
AUTOMATIC COMPLEX INSTRUCTION IDENTIFICATION WITH

HARDWARE SHARING FOR EFFICIENT APPLICATION MAPPING ONTO

ASIPS

Alexandre Solon Nery

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia de Sistemas e

Computação, COPPE, da Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Doutor em

Engenharia de Sistemas e Computação.

Orientadores: Felipe Maia Galvão França

Nadia Nedjah

Lech Jóźwiak

Henk Corporaal

Rio de Janeiro

Dezembro de 2014



AUTOMATIC COMPLEX INSTRUCTION IDENTIFICATION WITH

HARDWARE SHARING FOR EFFICIENT APPLICATION MAPPING ONTO

ASIPS

Alexandre Solon Nery

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Felipe Maia Galvão França, Ph.D.

Prof. Nadia Nedjah, Ph.D.

Prof. Henk Corporaal, Ph.D.

Prof. Claudio Luis de Amorim, Ph.D.

Prof. Valmir Carneiro Barbosa, Ph.D.

Prof. Ricardo Cordeiro de Farias, Ph.D.

Prof. Cristiana Barbosa Bentes, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

DEZEMBRO DE 2014



Nery, Alexandre Solon

Automatic Complex Instruction Identification with

Hardware Sharing for Efficient Application Mapping

onto ASIPs/Alexandre Solon Nery. – Rio de Janeiro:

UFRJ/COPPE, 2014.

XVI, 134 p.: il.; 29, 7cm.

Orientadores: Felipe Maia Galvão França

Nadia Nedjah

Lech Jóźwiak

Henk Corporaal

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2014.

Bibliografia: p. 110 – 118.

1. Complex Instruction. 2. Maximum Common

Subgraph Isomorphism. 3. VLIW-ASIP. I. França, Felipe

Maia Galvão et al. II. Universidade Federal do Rio de

Janeiro, COPPE, Programa de Engenharia de Sistemas e

Computação. III. T́ıtulo.

iii



Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

AUTOMATIC COMPLEX INSTRUCTION IDENTIFICATION WITH

HARDWARE SHARING FOR EFFICIENT APPLICATION MAPPING ONTO

ASIPS

Alexandre Solon Nery

Dezembro/2014

Orientadores: Felipe Maia Galvão França

Nadia Nedjah

Lech Jóźwiak

Henk Corporaal

Programa: Engenharia de Sistemas e Computação

Esta tese propõe e discute um novo método eficiente de customização de in-

struções, juntamente com uma ferramenta que é capaz de automaticamente iden-

tificar instruções complexas promissoras para um conjunto relevante de aplicativos

de benchmark. O método proposto formula o problema de enumeração de sub-

grafos como um problema de enumeração de cliques máximos, com duas novas con-

tribuições: uma no aspecto da conectividade; e a outra no que diz respeito à detecção

de (re)-associatividade dos grafos. Os resultados de desempenho da ferramenta pro-

posta para um processador VLIW-ASIP são fornecidos, alcançando um aumento

de velocidade de até 54% para a aplicação ray-tracing. Também são apresentados

resultados de área do circuito e de consumo de energia das instruções complexas,

baseados na tecnologia de 65nm da TSMC. Além disso, esta tese analisa e discute o

problema do compartilhamento de hardware no contexto do conjunto de instruções

complexas. Embora ferramentas de śıntese de hardware dispońıveis no mercado se-

jam capazes de explorar algumas oportunidades de compartilhamento de hardware,

esta tese mostra que o resultado é geralmente insatisfatório. Assim, são implemen-

tadas e analisadas técnicas de fusão de caminho de dados, atingindo, em média,

uma economia de 30% na área de circuito e consumo de energia, para os conjuntos

de instruções complexas identificadas nesta tese. Finalmente, arquiteturas multi-

core são propostas, com base nos processadores extenśıveis (ASIPs) usados nesta

tese, enriquecidos com o conjunto identificado de instruções complexas e com com-

partilhamento de hardware. Utilizando até oito ASIPs em paralelo com instruções

complexas, uma implementação paralela do algoritmo de ray-tracing é proposta,

alcançando até 12× de aceleração em comparação a um único ASIP. As instruções

complexas identificadas automaticamente reduzem o tempo de execução em cerca

de 36% para a aplicação ray-tracing.

iv



Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

AUTOMATIC COMPLEX INSTRUCTION IDENTIFICATION WITH

HARDWARE SHARING FOR EFFICIENT APPLICATION MAPPING ONTO

ASIPS

Alexandre Solon Nery

December/2014

Advisors: Felipe Maia Galvão França

Nadia Nedjah

Lech Jóźwiak

Henk Corporaal

Department: Systems Engineering and Computer Science

Custom instruction identification is an essential part in designing efficient

Application-Specific Instruction Set Processors (ASIPs). This thesis proposes and

discusses a novel efficient instruction set customization method together with an au-

tomatic tool that is able to identify promising custom instruction candidates for a

set of relevant benchmark applications. The proposed method formulates the com-

mon subgraph enumeration problem as a maximum clique-enumeration problem,

with a two-fold novel contribution: one on the connectivity aspect; and the other

with respect to the graph (re)-associativity detection. The performance results from

the proposed tool for a configurable VLIW-ASIP are provided, achieving a speedup

of up to 54% for the ray-tracing application. Circuit area and energy consumption

results based on TSMC 65nm technology are also presented. Moreover, this thesis

analyzes and discusses the problem of hardware sharing in the context of instruc-

tion set customization. Although commercially available hardware synthesis tools

are capable of exploiting some hardware sharing opportunities, this thesis shows

that the result is usually unsatisfactory. Thus, datapath merging techniques are

implemented and analyzed, achieving, on average, substantial circuit area and en-

ergy consumption savings of 30% for the sets of custom instructions identified in

this thesis. Finally, multi-core architectures are proposed, based on commercially

available extensible ASIPs, augmented with the identified set of custom instructions

and with hardware sharing optimizations. Using up to eight ASIPs in parallel with

complex instructions, a ray-tracer parallel algorithm implementation is proposed,

achieving up to 12× speedup in comparison to a single ASIP design. The automat-

ically identified custom instructions provided around 36% execution time reduction

for the ray-tracing application.

v



Contents

List of Figures ix

List of Tables xv

1 Introduction 1

1.1 Complex instruction identification & Hardware sharing . . . . . . . . 2

1.1.1 Extensible ASIPs: Xilinx MicroBlaze . . . . . . . . . . . . . . 4

1.1.2 Extensible ASIPs: VLIW-ASIP . . . . . . . . . . . . . . . . . 5

1.2 Related work on complex instruction identification . . . . . . . . . . . 6

1.3 Related work on hardware sharing . . . . . . . . . . . . . . . . . . . . 9

1.4 Benchmark applications . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Instruction Customization Framework 18

2.1 Application profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Custom instruction identification . . . . . . . . . . . . . . . . . . . . 20

2.2.1 CI pattern identification . . . . . . . . . . . . . . . . . . . . . 21

2.2.1.1 Mapping of common edges . . . . . . . . . . . . . . . 21

2.2.1.2 Compatibility graph . . . . . . . . . . . . . . . . . . 22

2.2.1.3 Connectivity graph . . . . . . . . . . . . . . . . . . . 24

2.2.1.4 Intersection . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Commutativity and associativity . . . . . . . . . . . . . . . . 28

2.2.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 ASIP implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Instruction set customization . . . . . . . . . . . . . . . . . . 34

2.3.2 Characterizing circuit area and energy . . . . . . . . . . . . . 36

2.3.3 Custom instructions time-shape . . . . . . . . . . . . . . . . . 38

2.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Commutative and associative analysis . . . . . . . . . . . . . . 40

vi



2.4.3 Performance, area and energy estimation results . . . . . . . . 41

2.4.4 Fine-grain vs. coarse-grain analysis . . . . . . . . . . . . . . . 46

2.4.5 Comparison results . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Hardware Sharing 52

3.1 RTL compiler hardware sharing . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Automatic resource sharing . . . . . . . . . . . . . . . . . . . 55

3.1.2 Manual resource sharing . . . . . . . . . . . . . . . . . . . . . 56

3.1.3 Experimental results on automatic resource sharing . . . . . . 58

3.1.4 Experimental results on manual resource sharing . . . . . . . . 60

3.1.4.1 Structural RTL description . . . . . . . . . . . . . . 61

3.1.4.2 Conditional case statements . . . . . . . . . . . . . . 62

3.1.4.3 Conditional if statements . . . . . . . . . . . . . . . 63

3.1.4.4 Cascaded conditional if statements . . . . . . . . . . 64

3.1.4.5 Floating-point adder . . . . . . . . . . . . . . . . . . 66

3.1.5 Results overview . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Proposed hardware sharing framework extension . . . . . . . . . . . . 68

3.2.1 Compatibility graph hardware sharing . . . . . . . . . . . . . 69

3.2.2 Experimental results on pseudorandom graphs . . . . . . . . . 70

3.2.3 Experimental results on custom instructions . . . . . . . . . . 74

4 Efficient MPSoC with complex instructions speedup 76

4.1 Custom parallel architectures and accelerators . . . . . . . . . . . . . 76

4.1.1 The GridRT macro-architecture . . . . . . . . . . . . . . . . . 76

4.1.1.1 GridRT with ASIP . . . . . . . . . . . . . . . . . . . 78

4.1.1.2 GridRT in GPU . . . . . . . . . . . . . . . . . . . . 81

4.1.1.3 Experimental results . . . . . . . . . . . . . . . . . . 84

4.1.1.4 Results overview . . . . . . . . . . . . . . . . . . . . 87

4.1.2 Parallel volume ray-casting MPSoC . . . . . . . . . . . . . . . 88

4.1.2.1 Parallel volume ray-casting in CMP . . . . . . . . . . 90

4.1.2.2 Parallel volume ray-casting in GPU . . . . . . . . . . 90

4.1.2.3 Parallel volume ray-casting in MPSoC . . . . . . . . 91

4.1.2.4 Results overview . . . . . . . . . . . . . . . . . . . . 92

4.2 ASIP-based Multi-Processor System-on-a-Chip . . . . . . . . . . . . . 97

4.2.1 Parallel ray-tracing in MPSoC . . . . . . . . . . . . . . . . . . 98

4.2.2 RISC-based MPSoC . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.2.1 Instruction set customization . . . . . . . . . . . . . 99

4.2.2.2 Results of ISE without Hardware Sharing . . . . . . 101

4.2.2.3 Results of ISE with Hardware Sharing . . . . . . . . 102

4.2.3 VLIW-based MPSoC . . . . . . . . . . . . . . . . . . . . . . . 103

vii



4.2.3.1 Instruction set customization . . . . . . . . . . . . . 104

4.2.3.2 Experimental Results . . . . . . . . . . . . . . . . . 105

5 Conclusions and ideas for future work 107

Bibliography 110

A Library of custom instructions 120

B Library of merged custom instructions 127

C MPSoC custom instructions 131

D List of publications 133

D.1 Journal Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

D.2 In Conference Proceedings . . . . . . . . . . . . . . . . . . . . . . . . 133

viii



List of Figures

1.1 Example of a custom instruction and its connection to the micro-

processor through the FSL bus. The Custom Function Unit (CFU)

attached to the microprocessor acts as a co-processor. . . . . . . . . . 4

1.2 VLIW Application-Specific Processor Data-path. . . . . . . . . . . . . 5

1.3 VLIW parallel issue-slots and an example of function unit customiza-

tion, including the dot product operation. . . . . . . . . . . . . . . . . 6

1.4 Example of a common template pattern (multiply-add) being

matched to a Basic Block Data-Flow Graph representation extracted

from the Ray-Tracing application. . . . . . . . . . . . . . . . . . . . . 7

1.5 Pair of Data-Flow Graphs, G1 and G2, together with their corre-

sponding common pattern G3. . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Nonconvex and convex cuts. . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Custom instruction Data-Flow Graph (DFG) and its datapath Di-

rected Acyclic Graph (DAG) representation. . . . . . . . . . . . . . . 10

1.8 Datapath merging example. . . . . . . . . . . . . . . . . . . . . . . . 10

1.9 Pair of Datapath DAGs and their mapping of vertices. . . . . . . . . 12

1.10 Paths generated from DAGs G1 and G2 of Fig. 1.8. . . . . . . . . . . 13

1.11 Path-based matching for the pair of DAGs G1 and G2. . . . . . . . . 14

2.1 Instruction Set Customization Design Flow. . . . . . . . . . . . . . . 18

2.2 A ray-tracing intersection function code in C and its partially repre-

sented Control-Flow Graph (CFG). Each basic block code is repre-

sented using the LLVM-IR. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 A basic block code snippet example together with its Data-Flow

Graph representation. A simplified version of the data-flow graph

is also depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 A pair of Data-Flow Graphs and their mapping of equivalent edges,

which are represented by red dashed arrows and labeled according to

the given edges id. For instance, edge e8 = (a8, a9, U, 48.37) of G1 is

mapped to edge e′5 = (b5, b6, U, 48.37) of G2, because they have the

same color f = 48.37 and enter through the same port p = U . . . . . 22

ix



2.5 Compatibility Graph generated from the mapping of equivalent edges

shown in Fig. 2.4, together with a regular enumerated clique and a

maximum enumerated clique, which is also a maximal clique. . . . . . 24

2.6 Disconnected subgraphs extracted from the compatibility graph

shown in Fig. 2.5(a). The first is a disconnected subgraph based

on the clique presented in Fig. 2.5(b), while the second is a dis-

connected subgraph based on the maximum clique presented in Fig.

2.5(c). For the sake of simplicity, the input operands are not shown. . 25

2.7 Connectivity Graphs generated from the edge mappings shown in Fig.

2.4, together with its maximum clique. The first connectivity graph

represent only the edge mappings that are adjacent to each other,

while the second connectivity graph includes the edge mappings that

are connected to each other via another edge mapping. . . . . . . . . 26

2.8 Intersected Graph Gk generated from the compatibility graph Gc de-

picted in Fig. 2.5(a) and from the connectivity graph depicted in

Fig. 2.7(a), accompanied by its maximum clique and corresponding

weakly connected directed subgraph. . . . . . . . . . . . . . . . . . . 28

2.9 A pair of Data-Flow Graphs and their relaxed mapping of equiv-

alent edges, which are represented by pink dashed arrows and la-

beled according to the given edges id. For instance, edge e3 =

(a4, a5, L, 11.9) ∈ E1 can be mapped to edge e′4 = (b4, b5, R, 11.9) ∈
E2, because they have the same color f = 11.9. The port information

is ignored for edges with a target vertex that is binary and commuta-

tive. Thanks to the commutative property, graphs G1 and G2 can be

completely mapped to each other. Otherwise, only a subset of edges

would be mapped, producing a smaller common subgraph. . . . . . . 30

2.10 A pair of Data-Flow Graphs and their relaxed mapping of equiv-

alent edges, which are represented by pink dashed arrows and la-

beled according to the given edges id. For instance, edge e2 =

(a2, a3, R, 12.12) ∈ G1 can be mapped to edge e′2 = (b2, b3, L, 12.12) ∈
G2, because they have the same color f = 12.12. The port infor-

mation is ignored for edges with a target vertex that is binary and

associative. The commutative and associative properties enable the

mapping of graphs G1 onto G2, or vice-versa. . . . . . . . . . . . . . . 31

2.11 Multiply-subtraction custom instruction data-flow graph together

with its semantics specification using the ASIP Machine Description

Language (MDL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.12 Multiply-subtraction function unit (HLUD MUL SUB) together with

its specification using the ASIP Machine Description Language (MDL). 35

x



2.13 One-cycle multiply-subtraction function unit (HLUD MUL SUB) to-

gether with its specification using the ASIP Machine Description Lan-

guage (MDL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.14 Circuit area and energy estimation of the main LLVM-IR basic opera-

tions. Each basic operation of the LLVM-IR was separately described

in VHDL and synthesized using Cadence RTL-Compiler, based on

TSMC 65nm technology, set at 5ns timing constraint and applying

default switching activities. . . . . . . . . . . . . . . . . . . . . . . . 37

2.15 Dot product custom instruction data-flow graph. . . . . . . . . . . . . 38

2.16 High-latency custom instructions. . . . . . . . . . . . . . . . . . . . . 39

2.17 Example of coarse-grain custom instructions of the AES application,

each requiring 4 immediate (I) operands. . . . . . . . . . . . . . . . . 40

2.18 Example of identified commutative custom instructions of the JPEG

application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.19 Example of identified associative custom instructions of the AES and

SHA applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.20 Speedup for each benchmark application and its corresponding set

of automatically identified custom instructions (CIs), using only one

augmented issue-slot (AIS). The speedup is in comparison to using

the VLIW-ASIP standard instruction set. . . . . . . . . . . . . . . . . 42

2.21 Access of Custom Instructions function units compared to the access

of Default Instructions function units. . . . . . . . . . . . . . . . . . . 43

2.22 Subset of benchmark applications that obtained speedup when vary-

ing the number of augmented issue-slots. The speedup is in compar-

ison to using the VLIW-ASIP standard instruction set. . . . . . . . . 44

2.23 Circuit area and total energy consumption estimations for each bench-

mark application and its corresponding set of automatically identified

custom instructions, for only one augmented issue-slot. . . . . . . . . 45

2.24 Speedup for each benchmark application using different automatically

identified CI granularities with 1,2 and 3 augmented issue-slots (AIS),

respectively, in comparison to using the standard instruction set. . . . 47

2.25 Mapping of each custom instruction onto the application data-flow

graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.26 Custom instructions circuit area and energy estimation for differ-

ent granularities and applications, using 1 augmented issue-slot and

TSMC 65nm technology with 5ns timing constraint. . . . . . . . . . . 49

2.27 Distribution of all the 70 identified custom instructions over their

circuit area and energy consumption. . . . . . . . . . . . . . . . . . . 50

xi



3.1 Customization example of the Xilinx MicroBlaze microprocessor in-

struction set with hardware sharing optimization. . . . . . . . . . . . 53

3.2 Customization example of the VLIW-ASIP instructions set in one

issue-slot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Resource sharing example. The two addition operations are never

going to be executed at the same time, because the operation selector

OP ensures that they are mutually exclusive. . . . . . . . . . . . . . . 56

3.4 Operators implemented as separate function units or as a single func-

tion unit of an issue-slot of the VLIW-ASIP. . . . . . . . . . . . . . . 59

3.5 Resulting merged operators. . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Function units of an issue-slot of the VLIW-ASIP. . . . . . . . . . . . 60

3.7 Structural design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 Case statement design style. . . . . . . . . . . . . . . . . . . . . . . . 63

3.9 If statement design style. . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.10 Area synthesis results for different specification styles. . . . . . . . . . 67

3.11 Worst path delay of each design style. . . . . . . . . . . . . . . . . . . 68

3.12 Instruction Set Customization Design Flow with a Hardware Sharing

optimization stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.13 Datapaths DAGs and their respective bipartite match. . . . . . . . . 70

3.14 Compatibility graph of DAG1 and DAG2, together with a merging

example obtained from a maximal clique. . . . . . . . . . . . . . . . . 71

3.15 Assignment of weights to the edges of bipartite match. . . . . . . . . 72

3.16 Custom instructions circuit area and energy consumption reduction.

The CRC application is not shown because only one complex instruc-

tion was identified for it. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 The Uniform Grid sequential traversal. . . . . . . . . . . . . . . . . . 77

4.2 Parallel intersection checks. . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 The Processing Element processor. Each number is a circuit-level

operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 The GridRT co-processor, with 4 PEs. . . . . . . . . . . . . . . . . . 80

4.5 The MicroBlaze microprocessor connected to a GridRT co-processor. 80

4.6 Interrupt Controller detailed datapath. . . . . . . . . . . . . . . . . . 81

4.7 Streaming Multiprocessors (SMs) organization, with each SM execut-

ing a blocks of threads. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8 GridRT–CUDA configuration. . . . . . . . . . . . . . . . . . . . . . . 82

4.9 3-D Scenes, rendered with primary rays only in GPGPU. . . . . . . . 85

4.10 GridRT–CUDA kernel execution results. Resolution: 320 × 240 pri-

mary rays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xii



4.11 Images produced by the proposed parallel volume ray-casting algorithm. 93

4.12 GPU performance results in CUDA. . . . . . . . . . . . . . . . . . . . 95

4.13 Acceleration rate using two GPUs and frames per second rate. . . . . 95

4.14 Frames per second rendering rate for lower resolutions. . . . . . . . . 96

4.15 MPSoC synthesis and scalability, for up to 4 parallel microprocessors. 96

4.16 The reconfigurable MPSoC macro-architecture. . . . . . . . . . . . . 99

4.17 The Ray-Tracing instruction set extensions. . . . . . . . . . . . . . . 100

4.18 Parallel ray-tracer execution time results. . . . . . . . . . . . . . . . . 101

4.19 RISC-based MPSoC FPGA area occupancy and the final output image.102

4.20 Instruction set extensions with Hardware Sharing. . . . . . . . . . . . 102

4.21 RISC-MPSoC parallel ray-tracer execution time comparison, with

hardware sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.22 RISC-MPSoC FPGA area occupancy and speedup results, with hard-

ware sharing and without it. . . . . . . . . . . . . . . . . . . . . . . . 103

4.23 The Multi-core VLIW Macro-Architecture. . . . . . . . . . . . . . . . 104

4.24 The MPSoC VLIW-ASIP Core. . . . . . . . . . . . . . . . . . . . . . 105

4.25 High-resolution ray-tracing speedup in respect to the number of

VLIW-ASIP cores, with and without instruction set extensions. . . . 105

4.26 Produced image together with the cycle-accurate simulation results

(number of cycles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.27 MPSoC VLIW-ASIP custom instructions circuit-area and energy con-

sumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.1 AES custom instructions. . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 SHA custom instructions. . . . . . . . . . . . . . . . . . . . . . . . . 121

A.3 JPEG custom instructions. . . . . . . . . . . . . . . . . . . . . . . . . 122

A.4 MJPEG custom instructions. . . . . . . . . . . . . . . . . . . . . . . 122

A.5 CRC custom instructions. . . . . . . . . . . . . . . . . . . . . . . . . 123

A.6 EDGE custom instructions. . . . . . . . . . . . . . . . . . . . . . . . 123

A.7 RT custom instructions. . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.8 VRC custom instructions. . . . . . . . . . . . . . . . . . . . . . . . . 125

A.9 MPSO custom instructions. . . . . . . . . . . . . . . . . . . . . . . . 126

B.1 Merged AES custom instructions. . . . . . . . . . . . . . . . . . . . . 127

B.2 Merged SHA custom instructions. . . . . . . . . . . . . . . . . . . . . 128

B.3 Merged JPEG custom instructions. . . . . . . . . . . . . . . . . . . . 128

B.4 Merged MJPEG custom instructions. . . . . . . . . . . . . . . . . . . 129

B.5 Merged EDGE custom instructions. . . . . . . . . . . . . . . . . . . . 129

B.6 Merged RT custom instructions. . . . . . . . . . . . . . . . . . . . . . 130

B.7 Merged VRC custom instructions. . . . . . . . . . . . . . . . . . . . . 130

xiii



B.8 Merged MPSO custom instructions. . . . . . . . . . . . . . . . . . . . 130

C.1 MPSoC-RT custom instructions. . . . . . . . . . . . . . . . . . . . . . 132

xiv



List of Tables

2.1 Binary LLVM-IR operations. . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Circuit area (in number of nand gates) and energy consumption (pJ)

of the main 32-bit LLVM-IR basic operations, based on TSMC 65nm

technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 The identified commutative and (re)-associative patterns . . . . . . . 41

2.4 Speedup for each benchmark and its custom instructions (CIs), to-

gether with the number of identified custom instructions (#CIs), their

circuit area (in number of nand gates), average (Avg.E.) and total

(Total.E.) energy consumption results for one augmented issue-slot

(1-AIS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Expanded results of speedup, circuit area and energy consumption

for each custom instruction granularity. . . . . . . . . . . . . . . . . . 48

2.6 Summary of the main differences between the proposed and related

works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Table of operations of each function unit of the VLIW-ASIP. . . . . . 58

3.2 Issue-slot function unit synthesis results. . . . . . . . . . . . . . . . . 59

3.3 Table of operations of each function unit of the VLIW-ASIP. . . . . . 61

3.4 Structural description synthesis results. . . . . . . . . . . . . . . . . . 62

3.5 Case statements description synthesis results. . . . . . . . . . . . . . 63

3.6 If statements description synthesis results. . . . . . . . . . . . . . . . 64

3.7 Cascaded if statements description synthesis results. . . . . . . . . . . 66

3.8 Floating-point Adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Synthesis results, for different design styles and area reduction efforts

(TSMC 40nm process and 5ns timing constaint). . . . . . . . . . . . . 68

3.10 Active area reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.11 Interconnection reduction. . . . . . . . . . . . . . . . . . . . . . . . . 73

3.12 Maximum depth increase. . . . . . . . . . . . . . . . . . . . . . . . . 74

3.13 Reduction of total circuit area, static energy consumption and inter-

connects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xv



4.1 Matrix of results copied from the GPU by the host processor. . . . . 83

4.2 Area cost for 1, 2, 4 and 8 PEs, in contrast with old vs. new GridRT

architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Dedicated hardware and GPGPU kernel execution times. . . . . . . . 85

4.4 GridRT–CUDA kernel execution times. . . . . . . . . . . . . . . . . . 86

4.5 High-resolution execution times for eight different datasets. . . . . . . 94

xvi



Chapter 1

Introduction

The recent progress in modern nano-CMOS technology has enabled the implementa-

tion of various complex systems on single chips, pushing the development of various

kinds of application-specific or domain-specific embedded systems. For many appli-

cation areas, such embedded systems can be even several orders of magnitude faster,

while consuming several times less power than the traditional general purpose CPU-

based systems [1]. Increasingly complex and sophisticated embedded systems are

required to reliably perform real-time computations to extremely tight schedules

with energy and area efficiency never demanded before. The computational de-

mands of high-performance systems for scientific and engineering computation also

grow rapidly.

Application-specific processors and hardware accelerators have become an attrac-

tive alternative to general-purpose processors [2], as they can be tailored in order

to more precisely meet the requirements of modern highly-demanding applications.

Specifically, communications and multimedia applications are often very demanding

regarding throughput and energy consumption, requiring sophisticated application-

specific (co-)processors implementation. For instance, a set of operation patterns

that are frequently executed by an application or a class of applications can be im-

plemented as a hardware accelerator or as a set of custom instructions in an ASIP

datapath, with a possible substantial increase of the execution speed. Moreover,

specific instruction subsets, such as high precision floating-point instructions, may

result useless for a given application. Thus, depending on the information collected

during an application analysis, these instructions can be either optimized, e.g. chang-

ing from high precision floating-point to fixed-point arithmetic [3], or even removed

from the processor’s datapath, if they are never needed by the given application.

This may substantially lower the overall circuit area.

Opportunities created by modern technology can effectively be exploited only

through adequate usage of efficient application-specific system architectures and

circuit implementations exploiting more adequate concepts of computation, storage

1



and communication. Developing a large digital circuit is a complicated process that

involves complex algorithms and a large amount of data. This requires effective

and efficient design methods and Electronic Design Automation (EDA) tools for

synthesizing the actual hardware platforms implementing the architectures, and for

efficient mapping of the applications onto hardware platforms. The ideal scenario

would be that human designers only need to develop a high-level behavioral de-

scription of the digital system, while the EDA software would be responsible for

all the circuit synthesis, placement and routing, being able to produce an optimal

circuit implementation automatically. However, from the computational complexity

point of view, the synthesis consists of several intractable problems, i.e., problems

with no polynomial time solution [4]. Finding the optimal circuit implementation

corresponds to a global search for all possible circuit implementation configurations.

Therefore, the EDA software must limit the search space of solutions, performing

the search on a local basis and applying only a few optimizations and heuristics to

guide the direction of the search.

Summing up, the application-specific character of embedded systems and high

computation speed, as well as energy and area minimization demands of many

modern embedded applications, result in the necessity of effective and efficient

application-specific platform for these applications involving application-specific in-

struction set processors (ASIPs) or hardware accelerators. An adequate design of

such application-specific processors and accelerators is thus of particular importance

for the Embedded Systems domain. In order to identify and efficiently exploit the

acceleration opportunities, as well as guide the design of an area/power efficient

architecture and its circuit implementation, a careful and detailed application anal-

ysis and exploitation of tradeoffs between the computation speed, circuit area and

energy consumption is required.

1.1 Complex instruction identification & Hard-

ware sharing

Usually, most of the development effort in the ASIP design is focused on mapping

a given application onto the ASIP itself, while the hardware synthesis tools are

left in charge of speed, circuit area and power optimizations. However, the result

of such optimizations may often be unsatisfactory, especially because most of the

commercially available synthesis tools are only capable of performing a limited set

of optimizations, using limited information on a particular design. Therefore, more

accurate architecture and circuit optimization methods should be used in parallel

to the synthesis tool in order to achieve decent optimization results, especially for

2



complex high-demanding designs.

Ideally, Computer-aided (CAD) tools for application-specific processor design

should be able to automatically identify common operation patterns of an appli-

cation and automatically generate an ASIP with the corresponding embedded cus-

tom instructions, either as an (semi-)custom Integrated Circuit (IC) or in a (Re)-

Configurable Hardware (e.g. Field-Programmable Gate Array – FPGA). Also, the

compiler should be able to automatically schedule such new custom instructions

whenever possible. However, currently this is rarely the case, especially because of

the problem’s inherent complexity. The custom instruction identification process is

a subgraph isomorphism problem, which is a well-known computationally complex

problem [5–7] and, thus, very time consuming. Most of the existing tools still de-

pend on the designer’s expertise to identify custom instructions, implement them

in hardware and insert them into the application code. In summary, current CAD

tools do not fully automate the instruction set extension process. Designing and

manufacturing an ASIP in IC can be a long and expensive process. Still, efficiently

automating parts of the design of the application-specific processors can very much

help the designer to meet time-to-market requirements.

Instruction Set Customization, also known as Instruction Set Extension (ISE),

is a well-known technique to enhance the performance and efficiency of Application-

Specific Processors (ASIPs) [8]. For instance, the multiply-accumulate operation

pattern is often used in a broad range of multimedia and digital signal process-

ing applications. Therefore, many modern processors already include a multiply-

accumulate operation implemented in hardware, resulting in a possible substantial

increase of the execution speed and additional circuit area requirements. When sev-

eral custom instructions are identified for hardware implementation the impact on

circuit area is much higher. A naive ad hoc instruction set customization may not

result in the required performance improvement, leading to a waste of computing

and energy resources. Thus, when performing custom instruction selection, com-

plex tradeoffs between processing speed, circuit area and power consumption must

be closely observed.

For those reasons, resource sharing, also known as hardware sharing [4], is a

well-known optimization approach traditionally employed for saving circuit area, in

which two or more equivalent hardware parts (e.g. functional units) are combined

into a single one, provided that they are never going to be used at the same time

during an application execution (are mutually exclusive). For instance, in a class of

applications there is usually large sets of equivalent patterns (custom instructions)

that can be identified, evaluated and finally selected for extending an existing in-

struction set, which may significantly increase the overall circuit area of a processor.

Thus resource sharing represents an important optimization problem for saving cir-

3



cuit area, which can also help to save power [9]. While many synthesis tools provide

some resource sharing transformations, their result is often far from ideal [10].

Moreover, this thesis focuses on the extension of a well-known RISC-based ASIP

and a commercially available VLIW-based ASIP, both briefly presented in Sections

1.1.1 and 1.1.2. The RISC-based ASIP configuration has been used specifically

for the evaluation of the ray-tracing application regarding the custom instruction

identification and hardware sharing techniques [11], while the VLIW-based ASIP

is the main target processor for the techniques developed in this thesis regarding

automatic custom instruction identification [12, 13]. Extensible ASIPs refers to mi-

croprocessors that offer the possibility to augment their instruction set architecture

with custom instructions, mainly involving its extension through construction of a

new application-specific instruction sub-set. In this case, the hardware accelerators

or custom functional units implementing the custom instructions are added to the

existing processor/core datapath.

1.1.1 Extensible ASIPs: Xilinx MicroBlaze

The Xilinx MicroBlaze is a RISC-based microprocessor described in a Hardware

Description Language (HDL) and optimized for synthesis on Xilinx FPGA’s (Field-

Programmable Gate Arrays). It can be configured in terms of buses, peripher-

als, number of pipeline stages, support for floating-point operations in hardware,

etc. Each microprocessor’s instruction set can be extended with up to 16 custom

instructions, implemented as co-processors through the Xilinx Fast Simplex Link

(FSL) bus, as can be observed in Fig. 1.1.

Xilinx
MicroBlaze

r31
...
r4
r3
r2
r1
r0

FSL

FSL1

CFU

FSL16
Custom user-IP
(co-processor)

...

Figure 1.1: Example of a custom instruction and its connection to the micropro-
cessor through the FSL bus. The Custom Function Unit (CFU) attached to the
microprocessor acts as a co-processor.

The FSL bus is in fact a pair of FIFO’s, where data can be inserted at one

end and retrieved at the other end, using the provided put and get instructions of

the microprocessor, respectively. At the custom function unit side, signals must

4



be coded in HDL to sample and store data from/into the FIFO. The FSL latency

is of one cycle only. Despite the processor’s configurability, the compiler is not

retargetable. In that case, each custom instruction need to be mapped manually in

the application code in order to be used.

1.1.2 Extensible ASIPs: VLIW-ASIP

The general structure of the extensible VLIW data-path is depicted in Fig. 1.2. It

can be configured with any selected kind and number of regular/augmented issue-

slots (IS/AIS), function units (FU) and register files (RF). The data-path contains

a set of function units organized as a set of parallel issue-slots. In each issue-slot,

an operation can be started in every clock cycle. The issue-slots are connected to

register files via programmable interconnect and can write to any register file. In

general, the function units compute operations on data stored in the register files.

The operands of a function unit can also come from a memory port or directly as

an immediate value. However, an operation can use at most one immediate.

VLIW-ASIP

IS 1 IS 2 IS/AISNIS/AIS 3

RF 1
16x32

RF 2
16x32

RF 3
16x32

RFN

Kx32
Local 
Mem

default FUs floating point FUs and custom FUs 

...

...

Figure 1.2: VLIW Application-Specific Processor Data-path.

A custom function unit implements a new custom instruction specified by the

designer, as shown in Fig. 1.3. An issue-slot with custom function units is an

augmented issue-slot (AIS). Due to the configurable nature of this VLIW data-path,

its compiler is retargetable. Thus, the compiler is able to automatically recognize

the new custom instructions implemented by the custom function units and schedule

them whenever possible, based on their time-shape information. Further details are

presented in Section 2.3.

5



Issue-Slot 1

ADD SUB LGU BRU

Issue-Slot/Augmented 1

LD/
ST MOD ...

Issue-Slot/Augmented 2

MUL ADD ...

Issue-Slot/Augmented 2

i0 i1 i2 i3 i4 i5

o1

Custom FU

x x x

+

+
FU

x

FU

+

Figure 1.3: VLIW parallel issue-slots and an example of function unit customization,
including the dot product operation.

1.2 Related work on complex instruction identi-

fication

Some of the existing custom instruction identification methods use a template

matching approach for extending the instruction set of an ASIP [14], generally be-

cause it eliminates the instruction generation step and, thus, simplifies the exten-

sion process. Templates are previously defined subgraphs being potential custom

instruction candidates, as exemplified in Fig. 1.4. Each template is compared to

the application graph to find the set of templates that are matched with the most

parts of the application graph.

However, it is easy to observe that this approach is limited to identifying only

the custom instructions that are included in the set of pre-defined templates. For

instance, in Fig. 1.4, there is a dot-product pattern that could be implemented as a

custom instruction, possibly yielding a higher speedup. In general, the more closely

the custom instructions resemble the most frequent and critical operation patterns of

a particular application, the higher speedup and energy gain can be expected. Con-

sequently, the custom instructions should not be pre-decided, but should be decided

after a careful analysis of the application [1, 2]. Beyond the template matching ap-

proach, complex instruction identification (a.k.a. instruction generation) techniques

are often used [15]. The custom instruction identification process is usually formu-

lated as a subgraph isomorphism problem, which is NP-Complete [5]. Therefore, in

most of the existing research the instruction set extension problem uses a graph-

based methodology to formally describe the problem at hand. For instance, an

application is often represented by a Directed Acyclic Graph (DAG), where vertices

6



�
����

�
������	�
����

�
����


 �
�	��

�
����

�
������	�
����

�
����


 �
����

�
����

�
������	�
����

�
����


 �
�	��

�
����

�
������	�
����

�
����


 �
����

�
����

�
������	�
����

�
����


 �
�	��

�
����

�
������	�
����

�
����

�
�����

Template

� �
����

� �
����

Figure 1.4: Example of a common template pattern (multiply-add) being matched
to a Basic Block Data-Flow Graph representation extracted from the Ray-Tracing
application.

represent basic operations and the edges represent the data dependencies between

the vertices, as shown in Fig. 1.4. Thus, graph theory is commonly used as the

standard framework to describe the instruction customization problems.

