Parallel Conventional Systems versus Parallel Logic
Programming Systems on Distributed Shared Memory
Architectures *

Vanusa Menditi Calegario
Inés de Castro Dutra

Department of Systems Engineering and Computer Science
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil
e-mail: {vanusa,ines} @cos.ufrj.br

Abstract

Distributed shared memory architectures have been object of research by many computer science groups.
Research goes broadly from hardware based coherence protocols to DSM software protocols on networks of work-
stations passing through high technology interconnection networks that reduce network latency. In this work
we thoroughly investigate how different hardware cache coherence protocols affect performance of parallel logic
programming systems and compare to results obtained for parallel conventional systems.

We use execution-driven simulation of a hardware DSM (DASH) to investigate the access patterns and
caching behaviour exhibited by parallel C programs and by Aurora, a parallel logic programming system capable
of exploiting implicit parallelism in Prolog programs. Aurora was written originally to run on bus-based shared
memory platforms.

The simulator allows us to vary several machine settings such as cache blocksize, cache size, network path
width, write buffer depth as well as allows us to test different cache coherence protocols. Our work concentrates on
the study of Prolog and parallel C programs under different cache coherence protocols regarding basic performance,
scalability, and programmability.

Our results indicate that cache coherence protocols do not significantly affect regular applications while
irregular ones can benefit from hybrid or invalidate protocols. Our results also show that parallel logic program-
ming systems written for shared memory machines can achieve good scalability on modern architectures, but at
the cost of high time and space complexity when compared to conventional C programs. Results also indicate that
optimisations such as improvements on the abstract engine and scheduling can make parallel logic programming
systems competitive and more attractive than parallel C systems for some applications, specially if we consider
that parallel logic programming systems exploit implicit parallelism.

Keywords: logic programming, conventional programming, parallelism, DSM architectures, performance evalu-
ation

1 Introduction

Distributed shared memory architectures have been object of research by many computer science groups.
Research goes broadly from hardware based coherence protocols to DSM software protocols on networks
of workstations passing through high technology interconnection networks that reduce network latency. In
this work we thoroughly investigate how different hardware cache coherence protocols affect performance
of parallel logic programming systems and compare to results obtained for parallel conventional systems.

We use execution-driven simulation of a hardware DSM (DASH [16]) to investigate the access
patterns and caching behaviour exhibited by parallel C programs and by Aurora [17], a parallel logic
programming system capable of exploiting implicit parallelism in Prolog programs. Aurora was written
originally to run on bus-based shared memory platforms.

The simulator allows us to vary several machine settings such as cache blocksize, cache size, network
path width, write buffer depth as well as allows us to test different cache coherence protocols. Our work
concentrates on the study of Prolog and parallel C programs under different cache coherence protocols
regarding basic performance, scalability, and programmability.

Our results indicate that cache coherence protocols do not significantly affect regular applications
while irregular ones can benefit from hybrid or invalidate protocols. Our results also show that parallel
logic programming systems written for shared memory machines can achieve good scalability on modern

*Research supported by CNPq and Capes, Brazilian Research Councils

architectures, but at the cost of high time and space complexity when compared to conventional C pro-
grams. However, results also indicate that optimisations such as improvements on the abstract engine and
scheduling can make parallel logic programming systems competitive and more attractive than parallel
C systems for some applications, specially if we consider that parallel logic programming systems exploit
implicit parallelism.

Our work contrasts with previous studies of the performance of coherence protocols for parallel
logic programming systems. Tick and Hermenegildo [29] studied caching behaviour of independent and-
parallelism in bus-based multiprocessors. Other researchers have studied the performance of parallel logic
programming systems on scalable architectures, such as the DDM [20], but did not evaluate the impact of
different coherence protocols. Also they did not tackle the differences between parallel logic programming
systems and parallel C systems.

Recent work has tackled the problem of whether logic programming systems can obtain good
performance on scalable architectures with a particular machine setting [22, 21, 24], but without any
comparison with parallel C systems. Silva et al tackled the problem of how architectural parameters can
affect the performance of parallel logic programming systems [25].

Another similar work we can mention is the Aquarius Prolog Compiler, that compares sequential
Prolog with sequential C performance. A comparison with C was done using four programs: tak, fibonacci,
hanoi and quicksort [30]. Other related work on comparison of sequential C and Prolog systems was done
on the evaluation of different Prolog implementation techniques [6].

Regarding programmability and performance comparison between systems that exploit implicit
and explicit parallelism, a related work evaluates parallelism on shared memory architectures using Sisal,
a functional language with implicit parallelism, SR, an imperative language with explicit parallelism and
C. Five scientific applications were programmed in each language and evaluated for performance and
programmability. The author basically concludes that implicit parallelism is better if the compiler creates
an efficient program, whereas, explicit parallelism is better when there is a considerable improvement on
performance. When the performance is similar, the ease of programming favours implicit parallelism [9].

Our work differs from this in that we evaluate our benchmark set on distributed shared memory
architectures and evaluate also symbolic applications instead of only scientific ones.

The paper is organised as follows. Section 2 introduces concepts of parallel logic programming
systems and briefly discusses implicit and explicit parallelism. In section 3 we describe our work method-
ology. Section 4 describes the applications and algorithms used and results obtained. Finally, section 5
concludes this work and draws our next steps.

2 Implicit parallelism x Explicit Parallelism

Two main sources of implicit parallelism can be exploited in logic programming: (1) and-parallelism (at
goal level) and (2) or-parallelism (at clause level). Parallel logic programming systems can exploit one or
both forms of parallelism [17, 35, 11].

Each kind of parallelism has its own advantages and disadvantages, but we have chosen to focus on
OR-parallelism as a first step for a number of reasons. From our perspective, the wide range of potential
applications and the very slight execution overhead have been the main reasons. See [17] for a fuller
discussion about the advantages of OR-parallelism in the context of the Aurora system.

