study’s Exercises document was handed

to participants. It was a 5-page document containing guided exercises that participants

were asked to solve. Exercises are described in detail later in this section, but they

were not complex, because the way participants get access to artifacts is what being

studied, not the complexity of tasks. Exercises required participants to know what

software engineering documents are and demand participants to either create,

complete or edit a short paragraph of the description of components. Additionally,

participants were presented with a computer running Eclipse with MylynSDP and its

DOI function. The underlying software development process had already been

imported on MylynSDP and five tasks had been created representing the five exercises

participants had to solve. Participants were asked to solve one exercise at a time and

in the proposed order. Moreover, participants were free to ask questions during the

79

execution of exercises. The study was conducted on an iMac running Mac OS 10.8.5

(Mountain Lion) and Eclipse 4.3.1 (Kepler).

Each of the five exercises in the Validation Study Exercises document started

with a brief text that contextualizes participants on the software project being executed.

It explains the software process activity that was about to be executed as well as the

use case that relates to it. However, the explanation text did not give any clue about

the documents that would be necessary to complete the exercise, neither their location.

As previously said, the time participants took to solve each exercise was recorded.

Time measurement do not consider the time participants took to read the exercise, but

only the time needed to solve the exercises, which starts from the moment participants

activate a task to the moment they consider it done. After that, they were asked to not

interact anymore with MylynSDP, because most interactions could be misunderstood

as valid DOI function’s interaction events on artifacts, which would be false.

Table 5.1 shows a brief description about each proposed exercise and its

objective. Exercise #1 explains that participants were assigned to two use cases and

that the execution of the software process activities relates to these use cases. Next,

exercise #1 asks participants to access one of the use cases’ specification and create

a brief description about it. Before the start of the exercise, MylynSDP’s Artifact view

shows every one of the more than 350 artifacts of the project. By the time participants

activate the proposed task, MylynSDP’s DOI function accesses the software process

specification and filters out more than half of artifacts displayed. From that time, as long

as participants interacts with artifacts, either selecting them when browsing or opening

them to check them, DOI function updates that artifact’s interest value and filters out

not interesting ones. The objective of this exercise was to observe participants actions

when facing a low filtered task context because it was the first time that task was being

executed.

Exercise #2 demands participants to correct a use case description and to

access both a requirements document and a business rule document in order to

complete the same use case description. However, it is then assumed that few

interaction events have been previously made to some artifacts, in addition to the

interactions made by DOI function when accessing the software process specification.

The objective of this exercise is to compare observations made when executing

exercises #1 and #2, which deals with low and normal filtering.

80

Table 5.1 - Exercises of validation study.

Exercises	 Objectives	

1	
Participants	 need	 to	 write	 down	 a	 use	 case	 description	 based	 on	 two	 other	
artifacts.	 This	 exercise	 is	 aimed	 at	 monitoring	 participants’	 behavior	 when	 facing	
low	 filtering	 scenario	 due	 to	 the	 lack	 of	 interactions	 with	 artifacts.	

2	

Participants	 are	 required	 to	 edit	 a	 use	 case	 description	 according	 to	 two	 other	
artifacts.	 However,	 this	 exercise	 simulates	 a	 case	 in	 which	 software	 engineers	 are	
not	 new	 to	 the	 executing	 taks	 because	 some	 interactions	 have	 been	 performed	
on	 the	 task	 context.	

3	

Participants	 review	 a	 use	 case	 description,	 which	 has	 acronyms	 written	 on	 it.	
Participants	 then	 seek	 for	 Glossay	 artifact,	 which	 do	 not	 belong	 to	 this	 task	
context	 based	 on	 the	 software	 process.	 This	 exercise	 is	 aimed	 at	 observing	
participants’	 reactions	 and	 what	 they	 do	 when	 a	 needed	 artifact	 do	 not	 belong	 to	
the	 executing	 task	 context.	

4	

Participants	 write	 down	 a	 brief	 description	 for	 a	 test	 case	 after	 accessing	 other	
test	 case	 descriptions	 and	 after	 checking	 a	 note	 left	 on	 a	 use	 case	 description.	
This	 exercise	 was	 created	 to	 simulate	 a	 task	 change	 when	 interrupted	 by	 exercise	
#5.	

5	

Participants	 are	 asked	 to	 create	 an	 SQL	 table	 code	 based	 on	 a	 database	 model	
and	 on	 other	 existing	 SQL	 codes.	 This	 exercise	 was	 designed	 to	 interrupt	 exercise	
#4’s	 execution	 and	 simulate	 a	 task	 change,	 so	 reaction	 of	 participants	 can	 be	
observed.	

Exercise #3 shows participants a note left by another software engineer in

which it is written a message that says that the description of a third use case, not

initially assigned to the current participant, was completed on the previous day, but it

was not revised. Thus, the second software process specification’s activity was not fully

performed. Participants then are asked to revise the use case description pointed in the

message and to search for misspelled words, grammar mistakes and, most

importantly, the use of acronyms. It was said that acronyms were not allowed, so that

participants would have to access the Glossary document in order to write down the full

word an acronym means. However, Glossary is not defined on that activity context

according to the software process specification. As a result, it was filtered out and did

not appear to participants in the suitable view. The objective of this exercise was to

observe what participants would do when facing a situation in which a needed artifact

did not belong to the current task context. Although there is a button to show all the

other artifacts that are not in a particular task context, there are several ways an artifact

can be found when it is filtered out, which includes opening another task in whose

context there is the desired artifact, make a search on the IDE for the missing artifact or

even perform a search on the file system for the artifact.

Exercises #4 and #5 simulates a context change. The former exercise asks

participants to briefly describe a single test case based on the tests that are specified

81

to be made. However, when participants started to write down some words of the

proposed description, exercise #5, a high priority task, interrupted them demanding that

they switched their attention to the new task. Exercise #5’s explanation text says that

software engineers of the organization needs participants to complete an SQL

document based on a database model document accessed when performing the last

activity of the software process specification. After finishing exercise #5, participants

were allowed to return to exercise #4 and finish it also. As explained, the objective of

these exercises was to simulate a context change with two exercises and observe what

are the implications of that action on the software engineer work.

After completing the five proposed exercises, participants were asked to answer

a twelve-item questionnaire with statements about their experience when executing the

software process using MylynSDP and its DOI function. The explanation of the

questionnaire is found on the next section.

5.6 Technology Acceptance Model

Technology Acceptance Model (TAM) (DAVIS, 1986, DAVIS, 1989) is a model

used to study to what extent a person seems to accept or reject a given technology.

The model is an adaptation of the Theory of Reasoned Action (TRA) (AJZEN &

FISHBEIN, 1980), which is a widely studied model from social psychology that

investigates people behavior. According to TRA, a person’s intention is determined by

the person’s attitude and subjective norm concerning the behavior in question. TRA is

very general and it was designed to explain virtually any human behavior. TAM, on the

other hand, is less general than TRA because it was designed to be applied only to

computer usage behavior. TAM specifies two variables that may influence a system

usage: perceived usefulness and perceived ease of use.

Perceived usefulness, as the word useful implies, is defined as the degree to

which a person believes that using a particular system will help them perform their job

better. Perceived ease of use refers to the degree to which a person believes that

using a particular system would be free of effort. One person may find a system useful

for his daily life work, but he also may find it hard to use, which is evidenced by

perceived ease of use. In contrast, a person may consider a system easy to use, but

useless for his duty.

Technology Acceptance Model has been used in several papers such as

(LAURIDSEN, 2011, SANTO, 2012, VAZ et al., 2012. An extensive research about

TAM is found on (BAGOZZI, 2007, DAVIS, 1993, DAVIS et al., 1989). TAM takes form

in a questionnaire with twelve statements and seven possible answers. Statements

82

were divided in two groups. The first group of six statements relates to perceived

usefulness and the second groups of the remaining six statements relates to perceived

ease of use. Each of TAM’s statements is aimed at measuring a specific metric on

participant’s answers.

Table 5.2 shows each statement used on this Master’s Degree’s validation

study and the metric that was being observed. The set of seven possible answers

contains the answers “I completely disagree”, “I partially disagree”, “I slightly disagree”,

“I do not agree, nor disagree”, “I slightly agree”, “I partially agree” and “I completely

agree”. Once the questionnaire was completed, participants were thanked and the

validation study was over.

Table 5.2 - Statements of the validation study alongside the metrics observed.