The custom instruction identification problem boils down to the subgraph iso-

morphism problem and should not be mistaken with the custom instruction selection

problem, which is a graph covering problem [16, 17]. The custom instruction iden-

tification process consists of finding the common patterns that may exist between a

set of graphs, as depicted in Fig. 1.5.

� �

���

� �

���

� �

���

� �

���

� �

���

� �

���

� �

���

� �

���

(a) DFG G1.

� �

���

� �

���

� �

���

� �

���

� �

���

� �

���

� �

���

(b) DFG G2.

� �

���

� �

���

� �

���

� �

���

(c) Common
pattern.

Figure 1.5: Pair of Data-Flow Graphs, G1 and G2, together with their corresponding
common pattern G3.

7



Finding exact solutions can be very time consuming and tedious, because the al-

gorithms have a worse case exponential time complexity. Thus, several approximate

algorithms have been proposed [5, 15], including maximum common subsequence

algorithms [18–21] for the hardware sharing problem, which is similar to the cus-

tom instruction identification problem. However, for a small set of graphs, which is

usually the case for custom instruction identification, with basic blocks in the range

of hundreds of vertices each, subgraphs may be identified in feasible time, apply-

ing pruning strategies to reduce the search space. For instance, micro-architectural

constraints regarding the number of input operands and output results can substan-

tially lower the subgraphs identification time [22, 23]. Moreover, memory, branch

and floating-point operations are usually forbidden during the pattern identification

process, also due to micro-architectural constraints. Thus, only a subset of opera-

tions is enabled for custom instruction identification, which helps to further reduce

the search space.

Several custom instruction identification methods exists that are based on convex

cuts [15, 24–26]. A cut S is an induced subgraph of a graph G, such that S ⊆ G. A

cut is convex iff there is no path from a vertex u ∈ S to another vertex v ∈ S that

passes through a vertex w 6∈ S, as shown in Fig. 1.6.

� �
���

� �
���

� �
	
�

� �
���

(a) Nonconvex cut.

� �
���

� �
���

� �
	
�

� �
���

(b) Convex cut.

Figure 1.6: Nonconvex and convex cuts.

Despite of their poor execution time, these methods are often used as the graph-

based framework for instruction set extension. They first enumerate all convex cuts

(i.e., valid subgraphs) within the data-flow graphs of each basic block of the appli-

cation. Each subgraph is a potential custom instruction. Enumerating all possible

cuts within a basic block is not computationally feasible and, thus, prune strategies

must also be used to avoid infeasible regions during the search [27]. For instance,

many techniques based on cuts use the number of I/O ports required by the custom

instruction function unit and register file to prune the set of subgraphs that can be

enumerated, limiting the size and shape of the generated custom instructions. Also,

once all the subgraphs have been enumerated, the graph isomorphism algorithm

8



is exhaustively applied to identify which subgraphs are equivalent to one another,

finally resulting in the production of a library of equivalent subgraphs, i.e., custom

instructions.

The proposed method formulates the common subgraph enumeration problem as

a maximum clique-enumeration problem, similar to the method described in [28, 29]

for the datapath merging problem. The proposed method differentiates itself from

previous approaches in the introduction of graph connectivity and (re)-associativity

analysis. The methodology enables a greater control of several aspects of the prob-

lem, especially regarding the produced custom instructions granularity, the produced

subgraphs connectivity and the (re)-associativity detection. The graph connectivity

can impact, for example, on the clique-enumeration execution time, reducing the

subgraph isomorphism space-domain to only search for connected graphs [45]. Fur-

thermore, associativity detection further enables the matching of pair of graphs that

would be otherwise considered different by traditional graph-matching algorithms

that generally deals only with commutativity aspects [19, 28].

In this work, automatic custom instruction identification for a set of well-known

benchmark applications is presented, together with performance, circuit area and

energy consumption estimation results. The identified custom instructions are im-

plemented in a commercially available extensible VLIW ASIP processor, while most

methods published so far have focused on academic/prototype single-issue architec-

tures [15, 23, 25, 30]. Only a few authors have addressed multi-issue architectures

[17, 31–34], also based on academic/prototype VLIW architectures. The VLIW

architecture has several advantages over traditional single-issue architectures, espe-

cially regarding Instruction Level Parallelism (ILP). Thus, this work also presents

speedup results for different configurations of augmented issue-slots.

1.3 Related work on hardware sharing

In the part of this thesis related to hardware sharing, most commercially available

synthesis tools can perform to a certain degree some area, delay and energy op-

timizations, based mainly on local information about the design at each synthesis

stage. The whole synthesis process consists of several intractable problems, i.e. al-

gorithms with no polynomial-time solution. This is an inherent limitation of every

synthesis software and cannot be overcome by faster hardware, especially due to the

size and complexity of many modern digital designs [4]. Therefore, the synthesis

tools rely on heuristics to produce a sub-optimal solution. While many synthesis

tools provide some resource sharing transformations, their result is often far from

ideal [10, 35]. The quality and efficiency of a design is still dependent on a human

designer’s expertise. Still, such area optimization together with automatic custom

9



instruction identification can contribute to speedup the design process of an ASIP

and reduce its time-to-market. One important design optimization to save circuit

area consists in merging together two or more equivalent parts of a datapath (e.g.

function units) that are accessed in a mutually exclusive way. This technique, known

as datapath merging, substantially lowers the overall circuit area [18, 19, 21, 36–38].

� �
�� � ����

� �
�� � ����

� �
�	 	
 ���


� �
�� 		 ����

� �
�
 	� ����

÷ +

-

x

+

Custom instruction Data-Flow Graph (DFG) Corresponding datapath Datapath DAG

Figure 1.7: Custom instruction Data-Flow Graph (DFG) and its datapath Directed
Acyclic Graph (DAG) representation.

Basically, the merging process takes as input the library of identified custom

instructions and extracts two of their datapath Directed Acyclic Graphs (DAGs)

at a time, e.g., G1 and G2, and merges them into a new combined directed acyclic

graph GM that overlaps the equivalent function units and edges of G1 and G2. Fig.

1.7 shows an example of a datapath DAG representation. Thereafter, if there are

more graphs to merge, the new merged graph GM is again merged with the next

available graph, e.g., G3, as long as there are equivalent function units and edges to

overlap. This process is repeated until all the available graphs have been considered.

The final combined datapath must be able to realize the behavior of the original

datapaths, as depicted in Fig. 1.8.

�� ���� ���� ��

��

(a) DAG 1.

��� ������ ���

���

(b) DAG 2.

���

��� ������ ���

��� ����� ����� �� �� ����� ��

��

(c) Merged DAG 1.

������

��� ���

�� ���� ����� �� ��� �� ������

��

(d) Merged DAG 2.

Figure 1.8: Datapath merging example.

For example, it is possible to observe that the simple example datapath DAGs

10



shown in Fig. 1.8(a) and Fig. 1.8(b) have a few function units in common, because

of their equivalent colors. These function units can be merged as highlighted in

the merged datapath of Fig. 1.8(c). Notice that before the merging process, both

datapaths require 8 function units and 18 interconnections, in total. After merging,

the number of the required function units is 5, roughly representing 37.5% reduction,

but 5 multiplexers had to be included in order to select which datapath, DAG1 or

DAG2, should be used. So, even for such simple datapaths, a substantial area

reduction is possible.

The main problem with the merged datapaths of Fig. 1.8(c) and Fig. 1.8(d) is

that the inserted multiplexers increase the delay of the circuit [19] and, thus, multi-

plexer inclusion should be avoided whenever possible. The inclusion of multiplexers

depends on the number of interconnections needed in the circuit. For instance,

the merged DAG illustrated in Fig. 1.8(d) preserves some of the original intercon-

nections and, more importantly, does not include an extra multiplexer. While the

total number of interconnections in the merged datapath presented in Fig. 1.8(c)

is 21, the total number of interconnections in the merged datapath depicted in Fig.

1.8(d) is 19, which is almost the same as the 18 total interconnections of the original

datapaths in Fig. 1.8(a) and Fig. 1.8(b).

In essence, the datapath merging problem is also a subgraph isomorphism prob-

lem, as well as the pattern identification problem. Because of its worse case expo-

nential time complexity, there are several heuristics that try to solve the datapath

merging in polynomial time. Let G1 and G2 be two directed acyclic graphs of a

pair of datapaths, as shown in Fig. 1.9(a) and Fig. 1.9(b), respectively. The first

step of the datapath merging process involves the mapping of the vertices or edges

of graph G1 to the equivalent vertices or edges of graph G2, analogous to the edge

mapping process of the custom instruction identification stage. Thus, the equivalent

patterns (vertices, edges, etc.) belonging to different DAGs are identified as possible

matching. The result is a bipartite graph matching, as shown in Fig. 1.9(c). This

matching, in particular, maps with each other all the equivalent vertices that exists

between the pair of DAGs that are used as example.

For instance, Fig. 1.9(c) shows all the possible mappings between the vertices of

DAGs G1 and G2. Observe that one vertex from G1 cannot be merged to more than

one vertex from G2 at the same time, and vice-versa. Otherwise inconsistencies may

be created in the final merged DAG, such as the collapsing of two or more vertices

that are data-dependent. Thus, only one of the possible identified mappings will be

selected for merging. This mapping selection process will be explained in Section

3.2.2.

Another possible mapping method, known as path-based matching, maps the

different graph equivalent patterns based on the longest common subsequences (or

11



� ��

�

� ��

��

�

� ��

��

(a) Datapath DAG1.

� ��

�

� ��

��

(b) Datapath DAG2.

������

������

�
��

�

�

�
��

�
��

�

�
��

�
��

��

��

��

(c) Complete mapping for the
pair of DAGs G1 and G2.

Figure 1.9: Pair of Datapath DAGs and their mapping of vertices.

substrings) that may exist between paths of the different DAGs, also respecting the

order of mapping imposed by the subsequence or substring. The longest common

subsequence/substring algorithm is usually applied in the bioinformatics sequence

analysis context, to discover the longest DNA subsequence/substring that is com-

mon to all the DNA sequences that are being compared [39]. The longest common

substring must be always contiguous, whereas the longest common subsequence is

not necessarily contiguous. In [18], each datapath Directed Acyclic Graph (DAG) is

transformed to a set of paths, i.e., subsequences or substrings, that are compared to

each other to identify its common parts. Each path is converted into subsequences

or substrings, so that the longest common subsequences and longest common sub-

strings algorithms can be used to identify such common parts between the datapaths.

Similar resource sharing techniques are used in [19, 21, 38] together with a heuristic

algorithm to control the degree of resource sharing during the datapath merging of

a set of custom instructions.

In the path-based mapping context, all the possible paths from each datapath

DAG are enumerated, in order to produce sequences of vertices that can be rep-

resented as strings. The extraction process consists of traversing the DAG from a

source vertex to a sink vertex, and considering all the possible paths in-between

these vertices, as in Fig. 1.10, where paths for DAGs G1 and G2 from Fig.1.9 are

shown. The idea is to break down the datapath DAG into several strings that later

can be compared to each other to find, for instance, the longest common subse-

quences (L-SEQ) or substrings (L-STR).

Thus, a pair-wise comparison is performed between each path from the first

DAG and each path from the second DAG, in order to compute the longest common

subsequence or the longest common substring existing between the paths from the

12



different DAGs. For instance, in Fig.1.10, the longest common subsequences of

vertices are L− SEQ1 = (+,+) and L− SEQ2 = (√,+). These are coincidentally

also the longest common substrings. Based on these informations, matches between

vertices of two or more DAGs can be discovered. Indeed, the resulting bipartite

graph may contain less mappings, as shown in Fig. 1.11.

�
��

�

�
��

�
��

�

��

�

�
��

�
�� �� ��

(a) Paths from G1.

�
��

�
��

�
��

�
��

(b) Paths from G2.

Figure 1.10: Paths generated from DAGs G1 and G2 of Fig. 1.8.

To exemplify the path-based vertex matching using L-SEQ, lets consider the

paths in Fig. 1.10. To find the longest common subsequence (L-SEQ) between paths

from G1 (Fig. 1.10(a)) and paths from G2 (Fig. 1.10(b)), the longest common sub-

sequences between each pair of paths needs to be found, one from G1 and the other

from G2, e.g {(+,+), (√,+)}, and then one of the longest common subsequences is

selected, e.g. (√,+). Consequently, the vertices from G1 and G2 corresponding to

this L-SEQ (√,+) are mapped in the bipartite graph matching, as shown in Fig.

1.11, in the same order that they appear in the longest common subsequence. For

instance, A3 cannot be mapped to B3, because A5 appears first in the subsequence

analysis, as it can be observed from the paths shown in Fig. 1.10. Notice that fol-

lowing the order given by the L-SEQ, more promising matchings are favored, such

as A5 to B3, which could have been missed. Thus, additional interconnections in

the final merged datapath would have been introduced if A3 to B3 had been first

naively mapped.

Moreover, computing the longest common subsequence is not always the best

choice, because shorter sequences are given lower importance over longer sequences

[18]. For instance, in some cases, matching a shorter sequence such as (÷, ∗) is

better than a longer sequence like (∗,+,+), because the circuit area of the divider is

usually much higher and, hence, merging two dividers together may further reduce

the overall circuit area. Therefore, priority can be given to sequences in which the

sum of each vertex (function unit) circuit area is the largest, based on the synthesis

results shown in Section 2.3.2. Such behavior can be disabled according to the user

specification, so that the area information is not used to select the longest common

13



������

������

�
��

�
��

�
��

�

�
��

�

�
��

�

��

��

��

Figure 1.11: Path-based matching for the pair of DAGs G1 and G2.

subsequence or substring of maximum area.

Finally, a maximal-clique enumeration heuristic is used in [28, 29, 37] to identify

the common parts between a set of datapaths DAGs, including interconnection

sharing. Hence, a weighted compatibility graph is built to represent the compatible

mappings that exist between the common interconnections of the datapaths. The

weights represent the circuit area of each function unit that is going to be merged.

Then, the maximal clique with highest weight in the graph represents the largest

merging with compatible vertices and edges. This methodology is compared to

other methods in Chapter 3 and used for the extension of the custom instruction

identification framework, in order to include hardware sharing between the identified

custom instructions.

1.4 Benchmark applications

The benchmark applications selected to evaluate the techniques developed in this

thesis are presented in this Section. The applications were ported from a mixture

of well-known benchmarks, such as MiBench [40] and the ASAM-project bench-

marks [41]. Furthermore, additional applications, such as Ray-Tracing, Volume

Ray-Casting, Canny Edge Detection and Multi-objective Particle Swarm Optimiza-

tion were implemented, as they extensively require the use of floating-point compu-

tations.

AES The Advanced Encryption Standard (AES) is a specification for the encryp-

tion of electronic data, based on the Rijndael cipher. It is a symmetric-key algorithm,

i.e., it uses the same cryptographic key for encryption of plaintext and decryption

of ciphertext. The tested input data consists of a 305KB text file.

14



SHA The Secure Hash Algorithm (SHA) is a cryptographic hash function that

produces a unique hash value, a.k.a message digest, based on an input message.

It is often used for generating digital signatures. The input data used for this

application is a 3.1MB text file.

CRC32 The 32-bit Cyclic Redundancy Check (CRC32) is an algorithm for error-

detection commonly used in digital networks and storage devices. The input data

used for this application is a 26MB audio file.

JPEG The JPEG is a very popular lossy compression algorithm for digital images.

It uses a lossy form of compression based on the Discrete Cosine Transform (DCT).

An image of 600× 400 pixels was used as input data.

MJPEG The Motion JPEG is a video compression algorithm that compresses

each video frame separately as a JPEG image. The input data used for this appli-

cation are 3 video frames of 128× 128 pixels.

RT The Ray-Tracing (RT) is a 3D rendering algorithm used for producing high-

fidelity images from 3D scenes. In this work, the number of primary-rays fired

towards the 3D scene is of 240000 rays, with up to 1 level of reflection/refraction.

The 3D scene consists of 2 spheres, 2 rectangles and a cylinder. The size of the

produced image is of 600× 400 pixels.

VRC The Volume Ray-Casting (VRC) is a 3D rendering algorithm often used to

produce a medical image from a volumetric dataset acquired by Computer Tomog-

raphy (CT). In this work, the number of primary-rays fired towards the scene is of

240000 rays and the volumetric dataset has 2563 voxels. The size of the produced

image is of 600× 400 pixels.

EDGE The canny edge detector (EDGE) is an algorithm for detecting edges in

images. The edges are defined as points of an image where the image brightness

changes sharply. Edge detection is often used in the fields of machine vision and

computer vision. The input data used for this application is an image of 256× 256

pixels.

MPSO The Multi-objective Particle Swarm Optimization (PSO) is a metaheuris-

tic that tries to find an (sub)-optimal solution for an optimization problem, with

regard to more than one objective function. At each iteration, populations of candi-

date solutions, a.k.a particles, are moved around the search-space. This is expected

15



to move the particles, a.k.a the swarm, to the best solutions. The simulation used in

this work creates a swarm of 200 particles and iterates 10 times over 16 dimensions.

1.5 Contributions

This thesis presents novel techniques in the field of automatic custom instruction

identification, which enables the design of more efficient Application-Specific In-

struction Set Processors. The main contributions are listed bellow:

• A complete automatic custom instruction identification framework and tool

that starts with an application described in C and produces a library of poten-

tial custom instruction candidates, which can be implemented into the ASIP

datapath in order to speedup the execution of the corresponding application.

• A novel graph-matching algorithm is proposed and implemented to identify

common patterns, i.e., custom instructions. The tool formulates the subgraph

isomorphism problem as a maximum clique-enumeration problem. A novel

Connectivity Graph is proposed in order to prune the Compatibility Graph

search space, producing only connected subgraphs in less time. Also, original

(re)-associativity detection techniques are implemented, potentially enabling

the identification of subgraphs that would be otherwise considered different by

traditional exact graph-matching algorithms.

• An original analysis of coarse-grain and fine-grain custom instructions is pre-

sented. Each (maximum)-clique corresponds to a common subgraph and the

tool can automatically identify common operation patterns of different granu-

larities between a set of basic blocks extracted from an application, or class of

applications. The size of each enumerated clique determines the granularity

of the corresponding generated custom instruction.

• The important problem of hardware reuse in synthesis of ASIPs and hardware

accelerators implemented in modern nano-CMOS technologies is presented.

This work analyses the problem and presents important results of high prac-

tical relevance from extensive experimental research regarding this issue. It

demonstrates that the state-of-the-art automatic synthesis tools do not ad-

dress this problem in a sufficient way, and shows how important an effective

hardware reuse is for an adequate synthesis of ASIPs and hardware accelera-

tors.

• A hardware reuse optimization phase that analyzes the function units of the

custom instructions and merges their common patterns (functional units). The

16



proposed optimization demonstrates the big influence of hardware reuse on all

the major physical parameters: computation speed, circuit area and energy

consumption. In the part of the research related to this issue that is reported

in this thesis, it focused on resource sharing of custom instructions that reside

in the same issue-slot of the VLIW-ASIP. Therefore, these custom instructions

are mutually exclusive (are not going to be executed at the same time) and

can be shared.

• An efficient MPSoC with custom instruction speedups that achieves up to

12× speedup when eight extensible ASIPs are used in parallel in respect to

a single ASIP design. The automatically identified custom instructions pro-

vided around 36% execution time reduction for the ray-tracing application.

Circuit area and energy consumption estimations are also provided for the set

of identified custom instructions.

1.6 Thesis outline

This thesis is organized as follows: Chapter 2 proposes and discusses the Instruc-

tion Customization Framework, with emphasis on maximal-clique enumeration sub-

graph isomorphism. Then, Chapter 3 describes many aspects related to hardware

sharing at the RTL synthesis and proposes an extension to the Instruction Cus-

tomization Framework based on datapath merging techniques. Chapter 4 proposes

custom multimedia parallel architectures based on multiple ASIPs and an ASIP-

based MPSoC with complex instruction speedup, which are usually employed to

speedup computing-intensive kernels of highly-demanding applications or class of

applications. Finally, Chapter 5 draws the conclusion of this thesis and discusses

some ideas for future work.

17



Chapter 2

Instruction Customization

Framework

In this chapter, the automated custom instruction identification framework is pre-

sented. The design flow of the framework is depicted in Fig. 2.1. It is subdivided

into the following three main stages: (i) Profiling, (ii) Custom Instruction Identi-

fication and (iii) ASIP Implementation. Details about each stage are presented in

the following Sections.

(iii) ASIP Implementation

(ii) CI Identification

(i) Profiling

LLVM Compiler

Control 
Flow DFGs 
Extraction

Common Pattern Identification
(subgraph Isomorphism)

VLIW Retargetable
Compiler

Instruction 
Scheduling

Cycle-accurate 
Simulation

Application 
code in C

ASIP HW 
Synthesis

Pattern
Already 
Exists?

Basic Block 
DFGs 

Extraction

Store new pattern

Pattern counter +1

BB Loop
Finished?

Machine Description
Language

Update
ISE lib

LLVM-IR Opt tool insert 
edge profiling

Annotated
LLVM-IR

Profiling
(Execution) llvmprof.out

lib

Yes

No Yes

No
Clique-enumeration

Figure 2.1: Instruction Set Customization Design Flow.

2.1 Application profiling

The Profiling stage is performed using the LLVM compiler infrastructure [42]. It

starts with an application described in C. Then, the application code is compiled us-

ing LLVM Clang compiler, which produces an Intermediate Representation (LLVM-

18



IR) of the application code. Before the application is executed, instrumentation

code for edge profiling is inserted into the LLVM-IR code by the LLVM opt tool, so

that information on the execution frequency of each basic block is collected during

the application run-time. Thus, the annotated LLVM-IR is executed, producing the

basic block profiling information. For the sake of simplicity and readability, Fig.

2.2 shows only a part of the resultant Control Flow Graph (CFG) of an application,

with each Basic Block1 (BB) containing the corresponding code in LLVM-IR and

annotated with its frequency of execution. At the end, the result of the Profiling

stage is transferred to the Custom Instruction (CI) identification stage.

int intersectSphere(sphere * s, ray * r, float *t)
{

float A,B,C,disc,t0,t1,l,m,n;
float xd = r->d.x - r->o.x;
float yd = r->d.y - r->o.y;
float zd = r->d.z - r->o.z;

float temp = xd*xd + yd*yd + zd*zd;
temp = sqrt(temp);

xd = xd/temp;
yd = yd/temp;
zd = zd/temp;

l = (r->o.x - s->center.x);
m = (r->o.y - s->center.y);
n = (r->o.z - s->center.z);

A = 1;//xd*xd + yd*yd + zd*zd;
B = 2*(xd*l + yd*m + zd*n);
C = l*l + m*m + n*n - s->r*s->r;

disc = B*B - 4*A*C;
if(disc < 0)
{

return FALSE;
}

t0 = (float) ((-B - sqrt(disc))/2*A);

if(t0 > epsilon)
{

*t = t0;
return TRUE;

}

t1 = (float) ((-B + sqrt(disc))/2*A);

if(t1 > epsilon)
{

*t = t1;
return TRUE;

}

return FALSE;
}

Application described in C

���������	��
�����
��������
�����

���
��
��
�����������������������
���
�������
�������������
����������
�������
�� 
��
����
�������������
����
�
��������
�� 
�������
����������!���������
�� 
��"����������!��������
���
��#����������!��������
���
��$����������!��������
���
����������������!��������
���
���%����������!��������
���
���&����������!��������
���
�������������!��������
���
��'����������!��������
���
�������������!��������
���
��(�����������!��������
���
��������������!��������
���
��)�����������!��������
���
����'�����������!��������
���
����
�����
����������
����������
����������
����������
�����
�� 
����
�����
����
�
�����
�����
����
�
������
����
�����
�� 
����
��!���������!������������
�����
�� 
��%�����������
����
�
������
����
�����
�� 
������
�����'�����
���*���������
����
�
�����%������%������&
��(���
�����'�����
���*���������
���������������������%������%
��&��������!������(�����
���
��������������
����
�
������
����
�����
�� 
������
�����'�����
���*���������
����
�
������������%������%
��(&���
�����'�����
���*���������
���������������������%������%
�����������!������(&�����
���
����*������*�!�����&����
����
��!�������*��!������(������
���
��������������
����
�
������
����
�����
�� 
�������
�����'�����
���*���������
����
�
������������%������&
������
�����'�����
���*���������
����������������������%������&
��+��������!������������
���
��,�����������
����
�
������
����
�����
�� 
�������
�����'�����
���*���������
����
�
�����,������%������%
�������
�����'�����
���*���������
����������������������%������&
��-��������!�������������
���
����*+������*�!�����+���-
����
��!�������*+��!�������������
���
�� �����������
����
�
������
����
�����
�� 
���,���
�����'�����
���*���������
����
�
����� ������%������&
��)���
�����'�����
���*���������
���������������,������%�������
��.��������!������)�����
���
��&%�����������
����
�
������
����
�����
�� 
���-���
�����'�����
���*���������
����
�
�����&%������%������%
��) ���
�����'�����
���*���������
���������������-������%�������
��&&��������!������) �����
���
����*.������*�!�����.���&&
����
��!�������*.��!������)������
���
��&���������!������(������
���
��&���������!������(������
���
��'������'���!�����&����&�
��&���������!�������������
���
��&+��������!�������������
���
��'��&%����'���!�����&����&+
�������������!�����'�����'��&%
��&,��������!������)������
���
��&-��������!������)������
���
��'��&&����'���!�����&,���&-
�����&���������!�����������'��&&
����
��!��������&���!��������'������
���
��& ��������!��������'������
���
������������(��!�����& �������*��
�����������������*���/�0
�1���*��������2�3+
������&�������
�������*������������!���
����
��!���������&���!��������'������
���
��&.��������!������(������
���
���%��������!��������'������
���
�������������!�����&.����%
����
��!����������!������(������
���
���&��������!�������������
���
������������!��������'������
���
�����&���������!������&�����
����
��!��������&���!�������������
���
������������!������)������
���
������������!��������'������
���
�����&+��������!������������
����
��!��������&+��!������)������
���
���+�����������
����
�
������
����
�����
�� 
���&,���
�����'�����
���*���������
����
�
������+������%������%
��(&-���
�����'�����
���*���������
���������������&,������%������%
���,��������!������(&-�����
���
���-�����������
����������
����������
�����
�� 
�������
���
�����'�����
���*���������
����������
�����-������%������%
��(& ���
�����'�����
���*���������
�������������������
������%������%
��� ��������!������(& �����
���
����*&.������*�!������,���� 
����
��!�������*&.��!������������
���
���.�����������
����
�
������
����
�����
�� 
����%���
�����'�����
���*���������
����
�
������.������%������%
����&���
�����'�����
���*���������
����������������%������%������&
���%��������!��������&�����
���
���&�����������
����������
����������
�����
�� 
�������
�����
�����'�����
���*���������
����������
�����&������%������%
��������
�����'�����
���*���������
�������������������
��������%������&
������������!��������������
���
����*��������*�!������%�����
����
��!�������*����!������'�����
���
���������������
����
�
������
����
�����
�� 
����+���
�����'�����
���*���������
����
�
�������������%������%
��)�,���
�����'�����
���*���������
����������������+������%�������
������������!������)�,�����
���
���+�����������
����������
����������
�����
�� 
�������
�-���
�����'�����
���*���������
����������
�����+������%������%
��)� ���
�����'�����
���*���������
�������������������
�-������%�������
���,��������!������)� �����
���
����*�.������*�!�����������,
����
��!�������*�.��!������������
���
����
��!����&�%%%%%%�4%%��!������"�����
���
���-��������!������(������
���
��� ��������!������������
���
��'���%����'���!������-���� 
���.��������!�������������
���
���%��������!������'�����
���
��'���&����'���!������.����%
���������������!�����'���%���'���&
���&��������!������)������
���
������������!������������
���
��'��������'���!������&�����
���������������!�������������'����
��'���+����'���!������%%%%%%�4%%��������
����
��!�����'���+��!������#�����
���
������������!������������
���
������������!������������
���
��'���,����'���!������������
���+��������!������'�����
���
���,��������!������'�����
���
��'���-����'���!������+����,
������ ��������!�����'���,���'���-
���-��������!������������
���
��� ��������!������������
���
��'���.����'���!������-���� 
������%��������!��������� ���'���.
���.�����������
����������
����������
�����
�� 
��
�&���
�����'�����
���*���������
����������
�����.������%������-
��+%��������!������
�&�����
���
��+&�����������
����������
����������
�����
�� 
��
�����
�����'�����
���*���������
����������
����+&������%������-
��+���������!������
�������
���
��'��������'���!�����+%���+�
����*��������*�!���������%���'����
����
��!�������*����!������$�����
���
��+���������!������#�����
���
��+���������!������#�����
���
��'���+����'���!�����+����+�
��++��������!������"�����
���
��'���,����'���!������%%%%%%�4%%���++
��+,��������!������$�����
���
��'���-����'���!�����'���,���+,
����*� ������*�!�����'���+���'���-
����
��!�������*� ��!���������������
���
��+-��������!���������������
���
���'������'������!�����+-��%�%%%%%%�4%%
�*
��&���'�����*���������������*����������

5 6
�&-%�-%

��������
����
������%��������
�����
�*
���*����
���
�

�%�%+�&

�������
��+ ��������!������#�����
���
����*+%������*�!����7%�%%%%%%�4%%���+ 
������+&������(��!�������*+%�������*��
��+.��������!���������������
���
������+�������(��!�����+.�������*��
������+������������*���/�0
�1���*��������+�2�3+
����*+�������*����*��������+&�������+�
�����++�����������*������*+�����%%%%%%�4%%
��,%��������!������"�����
���
������+,������(��!�����,%�������*��
��'��+-����'������*�������++�������+,
������+ ������
�������*����'��+-����!���
����
��!���������+ ��!�������%�����
���
��,&��������!�������%�����
���
���'�+.�����'���
��!�����,&��%(�6#$,"-6%%%%%%%%
�*
��&���'�+.����*�����������,&����*����������,�

5 6
&�.-�.


���
��
��-%��������������
�����
�
��������-%

�&-%�-%

�������,&�
��,���������!�������%�����
���
��,���������!������������
�����
�� 
����
��!�����,���!������,������
���
����
������&��������
�����
�*
���*����
���
�

-%+& 

������,��
��,���������!������#�����
���
����*,�������*�!����7%�%%%%%%�4%%���,�
������,�������(��!�������*,��������*��
��,+��������!���������������
���
������,+������(��!�����,+�������*��
������,,�����������*���/�0
�1���*��������,+2�3+
�����,-�����������*��������,��������,,
�����, �����������*�������,-����%%%%%%�4%%
��,,��������!������"�����
���
������,.������(��!�����,,�������*��
��'��-%����'������*�������, �������,.
������-&������
�������*����'��-%����!���
����
��!���������-&��!�������&�����
���
��,-��������!�������&�����
���
���'�-������'���
��!�����,-��%(�6#$,"-6%%%%%%%%
�*
��&���'�-�����*�����������-�����*����������-+

5 6
-.��&

�������-��
��, ��������!�������&�����
���
��,.��������!������������
�����
�� 
����
��!�����, ��!������,.�����
���
����
������&��������
�����
�*
���*����
���
�

&,-&&

������-+�
����
������%��������
�����
�*
���*����
���
�

,�+�%

Application partial CFG with BB frequency of execution 

Figure 2.2: A ray-tracing intersection function code in C and its partially represented
Control-Flow Graph (CFG). Each basic block code is represented using the LLVM-
IR.

1A Basic Block is a portion of an application code with only one entry and only one exit point.

19



2.2 Custom instruction identification

The Custom Instruction (CI) identification stage of the framework design flow corre-

sponds to one of the main contributions of this thesis. It starts with the extraction

of Control Flow Graphs (CFGs) from the profiled application stage and also the

extraction of the Data-Flow Graphs (DFGs) of each Basic Block (BB).

Definition 2.1. Each basic block is a directed acyclic graph, also known as data-

flow graph, G = (V,E), where each vertex v ∈ V = {v1, v2, · · · , vn} corresponds to

a basic operation of the basic block, such that v = (id, c, op) indicated the id of the

basic operation op with color c ∈ N. Each directed edge e ∈ E = {e1, e2, · · · , en}
corresponds to a dependency between a pair of basic operations, such that e =

(u, v, p, f) indicates a data transfer from vertex u to vertex v, through port p ∈
{L,R, U} and with color f ∈ R. Each port letter stands for (L) Left, (R) Right and

(U) Unary. The color and port information of the edges are commonly not shown,

such that e = (u, v) is often used to simply indicate a data transfer from vertex u

to vertex v.

Example 2.2. In Fig. 2.3, vertex a0 corresponds to a floating-point multiplication

operation (fmul), while vertex a2 corresponds to a floating-point addition operation

(fadd). Edge e0 = (a0, a2, L, 13.9) represents the transfer of the fmul operation

result to the left input port of the fadd operation.

� �
�� �� ��	


� �
�� � ��



�������������
��������

� �
�� �� ��	


�������������
��������

� �
�� �� ��	


� �
�� �� ��	�

�������������
���������

�������������
��������

%mul = fmul float %12, %13
%mul10 = fmul float %14, %15
%add = fadd float %mul, %mul10
%mul11 = fmul float %16, %17
%add12 = fadd float %add, %mul11

Basic Block code snippet (in LLVM-IR) Corresponding Data-Flow Graph

��

��

���

��

��

���

��

���

���

Simplified
Corresponding 

Data-Flow Graph

Figure 2.3: A basic block code snippet example together with its Data-Flow Graph
representation. A simplified version of the data-flow graph is also depicted.

20



Definition 2.3. Each vertex v ∈ V is given a unique color number c ∈ N, corre-

sponding to the basic operation it represents, i.e., based on the code of the LLVM-

IR it represents. The color f of each edge e = (u, v, p, f) is the concatenation of

the source vertex u color number, the decimal point and the target vertex v color

number, yielding a color f ∈ R. Thus, the source vertex color number becomes

the integer-part of the edge color, while the target vertex color number becomes

the fractional-part of the edge color. The color information is used to identify the

equivalent vertices or edges that may exist between a pair of graphs.

Example 2.4. Back to Fig. 2.3, vertex a0 corresponds to the fmul operation, with

color number c = {13}, and vertex a2 corresponds to the fadd operation, with color

number c = {9}. These colors correspond to the LLVM-IR code of their respective

operations fmul and fadd. The edge color from a0 to a2 is f = {13.9}.

In the following Sections, the Custom Instruction (CI) pattern identification

methodology is presented. Given a pair of data-flow graphs, i.e., directed acyclic

graphs, G1 = (V1, E1) and G2 = (V2, E2), such that |V1| ≥ |V2|, the objective is to

enumerate all the patterns of G1 (i.e., subgraphs) that are isomorphic to patterns

of G2. While the problem of deciding whether a subgraph of G1 is isomorphic to a

subgraph of G2 is NP-Complete, the problem of enumerating all the common pat-

terns is a well-known NP-Hard problem, known as the Maximum Common Subgraph

Isomorphism problem (MCS). The CI pattern identification methodology uses the

igraph library [43] for the specification of the MCS problem.

2.2.1 CI pattern identification

The whole common pattern enumeration process can be divided in several smaller

steps: (i) mapping of common edges, (ii) construction of a compatibility graph, (iii)

construction of a connectivity graph, (iv) intersection and enumeration of maximum

cliques.

2.2.1.1 Mapping of common edges

The first step of the CI Pattern Identification process consists of identifying all the

common edges that may exist between a pair of graphs G1 and G2. Thus, all the

common edges need to be mapped, i.e., associated to each other. In order to fully

understand the mapping, let us consider the following definition:

Definition 2.5. Let ei and ej be any edge of G1 and G2, respectively. An edge

mapping is the association of two edges ei ∈ E1 and ej ∈ E2, such that ei and ej

have the same color f and the same port p information.

21



Example 2.6. In Fig. 2.4, all the edge mappings are represented by the dashed

lines and labeled according to the given edge id. For instance, the mapping e8/e
′
5

associates edge e8 = (a8, a9, U, 48.37) of G1 with edge e′5 = (b5, b6, U, 48.37) of G2,

because they have the same color f = 48.37 and the same port p = U .