Because of its declarative nature, a Prolog-like program can be parallelised without any change to
the Prolog source code. Logic programming runtime systems are responsible for managing and controlling
the parallelism. This approach has significant advantages when compared to explicit parallelism because
the Prolog programmer does not need to worry about issues as synchronisation, communication and
scheduling. Therefore the exploitation of implicit parallelism allows portability.

Some applications have very irregular computational patterns that make them hard to run effi-
ciently on parallel machines. If they are written in C, aspects such as dynamic load balancing need to
be taken into account while in parallel logic programming systems that exploit implicit parallelism this
is accomplished by the runtime system.

3 Methodology

In this section we detail the methodology used in our experiments. The experiments consisted of the
simulation of the parallel execution of Aurora and C programs, compiled for the MIPS architecture.

3.1 Aurora

Aurora is an or-parallel implementation of the full Prolog language for shared memory multiprocessors
that uses the SRI model [34] to represent different bindings of the same logical variable corresponding
to different branches of the search space. In the SRI model, a group of workers (processing elements)
cooperate to explore a Prolog search tree, starting at the root (the topmost point). The tree is defined
implicitly by the program, and needs to be constructed explicitly (and eventually discarded) during the
course of the exploration. The first worker to enter a branch constructs it, and the last worker to leave a
branch discards it. The actions of constructing and discarding branches are considered to be real work,
and corresponds to ordinary resolution and backtracking in Prolog. When a worker has finished one
continuous piece of work, called a task, it moves over the tree to take up another task. Workers try to
maximise the time they spend working and minimise the time they spend scheduling. In order to share
or-parallel work, Aurora protects the nodes (choicepoints) with locks avoiding that several workers steal
the same piece of work.

The scheduler used in our experiments is the Bristol scheduler. Several strategies have been used
by the Bristol or-scheduler, but our results use the version that employs the leftmost and richest worker
selection [3]. In this strategy busy workers every so often voluntarily suspend seeking for less speculative
work in the leftmost part of the tree. Speculative work corresponds to work that may be pruned later
because of the execution of a Prolog pruning operator by a processor in another branch. Idle workers
seek for work from the richest workers and take work from the bottom most part of the tree to maintain
locality. It uses pruning operators counters and scope [12] to figure out which work is speculative and
which is not [4]. The main algorithm of the Bristol scheduler follows the basic algorithm mentioned
before, where workers always give preference to mandatory work, and are always seeking for better work
if they are working in any speculative work.

3.2 Multiprocessor Simulation

We use a detailed on-line, execution-driven simulator that simulates a 32-node, DASH-like [16], directly-
connected multiprocessor. Each node of the simulated machine contains a single processor, a write buffer,
a direct-mapped data cache, local memory, a full-map directory, and a network interface. The simulator
was developed at the University of Rochester and uses the MINT front-end, developed by Veenstra and
Fowler [31], to simulate the MIPS architecture, and a back-end, developed by Bianchini and Veenstra [5],
to simulate the memory and inter-connection systems.

In our simulated machine, each processor has a 64-KB direct-mapped data cache with 64-byte
cache blocks. All instructions and read hits are assumed to take 1 cycle. Read misses stall the processor
until the read request is satisfied. Writes go into a write buffer and take 1 cycle, unless the write buffer
is full, in which case the processor stalls until an entry becomes free. Reads are allowed to bypass writes
that are queued in the write buffers. Shared data are interleaved across the memories at the block level.

A memory bus clocked at half of the speed of the processor connects the main components of each
machine node. A new bus operation can start every 34 processor cycles. A memory module can provide
the first word of a cache line 20 processor cycles after the request is issued. The other words are delivered
at 2 cycles/word bandwidth.

The interconnection network is a bi-directional wormhole-routed mesh, with dimension-ordered
routing. The network clock speed is the same as the processor clock speed. Switch nodes introduce a
4-cycle delay to the header of each message. Network paths are 16-bit wide, which matches the memory
bandwidth. In these networks contention for links and buffers is captured at the source and destination
of messages.

All hardware characteristics mentioned above are common in actual modern parallel architectures.

In order to keep caches coherent we used write-invalidate (WI) [10], write-update (WU) [19] and
dynamic hybrid [14] protocols. In the WI protocol, whenever a processor writes a data item, copies of
the cache block containing the item in other processors’ caches are invalidated. If one of the invalidated
processors later requires the same item, it will have to fetch it from the writer’s cache. Our WI protocol
keeps caches coherent using the DASH protocol with release consistency [15].

WU protocols are the main alternative to invalidate-based protocols. In WU protocols, whenever
an item 1s written, the writer sends copies of the new value to the other processors that share the item.
In our WU implementation, a processor writes through its cache to the home node. The home node sends
updates to the other processors sharing the cache block, and a message to the writing processor containing
the number of acknowledgements to expect. Sharing processors update their caches and send an acknowl-

edgement to the writing processor. The writing processor only stalls waiting for acknowledgements at a
lock release point.

Our WU protocol implementation includes two optimisations. First, when the home node receives
an update for a block that is only cached by the updating processor, the acknowledgement of the update
instructs the processor to retain future updates since the data is effectively private. Second, when a
parallel process is created by fork, we flush the cache of the parent’s processor, which eliminates useless
updates of data initialised by the parent but not subsequently needed by it.

In order to reduce the number of update messages of the WU protocol, we experimented with a
dynamic hybrid protocol [14] based on the coherence protocols of the bus-based multiprocessors using
the DEC Alpha AXP21064 [28]. In these multiprocessors, each node makes a local decision to invalidate
or update a cache block when it sees an update transaction on the bus. We associate a counter with each
cache block and invalidate the block when the counter reaches the threshold. References to a cache block
reset the counter to zero. We used counters with thresholds of 1 (Hybl) and 2 (Hyb2) updates.