Number	 Statement	 Metric	

S1	 Using	 DOI	 function	 on	 my	 job	 allows	 me	 to	 perform	 tasks	
quickly	 Work	 more	 quickly	

S2	 Using	 DOI	 function	 improves	 my	 job	 performance	 Job	 performance	
S3	 Using	 DOI	 function	 on	 my	 job	 increases	 my	 productivity	 Increase	 productivity	
S4	 Using	 DOI	 function	 enhances	 my	 effectiveness	 on	 the	 job	 Effectiveness	
S5	 Using	 DOI	 function	 makes	 it	 easier	 to	 do	 my	 job	 Make	 job	 easier	
S6	 I	 consider	 DOI	 function	 useful	 in	 my	 job	 Useful	
S7	 Learn	 to	 use	 DOI	 function	 was	 easy	 for	 me.	 Easy	 to	 learn	

S8	 I	 consider	 it	 easy	 to	 get	 DOI	 function	 to	 do	 what	 I	 want	 it	
to	 do	 Controllable	

S9	 My	 interaction	 with	 DOI	 function	 was	 clear	 and	
understandable	

Clear	 and	
understandable	

S10	 I	 consider	 DOI	 function	 flexible	 to	 interact	 with	 Flexible	
S11	 I	 consider	 it	 easy	 to	 become	 skillful	 at	 using	 DOI	 function	 Skillful	
S12	 I	 consider	 DOI	 function	 easy	 to	 use	 Easy	 to	 use	

5.7 Analysis

Answers to TAM questionnaire and exercises’ execution times were then saved

and processed in order to be later analyzed, which helps to draw conclusions.

Researcher’s comments were also saved because they may help to explain a particular

low or high result. The validation study was not a formal experiment study mostly due

to time problems. However, it followed a certain degree of formalism in order to be

better carried on. As previously mentioned, statements contained on TAM

questionnaire were divided into two groups: those related to the perceived usefulness

and those related to the perceived ease of use. Thus, the validation study has two well-

defined objectives, which are described in Table 5.3 and Table 5.4

83

Table 5.3 - First goal of validation study.

Analyze	 DOI	 function	
With	 the	 purpose	 of	 Characterize	
With	 respect	 to	 Usefulness	
In	 the	 context	 of	 Academic	 management	 system	 development	
Under	 the	 perspective	 of	 Software	 engineers	 executing	 a	 software	 development	 process	

Table 5.4 - Second goal of validation study.

Analyze	 DOI	 function	
With	 the	 purpose	 of	 Characterize	
With	 respect	 to	 Ease	 of	 use	
In	 the	 context	 of	 Academic	 management	 system	 development	
Under	 the	 perspective	 of	 Software	 engineers	 executing	 a	 software	 development	 process	

Each of the twelve statements had its seven possible answers calculated in

percentage. The percentage of each answer was then transported to a spreadsheet

and a graphic was generated. This was done to better visualize which features were

considered more important and which were not by participants. Figure 5.4 shows the

graph and the percentage of each answer given in the questionnaire. It can be noted

that in all statements “I completely agree” answer has been given in more than 50% of

the times, except on statement #5. This will be commented in the following paragraph.

The good overall result about MylynSDP and its DOI function usefulness and ease of

use shows that they are likely to be accepted by software engineers during the

execution of a software process. However, some points worth mentioning.

Statement #5 deals with the ability of the technology to make participants’ job

easier. This was the only statement that was not rated more than 50% on “I completely

agree” answer. Nevertheless, the other answers were divided into “I slightly agree” and

“I partially agree”, which are positive answers and do not negatively affects the final

general opinion about MylynSDP’s DOI function capacity of making jobs easier.

In statement #6, which deals with usefulness of the technology being observed,

one of the participants did not considered DOI function to be useful in his job. The

same participant wrote a comment at the end of the questionnaire in which he explains

that he had been working with software development and he did not see DOI function

useful in this field. As explained, MylynSDP’s DOI function was designed to be useful in

every phase of the software process, since its conception to its delivery and

maintenance, including its development, phase in which the system is really

implemented. As MylynSDP’s DOI function was based on another DOI function

specifically aimed at the implementation phase, a generalization had to be done. The

84

generalization of some concepts naturally makes them less suitable for a particular

field in favor of dealing with more cases. Perhaps, this is why this participant

understood Mylyn’s DOI function as not so useful on software development field.

Figure 5.1 - Percentage of answers given by participants on the questionnaire.

Another important comment can be made on the answers given to statement

#8. Answers given to this statement measure the opinion of participants about whether

it is easy to get DOI function to do what is intended or not, which is called

controllability. One of the participants did not considered controllability as one feature

included in DOI function. It should be noted that the participant who evaluated such

score had some difficulties with Mac operating system’s interface when dealing with

scrolling, minimizing and closing documents. Although these difficulties may have

slightly affected that participant’s opinion, the overall score for Mylyn’s DOI function’s

controllability was good enough.

Statements #1 and #9 had both the “I slightly do not agree” answer, which is

considered a low score and indicates that they must be investigated. Statement #1

deals with how quick a job would be performed when working with the technology

being observed, which was the DOI function. One participant of the validation study

thus did not consider the use of DOI function in software engineering field as a

85

mechanism that would help software engineers to work more quickly. Unfortunately,

the same participant did not make a comment about it either written or verbally. For

that reason, no explanation can be given to that low score. However, the scores given

by other participants shows that the majority of answers considers DOI function a

mechanism that helped them work quicker. Thus, the low score received by statement

#1 can be considered an outlier.

Similar to statement #1, statement #9 also received a low score. One of the

participants of the validation study slightly disagreed that DOI function is clear and

understandable by software engineers when working with them. Although there were

no explanations at the end of the questionnaire, that participant left a comment. The

participant suggests that DOI function’s filtering should be improved by the use of

keywords. The participant explains that keywords can be used either to look for

particular words in the name of the artifacts and their contents or to mark artifacts,

similarly to the use of tags, according to whatever software engineers want. However,

the use of keywords may not be the most suitable approach due to the fact that most

used keywords may not belong to the underlying software process. Perhaps, using

words from the already created Glossary could achieve better results.

Statement #3 deals with productivity, which is, in general terms, the amount of

work produced in a period of time. Answers given to statement #3 help to picture how

accurate MylynSDP’s DOI function and concepts involved in its working aid software

engineers to get more productive. It can be seen that more than half of participants

perceived that DOI function may help them produce more when executing software

processes. Although this is a good final score for statement #3, it was expected higher

score on this metric as MylynSDP is mostly aimed at increasing productivity.

Participants did not left any comment about it.

Finally, one last point should be mentioned and it is related to statement #2.

This statement measures participant’s opinion about the improvement on job

performance that the use of DOI function may cause. Two participants answered that

they slightly agree to that statement and others completely agreed. The overall score

for that statement is good and the use of DOI function in all phases of the software

process execution tends to result on a performance enhancement. Although a good

final score was observed on statement #2, no comments were left to explain the

reasons for not a higher score.

The time each participant took to solve each one of the five exercises was

measured and is displayed on Table 5.5. Times are in mm:ss.cc format, where mm

stands for two-digit minutes, ss stands for two-digit seconds and cc stands for

centiseconds, which is the hundredth of a second. Note that the fourth column of times

86

shows the execution time for exercises #4 and #5 together because they simulated a

context change and then exercise #5 happened during the execution of exercise #4.

Two points can be highlighted concerning the times.

Table 5.5 - Execution times for each of the participants on each of the exercises.

Total	 Time	 E1	 E2	 E3	 E4	 &	 E5	
P1	 19:13.21	 13:09.88	 06:42.01	 17:19.32	
P2	 12:48.14	 06:57.90	 04:09.82	 11:20.61	
P3	 06:40.14	 05:11.61	 05:03.62	 10:13.14	
P4	 12:06.63	 06:56.34	 05:36.09	 18:26.97	
P5	 11:15.77	 08:28.03	 04:22.90	 21:00.98	
P6	 09:41.56	 04:28.41	 03:04.93	 05:45.61	
P7	 14:20.39	 12:49.01	 07:40.77	 14:45.78	

The first point relates to the comparison between exercises #1 and #2. Exercise

#1 asks participants to write a short description for a use case document. To do that,

participants should access a business rule, included on a business rule document, and

a requirement, included on a requirements document. Exercise #2, although different,

has same similarities. Participants had to edit another use case description and for

that, they should check a business rule, on a suitable business rule document and the

glossary document. The main difference between both exercises that that exercise #1

have not received any interaction other than the initial interaction events performed by

DOI function when initiating the activity. For that reason, several artifacts were still

visible by the time the participants started the exercised. Exercise #2 simulates a case

in which some interaction events were performed on some artifacts. In other words, it

acts as if the user is not totally new to the exercise. As a consequence, it can be noted

that all measured times were reduced, especially for participants that did not executed

the first exercise quickly. Skilled participants, the ones that solved the first exercise in

less than ten minutes, also reduced their times, but it was not observed a significant

reduction in one participant’s execution time of exercise #2.