� �
�� �� ��	


� �
�� � �
��

�����������	��

����
��

� �
�� �� ��	


�����������	��
�����
��

� �
�� �� ��	�

���	���	������

���
���

�
�� �� �����

��������������
�����
���

�
�� �� �����

��������������
�����
���

�
�� �� ������

��������������
�����
���

� �
�� �� ��	


� �
�� � ��



�������������
	��
��
�

� �
�� �� ��	


� �
�� � ��



��
���
������
	��
��
�

� �
�� �� ��	


�������������
���
��
�

� �
�� �� ��	


� �
�� �� ��	�

�������������
���
��

�

�������������
	��
�

�

�
�� �� �����

�������������
���

��
�

�������������
����
�
�

�
�� �� �����

�������������
���
����

�
�� �� ������

����������
��
���������

e0/e'0

e1/e'0

e2/e'1

e3/e'2

Data-Flow Graph G1 Data-Flow Graph G2

Mapping of equivalent Edges 
(w/ same color and port)

ex/ey Name of the Edge mapping

e8/e'5

e5/e'3

Figure 2.4: A pair of Data-Flow Graphs and their mapping of equivalent edges,
which are represented by red dashed arrows and labeled according to the given
edges id. For instance, edge e8 = (a8, a9, U, 48.37) of G1 is mapped to edge e′5 =
(b5, b6, U, 48.37) of G2, because they have the same color f = 48.37 and enter through
the same port p = U .

2.2.1.2 Compatibility graph

Once all the equivalent edges of G1 are associated to the equivalent edges of G2,

i.e., the ones with the same color and f and same port p, the compatibility graph

can be built in order to identify the set of edge mappings that are compatible with

each other.

22



Definition 2.7. Let ei = (ui, vi) and ex = (ux, vx) be two edges belonging to data-

flow graph G1, while let e′j = (uj, vj) and e′y = (uy, vy) be two edges belonging

to data-flow graph G2. Two distinct edge mappings, such as ei/e
′
j and ex/e

′
y, are

compatible to one another iff ei 6= ex and e′j 6= e′y. Moreover, the source and target

vertices corresponding to edges represented by these two edge mappings must be

different, such that there is no vertex of G1 being mapped to two vertices of G2, or

vice-versa.

Example 2.8. Consider the pair of data-flow graphs G1 and G2 depicted in Fig.

2.4, and their edge mappings. It can be noted that the edge mappings e1/e
′
0 and

e0/e
′
0 are not compatible to each other, because edges e1 and e0 belonging to data-

flow graph G1 are being mapped to the same edge e′0 of data-flow graph G2. A more

subtle example can be observed from the edge mappings e3/e
′
2 and e0/e

′
0, where even

though e3 6= e0 and e′2 6= e′0, their corresponding vertices are not different, in such a

way that vertices a4 and a7 are mapped to the same vertex b2.

The compatibility criterion is used to forbid inconsistencies when producing a

subgraph corresponding to a group of edge mappings. Otherwise, such inconsisten-

cies could result in a subgraph which is isomorphic to a subgraph of G1, but not

isomorphic to a subgraph of G2, or vice-versa. The compatibility graph is defined

as follows:

Definition 2.9. A compatibility graph Gc = (Vc, Ec), corresponding to the pair of

data-flow graphs G1 and G2, is a simple undirected graph, where each vertex vi ∈ Vc
corresponds to an edge mapping ei/e

′
j. There is an edge ei = (ui, vi) ∈ Ec iff the

mappings represented by ui and vi are compatible.

Example 2.10. Consider the pair of data-flow graphs G1 and G2 depicted in Fig.

2.4, together with their corresponding compatibility graph depicted in Fig 2.5(a). It

can be noted that all the edge mappings presented in Fig. 2.4 have become vertices

of the compatibility graph. The edges of the compatibility graph represent which

edge mappings are compatible to each other. If two vertices of the compatibility

graph are not connected by an edge, it means that they are incompatible with each

other and, thus, cannot be grouped together to form a subgraph.

Enumerating cliques from the compatibility graph enables the extraction of sub-

graphs that may exist in the pair of data-flow graphs G1 and G2 that were used

to construct the compatibility graph in the first place. In graph theory, a clique is

a subset of vertices C ⊆ V , such that every two vertices in C are connected [44].

In other words, the subgraph induced by C is complete. The maximal clique is a

clique that is not included in a larger clique, i.e., it cannot be enlarged by including

one more adjacent vertex. The maximum clique is a clique of maximum possible

23



������ ������

������

������

������

������

(a) Compatibility Graph.

������ ������

������

������

������

������

(b) Clique.

������ ������

������

������

������

������

(c) Maximum Clique.

Figure 2.5: Compatibility Graph generated from the mapping of equivalent edges
shown in Fig. 2.4, together with a regular enumerated clique and a maximum
enumerated clique, which is also a maximal clique.

size. Every maximum clique is also a maximal clique, but not all maximal clique is

a maximum clique. Thus, the clique enumerated in Fig. 2.5(b) corresponds to the

subgraph presented in Fig. 2.6(a), while the maximum clique enumerated in Fig.

2.5(c) corresponds to the subgraph presented in Fig. 2.6(b). Observe that both

subgraphs are not weakly connected directed graphs, i.e., it is not possible to reach

any vertex starting from any other vertex, regardless of the direction they point. For

instance, in the subgraph depicted in Fig. 2.6(a), it is not possible to reach vertex

s3 starting from vertices s0 or s1, or vice-versa.

2.2.1.3 Connectivity graph

This work proposes a novel Connectivity Graph, which together with the Com-

patibility Graph enables the enumeration of weakly connected directed subgraphs.

Different from the work presented in [45], the Bron-Kerbosch clique enumeration

algorithm [46] does not require any modification. The connectivity graph is defined

as follows:

Definition 2.11. The connectivity graph Gw = (Vw, Ew), corresponding to a pair

of data-flow graphs G1 and G2, is a simple undirected graph, where each vertex

vi ∈ Vw corresponds to an edge mapping. There is an edge ei = (ui, vi) ∈ Ew iff the

edge mappings represented by ui and vi are adjacent to each other or connected to

each other by a path of connected edge mappings in the corresponding graphs G1

and G2.

Example 2.12. Let G1 and G2 be the data-flow graphs depicted in Fig. 2.4, to-

gether with the Connectivity Graph Gw depicted in Fig. 2.7(a). It can be observed

that the edge mappings e3/e
′
2 and e5/e

′
3 are connected by an edge in Gw, because

24



� �

�� �� ����

� �

�� � ����

���������������
��������

�

�� �� �����

�

�� �� ������

���������������
���������

(a) Disconnected subgraph 1.

� �

�� �� ����

� �

�� � ����

���������������
��������

� �

�� �� ����

���������������
��������

� �

�� �� ����

���������������
��������

�

�� �� �����

���������������
���������

�

�� �� �����

�

�� �� ������

���������������
���������

(b) Disconnected subgraph 2.

Figure 2.6: Disconnected subgraphs extracted from the compatibility graph shown
in Fig. 2.5(a). The first is a disconnected subgraph based on the clique presented
in Fig. 2.5(b), while the second is a disconnected subgraph based on the maximum
clique presented in Fig. 2.5(c). For the sake of simplicity, the input operands are
not shown.

they are adjacent to each other in Fig. 2.4. In other words, edges e3 and e5 of G1

share vertex a5, while edges e′2 and e′3 of G2 share vertex b3, what makes both edge

mappings adjacent to each other as well. Moreover, it can be noted that the edge

mappings e2/e
′
1 and e5/e

′
3 are not connected by an edge in Gw, although they are

connected to each other through the edge mapping e3/e
′
2. Thus, they are connected

to each other, as depicted in Fig. 2.7(b).

The connectivity graph Gw and its aspects regarding adjacent and connected

edges are formally explained and characterized below. First, let’s formalize the edge

mappings that are adjacent to each other:

Lemma 2.13. Let G1 and G2 be two data-flow graphs. Two edge mappings ei/e
′
j

and ef/e
′
k are connected in the connectivity graph Gw whenever the end-points of

edges ei and ef coincide in G1 and the same end-points of edges ef and e′k coincide

in G2.

Proof. Let ei/e
′
j and ef/e

′
k be two distinct edge mappings, such that ei = (ui, vi),

e′j = (u′j, v
′
j), ef = (uf , vf ) and e′k = (u′k, v

′
k). There are four possible situations such

that the end-points of two edges can coincide:

1. Two edge mappings are adjacent in G1 and in G2, respectively, if ui = uf ,

both of G1, and u′j = u′k, both of G2;

25



������ ������

������

������

������

������

(a) Connectivity Graph
with adjacent edge map-
pings only.

������ ������

������

������

������

������

(b) Connectivity Graph
with adjacent and con-
nected edge mappings.

������ ������

������

������

������

������

(c) Maximum Clique.

Figure 2.7: Connectivity Graphs generated from the edge mappings shown in Fig.
2.4, together with its maximum clique. The first connectivity graph represent only
the edge mappings that are adjacent to each other, while the second connectivity
graph includes the edge mappings that are connected to each other via another edge
mapping.

2. Two edge mappings are adjacent in G1 and in G2, respectively, if vi = vf , both

of G1, and v′j = v′k, both of G2;

3. Two edge mappings are adjacent in G1 and in G2, respectively, if ui = vf ,

both of G1, and u′j = v′k, both of G2;

4. Two edge mappings are adjacent in G1 and in G2, respectively, if vi = uf ,

both of G1, and v′j = u′k, both of G2.

Example 2.14. In Fig.2.4, edges e1 and e3 of G1 are compatible to edges e′0 and

e′2 of G2, respectively. Thus, e1 = (a1, a4) can be mapped to e′0 = (b0, b2), while

e3 = (a4, a5) can be mapped to e′2 = (b2, b3). Furthermore, these two edge mappings

(e1/e
′
0 and e3/e

′
2) are connected to each other by vertex a4 in G1 and vertex b2 in

G2. Thus, there is a corresponding edge in the connectivity graph connecting these

two edge mappings. On the other hand, edges e1 and e8 of G1 and edges e′0 and e′5 of

G2 are not connected in the connectivity graph, even though they are compatible.

Thats because there are no other connected edge mappings in the path between

edges e1 and e8 of G1 and between edges e′0 and e′5 of G2. Fig. 2.7(a) shows an

example of connectivity graph which obeys to Lemma 2.13.

Lemma 2.15. Let G1 and G2 be two data-flow graphs. Also, let ei/e
′
j and ef/e

′
k

be two distinct edge mappings that are not yet connected in the connectivity graph

Gw. If these two edges mappings are reachable by a path P ∈ Gw, then they are also

connected to each other by an edge in Gw.

26



Proof. Let ei/e
′
j and ef/e

′
k be two distinct edge mappings, such that ei/e

′
j is not

yet connected to ef/e
′
k by an edge in the connectivity graph Gw, which means that

the edges being mapped in G1 and G2 do not share a vertex, i.e., they are not

adjacent. Let P be a path in Gw connecting ei/e
′
j and ef/e

′
k, which means that

these edge mappings are reachable via other edge mappings in path P . Therefore,

by transitivity, if ef/e
′
k is reachable by ef/e

′
k via a path of edge mappings, then ei/e

′
j

is connected to ef/e
′
k by an edge in Gw.

Example 2.16. In Fig. 2.7(a), the edge mapping e5/e
′
3 is only connected to the

edge mapping e3/e
′
2, suggesting that, in Fig. 2.4, edge e5 is only connected to edge

e3, both of G1, and edge e′3 is only connected to edge e′2, both of G2. It is obvious

that this is not true, because edge e5 is indirectly connected to edges e1 and e2,

regarded to G1, and edge e′3 is indirectly connected to edges e′0 and e′1, regarded to

G2. Therefore, by transitivity, the edge mapping e5/e
′
3 can also be connected by

an edge to the edge mappings e1/e
′
0 and e2/e

′
1. Fig. 2.7(b) shows an example of

connectivity graph which obeys to Lemma 2.15.

2.2.1.4 Intersection

In this Section, the intersection of the compatibility and connectivity graphs is

described. The intersection is formalized as follows:

Theorem 2.17. The intersection of the compatibility graph Gc and the connectivity

graph Gw, corresponding to a pair of data-flow graphs G1 and G2, results in a new

graph Gk that contains only edges present both in the compatibility graph and in the

connectivity graph. Thus, Gk contains edge mappings that are both compatible and

connected.

Proof. Let Gc and Gw be a compatibility and a connectivity graph, respectively,

corresponding to a pair of data-flow graphs G1 and G2. The intersection Gc ∩ Gw

produces a graph Gk which contains only edges present both in the first and the

second graphs. Therefore, these remaining edges correspond to edge mappings that

are compatible and connected at the same time.

Example 2.18. Fig. 2.8(a) exemplifies the intersected graph of the compatibility

graph shown in Fig. 2.5(a) with the connectivity graph shown in Fig. 2.7(a), which

is coincidently equal to the intersected graph. The enumerated maximum clique

shown in Fig. 2.8(b) maps to the connected subgraph shown in Fig. 2.8(c).

Enumerating maximum cliques from the graph Gk significantly helps to reduce

the search space, resulting only in weakly connected directed subgraphs. The enu-

meration of maximum cliques from the compatibility graph Gc was often not fea-

sible especially due to the high memory consumption of the clique enumeration

27



������ ������

������

������

������

������

(a) Intersected Graph.

������ ������

������

������

������

������

(b) Maximum Clique.

� �

�� �� ����

� �

�� � ����

���������������
��������

� �

�� �� ����

���������������
��������

� �

�� �� ����

���������������
��������

�

�� �� �����

���������������
���������

(c) Connected Subgraph.

Figure 2.8: Intersected Graph Gk generated from the compatibility graph Gc de-
picted in Fig. 2.5(a) and from the connectivity graph depicted in Fig. 2.7(a),
accompanied by its maximum clique and corresponding weakly connected directed
subgraph.

algorithm. Nevertheless, the proposed tool allows the user to decide whether to

enumerate cliques from the graph Gk or directly from the compatibility graph Gc,

which produces disconnected subgraphs. Moreover, the compatibility graph pre-

sented in [28] also includes information about possible mappings of vertices between

a pair of DFGs, in order to maximize the datapath merging solution. However, for

the CI identification problem, custom instructions have at least two basic opera-

tions. Thus, including information about mapping of vertices only contributes to

increase the size of the compatibility graph and the clique-enumeration execution

time.

2.2.2 Commutativity and associativity

The exploitation of commutativity and associativity properties of operations during

the CI identification methodology are novel contributions of this work. Even though

the exploitation of commutativity property has been proposed in the hardware shar-

ing domain [19, 28], it is used in this thesis as basis for the associative property.

Also, the produced custom instructions have their commutative counterparts gener-

ated in order to group the custom instructions which have the same expression into

the same library.

The commutativity property derives from a relaxation of the rules applied for

edge mapping. The second derives from the commutativity property itself, with

28



restrictions regarding floating-point operations, which are not associative [47]. Dis-

tributivity is not yet supported and is proposed as a future work of this thesis. A

list of considered operations and their properties is shown in Table 2.1.

Table 2.1: Binary LLVM-IR operations.
Operation Commutative Associative

add Yes Yes
sub No No
div No No
mul Yes Yes
and Yes Yes
shl No No

ashr No No
or Yes Yes
xor Yes Yes
fadd Yes No
fmul Yes No
fdiv No No

A binary operation is said to be commutative iff the order of its operands does

not affect the final result, i.e., for a set S of operands x and y, a binary operation

op is said to be commutative iff ∀x, y ∈ S:

x op y = y op x

In the CI identification methodology context presented in this work, the com-

mutativity derives from the edge mapping definition with a minor modification: the

edge port attribute information is irrelevant iff the target vertex is a binary com-

mutative operation. In this case, the edge mapping is called relaxed edge mapping,

because the edge port attribute is ignored during the edge mapping process and,

thus, only the edge color is taken into account. This allows any edge to be mapped

to any other edge of the same color f , regardless of their port information (L,R or

U).

Fig. 2.9 depicts a pair of data-flow graphs G1 and G2, their edge mappings

and relaxed edge mappings. Observe that operations a4 of G1 and b4 of G2 are

binary non-commutative operations, which means that their input ports cannot be

switched. Therefore, edges e1 and e2 of G1 can only be mapped to edges e′2 and

e′3 of G2, respectively. On the other hand, observe that operations a5 of G1 and

b5 of G2 are binary commutative operations. Thus, even though edge e3 arrives at

a port in G1 that is different from the port that edge e′4 arrives at G2, they can

still be mapped because of the commutative property of their target vertex and the

relaxation of their edge mappings. Otherwise, only the edge mappings e1/e
′
2 and

e2/e
′
3 would be allowed, resulting in a much smaller subgraph.

29



� �
�� �� ��	


� �
�� �� ��	�

�����������	��

����
���

� �
�� �� ��	


�����������	��
�����
���

� �
�� �� ��	


� �
�
 � ����

��������������

����
��

���	���	������
�����
��

�� �� �� ���
 ��

��
����������������������

� �
�� �� ���	

� �
�
 �� ����

�������������
	���
��


� �
�
 �� ���	

�������������
����
��


� �
�� �� ���	

� �
�� � ����

������
������
����
��


��
����������
	������


�� �
 �� �
 �� ��

������
�������
����������

e3/e'4

Data-Flow Graph G1 Data-Flow Graph G2

ex/ey Name of the Edge mapping

e2/e'3

Relaxed Mapping of equivalent Edges 
(w/ same color only)

e1/e'2

e4/e'1

binary commutative
operation

binary commutative
operation

Mapping of equivalent Edges 
(w/ same color and port)

Figure 2.9: A pair of Data-Flow Graphs and their relaxed mapping of equivalent
edges, which are represented by pink dashed arrows and labeled according to the
given edges id. For instance, edge e3 = (a4, a5, L, 11.9) ∈ E1 can be mapped to edge
e′4 = (b4, b5, R, 11.9) ∈ E2, because they have the same color f = 11.9. The port
information is ignored for edges with a target vertex that is binary and commutative.
Thanks to the commutative property, graphs G1 and G2 can be completely mapped
to each other. Otherwise, only a subset of edges would be mapped, producing a
smaller common subgraph.

A binary operation is said to be associative for a set S of operands x, y and z iff

∀x, y, z ∈ S:

(x op y) op z = x op (y op z)

In the CI identification methodology, the associativity derives from the relaxed

edge mapping commutative definition, excluding floating-point operations. Also, it

requires that all the operations of the graph are the same. Fig. 2.10 depicts a pair

of data-flow graphs G1 and G2, and their relaxed edge mappings. Observe that all

operations are binary associative operations. Therefore, edges e1 and e2 of G1 can

be mapped to edges e′1 and e′2 of G2, in any order. The corresponding compatibility

graph should identify e1/e
′
1 and e2/e

′
2 as one group of compatible mappings and e1/e

′
2

and e2/e
′
1 as another group of compatible mappings, because any other combination

is incompatible. In both cases, the resulting subgraph consists of three multiplication

operations connected one after the other, with its input operands entering at any

port (left or right).

30



� �
�� �� ���

� �
�� �� ���

�������������
	����
���

� �
�	 �� ���

�������������

����
���


� 
� 
	 
�


��
�
��
	��
��

� �
�� �� ���

� �
�� �� ���

�����������	��

���	��	�

� �
�	 �� ���

���	���	���
��

���	��	�


� 
� 
	 
�

�

��
���
	��
�

Data-Flow Graph G1 Data-Flow Graph G2

ex/ey Name of the Edge mappingRelaxed Mapping of equivalent Edges 
(w/ same color only)

e1/e'1

binary associative
operation

binary associative
operation

e2/e'2

e1/e'2
e2/e'1

binary 
associative

operation

binary 
associative

operation

binary 
associative

operation
binary associative
operation

Figure 2.10: A pair of Data-Flow Graphs and their relaxed mapping of equivalent
edges, which are represented by pink dashed arrows and labeled according to the
given edges id. For instance, edge e2 = (a2, a3, R, 12.12) ∈ G1 can be mapped to edge
e′2 = (b2, b3, L, 12.12) ∈ G2, because they have the same color f = 12.12. The port
information is ignored for edges with a target vertex that is binary and associative.
The commutative and associative properties enable the mapping of graphs G1 onto
G2, or vice-versa.

2.2.3 The algorithm

In this Section, the custom instruction identification algorithm is subdivided into

Algorithm 1 and Algorithm 2. Together, they can automatically identify com-

mon frequently executed patterns of an application, i.e., the Maximum Common

Subgraphs that exist among the data-flow graph representation of the most fre-

quently executed basic blocks of an application. Therefore, a set of data-flow graphs

G = {G1, G2, · · · , Gn} is required, each one extracted from a basic block of the

application that is being analyzed. The result is a database of custom instructions

P = {p1, p2, · · · , pn}, i.e., common patterns that are identified during the subgraph

isomorphism comparison of each pair of data-flow graphs, Gi and Gj, taken from

the set G.

The subgraph enumeration function, shown in Algorithm 2, is a part of the

whole algorithm that involved most of the work described in Section 2.2. The

function is responsible for: (i) mapping each edge of Gi to the equivalent edge

of Gj, (ii) checking which mappings are compatible to each other, (iii) checking

which mappings are adjacent and connected to each other, (iv) enumerating all the

31



Algorithm 1 CI Identification
Require: application bb. data-flow graphs G = {G1, G2, · · · , Gn}
Ensure: database of custom instructions P = {p1, p2, · · · , pm}

1: for i← 0 to |G| − 1 do
2: for j ← i + 1 to |G| do
3: S ← EnumerateAllCommonSubgraphs(Gi,Gj);
4: if S 6= ∅ then
5: for t← 0 to |S| do
6: if St /∈ P then
7: C ← generateCommutativePatterns(St);
8: A← generateAssociativePatterns(St);
9: if ((C ∩ P ) 6= ∅) or ((A ∩ P ) 6= ∅) then

10: hist[St] ← hist[St] + frequency[St]; . pattern already included;
11: else
12: addToLibrary(P, St); . St does not exists in P ; include St into P ;
13: hist[St] ← frequency[St]; . update frequency counter;

14: else
15: hist[St] ← hist[St] + frequency[St]; . pattern already included;

16: for i← 0 to |P | do
17: if Pi is associative then
18: H ← generateReAssociations(Pi);
19: addToLibrary(R,H); . include all re-associations H into R;

maximum cliques from the intersection graph (or optionally from the compatibility

graph) and, finally, (v) producing a set of subgraphs S extracted from each maximum

clique.

Once the subgraphs have been enumerated, the program described in Algorithm

1 is responsible for the identification of which subgraphs are already included in

the database of custom instructions P . In summary, for each identified subgraph,

the algorithm includes it in the database of patterns P if and only if the identified

pattern has not yet been included in the database, also taking into consideration

all the commutative and associative combinations of the given subgraph, as shown

in line 7 and line 8 of Algorithm 1. Thus, if the identified subgraph is already

present in the database, or one of its commutative/associative combinations, then

only the frequency of execution of the given subgraph is updated, i.e., accumulated.

Otherwise, the subgraph is included in the database as a new pattern occurrence.

The commutative and associative combinations are produced based on the com-

mutativity and associativity properties of each LLVM-IR operation that exists in

the subgraph. For instance, if there is a commutative operation in subgraph S,

then two combinations of this subgraph are created: one with the operands arriving

at their original input ports of the commutative operation and the other with the

operands of the commutative operation swapped. The same strategy is used for

the associative LLVM-IR operations that exists in the subgraph, except that all the

operations need to be the same.

Finally, once the library of common patterns P has been produced, the associa-

32



Algorithm 2 Maximum Common Subgraphs Enumeration
function EnumerateAllCommonSubgraphs(G1,G2)

C = {c1, c2, · · · , cn} . set of all cliques enumerated between G1 and G2

M = {m1,m2, · · · ,mn} . set of all edge mappings between G1 and G2

Gc = (Vc, Ec), Gw = (Vw, Ew), Gk = (Vk, Ek) . compatibility, connectivity and intersection
graphs

S = {s1, s2, · · · , sn} . set of all subgraphs identified between G1 and G2

for each edge ei in G1 do
for each edge ej in G2 do

if edge color[ei] = edge color[ej ] then
if edge port[ei] = edge port[ej ] then

mt ← map(ei, ej); . map edge ei to edge ej
addMapping(M,mt); . append mt to M
addVertex(Gc,mt); . mt becomes a vertex of Gc

addVertex(Gw,mt); . mt becomes a vertex of Gw

for each mapping of edges mi in M do
for each mapping of edges mj in M do

if mi is compatible to mj then
addEdge(Gc,mi,mj)

if mi is connected to mj then
addEdge(Gc,mi,mj)

Gk ← Gc ∩Gw; . intersect compatibility and connectivity graphs
if connectivity is enabled then

C ← enumerateAllMaximumCliques(Gk); . Bron-Kerbosch algorithm
else

C ← enumerateAllMaximumCliques(Gc); . Bron-Kerbosch algorithm

for each clique ci in C do
G← extractSubgraph(ci);
S ← S ∪G . include the subgraph G into S

return S; . return the set of subgraphs S

tive patterns are re-associated, as shown in line 18 of Algorithm 1. The re-association

produces all the other associative patterns, with the same semantics, and that are

potentially more efficient in terms of performance, as will be presented in Section

2.4.2.

2.3 ASIP implementation

The last part of the proposed framework is the ASIP implementation. The commer-

cially available VLIW-based ASIP that is used in this thesis can be tailored in order

to better exploit the application Instruction Level Parallelism (ILP). After the iden-

tification process, the library of custom instructions can be automatically added

to the processor’s library of default instructions, together with their correspond-

ing function units (FUs) characterized regarding their physical features (processing

speed, circuit area and energy consumption).

33



2.3.1 Instruction set customization

For the VLIW-ASIP extension, a high level C-like specification language (also re-

ferred to as Machine Description Language, or MDL) can be used. It allows the spec-

ification of several macro-architectural elements of a VLIW-ASIP, such as Register

Files, Buses, Issues-Slots, Memories, Function Units, etc. For instance, the common

pattern graph of a 32-bit unsigned multiply-subtraction operation, depicted in Fig.

2.11(a), translates to its corresponding MDL specification shown in Fig. 2.11(b).

� �

�� �� ����

� �

�� �� ����

� � �

�

(a) Multiply-Subtract
Data-Flow Graph.

OP mul_sub (Unsigned A,B,C)->(Unsigned D)

{

SEM D(A,B,C) = {

D = (A * B) - C;

}

};

(b) Multiply-subtract semantics MDL specification.

Figure 2.11: Multiply-subtraction custom instruction data-flow graph together with
its semantics specification using the ASIP Machine Description Language (MDL).

The custom instruction function unit corresponding to this graph and its MDL

specification is produced based on the operation semantics, using the same MDL

specification, requiring only a translation step from the MDL specification to the

micro-architecture corresponding specification in a Hardware Description Language

(HDL) for later implementation in a custom or semi-custom Integrated Circuit

(IC), or Reconfigurable Logic (FPGA). Nevertheless, if the timing information is

provided, i.e., the custom instruction time-shape, the retargetable compiler can al-

ready map the new custom instructions (CIs) onto their corresponding issue-slots for

cycle-accurate simulation results. The function unit timing specifies at which time

(clock cycle) each basic operation should occur. The function unit implementing

the multiply-subtract custom instruction is depicted in Fig. 2.12(a).

It can be noted from the MDL specification in Fig. 2.12(b) that the function unit

time-shape specifies at which clock cycles the function unit ports can be used for

sampling an input value or producing an output value. In that case, ports ip0, ip1, ip2

are sampled at cycle 0, while the output port is sampled at cycle 1. Therefore, the

function unit is pipelined in two stages and takes a total of 2 cycles to produce

the result. If all the ports should be sampled at the same clock cycle, then the

34



HLUD_MUL_SUB

ip0 ip1 ip2

op0

stage 0

stage 1
clk 0

clk 1

(a) Multiply-subtract function unit.

FU HLUD_MUL_SUB

( Port32 ip0, ip1, ip2 ) -> ( Port32 op0 )

{

Cycle[0] := {ip0,ip1,ip2};

Cycle[1] := {op0};

msub : op0 = mul_sub(ip0,ip1,ip2);

};

(b) Multiply-subtract function unit MDL specification.

Figure 2.12: Multiply-subtraction function unit (HLUD MUL SUB) together with
its specification using the ASIP Machine Description Language (MDL).

specification is modified as shown in Fig. 2.13(b).

HLUD_MUL_SUB

ip0 ip1 ip2

op0

(a) One-cycle multiply-
subtract function unit.

FU HLUD_MUL_SUB

( Port32 ip0, ip1, ip2 ) -> ( Port32 op0 )

{

Cycle[0] := {ip0,ip1,ip2,op0};

msub : op0 = mul_sub(ip0,ip1,ip2);

};

(b) One-cycle multiply-subtract function unit MDL
specification.

Figure 2.13: One-cycle multiply-subtraction function unit (HLUD MUL SUB) to-
gether with its specification using the ASIP Machine Description Language (MDL).

Based on such time-shape information, the VLIW-ASIP compiler can schedule

the new custom instructions together with the regular instructions. Thus, according

to the custom instruction time-shape and the application cycle-accurate simulation,

the acceleration provided by a given custom instruction can be evaluated. Let’s

consider, for instance, the kernel code presented in Listing 2.1, which will be executed

by the VLIW-ASIP. The kernel code represents a multiply-subtraction operation on

an element-by-element basis of vectors A,B and C, with 100 elements each.

Listing 2.1: Vector multiply-subtraction operation.
int A[ 1 0 0 ] ;
int B[ 1 0 0 ] ;
int C[ 1 0 0 ] ;
int D[ 1 0 0 ] ;

void ke rne l (void )
{

int i ;
for ( i = 0 ; i < 100 ; i++)

D[ i ] = A[ i ] ∗ B[ i ] − C[ i ] ;
}

Without the multiply-subtract custom instruction, the scheduler would have to

emit a multiplication operation before a subtraction operation, inside each iteration

35



of the for loop. If the multiplication and the subtraction requires one cycle each

to execute, then two cycles would be necessary to compute the required result at

each iteration. On the other hand, using the multiply-subtract custom instruction

presented in Fig. 2.13, with a time-shape of one cycle, both multiplication and

subtraction operations could be executed in one cycle, at each iteration. Hence, one

cycle would be saved at each iteration of the loop, as shown in Listing 2.2.

Listing 2.2: Vector multiply-subtraction custom operation.
int A[ 1 0 0 ] ;
int B[ 1 0 0 ] ;
int C[ 1 0 0 ] ;
int D[ 1 0 0 ] ;

void ke rne l (void )
{

int i ;
for ( i = 0 ; i < 100 ; i++)

D[ i ] = OP MUL SUB(A[ i ] ,B[ i ] ,C[ i ] ) ;
}

2.3.2 Characterizing circuit area and energy

The circuit area and energy consumption of each custom instruction is characterized

from the individual circuit area and energy consumption synthesis results of each

of its basic operators, i.e., function units. Thus, the synthesis tool takes a RTL

hardware description in VHDL of each basic operator and produces reports on their

circuit area and energy consumption.

Synthesis results of the main LLVM-IR basic operations are presented in Fig.

2.14(a) and Fig. 2.14(b), while further details are shown in Table 2.2. These are

the operations that are enabled by default in the proposed tool to identify groups of

basic operations that, together, can form custom instructions that are executable by

the VLIW-ASIP. For instance, memory and branch operations are not supported by

the tool, because the underlying VLIW-ASIP does not support the customization

of function units that use memory or branch operations. Hence, such operations are

disabled by default in the proposed tool and, unfortunately, limits the potential of

speedup that could be achieved otherwise. Because of that, some custom instructions

will not be identified, such as address calculation of memory operations or custom

instructions which ends with a conditional branch operation, both very common in

many application domains.

The logic synthesis results of each basic operation are used to estimate the circuit

area requirements and energy consumption of the custom instructions. The synthesis

results are based on Cadence RTL compiler logic synthesis for a 65nm technology

TSMC cell library, set at 5ns timing constraint and applying the compiler’s default

36



a
d

d
su

b
m

u
l

d
iv

an
d or

x
or

a
sh

r
ls

h
r

sh
l

fa
d

d
fs

u
b

fm
u

l
fd

iv
fs

q
rt

0

2,000
4,000
6,000
8,000

A
re

a
(#

n
a
n

d
ga

te
s)

#nand gates

(a) LLVM-IR circuit area estimation.

ad
d

su
b

m
u

l
d

iv
an

d or
x
o
r

a
sh

r
ls

h
r

sh
l

fa
d

d
fs

u
b

fm
u

l
fd

iv
fs

q
rt

0

5

10

15

E
n

er
g
y

(p
J
) Energy (pJ)

(b) LLVM-IR Energy estimation.

Figure 2.14: Circuit area and energy estimation of the main LLVM-IR basic opera-
tions. Each basic operation of the LLVM-IR was separately described in VHDL and
synthesized using Cadence RTL-Compiler, based on TSMC 65nm technology, set at
5ns timing constraint and applying default switching activities.

transistor switching activities. The latency of all basic operations is of one execution

cycle, with exception of the division and square-root operations, whether in floating-

point or integer arithmetic. These are set to eight execution cycles.

Table 2.2: Circuit area (in number of nand gates) and energy consumption (pJ) of
the main 32-bit LLVM-IR basic operations, based on TSMC 65nm technology.

Operation Type Semantics Area Energy
add Unsigned R = A + B 651 1.5978
sub Unsigned R = A−B 673 1.6083
mul Unsigned R = A ∗B 6087 10.7941
div Unsigned R = A/B 1523 3.0878
and Unsigned R = A&B 464 1.3543
or Unsigned R = A|B 504 1.3715
xor Unsigned R = AˆB 520 1.3460
ashr Unsigned R = A >> B 791 1.4756
lshr Unsigned R = A >> B 713 1.4100
shl Unsigned R = A << B 713 1.4103

fpadd Float R = A + B 2862 5.6334
fpsub Float R = A−B 2862 5.6334
fpmul Float R = A ∗B 4827 12.5211
fpdiv Float R = A/B 5317 6.1898
fpsqrt Float R = sqrt(A) 7115 8.1580

The circuit area of each custom instruction is estimated based on the sum of the

circuit area of each of its basic operations. Therefore, the data-flow graphG = (V,E)

of a custom instruction, where each vertex v ∈ V = {v1, v2, · · · , vn} corresponds to

a basic operation, has a total approximate circuit area as described in Equation 2.1.

TotalArea =
n∑

i=0

Area(vi) (2.1)

The energy consumption of each custom instruction is also estimated based on

37



the sum of the energy consumption of each of its basic operations. Therefore, the

custom instruction has a total approximate energy consumption as described in

Equation 2.2.

TotalEnergy =
n∑

i=0

Energy(vi) (2.2)

Consider, for instance, the dot product custom instruction data-flow graph de-

picted in Fig. 2.15, where each vertex v ∈ V , presents its circuit area A and energy

consumption E, based on the logic synthesis results of the corresponding basic oper-

ators described in Table 2.2. Therefore, it is possible to estimate that the dot product

custom instruction has a total circuit area of 20205 nand gates and consumes a total

energy of 48.83 pJ.

� �

�� �� ����

������ �������

� �

�� � ����

������ ������

� �

�� �� ����

������ �������

� �

�� � ����

������ ������

� �

�� �� ����

������ �������

Figure 2.15: Dot product custom instruction data-flow graph.

2.3.3 Custom instructions time-shape

A subset of the most timing critical custom instructions were synthesized with a 5ns

timing constraint, using TSMC 65nm technology, in order to estimate whether the

custom instructions can operate in one execution cycle, as shown in Fig. 2.16. It can

be noted that for the three custom instructions, their timing slack remained within

the 5ns timing constraint and, thus, may operate in one execution cycle. However, in

order to obtain precise information regarding the delay of the custom instructions,

the whole VLIW-ASIP should be synthesized together with the custom function

units of the custom instructions. Unfortunately, the VLIW-ASIP and the custom

function units could not be synthesized, due to the high memory consumption for the

38



synthesis of the VLIW-ASIP. Thus, all the identified custom instructions were set

to operate in one execution cycle for the cycle-accurate simulation results presented

in Section 2.4.

�

�

�

�Required: 5000 ps
Arrival: 3554 ps
Slack: 1446 ps

(a) 32-bit unsigned adders.

�

�

�

�Required: 5000 ps
Arrival: 4926 ps
Slack: 74 ps

(b) 32-bit unsigned multipli-
ers.

�

�

�

�Required: 5000 ps
Arrival: 5000 ps
Slack: 0 ps

(c) 32-bit floating-point.

Figure 2.16: High-latency custom instructions.

2.4 Experimental results

In this Section the experimental results regarding instruction set customization are

discussed for the set of benchmark applications presented in Section 1.4. The custom

instruction identification framework applied to the set of benchmark applications

produced a library of 70 custom instructions in total.