In our simulated results, for each application, parallel performance is directly related to cache
read miss rates and network traffic caused by each change in number of processors and cache coherence
protocols.

For WI, within a column, misses are classified as:

e Cold start misses. A cold start miss happens on the first reference to a block by a processor.

e True sharing misses. A true sharing miss happens when a processor references a word belonging
in a block it had previously cached but has been invalidated, due to a write by some other processor
to the same word.

e False sharing misses. A false sharing miss occurs in roughly the same circumstances as a true
sharing miss, except that the word written by the other processor is not the same as the word
missed on.

e Eviction misses. An eviction (replacement) miss happens when a processor replaces one of its
cache blocks with another one mapping to the same cache line and later needs to reload the block
replaced.

This classification uses the algorithm described in [8], as extended in [5]. Note that the WU
protocol does not have sharing misses.

The hybrid protocol includes an extra class for the miss categorisation, drop misses, to account
for cache misses resulting from excessively eager self-invalidations.

We classify updates as either useful (also known as true sharing updates), which are needed for
correct execution of the program, or useless. The former category is used when the receiving processor
references the word modified by the update message before another update message to the same word is
received. The latter category of updates includes:

e False sharing updates. The receiving processor does not reference the word modified by the
update message before it is overwritten by a subsequent update, but references some other word in
the same cache block.

e Proliferation updates. The receiving processor does not reference the word modified by the
update message before it is overwritten, and it does not reference any other word in that cache

block either.

e Replacement updates. The receiving processor does not reference the updated word until the
block is replaced in its cache.

e Termination updates. A termination update is a proliferation update happening at the end of
the program.

This classification uses the algorithm described in [5]. The categorisation is fairly straightforward,
except for the false update class. Successive (useless) updates to the same word in a block are classified
as proliferation instead of false sharing updates, if the receiving processor is not concurrently accessing
other words in the block. Thus, the algorithm classifies useless updates as proliferation updates, unless
active false sharing is detected or the application terminates execution.

The categorisation of updates for the hybrid protocol includes an additional category, drop updates,
to account for the updates that cause blocks to be invalidated.

3.3 The Parallel Environment

In order to use Aurora with the simulator we needed to port the system to the MIPS architecture.
We used the FSF’s gcc 2.7.2 C compiler and binutils-2.6 assembler and linker under a Solaris 2.4
environment as cross development tools for this purpose.

We also cross-compiled our parallel C programs for the MIPS architecture using the same tools.

We use the IRIX 4.0 support for shared memory and synchronisation implemented at the simulator
level. The simulator has an optimisation when implementing spinlocks. When a process tries to grab a
lock, if it fails, the simulator blocks the process till the lock is released by another processor [32].

The Aurora and the C programs were compiled with the -02 option.

4 Applications and Results

We concentrated our studies on some applications commonly used as benchmarks for Prolog or C systems.
Due to lack of space we evaluated only four applications. These four applications are simple, easy to
understand and to write the same algorithm in C and Prolog. Moreover, the Prolog applications were
chosen to have or-parallelism, because Aurora only exploits or-parallelism. A complete benchmark set
can be found elsewhere [6]. We tried to write the same sequential algorithm in each language in order
to obtain a more accurate comparison. Both C and Prolog algorithms always give the same answer. It
is important to notice that all C programs needed to be parallelised in order to run in several processors
while the Prolog applications were not modified. The Prolog and C source codes for the programs can
be found at http://www.cos.ufrj.br/~vanusa/benchs.html.

4.1 Applications and Algorithms

Matrix Multiplication This is a typical scientific application that computes C = A x B, where A, B
and C are matrices and A and B are two input matrices that have the same shape and contents. The
C program was taken from the Splash benchmark [26]. We ran the programs for a 150x150 matrix size.
The matrices are represented in Prolog through database facts. The C parallel version of this program
considers matrix A to be private and matrices B and C to be shared. The algorithm tries to evenly
allocate chunks of the matrix A among the processors, in order that each computes the same amount of
work when possible.

N-Queens Problem The N-queens problem is a classical combinatorial problem in the artificial intel-
ligence area. The problem is to place N queens on an N x N chessboard so that no two queens attack each
other. That is, no two queens are allowed to be placed on the same row, the same column, or the same
diagonal. This problem is commonly used as a benchmark for algorithms that solve constraint satisfaction
problems (CSP) [18]. It has found many useful, practical scientific and engineering applications including
2-dimensional VLSI routing and testing, maximum full range communication, traffic control and parallel
optical computing [27].

The algorithms used in Prolog and in C generates all solutions. Both programs implement the
same algorithm that tries to place each queen on the board at a time checking if the current placement
threatens the previous ones. The Prolog program was taken from the Aurora benchmark. The C program
was written by ourselves. We ran the programs for a 10x10 board size.

This problem is well known to generate exponential growth of the search space. Usually, such
problems can run with larger input data when parallelised. However this problem is very difficult to
parallelise using a procedural approach. Our C program was parallelised by attaching to each processor
one top square of the board. Thus limiting the maximum number of processors to have some work to
do by N (board size). For example, in a 4x4 board, using 4 processors, processor 0 would compute the
solution with a queen fixed at position (0,0), processor 1 would compute the solution with a queen fixed at
position (1,0), processor 2 would compute the solution with a queen fixed at position (2,0), and processor
3 would compute the solution with a queen fixed at position (3,0). Obviously, this solution produces a
lot of load imbalance.

Once more, our Prolog program was not modified to run in parallel.

A Database Example This is a simple database program that represents family and employment
relations. A group of 32 queries was used as input. The C program searches the database sequentially

and iteratively. Both programs were written by graduate students and adapted to our purposes. The
database has two thousand records.
We parallelised the C program in a simple way by allocating each query to each processor.