The second point to be commented compares the times of the exercises #1 and

#4 & #5. Participants P1, P2, P6 and P7 were able to reduce their time or perform at a

similar time from exercise #1 to the last one. This worth highlighting because its a

comparison between one exercise with low filtering, which is exercise #1, and two

exercises with good filtering, which are exercises #4 & #5. No comments made by the

author of this Dissertation explain the reasons why other participants had their time

increased when they executed the two final exercises. Thus, it can be concluded that

the amount of work was the main cause as expected.

87

5.8 Threats to Validity

Although there are not formal ways to conduct a validation study, some

experimental guidelines were followed in order to offer a baseline to the execution of

this Master’s Degree’s validation study. There are some threats that may influence

positively or negatively the outcomes and observations made on this validation study. It

is believed that none of these threats had a significant impact on the results described

earlier though. Threats to validity are listed in the following paragraphs.

The validation study was carried on with the presence of seven participants.

Although all participants had a high expertise in the software engineering field as well

as software process modeling and execution, it is known that seven is a low number of

participants to draw meaningful conclusions about the pros and counters of the use of

DOI function on a software process execution. It would be necessary more participants

and opinions in order to better find out trends in the execution that either facilitates or

make software engineer’s activities harder. However, the results of this validation study

executed with seven participants can be used as a starting point for more investigation.

During the conception of the validation study, it was decided to use a real

software process, from a real software project, in order to better observe how DOI

function would be affected by particularities featured on real software processes.

Participants were first introduced to that software process during the training made

right before the execution of the validation study. Therefore, none of the participants

knew the software process before and as a consequence any of them were

experienced with that particular software process. The fact that it was the first time that

participants interacted with the software process used in the validation study has its

consequences. Participants took some time to understand what software process

activity was about to be executed. Thus, results of the validation study may be slightly

affected because each participant was totally new to the project.

Every software project has its own particularities. One of the particularities of

the software project used in the validation study was the naming convention used to

name artifacts. Most participants complained about the name of the artifacts because

they were long and confusing. Moreover, participants noted that few artifacts’ name did

not follow the naming convention. Although this was noted before the execution of the

validation study, nothing could be done to mitigate this threat. The reason is that

artifacts used in the validation study execution were the same artifacts used in the

software process real execution, the execution performed by the owner of the software

88

process. Thus, it was a particularity that came along with the software process used in

the validation.

The validation study was executed using an iMac. Six of the seven participants

were not familiar with Mac operating system and they had minor problems when

performing some tasks during the execution of the validation study such as scrolling

with the mouse and minimizing a window with the contents of an artifact. One

participant had problems with writing on the keyboard because it was set to

international English rather then Brazilian Portuguese, which has some implications on

the position of keys such as the tilde (~). Participants were free to ask any questions

they wanted during the execution of the validation study, such as “how do I scroll?”,

and thus these problems were solved with quick instructions. It is believed that these

difficulties have not affected the overall performance of participants in the validation

study.

5.9 Conclusion

A validation study has been conducted in order to assess concepts that were

discussed in this Dissertation. Therefore, participants were invited to take part in the

validation study, which consists of executing some software process activities and

answering a questionnaire about their experience.

As it can be drawn from the results, participants were positive about

MylynSDP’s importance for software engineering field as well as its new DOI function.

Most of them well understood the concepts that underlie this research project.

Moreover, when observing execution times for each of exercises on the validation

study, it can be noted that as much filtered a context is, as much higher are the

benefits of DOI function to the software engineer.

This chapter is concerned with explanations to the validation study since its

conception to its execution and analysis of results. Every aspect of the validation study,

such as its participants, exercises, phases and results, are detailed with enough

information to its comprehension.

89

6 Conclusion

On this chapter, conclusions are drawn. In addition, this chapter

explains some of the limitations MylynSDP’s DOI function has.

Finally, some room for future work is presented and the concepts

involved in their development are discussed.

6.1 Conclusions

Software processes are used when developing computer software in order to

guide the work of software engineers towards the production of a system with quality.

During the execution of software processes, activities are performed. By performing

activities, artifacts are either consumed or produced. Depending on the size and

complexity of the software being developed, its underlying software process may also

be big and complex. Moreover, the number of artifacts used in the execution of the

software process can be excessive high. To perform an activity under a condition such

as the one described, software engineers may search for suitable artifacts that will be

used during the activity’s execution. The search for the set of suitable artifacts that

relates to that activity execution is performed among several other artifacts that are not

interesting at the moment. For that reason, that search can be tiring, confusing, error-

prone and time-consuming.

In addition to this, at any given moment, an activity execution may be

interrupted either by the presence of another activity with higher priority or by parallel

execution of activities. As a consequence, the current activity context, which comprises

the artifacts that are being used during the execution of that activity, must be either

closed or left aside to give room for the new activity context. A new search for context

is then made. When the interrupting task is finished, the software engineer then may

resume the interrupted activity execution. If necessary, a search for its context is then

performed one more time. This is known as context change problem and it negatively

affects the software engineer’s performance on the task as well as its productivity once

he must spend additional time and effort on the search for suitable artifacts rather then

on the work of the activity.

This Master’s Degree work proposed a new way of executing software

processes with the use of a Degree of Interest (DOI) function in order to solve the

artifact search and context change problems. A DOI function scores element according

90

to predefined algorithms and was used to infer artifact’s interest value in relation to the

software process activity that was being performed. Mylyn, an Eclipse plugin, helps

programmers when executing coding tasks, using an implementation of a DOI function.

Mylyn’s DOI function scores Java classes based on the frequency of use and filters out

unused classes. However, Mylyn’s DOI function is aimed only at the implementation

phase of computer software. Moreover, tasks contexts are created manually.

For that reason, Myly’s DOI function was extended in order to help software

engineers during every phase of the execution of a software process, since conception

to delivery, maintenance and retirement. Additionally, the new DOI function is able to

consider the existence of an underlying software process that guides the development

of the software and, as a consequence, activity contexts can be initially created

automatically. This is feasible because the relation between activities and artifacts are

already defined on the software process specification. The final implementation of DOI

function also works as an Eclipse plugin and as named MylynSDP.

As a way to summarize and compare MylynSDP’s features with each one of the

related work researched on this Master’s Degree, Table 6.1 condenses each related

work project’s drawback and compares it with MylynSDP.

Table 6.1 - MylynSDP's features and related work's drawbacks put in a nutshell for comparison
purposes.

 Related Work drawback MylynSDP

Presto and

Placeless

Projects

Manual classification of

documents in order to put them in

a context;

Update of the entire set of

documents that belongs to a new

value of property.

Artifacts are automatically added

to a task context based on their

relation with software process

specification artifacts.

Artifacts that belong to a new

task context are automatically

added to it.

TaskTracer Limited to Microsoft Office

package and Internet Explorer

browser.

Eclipse’s file editors belong to the

reality of the work of a software

engineer. Plus, virtually any file

type can be manipulated by

referring it as an external file.

UMEA Lack of integration with new

technologies.

MylynSDP was created on top of

Eclipse IDE, which is extremely

extensible and may have new

91

plugins to implement new

functionalities.

WebAPSEE Manual allocation of artifacts to

activities.

Artifacts are automatically

associated with tasks based on

the software process

specification.

TABA Station Software development

environment needs to be

recreated to reflect modifications

on the software process

specification.

Modifications to the software

process specification require

software engineers to reupload it

to MylynSDP. This is not a

longstanding job.

Software

Traceability

Considerable amount of time due

to lack of automatization;

Minimal computer aid;

Considerable processing capacity;

Traceability matrix needs to be

reprocessed to reflect new

artifacts or activities

Contexts are created in real time;

Computer-aided execution;

Relatively low processing

capacity;

No additional processing

required when adding new

artifacts or tasks.

Mylyn Aimed only at implementation

phase of software process;

Aimed only at code documents

only;

Aimed only at coding tasks only;

Do not consider the existence of a

software process;

Do not base its working in a

software process.

MylynSDP is aimed at all phases

of a software development

process;

MylynSDP is aimed at virtually all

documents types, including

diagrams, images, text

documents and spreadsheets;

MylynSDP is aimed to support

any task type;

MylynSDP takes into

consideration the existence of a

software process specification to

its DOI calculations;

MylynSDP base its workings on

the underlying software process

specification when, for example,

associates artifacts and task

contexts.

92

In order to observe the implications of the concepts proposed in this Master’s

Degree Dissertation, a validation study has been conducted. Seven participants

interacted with MylynSDP’ DOI function using a real software process and real

artifacts. Participants were Master’s Degree and Doctoral Degree students and they

have high level of expertise and experience with software process execution. After

solving some guided exercises, participants were asked to answer a twelve-statement

questionnaire. The questionnaire is used to measure how useful a technology is and

how easy it is to deal with it. All but one of the statements had more than 50% of high

evaluation, which means that MylynSDP, its DOI function and the surrounding

concepts received good results and good acceptation.