2.4.1 Experimental setup

For each benchmark application one VLIW-ASIP processor was configured with a

pair of regular issue-slots (IS) and up to three augmented issue-slots (AIS). The

regular issue-slots are mainly responsible for handling memory access and branch

operations, besides handling other regular operations. The first augmented issue-slot

is one of the regular issue-slots containing a mixture of regular function units and

custom function units, while the other two are dedicated issue-slots containing cus-

tom function units only. This configuration is used to evaluate how much speedup

is obtained from the custom instructions, 1-AIS configuration, and how much is

gained from Instruction Level Parallelism (ILP), e.g., 2/3-AIS configurations. Each

VLIW-based ASIP was simulated using its own cycle-accurate simulation tool-chain.

Circuit area and energy consumption estimates are provided for each custom instruc-

tion, based on TSMC 65nm technology with 5ns timing constraint, as presented in

Section 2.3.2. The identified library of custom instructions is presented in Appendix

A.

39



��

� �

���

��

� �

���

��

� �

���

��

� �

���

� � � �

� �

���

� �

���

� �

���

(a) AES custom instruction 1.

��

� �

���

��

� �

���

��

� �

���

��

� �

���

��

� �

���

� � � �

� �

���

� �

���

� �

���

(b) AES custom instruction 2.

Figure 2.17: Example of coarse-grain custom instructions of the AES application,
each requiring 4 immediate (I) operands.

2.4.2 Commutative and associative analysis

For each benchmark application a substantial number of basic blocks was extracted

from the profiling stage of the custom instruction identification framework, as can be

observed in Table 2.3. Also, it can be noted that around 20 patterns were identified

for each application based on the data-flow graph comparison performed by the

custom instruction identification stage. However, only a subset of the identified

patterns were selected for implementation as custom instructions due to limitations

of the VLIW-ASIP retargetable compiler and architecture. For instance, many

patterns could not be scheduled by the compiler, mostly due to the limitation on

the number of input operands that the VLIW-ASIP architecture imposes (only 1

immediate operand is supported). For instance, some of the patterns identified for

the AES application makes extensive use of immediate operands, as shown in Fig.

2.17.

For that reason, fewer patterns were implemented as custom function units into

the augmented issue-slots for the AES application, as well as for other applications

that require more than one immediate operand. Furthermore, coarse-grain patterns

could not be often scheduled too, mainly because of their large number of input

operands, which imposes a higher pressure on the register files and makes it more

difficult for the compiler to schedule them.

Commutative patterns were often identified, especially for the JPEG application,

as can be observed in Table 2.3. All the identified custom instructions are grouped

together as a single custom instruction and their execution frequencies are also

accumulated. Examples of commutative custom instructions is shown in Fig. 2.18.

Associative patterns, on the other hand, occur less frequently when compared to

commutative patterns. In general, only a few associative patterns were identified for

40



Table 2.3: The identified commutative and (re)-associative patterns
Basic Block

DFGs
Identified
Patterns

Commutative
Patterns

Associative
Pattern

Re-associations Implemented CIs

AES 24 17 0 3 33 9
SHA 29 10 2 4 17 7
JPEG 108 37 12 2 4 11
MJPEG 92 23 9 1 2 5
CRC 98 2 0 0 0 1
EDGE 83 14 4 0 0 3
RT 79 21 1 1 2 14
VRC 66 13 3 1 2 7
MPSO 56 26 7 1 2 11

�����������������������������

� �

���

� �

���

� �

���

� �

���

� �

���

� � � � � �

(a) Commutative pattern 1.

�����������������������������

� �

���

� �

���

� �

���

� �

���

� �

���

� � � � ��

(b) Commutative pattern 2.

�����������������������������

� �

���

� �

���

� �

���

� �

���

� �

���

� ���� �

(c) Commutative pattern 3.

Figure 2.18: Example of identified commutative custom instructions of the JPEG
application.

the set of benchmark applications, with a couple more identified for the AES and

SHA applications. These two applications, in particular, consists of several process-

ing steps, each containing sets of binary commutative and associative operations,

such as and, xor, add, etc. Therefore, some of the identified patterns consists of

a group of only one kind of associative operation and, thus, is also associative, as

shown in Fig. 2.19(a). Moreover, the associative patterns can be re-associated in

order to produce more efficient patterns, i.e., custom instructions with operations

that can be processed in parallel. For instance, in Fig. 2.19(b), it can be noted that

a pair of xor operations can be processed in parallel, contributing also to reduce the

delay of the custom instruction datapath.

2.4.3 Performance, area and energy estimation results

The speedup in comparison to the default VLIW-ASIP instruction set implementa-

tion, i.e., without instruction set extensions, is presented in Fig. 2.20, when only one

augmented issue slot (1-AIS) is enabled. Further details are presented in Table 2.4,

including the number of identified custom instructions (#CIs) for each application

41



�������������������������

�

� �

���

�

�

� �

���
�

� �

���

(a) Associative pattern 1.

�������������������������

�

� �

���

� �

� �

���

�

� �

���

(b) Re-association of pat-
tern 1.

Figure 2.19: Example of identified associative custom instructions of the AES and
SHA applications.

and their frequency of access (%Access).

It is possible to observe that when the custom instructions are enabled using

1-AIS, the speedup is substantial and goes up to 25% for the RT application, using

the 14 custom instructions that the tool automatically identified for it. Other ap-

plications, such as the CRC, achieved a speedup of 14% using only the two custom

instructions that the tool identified for it. On average, using 1-AIS configuration

and a dozen identified custom instructions provided around 12% of speedup. As

expected, most of the custom instructions identified for the RT benchmark are pop-

ular operations that are often encountered in the multimedia domain, such as the

dot product and the multiply-accumulate operations. For instance, they were also

identified in the VRC application.

Fig. 2.21 depicts how often the custom instructions are accessed (i.e., used) dur-

AES SHA JPEG MJPEG CRC EDGE RT VRC MPSO

1

1.1

1.2

1.3

1.16 1.16

1.04
1.07

1.14
1.12

1.25

1.07
1.11

S
p

ee
d
u

p

1-AIS Speedup

Figure 2.20: Speedup for each benchmark application and its corresponding set
of automatically identified custom instructions (CIs), using only one augmented
issue-slot (AIS). The speedup is in comparison to using the VLIW-ASIP standard
instruction set.

42



Table 2.4: Speedup for each benchmark and its custom instructions (CIs), together
with the number of identified custom instructions (#CIs), their circuit area (in
number of nand gates), average (Avg.E.) and total (Total.E.) energy consumption
results for one augmented issue-slot (1-AIS).

CI Speedup CIs (1-AIS, TSMC 65nm)

App. 1-AIS 2-AIS 3-AIS #CIs %Access
Area

#gates
Avg.E.

(pJ)
Total E.

(nJ)
AES 1.16 1.34 1.34 9 17.30 16285 5.44 16939.66
SHA 1.15 1.20 1.26 7 13.08 12129 5.03 78056.44

JPEG 1.04 1.14 1.14 11 15.30 82682 18.73 156445.40
MJPEG 1.13 1.14 1.15 5 7.37 19535 7.41 24490.13

CRC 1.14 1.14 1.14 1 18.18 984 2.7 143700.48
EDGE 1.12 1.12 1.12 3 2.49 21551 21.48 14004.76

RT 1.25 1.50 1.54 14 8.12 240612 46.06 1229327.13
VRC 1.07 1.19 1.19 7 8.19 78213 30.32 6830686.99

MPSO 1.11 1.11 1.11 13 4.20 111626 23.36 580289.58

ing each application execution time in comparison to the VLIW’s default instruction

set, for one augmented issue-slot (1-AIS). For instance, the custom instructions that

were automatically identified for the RT application were accessed 8.12% of the ap-

plication’s total execution time, leaving the rest for the default instruction set to

execute. The custom instructions of some applications were accessed more often,

such as the CRC custom instructions, which were accessed 18.18% of the applica-

tion’s total execution time.

AES SHA JPEG MJPEG CRC EDGE RT VRC MPSO
0 %

20 %

40 %

60 %

80 %

100 %

A
cc

es
s

Custom Instructions Default Instructions

Figure 2.21: Access of Custom Instructions function units compared to the access
of Default Instructions function units.

Despite the low access rate of the custom instructions identified for the RT

application, in comparison to the other applications, observe that its speedup is

the highest amongst all benchmarks. This translates into a good custom instruction

efficiency ratio between speedup and custom instruction access rate. In other words,

with fewer accesses to its custom instructions, the RT application obtained a better

speedup than most of the other applications with twice or more accesses to their

respective custom instructions. The custom instructions of the MJPEG, EDGE,

VRC and MPSO benchmarks also have a good efficiency ratio, because they were

accessed fewer times in comparison to the custom instructions of the AES, SHA,

JPEG and CRC benchmarks, and still obtained similar speedup results. The custom

instructions of the JPEG application have the worse efficiency ratio, because they

43



produced the lowest speedup and were frequently accessed.

Increasing the number of augmented issue-slots contributes to raise the speedup

of the custom instructions by exploiting the ILP that may exist in the application,

enabling two or more instructions to be scheduled in parallel by the VLIW compiler.

Besides, it helps to reduce the pressure on a single register file (1-AIS), spreading

the data over two or more register files, which can be accessed from all issue-slots. In

this way, custom instructions can be scheduled more frequently, because data might

be available immediately throughout several register files. Thus, the speedup of

most applications raised substantially when 2 augmented issue-slots were enabled,

because more custom instructions were scheduled in parallel or within the same

issue-slot, as depicted in Fig. 2.22. The speedup of the CRC, EDGE and MPSO

benchmarks did not change significantly when 2 or more augmented issue-slots were

enabled and, thus, are not present in Fig. 2.22.

AES SHA JPEG MJPEG RT VRC

1

1.2

1.4

1.6

1.8

1
.1

6

1
.1

6

1.
04 1.
07

1.
25

1.
07

1
.3

5

1
.2

1
.1

4

1
.1

5

1.
5

1.
19

1
.3

4

1
.2

6

1
.1

4

1
.1

6

1
.5

4

1.
19

S
p

ee
d

u
p

1-AIS 2-AIS 3-AIS

Figure 2.22: Subset of benchmark applications that obtained speedup when varying
the number of augmented issue-slots. The speedup is in comparison to using the
VLIW-ASIP standard instruction set.

When 3 augmented issue-slots were enabled, the speedup slightly improved for

applications such as SHA, MJPEG and RT. For other applications, such as JPEG

and VRC, using a 3-AIS configuration did not have any significant impact on the

application’s performance. In the worst case, an application’s performance can also

slightly deteriorate, as for the AES application. A careful analysis of the instruc-

tion scheduling of each application revealed few opportunities for additional ILP

exploitation as more augmented issue slots are included and used, which can be

the cause for the lack of improvement. Also, the additional issue-slots are often

wasted during most cycles and are only used for the sporadic execution of custom

instructions. Furthermore, the issue-slot that handles memory load/store operations

is often accessed. Some custom instructions may require several input operands to

be available at the moment of its execution. Thus, if such data is not available,

the custom instruction may be delayed or not executed at all, prioritizing the usage

of the default instruction set. Splitting the required data among several different

memories may allow two or more memory operations two be scheduled in parallel by

two or more issue-slots. Consequently, data can be made available more frequently,

44



A
E

S

S
H

A

J
P

E
G

M
J
P

E
G

C
R

C

E
D

G
E

R
T

V
R

C

M
P

S
O

0

1

2

3

·105

A
re

a
(2

-i
n

p
u

t
n

g
a
te

s) Circuit area

(a) Total circuit area estimation.

A
E

S

S
H

A

J
P

E
G

M
J
P

E
G

C
R

C

E
D

G
E

R
T

V
R

C

M
P

S
O

0

2

4

6

8

·106

E
n

er
g
y

(n
J
)

Energy consumption

(b) Total energy consumption estimation.

Figure 2.23: Circuit area and total energy consumption estimations for each bench-
mark application and its corresponding set of automatically identified custom in-
structions, for only one augmented issue-slot.

allowing the custom instructions to be scheduled.

Circuit area and energy consumption estimative are given in Fig. 2.23, while

specific details can be found in Table 2.4. Replicating issue-slots to exploit ILP is

a common practice, but it will also demand more circuit area and consume more

energy. Thus, there is a trade-off between performance, circuit area and energy.

Including a second augmented issue-slot only makes sense if the additional speedup

compensates the higher circuit area requirement and energy consumption. From

these results it is possible to observe that the area and energy consumption for

the custom instructions of the RT, VRC and MPSO applications is considerably

higher than those of the other applications. One reason for such high area and en-

ergy consumption arises from the fact that these three applications make extensive

use of floating-point computation, which is known to require more area and con-

sume more energy. Another reason is the larger number of custom instructions that

were identified for those three applications. For instance, even though the EDGE

application also uses floating-point computation, only 3 custom instructions were

identified for it, whereas 14 custom instructions were identified in total for the RT

application. Therefore, the RT and VRC applications might not be good candidates

for augmented issue-slot replication, despite the improvements in speedup shown in

Fig. 2.22. The MPSO, in particular, is not a good candidate for augmented issue-

slot replication at all, because the speedup remains the same for 2-AIS and 3-AIS

configurations.

On the other hand, the CRC total and average energy requirements are very

low in comparison to the energy requirements of the other applications. Thus,

the CRC is a good candidate for instruction customization and further augmented

issue-slot replication, especially if the improvement in speedup is considered. For

the CRC, the tool automatically identified only one custom instruction that provides

14% speedup with low circuit area footprints. However, it has been shown in the

45



previous Section that increasing the number of augmented issue-slots did not affect

the speedup of the CRC application in particular. Therefore, the AES application

may be a better candidate for augmented issue-slots replication: its circuit area and

energy consumption footprints may be compensated by the higher speedup (from

16% to 35%) that can be achieved when using a pair of augmented issue-slots.

2.4.4 Fine-grain vs. coarse-grain analysis

Custom instructions are often organized into fine-grain and coarse-grain instructions

[2]. The fine-grain instructions implement small groups of basic operations and are

usually more general than the coarse-grain instructions, in the sense that they may

be applied in an application domain. For instance, the multiply-accumulate is an

example of fine-grain custom instruction that is often used in a broad range of

multimedia applications. On the other hand, coarse-grain instructions implement

large blocks of basic operations and are usually much less general than fine-grain

instructions, i.e. they can hardly be used for more than one application.

This Section discusses the impact of the identified custom instructions gran-

ularity on the ASIP execution time, circuit area and energy consumption. Each

maximum clique corresponds to a common sub-graph and the tool can automat-

ically identify common operation patterns of different granularities between a set

of basic blocks extracted from an application, or class of applications. The size of

each enumerated clique determines the granularity of the corresponding generated

custom instruction. For instance, a clique of size 2 generates custom instructions

of 2 basic operations (2-op) and cliques of size 5 generates custom instructions of 5

basic operations (5-op).

The speedup in comparison to the default VLIW-ASIP instruction set imple-

mentation, i.e., without instruction set extensions, is presented in Fig. 4.13(a),

for custom instructions of different granularities with 1,2 and 3 AIS, respectively.

Further details can also be found in Table 2.5. The CI identification tool automat-

ically sets the granularity of each custom instruction. The granularity represents

the maximum size of a recurrent pattern identified by the tool for each application.

For instance, for the JPEG application, custom instructions composed of 2,3 and

7 basic operations were identified, while for the ray-tracing application custom in-

structions composed of 2,3,4,5,6 and 8 basic operations were identified. Moreover,

the speedup presented in a given higher granularity (e.g. 5-op) also includes the

speedups of its respectively lower 2,3,4-op granularities, i.e. , the lower granularity

custom instructions are also implemented.

It is possible to observe that most of the obtained speedup comes from the

fine-grain custom instructions, in especial the 2-op custom instructions, which are

46



1-AIS 2-AIS 3-AIS
1

1.2

1.4

1.16

1.35 1.34

2-op 3-op 4-op

5-op 6-op

(a) AES
1-AIS 2-AIS 3-AIS

1

1.1

1.2

1.3

1.4

1.16
1.2

1.26

2-op 3-op 5-op

(b) SHA
1-AIS 2-AIS 3-AIS

1

1.1

1.2

1.04

1.14 1.14

2-op 3-op 7-op

(c) JPEG

1-AIS 2-AIS 3-AIS
1

1.1

1.2

1.3

1.4

1.07
1.15 1.16

2-op 3-op

4-op 5-op

(d) MJPEG
1-AIS 2-AIS 3-AIS

1

1.05

1.1

1.15

1.2
1.14 1.14 1.14

2-op

(e) CRC
1-AIS 2-AIS 3-AIS

1

1.05

1.1

1.15

1.2

1.12 1.12 1.12

2-op 7-op

(f) EDGE

1-AIS 2-AIS 3-AIS
1

1.2

1.4

1.6

1.8

1.25

1.5 1.54

2-op 3-op 4-op

5-op 6-op 8-op

(g) RT
1-AIS 2-AIS 3-AIS

1

1.1

1.2

1.3

1.4

1.07

1.19 1.19

2-op 3-op 5-op

(h) VRC
1-AIS 2-AIS 3-AIS

1

1.05

1.1

1.15

1.2

1.11 1.11 1.11

2-op 3-op

4-op 6-op

(i) MPSO

Figure 2.24: Speedup for each benchmark application using different automatically
identified CI granularities with 1,2 and 3 augmented issue-slots (AIS), respectively,
in comparison to using the standard instruction set.

composed of 2 basic operations only. For instance, when the custom instructions are

enabled using 1-AIS, the 2-op custom instruction identified for the CRC applica-

tion provided alone a 14% speedup. Also, the RT application achieves a substantial

speedup of 21% when 3-op custom instructions are included together with 2-op cus-

tom instructions, even though coarser-grain custom instructions have been identified.

In fact, using coarser-grain custom instructions in the RT application increased the

speedup to 25% only, which is close to the speedup achieved by the 3-op custom

instructions already. The same happens for several other applications, such as AES,

JPEG and EDGE, where increasing the custom instructions granularity slightly af-

fects (or even worsen, as in VRC) the speedup. The main reason for the fine-grain

custom instruction speedup dominance over the others is the amount of times that

the fine-grain custom instructions got mapped onto the application data-flow graph,

as depicted in Fig. 2.25 and detailed in Table 2.5. It can be noted that fine-grain

custom instructions are often mapped onto the application graph in comparison to

coarser-grain custom instructions, especially for the AES, SHA, JPEG and MJPEG

applications.

Furthermore, increasing the number of augmented issue-slots does not seem to

47



Table 2.5: Expanded results of speedup, circuit area and energy consumption for
each custom instruction granularity.

CI Speedup CIs (1-AIS, TSMC 65nm)

App. #ops 1-AIS 2-AIS 3-AIS #CIS #Map %Access
Area

#gates
Avg.E.

(pJ)
Total E.

(nJ)

AES

2 1.10 1.23 1.23 3 261 11.35 3201 2.72 8895.52
3 1.11 1.31 1.30 3 116 4.86 4817 4.06 5701.96
4 1.14 1.34 1.33 1 9 0.0002 2080 5.38 0.32
5 1.12 1.31 1.31 1 1 0.54 2488 6.75 1052.43
6 1.16 1.35 1.34 1 8 0.54 3699 8.27 1289.43

SHA
2 1.08 1.15 1.18 3 45 3.56 3706 2.97 15809.11
3 1.16 1.21 1.26 3 280 9.49 5315 4.35 61853.55
5 1.16 1.20 1.26 1 1 0.03 3108 7.76 393.77

JPEG
2 1.03 1.13 1.14 7 429 14.65 30888 8.32 136995.81
3 1.04 1.14 1.14 2 3 0.16 20354 18.53 3397.48
7 1.04 1.14 1.14 2 6 0.49 31440 29.34 16052.11

MJPEG
2 1.05 1.07 1.07 2 530 2.62 2472 2.81 2451.64
3 1.07 1.15 1.16 2 5 4.75 14918 13.93 22038.37
4 1.07 1.15 1.16 1 3 0.0001 2145 5.49 0.12

CRC 1 1.14 1.14 1.14 2 3 18.18 984 2.7 143700.48

EDGE
2 1.08 1.08 1.08 2 7 1.58 7689 9.08 4446.62
7 1.12 1.12 1.12 1 16 0.91 13862 33.89 9558.13

RT

2 1.10 1.31 1.34 3 35 1.02 39459 18.53 71619.89
3 1.21 1.46 1.51 4 40 2.42 50064 30.68 282473.80
4 1.23 1.48 1.52 3 35 0.78 50064 40.90 120745.90
5 1.24 1.50 1.54 1 66 3.05 20205 48.83 565349.49
6 1.25 1.50 1.54 2 12 0.82 48099 57.91 179791.72
8 1.25 1.50 1.54 1 12 0.03 32721 79.51 9346.32

VRC
2 1.10 1.16 1.16 3 26 1.43 22116 16.23 801354.74
3 1.07 1.19 1.19 3 11 6.74 35892 25.89 6005893.85
5 1.07 1.19 1.19 1 2 0.01 20205 48.83 23438.40

MPSO

2 1.05 1.06 1.06 6 57 1.30 33784 13.16 114656.33
3 1.08 1.09 1.10 3 45 1.73 24764 19.53 226872.92
4 1.08 1.10 1.10 2 12 0.53 26826 29.42 105310.07
6 1.11 1.11 1.11 2 33 0.64 26252 31.32 133450.26

AES SHA JPEG MJPEG CRC EDGE RT VRC MPSO
0

200

400

600

395
326

438
538

3 23

200

39

147#
M

a
p

2-op 3-op 4-op 5-op 6-op 7-op 8-op

Figure 2.25: Mapping of each custom instruction onto the application data-flow
graph.

significantly contribute to the (re)-distribution of the speedup among the different

custom instructions, with the exception of a few applications, such as the MJPEG,

RT and MPSO. Observe, for instance, that 3-op custom instructions significantly

helps to improve the performance of the MJPEG and RT applications when more

augmented issue-slots are implemented. However, in the case of the MPSO applica-

tion, using more augmented issue-slots did not affect the overall performance of the

application, although it shifted the speedup gain from the 6-op custom instructions

back to 2-op and 3-op custom instructions.

Area and energy consumption estimative are given in Fig. 2.26, while specific

details can also be found in Table 2.5 for a configuration of 1 AIS. It can be noted

that the applications with the larger number of identified custom instructions are

among the ones that require the most circuit area and, eventually, consume the

most energy, such as the JPEG, RT, VRC and MPSO. Moreover, the three latter

48



AES SHA JPEG MJPEG CRC EDGE RT VRC MPSO
0

1 · 105

2 · 105

3 · 105

16285 12129

82682

19535
984

21551

2,41 · 105

78213
1,12 · 105

A
re

a

2-op 3-op 4-op 5-op 6-op 7-op 8-op

(a) Circuit area estimation of each custom instruction.

AES SHA JPEG MJPEG CRC EDGE RT VRC MPSO
0

100

200

300

27,18 15,08
56,19

22,23 2,7
42,97

276,36

90,95 93,43E
n

er
g
y

2-op 3-op 4-op 5-op 6-op 7-op 8-op

(b) Average energy consumption estimation of the custom instructions.

Figure 2.26: Custom instructions circuit area and energy estimation for differ-
ent granularities and applications, using 1 augmented issue-slot and TSMC 65nm
technology with 5ns timing constraint.

applications extensively use floating-point computation, which is known to require

more area and consume more energy.

The distribution of the custom instructions granularities based on their circuit

area and energy consumption is depicted in Fig. 2.27, organized into integer and

floating-point custom instructions. Observe that the integer custom instructions are

mostly concentrated in the lowest circuit area and energy consumption coordinates,

regardless of its granularity, as shown in Fig. 2.27(a). For instance, 6-op, 4-op

and 5-op custom instructions are nearby several 2-op custom instructions. Hence,

they all share low area and energy consumption footprints, with exception of the

7-op custom instruction, among a few others. However, the floating-point custom

instructions, as shown in Fig. 2.27(b), are clearly less concentrated and can be

distinguished from one another, with respect to their area and energy consumption.

It can be noted that as the granularity increases, the higher becomes the area and

the energy consumption of this type of custom instructions.

2.4.5 Comparison results

This Section evaluates the proposed custom instructions regarding execution time

reduction and speedup in comparison to Wu’s [32, 33] and Lu’s [17] works, which are

all based on multi-issue architectures. Table 2.6 summarizes the main differences

between the works under comparison. In all the related works, different configu-

rations of register files and/or issue-slots are provided. However, for the sake of

49



0 10000 20000 30000

0

20

40

60

80

JPEG

CI circuit area

C
I

av
er

ag
e

en
er

gy

2-op 3-op 4-op 5-op
6-op 7-op

(a) 41 Integer custom instructions, with the
mostly expensive belonging to the JPEG appli-
cation.

0 10000 20000 30000

0

20

40

60

80
RT

CI circuit area

C
I

av
er

ag
e

en
er

gy

2-op 3-op 4-op 5-op
6-op 7-op 8-op

(b) 29 Floating-point custom instructions, with
the mostly expensive belonging to the RT ap-
plication.

Figure 2.27: Distribution of all the 70 identified custom instructions over their
circuit area and energy consumption.

fairness, we only present the results from the configurations which are similar or

equivalent to ours. Some results, such as the number of custom instructions, execu-

tion time reduction and speedup, are averaged due to the different set of benchmark

applications used in each work.

Table 2.6: Summary of the main differences between the proposed and related works.
Wu 2008 Lu 2008 Wu 2014 Proposed

Architecture VLIW TTA VLIW VLIW
Issue-width 3 4 3 3
Register file
R/W ports

8/4 6/2 8/4 6/1

# CIs 32 N.A. N.A. 10
Avg. Speedup N.A. 1.73 1.58 1.23
Execution time
reduction

14.35% N.A. N.A. 18.025%

Technology 0.13um 0.18um 0.13um 65nm

Methodology
Ant Colony

Optimization
Minimal Length

Covering
EI

Exploration

Maximal
Clique

Enumeration

Benchmark

adpcm,
basicmath,

epic, fft,
inverse-fft,
g.721, jpeg,

mpeg2,
sha, susan

sha, blowfish,
cjpeg, djpeg,
gsmencode,
gsmdecode,

dijkstra,
mpeg2enc,
mpeg2dec,

rijndael

adpcm,
bitcount,
blowfish,

crc32,
dijkstra,
rijndael,

stringsearch

aes, sha,
jpeg,
crc32,
mjpeg,
edge,
rt, vrc

First of all, it is important to highlight that, even though all the related works

compared here exploit a multi-issue architecture to evaluate their proposals, none

of them provided details about the used architectures, as in Section 2.4.1 and Fig.

1.2. For instance, in Wu’s most recently published work [33], the results are vali-

dated using an in-house-developed cycle-accurate VLIW simulator, with no further

50



details regarding the underlying architecture, while Lu’s work [17] limits to pointing

to the Transport Triggered Architecture (TTA) compiler toolchain that was used,

abstracting the details about the underlying architecture. Furthermore, aside from

circuit area results, none of the compared works provide energy consumption results

of the identified custom instructions, nor their usage frequency.

Wu’s first work [32] proposed an algorithm for instruction set extension based on

list scheduling and Ant Colony Optimization (ACO), achieving an average execution

time reduction of 14.35%. In this case, the instruction set is extended with 32 new

instructions, exploiting an issue-width of 3 and a register file of 8 read ports and 4

write ports. The proposed method achieves 18.025% reduction, using less custom

instructions and less read/write ports, listed in Table 2.6. Later, Wu proposed an

EI (Extended Instruction) exploration algorithm [33]. Several configurations are

provided yielding different speedup results. However, for comparison reasons, we

selected the configuration that is most compatible to the proposed here. Thus,

using an issue-width of 3 and a register file of 8 read ports and 4 write ports, Wu

achieves an average speedup of 1.58, when the extended instructions are enabled,

against a speedup of 1.23 as achieved by the proposed method. Despite Wu’s higher

speedup, it is not possible to establish the superiority of his approach with regards to

the one proposed here due to the absence of details regarding the number of custom

instructions that were used. Also, considering the register file configuration, it is

possible to infer that the custom instructions in Wu’s proposal can have multiple

outputs, probably because the selected subgraphs therein are disconnected. This

may increase the custom instruction parallelism.

Finally, Lu’s work [17] proposed an algorithm focused on instruction selection,

which is a graph covering problem and, thus, different from the custom instruction

identification method proposed in this work. Nonetheless, sets of custom instructions

were identified using traditional convex cuts [27]. The average speedup is the highest

amongst all compared works. However, from Table 2.6, it is possible to observe that

very few details are given about the exploited TTA architecture configuration, which

makes the comparison of the results more difficult. The only available details are

the issue-width and the number of register file I/O ports. The issue-width is higher

than that used in the proposed configuration and the number of output ports also

suggests that the custom instructions in Lu’s proposal can have multiple outputs, as

in Wu’s work. Altogether, these two characteristics might have caused the reported

higher speedup. Also, the TTA architecture is known as a special case of VLIW

architecture, with potentially higher Instruction Level Parallelism. This may also

have influenced the speedup.

51



Chapter 3

Hardware Sharing

Hardware sharing, a.k.a hardware reuse or resource sharing, is a well-known circuit

and system optimization approach traditionally employed for saving circuit area

[4, 48, 49]. It is an important and widely used area-reduction technique that can

be employed in different stages of the digital system design processes, such as in

the application-specific instruction set extension [19] or high-level synthesis resource

binding [50, 51]. Also, many commercially available synthesis tools can perform

some degree of resource sharing in their RTL circuit area optimizations [49, 52].

In high-level synthesis, the process of resource binding consists of assigning oper-

ators and variables from the high-level specification to hardware function units and

registers. In this case, resource sharing occurs when multiple operators are assigned

to the same function unit and scheduled at different cycles [51]. Thus, high-level

synthesis often performs resource sharing within the same datapath. Also, there

is usually a substantial hardware sharing potential in the input description for the

RTL compiler, e.g., simple RTL hardware description changes can greatly affect

the way a given design is synthesized. For instance, the mutually exclusive exe-

cution branches can be explicitly identified through transformations of the original

conditional description, improving the resource sharing potential [53].

Moreover, in parallel to the creation of new important opportunities, the recent

progress in the semiconductor technology, and particularly the introduction of the

nano-dimension CMOS technologies, has created many difficult to solve problems.

System and circuit complexity, energy and power issues, the interconnect scalabil-

ity problems and on-chip communication issues are some of the most important.

Moreover, the introduction of the nano-CMOS technologies changed the importance

relationships among various design aspects. For instance, the static power negligible

in the past is now comparable to its dynamic counterpart, and the interconnects,

instead of active elements, tend to have a dominating influence on the major SoC

characteristics (area, throughput, etc.). On the other hand, many modern mo-

bile/autonomous applications in several fields like communications, multimedia, se-

52



curity, military and medical instruments impose extremely high throughput and/or

energy related requirements.

Hardware reuse can be exploited in different stages of the system development

[50, 51], in particular during the instruction set extension [20, 54, 55]. In this stage,

hardware sharing becomes an ever more important optimization due to the often

high circuit area requirements imposed by the new custom instructions, especially if

these require floating-point function units, as shown in Section 2.4.3. Observe that

the introduction of custom instructions into the ASIP datapath can actually be in-

terpreted as a replication of function units, in order to speedup the execution of an

specific application or class of applications. Thus, the key aspects of resource sharing

is to increase the ASIP/hardware accelerator performance through hardware imple-

mentation of custom instructions/functions and at the same time avoid replicating

logic, e.g., adders, subtractors, multipliers, etc. In both cases, resource sharing may

increase the circuit latency, especially because of the insertion of multiplexers that

are used to share common paths of the datapath.

In the context of datapath synthesis of custom instructions, hardware sharing

optimizations typically take place among operations that are mutually exclusive, i.e.,

operations that are never executed at the same time. Otherwise, such area saving

optimization can reduce the overall system’s performance, because the operations

would have to compete for the shared resource, e.g., function unit, and would no

longer be executed in parallel. This is often the case for instruction set extensions

that are implemented as co-processors, as depicted in Fig. 3.1. It can be noted that

each custom instruction – CI1, CI2 and CI3 – can be executed in parallel in Fig.

3.1(a), whereas the two merged custom instructions, CI2 and CI3, in Fig. 3.1(b)

cannot be executed in parallel anymore.

Xilinx
MicroBlaze

microprocessor

FSL1

FSL2

FSL3

CI3

CI2

CI1

(a) MicroBlaze microprocessor con-
nected to dedicated co-processors.

CI2+CI3

Xilinx
MicroBlaze

microprocessor

FSL1

FSL2

CI1

(b) MicroBlaze microprocessor con-
nected to a shared co-processor and one
dedicated co-processor.

Figure 3.1: Customization example of the Xilinx MicroBlaze microprocessor instruc-
tion set with hardware sharing optimization.

53



On the other hand, the problem of mutual exclusiveness is not as severe as in

the case of VLIW-based ASIPs, because the function units that reside in the same

issue-slot are inherently mutual exclusive: an issue-slot can only operate on one

function unit at a time, leaving the others unused. Thus, there is a high potential

for hardware sharing inside an issue-slot, as shown in Fig. 3.2.

Issue-Slot

i0 i1 i2

o1

CI3

CI1

i3 i4 i5

CI2

(a) VLIW-ASIP issue-slot with dedicated
custom function units.

Issue-Slot

i0 i1 i2

o1

CI1

i3 i4 i5

CI2+CI3

(b) VLIW-ASIP issue-slot with one
dedicated and one shared custom
function units.

Figure 3.2: Customization example of the VLIW-ASIP instructions set in one issue-
slot.

Unfortunately, contemporary circuit and system design methods and tools re-

main behind the actual needs of modern applications and technologies. In particu-

lar, they do not well account for the changed importance relationships of different

design aspects, and for the now necessary multi-objective decision modeling and

careful tradeoff exploitation among various design objectives. This particularly re-

lates to the resource sharing aspects that can be exploited to limit the system and

circuit area, but equally well, to limit the system and circuit energy consumption,

and in some specific cases, even to increase the speed. This way, hardware reuse is

one of the major aspects of the multi-objective system and circuit optimization and

tradeoff exploitation.

This Chapter discusses the problem of hardware reuse in synthesis of ASIPs and

hardware accelerators implemented in modern nano-CMOS technologies. It analyses

the problem and presents important results of high practical relevance from extensive

experimental research regarding this issue at the Register Transfer Level (RTL). It

demonstrates that the state-of-the-art automatic synthesis tools do not address this

problem in a sufficient way, and shows how important an effective hardware reuse

is for an adequate synthesis of ASIPs and hardware accelerators. Furthermore, dat-

apath merging techniques are compared and a clique-based approach is proposed

as candidate for reducing the circuit area and, possibly, reducing the energy con-

54



sumption of the identified custom instructions, similar to the method described in

Chapter 2.

3.1 RTL compiler hardware sharing

Resource sharing at the register transfer level works by sharing one or more func-

tion units (FUs) to implement several operations described in HDL, producing less

hardware components in the final netlist representation. Therefore, resource sharing

may also substantially reduce the energy consumption.

Despite various hardware sharing optimizations performed at the earlier micro-

architecture synthesis stages, there is usually a substantial further hardware sharing

potential in the input description for the RTL compiler. Moreover, simple RTL

hardware description changes can greatly affect the way a given design is synthesized.

For instance, changing conditional statements, such as IF or CASE statements, may

produce a different circuit [4]. The mutually exclusive forms are one of the basis for

successful resource sharing. In [53], independent of which conditional construction

is used, the authors proposed to explicitly identify the mutually exclusive execution

branches through transformations of the original conditional description. In the

end, a larger set of mutual exclusive branches is detected, allowing a better reuse of

resources. Consider first a simple example presented in Listing 3.1.

Listing 3.1: VHDL architecture example for two add operations.
architecture behav io ra l of FU i s begin
process (A,B,C,D,OP)
begin

i f (OP = ’0 ’ ) then
R <= A + B;

else
R <= C + D;

end i f ;
end process ;
end behav io ra l ;

Without resource sharing optimizations, the synthesis tool would create separate

circuits, i.e., adders, one for each operation, as in Fig.3.3(a). However, it is possible

to allow resource sharing transformations, provided that both operations are never

used at the same time, as depicted in Fig.3.3(b).

3.1.1 Automatic resource sharing

Most commercially available synthesis tools are able to automatically detect and

exploit some limited resource sharing possibilities within a digital design [49], as for

instance shown in the example of Fig.3.3, based on Listing 3.1. Usually, automatic

55



+ +

mux

OP A B C D

R
(a) No shared resources.

+

mux

OP A C B D

mux

R
(b) Shared resources.