Traveling Salesperson Problem The traveling salesperson problem is a very popular optimisation
problem that consists of visiting all nodes in a graph at most once in order to find a path with minimum
cost. The C program represents the partial tours as a fibonacci heap data structure to improve perfor-
mance. It uses a branch and bound method based on the A* search algorithm. The Prolog program uses
the same algorithm, but represents the graph as a set of facts. Besides this, the Prolog program generates
the paths through intelligent permutation of the nodes in the graph. The C program was taken from
the Splash benchmark [26]. The Prolog version was developed by ourselves. We used a 8-node graph as
input (a 16-node graph runs for days on a Ultral sparc machine on the simulator!).

4.2 Simulated Results

4.2.1 Sequential Times
|| Application || Invalidate Update Hybrid 1 Hybrid 2 || p/C ||
Matrix 150 P 1365311633 | 1365311633 | 1365311633 | 1365311633
Matrix 150 C 60522671 60522671 60522671 60522671 22.56
Queens 10 P 921882260 921882260 921882260 921882260
Queens 10 C 21829989 21829989 21829989 21829989 42.23
TSP 8 P 6327860 6327860 6327860 6327860
TSP 8 C 444210 444210 444210 444210 14.25
Database P 264341308 264341308 264341308 264341308
Database C 5627418 5627418 5627418 5627418 46.97

Table 1: SIMULATED RESULTS - AURORA AND C ELAPSED SIMULATED CYCLES - 1 PROCESSOR

Table 1 shows the sequential execution times for the C and Aurora Prolog versions of the programs
for the four protocols. Times are given in number of simulated cycles. C programs are followed by the
"C’ letter and Prolog programs are followed by the "P’ letter. The column P/C shows the ratio between
Aurora and C execution times. We can observe that the C programs run from 14 to 47 times faster than
Aurora.

Aurora is around 7 times slower than one of the best sequential Prolog implementations known,
SICStus 3.0 [7] (Aurora is based on SICStus 0.6). It also does not generate native code, which slows it
down by a factor of three [6]. Therefore if we consider Aurora using a faster engine, we could predict an
improvement of around 20 times in speed.

As expected, in a one processor simulation, the execution times are not affected by different
protocols.

These sequential results show that Aurora needs several optimisations in order to be competitive
with conventional C systems. The issues of optimisation will be discussed later. We will see in the next
section that the inefficiency of the system is counterbalanced by the implicit parallelism exploited from
sequential Prolog programs.

4.2.2 Scalability

In this section we show results for Aurora and parallel C running the four applications with 2, 4, 8, 16,
24 and 32 processors using four different cache coherence protocols.

Figures 1, 5, 9, 11 show speedup graphs respectively for the matrix, queens, tsp and database
applications. Notice that base times to compute speedups are different for C and Aurora. Graphs were
built in order to show how Aurora and C individually manage to efficiently exploit all parallelism available
in the applications.

Matrix Multiplication The matrix multiplication program written in Prolog has or-parallelism that
stems from choicepoints created for the calculation of each element of matrix C. An outline of the search

Matrix 150x150 Matrix 150x150

Invalidate Update

c —c
270 ——- Prolog 270 ——- Prolog

Speedups
P
&

°
Speedups
P
&

°

o 4 8 12 16 20 24 28 32 o 4 8 12 16 20 24 28 32
Number of processors Number of processors

Matrix 150x150 Matrix 150x150
Hybrid 1 Hybrid 2
30.0 30.0
—C —C

Speedups
P
&

°
Speedups
P
&

°

o 4 8 12 16 20 24 28 32 o 4 8 12 16 20 24 28 32
Number of processors Number of processors

Figure 1: MATRIX SPEEDUPS, FOUR PROTOCOLS

space is shown in figure 2. A choicepoint with 150 alternatives is created at the root node of the tree
and on each of these 150 branches (each line of the matrix C) a choicepoint of size 150 is created. This
parallelism is implicitly and efficiently exploited by Aurora which makes the system achieve slightly better
speedups than parallel C up to 24 processors as can be observed in figure 1.

As we increase the number of processors the system does not scale up. When we observe the
execution in more detail, we find out that some processors in the 32-processor simulation stay blocked
much longer than the 24-processor simulation. This indicates that there is contention to access a lock with
processors trying to grab work always from the same worker. This also indicates that the or-scheduler
version we use for Aurora is not scalable due to the way workers try to fetch work from other workers. In
contrast, the C parallel program scales well up due to the static load distribution of the matrices among
the processors.

150 nodes

Figure 2: SEARCH SPACE FOR MATRIX 150, IN AURORA

For this application, the speedups were not affected by the cache coherence protocols. This is
mainly because of the regular nature of this kind of problem.

It is interesting to notice that while the parallel C program has a high miss rate with a smaller total
of references to shared memory (~6M for one processor), Aurora with a much larger total of references
(~142M for one processor) has a very low miss rate running this application. This is shown in figure 3.
This indicates that Aurora running the matrix application has better locality than C. This is mainly
due to the design of the abstract machine used for Aurora that is based on the WAM [33, 1] and it is
optimised for locality. However, although this can be considered an advantage, it pays off because the
high level of the abstract machine requires many more references to execute the emulated code. While
C MIPS code is directly executed by the simulator, the matrix program is emulated by Aurora that is
executed by the simulator. We pay for having a high level language.

Most of the C misses come from evictions misses. This happens because of the memory organisation

(one-way associative) and cache size (64Kbytes) that does not fit one entire matrix.
Once more, we can observe that the miss rates were not affected by any protocol.