Furthermore, some point should be noted. The first point is related to the

frequency artifacts are interacted with in the new reality. It was noted that some

artifacts are less interacted with during other phases of the software process execution.

For instance, when writing a use case document on a given day, software engineers

will not open and close the same document as much times as it would be done with

Java classes. For that reason, DOI function was adjusted to better cover both cases,

the ones in which artifacts are greatly interacted and the ones in which artifacts are not

so interacted.

Moreover, when the activity being executed do not require a lot of interactions

to be performed on its artifacts, not interesting artifacts seemed to take longer to be

omitted. Therefore adjustments made on DOI function changed the decay value in

order to let it omit some not interesting artifacts quicker.

Although software processes represent a guide to the order activities should be

performed, it was noted that it was not relevant to the aid DOI function was designed to

provide. In order words, the order of the software process activities were not important

when executing the software process with the aid of MylynSDP’s DOI function. Thus,

there is not any mechanism that prevents software engineers to execute one activity

before another one.

As this DOI function is aimed at helping one software engineer at a time, the

role element of some software processes notations, such as BMPN, was not featured

in MylynSDP. It could be particularly useful in order to filter activities and tasks for

software engineer that uses MylynSDP. However, roles were not necessary to the first

version of DOI function for software engineering field. An implementation of roles for

MylynSDP is considered for the future though.

93

6.2 Limitations

As previously explained, MylynSDP’s DOI function was based on Mylyn’s DOI

function. For that reason, Mylyn plugin’s code was downloaded and accessed in order

to understand how Mylyn’s DOI function works and filters classes. This was an awful

task because there were few documentation files available that explain how Mylyn and

its DOI function works. Neither on Mylyn’s official website there were useful documents

that explains in detail how Mylyn components works or relates.

Furthermore, Mylyn’s code is divided into more than 200 Java projects and

contains far more Java packages. Several of the hundreds Java classes were

accessed in order to understand how Mylyn works, and how its DOI function detects an

user interaction, calculates artifacts’ interest value and manages contexts saving. The

sheer number of Java classes was a problem that Mylyn itself was not helpful at

solving because, as it was a discovery task, new classes were accessed all the time.

That is different of when a programmer performs a coding task and looks for some

related classes. Several questions about the code were raised and the most pertinent

ones were submitted to Mylyn’s developer e-mail list in which creators and other Mylyn

developers help was really appreciated.

MylynSDP works with artifacts that can be opened using Eclipse’s default file

editor. However, this limits the set of type of files that can be used by software

engineers. For that reason, external artifacts may be imported during artifact creation

on the suitable wizards designed for that purpose. Thus, Microsoft Office Word and

Excel documents as well as databases schemas, class diagrams and interface

sketches can be externally opened when an artifact icon is double clicked on the

artifact view. However, when this is the way artifacts are opened, MylynSDP is not able

to process editing and command interaction events because the operating system is

the one charged of the management of the artifact.

Lastly, when importing a software process specification to MylynSDP, a suitable

mechanism checks what are the artifact and activity types and saves it in a document

so DOI function can understand what activities and artifacts may be created. However,

it is extremely important that names of activities and artifacts in the software process

specification should be properly written. For example, if an activity uses an artifact

named “Class Diagram” and another activity uses the same artifact, but its name was

misspelled as “Classes Diagram”, MylynSDP will treat them as two different types of

artifact. Thus, names of activities and artifacts should be properly written and follow a

convention.

94

6.3 Future Work

The concepts that surround MylynSDP and its DOI function are expandable and

they can be used in several ways to help software engineers. Numerous ideas were

raised but due to time constraints they could not be implemented and tested. Some

other ideas were created as improvements of the current concepts already in use by

MylynSDP. All future work will be mentioned in this section.

MylynSDP maintains a log file with interactions that were performed by software

engineers on artifacts. This log is extremely important for future analysis but it is not

easy to understand. A better human readable log file is handy to check, for example, is

the execution of the software process followed as expected or if there were major

issues that should be fixed. That log file is able to tell if some activities had more

artifacts used than the specified in the software process or if some activities used less

artifacts than it needed. A future work can also be a mechanism that suggests

modification to the software process specification based on the way it was executed.

During the validation study, it was observed that some activities throughout the

software development do not require intense interaction events. For example, a

software engineer who is reviewing a use case document of the specification of

computer software may not switch documents often. For that reason, the time an

artifact is being used should also be taken into consideration by DOI function in the

calculation of the interest value of an artifact. Currently, just clicks and keystrokes are

being used as interaction events. Thus, artifacts opened for a longer time would be

considered more important than artifacts that remain closed for most of the time.

DOI function’s scoring algorithm, as mentioned, process interaction events with

documents such as selections and edits. However, other input methods should also be

considered like image editions. Software engineers often deal with diagram creation or

any other image manipulation. Image documents, and other similar types of artifacts,

are not fully supported by MylynSDP.

Software engineers deals with several types of artifacts that range from

documents, to tables, code and diagrams. In order to make DOI function able to deal

with all types of artifacts, their contents were not taken into consideration. A useful

approach considers sections of written documents as different parts of the calculation

of interest value. As a consequence, DOI would be able to calculate which section is

interesting for that activity execution, rather than the entire document. That means that

the granularity of filtering should be enhanced.

The final suggestion of work that can be done in the future deals with groups of

software engineers. Some studies research collaboration on the execution of software

95

process (GRAMBOW et al., 2011, GRAMBOW et al., 2013). DOI function is a great

feature to help group of software engineers better execute their activities. Thus, a

useful concept is that DOI functions communicate with each other, maybe with a

shared repository of data, and change information to better calculate artifact’s interest

value and create contexts more effectively. Software engineers that are new to the

project would benefit the most from this feature because they would not have to browse

over low filtered artifacts as contexts from other software engineers would help his DOI

function to better filter the context of his current activity.

96

BIBLIOGRAPHIC REFERENCES

AALST, W. M. P. van der, HOFSTEDE, A. H. M. ter, WESKE, M., 2003, “Business

Process Management: A Survey”. In: Proceedings of the 2003 International

Conference on Business Process Management, pp. 1-12, Eindhoven, The

Netherlands, June 2003.

AALST, W. M. P. van der, 2007, “Trends in Business Process Analysis: From

Verification to Process Mining”. In: Proceedings of the 9th International

Conference on Enterprise Information Systems (ICEIS 9), pp. 12-16, Funchal,

Madeira, Portugal, June 2007.

AALST, W. M. P. van der, 1999, “Formalization and Verification of Event-driven

Process Chains”. Information and Software Technology, vol. 41, no. 10, pp.

639-650, July 1999.

AJZEN, I., FISHBEIN, M., 1980, Understanding Attitudes and Predicting Social

Behavior. Englewood Cliffs, NJ. Prentice-Hall.

AMBRIOLA, V., CONRADI, R., FUGGETTA, A., 1997, “Assessing Process-Centered

Software Engineering Environments”. ACM Transactions on Software

Engineering and Methodology, vol. 6, no. 3, pp. 283-328, July 1997.

ANDERSON, K., M., SHERBA, S. A., LEPTHIEN, W. V., 2002, “Towards Large-Scale

Information Integration”. In: Proceedings of the 24th International Conference

on Software Engineering, pp. 524-534, Orlando, FL, USA, May 2002.

ANNOSI, M. C., PASCALE, A., GROSS, D. et al., 2008, “Analyzing Software Process

Alignment with Organizational Business Strategies using an Agent- and Goal-

oriented Analysis Technique – an Experience Report”. In: Proceedings of the 3rd

i* International Workshop, pp. 9-12, Recife, Brazil, February 2008.

ANTONIOL, G., CANFORA, G., CASAZZA, G. et al., 2002, “Recovering Traceability

Links between Code and Documentation”. IEEE Transactions on Software

Engineering, vol. 28, no. 10, pp. 970-983, October 2002.

ARBAOUI, S., DERNIAME, J. C., OQUENDO, F. et al., 2002, “A Comparative Review

of Process-Centered Software Engineering Environments”. Annals of Software

Engineering, vol. 14, no. 1-4, pp. 311-340, December 2002.

97

ASHRAFI, N., 2003, “The impact of software process improvement on quality: In theory

and practice”. Information and Management, vol. 40, no. 7, pp. 677-690, August

2003.

ASUNCION, H. U., ASUNCION, A. U., TAYLOR, R. N., 2010, “Software Traceability

with Topic Modeling”. In: Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering, pp. 95-104, Cape Town, South Africa,

May 2010.