Figure 3.3: Resource sharing example. The two addition operations are never going
to be executed at the same time, because the operation selector OP ensures that
they are mutually exclusive.

resource sharing is enabled whenever the synthesis tool is set to a high area reduc-

tion effort optimization mode and operations are never executed at the same time

[53]. Furthermore, in Fig.3.3 it is possible to observe that applying resource sharing

caused an exchange of a relatively complex function unit (adder) for a simpler extra

multiplexer. This is usually the case, because sharing of one function unit among

many operations implies the usage of multiplexers to select which input data to

process, which also may introduce the cost of a possible additional latency [4]. If

timing constraints cannot be met, the synthesis tool may disable resource sharing

in advance.

3.1.2 Manual resource sharing

The synthesis tools are often not capable of automatically exploit the sharing op-

portunities, mainly because of the following three reasons:

1. The hardware is not specified in an appropriate style, so that the tool is unable

to identify sharing opportunities;

2. The tool misses more global and extensive application analysis, and only ex-

ploits some local optimizations for resource sharing;

3. Resource sharing is not possible due to timing constraints issues.

The first issue can often be solved by rewriting the hardware description, so that

resource sharing opportunities are better visible to a particular tool. For instance,

instead of performing an operation inside of each conditional statement, the input

data should be first selected. Only after the evaluation of the boolean expressions

and input data selection, the operation is performed, as shown in Listing 3.2.

56



Listing 3.2: Rewriting Listing 3.1 architecture to ensure resource sharing.
architecture behav io ra l of FU i s begin
process (A,B,C,D,OP)
var X,Y : s t d l o g i c v e c t o r (N−1 downto 0 ) ;
begin

i f (OP = ’0 ’ ) then
X <= A;
Y <= B;

else
X <= C;
Y <= D;

end i f ;
R <= X + Y;

end process ;
end behav io ra l ;

The second issue can only sometimes be solved by specification rewriting, but

often requires a different synthesis method and tool extensions. The third issue

cannot easily be solved by only rewriting the specification. It requires a careful

analysis of the digital design in order to perform complex algorithm optimizations

that could reduce the digital system latency, such as the replacement of Ripple-Carry

adders by faster Carry-Save adders [4, 56, 57].

For those reasons, commercially available synthesis tools often provide some

general guidelines that make possible to achieve resource sharing optimizations.

The VHDL hardware description in Listing 3.3 is used as an example. In essence,

a resource sharing for two or more operations is only possible if the operations are

never going to be executed at the same time, as presented in Listing 3.3. Otherwise,

serialization of operations must take place. In this example, operations (A+B) and

(C+D) can share a single adder within the first process, but cannot share the same

adder across with the second process, because the second process can be executed

concurrently with first one.

Also, note that operations (X+Y) and (Z-W) can be shared within the second

process, because they are similar: a subtraction can be implemented as an addition

with the second operand inverted and with incoming carry equal to one in the

lowest position [56]. Thus, the synthesis software should create in this situation a

single adder function unit and inverter for the second operand to enable subtraction.

This kind of resource sharing is also referred as Functionality Sharing and is more

difficult to be achieved automatically, because it requires a deeper knowledge of the

relationships between the operations (or functionalities) that can be merged into a

single hardware. Further examples can be found in [4, 48].

Nevertheless, in general, placing operations considered for possible sharing more

explicitly at mutually exclusive branches in the RTL hardware specification might

facilitate the identification of the resource sharing potential. For this reason, the

use of conditional CASE statements should be preferred, because the case branches

57



Listing 3.3: Architecture description with mutually exclusive statements and sepa-
rate processes.
architecture behav io ra l of FU i s begin
−−F i r s t p roce s s
P1 : process (A,B,C,D,OP1)
begin

i f (OP1 = ’0 ’ ) then
R1 <= A + B;

else
R1 <= C + D;

end i f ;
end process ;
−−Second proce s s
P2 : process (X,Y, Z ,W,OP2)
begin

i f (OP2 = ’0 ’ ) then
R2 <= X + Y;

else
R2 <= Z − W;

end i f ;
end process ;
end behav io ra l ;

have to be mutually exclusive. A similar principle applies for operations described

in separate processes: inside the process, statements are executed sequentially, but

two or more processes are executed in parallel.

3.1.3 Experimental results on automatic resource sharing

An example of RTL compiler automatic resource sharing is given in this Section

for several function units of one issue-slot of the VLIW-ASIP, as depicted in Fig.

3.4(a), using Cadence logic synthesis tools. Each function unit execute an operation

presented in Table 3.1. The objective of this experiment is to evaluate how far the

synthesis tool can handle hardware sharing optimizations when the operations are

implemented as one function unit, as shown in Fig. 3.4(b).

Table 3.1: Table of operations of each function unit of the VLIW-ASIP.
OPERATION OPERANDS
Addition o1 <= i0 + i1
Subtraction o1 <= i0 − i1
Multiplication o1 <= i0 × i1
Multiply–Accumulate o1 <= i0 × i1 + i2
Lower equal o1 <= (i0 ≤ i1)
Lower than o1 <= (i0 < i1)
Equal to o1 <= (i0 = i1)
Not equal to o1 <= (i0 6= i1)
Maximum o1 <= max(i0, i1)
Minimum o1 <= min(i0, i1)

The synthesis results are summarized in Table 3.2, for a process of 90nm and

a timing constraint of 10.0 ns. The medium area reduction effort configuration

58



Issue-Slot

i0 i1 i2

o1

FU

x

FU

+

FU

-

FU

<

FU

≤

FU

=

FU

≠

FU

max

FU

min

CFU

x

+

(a) Each operator implemented into one separate function unit.

Issue-Slot

CFU

i0 i1 i2

o1

x + - < ≤ = ≠ max min

x

+

(b) All the operators implemented together into one function unit.

Figure 3.4: Operators implemented as separate function units or as a single function
unit of an issue-slot of the VLIW-ASIP.

disables the hardware sharing optimizations. Therefore, a high area reduction effort

has been enabled in order to activate the synthesis tool automatic resource sharing

capabilities. Thus, instead of producing one arithmetic and one logic operator for

each operation of Table 3.1, the resource sharing compiler optimization produced

only three arithmetic and logic operators in total. For instance, two adders and one

subtractor were merged into a single arithmetic unit, while all the logic operations

were merged into a single logic unit, with the exception for the max and min logic

units. The remaining multipliers were not merged too. Thus, around 6% of area

reduction has been achieved for this example of resource sharing. The optimized

function unit is depicted in Fig. 3.5.

Table 3.2: Issue-slot function unit synthesis results.

Effort
Cell
Area

Net
Area

Total
Area

Delay
(ps)

Medium 19764 14493 34257 6462.0
High 18550 13388 31938 6367.0
Reduction
Rate

6.14% 7.62% 6.77% 1.47%

However, resource sharing optimizations may become more difficult for even

59



Issue-Slot

Merged

i0 i1 i2

o1

x LGU

x

+/- max min

Figure 3.5: Resulting merged operators.

lower nano-CMOS dimensions, lower timing constraints and using different RTL

specifications styles. Therefore, further results are presented in the following Section

for the synthesis of a different function unit, using a technology of 40nm and a timing

constraint of 5ns.

3.1.4 Experimental results on manual resource sharing

In this Section, some selected results are discussed for the manual hardware sharing

at the RTL of several function units of one issue-slot of the VLIW-ASIP, as shown in

Fig. 3.6. The experimental results are based on the synthesis of a function unit that

performs four similar operations, which are described in Table 3.3. Four hardware

architecture description styles of the same function unit entity are presented, so

that resource sharing potential identification and exploitation can be analyzed for

each case. The first description style is a mixed structural and behavioral, while the

others are purely behavioral. Also, the selected operations are similar to each other,

so that they may be merged into single operators, such as an adder/subtractor.

Issue-Slot

i0 i1 i2

o1

FU

x

FU

+

FU

-

CFU

x

+

(a) Each operator implemented as one separate
function unit.

Issue-Slot

CFU

i0 i1 i2

o1

x + -

x

+

(b) All the operators implemented together into
one function unit to enable hardware sharing.

Figure 3.6: Function units of an issue-slot of the VLIW-ASIP.

The operations cannot be executed at the same time. Its computation result is

60



Table 3.3: Table of operations of each function unit of the VLIW-ASIP.
OPERATION OPERANDS
Addition o1 <= i0 + i1
Subtraction o1 <= i0 − i1
Multiplication o1 <= i0 × i1
Multiply–Accumulate o1 <= i0 × i1 + i2

produced based on the selected operation and input data. Since they are mutually

exclusive, they can be shared. In the following sections, the synthesis results of

the function unit shown in Fig. 3.6(b) are discussed for each hardware description

style and area reduction effort (medium or high), with the high area reduction effort

enabling automatic resource sharing. First, each architectural description style of

the function unit is presented and discussed together with the corresponding syn-

thesis results. All the presented results were collected using Cadence logic synthesis

compiler for a TSMC 40nm technology and a timing constraint of 5ns.

3.1.4.1 Structural RTL description

The first architecture description style is a structural description of the function

unit, and it corresponds to a particular optimal circuit that is expected to be cre-

ated. However, each sub-component of this structural description was described in

a behavioral style, so that the synthesis software is in charge of creating or selecting

an appropriate final hardware.

CFU

x

+/-

i0 i1 i2

o1

mux
mux

mux

OP

Figure 3.7: Structural design.

In this structural description, the synthesizer was able to precisely identify each

component as they were described, as depicted in Fig. 3.7. Also, a high area reduc-

tion effort exploited some resource sharing by merging the adder and the subtractor

into a single hardware. The results are presented in Table 3.4, for both area re-

duction efforts. Observe that the overall area is greatly reduced thanks to resource

sharing. However, the resource sharing optimizations can increase the worst path

61



delay, because of extra multiplexers that are included to select between different

input data, as depicted in Fig. 3.7.

Table 3.4: Structural description synthesis results.

Effort
Cell
Area

Net
Area

Total
Area

Delay
(ps)

Medium 3717 8944 12661 4025.7
High 3151 8198 11349 4126.0
Reduction
Rate

15.23% 8.34% 10.36% -2.5%

3.1.4.2 Conditional case statements

In the second architecture description style, as well as in the following architecture

descriptions presented in Sections 3.1.4.3 and 3.1.4.4, the hardware is purely de-

scribed in behavioral style. In the architecture speculation style of Section 3.1.4.2,

conditional case statements are used to select between one of the four operations,

according to the architecture description in Listing 3.4.

Listing 3.4: Architecture description using case statements.
architecture example of FU i s begin
process (A,B,C,OP)
begin

case OP i s
when MUL =>

R <= A ∗ B;
when MAC =>

R <= A ∗ B + C;
when SUB =>

R <= A − B;
when others =>

R <= A + C;
end case ;

end process ;
end example ;

As expected, with the high area effort, the resource sharing was also performed

for both adders and the subtractor operation, merging them into a single hardware

unit. Also, only one multiplier was created, instead of two, as depicted in Fig. 3.8,

and the multiplexers were replaced by an selection logic in the logic synthesis stage.

On the other hand, disabling resource sharing possibility through not selecting the

high area effort produced more hardware blocks, as shown in Table 3.5. Addition-

ally, carry-save adders were included into the design, which greatly contributed to

increase the Net Area. Also, timing constraints were not met for a medium area

reduction effort, possibly because of the longer paths due to the higher Net and

Total Area. Although the overall area for this design style with a high area reduc-

tion effort has been reduced, it is still larger than the area of the structural design

62



of Section 3.1.4.1 under the same reduction effort. This shows that the synthesis

tools did not realize an adequate resource sharing as expected from this design style.

Regarding the worst path delay, a small improvement can be observed, as a result of

using optimized selection logic instead of multiplexers in the inputs, as in Fig. 3.8.

Table 3.5: Case statements description synthesis results.

Effort
Cell
Area

Net
Area

Total
Area

Delay
(ps)

Medium 3850 33120 36970 4161.7
High 3254 8368 11622 4067.3
Reduction
Rate

15.48% 74.73% 68.56% 2.26%

CFU

x

+/-

i0 i1 i2

o1

OP

selection logic

selection logic

Figure 3.8: Case statement design style.

3.1.4.3 Conditional if statements

Since the usage of conditional case statements produced worse than expected re-

sults, the architecture description style was changed from case to if conditional

statements. Also, following the example presented in Listing 3.1 to enhance the

possibility of resource sharing, the inputs are first selected, so that the operation is

executed afterwards, as shown in Listing 3.5. Such behavioral description is an at-

tempt to achieve a more substantial resource sharing, aiming at producing a design

as close as possible to the structural one depicted in Fig. 3.7.

From the results presented in Table 3.6, it is possible to observe that even though

a high area reduction effort produced a slightly lower Cell Area compared to the

medium effort, the Net Area increased substantially, in contrast to the results using

the case statements in Section 3.1.4.2. Thus, a high area reduction effort created a

worse design regarding the Net Area and could not find resource sharing between any

of the operations. One possible explanation is that the design is already described

in a style aware of resource sharing. Therefore, applying a high reduction effort

63



Listing 3.5: Architecture description using if statements.
architecture example of FU i s begin
process (A,B,C,OP)

variable var mlt : s t d l o g i c v e c t o r (2∗N−1 downto 0 ) ;
variable v A , v B : s t d l o g i c v e c t o r (N−1 downto 0 ) ;
variable output : s t d l o g i c v e c t o r (N−1 downto 0 ) ;

begin
var mlt := A ∗ B;
i f (OP = MAC) then

v A := var mlt (N−1 downto 0 ) ;
v B := C;

else
v A := A;
v B := B;

end i f ;
i f (OP = MUL) then

output := var mlt (N−1 downto 0 ) ;
e l s i f (OP = SUB) then

output := v A − v B ;
else

output := v A + v B ;
end i f ;

end process ;
end example ;

introduced further optimizations that worsen the design. For instance, carry-save

adders were included by the synthesis tool, which could contribute to increase the

Net Area, as depicted in Fig. 3.9. As it can be observed, a separate carry-save adder

was created for almost each operation and the multiplexers were also exchanged for

optimized logic. The interconnections between them are simplified in Fig. 3.9. On

the other hand, a medium area reduction effort yielded a better Net Area result,

because no carry-save adders were included with this style, and no function merging

of the adder and the subtractor was performed at all.

Table 3.6: If statements description synthesis results.

Effort
Cell
Area

Net
Area

Total
Area

Delay
(ps)

Medium 3740 9739 13479 4062.5
High 3689 10497 14186 3939.4
Reduction
Rate

1.36% -7.78% -5.25% 3.03%

As it can be observed from Table 3.6, the worst path delay in this design style

is better than the worst path delay in the previous design examples. As expected,

the carry-save adders were able to increase the design’s speed, while the Net Area

also increased.

3.1.4.4 Cascaded conditional if statements

Finally, the architecture description from Listing 3.5 was slightly modified to the

one presented in Listing 3.6, with the only difference being the cascaded (or nested)

64



CFU

i0 i1 i2 OP

CSA
TREE
MUL

CSA
TREE
ADD

CSA
TREE
SUB

+

mux

Interconnections

o1

Figure 3.9: If statement design style.

if statement for selecting between the addition and subtraction operations. The idea

is to keep these two operations close to each other in one internal if-else block of the

nested if structure, so the synthesizer can more easily identify the possible resource

sharing between them, because in the previous example it clearly could not identify

the resource sharing potential.

Listing 3.6: Architecture description using cascaded if statements.
architecture example of FU i s begin
process (A,B,C,OP)

variable var mlt : s t d l o g i c v e c t o r (2∗N−1 downto 0 ) ;
variable v A , v B : s t d l o g i c v e c t o r (N−1 downto 0 ) ;
variable output : s t d l o g i c v e c t o r (N−1 downto 0 ) ;

begin
var mlt := A ∗ B;
i f (OP = MAC) then

v A := var mlt (N−1 downto 0 ) ;
v B := C;

else
v A := A;
v B := B;

end i f ;
i f (OP = MUL) then

output := var mlt (N−1 downto 0 ) ;
else

i f (OP = SUB) then
output := v A − v B ;

else
output := v A + v B ;

end i f ;
end i f ;

end process ;
end example ;

Once again the results were unsatisfactory, especially regarded the Net Area, as

shown in Table 3.7. Carry-save adders were also included at the cost of an additional

Net Area requirement. In contrast to the if statement design example, this design

style actually helped the synthesis tool to identify the resource sharing between the

adder and the subtractor operators, again merging them into a single hardware.

The worst path delay is the best among all the others, even though the Net Area

has increased substantially and no carry-save adders were introduced. The circuit

65



schematic is very similar to the schematic of the case design in Fig. 3.8, with a few

additional optimizations in the multiplexers.

Table 3.7: Cascaded if statements description synthesis results.

Effort
Cell
Area

Net
Area

Total
Area

Delay
(ps)

Medium 3525 8509 12034 4148.8
High 3576 16071 19647 3883.4
Rate -1.45% -88.9% -63.26% 6.40%

3.1.4.5 Floating-point adder

This Section presents the synthesis results for a floating-point adder and subtractor

[58]. This floating-point unit is divided in 3 basic stages: pre-normalization, opera-

tion core and post-normalization. The objective is to evaluate whether the synthesis

tool is capable of discovering resource sharing in a more complex design, such as in a

floating-point adder/subtractor. As expected, the synthesis tool was able to discover

a resource sharing opportunity inside the arithmetic core, in particular at the ad-

dition/subtraction description in Listing 3.7, producing only one adder/subtractor

unit. Hence, one of the steps of a floating-point addition consists of a simple integer

addition of the fraction part from the input operands. The results are presented in

Table 3.8. It is possible to observe that the overall area has been reduced and the

worst path delay has been improved, even with resource sharing enabled.

Listing 3.7: Floating-point fraction integer addition/subtraction.
process ( s f r a c t a i , s f r a c t b i , s addop ,

f r a c t a l t f r a c t b )
begin

i f s addop = ’0 ’ then
s f r a c t o <= s f r a c t a i + s f r a c t b i ;

else
i f f r a c t a l t f r a c t b = ’1 ’ then

s f r a c t o <= s f r a c t a i − s f r a c t b i ;
else

s f r a c t o <= s f r a c t b i − s f r a c t a i ;
end i f ;

end i f ;
end process ;

3.1.5 Results overview

The experimental results are summarized in Table 3.9 and in Fig. 3.10, for a pro-

cess of 40nm and a clock period of 5.0 ns. First of all, it is clear that the structural

architecture description, with the implementation structure imposed by a human

designer to a high degree, is the one that produced the best results with high area

66



Table 3.8: Floating-point Adder.

Effort
Cell
Area

Net
Area

Total
Area

Delay
(ps)

Medium 3456 6005 9461 4322.4
High 2946 5184 8130 4218.7
Reduction
Rate

14.75% 13.67% 14.07% 2.4%

Cell Area Net Area

0

10,000

20,000

30,000

A
re

a

Structural Case statements

If statements Cascade if statements

FPU add/sub

(a) Medium area reduction effort.

Cell Area Net Area

0

10,000

20,000

30,000

A
re

a

Structural Case statements

If statements Cascade if statements

FPU add/sub

(b) High area reduction effort.

Figure 3.10: Area synthesis results for different specification styles.

reduction effort, as shown in Fig. 3.10(b). To get the high-quality results, a struc-

tural description style is usually preferred over a behavioral one, because a human

designer or a higher-level architecture synthesis tool can more directly and precisely

specify the required design features and such description can be easier translated

by the synthesis tool to a corresponding high-quality netlist. Also, enabling the re-

source sharing via a high area reduction effort clearly proved to be useful for saving

resources, and resulted in substantial area improvements, with a Cell reduction area

ratio of 15.23% and Net reduction area ratio of 8.34%, for such a structural design.

The hardware sharing also reduced the overall area in different design styles. Fur-

thermore, if only the medium area reduction effort is considered, then the best area

result is achieved by the last set of experiments: the cascaded if statements. Such

description style was able to improve the area cost, because the architecture was de-

scribed in the style easier for resource sharing identification. Further optimizations

performed with a high area reduction effort mainly included additional circuitry to

the design and increased the Net Area, but reduced the worst path delay, as shown

in Fig. 3.11.

The resource sharing result very much depends on the hardware description style,

as also observed in Table 3.9. For some design styles, a substantial increase in Net

Area can be observed, especially due to further timing optimizations. The inclusion

of carry-saver adders in several cases greatly increased the Net Area requirements,

in an effort to overcome the extra delays that might arise from hardware sharing.

67



Table 3.9: Synthesis results, for different design styles and area reduction efforts
(TSMC 40nm process and 5ns timing constaint).

Design
style

Structural
Case

statements
If statements

Cascade
if statements

FP add/sub

Area Delay Area Delay Area Delay Area Delay Area Delay

Medium 12661 4025.7 36970 4161.7 13479 4062.5 12034 4148.8 9461 4322.4
High 11349 4126.0 11622 4067.3 14186 3939.4 19647 3883.4 8130 4218.7
Rate* -10.36% +2.5% -68.56% -2.26% +5.25% -3.03% +63.26% -6.40% -14.07% -2.4%
*A plus signal before rate data actually indicates an increase in area or delay. Delay time is in pico-seconds (ps).

Structural Case If statements If cascade FPU

3600

3800

4000

4200

4400

4025
4161

4062
4148

4322

4126
4067

3939 3883

4218

T
im

in
g

d
el

a
y

(p
s) Medium High

Figure 3.11: Worst path delay of each design style.

Observe that when considering the function unit sharing, the designers tend mainly

to think on reduction of the function unit (Cell) area, and not on the reduction of the

interconnection (Net) area. However, due to the interconnect scalability problems

and their dominating influence on the design in modern nano-CMOS technologies,

it could be observed larger changes in the interconnect area than in the cell area.

Also, observe that the RTL compiler optimization techniques involving resource

sharing may cause very high circuit area changes (as high as -68% and +63% in

the performed experiments), and involve substantial area/delay tradeoffs. Since

for the modern nano-CMOS circuit implementation technologies the circuit power

consumption of various circuits implementing a given computation is roughly pro-

portional to the circuit area [9], these optimization techniques also may cause very

high circuit power consumption changes and substantial power/delay tradeoffs.

3.2 Proposed hardware sharing framework exten-

sion

In this Section, the datapath merging problem is presented as an graph-based match-

ing problem, based on the datapath merging method presented in [28, 29]. The dat-

apath merging is an extension to the framework proposed in Chapter 2, as shown

in Fig. 3.12. Basically, the merging process takes two DAGs at a time, representing

the datapaths of two identified complex instructions, e.g. G1 and G2, and merges

them into a new combined DAG GM , representing the combined datapath of the

former complex instructions, that overlaps the identified equivalent operations and

68



(opt) Hardware Sharing

(iii) ASIP Implementation

(ii) CI Identification

(i) Profiling

LLVM Compiler

Control 
Flow DFGs 
Extraction

Common Pattern Identification
(subgraph Isomorphism)

VLIW Retargetable
Compiler

Instruction 
Scheduling

Cycle-accurate 
Simulation

Application 
code in C

ASIP HW 
Synthesis

Pattern
Already 
Exists?

Basic Block 
DFGs 

Extraction

Store new pattern

Pattern counter +1

BB Loop
Finished?

Machine Description
Language

LLVM-IR Opt tool insert 
edge profiling

Annotated
LLVM-IR

Profiling
(Execution) llvmprof.out

Update
ISE liblib

Yes

No Yes

No
Clique-enumeration

Datapath
DAG

Mapping and Selection
of equivalent patterns Overlap? MERGE Update

ISE liblibYes

No

Datapath
Loop

Finished?

Yes
No

Figure 3.12: Instruction Set Customization Design Flow with a Hardware Sharing
optimization stage.

edges of G1 and G2. Thereafter, the new merged graph GM is again merged with

the next available graph, e.g. G3, etc. This process is repeated until the datapath

DAG of all the identified complex instructions have been completely or partially

fused into one or more datapaths.

3.2.1 Compatibility graph hardware sharing

The datapath merging method based on a compatibility graph is essentially the

same that has been used for the custom instruction identification framework. The

difference is that the identified subgraphs need to merged to one another, instead

of separately stored into a library of complex instructions. The compatibility graph

[28, 37] is a suitable method to organize compatible matchings, a.k.a mappings, into

a graph representation. The compatibility graph, as previously defined in Section

2.2.1.2, is an undirected graph Gc = (Vc, Ec). Each vertex v ∈ Vc of the compatibil-

ity graph represents a mapping of equivalent patterns (vertices or edges) identified

during the matching stage. For instance, let DAG1 and DAG2 be two directed

acyclic graphs, each representing a datapath, as shown in Fig. 3.13(a). From the

bipartite matching depicted in Fig. 3.13(b), it can be noted that each matching will

become a vertex of the compatibility graph, as depicted in Fig. 3.14(a). Each edge

e ∈ Ec represents a pair of matchings that are compatible to each other, i.e., which

69



are not ambiguous.

���������
����

���������
����

� ��

�

����

�

�

� ��

����

��

�

�����

� ��

����

�

��

��

����

��

����

��

(a) Datapath DAGs.

������������������������

������������������������

� ��

�

����

�

����

� ��

���� ����

� ��

�

����

� ��

���� ����

�����

�����

�����
����

�����

�����
����

�����

�����

�����
����

�� �� ��

(b) Matching between DAG1 and DAG2.

Figure 3.13: Datapaths DAGs and their respective bipartite match.

Observe that each vertex of the compatibility graph is, by itself, a possible merg-

ing of identified patterns. For example, vertices a1b3, a4b1 and a3b2 of the compat-

ibility graph represent three possible mergings that can occur: a1 being merged to

b3, a4 being merged to b1 and, finally, a3 being merged to b2, because they are all

compatible, i.e., they are connected with each other. This is equivalent to iden-

tifying a clique in the compatibility graph G. Fig. 3.14(b) shows some examples

of identified cliques in the compatibility graph, corresponding to the matching of

DAG1 and DAG2 shown in Fig. 3.13(b).

Identifying maximal cliques produces larger sets of possible mergings that can

occur between two graphs (datapaths), thus increasing the hardware sharing po-

tential. Back to the example of Fig. 3.14(a), vertices a4b1, a3b2, a5b3, a4a5/b1b3

and a3a5/b2b3 form a maximal clique, as illustrated in Fig. 3.14(c), and the merged

graph for the given maximal clique is shown in Fig. 3.14(d).

3.2.2 Experimental results on pseudorandom graphs

For the experiments reported in this Section, the state-of-the-art datapath merging

methods presented in Section 1.3 were implemented, executed and compared to the

maximal-clique enumeration datapath merging method (CLIQUE). These are: bi-

partite matching (BIP), longest common subsequence (L-SEQ) and longest common

substring (L-STR). A pseudorandom task graph generator [59] is used to produce a

set of directed acyclic graphs to generate the sets of custom instructions and their

corresponding datapath that are going to be merged. Thus, two groups of experi-

ments were generated. In the first group, ten batches of DAGs were generated, each

batch containing ten DAGs to be merged. Each DAG vertex can have up to 2 input

connections and 3 output connections. In the second group, ten batches of DAGs

70



����

���� ��������

�������� ����

������������������

���������

(a) The compatibility graph.

����

���� ��������

�������� ����

������������������

���������

(b) Some enumerated cliques.

����

���� ��������

�������� ����

������������������

���������

(c) A maximal clique.

� ��

�

� ��

�����

�

�����
����

� �����

�����
����

�����

(d) Resulting merged
graph based on the
maximal clique.

Figure 3.14: Compatibility graph of DAG1 and DAG2, together with a merging
example obtained from a maximal clique.

were generated as well. However, each batch of the second group contains fifteen

DAGs to be merged. Furthermore, the pseudorandom graph generator has been

configured with a probability of generating more similar vertices and interconnec-

tions in the second group of experiments. The circuit area and energy estimation of

each DAG vertex, i.e., function unit, follows that presented in Section 2.3.2.

Moreover, the bipartite matching, longest common subsequence and longest com-

mon substring methods have been modified to implement up to 2 levels of intercon-

nects optimization. That is because after the mapping of vertices, the bipartite

graph may contain ambiguous mappings, i.e., two or more vertices from DAG1 be-

ing matched to one equivalent vertex of DAG2, or vice-versa. This means that the

patterns involved in ambiguous mapping cannot actually be merged, otherwise two

vertices that are data-dependent can be fused into a single vertex, resulting in an

inconsistence. Thus, the optimization options are the following:

opt 0 Any given set of matchings can be selected, as long as they are not ambiguous.

opt 1 The neighbors of the vertices in DAG1 and DAG2 belonging to a given

match are also compared. Thus, a (+1) weight is added to the corresponding

matchings for each equivalent neighbors.

opt 2 A second neighborhood level of the vertices in DAG1 and DAG2 belong-

71



ing to a given match are compared. Thus, a (+1) weight is added to the

corresponding matchings for each equivalent neighbors.

Fig. 3.15 gives an example of such a method to solve ambiguities, when having

as input the bipartite graph of Fig. 3.13(b). In this way, there is a higher potential

for merging several vertices in the same path, leaving their interconnects (edges)

unchanged. The maximal clique method does not implement such optimization

levels, because the matching of vertices and the matching of edges are both analyzed

and included in the compatibility graph for later extraction of cliques.

���������
����

���������
����

� ��

�

����

�

�

� ��

����

��

�

�����

� ��

����

�

��

��

����

��

����

��

(a) Datapath DAGs.

������

������

� ��

�

�

�

�

� ��

��

� ��

�

�

� ��

��

� ��

���� ��

(b) Weighted matching between DAG1 and DAG2.

Figure 3.15: Assignment of weights to the edges of bipartite match.

From the experimental results for active area reduction shown in Table 3.10,

it becomes clear that the active area is significantly reduced for each optimization

level, with the maximum reductions up to 59.17% and 71.93% for the first and the

second group of DAGs, respectively. Also, matching equivalent vertices according to

the longest common subsequence (L-SEQ) or substring (L-STR) method provided

better area reduction results, on average. Since the bipartite vertex mapping maps

all the equivalent vertices that exist between two given DAGs, which produces many

possible combinations, this complicates the selection process of a good mapping: the

one that may provide less interconnections and less active area after the merging

process. Also, the path-based mapping usually maps the sequences or substrings

of vertices with larger active area, which can contribute to reduce the overall area

at the end of the whole process. The maximal-clique method (CLIQUE) produces

a reasonable active area reduction based on a single optimization level, because its

mapping selection strategy does not depend on the selection of the highest weighted

edges of the bipartite mapping.

Using interconnects preservation optimization (opt 1 and opt 2 ) produces, in

most cases, lower active area datapaths and less interconnections. The reason for

such active area reduction through interconnection analysis is that the chance of

72



Table 3.10: Active area reduction.

Group1 Group2
Opt. BIP L-SEQ L-STR CLIQUE BIP L-SEQ L-STR CLIQUE

0
Avg. 36.61% 38.46% 37.53% 39.20% 44.42% 46.49% 45.95% 43.09%
Max 45.49% 51.78% 52.34% 52.18% 61.87% 56.98% 53.52% 59.35%
Min 23.22% 25.29% 25.13% 31.09% 32.48% 34.68% 40.42% 34.84%

1
Avg. 46.87% 48.76% 48.05% - 49.89% 51.01% 61.72% -
Max 58.91% 54.24% 52.73% - 57.91% 59.10% 71.93% -
Min 35.79% 38.71% 40.20% - 44.26% 39.81% 55.55% -

2
Avg. 46.25% 48.71% 49.03% - 54.18% 56.85% 60.85% -
Max 59.17% 56.97% 55.39% - 63.29% 68.19% 70.87% -
Min 35.83% 38.00% 35.99% - 45.17% 46.92% 55.24% -

merging two particular vertices increases as more neighbors they have in common.

In this way, the merging process is capable of selecting better sets of vertices to

be merged: those with more neighbors in common. The experimental results for

interconnection (edge) reduction are summarized in Table 3.11. It is clear that

the number of interconnections is reduced with each optimization level, as well as

the active area, except for a few batches of DAGs. The maximal-clique method

(CLIQUE) produced, on average, the best reduction of interconnections based on a

single optimization level. The main reason for such high interconnection reduction is

that the clique method only maps equivalent edges instead of vertices, which tends to

keep the edges intact in the merged graph. This is not a limitation of the clique-based

method, but a performance optimization strategy adopted in this work to avoid the

overgrowth of the compatibility graph with the addition of vertex mappings. The

bipartite vertex mapping (BIP) provided, the second best interconnection reduction,

probably because this mapping method is not so focused on the active area reduction

like the others (L-SEQ and L-STR). Nevertheless, mapping sequences or substrings

of vertices also provided substantial reductions of interconnects.

Table 3.11: Interconnection reduction.

Group1 Group2
Opt. BIP L-SEQ L-STR CLIQUE BIP L-SEQ L-STR CLIQUE

0
Avg. 8.46% 7.73% 6.76% 28.28% 7.46% 6.16% 4.46% 21.69%
Max 20.59% 15.38% 14.71% 36.92% 13.35% 8.76% 6.19% 35.57%
Min 1.56% 1.47% 1.69% 20.93% 0% 2.03% 2.77% 17.39%

1
Avg. 21.54% 18.66% 19.53% - 15.68% 15.21% 15.85% -
Max 30.51% 23.53% 26.92% - 19.80% 20.10% 20.69% -
Min 14.58% 13.21% 13.21% - 10.42% 12.59% 11.79% -

2
Avg. 22.08% 20.05% 19.13% - 20.12% 17.07% 17.77% -
Max 37.74% 28.13% 23.73% - 26.29% 23.27% 22.17% -
Min 14.71% 6.15% 13.21% - 13.70% 11.16% 10.48% -

Finally, the maximum depth of the combined DAG is used as a reference to

approximately measure the latency of the final merged datapath. Such maximum

depth represents the longest path from a source vertex to a sink vertex of the

DAG. In general, datapath merging may produce longer datapaths, depending on

73



the vertices that are merged during the process. These methods produced datapaths

that have on average 45.51% to 65.55% greater depth, as shown in Table 3.12.

Table 3.12: Maximum depth increase.

Group1 Group2
Opt. BIP L-SEQ L-STR CLIQUE BIP L-SEQ L-STR CLIQUE

0
Avg. 45.51% 32.13% 41.11% 36.34% 63.33% 65.55% 61.92% 43.09%
Max 58.82% 64.71% 68.75% 50.00% 72.00% 72.00% 75.00% 59.35%
Min 25.00% 0% 11.11% 16.67% 52.94% 59.09% 47.06% 34.84%

1
Avg. 45.05% 36.85% 41.92% - 56.63% 58.35% 59.74% -
Max 63.16% 53.33% 61.54% - 71.43% 75.76% 66.67% -
Min 25.00% 22.22% 11.11% - 40.00% 47.06% 52.63% -

2
Avg. 44.01% 39.05% 42.20% - 55.25% 60.16% 59.69% -
Max 63.16% 53.85% 64.29% - 66.67% 73.33% 73.08% -
Min 14.29% 22.22% 11.11% - 40.00% 42.86% 52.63% -

From these results it is possible to observe that exploitation of datapath merging

can influence the area of ASIP and accelerator designs to a very high degree and

may result in substantial area and interconnects reduction. Thus, hardware sharing

techniques involving datapath merging are of high importance for the multi-objective

ASIP and accelerator optimization and adequate tradeoff exploitation. Due to the

interconnect scalability problems and their dominating influence on the designs in

the modern nano-CMOS technologies, the reduction of interconnects is becoming

more important. The presented datapath merging methods are capable of saving

as much as up to 60% of the datapath active area and up to 30% of the datapath

interconnections, at the cost of increasing the latency of the datapath.

3.2.3 Experimental results on custom instructions

For the experiments reported in this Section, the total circuit area of the library of

custom instructions is minimized using the maximal-clique enumeration datapath

merging technique [28], which obtained, on average, the most promising results

regarding interconnection reduction, together with substantial active area savings

and reasonable increase of datapath latency, as presented in the previous Section.

The library of custom instructions, available in Appendix A, has been produced by

the custom instruction identification framework proposed in Chapter 2. The merged

results are available in Appendix B.

From the experimental results shown in Table 3.13 and in Fig. 3.16, it becomes

clear that datapath merging is an important optimization for reducing the circuit

area and the energy consumption in the context of instruction set customization.

It can be noted that, on average, the circuit area and the energy consumption are

reduced by 30%, whereas the number of interconnections is reduced by 6.8%, on av-

erage, using the maximal-clique enumeration strategy. Thus, using hardware sharing

74



Table 3.13: Reduction of total circuit area, static energy consumption and intercon-
nects.