Matrix 150x150 Matrix 150x150
Cold Invalidate Update
30 Eviction 30
True [Cold

27 False 27 Eviction

24 24

21 21
g e g8
Kl Kl
g 15 g 15
8 8
s 12 s 12

09 09

06 06

03 03

0.0 0.0

1 2 a4 8 16 24 32 1 2 a4 8 16 24 32
Number of processors Number of processors
Matrix 150x150 Matrix 150x150
Hybrid 1 Hybrid 2
. . -
Eviction

2.7 27 Drop

24 24

21 21
g8 gis
Kl Kl
g 15 g 15
8 8
S 12 S 12

09 09

06 06

03 03

0.0 0.0

1 2 4 8 16 24 32 1 2 a4 8 16 24 32
Number of processors Number of processors

Figure 3: MATRIX MISS RATES, FOUR PROTOCOLS, C (LEFT) AND AURORA (RIGHT)

Matrix 150x150 Matrix 150x150
Invalidate Update
1400 = =
equest 200.0 equest
1300 Coherence| Coherence|
1200 Data 180.0 Data
100 160.0
1000
3 w00 3 140.0
£ 800 £ 1200
5 5
e = 1000
H oo & 0
2 s00 g
40.0 60.0
300 400
200
100 200
0.0 0.0
2 4 8 16 24 32 2 4 8 16 24 32
Number of processors Number of processors
Matrix 150x150 Matrix 150x150
Hybrid 1 Hybrid 2
200.0 Request 200.0 Request

Coherence| Coherence|
180.0 Data 180.0 Data

1600 1600
140.0 140.0

120.0 120.0

MBytes Transferred
5]
3
s

MBytes Transferred
8
8
s

80.0 80.0

60.0 60.0

40.0 400

200 200

0.0 0.0
2 4 8 16 24 32 2 4 8 16 24 32

Number of processors Number of processors

Figure 4: MATRIX NETWORK TRAFFIC, FOUR PROTOCOLS, C (LEFT) AND AURORA (RIGHT)

Contrasting with the very low miss rates obtained for the matrix application, the network traffic
for Aurora is much larger than for the parallel C matrix program. This can be observed in figure 4.
This high network traffic for Aurora is easily explained by the high number of references to shared
memory. As expected, the WI protocol generates less traffic than the WU protocol for the C and Aurora
programs. The hybrid protocols contributed very little to an improvement in the WU performance. As
this application is very regular, a change in protocol is not noticed.

The majority of network messages for WI are for data being exchanged while WU, Hybl and
Hyb2 exhibits a much higher rate of coherence messages for Aurora when compared with the C network
messages, but this is again due to the total references made by Aurora. It is interesting to note that the
network traffic for Aurora grows slower as we increase the number of processors. This is observed for all
protocols. The reason is that Aurora with few processors may create the rightmost choicepoints below
the root tree later than when we use a larger number of processors. This makes the few workers compete
for the same node to find work. Once we increase the number of processors, and the first leftmost
choicepoint is exhausted, idle workers have chance to get work from the root node or from different
choicepoints created by other processors at level 2. Therefore each worker that starts one alternative at
the root node or at a choicepoint at level 2 can work independently on its own task without interfering
with each other to steal work.

10-Queens 10-Queens
Invalidate Update
300 300
T —c
270 ——- Prolog e 27.0 ——- Prolog
,
240 e 240
,
2
21.0 e 21.0
-
2
180 e 180
3 150 e g 150
g 2 8
& 4 &
12.0 yd 12.0
.
%
9.0 / 9.0 P
) . T
6.0 % 6.0 e
/// e
30 //\—’\ 30 //\
0.0 0.0
o 4 8 12 16 20 24 28 32 o 4 8 12 16 20 24 28 32
Number of processors Number of processors
10-Queens 10-Queens
Hybrid 1 Hybrid 2
300 300
T —c
270 ——- Prolog 270 ——- Prolog
240 a 240 7
/// -
21.0 L 210 s
e 4
, 180 g , 180 %
g e s s
g 150 e g 150 /7
£ e £ e
& &
120 e 120 e
// //
9.0 s 9.0 %
/ .
¥ ¥
60 - 60 2
2 -
// //
3.0 /"J 3.0 /
P
0.0 0.0

o 4 8 12 16 20 24 28 32 o 4 8 12 16 20 24 28 32
Number of processors Number of processors

Figure 5: QUEENS SPEEDUPS, FOUR PROTOCOLS

N-queens Figure 5 shows the speedups for the 10-queens problem. Because of the board size (10x10)
and the way the parallel algorithm was implemented in C, we also run this application for 10 processors.
As mentioned before, this problem is very difficult to parallelise efficiently in a procedural program. The
search space for each board taken by a worker causes a great amount of load imbalance. In order to
minimise load imbalance, the boards are created and put on a shared task queue by the parent process.
But this optimisation was not enough to remove completely the load imbalance. Moreover, the boards
allocations caused a very high rate of false sharing misses as can be easily observed in figure 6, for WI
protocol. The false sharing caused a high rate of drop misses for the hybrid protocols. Hyb2 had a lower
drop miss rate because was less eager to do self-invalidations. Depending on the way processes take the
boards from the queue, the memory access patterns can cause lower or higher miss rates.

This application can only sustain parallelism in C up to 10 processors because of the board size and
the way the work is distributed among the processors. The C parallel implementation uses the algorithm
as explained in section 4.

Hyb2 seems to yield the best performance for the parallel C program. WI is not so good as WU,
Hybl and Hyb2 for the C parallel program, because WI generates a higher miss rate. The miss rates for
WU for the parallel C program are so low that do not fit on figure 6.

An interesting point to mention is that although hybrid protocols produced, in general, better
performance than WU for the parallel C program, they also produced higher miss rates than WU. This
higher miss rate was counterbalanced by a reduction in the number of update messages, as can be observed
in figure 7.