BAGOZZI, R. P., 2007, “The Legacy of the Technology Acceptance Model and a

Proposal for a Paradigm Shift”. Journal of the Association for Information

Systems, vol. 8, no. 4, pp. 244-254, April 2007.

BARJIS, J., 2008, “The importance of business process modeling in software systems

design”. Science of Computer Programming, vol. 71, no. 1, pp. 73-87, March

2008.

BERGER, P. M., 2003, Instanciação de Processos de Software em Ambientes

Configurados na Estação TABA. M.Sc. dissertation, COPPE/UFRJ, Rio de

Janeiro, RJ, Brazil.

CAMPOS, A., OLIVEIRA, T., 2012. “Modeling Work Processes and Software

Development: Notation and Tool”. In: Proceedings of the 13th International

Conference on Enterprise Information Systems, pp. 337-343, Beijing, China,

June 2011.

COSTA, A. SALES, E., REIS, C. A. L. et al., 2007, “Apoio a Reutilização de Processos

de Software através de Templates e Versões”. In: VI Simpósio Brasileiro de Q

 ualidade de Software, pp. 47-61, Porto de Galinhas, Pernambuco, Brazil,

June 2007.

DAVIS, F. D., 1993, “User acceptance of information technology: system

characteristics, user perceptions and behavioral impacts”. International Journal

of Man-Machine Studies, vol. 38, no. 3, pp. 475-487, March 1993.

DAVIS, F. D., BAGOZZI, R. P., WARSHAW, P. R., 1989, “User Acceptance of

Computer Technology: A Comparison of Two Theoretical Models”. Management

Science, vol. 35, no. 8, pp. 982-1003, August 1989.

DAVIS, F. D., 1989, “Perceived Usefulness, Perceived Ease of Use, and User

Acceptance of Information Technology”. MIS Quarterly: Management

Information Systems, vol. 13, no. 3, pp. 319-340, September 1989.

98

DAVIS, F. D., 1986, A Technology Acceptance Model for Empirically Testing New

End-User Information Systems: Theory and Results. Ph.D. Thesis,

Massachusetts Institute of Technology, Cambridge, MA, USA.

DOURISH, P., EDWARDS, W. K., LAMARCA, A. et al., 1999, “Using Properties for

Uniform Interaction in the Presto Document System”. In: Proceedings of the 12th

annual ACM Symposium on User Interface Software and Technology, pp.

55-64, Ashville, NC, USA, November 1999.

DRAGUNOV, A. N., DIETTERICH, T. G., JOHNSRUDE, K. et al., 2005, “TaskTracer: A

Desktop Environment to Support Multi-tasking Knowledge Workers”. In:

Proceedings of the 10th International Conference on Intelligent User

Interfaces, pp. 75-82, Sand Diego, CA, USA, January 2005.

FRANÇA, B. B. N., SALES, E. O., REIS, C. A. L. et al., 2009, “Utilização do Ambiente

WebAPSEE na implantação do nível G do MPS.BR no CTIC-UFPA”. In: VIII

Simpósio Brasileiro de Qualidade de Software, pp. 310-317, Ouro Preto, MG,

Brazil, June 2009.

FUGGETTA, A., 2000, “Software Process: A Roadmap”. In: Proceedings of the

Conference on The Future of Software Engineering, pp. 25-34, Limerick,

Ireland, June 2000.

FUGGETTA, A., 1996, “Functionality and architecture of PSEEs”. Information and

Software Technology, vol. 38, no. 4, pp. 289-293, April 1996.

FUGGETTA, A., GHEZZI, C., 1994, “State of the Art and Open Issues in Process-

Centered Software Engineering Environments”. Journal of Systems Software,

vol. 26, no. 1, pp. 53-60, July 1994.

GOMES, A., MAFRA, S., OLIVEIRA, K. et al., 2001, “Avaliação de Processo de

Software na Estação Taba”. In: XV Simpósio Brasileiro de Engenharia de

Software, pp. 344-349, Rio de Janeiro, RJ, Brazil, October 2001.

GOTH, G., 2009, “The Task-Based Interface: Not Your Father’s Desktop”. IEEE

Software, vol. 26, no. 6, pp. 88-91, November 2009.

GRAMBOW, G., OBERHAUSER, R., REICHERT, M., 2011, “Towards Automatic

Process-Aware Coordination in Collaborative Software Engineering”. In:

Proceedings of the 6th International Conference on Software and Database

Technologies, pp. 5-14, Seville, Spain, July 2011.

GRAMBOW, G., OBERHAUSER, R., REICHERT, M., 2013, “Enabling Automatic

Process-aware Collaboration Support in Software Engineering Projects”. In:

99

Software and Data Technologies, vol. 303, Communications in Computer

and Information Science, Springer Berlin Heidelberg, pp. 73-88, 2013.

GREEN, G. C., Hevner, A. R., COLLINS R. W., 2005, “The impacts of quality and

productivity perceptions on the use of software process innovations”. Information

and Software Technology, vol. 47, no. 8, pp. 543-553, June 2005.

GRUHN, V., 2002, “Process-Centered Software Engineering Environments: A Brief

History and Future Challenges”. Annals of Software Engineering, vol. 14, no. 1-

4, pp. 363-382, December 2002.

IBM, 2012, Rational Unified Process (RUP). Available in <http://www-

01.ibm.com/software/awdtools/rup/>. Accessed on June 9, 2014.

KAPTELININ, V., 2003, “UMEA: Translating Interaction Histories into Project Contexts”.

In: Proceedings of the Conference on Human Factors in Computing

Systems, pp. 353-360, Ft. Lauderdale, FL, USA, April 2003.

KERSTEN, M., MURPHY, G. C., 2005, “Mylar: a degree-of-interest model for IDEs”. In:

Proceedings of the 4th International Conference on Aspect-oriented

Software Engineering, pp. 159-168, Chicago, IL, USA, March 2005.

KERSTEN, M., MURPHY, G. C., 2006. “Using Task Context to Improve Programmer

Productivity”. In: Proceedings of the 14th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, pp. 1-11, Portland, OR,

USA, November 2006.

KERSTEN, M., 1999, Focusing knowledge work with task context. Ph.D thesis,

University of British Columbia, Vancouver, B. C., Canada.

LAURIDSEN, B., 2011, “Understanding the Influence of the Technology Acceptance

Model for Online Adult Education”. In: Proceedings of the 16th TCC Worldwide

Online Conference, pp. 1-16, Honolulu, HA, USA, April, 2011.

MARTIN, J., 1991, Rapid Application Development. Indianapolis, IN, USA,

Macmillan Publishing Co., Inc., 1991.

MARCINIAK, J. J., 2002, Encyclopedia of Software Engineering. 2nd ed. John Wiley

and Sons, New York, January 2002.

MATINNEJAD, R., RAMSIN, R., 2012, “An Analytical Review of Process-Centered

Software Engineering Environments”. In: IEEE 19th International Conference

and Workshops on Engineering of Computer-Based Systems, pp. 64-73,

Novi Sad, Serbia, April 2012.

100

MURPHY, G., 2009, “Attacking Information Overload in Software Development”. In:

IEEE Symposium on Visual Languages and Human-Centric Computing, pp.

4, Corvallis, OR, USA, September 2009.

OMG, 2008, Software & System Process Engineering Metamodel (SPEM). Available in

<http://www.omg.org/specs/SPEM/2.0/PDF>. Accessed on June 9, 2014.

OMG, 2011, Business Process Model and Notation (BPMN). Available in

<http://www.omg.org/specs/BPMN/2.0/PDF>. Accessed on June 9, 2014.

OSTERWEIL, L. J., BROWN, J. R., STUCKI, L. G., 1978, “ASSET: A Lifecycle

Verification and Visibility System”.

PARASURAMAN, R., RILEY, V., 1997, “Humans and automation: Use, misuse, disuse,

abuse”. Human Factors, vol. 39, no. 2, pp. 230-253, June 1997.

PEFFERS, K., TUUNANEM, T., ROTHERNBERGER, M. A. et at., 2007, “A design

science research methodology for information systems research”. Journal of

Management Information Systems, vol. 24, no. 3, pp. 45-77, December 2007.

PILLAT, R. M., OLIVEIRA, T. C., FONSECA, F. L., 2012, “Introducing Software

Process tailoring to BPMN: BPMNt”. In: International Conference on Software

and System Process, pp. 58-62, Zurich, Switzerland.

PORTUGAL, I. S., OLIVEIRA, T. C., 2013, “Introducing Software Process Specification

to Task Context”. In: Proceedings of the 25th International Conference on

Software Engineering and Knowledge Engineering, pp. 22-25, Hyatt

Harborside at Longan Int’l Airport, Boston, USA, June 2013.