Area (%) Static energy (%) Interconnects (%)
AES 38.81 40.22 10.14
SHA 21.47 21.50 4.26
JPEG 41.90 41.12 10.13
MJPEG 40.72 38.95 6.06
EDGE 22.40 24.06 4.00
RT 35.88 35.83 9.68
VRC 44.28 45.31 10.64
MPSO 31.22 31.27 6.32
Average 30.74 30.92 6.80

AES SHA JPEG MJPEG EDGE RT VRC MPSO

0

1 · 105

2 · 105

A
re

a

Regular Optimized

(a) Circuit-area reduction.

AES SHA JPEG MJPEG EDGE RT VRC MPSO

0

200

400

600

E
n

er
g
y

Regular Optimized

(b) Static energy consumption reduction.

Figure 3.16: Custom instructions circuit area and energy consumption reduction.
The CRC application is not shown because only one complex instruction was iden-
tified for it.

may save enough circuit area and energy to enable the replication of hardware ac-

celerators, such as co-processors, or the replication of augmented issue-slots of an

extensible VLIW-ASIP, which can further help to improve the performance of an

application or class of applications, as will be shown in Section 4.2.2.3.

75



Chapter 4

Efficient MPSoC with complex

instructions speedup

This chapter proposes custom multimedia parallel architectures based on multiple

ASIPs with complex instruction speedup, which are usually employed to speedup

computing-intensive kernels of highly-demanding applications or class of applica-

tions. It also presents a discussion on the state-of-the-art hardware accelerators for

well-known 3-D high-fidelity image rendering applications, such as Ray-Tracing and

Volume Ray-Casting.

4.1 Custom parallel architectures and accelera-

tors

This Section proposes two different custom parallel architectures [60, 61] for com-

puter graphics applications, ray-tracing and volume ray-casting, respectively. These

two applications are capable of producing very high quality image representations

of 3-D datasets, but achieving real-time performance is often difficult. Fortunately,

both applications have a high parallelization potential, which can be explored to

speedup their execution times. Despite that, parallelization alone cannot deliver

real-time performance. Thus, a custom parallel architecture may probably be able

to speedup the application, especially if many performance-tuned ASIPs, with lower

circuit-area requirements and energy consumption, can work together to compute

the applications most frequently executed kernels, in parallel.

4.1.1 The GridRT macro-architecture

The GridRT architecture [62, 63] is a massively parallel approach to intersection

checks in ray tracing. It is inspired in the Uniform Grid spatial subdivision of the

76



scene [64], which splits the 3-D scenario into 3-D regions of equal size, known as

voxels. Each voxel contains a list of the 3-D objects that are inside or partially

inside the voxel boundaries, as depicted in Fig. 4.1. Usually, an 3-D object is

composed of several triangles [65]. Only those voxels that are pierced by a given ray

have their objects (triangles) tested for intersections, greatly reducing the number

of intersection checks. Also, once an intersection is determined, no further voxels

need to be visited for the given ray, since every other intersection cannot be smaller

than the given one.

Uniform Grid 4x4x1

t1

ray
origin

voxel

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15

Figure 4.1: The Uniform Grid sequential traversal.

The standard uniform grid intersection algorithm proceeds sequentially, starting

the search for intersections from the voxel that is closest to the ray origin to the fur-

thest voxel, until an intersection is found or until the furthest voxel is reached with-

out any results, as in Fig. 4.1. On the other hand, the GridRT macro-architecture

maps each voxel onto a Processing Element (PE), responsible for computing inter-

section checks within its list of scene objects. Thus, all the PEs that are pierced by

a ray are going to compute intersections in parallel along the same ray, as in Fig.

4.2. For that reason, it is necessary to discover which PE holds the result that is

closest to the given ray origin.

Uniform Grid 4x4x1

PE0 PE1 PE2 PE3

PE4 PE5 PE6

PE8 PE9

PE7

PE11PE10

PE12 PE13 PE14 PE15

t1
t2

ray
origin

Figure 4.2: Parallel intersection checks.

One naive solution is to exchange the results between every PE that has been

77



processing the same ray. This solution would require every PE to synchronize and,

hence, wait for the others to finish their computation until they could exchange their

results. Instead, the GridRT architecture uses the traversal order that is inherited

from the uniform grid traversal algorithm to determine the closest result. Therefore,

every PE is aware of its position, based on the traversal list for a given ray. For

example, in Fig. 4.2, the traversal list is L(8,9,5,6,7), from the closest to the furthest

voxel (PE). Notice that each ray produces its own list of traversal, although some

rays may traverse the same set of PEs. So, based on its position in the list, a PE

can take one of the following actions:

• First in the list: if the first PE in the list finds an intersection, every successive

PE in the list can abort its own computation. Thus, the first PE sends an

interrupt message to the following in the list, which then aborts its computa-

tion and forwards the message to the next PE in the list, until the last PE is

reached.

• Last in the list: if the last PE in the list finds an intersection, it must always

wait for the previous PEs in the list to finish their computation before it can

assume to have the closest result. Thus, the last PE must wait for a feedback

message from the previous PE or an interrupt message as well, in order to take

a decision upon its result.

• Middle of the list: if a PE that is located in the middle of the list finds an

intersection, then it can send an interrupt message to the following PEs in the

list, but must also wait for a feedback or interrupt message from the previous

PE, before it can assume to have the closest result.

At the end of the computation of one ray, only one PE will remain active, while

all the others either have finished their computation without obtaining any con-

tributing result or have been aborted. In that way, it is no longer necessary to

wait for every PE to finish the computation and exchange results. Parallel intersec-

tion checks can be performed and the result correctness is guaranteed. Moreover,

the macro-architecture is not restricted to a specific target micro-architecture im-

plementation of PE computations and, hence, can be mapped to a broader range

of many-core architectures, such as application-specific instruction set processors

(ASIPs) or GPUs, as it will be shown in Section 4.1.1.2.

4.1.1.1 GridRT with ASIP

To implement GridRT architecture presented in the previous Section, each PE can

be implemented as a simple and very efficient ASIP, specified in hardware descrip-

tion language (e.g. VHDL). Thus, the datapath of the PE depicted in Fig. 4.3 is

78



controlled by a straightforward controller and every PE is responsible for comput-

ing intersection checks within its piece of scene data, which is stored into the Scene

Memory. The Control Memory, where the microprogram is stored, has access to a

dedicated register file. Such register file is available for storing intermediate results

of a special instruction dedicated to ray-triangle intersection checks.

Instruction

Memory

(64x20)

PC IR

Instruction

Decoder

A

B

ALU

(FP)

Scene

Memory
MAR

General Registers

Read

Register 1

Read

Register 2

Write

Register

Data

Read

Data 1

Read

Data 2

wr

Jump address

µPC Control

lines

[39 – 0]

data

11

22

AluOP 

(5,4,3)

21
0

(17,18)

12

8

Input port

Control

Memory

[8 – 5]

[16 – 13]

[12 – 9]

Op.Code [4 - 0]

6

Interruption

Controller

Immediate

C

13

µProgram Registers

Read

Register 1

Read

Register 2

Write

Register

Data

Read

Data 1

Read

Data 2

wr 9

16

10

[39 – 35]

[34 – 30]

[29 – 25]

reset

resetinterruptions

21

Figure 4.3: The Processing Element processor. Each number is a circuit-level oper-
ation.

Moreover, every PE is connected to its direct neighbors through two interrupt

lines. The first one is dedicated to the interrupt signals while the second to the

feedback signals, as described in Section 4.1.1. The path of both interrupt signals is

selected for every new ray, based on its traversal list. Once all PEs are connected,

the group of PEs acts as a massively parallel ASIP intersection co-processor for ray

tracing, as depicted in Fig. 4.4 for a co-processor example with 4 PEs. Thus, the

co-processor receives a ray together with its corresponding list of traversal and acti-

vation signals for each PE. Then, when the ray-triangle intersections have finished,

the co-processor returns the closest result to the given ray origin.

The GridRT co-processor can be controller by any main processor. In this case it

is a MicroBlaze RISC microprocessor IP from Xilinx [66], which can be synthesized in

FPGAs, as shown in Fig. 4.5. Such connection is made through a Fast Simplex Link

(FSL) channel [67], a low-latency point-to-point communication link available in

MicroBlaze. Therefore, the MicroBlaze microprocessor executes the ray generation

and the ray traversal algorithms, providing the necessary input data to the co-

processor. The result for each ray is then read from the co-processor and transmitted

to a host processor via a UART interface [68], for post-processing and visualization.

79



GridRT

4 PEs

list

ray

write

p3

p2

p1

p0

result

rdy3

rdy2

rdy1

rdy0Clock

32

192
32

Figure 4.4: The GridRT co-processor, with 4 PEs.

Uniform Grid
Fast Simplex 
Link (FSL)

...

Processor Local 
Bus(PLB)

UART Perif
1

Perif
n

0 1

3 4

en en

enen

0 1

3 4

en en

enen

PE0 PE1

PE2 PE3

list list

listlist

Figure 4.5: The MicroBlaze microprocessor connected to a GridRT co-processor.

Following the parallel model of the GridRT architecture in Section 4.1.1, par-

allelism is achieved through parallel intersection checks and exchange of signaling

messages to determine the correct result. Thus, each PE is connected with its direct

neighbors by two interruption lines. Signals are handled by a Interrupt Controller

present in every processing element, as highlighted in Fig. 4.3. The first interrupt

informs the current PE that a previous one has already computed an intersection

and, since no further intersection can be closer due to the traversal list order, the

PE forwards the interruption and aborts its computation. The second interrupt

deals with the situation when a PE has found an intersection, but has not received

any feedback from a previous one. Thus, the second interruption signal informs

the current PE that every former processor has finished the computation without

results. At the end, only one remaining result prevails, while others had finished

or were aborted. State machines are responsible for detecting an intersection result

within the PE and building the interrupt signals path, as depicted in Fig.4.6. Sim-

ple multiplexers are used to select the interruption path based on the traversal list

received together with the ray data. Thus, each PE knows what is the next PE and

the previous PE according to its position in the list.

80



Interruption

Controller

Finite

State Machine

Interruption 1

Interruption 2

Register

File

Read register

Interruption 1

Interruption 2

PC

reset

Finite State

Machine

Control

Memory

enable

nextprevious

Intersection 

end
Traversal list

R24

Figure 4.6: Interrupt Controller detailed datapath.

4.1.1.2 GridRT in GPU

While the GridRT implementation in ASIPs maps each PE onto an ASIP, the coun-

terpart GPU implementation maps each PE onto a Block of threads, that in turn is

organized as a Grid of Blocks, according to the Compute Unified Device Architec-

ture (CUDA) [69]. Such CUDA architecture model aims at performing a massive

number of floating-point calculations simultaneously. Thus, it can be used across a

wide range of applications that can be parallelized under the CUDA programming

model. Here, the goal is to take advantage of the CUDA paradigm to implement

the GridRT parallel model described in Section 4.1.1.

In the CUDA programming model, all threads in a grid execute the same kernel

function. Thus, each thread is assigned a unique identifier to distinguish it from oth-

ers. Besides, groups of threads are organized into blocks and, hence, have access to

a fast local shared memory and can be synchronized using a barrier synchronization

function. On the other hand, threads in different blocks cannot be synchronized via

barriers. Each block is also assigned a unique identifier. In modern GPUs, depend-

ing on the configuration that is specified when a kernel function is launched, each

block or thread identifier can have up to three dimensions (x, y, z). For example, if

the data to be processed is organized as a matrix M(x, y), threads can be organized

in two dimensions (ThreadIdx.x, ThreadIdx.y), so that they can be easily assigned

to its corresponding matrix data.

At the architectural level of current generation of hardware, blocks of threads

are assigned to Streaming Multiprocessors (SMs), each one consisting of up to 32

CUDA Cores, as shown in Fig. 4.7. Once a block is assigned to a SM, it is split

into Warps, which are groups of 32 threads with consecutive identifiers. Each block

can include up to 1024 threads. A Warp is scheduled for execution by a Warp

Scheduler. Thus, if an instruction, say i, that is being executed is waiting for a

previous one whose completion is delayed due to a required long-latency operation,

81



then a different Warp may be selected for execution of instruction i. In that manner,

the resources of an SM are better exploited and this is called latency hiding.

SM

.
.
.

.
.
.

.
.
.

.
.
.

shared
mem.

shared
mem.

cuda
core

warp
sched

warp
sched

Block

.
.
.

.
.
.

shared
mem.

warp
sched

0 SM1 SMN

...

Host

Global Memory

Figure 4.7: Streaming Multiprocessors (SMs) organization, with each SM executing
a blocks of threads.

The GridRT implementation in CUDA maps a PE onto a block of threads,

as depicted in Fig. 4.8. However, the threads of different blocks cannot coordinate

theirs activities. Therefore, a different, yet similar, approach from the ones presented

in Section 4.1.1 must be used to determine the result that is closest to the ray origin.

Uniform Grid 4x4x1

t1
t2

ray
origin

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

block of
threads

ray

ray

0

1

Figure 4.8: GridRT–CUDA configuration.

A possible solution is to map each PE onto a thread, instead of blocks of threads.

Hence, all the threads in charge of processing a ray could store their results in the

shared memory and thereafter synchronize their work at the end of the given ray

processing, checking which result is the closest to the ray origin. However, this

solution has a major drawback: in order to make usage of the shared memory, only

one block of threads, representing the whole GridRT, could be executed. All the

other blocks would become useless, causing a waste of too many valuable resources.

82



Therefore, a different approach is proposed. Instead of mapping each PE onto a

thread, each PE is mapped onto a block of threads and the host processor is in

charge of determining the correct result at the end of the whole computation. Now

each ray has an array of results associated to it. The size of such an array corresponds

to the maximum number of PEs, i.e. blocks, that can be traversed by a given ray.

The size is determined by the total number of subdivisions according to each of the

three axis (nx, ny, nz) of the GridRT spatial structure, as defined in Eq. 4.1. For

instance, considering the grid of Fig. 4.8, the maximum size of the array is N = 7,

since the uniform grid subdivision is nx = 4, ny = 4 and nz = 1.

N = nx + (ny − 1) + (nz − 1) (4.1)

When each block of threads has finished the intersection checks with respect to

the the corresponding voxel, the result is stored in the array at the block associated

entry. Thereafter, the block can proceed with the computation of a different ray,

which also has a different array of results associated to it. In the end, the host

processor copies the matrix of results from the GPU, wherein each row corresponds

to the array of results computed by the block for a given ray. Considering once

again the example in Fig. 4.8, the matrix is shown in Table 4.1. Furthermore, each

column contains the result that was computed by a block, also according to the list

of traversal associated to each ray.

Table 4.1: Matrix of results copied from the GPU by the host processor.

Ray Array Index

Ray0
List0 B8 B9 B5 B6 B7 - -
Result0 - - t1 t2 - - -

Ray1
List1 B8 B9 B10 B11 - - -
Result1 - - - - - - -

...

Rayn
Listn Bk Bk+1 Bk+2 - - - -
Resultn - ti ti+1 - - - -

Once all the intersections checks have been computed, the host processor checks

each ray of the matrix, searching for the nearest intersection results. Once an in-

tersection is encountered, it proceeds to the next ray, since the order of traversal

guarantees that the encountered result is the closest to the ray origin. After pro-

cessing all the results, the host creates a new set of rays based on the intersection

points found by the previous set of rays. Thus, several calls to the GridRT function

kernel produce a new set of intersection points for secondary rays and shadow rays.

In the end, the results are processed by the host processor in order to created the

83



final image from the ray traced 3-D scene, with shadows, reflections and refraction

effects.

It is important to note that every block of threads is not only responsible of

parallel processing of rays, but also parallel intersection checks within the block.

Depending on the number of blocks and threads per block that are set at the ker-

nel execution, one block may execute up to 1024 threads, split into Warps of 32

threads. Thus, each thread can be assigned to process one ray-triangle intersection

in parallel with others, only if the number of triangles that belongs to the block is

also compatible. In general, the more subdivisions are applied to the uniform grid

spatial structure, which means a higher granularity of voxels (Blocks or PEs), the

less triangles are present per voxel. In consequence, it became possible to assign a

thread to each ray-triangle intersection check. Taking advantage of the fast access

shared memory within a block, the intersection results are then stored in this mem-

ory and, in the end, the closest result to the ray origin in respect to the given block

is stored in the matrix, as described in Table 4.1 for the grid of Fig. 4.8.

4.1.1.3 Experimental results

The GridRT–FPGA hardware architecture based on ASIPs was described in VHDL,

while the GPGPU version was described in CUDA v4.0. The hardware architec-

ture was simulated in ModelSim XE 6.3c and synthesized to a Xilinx Virtex-5

XCE5VLX50T FPGA, through Xilinx ISE Design Suite 11.1. Initially, the GPGPU

version was running in one NVidia GTX 470 GPU. Later, a second GTX 470 GPU

was included, working in parallel with the first one. In such dual-GPU configura-

tion, the same kernel is running in both GPUs, but with the input primary rays

split between them. In that way, an even higher level of parallelism is achieved.

First of all, the area cost of the ASIP-based implementation is presented in

Table 4.2, for a GridRT co-processor of 1, 2, 4 and 8 PEs, respectively, including

the MicroBlaze microprocessor and its peripherals.

Table 4.2: Area cost for 1, 2, 4 and 8 PEs, in contrast with old vs. new GridRT
architecture.

Resources
GridRT–FPGA

1 2 4 8

Slice Reg 5012 7578 12368 21964
Slice LUT 6168 9254 15521 28138
LUT-FF 3184 3828 6851 14866
BlockRAM 31 32 48 80
DSP48Es 9 13 21 37
Synthesis Target: Virtex-5 XCE5VLX50T.

84



Parallel execution of up to 8 PEs was possible on a single Virtex-5 FPGA, running

only at 50MHz. Each PE is equipped with four floating point units from Xilinx IP

catalog [70], delivering an average of 10 MFLOPs per Processing Element. Each

intersection check takes 307 cycles, involving 58 floating point operations. If all 8

PEs are executing in parallel, an estimated peak of 80 MFLOPs can be achieved.

On the other hand, the Graphics Processing Unit (Nvidia GTX 470) used to

execute the GridRT kernel operates at 1.22Ghz, which is almost 25 times faster

than the FPGA hardware GridRT implementation, due to the clock cycle limita-

tions of the FPGA board. Also, such GPU contains up to 448 CUDA cores, each

one equipped with at least a floating point unit, which is 14 times more floating

point units than those available in all 8 PEs of the GridRT dedicated hardware

altogether. Furthermore, if each fused multiply-add (FMA) operation is considered

as two floating point units, then the GPU would contain 28 times more floating

point units. The execution times for primary rays processing are presented in Table

4.3, from 1 to 8 PEs and Blocks, for the dedicated GridRT hardware and for the

GridRT kernel in GPU, with the latter using one and two GPUs, respectively. The

3-D scene that was rendered is a low-polygon count of the Stanford Bunny (Low-res

Stanford Bunny 3-D scene in Fig. 4.9(a)), for a resolution of 320 × 240 [71] only,

also because of the FPGA area and memory constraints. In Table 4.3, all times are

given in seconds.

Table 4.3: Dedicated hardware and GPGPU kernel execution times.

Architecture
Number of PEs and Blocks
1 2 4 8

GridRT–FPGA 337 184 130 82
GridRT–CUDA (x1 GPU) 6.77 3.74 1.86 0.99
GridRT–CUDA (x2 GPU) 3.03 1.79 0.71 0.29
*All times are in seconds. Low-res Stanford Bunny 3-D scene.

From Table 4.3, it is possible to observe that as more processing elements (or

blocks of threads) are added to the architecture, the rendering time is almost linearly

reduced. The GPGPU implementation running in one GPU is up to 82 times faster

(a) 948 triangles (b) 3851 triangles (c) 11102 triangles (d) 15536 triangles

Figure 4.9: 3-D Scenes, rendered with primary rays only in GPGPU.

85



Table 4.4: GridRT–CUDA kernel execution times.

3-D Scene, 1 GPU
Blocks of threads

1 2 4 8 12 18 27 36 48 64 125 216

Bunny low-res 6.77 3.74 1.86 0.99 1.23 1.20 1.31 1.34 1.70 2.47 5.00 8.60
Bunny hi-res - - - 1.93 2.52 3.29 3.03 4.3 5.97 6.87 11.42 11.38
Dragon - - - - - - - 13.3 13.98 18.04 31.79 37.02
Happy Buddah - - - - - - - - 17.43 22.44 34.55 48.20

3-D Scene, 2 GPUs
Blocks of threads

1 2 4 8 12 18 27 36 48 64 125 216

Bunny low-res 3.03 1.79 0.71 0.29 0.28 0.26 0.29 0.29 0.44 0.68 1.31 2.5
Bunny hi-res - - - 1.3 1.25 1.34 1.52 2.21 2.7 2.9 5.03 10.55
Dragon - - - - - - - 6.67 6.1 8.02 14.12 17.02
Happy Buddah - - - - - - - - 7.80 10.03 15.10 22.17

than the ASIP-based FPGA implementation. If two GPUs are running in parallel,

the kernel is around 280 times faster then the ASIP-based and only 3.4 times faster

than using only one GPU. The performance gap between the GPGPU-based and the

ASIP-based implementations can be explained by the generality and programmabil-

ity overhead intrinsic of FPGA technology, resulting in 25 times slower clock than for

GPGPU, and by the massive floating-point parallelism provided by the GPGPU, es-

pecially if two GPUs are being used, increasing even more the technology gap. If the

ASIP-based GridRT would be implemented in ASIC technology, instead of FPGA,

comparable to the GPGPU technology, then it could most probably run with more

than 25 times faster clock, and be faster than the GPGPU implementation, as its

hardware is much simpler as the hardware of GPGPU.

Table 4.4 presents further kernel execution times of up to 216 blocks of threads

for the GridRT–CUDA implementation. The execution for some blocks of threads

could not be measured because of the GPU architecture limitations. For instance,

running the GridRT kernel with only one block of threads means that there is no

subdivision of the 3-D scene, so all the triangles belong to only one voxel (block of

threads). If there are too many triangles in a block of threads (more than 1024)

then the kernel cannot be executed, because the maximum number of threads per

block is 1024.

From Table 4.4 it is possible to observe that the GridRT–CUDA achieves accel-

eration when up to 18 blocks of threads (or Processing Elements) are employed in

the low-res bunny 3-D scene. Beyond that, the performance degenerates, as also

depicted in Fig. 4.10(a). For all the other 3-D scenes, the performance degenerates

faster, because of the higher number of triangles and intersection tests that need to

be computed.

The performance degeneration can be explained by the work granularity level

that each block of threads is operating at. Parallel intersection checks are performed

by all threads within a block, but loops and conditional branches dominate most

part of the computation. It is well-known that such conditional constructions are

not well suited for the Stream Processing model (Single Instruction Multiple Data,

86



0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

1	
   2	
   4	
   8	
   12	
   18	
   27	
   36	
   48	
   64	
   125	
  216	
  

Ke
rn
el
	
  e
xe
cu
*o

n	
  
*m

e	
  
(s
ec
on

ds
)	
  

Blocks	
  of	
  Threads	
  

bunny_low	
  

bunny_high	
  

dragon	
  

happy	
  buddah	
  

(a) Kernel execution in 1 GPU.

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

1	
   2	
   4	
   8	
   12	
   18	
   27	
   36	
   48	
   64	
   125	
  216	
  

Ke
rn
el
	
  e
xe
cu
*o

n	
  
*m

e	
  
(s
ec
on

ds
)	
  

Blocks	
  of	
  Threads	
  

bunny_low	
  

bunny_high	
  

dragon	
  

happy	
  buddah	
  

(b) Kernel execution in 2 GPUs.

Figure 4.10: GridRT–CUDA kernel execution results. Resolution: 320×240 primary
rays.

SIMD). Control flow has been for years optimized for Von Neumann architectures

and are better executed by such. Also, the performance degenerates because more

blocks of threads are competing to be executed by the streaming multiprocessors

available in the Nvidia GTX 470 GPU.

Using two GPUs, as shown in Table 4.4 and Fig. 4.10(b), less performance

degeneration is observed. Also, a dual-GPU configuration is around 2 and 5 times

faster, when compared to the kernel execution times in one GPU. The only difference

between both implementations is that, in the latter, the primary rays are split for

execution among the two GPUs. Such acceleration suggests that parallel execution

of rays is at least as efficient as parallel computation of intersection tests.

4.1.1.4 Results overview

Two implementations of the massively parallel GridRT architecture for Ray Tracing

are discussed: the ASIP-based FPGA implementation with an embedded intersec-

tion instruction and GPGPU (CUDA). These two implementations are analyzed

and compared regarding performance. The ASIP-based GridRT implemented in a

single Virtex-5 FPGA can execute up to eight processing elements in parallel, run-

ning at 50MHz only. When implemented in an ASIC technology, instead of FPGA,

it could most probably run more than 25 times faster. As more PEs are included,

the better is the performance achieved. However, recent advancements in GPGPU

architectures, such as in the Nvidia Fermi architecture, have enabled an efficient im-

plementation of several parallel applications, including ray-tracing itself. Therefore,

the GridRT architecture has been mapped to GPGPU using CUDA, with minor

modifications in the synchronization of results, performed by the host processor.

The GPGPU implementation in one GPU with 25 times faster clock achieved 82

times higher performance than the FPGA ASIP-based GridRT, which shows the

architecture potential towards real-time ray-tracing. After a second GPU had been

87



included to the system, the GPGPU implementation achieved around 280 times

higher performance compared to the ASIP-based implementation.

One of the reasons for such speedup gain is explained by the processing power

gap that exists between the FPGA programmable hardware implementation and

the GPGPU. For instance, the first is running at only 50MHz and can hold up to

eight processing elements. The latter runs at frequencies up to 1.2GHz and can

execute many blocks of threads. In total, the Nvidia GTX 470 GPGPU used in the

intersection checks have 448 CUDA cores, each one containing at least one floating-

point unit. In total 14 times more floating point units than employed in a GridRT

FPGA implementation of eight PEs. Moreover, if each fused multiply-add operation

yields 2 floating point units, then the GPGPU would have 28 times more floating

point units. Thus, if the same implementation technology and processing power

was available to the ASIP counterpart implementation, its performance would be

comparable to that of GPGPU. The second main reason for the speedup gap is that

the ASIP-based GridRT can only perform parallel intersection checks for one ray

at a time for now, while the GPGPU implementation can already perform parallel

intersection checks for more than one ray.

Summing up, this work demonstrated that the GPGPU implementation of the

GridRT macro-architecture for ray-tracing is able to deliver a high performance,

82 times higher than that of the ASIP-based FPGA implementation. However,

since the GPGPU implementation introduces more hardware overhead comparing

to an ASIP-based ASIC implementation, the ASIP-based ASIC implementation is

expected to have lower area and power consumption. For instance, a hypothetical

ASIC-based GridRT implementation in 40nm, the same technology as the GTX 470

GPU, and running at 1.2GHz, would yield 227MFLOPs per processing element,

which is 22 times faster than the current implementation in FPGA. Furthermore, if

each ASIP is considered equivalent to 4 CUDA cores (in terms of employed floating

point units), then at least 112 ASIPs could be synthesized in the ASIC technology,

yielding around 2.5GFLOPs of throughput. Still, the GTX 470 throughput would be

34 times higher (around 850GFLOPs), but the custom architecture is application-

specific and because of that should be able to more efficiently compute the parallel

ray-tracing algorithm, and probably consuming less power.

4.1.2 Parallel volume ray-casting MPSoC

High performance visualization of 3-D datasets has always been one of the main

goals in Computer Graphics. For 3-D volumetric datasets, such as those acquired

by Computer Tomography (CT), the rendering process is generally known as Volume

rendering. The volumetric dataset is usually composed of several stacked parallel

88



slices (images) that form a 3-D volumetric dataset. There are different techniques to

render 3-D volumetric datasets [72, 73]. For instance, the Marching Cubes algorithm

[74] is one approach to turn voxels samples into polygonal data, in order to create

an actual set of 3-D primitives that can be rendered by regular GPUs pipeline. On

the other hand, such technique may lead to a poor quality polygonal representation

of the volume, because of the approximations that are performed to create the

polygonal data. Thus, the Volume Ray-Casting algorithm is a better candidate

for producing more accurate results [75, 76]. Essentially, this algorithm samples

equidistant points along the ray, inside the volumetric 3-D dataset. Each sample,

i.e. Voxel (volumetric pixel), corresponds to a given color and opacity in one of

the parallel slices of the dataset. The interpolated colors and opacities are merged

through compositing to yield the color of the view-plane pixel through which a

primary ray has been traversed. For instance, the algorithm can show specific parts

of a human body volumetric dataset, such as bones or internal organs.

Interactive visualization of volumetric datasets is often difficult. The volume ray-

casting performance can drop significantly as more complex datasets are used. On

the other hand, volume ray-casting has a very high parallelization potential, as each

ray can be processed independently, producing one corresponding pixel information.

Therefore, there are consistent approaches to accelerate volume ray-casting with

custom parallel architectures in hardware. In [77], a pipelined application-specific

integrated circuit (ASIC) was created, fabricated in 0.35 µ technology and running at

125MHz. Such ASIC is capable of producing interactive frame-rates at some degree,

since there are limitations regarding the size of the dataset (2563 voxels). GPUs

have recently become a good option for massively parallel processing of floating

point data [69]. Thus, there are also approaches to accelerate volume ray casting

using GPUs [78, 79]. However, most of the volume ray-casting algorithms on GPU

strongly depend on optimizations to achieve real-time rendering performance. For

example, using texture or constant memories of the GPU to store frequently-used

data can substantially improve the given algorithm performance, because of their

much lower latency [69].

In this Section, the implementations of the interactive, un-optimized and flexible

parallel volume ray-casting algorithm with supersampling on three different multi-

core architectures are discussed: Chip Multiprocessor (CMP), Graphics Processing

Unit (GPU) and Multiprocessor System on Chip (MPSoC). The CMP implementa-

tion of the algorithm uses OpenMP, while the GPU implementation is CUDA-based.

The MPSoC-based implementation on FPGA uses the shared DDR memory for syn-

chronization. It extensively compare performance results of the GPU and OpenMP

implementations, showing that the GPU implementation can reach interactive visu-

alization, especially when a multi-GPU configuration is used. It also compared and

89



analyzed the advantages of using multi-GPU configuration over a single-GPU config-

uration for varying workloads (number of primary rays). Finally, the MPSoC-based

implementation on FPGA (Xilinx Virtex-5) shows the portability and scalability of

the volume ray-casting algorithm, as several microprocessors (MicroBlaze [66] cores)

can be mapped on the FPGA and run the algorithm in parallel. All the implemen-

tations have not been optimized to use any special features of the corresponding

architectures.

4.1.2.1 Parallel volume ray-casting in CMP

The OpenMP-based parallel volume ray-casting technique is presented in Algorithm

3, where a for work-sharing construct is used, that splits the execution of the parallel

section among the group of threads. Thus, iterations of the for loop are split across

the group of threads. Therefore, in Algorithm 3, groups of rays are assigned to groups

of threads for execution, leading to parallelization of rays. Each thread has its own

private variables (i, j and s) that are used to control the loop iterations assigned

to each thread in the beginning of the parallel section. Also, if supersampling is

enabled, then each ray spawns a given number of neighbor sampling rays (i.e. in

the vicinity of the primary ray), that are executed by the same thread. Thus, the

color information of each pixel is measured from all the sampling rays, improving

the overall quality of the resulting image.

Algorithm 3 Volume Ray-Casting with OpenMP
Require: rays, uniform grid structure, 3-D dataset
Ensure: image

1: # pragma omp parallel for private(i,j,s)
2: for i = 0 to WIDTH do
3: for j = 0 to HEIGHT do
4: color pixel;
5: for s = 0 to N SAMPLES do
6: ray ry ⇐ get ray(i,j,s);
7: color aux ⇐ intersectGrid(grid, ry, dataset);
8: pixel ⇐ pixel + aux;

9: pixel ⇐ pixel / N SAMPLES;
10: image[i][j] ⇐ pixel ;

4.1.2.2 Parallel volume ray-casting in GPU

The CUDA-based parallel volume ray-casting is presented in Algorithm 4. In the

CUDA programming model, a thread is actually a lightweight thread, because of

their simplicity and faster context switching mechanism when compared to regular

threads. Throughout this Section, threads in CUDA are referred as lightweight

threads. In addition, the CUDA-based implementation in Algorithm 4 has not been

optimized for GPU execution. For example, the kernel do not make use of shared

90



memory or texture memory, that are usually employed to avoid global memory long

latency penalties.

Modern general purpose GPUs are capable of executing many thousands of

threads in parallel [69]. Thus, each thread can be assigned to a primary ray that

crosses a pixel of the view-plane. The result is that a portion of the final image is

going to be produced by a block of threads (one pixel per thread). The correspond-

ing CUDA Kernel is presented in Algorithm 4, considering that all data transfers

between the host and the GPU have been already performed. If supersampling is

enabled, the thread will execute as many sampling rays as required, as shown in line

5 of Algorithm 4. The sampling rays are addressed in column chunks, as shown in

line 6.

Algorithm 4 Volume Ray-Casting CUDA–kernel
Require: rays, uniform grid structure, 3-D dataset
Ensure: image

1: ray ry;
2: i ⇐ blockDim.x * blockIdx.x + threadIdx.x;
3: j ⇐ blockDim.y * blockIdx.y + threadIdx.y;
4: color pixel;
5: for samples = 0 to N SAMPLES do
6: ry ⇐ rays[i][j+samples];
7: color aux ⇐ intersectGrid(uniform grid, ry, dataset);
8: pixel ⇐ pixel + aux;

9: pixel ⇐ pixel / N SAMPLES;
10: image[i][j] ⇐ c; . corresponding pixel color

Furthermore, the same kernel shown in Algorithm 4 can be executed by multiple

GPUs. However, the input rays are split among the GPUs, increasing even more

the parallel processing of rays. In order to use two GPUs, a separate thread must

be created to access each GPU, because one thread cannot control both GPUs at

the same time. For that reason, OpenMP is used to create two threads, each one

controlling one GPU. The same idea can be extended for more than two GPUs, if

available. In the end, the results from both GPUs are merged by the host process

into one single image.

4.1.2.3 Parallel volume ray-casting in MPSoC

The MPSoC architecture consists of up to four Xilinx MicroBlaze [66] microproces-

sors running in parallel at 125MHz. They are connected to a shared DDR memory

via a Xilinx Multi-Port Memory Controller (MPMC) [80]. One of the microproces-

sors is connected to a few communication peripherals, to enable input/output data

transmission between the MPSoC and a host machine, as well as to enable access to

the FPGA’s flash memory. Thus, all the microprocessors must wait until the whole

3-D volume data is available for computation.

91



The parallel volume ray-casting implementation is presented in Algorithm 5,

where iterations of the for loop are split across the microprocessors, as shown in line

2. Therefore, in Algorithm 5, groups of rays are assigned to different microproces-

sors, since rays can be processed independently from the others. Each micropro-

cessor knows which data to read and to write, according to its own identification

number (CPU ID= 0, 1, 2 or 3) and also according to the total number of enabled

microprocessors (N CPU= 1, 2, 3 or 4), as shown in line 2 of Algorithm 5. Finally,

at each loop iteration, an image pixel is produced, as shown in line 9 of Algorithm

5.

Algorithm 5 Volume Ray-Casting with MicroBlaze
Require: rays, uniform grid structure, 3-D dataset
Ensure: image

1: for (i = 0; i < IMG WIDTH; i++) do
2: for j = CPU ID; j < IMG HEIGHT; j ⇐ j + N CPU) do
3: color pixel;
4: for s = 0 to N SAMPLES do
5: ray ry ⇐ get ray(i,j,s);
6: color aux ⇐ intersectGrid(grid, ry, dataset);
7: pixel ⇐ pixel + aux;

8: pixel ⇐ pixel / N SAMPLES;
9: image[i][j] ⇐ pixel ;

4.1.2.4 Results overview

In this Section experimental results on different datasets for each multi-core architec-

ture implementation are presented. The CUDA-based implementation was compiled

using the CUDA Toolkit 4.0, while the OpenMP-based implementation was com-

piled in GCC 4.4.4. Up to two NVIDIA GTX 470 GPU were used for execution of

the algorithm in CUDA, while a Core i7 960 Intel Multiprocessor (at 3.2 GHz) was

used for the algorithm execution in OpenMP. The MPSoC-based architecture was

synthesized in Xilinx EDK 13.1 for a Virtex-5 XC5VLX50T FPGA and the par-

allel algorithm implementation was compiled using MicroBlaze gcc compiler 4.1.2.

All the execution time results are measured in seconds and the volumetric dataset,

shown in Fig. 4.11, is available in [81].