10-Queens 10-Queens
Invalidate Update
30
25
.20 .
& &
Kl Kl
4 4
g 15 2
2 2
= =
10
05
0.0
1 2 4 8 10 16 24 32 1 2 4 8 10 16 24 32
Number of processors Number of processors
10-Queens 10-Queens
Hybrid 1 Hybrid 2

Miss rate (%)
Miss rate (%)

1 2 4 8 10 16 24 32 1 2 4 8 10 16 24 32
Number of processors Number of processors

Figure 6: QUEENS MISS RATES, FOUR PROTOCOLS, C (LEFT) AND AURORA (RIGHT)

10-Queens 10-Queens
Update Hybrid 2
3000.0
30000 Useful
False 2700.0
27000 Prolif
Term 2400.0
24000 Replace|
® ®
2 2100 2 21000
g g
€ 18000 g 18000
g g
B 2
S 15000 S 15000
5 5
£ 12000 3 12000
£ £
£ 5
2 9000 2 o000
6000 600.0
3000 3000
0 0.0
2 4 8 10 15 24 32 2 4 8 10 15 24 32
Number of processors Number of processors

Figure 7: QUEENS UPDATE MESSAGES, TWO PROTOCOLS, C (LEFT) AND AURORA (RIGHT)

10

Aurora manages to keep performance achieving efficiency of 85% with the best coherence protocol,
invalidate, on 32 processors.

For this application, WI seems to yield the best overall performance for the Aurora version. This
is mainly due to the high network traffic caused by WU for this application in Aurora. This can be seen
in figure 8.

The WU protocol exhibits very bad performance for this application in Aurora from 10 processors
on. The main responsible for this loss in performance is the increase in number of coherence messages.
The network traffic figure shows that the coherence traffic is in average almost 62 times larger for WU
than for WI. This causes a high network contention that deteriorates performance.

10-Queens 10-Queens
Invalidate Update

I- Request

140
130 Coherence]
120 Data 540
110
100
%
80
70
60
50
40
30
20
10

Request

Coherence|
Data

MBytes Transferred
MBytes Transferred

Number of processors Number of processors

10-Queens 10-Queens
Hybrid 1 Hybrid 2

Request Request
Coherence

Data

180 Coherence

Data
160

140

120

100

80

MBytes Transferred
MBytes Transferred

60

40

20

Number of processors Number of processors

Figure 8: QUEENS NETWORK TRAFFIC, FOUR PROTOCOLS, C (LEFT) AND AURORA (RIGHT)

Due to limitations on the simulator, we could not obtain some simulated results: Hybl, parallel C
program for 16 and 32 processors. Hyb2, parallel C program for 10, 24 and 32 processors.

TSP Figure 9 shows the speedup curves for the tsp benchmark. The performance for both the parallel
C program and the Aurora program was very bad.

The Aurora program is implemented by asserting and retracting the tour cost at each new search
for a new tour. We use the built-in predicates assert/1 and retract/1 to add and remove the fact
representing the tour cost from the database. The workers need to wait to be leftmost on the tree to
execute these built-in predicates. This causes a serialisation on the parallel execution that degrades
performance as we increase the number of processors. We confirmed that by visualising the parallel
execution tree.

The parallel C program shows a very high rate of false and true misses for WI and a high ratio of
drop misses for the Hybl and Hyb2 protocols. This can be observed in figure 10. This happens because
the shared data structures can be allocated in a way that we can have more than one tour in the same
cache block that causes false sharing, and shared counters, flags and locks that cause true sharing.

Database Figure 11 shows the speedups for the database application. The parallel C program scales
up well while the Prolog program has very bad performance. WI seems to produce slightly better results
for the Aurora version if we compare the absolute numbers (we could not run the Aurora version for 24
and 32 processors for WU, Hyb1 and Hyb2 due to some limitations on the simulator). For the parallel C
program, any protocol shows good performance.

The parallel C program is implemented in a way that each processor executes one query at a time.
There is no shared memory, excluding the barrier. At 24 processors, the speedup is similar to the speedup
for 16 processors, because the number of queries is not a multiple of the number of processors.

11

13
12
11
1.0
0.9
08
0.7
0.6
05
0.4
03
0.2
0.1
0.0

Speedups

13
12
11
1.0
0.9
0.8
0.7
0.6
05
0.4
03
0.2
0.1
0.0

Speedups

Miss rate (%)

Miss rate (%)

Figure 10: TSP MISs RATES, FOUR PROTOCOLS, C (LEFT) AND AURORA (RIGHT)

TSP 8

Invalidate

TSP 8
Update

C
Prol

Speedups

13
12
11
1.0
0.9
0.8
0.7
0.6
05
0.4
03
0.2
0.1

4 8 12 16 20 24 28 32
Number of processors

TSP 8
Hybrid 1

0.0
0

4 8 12 16 20 24 28 32
Number of processors

TSP 8
Hybrid 2

C
Prol

Speedups

13
12
11
1.0
0.9
0.8
0.7
0.6
05
0.4
03
0.2
0.1

C
Prol

4 8 12 16 20 24 28 32
Number of processors

0.0
0

4 8 12 16 20 24 28 32
Number of processors

Figure 9: TSP SPEEDUPS, FOUR PROTOCOLS

TSP 8 TSP 8
Invalidate Update
18
16
14
12
g
510
4
8 08
=
06
04
02
0.0
1 2 a4 8 16 24 32 1 2 a4 8 16 24 32
Number of processors Number of processors
TSP 8 TSP 8
Hybrid 1 Hybrid 2
g
Kl
4
8
=

1 2 4 8 6 2 32
Number of processors

12

1 2 4 8 6 2 32
Number of processors

In figure 12 the parallel C program exhibits only cold misses that effectively represent all misses
on this application. As expected, the network traffic is limited only to the exchange of the barrier value
in the end of the program. It does not appear in figure 13 because the values are shown in Megabytes.