PORTUGAL, I. S., OLIVEIRA, T. C., 2014, “Using Task Contexts to Improve Software

Process Execution”. In: Proceedings of the XVII Ibero-American Conference

on Software Engineering, pp. 109-122, Pucón, Chile, April 2014.

PRESSMAN, R. S., 2010, Software Engineering: A Practitioner’s Approach, 7th ed.

New York, NY, USA, McGraw-Hill.

REIS, C. A. L., REIS, R. Q., 2007, “Laboratório de Engenharia de Software e

Inteligência Artificial: Construção do ambiente WebAPSEE”. In: ProQuality

(UFLA), pp. 43-48, Lavras, MG, Brazil, January 2007.

REIS, C. A. L., 2003, Uma Abordagem Flexível para Execução de Processos de

Software Evolutivos. Ph.D. thesis, Universidade Federal do Rio Grande do Sul,

Porto Alegre, RS, Brazil.

101

ROCHA, A. R., MONTONI, M., SANTOS, G. et al., 2005, “Estação TABA: Uma Infra-

estrutura para Implantação do Modelo de Referência para Melhoria de Processo

de Software”. In: IV Simpósio Brasileiro de Qualidade de Software, pp. 49-60,

Porto Alegre, RS, Brazil, June 2005.

ROCHA, A. R. C., SOUZA, J. M., AGULAR, T. C., 1990, “TABA: A Heuristic

Workstation for Software Development”. In: Proceedings of the 1990 IEEE

International Conference on Computer Systems and Software Engienering,

pp. 126-129, Tel-Aviv, Israel, May 1990.

SALES, E., REIS, C. L., REIS, R. Q., 2008, “Apoio a Gerência de Configuração de

Artefatos de Software integrado a Execução de Processos de Software”. In: XXII

Simpósio Brasileiro de Engenharia de Software, pp. 156-171, Campinas, SP,

Brazil, May 2008.

SANTO, R. E., 2012, Serviços de Apoio ao Planejamento, Execução e

Empacotamento de Revisões Sistemáticas da Literatura. M.Sc. dissertation,

COPPE/UFRJ, Rio de Janeiro, RJ, Brazil.

SCRUM.org, 2011, Scrum Guide. Available in <http://www.scrum.org/scrum-guide>.

Accessed on June 9, 2014.

SIGA EPCT, 2014, Sistema Integrado de Gestão Acadêmica da Educação Profissional

e Tecnológica. Available in <http://www.sigaepct.net>. Accessed in June 9, 2014.

SPANOUDAKIS, G., ZISMAN, A., 2005, “Software Traceability: A Roadmap”. In:

Handbook of Software Engineering and Knowledge Engineering, vol. 3,

World Scientific Pub. Co., pp. 395-428, 2005.

SUNDARAM, S. K., HAYES, J. H., DEKHTYAR, A. et al., 2010, “Assessing traceability

of software engineering artifacts”. Requirements Engineering, vol. 15, no. 3, pp.

313-335, September 2010.

TASKTOP, 2014, Tasktop. Available in <http://tasktop.com>. Accessed on June 9,

2014.

VAZ, V. T., CONTE, T. U., TRAVASSOS, G. H., 2012, “Empirical Assessment of WDP

Tool: A Tool to Support Web Usability Inspections”. In: Proceedings of the 38th

Latin America Conference on Informatics, pp. 1-9, Medellin, Antioquia,

Colombia, October 2012.

TRAVASSOS, G. H., 1994, O Modelo de Integração de Ferramentas da Estação

Taba, Ph.D. thesis, COPPE/UFRJ, Rio de Janeiro, RJ, Brazil.

102

VILLELA, K., SANTOS, G., GALLOTA, C. et al., 2001, “Estendendo a Estação TABA

para a criação de Ambientes de Desenvolvimento de Software Orientados a

Organização”. In: XV Simpósio Brasileiro de Engenharia de Software, pp.

344-349, Rio de Janeiro, RJ, Brazil.

103

APPENDIX A – SIGA EPCT SOFTWARE
PROCESS AUTHORIZATION OF UTILIZATION

AND SPECIFICATION

This appendix shows SIGA EPCT software development process

authorization of utilization and the specification used on the

validation study of this Dissertation.

A.1. SIGA EPCT Software Process Authorization of Utilization

!!!!!!!!!!!!!! !

!

"#$%&"!'()!*+,-*./,0&12345%63#"76&!!

089:8;<=>!.?!;@!<ABAC=<!;@!-*./)!

!

"#$%&'&()*!

!"#$%&%'()* +%&%* ()* ,"-.,()* /.0)1* 23"* #","&"'()* %()* +")23.)%,(&")* ,(* 4&3+(* ,"*

+")23.)%* 5&.)'%* ,%* 675589:;<=1* (* %#"))(* %()* ,%,()* ,(* +&(>"?(* @ABC9856D1* 23"*

#('+&"""0,"* ()* ,%,()* ,(* %'E."0?"* ,"* 4"&"0#.%'"0?(* ,"* ?%&"/%)1* <8!FAG81* "* ,(*

).)?"'%*,"* #(0?&($"*,"*-"&)H(1* @IGJ*+%&%*)"&"'*3?.$.K%,()*0%)*+")23.)%)* #(0,3K.,%)*

+"$(* 4&3+(* 23"* ")?L*)(E* %* (&."0?%MH(* ,(* 5&(/"))(&* !(3?(&* D(%#N* 6%-%$#%0?"* ,"*

7$.-".&%O*

*

8)?%*%3?(&.K%MH(*")?L*#(0,.#.(0%,%*%(*#3'+&.'"0?(* *,()*+")23.)%,(&")*,(*4&3+(*,"*

+")23.)%*,.)+(0.E.$.K%&*()*)"3)*&")3$?%,()*+%&%**(*;7<DA1*.0#$3.0,(*(*0('"*,(*+&(>"?(*

,(* @ABCP856D* 0%)* +3E$.#%MQ")* #."0?R/.#%)* ,"#(&&"0?")* ,()* +&(>"?()* ,"* +")23.)%*

#(0,3K.,()O*

!

2B@DEF<G8H@DB@>!!

!

!

4;D8!;8!0F9:8!I8B<G!

%<<=;@D8;<=8!;<!1630&123#"76&!

104

A.2. SIGA EPCT Software Process Specification

105

APPENDIX B – VALIDATION STUDY
DOCUMENTS

This appendix presents documents used on validation study. These

documents were used to gather information about participants and

their behavior during validation study and help draw conclusions.

They were manipulated before, during or after the exercises of the

validation study.

B.1 Consent Form

Formulário de Consentimento

Estudo
Este estudo visa caracterizar a utilização de uma função de grau de interesse (DOI) para a
recuperação de artefatos relevantes a uma atividade de um processo de desenvolvimento de
software.

Idade
Eu declaro ter mais de 18 anos de idade e concordar em participar de um estudo
conduzido por Ivens da Silva Portugal na Universidade Federal do Rio de Janeiro.

Procedimento
Este estudo acontece em uma única sessão, dividido em duas etapas. A primeira etapa
consiste em realizar quatro atividades propostas descritas em um processo de
desenvolvimento de software. A segunda etapa consiste em responder um questionário
estruturado de avaliação de tecnologia, composto por doze perguntas. Eu entendo que,
uma vez que o estudo tenha terminado, os trabalhos que desenvolvi serão analisados
visando entender a eficiência dos procedimentos e das técnicas propostas.

Confidencialidade
Toda informação coletada neste estudo é confidencial e meu nome não será divulgado. Da
mesma forma, me comprometo a não comunicar meus resultados enquanto não terminar o
estudo, bem como manter sigilo das técnicas e documentos apresentados e que fazem parte
do experimento.

106

Benefícios e Liberdade de Desistência
Eu entendo que os benefícios que receberei deste estudo são limitados ao aprendizado do
material que é distribuído e apresentado. Eu entendo que sou livre para realizar perguntas a
qualquer momento ou solicitar que qualquer informação relacionada à minha pessoa não
seja incluída no estudo. Eu entendo que participo de livre e espontânea vontade com o
único intuito de contribuir para o avanço e desenvolvimento de técnicas e ferramentas para
a Engenharia de Software.

Pesquisador Responsável
Ivens da Silva Portugal
Programa de Engenharia de Sistemas e Computação (PESC) – COPPE/UFRJ

Professor Responsável
Prof. Toacy Cavalcante de Oliveira
Programa de Engenharia de Sistemas e Computação (PESC) – COPPE/UFRJ

Nome (em letra de forma): ___

Assinatura: ___ Data: _____________

B.2 Characterization Questionnaire

Questionário de Caracterização

Código do Participante: Data:

1) Formação Acadêmica

() Doutorado
() Mestrado
() Graduação

() Doutorando
() Mestrando
() Graduando

Ano de Ingresso/período: _______/____
Ano de Conclusão (ou previsão de conclusão)/período: _______/____

107

2) Formação Geral

2.1) Qual é sua experiência com o ambiente de desenvolvimento Eclipse?