For each volumetric dataset, the volume ray-casting algorithm was executed for

1280 × 800 primary rays, producing high-resolution images. In addition, the algo-

rithm was executed with supersampling enabled, varying from 1 to 32 sampling rays

per pixel. Therefore, up to 32 sampling rays were cast around the region of the

primary ray pixel, producing smoother edges in the resulting image. The perfor-

mance results are summarized in Table 4.5, for the OpenMP and the CUDA based

implementations, using 1 and 2 GPUs, respectively. The MPSoC does not support

92



Figure 4.11: Images produced by the proposed parallel volume ray-casting algorithm.

high-resolution volume ray-casting processing because of memory limitations. Thus,

its results are not included in Table 4.5.

The OpenMP-based implementation uses 8 parallel threads, since the Core i7

microprocessor can execute up to eight parallel processes. The results in Table 4.5

show that even for one sampling ray, the performance is still not enough to ensure

interactive visualization of the datasets. However, good results, i.e. image quality

and interactive visualization, can still be obtained at lower resolutions, as fewer

primary rays are processed.

On the other hand, the GPU-based implementation results show that interactive

visualization of volumetric datasets is possible even for high-resolution volume ray-

casting. As depicted in Fig. 4.12(a) and 4.12(b), the volume ray-casting execution

time for every dataset is still below one second if up to 4 sampling rays are used,

which corresponds to processing 1280 × 800 × 4 rays, in total. Thus, more than

one image, a.k.a frame, can be produced in one second, especially if less than four

sampling rays are used. The dual-GPU implementation is around 90 times faster

than the OpenMP implementation. Comparing the algorithm execution results us-

ing one and two GPUs, the performance is almost two times faster when two GPUs

are employed instead of one. Also, observe that as more sampling rays are used, the

performance gap increases, making the dual-GPU configuration a better candidate

for high-quality interactive volume ray-casting, especially for complex datasets such

as aorta and backpack, as shown in Fig. 4.13.

Lower resolution volume ray-casting can still provide a good trade-off between

image quality and performance. Here, some experimental results for the foot and

backpack datasets are presented, rendered in lower resolutions. The performance

results are presented in Fig. 4.14, for one sampling ray. It is clear that the GPU-

based implementation can easily achieve real-time visualization (30 fps) of volu-

metric datasets when the resulting image resolution is decreased, which means that

fewer primary rays are used to sample the volume data. For a simple dataset (foot),

interactive visualization (around 60 fps) can be achieved even for higher resolutions,

93



Table 4.5: High-resolution execution times for eight different datasets.

Data
Sampling rays, OpenMP Core i7

1 2 4 8 16 32

foot 2.54 4.68 9.02 18.30 34.58 69.75
skull 2.07 3.94 7.22 15.08 30.36 55.45
engine 2.14 4.12 8.63 16.81 33.42 66.45
aneurism 2.69 5.43 11.20 21.41 41.19 81.48
bonsai 2.23 4.19 7.41 14.65 30.16 55.78
teapot 2.58 4.57 8.72 16.84 38.36 73.00
aorta 6.19 12.22 24.08 47.94 95.76 192.46
backpack 6.36 12.51 24.97 49.45 99.22 198.32

Data
Sampling rays, 1× NVIDIA GTX 470

1 2 4 8 16 32

foot 0.03 0.08 0.17 0.34 0.67 1.35
skull 0.04 0.09 0.19 0.38 0.77 1.54
engine 0.02 0.04 0.09 0.18 0.37 0.74
aneurism 0.03 0.07 0.15 0.29 0.59 1.18
bonsai 0.03 0.06 0.14 0.27 0.53 1.11
teapot 0.03 0.06 0.13 0.26 0.53 1.06
aorta 0.08 0.19 0.39 0.80 1.62 3.26
backpack 0.12 0.29 0.58 1.20 2.43 4.91

Data
Sampling rays, 2× NVIDIA GTX 470

1 2 4 8 16 32

foot 0.03 0.06 0.12 0.24 0.48 0.96
skull 0.02 0.05 0.09 0.19 0.38 0.76
engine 0.02 0.03 0.07 0.14 0.28 0.56
aneurism 0.03 0.06 0.12 0.24 0.49 0.97
bonsai 0.03 0.05 0.11 0.22 0.44 0.87
teapot 0.02 0.05 0.09 0.19 0.38 0.77
aorta 0.06 0.12 0.23 0.45 0.88 1.76
backpack 0.08 0.17 0.33 0.66 1.32 2.62

as in Fig.4.14(a). On the other hand, the backpack dataset can achieve interactive

visualization performance for very-low resolutions only, as depicted in Fig.4.14(b).

Moreover, the OpenMP-based implementation cannot provide real-time or inter-

active rendering yet. Thus, optimizations are necessary in order to improve the

algorithm performance in OpenMP, as shown in [82].

The MPSoC-based implementation results are shown in Fig. 4.15. Because of

memory limitations of the FPGA, it could only render images of 640 × 480 pixels.

Also, the aorta and backpack datasets could not fit in memory. In Fig. 4.15(a),

one can observe that almost all the FPGA slices are being used (82%), as well as

the available BlockRAMs (95%). Because of that, the FPGA could fit up to 4

microprocessors running in parallel. The high usage of BlockRAMs is due to the

MPMC implementation of FIFOs for each input/output memory port, in order to

94



0.0	
  

1.0	
  

2.0	
  

3.0	
  

4.0	
  

5.0	
  

1	
   2	
   4	
   8	
   16	
   32	
  

Ke
rn
el
	
  e
xe
cu
*o

n	
  
*m

e	
  
(s
ec
on

ds
)	
  

Number	
  of	
  sampling	
  rays	
  

foot	
   skull	
   engine	
   aneurism	
   bonsai	
   teapot	
   aorta	
   backpack	
  

(a) Single-GPU, CUDA-based results.

0.0	
  

1.0	
  

2.0	
  

3.0	
  

4.0	
  

5.0	
  

1	
   2	
   4	
   8	
   16	
   32	
  

Ke
rn
el
	
  e
xe
cu
*o

n	
  
*m

e	
  
(s
ec
on

ds
)	
  

Number	
  of	
  sampling	
  rays	
  

foot	
   skull	
   engine	
   aneurism	
   bonsai	
   teapot	
   aorta	
   backpack	
  

(b) Dual-GPU, CUDA-based results.

Figure 4.12: GPU performance results in CUDA.

1.0	
  
1.2	
  
1.4	
  
1.6	
  
1.8	
  
2.0	
  
2.2	
  

foo
t	
  

sku
ll	
  

en
gin
e	
  

an
eu
ris
m	
  

bo
ns
ai	
  

tea
po
t	
  

ao
rta
	
  

ba
ckp
ac
k	
  

Sp
ee
d	
  
up

	
  

Volumetric	
  dataset	
  

1	
  sampling	
  ray	
   32	
  sampling	
  rays	
  

(a) Single vs. Dual GPU speedup.

0	
  
10	
  
20	
  
30	
  
40	
  
50	
  
60	
  
70	
  

foo
t	
  

sku
ll	
  

en
gin
e	
  

an
eu
ris
m	
  

bo
ns
ai	
  

tea
po
t	
  

ao
rta
	
  

ba
ckp
ac
k	
  

Fr
am

es
	
  p
er
	
  se

co
nd

	
  (f
ps
)	
  

Volumetric	
  dataset	
  

Single-­‐GPU	
   Dual-­‐GPU	
  

(b) GPU frame rate (1 sampling ray).

Figure 4.13: Acceleration rate using two GPUs and frames per second rate.

improve timing and performance [80].

Performance and scalability results are shown in Fig. 4.15(b). For most datasets

the parallel algorithm execution time improves as more MicroBlaze microprocessors

(Processing Elements - PEs) are being used in parallel. The MPMC FIFOs for the

fourth microprocessor are implemented using shift register lookup tables instead

of BlockRAMs, which can contribute to create stalls in the datapath and, hence,

worsen the overall performance of the microprocessor.

Finally, it is clear that interactive performance is not yet achieved. However, an

Application-Specific Integrated Circuit (ASIC) implementation of such application-

specific MPSoC design, instead of FPGA, could most probably run faster, with lower

area and power consumption, as in [77].

Summing up, three un-optimized implementations of the volume ray-casting

algorithm are discussed and compared. The GPU-based implementation is up

to 90 times faster when a dual-GPU configuration is used, in comparison to the

OpenMP-based implementation. One of the reasons for such speedup gain is be-

cause thousands of lightweight threads can be executed in parallel on GPU, while

in the OpenMP-based implementation only 8 threads are executing in parallel. Fur-

95



4	
  

129	
  

189	
  

1	
  

57	
  
71	
  

1	
  

45	
   52	
  

0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
140	
  
160	
  
180	
  
200	
  

OpenMP	
   1	
  GPU	
   2	
  GPUs	
  

Fr
am

es
	
  p
er
	
  se

co
nd

	
  (f
ps
)	
  

320x240	
   640x480	
   800x600	
  

(a) Foot dataset low-resolution fps.

2	
  

48	
  

79	
  

1	
  

18	
  
28	
  

0	
  

14	
  
20	
  

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

90	
  

OpenMP	
   1	
  GPU	
   2	
  GPUs	
  

Fr
am

es
	
  p
er
	
  se

co
nd

	
  (f
ps
)	
  

320x240	
   640x480	
   800x600	
  

(b) Backpack dataset low-resolution fps.

Figure 4.14: Frames per second rendering rate for lower resolutions.

0%	
  

20%	
  

40%	
  

60%	
  

80%	
  

100%	
  

Slices	
   IOBs	
   BlockRAMs	
   DSP48Es	
   Slice	
  
registers	
  

Slice	
  LUTs	
  

O
cc
up

an
cy
	
  o
f	
  F
PG

A	
  
re
so
ur
ce
s	
  

FPGA	
  resources	
  

(a) FPGA area occupancy (4 PEs).

0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
140	
  
160	
  

foot	
   skull	
   engine	
   aneurism	
   bonsai	
   teapot	
  

Ex
ec
u&

on
	
  &
m
e	
  
(s
ec
on

ds
)	
  

Volumetric	
  Dataset	
  

1	
  PE	
   2	
  PE	
   3	
  PE	
   4	
  PE	
  

(b) Execution times for 640× 480 res.

Figure 4.15: MPSoC synthesis and scalability, for up to 4 parallel microprocessors.

thermore, the overhead of changing between threads in GPU is much lower. The

MPSoC-based implementation on a single Virtex-5 FPGA can execute up to four Mi-

croBlaze microprocessors in parallel, running at 125MHz. As more microprocessors

are used, the better is the performance achieved. However, interactive performance

is not yet achieved, although in ASIC technology it could most probably run at

higher frequencies, with more dedicated hardware.

This work demonstrated that the un-optimized GPU implementation of the vol-

ume ray-casting algorithm is able to deliver a high performance, between 60 and 90

times higher than that of the OpenMP-based implementation. For most datasets,

high-resolution interactive visualization is achievable. Also, if the algorithm would

make use of the texture and constant memories of the GPU, it would very likely

achieve much higher frame rates, since the latency of these memories is much lower

than the global memory latency. On the other hand, interactive performance may

only be achieved in OpenMP unless several optimizations are applied to the al-

gorithm. Furthermore, since the GPU implementation introduces more hardware

overhead comparing to an MPSoC-based ASIC implementation, a MPSoC-based

ASIC is expected to have lower area/power consumption.

96



4.2 ASIP-based Multi-Processor System-on-a-

Chip

This Section presents a parallelization strategy of the ray-tracing algorithm to

be implemented in two different reconfigurable Multi-Processor Systems-on-a-Chip

[11, 13], as well as, hardware replication-aware instruction set extension based on

the identification of equivalent computation patterns that are frequently executed

in the ray-tracing application, as described in Chapter 2. Based on the informa-

tion collected during the application profiling, which is performed using the LLVM

compiler framework [42], candidates for instruction set extension are decided and

implemented as specialized function units in the ASIP-based MPSoC to further

speedup the ray-tracing execution time. Such extensions may substantially increase

the circuit-area. To mitigate the impact on the area, the resource sharing optimiza-

tion is used.

The ray-tracing algorithm is an example of a multimedia application highly-

demanding in terms of throughput, circuit-area and energy consumption [83, 84].

First of all, the algorithm performance can be considerably improved by means of

code and processor architecture parallelization [85]. Secondly, the algorithm may

compute several ray-object intersection tests for every ray vector, which requires

specific intersection computations/routines for each 3-D object of the whole 3-D

scene [65]. Thus, in an ASIP design process, each intersection computation may

be implemented as a specialized function unit in hardware, contributing to further

speedup the overall execution. However, the more processing elements and special-

ized function units are added to the design, the higher becomes the overall system

circuit-area and energy consumption. Nevertheless, the increase of the circuit-area

and energy consumption can be limited through hardware re-use [10].

In contrast to traditional 3-D rendering algorithms [65], the ray tracing algorithm

produces a higher fidelity image representation of a 3-D scene. For every primary

ray (e.g. light vector), the ray tracing algorithm usually computes intersection

tests against all the 3-D primitives (a.k.a. objects) of the scene, looking for the

objects that are visible from a virtual camera’s perspective. If an intersection is

encountered, the object properties are used to determine wether the ray will be

reflected, refracted or completely absorbed. For instance, if the ray is reflected or

refracted, the algorithm is recursively executed to determine the objects that are

visible from the previous intersection point perspective, which is why the algorithm

can naturally produce mirror like effects in the final image. On the other hand,

if the ray is absorbed, the processing ends and all the information that has been

gathered until that point is merged to compose the color of the corresponding pixel

of the viewplane. The program main entry is presented in Algorithm 6, in which the

97



primary rays are being traced. The trace procedure in Algorithm 6 is responsible for

determining the closest intersection point. Such procedure is recursively executed

until a maximum reflection/refraction threshold is reached. Further details on ray

tracing can be found in [65].

Algorithm 6 Ray Tracing primary rays
Require: 3-D primitives file
Ensure: rendered image

1: scene = load3DScene(file);
2: viewplane = setupViewplane(width,height);
3: camera = setupCamera(viewplane,eye,view direction);
4: depth = 0;
5: for i← 0 to viewplane’s width do
6: for j ← 0 to viewplane’s height do
7: ray ← get(i,j,camera);
8: image[i][j] ← trace(scene,ray,depth);

4.2.1 Parallel ray-tracing in MPSoC

The parallel ray-tracing implementation is presented in Algorithm 7, where itera-

tions of the external for loop are split across the microprocessors, as shown in line 5.

In that way, groups of rays are assigned to different microprocessors, because every

ray can be processed independently from the others.

Each microprocessor will produce different columns of the final rendered image.

Every microprocessor knows which data to read and to write, according to its own

identification number (CORE ID= 0, 1, 2, ..., n− 1) and also according to the total

number of enabled microprocessors (N CORES= 1, 2, ..., n), as shown in lines 5 and

9 of Algorithm 7. Observe that, at each inner-loop iteration, an image pixel is

produced, as shown in line 8. There are no memory write conflicts, because the

pixels produced by different microprocessors are always written at different memory

addresses.

Algorithm 7 Parallel Ray Tracer in MPSoC
Require: 3-D primitives file
Ensure: rendered image

1: scene = load3DScene(file);
2: viewplane = setupViewplane(width,height);
3: camera = setupCamera(viewplane,eye,view direction);
4: depth = 0;
5: for i← CORE ID to viewplane’s width do
6: for j ← 0 to viewplane’s height do
7: ray ← get(i,j,camera);
8: image[j + i * viewplane’s height] = trace(scene, ray);

9: i ← i + N CORES;

98



4.2.2 RISC-based MPSoC

The reconfigurable RISC-based MPSoC macro-architecture consists of several Xilinx

MicroBlaze microprocessors running in parallel at 125MHz. They are connected to

a shared DDR memory via a Xilinx Multi-Port Memory Controller (MPMC), which

supports the connection of up to eight MicroBlaze microprocessors. Thus, the multi-

port memory controller, together with the constraint on the available resources in

the used FPGA, impose a limitation on the number of microprocessors that can

actually be synthesized. The macro-architecture is depicted in Fig. 4.16.

FPGA
Xilinx Processor Local Bus (PLB)Xilinx Processor Local Bus (PLB)

Xilinx
MicroBlaze

microprocessor n

CI n

CI n

CI n

Xilinx
MicroBlaze

microprocessor 1

CI 1

CI 2

CI n

Xilinx Multi-Port Memory Controller (MPMC) 

O
nb

oa
rd

  
D

D
R

Xilinx
MicroBlaze

microprocessor
(1-8)

...

CI 1

CI 2

CI 16

FSL1

FSL2

FSLn

...

Xilinx Processor Local Bus (PLB)

H
os

t

Figure 4.16: The reconfigurable MPSoC macro-architecture.

Each microprocessor’s instruction set can be extended with up to 16 custom

instructions, implemented as co-processors through the Xilinx Fast Simplex Link

(FSL) bus. Thus, for the ray-tracing RISC-based MPSoC, each custom instruction

works as a special floating-point co-processor.

4.2.2.1 Instruction set customization

Using the proposed LLVM-based instruction set customization tool, presented in

Chapter 2, three of the most widely used floating-point custom instructions were

added to each microprocessor instruction set, as shown in Fig. 4.17. The instruction

extensions were selected from the most frequently executed operation patterns and

accounting for the most common pattern occurrences found between the basic blocks

during the profiling of the ray-tracing application. Finally, the custom instructions

were manually mapped into the application source code, as shown in Listing 4.1.

99



Xilinx
MicroBlaze

microprocessor

FSL1

FSL2

FSL3

FSL 1

x x x

+

+

FSL 2

x x

+
FSL 3

x

+

i0 i1 i2 i3 i4 i5 i0 i1 i2 i3 i0 i1 i2

o1

o1 o1

Figure 4.17: The Ray-Tracing instruction set extensions.

Listing 4.1: Multiply-add (ACC MADD) custom instruction.

// connects to FSL2

#define ACC MADD(X1 , Y1 , Z1 ,RES)\
{\

asm volat i le ( ”

put %1, r f s l 2 \n
put %2, r f s l 2 \n
put %3, r f s l 2 \n
get %0, r f s l 2 ” : ”=r ” (RES) : ” r ” (X1) , ” r ” (Y1) , ” r ” (Z1 ) : ) ; \

}
// ray−t r a c i n g ” t r a c e ” func t i on

c o l o r t r a c e ( camera cam , ray ∗ r , int i t e r ) {
f loat l o w e s t d i s t ;

int index = −1;

enum ob j e c t obj = NONE;

i f ( i t e r > MAX DEPTH) { return black ; }
else {

index = −1;

obj = in t e r s e c t3Dscene (&index , r , &l o w e s t d i s t ) ;

i f ( obj != NONE && l o w e s t d i s t > e p s i l o n ) {
point i n t e r s e c t i o n ;

po int d i r ;

d i r . x = r−>d . x − r−>o . x ;

d i r . y = r−>d . y − r−>o . y ;

d i r . z = r−>d . z − r−>o . z ;

normal ize (& d i r ) ;

ACC MADD( d i r . x , l o w e s t d i s t , r−>o . x , i n t e r s e c t i o n . x ) ;

ACC MADD( d i r . y , l o w e s t d i s t , r−>o . y , i n t e r s e c t i o n . y ) ;

ACC MADD( d i r . z , l o w e s t d i s t , r−>o . z , i n t e r s e c t i o n . z ) ;

return shade (cam , &dir , obj , index , &i n t e r s e c t i o n , i t e r ) ;

} else {
return black ;

}
}
return black ;

}

The RISC-based MPSoC macro-architecture, as described in Section 4.2.2, was

synthesized using Xilinx EDK 14.4 for a Virtex-5 XC5VFX70T FPGA and the paral-

lel algorithm implementation was compiled using MicroBlaze GCC compiler, with-

100



out optimizations. Two implementations and experimental results are presented:

the first one (Section 4.2.2.2) without ISE hardware sharing and the second (Sec-

tion 4.2.2.3) with ISE hardware sharing.

4.2.2.2 Results of ISE without Hardware Sharing

The results are based on the ISE without hardware sharing exploration. In this ISE

configuration, up to 4 MicroBlaze microprocessors were synthesized. The execution

time results, shown in Fig. 4.18(a), are given in seconds and the speedup in compari-

son to a single microprocessor implementation is presented in Fig. 4.18(b). It is easy

to observe that the speedup grows linearly with using more processing elements in

parallel. Moreover, if the instruction set extensions are enabled, the speedup grows

in the direction of the linear parallel speedup. Whenever they were enabled, the

instruction set extensions provided altogether 8.2% speedup in any configuration

of microprocessors. Four microprocessors with enabled instruction set extensions

achieved 77% speedup in comparison to the standard single-processor solution.

37
,8
4	
  

18
,9
2	
  

12
,6
3	
  

9,
46
	
  

41
,2
3	
  

20
,6
1	
  

13
,7
6	
  

10
,3
1	
  

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

40	
  

45	
  

1	
   2	
   3	
   4	
  

Ti
m
e	
  
(s
ec
on

ds
)	
  

Custom	
  Instruc7ons	
  disabled	
   Custom	
  Instruc7ons	
  enabled	
  

(a) Execution time results, varying from 1 to 4
microprocessors.

1,0	
  

1,5	
  

2,0	
  

2,5	
  

3,0	
  

3,5	
  

4,0	
  

4,5	
  

5,0	
  

1	
   1+	
   2	
   2+	
   3	
   3+	
   4	
   4+	
  

Sp
ee
d	
  
U
p	
  

Parallelism	
  +	
  ISE	
  SpeedUp	
   Linear	
  (Parallelism	
  SpeedUp)	
  

(b) Parallel ray-tracer speedup, varying from 1
to 4 microprocessors. A plus signal (+) indi-
cates usage of ISE.

Figure 4.18: Parallel ray-tracer execution time results.

In the this design, almost all the FPGA slices are used (80%), as well as the

available DSP48Es (81%), which are essential to lower the delay of the floating-

point units in FPGA. Therefore, we could only fit in 4 microprocessors running in

parallel with their instruction set extensions, as shown in Fig. 4.19(a). The resultant

ray-traced image is presented in Fig. 4.19(b).

Furthermore, in order to better evaluate the impact/improvement due to the in-

struction set extensions, the complexity of the 3-D scene has been increased. Namely,

we included 100 extra spheres in the 3-D scene. In this way, the number of required

floating-point computations (during the intersection tests) has also increased. In

this case, the instruction set extensions provided 10% speedup. Thus, the more

data is fed into the custom instructions, the higher the speedup.

101



39
,5
5%

	
  

50
,3
9%

	
  

81
,8
8%

	
  

65
,5
4%

	
  

96
,8
8%

	
  

0%	
  
10%	
  
20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  
100%	
  

Slice	
  Reg	
   Slice	
  LUT	
   Slices	
   BlockRAM	
   DSP48E	
  

FP
G
A	
  
oc
cu
pa

nc
y	
  

4	
  microprocessors	
  +	
  ISE	
  

(a) FPGA resources usage for 4 microprocessors
and peripherals.

(b) Ray-tracer output image (800 × 600
pixels).

Figure 4.19: RISC-based MPSoC FPGA area occupancy and the final output image.

4.2.2.3 Results of ISE with Hardware Sharing

Observe in Fig. 4.17 that each custom instruction presents a few function units in

common. This is the same problem of maximal common (sub)-graph identification

(common pattern identification), as discussed in Chapter 3. Therefore, we analyzed

the proposed instruction set extension regarding its hardware sharing possibilities.

The proposed instruction set extension tool was able to merge the common patterns

and produce a compact function unit hardware that can still compute the custom

instructions one at a time, as depicted in Fig. 4.20.

Xilinx
MicroBlaze

microprocessor

FSL1

FSL 1

x x x

+

i0 i1 i2 i3 i4 i5

mux

o1

mux

+

i6 (select)

Figure 4.20: Instruction set extensions with Hardware Sharing.

The instruction set extensions with hardware sharing saved enough circuit-area

to enable the inclusion of an additional microprocessor with custom instructions

along to the other 4 microprocessors. Thus, using the Virtex 5 XC5VFX70T FPGA,

up to 5 MicroBlaze microprocessors were included and synthesized. All the execution

time results, shown in Fig. 4.21(a), are given in seconds and the speedup is in

reference to a single microprocessor implementation is presented in Fig. 4.21(b).

102



41
,2
3	
  

20
,6
1	
  

13
,7
6	
  

10
,3
1	
  

8,
29
	
  

37
,8
4	
  

18
,9
2	
  

12
,6
3	
  

9,
46
	
  

39
,1
9	
  

19
,6
0	
  

13
,0
8	
  

9,
79
	
  

7,
84
	
  

0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
30	
  
35	
  
40	
  
45	
  

1MB	
   2MB	
   3MB	
   4MB	
   5MB	
  

Ti
m
e	
  
(s
ec
on

ds
)	
  

Custom	
  Instruc9on	
  disabled	
   Custom	
  Instruc9ons	
  Enabled	
  

Shared	
  Custom	
  Instruc9ons	
  

(a) Execution time results, varying from 1 to 5
microprocessors with hardware sharing.

1,0	
  
1,5	
  
2,0	
  
2,5	
  
3,0	
  
3,5	
  
4,0	
  
4,5	
  
5,0	
  
5,5	
  
6,0	
  

1MB	
   1MB+	
   2MB	
   2MB+	
   3MB	
   3MB+	
   4MB	
   4MB+	
   5MB	
   5MB+	
  

Sp
ee
d	
  
U
p	
  

Parallelism	
  +	
  HS	
  ISE	
  Speed	
  Up	
   Linear	
  (Parallelism	
  Speed	
  Up)	
  

(b) Parallel ray-tracer speedup, varying from 1
to 5 microprocessors. A plus signal (+) indi-
cates usage of ISE with HS.

Figure 4.21: RISC-MPSoC parallel ray-tracer execution time comparison, with hard-
ware sharing.

39
,5
5%

	
  

50
,3
9%

	
  

81
,8
8%

	
  

65
,5
4%

	
  

96
,8
8%

	
  

41
,5
2%

	
  

49
,5
0%

	
   83
,0
8%

	
  

81
,7
6%

	
  

70
,3
1%

	
  

0%	
  
10%	
  
20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  
100%	
  

Slice	
  Reg	
   Slice	
  LUT	
   Slices	
   BlockRAM	
   DSP48E	
  

FP
G
A	
  
oc
cu
pa

nc
y	
  

4	
  microprocessors	
  +	
  ISE	
   5	
  microprocessors	
  +	
  HS	
  ISE	
  

(a) FPGA resources usage for 5 microproces-
sors with Hardware Sharing (HS).

0,0	
  

1,0	
  

2,0	
  

3,0	
  

4,0	
  

5,0	
  

6,0	
  

1MB	
   1MB+	
   2MB	
   2MB+	
   3MB	
   3MB+	
   4MB	
   4MB+	
   5MB	
   5MB+	
  

Sp
ee
d	
  
U
p	
  

Parallelism	
  +	
  HS	
  ISE	
  Speed	
  Up	
   Parallelism	
  +	
  ISE	
  Speed	
  Up	
  

(b) Speedup comparison, varying from 1 to 5
microprocessors. A plus signal (+) indicates
usage of ISE.

Figure 4.22: RISC-MPSoC FPGA area occupancy and speedup results, with hard-
ware sharing and without it.

The design with hardware sharing presented a better FPGA occupancy efficiency,

as shown in Fig. 4.22(a). As expected, there is a very small loss of performance in

the version of ISEs with hardware sharing, because the selection hardware requires

an additional operation control signal to select which data-path should be followed

at each time. Thus, altogether, the instruction set extensions with hardware shar-

ing provided 5% speedup when enabled. The speedup is almost the same as that

achieved by the ISEs with no hardware sharing, as shown in the comparison depicted

in Fig. 4.22(b). Furthermore, the fifth microprocessor further improved the overall

speedup to 81%, in comparison to the standard single-processor solution.

4.2.3 VLIW-based MPSoC

The multi-core VLIW-ASIP macro-architecture consists of several commercially

available extensible VLIW-ASIPs (Cores) running in parallel, each with its own

103



local memory. Each core is connected to the system’s bus, enabling communication

with the system’s global memory. A host processor is also connected to the system’s

bus and, thus, can communicate with each core. The host processor is generally used

to feed data into each core local memory and also into the system’s global memory.

Due to the highly-parallel nature of the ray-tracing and volume ray-casting algo-

rithms, the cores do not need to communicate with each other, because each core

can process a vector ray independently from the others. The macro-architecture is

depicted in Fig. 4.23.

System Bus

Global MemoryHost
Processor

VLIW-ASIP Core

IS 1 IS 2 IS5IS 3

RF1 RF2 RF3 RF5Local 
Mem

RF4

IS 4

...

VLIW 
Core 2

Local 
Mem

VLIW 
Core N

Local 
Mem

VLIW 
Core 3

Local 
Mem

VLIW 
Core 4

Local 
Mem

...

Figure 4.23: The Multi-core VLIW Macro-Architecture.

4.2.3.1 Instruction set customization

Inside each VLIW-ASIP there are issue-slots (IS), register files (RFs) and a local

memory (64KB), as depicted in Fig. 4.24. The local memory is used to store fre-

quently accessed data. Each issue slot can be designed to implement the datapath

of a given set of operations, organized in function units (FU). For instance, in the

proposed parallel architecture, the function units in issue-slots 1 and 2 implement

the standard operations, i.e. load, store, addition, multiplication, etc. Issue-slot 3

implements the standard set of floating-point operations, whereas issue-slot 4 imple-

ments the special set of floating-point operations that were identified by the proposed

automatic instruction set extension tool. Finally, issue-slot 5 implements the set of

operations related to external issue-slot access, e.g., global memory access. The in-

struction set extensions that were identified by the proposed automatic instruction

set customization tool, during the application profiling, are presented in Appendix

C.

104



VLIW-ASIP Core

IS 1 IS 2 IS5IS 3

RF1 RF2 RF3 RF5Local 
Mem

RF4

IS 4

...

default FUs floating point 
FUs

custom FUs external 
access IS

System 
Bus

Figure 4.24: The MPSoC VLIW-ASIP Core.

4.2.3.2 Experimental Results

The performance results for the parallel ray-tracer application are presented in

Fig. 4.25. As expected, the application benefits from parallelism exploitation: the

speedup is almost linear as more VLIW-ASIPs are included in the parallel compu-

tation of rays, regardless of using instruction set extensions. When the instruction

set extensions are enabled, the speedup goes beyond the expected linear speedup,

pushing forward the VLIW-ASIP efficiency.

1-core 2-core 3-core 4-core 5-core 6-core 7-core 8-core

5

10

15

20

1 2 2
.9

9

4 5 5.
9
8

6
.9

9

7.
99

1.
58 3
.1

6

4.
7
3

6
.3

1

7.
8
9

9
.4

4

1
1.

04

12
.6

2

S
p

ee
d

u
p

No-ISE With-ISE

Figure 4.25: High-resolution ray-tracing speedup in respect to the number of VLIW-
ASIP cores, with and without instruction set extensions.

Compared to most GPU’s currently available in the market (with clocks speeds

above 1GHz) the proposed parallel ray-processing architecture can achieve real-

time performance at lower clock speeds. For instance, running at 200MHz, the

architecture implementation with eight VLIW-Cores would be capable to compute

one frame of the ray-tracer in 0.94 seconds with no specialized instructions and

in 0.59 seconds when using specialized instructions, for a high-resolution scene of

1280 × 800 primary rays (resultant image pixels). Thus, lower resolutions can

105



Ray-Tracing
No-ISE ISE

1-core 1510692221 956876186
2-core 755362781 478449159
3-core 503941094 319195862
4-core 377747331 239268224
5-core 302184012 191404208
6-core 252517885 159944987
7-core 216069914 136861065
8-core 188940612 119678918

Figure 4.26: Produced image together with the cycle-accurate simulation results
(number of cycles).

CI
0

1 · 105

2 · 105

3 · 105

2,26 · 105

A
re

a
(#

n
an

d
ga

te
s) 2-ops

3-ops
4-ops
5-ops

(a) Custom instructions circuit-area (in
number of nand gates) for different
granularities.

CI
0

200

400

600 513,72

S
ta

ti
c

en
er

gy
(p

J
) 2-ops

3-ops
4-ops
5-ops

(b) Custom instructions static en-
ergy consumption (in pJ) for differ-
ent granularities.

Figure 4.27: MPSoC VLIW-ASIP custom instructions circuit-area and energy con-
sumption.

easily achieve interactive frame rates. The cycle-accurate simulation results and the

resultant image are presented in Fig. 4.26.

The custom instructions circuit-area and energy consumption estimation for dif-

ferent granularities, i.e., different sizes of custom instructions, are presented in Fig.

4.27. The circuit-area is given in number of nand gates, while the energy consump-

tion is given in pico-joules (pJ). In total, the ray-tracing custom instructions require

225627 nand gates, with an static energy consumption of 513.72 pJ, approximately.

The proposed multi-core architecture based on a commercially available exten-

sible VLIW-ASIP, augmented with an efficient instruction set customization for

ray-tracing achieves as high as 12× speedup, in comparison to a single-core VLIW

design, respectively. Also, the proposed instruction set extension method and tool

was able to identify and select the most promising operation patterns (sets of basic

operations) throughout performing an application data-flow graph analysis. With

only a few additional application-specific instructions, the ray-tracer execution time

lowered in approximately 36%.

106



Chapter 5

Conclusions and ideas for future

work

The design of an efficient ASIP is a difficult task, which is very dependent on an ad-

equate application analysis in order to identify the main aspects and characteristics

of the application or application domain for which the ASIP is being designed. This

thesis proposed and discussed an efficient automatic instruction set extension tool,

that is able to identify the most promising operation patterns (sets of basic opera-

tions) performing an application data-flow graph analysis at the basic block level.

It focused on the automatic identification of custom instructions at the LLVM-IR

level, using an exact and efficient subgraph isomorphism algorithm based on com-

patibility graphs and clique enumeration. The proposal is novel considering the

graph connectivity and (re)-associativity detection aspects. An experimental anal-

ysis of the custom instructions identified by the proposed automated tool-set was

presented for different custom instruction granularities, with cycle-accurate speedup

results based on a commercially available extensible VLIW-ASIP for several impor-

tant applications, together with area and energy consumption estimation results for

a 65nm TSMC technology, running at 200MHz.

The identified application-specific operation patterns promoted substantial

speedup for a set of well-known benchmark applications. When the custom instruc-

tions are enabled using one augmented issue-slot, the speedup is substantial and

goes up to 25% for the RT application, using the 14 custom instructions that the

tool automatically identified for it. Other applications, such as the CRC, achieved

a speedup of 14% using only one custom instructions automatically identified for it.

Using different configurations of augmented issue-slots to increase ILP, good results

can be produced that involves substantial tradeoffs between area, energy and per-

formance. For some applications, the results suggest that increasing the number of

augmented issue-slots does not improve the application performance, while for oth-

ers, using only a pair of such issue-slots is more than enough to achieve significant

107



speedups. When the custom instructions are enabled using two augmented issue-

slots, the speedup increases to 50% for the RT application, but does not change for

the CRC and EDGE applications.

Replicating issue-slots to exploit ILP requires more circuit-area and imposes

higher energy consumption. Nonetheless, a trade-off between performance, circuit-

area and energy can always be found. It can be noted that the cost of including the

custom instructions into the ASIP datapath regarding the AES application in terms

of circuit-area and energy consumption is not prohibitively high when compared

to that of the RT and VRC applications. Hence, replicating augmented issue-slots

for the AES application in order to achieve higher speedups may seem to be more

feasible in terms of circuit-area and energy consumption than in the case of the RT

and VRC applications.

Regarding the granularity of the custom instructions, it could be noted that the

fine-grain custom instructions contribute the most for the speedup of the applica-

tions, due to the fact that they got mapped more often onto the application data-flow

graph. For instance, for some applications, the fine-grain custom instructions were

mapped tens to hundreds of times more often than the coarse-grain ones. In some

cases, the coarse-grain custom instructions had to mapped manually, because the

VLIW retargetable compiler could not see the opportunities for mapping one or

another coarse-grain custom instruction.

This thesis also discussed the problem of hardware sharing in ASIPs and ac-

celerator synthesis, with focus on datapath merging techniques. Despite various

hardware sharing optimizations that can be performed at earlier synthesis stages

there is usually a substantial hardware sharing potential in the datapath synthesis

stage that is not fully exploited. Besides, it showed that commercially available

synthesis tools can only perform a limited set of hardware sharing optimizations,

as well as circuit speed and energy consumption optimizations. This is an inherent

limitation of the synthesis tools, which are based on several intractable problems

for which there is no polynomial time solution. Therefore, several heuristics, such

as the datapath merging technique, can be employed to find adequate optimization

solutions in a reasonable time.