Database Database

Invalidate Update
24.0 24.0

—c —c
220 ——- Prolog 220 ——- Prolog

200 200

Speedups
I
IS
°
Speedups
I
I
°

o 4 8 12 16 20 24 28 32 o 4 8 12 16 20 24 28 32
Number of processors Number of processors

Database Database

Hybrid 1 Hybrid 2
24.0 24.0

—c —c
220 ——- Prolog 220 ——- Prolog

200 200

Speedups
I
I
°
Speedups
I
I
°

o 4 8 12 16 20 24 28 32 o 4 8 12 16 20 24 28 32
Number of processors Number of processors

Figure 11: DATABASE SPEEDUPS, FOUR PROTOCOLS

The Aurora version of the database generates a very irregular execution tree with four public
choicepoints at the second level of the tree. The number of alternatives in each of these choicepoints
varies. Therefore the work distribution can cause some load imbalance or contention on nodes that have
a big number of alternatives, but very fine grained work below each alternative. In fact, this is the reason
for the very low speedup exhibited by this application in Aurora. Displaying the graphical representation
of the parallel execution tree helped to identify this problem [23]. Modifications to the scheduler or
utilisation of compile-time granularity information could improve performance.

In figure 12 we can see that Aurora has an acceptable miss rate not exceeding 8% among the four
protocols, even having Aurora a very high number of references to shared memory. This indicates once
more that Aurora maintains reference locality. Most misses are due to eviction misses.

5 Conclusion and Future Work

We used a detailed execution-driven simulation to thoroughly evaluate the performance of parallel C
programs and of Aurora, a parallel logic programming system that exploits or-parallelism.

Our results indicate that cache coherence protocols do not significantly affect regular applications
while irregular ones can benefit from hybrid or invalidate protocols. Our results also show that parallel
logic programming systems written for shared memory machines can achieve good scalability on modern
architectures depending on the application, but at the cost of high time and space complexity when
compared to conventional C programs.

Results also indicate that optimisations such as improvements on the abstract engine, data or-
ganisation and scheduling can make parallel logic programming systems competitive and more attractive
than parallel C systems for some applications, specially if we consider that parallel logic programming
systems exploit implicit parallelism.

Our results also show that although Aurora has a huge number of references to shared memory, in
general, it manages to maintain good reference locality while parallel C programs with very low number
of references need a good programming style for the kind of architecture we are studying.

The main problems encountered on our experiments are related to scheduling issues or data layout.
Our next steps will be to use different scheduling strategies and data restructuring both for the parallel C

13

Database Database
Invalidate Update
100.0 Fr— — — — — — — 000t— — — — o
90.0 90.0
80.0 80.0
70.0 70.0
g 60.0 g 60.0
k-l k-l
£ £
o 500 o 500
8 8
= 00 = 400
30.0 30.0
20.0 20.0
100 100
ol m | m W |] ool m | |||,
1 2 4 8 16 24 32 1 2 a4 8 16 24 32
Number of processors Number of processors
Database Database
Hybrid 1 Hybrid 2
000t— — — — 1 o 000t— — — — o~ =
90.0 90.0
80.0 80.0
70.0 70.0
g 60.0 g 60.0
k-l k-l
£ £
= 500 = 500
8 8
= 00 = 400
30.0 30.0
20.0 20.0
100 100
ool mm | ||| ool mm | || |

Figure 12: DATABASE MISS RATES, FOUR PROTOCOLS, C (LEFT) AND AURORA

2 a4 8 16 24
Number of processors

2 a4 8 16 24 32
Number of processors

(RIGHT)

Database Database
Invalidate Update
Request 2700
2700 Coherence|
Data 2400
2400
2100 2100
5 5
£ 1800 g w00
2 2
2 2
£ 1s00 g 1500
= =
o o
£ 1200 § 1200
H H
90.0 90.0
600 600
300 300
0.0 0.0
2 4 8 16 24 32 2 4 8 16 24 32
Number of processors Number of processors
Database Database
Hybrid 1 Hybrid 2
2700 2700 Request
Coherence|
240.0 240.0 ata
2100 2100
B 1800 B 1800
2 2
2 1500 2 1500
S S
£ 1200 £ 1200
H H
90.0 90.0
600 600
300 300
0.0 0.0
2 4 8 16 24 32 2 4 8 16 24 32

Number of processors

Number of processors

Figure 13: DATABASE NETWORK TRAFFIC, FOUR PROTOCOLS, C (LEFT) AND AURORA

(RIGHT)

14

programs and for Aurora in order to improve performance. Another step will be to evaluate the impact
of different architectural parameters such as cache sizes, cache block sizes and network bandwidth sizes
on our applications. Another step will be to evaluate real Prolog and C symbolic applications.

Acknowledgments

We would like to thank the Brazilian Research Councils (CNPq and CAPES) for supporting this research.
Vanusa would like to thank her bosses Sergio Abramovitch and Volnei Marques da Costa for allowing her
to carry out this research work.

References

[1]

[12]
[13]
[14]
[15]

[16]

[17]

18]

Hassan Ait-Kaci. Warren’s Abstract Machine — A Tutorial Reconstruction. MIT Press, 1991.

Khayri A. M. Ali and Roland Karlsson. The Muse or-parallel Prolog Model and its Performance. In Pro-
ceedings of the 1990 North American Conference on Logic Programming, pages 757-776. MI'T Press, October
1990.

Anthony Beaumont, S. Muthu Raman, and Péter Szeredi. Flexible Scheduling of Or-Parallelism in Aurora:
The Bristol Scheduler. In Aarts, E. H. L. and van Leeuwen, J. and Rem, M., editor, PARLE91: Conference on
Parallel Architectures and Languages Europe, volume 2, pages 403—420. Springer Verlag, June 1991. Lecture
Notes in Computer Science 506.

Anthony Beaumont and David H. D. Warren. Scheduling Speculative Work in Or-Parallel Prolog Systems. In
Proceedings of the Tenth International Conference on Logic Programming, pages 135-149. MI'T Press, June
1993.