() Nenhuma.
() Já estudei em aula ou livro.
() Pratiquei em projetos em sala de aula.
() Usei em projetos pessoais.
() Usei em projetos na indústria.

2.2) Qual é a sua experiência com Processos de Desenvolvimento de Software?

() Não conheço Processo de Desenvolvimento de Software.
() Já li material sobre Processo de Desenvolvimento de Software.
() Já participei de um curso sobre Processo de Desenvolvimento de Software.
() Tenho lidado com Processo de Desenvolvimento de Software como parte de uma
equipe, relacionada a um curso.
() Tenho lidado com Processo de Desenvolvimento de Software como parte de uma
equipe, na indústria.

2.3) Por favor, explique sua resposta. Inclua o número de semestres ou número de
anos de experiência relevante em que tem lidado com Processo de
Desenvolvimento de Software. (Ex.: “Eu trabalhei por 2 anos como modelador de
Processo de Desenvolvimento de Software na indústria”)

__

__

__

__

__

Obrigado pela sua colaboração!

B.3 Time Record Form

Formulário de Marcação de Tempo

Código do Participante:

108

1) Exercício 1

1.1) Momento de Acesso aos Artefatos

SIGA-EDU-CDU-MATRI-033 – Vincular Aluno a Classe:

• _____________________

SIGAEPCT – REQ Matricula – Redmine dos Projetos do SIGA-EPCT:

• _____________________

SIGAEPCT – RGN Matricula – Redmine dos Projetos do SIGA-EPCT:

• _____________________

1.2) Término de Exercício

• _____________________

1.3) Comentários:

__

__

__

__

2) Exercício 2

2.1) Momento de Acesso aos Artefatos

SIGA-EDU-CDU-INFRA-003 – Manter Ambiente de Aprendizagem:

• _____________________

SIGAEPCT - Glossario SIGA - Redmine dos Projetos do SIGA-EPCT:

• _____________________

SIGAEPCT – RGN Infraestrutura – Redmine dos Projetos do SIGA-EPCT:

109

• _____________________

2.2) Término do Exercício

• _____________________

2.3) Comentários:

__

__

__

__

3) Exercício 3

3.1) Momento de Acesso aos Artefatos

SIGA-EDU-CDU-PELET-061 – Fechar Periodo Letivo:

• _____________________

SIGAEPCT - Glossario SIGA - Redmine dos Projetos do SIGA-EPCT:

• _____________________

3.2) Término do Exercício

• _____________________

3.3) Comentários:

__

__

__

__

110

4) Exercício 4

4.1) Momento de Acesso aos Artefatos

Plano_Teste_SIGA_EDU_CDU_MATRI-033:

• _____________________

SIGA-EDU-CDU-MATRI-033 – Vincular Aluno a Classe:

• _____________________

4.2) Término do Exercício

• _____________________

4.3) Comentários:

__

__

__

__

5) Exercício 5

5.1) Início do Exercício

• _____________________

5.2) Momento de Acesso aos Artefatos

SIGA-EDU-Tuoppi-82-patch038:

• _____________________

SIGA-EDU-DB-INFRA-003-ManterAmbienteDeAprendizagem:

• _____________________

111

5.2) Término do Exercício

• _____________________

5.3) Comentários:

__

__

__

__

B.4 Validation Study Exercises

Exercícios	 do	 Estudo	

Exercício	 1	
A	 Organização	 onde	 você	 atua	 desenvolve	 Sistemas	 com	 alta	 qualidade	
em	 um	 curto	 prazo	 de	 tempo.	 Parte	 desse	 bom	 desempenho	 se	 deve	 ao	
fato	 de	 todas	 as	 atividades	 do	 desenvolvimento	 de	 um	 sistema	 estarem	
bem	 descritas,	 documentadas	 e	 representadas	 em	 um	 processo	 de	
desenvolvimento	 de	 software.	 Outras	 razões	 para	 tal	 bom	 desempenho	
são	 a	 qualificação	 dos	 colaboradores	 e	 a	 excelência	 das	 ferramentas	
utilizadas	 para	 a	 execução	 do	 processo.	
	
Recentemente,	 a	 Organização	 foi	 contratada	 com	 o	 objetivo	 de	 realizar	
o	 desenvolvimento	 de	 um	 Sistema	 de	 Integrado	 de	 Gestão	 Acadêmica.	
A	 equipe	 de	 Engenheiros	 de	 Software	 da	 Organização	 onde	 você	 atua	
modelou	 um	 processo	 de	 desenvolvimento	 de	 software	 para	 auxiliar	
durante	 o	 desenvolvimento	 do	 Sistema.	 O	 documento	 está	 disponível	
para	 consulta.	
	
Atualmente,	 este	 processo	 de	 software	 está	 sendo	 executado	 para	 que	
o	 projeto	 do	 Sistema	 de	 Gerência	 Acadêmica	 seja	 especificado.	 O	
processo	 é	 executado	 de	 forma	 que	 todas	 as	 atividades	 são	 realizadas	

112

por	 Caso	 de	 Uso	 (CDU).	 Foram	 designados	 dois	 Casos	 de	 Uso	 para	 seu	
trabalho.	 São	 eles:	

• “Vincular	 Aluno	 a	 Classe”	 (módulo	 Matrícula)	 e	
• “Manter	 Ambiente	 de	 Aprendizagem”	 (módulo	 Infraestrutura).	

	
No	 momento,	 a	 especificação	 que	 está	 sendo	 construída	 é	 a	 do	 Caso	 de	
Uso:	

• “Vincular	 Aluno	 a	 Classe”.	
	
Este	 Caso	 de	 Uso	 não	 possui	 uma	 descrição	 na	 sua	 especificação.	 Nesse	
sentido,	 este	 exercício	 pede	 que	 você	 escreva	 uma	 breve	 descrição	 do	
que	 se	 trata	 o	 Caso	 de	 Uso	 no	 espaço	 indicado	 no	 documento.	
	

Exercício	 2	
Parabéns!	
	
A	 descrição	 do	 Caso	 de	 Uso	 “Vincular	 Aluno	 a	 Classe”	 está	 escrita	 e	
futuros	 membros	 da	 equipe	 poderão	 rapidamente	 entender	 do	 que	 se	
trata	 esse	 Caso	 de	 Uso.	 Agora	 é	 hora	 de	 escrever	 um	 resumo	 para	 o	
outro	 Caso	 de	 Uso	 que	 foi	 atribuído	 à	 você:	
	

• “Manter	 Ambiente	 de	 Aprendizagem”.	
	
Parte	 da	 descrição	 desse	 Caso	 de	 Uso,	 que	 pertence	 ao	 módulo	
Infraestrutura,	 já	 foi	 escrita	 por	 outro	 membro	 da	 equipe	 de	
Engenheiros	 de	 Software.	 Entretanto,	 a	 descrição	 contém	 várias	 siglas	
de	 termos	 utilizados	 corriqueiramente	 durante	 o	 projeto.	 Apesar	 das	
siglas	 estarem	 documentadas	 em	 um	 Glossário,	 sua	 utilização	 não	 é	
permitida,	 pois	 afeta	 negativamente	 o	 entendimento	 do	 Caso	 de	 Uso.	
	
Além	 disso,	 foi	 identificado	 que,	 ao	 final	 da	 descrição	 desse	 Caso	 de	
Uso,	 você	 deve	 inserir	 uma	 nota	 explicativa	 relativa	 à	 regra	 de	 negócio	
1.006	 daquele	 módulo.	
	
Diante	 do	 cenário	 apresentado,	 este	 exercício	 propõe	 que	 você	 corrija	
as	 siglas	 encontradas	 na	 descrição	 do	 Caso	 de	 Uso,	 substituindo-‐as	
pelos	 respectivos	 significados	 e,	 ainda,	 adicione	 uma	 frase	 explicativa	
referente	 à	 regra	 de	 negócio	 mencionada.	
	

113

	

Exercício	 3	
Muito	 bem.	
	
Mais	 uma	 vez,	 sua	 contribuição	 ajudou	 que	 os	 outros	 membros	 da	
equipe	 de	 Engenheiros	 de	 Software	 da	 Organização	 entendam	
rapidamente	 o	 objetivo	 de	 determinado	 Caso	 de	 Uso.	
	
Antes	 de	 iniciar	 a	 próxima	 atividade,	 a	 saber	 “Revisar	 Descrição	 de	
CDU”,	 para	 os	 casos	 de	 uso	 que	 lhe	 foram	 atribuídos,	 nota-‐se	 um	 aviso	
que	 deixaram	 para	 você	 em	 sua	 mesa.