Finally, efficient ASIP-based multiprocessor systems-on-a-chip with complex in-

structions speedup have been designed for a class of highly demanding multimedia

applications, such as ray-tracing. Such application can benefit from parallel process-

ing and specialized custom instructions to speedup its execution. The RISC-based

MPSoC is capable of achieving up to 5× speedup, while the VLIW-based MPSoC

achieves up to 12× speedup, both with complex instructions enabled and using up

to 8 parallel ASIPs. It was noted that the complex instructions contributed to

lower the ray-tracing execution time by 5% to 36% for the RISC-based and the

108



VLIW-based MPSoCs, respectively. Also, the datapath merging hardware sharing

optimization applied to the complex instructions of the RISC-based MPSoC saved

enough area to enable the inclusion of an additional ASIP with complex instruc-

tions, which demonstrates the importance of hardware sharing in the context of

instruction set extension and ASIPs design.

In the future, the custom instruction identification tool can be extended to in-

clude support for distributivity detection among the identified patterns. Further-

more, the subset of LLVM-IR basic operations that is currently accepted by the

tool can also be extended, possibility including, for instance, branch operations and

load/store operations. Unfortunately, the latter extension would require substantial

modifications of the VLIW-ASIP architecture and compiler, that currently does not

support branch and load/store custom function units.

In the hardware sharing context, exploitation of datapath merging can influence

the area of ASIP and accelerator designs to a very high degree and may result in sub-

stantial area/power/delay tradeoffs. Thus, adequate hardware sharing techniques

involving datapath merging are of high importance for the multi-objective ASIP

and accelerator optimization and adequate tradeoff exploitation. For instance, in

the compatibility graph datapath merging technique, an exploration method should

be devised to enumerate and analyze all the cliques for each compatibility graph

that is produced by each pair of directed acyclic graphs, enabling the selection of

the best merging solution.

109



Bibliography

[1] JÓŹWIAK, L., NEDJAH, N., FIGUEROA, M. “Modern development methods

and tools for embedded reconfigurable systems: A survey”, Integr. VLSI

J., v. 43, pp. 1–33, January 2010. ISSN: 0167-9260.

[2] JÓŹWIAK, L., NEDJAH, N. “Modern Architectures for Embedded Reconfig-

urable Systems - a Survey”, Journal of Circuits, Systems, and Computers,

v. 18, n. 2, pp. 209–254, 2009.

[3] HANIKA, J., KELLER, A. “Towards Hardware Ray Tracing using Fixed Point

Arithmetic”. In: Interactive Ray Tracing, 2007. RT ’07. IEEE Symposium

on, pp. 119 –128, sept. 2007.

[4] CHU, P. P. RTL Hardware Design Using VHDL: Coding for Efficiency, Porta-

bility, and Scalability. Newark, NJ, Wiley-IEEE Press, 2006.

[5] RAYMOND, J. W., WILLETT, P. “Maximum common subgraph isomorphism

algorithms for the matching of chemical structures”, Journal of Computer-

Aided Molecular Design, v. 16, pp. 2002, 2002.

[6] CHENG, J., ZHU, L., KE, Y., et al. “Fast algorithms for maximal clique enumer-

ation with limited memory”. In: Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD

’12, pp. 1240–1248, New York, NY, USA, 2012. ACM.

[7] PATTABIRAMAN, B., PATWARY, M. M. A., GEBREMEDHIN, A. H., et al.

“Fast Algorithms for the Maximum Clique Problem on Massive Sparse

Graphs”, CoRR, v. abs/1209.5818, 2012.

[8] ARNOLD, M., CORPORAAL, H. “Designing domain-specific processors”. In:

Proceedings of the ninth international symposium on Hardware/software

codesign, CODES ’01, pp. 61–66, New York, NY, USA, 2001. ACM.

[9] JÓŹWIAK, L., GAWEOWSKI, D., SLUSARCZYK, A., et al. “Static Power Re-

duction in Nano CMOS Circuits Through an Adequate Circuit Synthesis”.

110



In: Mixed Design of Integrated Circuits and Systems, 2007. MIXDES ’07.

14th International Conference on, pp. 172 –177, june 2007.

[10] NERY, A., JÓŹWIAK, L., LINDWER, M., et al. “Hardware Reuse in Mod-

ern Application-Specific Processors and Accelerators”. In: Digital System

Design (DSD), 2011 14th Euromicro Conference on, pp. 140 –147, 31

2011-sept. 2 2011.

[11] NERY, A., NEDJAH, N., FRANA, F., et al. “A Reconfigurable Ray-Tracing

Multi-Processor SoC with Hardware Replication-Aware Instruction Set

Extension”. In: Ko?odziej, J., Di Martino, B., Talia, D., et al. (Eds.),

Algorithms and Architectures for Parallel Processing, v. 8285, Lecture

Notes in Computer Science, Springer International Publishing, pp. 346–

356, 2013.

[12] NERY, A., NEDJAH, N., FRANCA, F., et al. “Automatic complex instruction

identification for efficient application mapping onto ASIPs”. In: Circuits

and Systems (LASCAS), 2014 IEEE 5th Latin American Symposium on,

pp. 1–4, Feb 2014.

[13] NERY, A., NEDJAH, N., FRANCA, F., et al. “A Framework for Automatic

Custom Instruction Identification on Multi-Issue ASIPs”. In: Industrial

Informatics (INDIN), 12th IEEE International Conference on, pp. 428–

433, June 2014.

[14] GALUZZI, C., BERTELS, K. “The Instruction-Set Extension Problem: A

Survey”, ACM Trans. Reconfigurable Technol. Syst., v. 4, n. 2, pp. 18:1–

18:28, maio 2011. ISSN: 1936-7406.

[15] POZZI, L., ATASU, K., IENNE, P. “Exact and approximate algorithms for

the extension of embedded processor instruction sets”, Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, v. 25,

n. 7, pp. 1209–1229, July 2006.

[16] ARORA, N., CHANDRAMOHAN, K., POTHINENI, N., et al. “Instruction

Selection in ASIP Synthesis Using Functional Matching”. In: VLSI De-

sign, 2010. VLSID ’10. 23rd International Conference on, pp. 146–151,

Jan 2010.

[17] SHUAI LU, Y., SHEN, L., BO HUANG, L., et al. “Customizing computation

accelerators for extensible multi-issue processors with effective optimiza-

tion techniques”. In: Design Automation Conference, 2008. DAC 2008.

45th ACM/IEEE, pp. 197–200, June 2008.

111



[18] BRISK, P., KAPLAN, A., SARRAFZADEH, M. “Area-efficient instruction set

synthesis for reconfigurable system-on-chip designs”. In: Design Automa-

tion Conference, 2004. Proceedings. 41st, pp. 395 –400, july 2004.

[19] ZULUAGA, M., TOPHAM, N. “Resource Sharing in Custom Instruction Set

Extensions”. In: Application Specific Processors, 2008. SASP 2008. Sym-

posium on, pp. 7–13, June 2008.

[20] ZULUAGA, M., TOPHAM, N. “Design-space exploration of resource-sharing

solutions for custom instruction set extensions”, Trans. Comp.-Aided Des.

Integ. Cir. Sys., v. 28, pp. 1788–1801, December 2009. ISSN: 0278-0070.

[21] ZULUAGA, M., TOPHAM, N. “Exploring the unified design-space of custom-

instruction selection and resource sharing”. In: Embedded Computer Sys-

tems (SAMOS), 2010 International Conference on, pp. 282 –291, july

2010.

[22] ATASU, K., POZZI, L., IENNE, P. “Automatic Application-Specific

Instruction-Set Extensions Under Microarchitectural Constraints”, Inter-

national Journal of Parallel Programming, v. 31, n. 6, pp. 411–428, 2003.

ISSN: 0885-7458.

[23] BONZINI, P., POZZI, L. “A Retargetable Framework for Automated Discovery

of Custom Instructions”. In: Application-specific Systems, Architectures

and Processors, 2007. ASAP. IEEE International Conf. on, pp. 334–341,

July 2007.

[24] ATASU, K., MENCER, O., LUK, W., et al. “Fast custom instruction identifica-

tion by convex subgraph enumeration”. In: Application-Specific Systems,

Architectures and Processors, 2008. ASAP 2008. International Confer-

ence on, pp. 1–6, July 2008.

[25] XIAO, C., CASSEAU, E. “Efficient maximal convex custom instruction enu-

meration for extensible processors”. In: Design and Architectures for Sig-

nal and Image Processing (DASIP), 2011 Conference on, pp. 1–7, Nov

2011.

[26] LI, T., SUN, Z., JIGANG, W., et al. “Fast enumeration of maximal valid

subgraphs for custom-instruction identification”. In: Proceedings of the

2009 international conference on Compilers, architecture, and synthesis

for embedded systems, pp. 29–36. ACM, 2009.

112



[27] BONZINI, P., POZZI, L. “Polynomial-time Subgraph Enumeration for Auto-

mated Instruction Set Extension”. In: Proceedings of the Conference on

Design, Automation and Test in Europe, DATE ’07, pp. 1331–1336, San

Jose, CA, USA, 2007. EDA Consortium.

[28] MOREANO, N., BORIN, E., DE SOUZA, C., et al. “Efficient datapath merging

for partially reconfigurable architectures”, Computer-Aided Design of In-

tegrated Circuits and Systems, IEEE Transactions on, v. 24, n. 7, pp. 969

– 980, july 2005.

[29] MOREANO, N. Algoritmos para Alocação de Recursos em Arquiteturas Recon-

figuráveis. Tese de Doutorado, Instituto de Computação – Unicamp, São

Paulo, Brazil, November 2005.

[30] BONZINI, P., POZZI, L. “Recurrence-Aware Instruction Set Selection for Ex-

tensible Embedded Processors”, Very Large Scale Integration (VLSI) Sys-

tems, IEEE Transactions on, v. 16, n. 10, pp. 1259–1267, Oct 2008.

[31] TAN, H., SUN, Y. “Automatic identification of customized instruction based

on multiple attribute decision-making for multi-issue architectures”, Ts-

inghua Science and Technology, v. 16, n. 3, pp. 278–284, June 2011.

[32] WU, I.-W., CHEN, Z.-Y., SHANN, J.-J., et al. “Instruction Set Extension Ex-

ploration in Multiple-issue Architecture”. In: Proceedings of the Confer-

ence on Design, Automation and Test in Europe, DATE ’08, pp. 764–769,

New York, NY, USA, 2008. ACM.

[33] WU, I.-W., SHANN, J. J.-J., HSU, W.-C., et al. “Extended Instruction Ex-

ploration for Multiple-Issue Architectures”, ACM Trans. Embed. Comput.

Syst., v. 13, n. 4, pp. 92:1–92:28, mar. 2014. ISSN: 1539-9087.

[34] JAIN, D., KUMAR, A., POZZI, L., et al. “Automatically Customising

VLIW Architectures with Coarse Grained Application-Specific Functional

Units”. In: Schepers, H. (Ed.), Software and Compilers for Embedded

Systems, v. 3199, Lecture Notes in Computer Science, Springer Berlin

Heidelberg, pp. 17–32, 2004.

[35] NERY, A. S., JÓZWIAK, L., LINDWER, M., et al. “Hardware Reuse in

Modern Application-specific Processors and Accelerators”, Microprocess.

Microsyst., v. 37, n. 6-7, pp. 684–692, ago. 2013. ISSN: 0141-9331.

[36] LIN, H., FEI, Y. “Resource sharing of pipelined custom hardware extension

for energy-efficient application-specific instruction set processor design”.

113



In: Proceedings of the 2009 IEEE international conference on Computer

design, ICCD’09, pp. 158–165, Piscataway, NJ, USA, 2009. IEEE Press.

[37] MOREANO, N., ARAUJO, G., HUANG, Z., et al. “Datapath merging and

interconnection sharing for reconfigurable architectures”. In: System Syn-

thesis, 2002. 15th International Symposium on, pp. 38 –43, oct. 2002.

[38] ZULUAGA, M., KLUTER, T., BRISK, P., et al. “Introducing control-flow

inclusion to support pipelining in custom instruction set extensions”. In:

Application Specific Processors, 2009. SASP ’09. IEEE 7th Symposium

on, pp. 114 –121, july 2009.

[39] BERGROTH, L., HAKONEN, H., RAITA, T. “A survey of longest com-

mon subsequence algorithms”. In: String Processing and Information Re-

trieval, 2000. SPIRE 2000. Proceedings. Seventh International Symposium

on, pp. 39 –48, 2000.

[40] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., et al. “MiBench:

A Free, Commercially Representative Embedded Benchmark Suite”. In:

Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE

International Workshop, WWC ’01, pp. 3–14, Washington, DC, USA,

2001. IEEE Computer Society.

[41] JÓŹWIAK, L., LINDWER, M., CORVINO, R., et al. “ASAM: Automatic

Architecture Synthesis and Application Mapping”. In: DSD 2012 - 15th

Euromicro Conference on Digital System Design, pp. 216–225, Cesme,

Izmir, Turkey, September 2012.

[42] LATTNER, C., ADVE, V. “LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation”. In: Proceedings of the international

symposium on Code generation and optimization: feedback-directed and

runtime optimization, CGO ’04, pp. 75–, Washington, DC, USA, 2004.

IEEE Computer Society.

[43] CSARDI, G., NEPUSZ, T. “The igraph software package for complex network

research”, InterJournal, v. Complex Systems, pp. 1695, 2006.

[44] BONDY, J. A., MURTY, U. Graph Theory With Applications. Oxford, UK,

UK, Elsevier Science Ltd., 1976.

[45] KOCH, I. “Enumerating all connected maximal common subgraphs in two

graphs”, Theoretical Computer Science, v. 250, n. 1, pp. 1–30, 2001.

114



[46] BRON, C., KERBOSCH, J. “Algorithm 457: finding all cliques of an undirected

graph”, Commun. ACM, v. 16, n. 9, pp. 575–577, set. 1973. ISSN: 0001-

0782.

[47] VILLA, O., CHAVARRA-MIR, D., GURUMOORTHI, V., et al. “Effects of

Floating-Point non-Associativity on Numerical Computations on Mas-

sively Multithreaded Systems”. In: Cray User Group Meeting, CUG 2009,

Atlanta, Georgia, May 2009.

[48] KILTS, S. Advanced FPGA Design: Architecture, Implementation, and Opti-

mization. Wiley-IEEE Press, 2007.

[49] XILINX. Xilinx Synthesis Technology: User Guide.

http://www.xilinx.com/itp/xilinx5/pdf/docs/xst/xst.pdf, 2008.

Dispońıvel em: <http://www.xilinx.com/itp/xilinx5/pdf/docs/

xst/xst.pdf>. January, 2009.

[50] HADJIS, S., CANIS, A., ANDERSON, J. H., et al. “Impact of FPGA archi-

tecture on resource sharing in high-level synthesis”. In: Proceedings of

the ACM/SIGDA international symposium on Field Programmable Gate

Arrays, FPGA ’12, pp. 111–114, New York, NY, USA, 2012. ACM.

[51] CANIS, A., CHOI, J., ALDHAM, M., et al. “LegUp: high-level synthesis

for FPGA-based processor/accelerator systems”. In: Proceedings of the

19th ACM/SIGDA international symposium on Field programmable gate

arrays, FPGA ’11, pp. 33–36, New York, NY, USA, 2011. ACM.

[52] COMPTON, K., HAUCK, S. “Automatic Design of Area-Efficient Configurable

ASIC Cores”, IEEE Trans. Comput., v. 56, n. 5, pp. 662–672, maio 2007.

ISSN: 0018-9340.

[53] PEÑALBA, O., MENDÍAS, J. M., HERMIDA, R. “A global approach to

improve conditional hardware reuse in high-level synthesis”, Journal of

Systems Architecture, v. 47, pp. 959–975, June 2002. ISSN: 1383-7621.

[54] ZULUAGA, M., TOPHAM, N. “Exploring the unified design-space of custom-

instruction selection and resource sharing”. In: Embedded Computer Sys-

tems (SAMOS), 2010 International Conference on, pp. 282–291, July

2010.

[55] PEYMANDOUST, A., POZZI, L., IENNE, P., et al. “Automatic instruction

set extension and utilization for embedded processors”. In: Application-

Specific Systems, Architectures, and Processors, 2003. Proceedings. IEEE

International Conference on, pp. 108 – 118, june 2003.

115

http://www.xilinx.com/itp/xilinx5/pdf/docs/xst/xst.pdf
http://www.xilinx.com/itp/xilinx5/pdf/docs/xst/xst.pdf


[56] KOREN, I. Computer arithmetic algorithms. 2a. ed. Upper Saddle River, NJ,

USA, Prentice-Hall, Inc., 2001.

[57] PARHAMI, B. Computer arithmetic: algorithms and hardware designs. Oxford,

UK, Oxford University Press, 2009.

[58] AL-ERYANI, J. Floating Point Unit Core.

http://opencores.org/project,fpu100, 2006. Dispońıvel em:

<http://opencores.org/project,fpu100>. Last access in: Au-

gust 2011.

[59] DICK, R., RHODES, D., WOLF, W. “TGFF: task graphs for free”. In: Hard-

ware/Software Codesign, 1998. (CODES/CASHE ’98) Proceedings of the

Sixth International Workshop on, pp. 97 –101, mar 1998.

[60] NERY, A. S., NEDJAH, N., FRANÇA, F. M. G., et al. “Parallel Process-

ing of Intersections for Ray-tracing in Application-specific Processors and

GPGPUs”, Microprocess. Microsyst., v. 37, n. 6-7, pp. 739–749, ago. 2013.

ISSN: 0141-9331.

[61] NERY, A. S., NEDJAH, N., FRANA, F. M., et al. “Interactive Volume Ren-

dering Based on Ray-Casting for Multi-core Architectures”. In: Dayd,

M., Marques, O., Nakajima, K. (Eds.), High Performance Computing for

Computational Science - VECPAR 2012, v. 7851, Lecture Notes in Com-

puter Science, Springer Berlin Heidelberg, pp. 177–186, 2013.

[62] NERY, A. S., NEDJAH, N., FRANÇA, F. M. G. “A Parallel Architecture

for Ray-Tracing”. In: IEEE Latin-American Symposium on Circuits and

Systems - LASCAS’10, pp. 96–99, Los Alamitos, CA, USA, 2010. IEEE

Computer Society.

[63] NERY, A. S., NEDJAH, N., FRANÇA, F. M. G. “A massively parallel hardware

architecture for ray-tracing”, International Journal of High Performance

Systems Architecture 2009 - Vol. 2, No.1 pp. 26 - 34, pp. 26–34, 2009.

[64] FUJIMOTO, A., TANAKA, T., IWATA, K. “ARTS: accelerated ray-tracing

system”. pp. 148–159, New York, NY, USA, Computer Science Press, Inc.,

1988.

[65] AKENINE-MÖLLER, T., HAINES, E., HOFFMAN, N. Real-Time Rendering.

3rd ed. Natick, MA, USA, A. K. Peters, Ltd., 2008.

116

http://opencores.org/project,fpu100


[66] XILINX. “MicroBlaze Processor Reference Guide”. http://www.xilinx.com/

support/documentation/sw_manuals/mb_ref_guide.pdf, 2008. Last

acess: november, 2009.

[67] XILINX. “Fast Simplex Link v2.11b”. http://www.xilinx.com/support/

documentation/ip_documentation/fsl_v20.pdf, 2009. Last access:

november, 2009.

[68] XILINX. “XPS UARTLite”. http://www.xilinx.com/support/

documentation/ip_documentation/xps_uartlite.pdf, 2009. Last

access: november, 2009.

[69] KIRK, D. B., HWU, W.-M. W. Programming Massively Parallel Processors: A

Hands-on Approach. San Francisco, CA, USA, Morgan Kaufmann Pub-

lishers Inc., 2010.

[70] XILINX. “Floating-Point Operator v5.0”. 2008. Dispońıvel em: <http:

//www.xilinx.com/support/documentation/ip_documentation/

floating_point_ds335.pdf>. Last access: january, 2009.

[71] LABORATORY, S. C. G. “The Stanford 3D Scanning Repository”. http:

//www-graphics.stanford.edu/data/3Dscanrep/, 2009. Last access:

february, 2009.

[72] LACROUTE, P., LEVOY, M. “Fast volume rendering using a shear-warp fac-

torization of the viewing transformation”. In: Proceedings of the 21st an-

nual conference on Computer graphics and interactive techniques, SIG-

GRAPH ’94, pp. 451–458, New York, NY, USA, 1994. ACM.

[73] BHANIRAMKA, P., DEMANGE, Y. “OpenGL volumizer: a toolkit for high

quality volume rendering of large data sets”. In: Proceedings of the 2002

IEEE symposium on Volume visualization and graphics, VVS ’02, pp. 45–

54, Piscataway, NJ, USA, 2002. IEEE Press.

[74] LORENSEN, W., CLINE, H. “Marching cubes: A high resolution 3D surface

construction algorithm”, SIGGRAPH Comput. Graph., v. 21, pp. 163–

169, August 1987. ISSN: 0097-8930.

[75] LEVOY, M. “Efficient ray tracing of volume data”, ACM Trans. Graph., v. 9,

pp. 245–261, July 1990. ISSN: 0730-0301.

[76] WALD, I., FRIEDRICH, H., MARMITT, G., et al. “Faster Isosurface Ray

Tracing Using Implicit KD-Trees”, IEEE Transactions on Visualization

and Computer Graphics, v. 11, n. 5, pp. 562–572, 2005.

117

http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_uartlite.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_uartlite.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www-graphics.stanford.edu/data/3Dscanrep/
http://www-graphics.stanford.edu/data/3Dscanrep/


[77] PFISTER, H., HARDENBERGH, J., KNITTEL, J., et al. “The VolumePro

Real-time Ray-casting System”. In: Proceedings of the 26th Annual Con-

ference on Computer Graphics and Interactive Techniques, SIGGRAPH

’99, pp. 251–260, New York, NY, USA, 1999. ACM Press/Addison-Wesley

Publishing Co. ISBN: 0-201-48560-5.

[78] MENSMANN, J., ROPINSKI, T., HINRICHS, K. H. “An Advanced Volume

Raycasting Technique using GPU Stream Processing”. In: GRAPP: In-

ternational Conference on Computer Graphics Theory and Applications,

pp. 190–198, Angers, 2010. INSTICC Press.

[79] COX, G., SILVA, C., CUPERTINO, L., et al. “Exploring Parallelism in Volume

Ray Casting: Understanding the Programming Issues of Multithreaded

Accelerators”. In: Proceedings of the 2012 International Workshop on

Programming Models and Applications for Multicores and Manycores,

PMAM ’12, pp. 64–73, New York, NY, USA, 2012. ACM. ISBN: 978-

1-4503-1211-0.

[80] XILINX. “LogiCORE IP Multi-Port Memory Controller (MPMC)

v6.03.a”. http://www.xilinx.com/support/documentation/ip_

documentation/mpmc.pdf. Last access: May, 2012.

[81] BARTZ. “Volvis – Volume Library”. http://www.volvis.org/, 2005. Last

access: May, 2012.

[82] LEE, V. W., KIM, C., CHHUGANI, J., et al. “Debunking the 100X GPU

vs. CPU Myth: An Evaluation of Throughput Computing on CPU and

GPU”, SIGARCH Comput. Archit. News, v. 38, n. 3, pp. 451–460, jun.

2010.

[83] KOPTA, D., SHKURKO, K., SPJUT, J., et al. “An energy and band-

width efficient ray tracing architecture”. In: Proceedings of the 5th High-

Performance Graphics Conference, HPG ’13, pp. 121–128, New York, NY,

USA, 2013. ACM.

[84] LEE, W.-J., SHIN, Y., LEE, J., et al. “SGRT: a mobile GPU architecture

for real-time ray tracing”. In: Proceedings of the 5th High-Performance

Graphics Conference, HPG ’13, pp. 109–119, New York, NY, USA, 2013.

ACM.

[85] GRIBBLE, C., FISHER, J., EBY, D., et al. “Ray tracing visualization toolkit”.

In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D

118

http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf
http://www.volvis.org/


Graphics and Games, I3D ’12, pp. 71–78, New York, NY, USA, 2012.

ACM.

119



Appendix A

Library of custom instructions

���

���

(a) xor2

����

���

(b) lshr -
and

���

���

(c) and xor

���

���

���

(d) xor3

���

���

���

(e) shl xor2

���

���

���

(f) and xor2

���

���

���

���

(g) xor4

���

���

���

���

���

(h) c sp1

��� ���

���

���

���

���

(i) b sp2

Figure A.1: AES custom instructions.

120



���

���

(a) add add

���

���

(b) xor xor

���

���

(c) shl add

���

���

���

(d) add add add

������

��

(e) v and or and

��� ����

��

(f) v shl or lshr

��

���

���

���

���

(g) or l add

Figure A.2: SHA custom instructions.

121



���

���

(a) madd

����

���

(b) ashradd

���

���

(c) mmul

���

���

(d) addm

����

���

(e) ashrand

���

���

(f) addsub

���

��

(g) shlor

���

���

���

(h) m m a

���

���

����

(i) madd ashr

���

���

����

���

���

����

���

(j) c7 a

���

���

����

���

���

����

���

(k) c7 s

Figure A.3: JPEG custom instructions.

����

���

(a) ashr and

���

��

(b) shl or

���

���

���

(c) mul add -
add

����

���

���

(d) ashr madd

���

���

���

��

(e) andv shl or and

Figure A.4: MJPEG custom instructions.

122



���

���

(a) xor and

Figure A.5: CRC custom instructions.

������

����

(a) i2fpmul

����

������

(b) fpadd2i

���

������

����

���

������

����

����

(c) i f sma

Figure A.6: EDGE custom instructions.

123



���

���

(a) madd

����

����

(b) fmadd

����

����

(c) fmmul

��������

����

(d) f2mul add

��������

����

(e) f2mul sub

����

����

����

(f) fmma

����

����

����

(g) fmam

����

����

����

����

(h) f3madd

����

����

����

����

(i) fmadd fmsub

��������

����

����

(j) fmsub fmmul

��������

����

����

����

(k) fdot

���� ����

����

����

����

����

(l) fdot add

���� ����

����

����

����

����

(m) fdot mul

�������� ����

����

����

����

����

����

(n) fdot2

Figure A.7: RT custom instructions.

124



���

���

(a) imadd

����

����

(b) fmadd

����

����

(c) fsmul

��������

����

(d) f2muladd

����

����

����

(e) fsubmuladd

���

���

���

(f) immula

��������

����

����

����

(g) fdot

Figure A.8: VRC custom instructions.

125



����

����

(a) fmadd -
small

����

����

(b) fmmul -
small

����

����

(c) fsubm -
small

����

���

(d) lshr xor -
small

���

���

(e) mand -
small

��

���

(f) or and -
small

����

����

����

(g) fmmadd -
small

����

����

����

(h) fsub madd -
small

���

���

���

(i) shl and xor -
small

����

����

����

����

(j) f4add small

��������

����

����

(k) sp4

���� ����

����

����

����

����

(l) fmul3 3add

��� ���

��

����

���

���

(m) c6

Figure A.9: MPSO custom instructions.

126



Appendix B

Library of merged custom

instructions

�� �� �� ��

���

��

���

��

���

��

���

��

���

��

���

��

���

���� �� ��

���

��

���

��

���

��

���

��

���

��

���

���� �� �� �� ���� ���� ��

���

��

���

��

���

��

���

�� �� ���� �� �� ��

�� ���� �� ������ �� ��

���

���

���

���

��� ���

���

���

���

���

���

���

���

���

����

���

���

���

Figure B.1: Merged AES custom instructions.

127



��

���

��

���

��

���

��

���

��

���

��

���

�� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� ���� �� ��

���

��

���

���

���

���

��� ���

��

��� ����

��

���

���

���

���

Figure B.2: Merged SHA custom instructions.

��

���

��

���

��

���

�� �� �� �� ��

���

��

���

��

���

�� �� �� �� ������ �� �� �� ��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

�� �� �� �� �� �� �� �� ������ �������� �� ��

�� �� �� �� �� �� �� �� �� ����

���

���

���

���

���

���

����

���

���

����

����
���

���� ���

����

���

���

��

���

���

����

���

���

���

Figure B.3: Merged JPEG custom instructions.

128



��

���

��

���

��

���

�� ������ ��

���

��

���

��

���

������������ ������

�� �� �� ����

���

����

���

���

��

���

���

���

����

���

Figure B.4: Merged MJPEG custom instructions.

�� �� ��

���

���� �� ��

���

�� �� ��

�� �� ��

�����

���

������

���

������

�����

�����

�����

������

Figure B.5: Merged EDGE custom instructions.

129



��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

�� �� ���� ��

���

��

���

�� �� ��

���

��

���

������ ������

���

��

���

�� �� �� ��

���

�� �� �� ����

���

��

���

�� ������ ���� ������� ��

���

����

���

������

���

��

���

�� ��

���

�������� �� ���� �� �� �� ��

�� �� ���� ���� �� ������ ������ ��

�����

�����

�����

�����

�����

����������

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

����� �����

����� �����

���

�����

����� �����

�����

�����

�����

�����

����������

�����

����� ���

���

Figure B.6: Merged RT custom instructions.

��

���

��

���

��

���

��

���

��

���

��

���

��

���

���� �������� ��

���

��

���

��

���

��

���

��

���

��

���

�� ��������������

���� �� �� ������

�����

�����

�����

����� �����

���

���

���

�����

�����

�����

Figure B.7: Merged VRC custom instructions.

��

���

��

���

��

���

��

���

��

���

��

���

��

���

���� ������ ��

���

��

���

��

���

��

���

��

���

��

���

�� �� �� ���� ���� ���� ������ ���� �� ���� �� �������� ��

���

��

���

��

���

�������� �� �� �� �� �� �� ��

�� ���� �� �� ������ �� ���� �� ��

�����

����

�����

�����

�����

���

�����

�����

�����

����������

�����

�����

���

���

���

������

��

���

���������� ����� �����

�����

����� ��

���

���

���

Figure B.8: Merged MPSO custom instructions.

130



Appendix C

MPSoC custom instructions

���

���

(a) imadd

���

���

(b) iamul

���

���

(c) immul

����

����

(d) fmadd

����

����

(e) fmmul

����

����

(f) faddadd

����

����

(g) fmsub

����

����

(h) faddsub

����

����

(i) faddmul

����

����

(j) fsubsub

���� ����

����

(k) f2mul add

���� ����

����

(l) f2mul sub

���� ����

����

(m) famuladd

���� ����

����

����

(n) f2mul 2add

���� ����

����

����

(o) fmadd madd

131



���� ����

����

����

(p) fmadd msub

���� ����

����

����

(q) fmsub mmul

����

����

����

����

(r) f3mul add

���

���

���

���

(s) imadd madd

��������

����

����

����

(t) fdot

Figure C.1: MPSoC-RT custom instructions.

132



Appendix D

List of publications

D.1 Journal Articles

1. NERY, A. S., JÓŹWIAK, L., LINDWER, M., et al. “Hardware Reuse in Modern

Application-specific Processors and Accelerators”, Microprocessors and Microsystems, v.

37, n. 6–7, pp. 684–692, ago. 2013.

2. NERY, A. S., NEDJAH, N., FRANÇA, F. M. G., et al. “Parallel Processing of Intersec-

tions for Ray-tracing in Application-specific Processors and GPGPUs”, Microprocessors and

Microsystems, v. 37, n. 6-7, pp. 739–749, ago. 2013.

3. NERY, A., NEDJAH, N., FRANÇA, F.M.G. “An efficient parallel architecture for ray-

tracing”. Analog Integrated Circuits and Signal Processing, v. 69, p. 1–14, 2012.

4. NERY, A. S., NEDJAH, N., FRANÇA, F. M. G. “Efficient hardware implementation of Ray

Tracing based on an embedded software for intersection computation”. Journal of Systems

Architecture, v. i, p. 1–10, 2011.

D.2 In Conference Proceedings

1. NERY, A., NEDJAH, N., FRANÇA, F., et al. “A Framework for Automatic Custom

Instruction Identification on Multi-Issue ASIPs”. In: Industrial Informatics (INDIN), 12th

IEEE International Conference on, pp. 428–433, June 2014.

2. NERY, A., NEDJAH, N., FRANÇA, F., et al. “Automatic complex instruction identifica-

tion for efficient application mapping onto ASIPs”. In: Circuits and Systems (LASCAS),

2014 IEEE 5th Latin American Symposium on, pp. 1–4, Feb 2014.

3. NERY, A., NEDJAH, N., FRANÇA, F., JÓŹWIAK, L. “Interactive Volume Rendering

Based on Ray-Casting for Multi-core Architectures”. In: Dayd, M., Marques, O., Nakajima,

K. (Eds.), High Performance Computing for Computational Science - VECPAR 2012, v.

7851, Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 177–186, 2013.

4. NERY, A., NEDJAH, N., FRANÇA, F., et al. “A Reconfigurable Ray-Tracing Multi-

Processor SoC with Hardware Replication-Aware Instruction Set Extension”. In: Kolodziej,

J., Di Martino, B., Talia, D., et al. (Eds.), Algorithms and Architectures for Parallel

133



Processing, v. 8285, Lecture Notes in Computer Science, Springer International Publishing,

pp. 346–356, 2013.

5. NERY, A., NEDJAH, N., FRANÇA, JÓŹWIAK, L. “Massively Parallel Identification of

Intersection Points for GPGPU Ray Tracing”. In: International Conference on Algorithms

and Architectures for Parallel Processing, 2011, Melbourne. ICA3PP 2011 Workshops.

Verlag Berlin Heidelberg: Springer, 2011. v. 2. p. 14–23.

6. NERY, A. S., NEDJAH, N., FRANÇA, F. M. G. “A Parallel Architecture for Ray-Tracing

with an Embedded Intersection Algorithm”. In: International Symposium on Circuits and

Systems, 2011, Rio de Janeiro. Proceedings of ISCAS 2011. Los Alamitos: IEEE Computer

Society Press, 2011. p. 1491–1494.

7. NERY, A., NEDJAH, N., FRANÇA, JÓŹWIAK, L. “A Parallel Ray Tracing Architecture

Suitable for Application-Specific Hardware and GPGPU Implementations”. In: Euromicro

Conference on Digital System Design (DSD 2011), 2011, Oulu. Euromicro Conference on

Digital System Design (DSD 2011). Los Alamitos, CA.: IEEE Press, 2011. v. 1.

8. NERY, A., JÓŹWIAK, L., LINDWER, M., et al. “Hardware Reuse in Modern Application-

Specific Processors and Accelerators”. In: Digital System Design (DSD 2011), 2011 14th

Euromicro Conference on, pp. 140–147, 31 2011-sept. 2 2011.

134


	List of Figures
	List of Tables
	Introduction
	Complex instruction identification & Hardware sharing
	Extensible ASIPs: Xilinx MicroBlaze
	Extensible ASIPs: VLIW-ASIP

	Related work on complex instruction identification
	Related work on hardware sharing
	Benchmark applications
	Contributions
	Thesis outline

	Instruction Customization Framework
	Application profiling
	Custom instruction identification
	CI pattern identification
	Mapping of common edges
	Compatibility graph
	Connectivity graph
	Intersection

	Commutativity and associativity
	The algorithm

	ASIP implementation
	Instruction set customization
	Characterizing circuit area and energy
	Custom instructions time-shape

	Experimental results
	Experimental setup
	Commutative and associative analysis
	Performance, area and energy estimation results
	Fine-grain vs. coarse-grain analysis
	Comparison results


	Hardware Sharing
	RTL compiler hardware sharing
	Automatic resource sharing
	Manual resource sharing
	Experimental results on automatic resource sharing
	Experimental results on manual resource sharing
	Structural RTL description
	Conditional case statements
	Conditional if statements
	Cascaded conditional if statements
	Floating-point adder

	Results overview

	Proposed hardware sharing framework extension
	Compatibility graph hardware sharing
	Experimental results on pseudorandom graphs
	Experimental results on custom instructions


	Efficient MPSoC with complex instructions speedup
	Custom parallel architectures and accelerators
	The GridRT macro-architecture
	GridRT with ASIP
	GridRT in GPU
	Experimental results
	Results overview

	Parallel volume ray-casting MPSoC
	Parallel volume ray-casting in CMP
	Parallel volume ray-casting in GPU
	Parallel volume ray-casting in MPSoC
	Results overview


	ASIP-based Multi-Processor System-on-a-Chip
	Parallel ray-tracing in MPSoC
	RISC-based MPSoC
	Instruction set customization
	Results of ISE without Hardware Sharing
	Results of ISE with Hardware Sharing

	VLIW-based MPSoC
	Instruction set customization
	Experimental Results



	Conclusions and ideas for future work
	Bibliography
	Library of custom instructions
	Library of merged custom instructions
	MPSoC custom instructions
	List of publications
	Journal Articles
	In Conference Proceedings