R. Bianchini and L. I. Kontothanassis. Algorithms for categorizing multiprocessor communication under
invalidate and update-based coherence protocols. In Proceedings of the 28th Annual Simulation Symposium,
April 1995.

Vanusa Menditi Calegario and Inés de Castro Dutra. Performance Comparison between Conventional and
Logic Programming Systems. Technical Report ES-478/98, COPPE/Systems Engineering and Computer
Science, Setembro 1998.

Mats Carlsson and Johan Widen. SICStus Prolog User’s Manual. Technical report, Swedish Institute of
Computer Science, 1997. Release 3#6.

M. Duboais, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. Stenstrom. The detection and elimination of
useless misses in multiprocessors. In Proceedings of the 20th ISCA, pages 88—97, May 1993.

Vincent W. Freeh. A Comparison of Implicit and Explicit Parallel Programming. Journal of Parallel and
Distributed Computing, (34):50—-65, 1996.

James R. Goodman. Using cache memory to reduce processor-memory traffic. In Proceedings of the 10th
International Symposium on Computer Architecture, pages 124-131, 1983.

Gopal Gupta, Enrico Pontelli, and Manuel Hermenegildo. &ACE: A High Performance Parallel Prolog
System. In Proceedings of the First International Symposium on Parallel Symbolic Computation, PASC0’94,
1994.

Bogumil Hausman. Pruning and Speculative Work in OR-Parallel PROLOG. PhD thesis, The Royal
Institute of Technology, Stockholm, 1990.

Markus Hitz and Erich Kaltofen, editors. Proceedings of the Second International Symposium on Parallel
Symbolic Computation, PASC0’97, July 1997.

A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching. Algorithmica,
3:79-119, 1988.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-based cache coherence
protocol for the DASH multiprocessor. Proceedings of the 17th ISCA, pages 148-159, May 1990.

D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy. The dash prototype:
Logic overhead and performance. IEEE Transactions on Parallel and Distributed Systems, 4(1):41-61, Jan
1993.

Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora Or-parallel Prolog System. New Generation
Computing, 7(2,3):243-271, 1990.

Kim Marriot and Peter J. Stuckey. Programming with Constraints. MIT Press, 1998.

15

[19]
[20]

(21]

(22]

(23]

[24]

(23]

[26]
[27]
[25]
[29]
[30]

31]

E. M. McCreight. The Dragon Computer System, an Early Overview. In NATO Advanced Study Institute
on Microarchitecture of VLSI Computers, July 1984.

S. Raina, D. H. D. Warren, and J. Cownie. Parallel Prolog on a Scalable Multiprocessor. In Peter Kacsuk
and Michael J. Wise, editors, Implementations of Distributed Prolog, pages 27-44. Wiley, 1992.

V. Santos Costa, Bianchini, and I. C. Dutra. Parallel Logic Programming Systems on Scalable Multiproces-
sors. In Proceedings of the 2nd International Symposium on Parallel Symbolic Computation, PASC0’97 [13],
pages 58—67, July 1997.

V. Santos Costa, R. Bianchini, and I. C. Dutra. Evaluating the impact of coherence protocols on parallel
logic programming systems. In Proceedings of the 5th EUROMICRO Workshop on Parallel and Distributed
Processing, pages 376-381, 1997. Also available as technical report ES-389/96, COPPE/Systems Engineering,
May, 1996.

V. Santos Costa, N. F. Fonseca, and I. C. Dutra. VisAll: A Universal Tool to Visualise the Parallel Ex-
ecution of Logic Programs. In Proceedings of the Joint International Conference and Symposium on Logic
Programming (JICSLP’98), Jun 1998.

V. Santos Costa and Bianchini R. Optimising Parallel Logic Programming Systems for Scalable Machines.

In Proceedings of the EUROPAR’98, Sep 1998.

Marcio G. Silva, Inés C. Dutra, Ricardo Bianchini, and Vitor Santos Costa. The Influence of Computer
Architectural Parameters on Parallel Logic Programming Systems. Technical report, January 1999. Also
available as Technical Report ES/477-98, COPPE Systems Engineering, Sep/98.

J. P. Singh, W-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared-Memory.
20(1):5-44.

R. Sosic and J. Gu. Fast Search Algorithms for the N-Queens Problem. IFEE Transactions on Systems,
Man, and Cybernetics, 21(6):1572-1576, Nov/Dec 1991.

Charles P. Thacker, David G. Conroy, and Lawrence C. Stewart. The alpha demonstration unit: A high-
performance multiprocessor for software and chip development. Digital Technical Journal, 4(4):51-65, 1992.

Evan Tick. Memory Performance of Prolog Architectures. Kluwer Academic Publishers, Norwell, MA 02061,
1987.

P. Van Roy and A. M. Despain. High-Performance Logic Programming with the Aquarius Prolog Compiler.
IEEE Computer, 25(1):54-68, January 1992.

J. E. Veenstra and R. J. Fowler. Mint: A front end for efficient simulation of shared-memory multiprocessors.
In Proceedings of the 2nd International Workshop on Modeling, Analysis and Sitmulation of Computer and
Telecommunication Systems (MASCOTS ’94), 1994.

J. E. Veenstra and R. J. Fowler. Mint tutorial and user manual. Technical report, University of Rochester,
Computer Science Department, 1994.

David H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International, 1983.
David H. D. Warren. The SRI Model for Or-Parallel Execution of Prolog—Abstract Design and Imple-

mentation Issues. In Proceedings of the 1987 International Logic Programming Symposium, pages 92-102,
1987.

Rong Yang, Vitor Santos Costa, and David H. D. Warren. The Andorra-I Engine: A parallel implementation
of the Basic Andorra model. In Proceedings of the Fighth International Conference on Logic Programming,
pages 825-839. MIT Press, 1991.

16