Como	 foi	 visto,	 um	 outro	 membro	 da	 equipe	 pede	 que	 você	 revise	 a	
descrição	 que	 ele	 fez	 para	 o	 caso	 de	 uso	 Fechar	 Período	 Letivo.	 Tendo	
apresentado	 isto,	 este	 exercicio	 demanda	 que	 você	 acesse	 a	 tarefa	 de	
revisão	 de	 descrição	 do	 caso	 de	 uso	 mencionado	 e	 corrija	 qualquer	 erro	
(digitação,	 concordância,	 siglas)	 que	 for	 encontrado	 na	 descrição	 do	
Caso	 de	 Uso	 mencionado.	
	
	

Exercício	 4	
Ótimo.	
	
O	 tempo	 passou	 e	 o	 desenvolvimento	 do	 Sistema	 Acadêmico	 está	
correndo	 muito	 bem.	 Algumas	 tarefas	 foram	 realizadas	 por	 outros	
participantes	 sobre	 os	 casos	 de	 uso	 aos	 quais	 você	 estava	 associado.	
Dessa	 forma,	 a	 próxima	 tarefa	 a	 ser	 realizada	 é	 “Definir	 Casos	 de	
Teste”.	

Olá.
Eu sou o responsável pela especificação do Caso de Uso “Fechar Período Letivo”, do
módulo Período Letivo.
Ontem, consegui terminar de escrever a descrição para esse caso de uso. Gostaria
de pedir que você revisasse essa descrição afim de que as chances de erros sejam
diminuídas.
Muito obrigado.

114

	
Para	 realizar	 essa	 atividade,	 você	 deve	 apenas	 escrever	 uma	 breve	
descrição	 de	 um	 caso	 de	 teste	 para	 o	 caso	 de	 uso	
	

• “Vincular	 Aluno	 a	 Classe”.	
	
Uma	 nota	 importante	 é	 que	 esse	 Caso	 de	 Uso	 está	 associado	 ao	 número	
33	 (vide	 nome	 do	 artefato	 no	 Sistema).	
Outra	 nota	 importante	 é	 que	 a	 numeração	 do	 caso	 de	 teste	 é	 T62	 e	 já	
está	 escrita	 no	 documento	 de	 Caso	 de	 Testes.	
Por	 fim,	 a	 última	 nota	 importante	 é	 que	 o	 caso	 de	 teste	 é	 relativo	 à	
observação	 presente	 na	 especificação	 do	 Caso	 de	 Uso	 mencionado	 (na	
descrição).	
	
Então,	 este	 exercício	 pede	 que	 você	 escreva	 a	 descrição	 de	 mais	 um	
teste	 para	 o	 caso	 de	 uso	 “Vincular	 Aluno	 a	 Classe”,	 descrevendo-‐o	 com	
base	 na	 observação	 presente	 na	 descrição	 da	 especificação	 do	 caso	 de	
uso.	
	
	

Exercício	 5	
O	 desenvolvimento	 do	 caso	 de	 uso	
	

• “Manter	 Ambiente	 de	 Aprendizagem”	
	
está	 quase	 terminando.	 Atualmente,	 a	 atividade	 em	 execução	 é	 a	 última	
“Atualizar	 BD”.	
	
Entretanto,	 a	 equipe	 de	 Engenheiros	 de	 Software	 da	 Organização	
apontou	 uma	 irregularidade	 no	 documento	 com	 o	 script	 SQL	 para	 o	
banco	 de	 dados.	 Essa	 irregularidade	 se	 refere	 à	 criação	 dos	 atributos	 da	
tabela:	 “unidade_organizacional”.	 Seus	 atributos	 estão	 presentes	 no	
documento	 de	 modelo	 relacional	 adequado,	 o	 qual	 você	 deverá	
consultar.	
	
Este	 exercício	 pede	 que	 você	 escreva	 o	 código	 de	 criação	 dos	 campos	
da	 tabela	 explicitada	 acima	 no	 artefato	 “patch38”.	 Uma	 comparação	
com	 o	 codigo	 de	 outras	 tabelas	 pode	 ser	 feita	 para	 que	 se	 entenda	 a	
sintaxe	 da	 linguagem.	

115

B.5 Final Questionnaire

Questionário	 de	 Avaliação	 de	 Tecnologia	

Direções	
	
Este	 questionário	 possui	 12	 perguntas.	
Ao	 final	 do	 questionário,	 há	 um	 espaço	 para	 comentários.	
	
Cada	 pergunta	 possui	 uma	 afirmação	 em	 seu	 enunciado,	 seguido	 de	 um	
espaço	 para	 a	 resposta.	
Você	 deve	 marcar	 a	 resposta	 que	 melhor	 se	 adequa	 à	 sua	 opinião	 sobre	
a	 afirmação.	
Apenas	 uma	 resposta	 deve	 ser	 marcada.	
As	 perguntas	 podem	 ser	 respondidas	 em	 qualquer	 ordem.	
	
O	 espaço	 para	 comentários	 no	 final	 do	 questionário	 deve	 ser	 utilizado	
para	 eventuais	 críticas,	 sugestões	 e	 dúvidas	 que	 porventura	 surjam.	
Dessa	 forma,	 a	 sua	 participação	 auxilia	 ainda	 mais	 o	 desenvolvimento	
do	 Estudo.	

Obrigado!	
Thank	 You	

Merci	 Gracias	 Grazie	

ありがとう

Danke	 Takk	

спасибо	

	

Mahalo	
do	 jeh	

dziekuje	

ขอบคณุ

Tesekkür	 ederim	
Paldies	

σας	 ευχαριστώ	

	

mulţțumesc	

Dankon	

kiitos	

		ششككرراا
	

	
	
	

	תודה
	

Sua	 participação	 foi	 de	 grande	 importância.	

116

Código do Participante: Data:

Questionário	

1)	 A	 utilização	 da	 Função	 DOI	 no	 meu	 trabalho	 me	 permite	 realizar	
tarefas	 mais	 rápido.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

2)	 A	 utilização	 da	 Função	 DOI	 melhora	 meu	 desempenho	 no	 trabalho.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

3)	 A	 utilização	 da	 Função	 DOI	 no	 meu	 trabalho	 aumenta	 minha	
produtividade.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

4)	 A	 utilização	 da	 Função	 DOI	 aumenta	 minha	 eficácia	 no	 trabalho.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

117

5)	 A	 utilização	 da	 Função	 DOI	 facilita	 a	 realização	 do	 meu	 trabalho.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

6)	 Eu	 considero	 a	 Função	 DOI	 útil	 no	 meu	 trabalho.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

7)	 Aprender	 a	 utilizar	 a	 Função	 DOI	 foi	 fácil	 para	 mim.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

8)	 Considero	 fácil	 fazer	 a	 Função	 DOI	 realizar	 o	 que	 eu	 objetivo.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

9)	 Minha	 interacão	 com	 a	 Função	 DOI	 foi	 clara	 e	 compreensível.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

10)	 Eu	 considero	 a	 Função	 DOI	 flexível	 para	 interagir.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	

118

Discordo	
Completamente	

Discordo	
Parcialmente	

Discordo	
Razoavelmente	

Não	
concordo,	

nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

11)	 Considero	 fácil	 me	 tornar	 habilidoso	 na	 utilização	 da	 Função	 DOI.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

12)	 Eu	 considero	 a	 Função	 DOI	 fácil	 de	 ser	 utilizada.	
	

()	 ()	 ()	 ()	 ()	 ()	 ()	
Discordo	

Completamente	
Discordo	

Parcialmente	
Discordo	

Razoavelmente	
Não	

concordo,	
nem	 discordo	

Concordo	
Razoavelmente	

Concordo	
Parcialmente	

Concordo	
Plenamente	

Comentários	
	
Obrigado	 por	 separar	 um	 tempo	 para	 participar	 deste	 estudo.	 A	 sua	
experiência,	 o	 seu	 ponto	 de	 vista	 e	 suas	 observações	 são	 de	 grande	
importância	 para	 o	 desenvolvimento	 desse	 trabalho.	 Por	 isso,	 gostaria	
de	 saber	 sua	 opinião	 sobre	 o	 conceito	 da	 Função	 DOI	 aplicada	 na	
realidade	 de	 um	 Processo	 de	 Software.	 Há	 alguma	 crítica?	 Ou	 uma	
sugestão?	 E	 uma	 ideia	 de	 melhoria?	
	
Este	 espaço	 é	 de	 livre	 escrita.	 Agradeço	 pelos	 comentários	 deixados.	
	
	
__	
	
__	
	
__	
	
__	
	
__	
	

119

__	
	
__	
	
__	
	
__	
	
__	
	
__	
	
__	
	
__	

