
Identification of Problematic Constructions in Object Oriented Applications:
an Approach Based on Heuristics, Design Patterns and Anti-Patterns

Alexandre L. Correa Cláudia M. L. Werner Gerson Zaverucha

Federal University of Rio de Janeiro (COPPE/UFRJ)
Programa de Engenharia de Sistemas e Computação

Caixa Postal 68511
21945-970 Rio de Janeiro, RJ, Brazil

{ alexcorr, werner, gerson}@cos.ufrj.br

Abstract

Object Oriented languages do not guarantee that a system
is flexible enough to absorb future requirement evolution,
or that its components can be reused in other contexts.
This paper presents an approach to the identification of
existing problematic constructions in OO applications.
Our main goal is to provide support both for
reengineering legacy OO systems, and evaluating OO
systems that are still under development, by detecting
certain constructions that compromise their future
expansion or modification, and suggesting their
replacement by more adequate ones. This approach is
supported by a tool (OOPDTool) comprising a
knowledge base of good design constructions, that
correspond to heuristics and design patterns, as well as
problematic constructions (i.e., anti-patterns).

1. Introduction

One of the main motivations to use the Object
Oriented development paradigm is the promise of being
able to construct large and complex systems that are
flexible in the sense of absorbing constant business
modifications, as well as technological evolutions. This
promise would be accomplished by using techniques such
as encapsulation, inheritance, polymorphism, dynamic
binding and interfaces, among others, resulting in a
modular and reusable software structure. In this way, it
should be possible to dramatically reduce maintenance
efforts and achieve a significant increase in productivity
while developing new systems, if compared to more
traditional development paradigms.

However, it is possible to find many OO applications
that are hard to maintain nowadays. These systems
present rigid and inflexible structures that make the

addition of new features, due to inevitable requirement
changes, a difficult task. As an example, it is possible to
mention some of the systems developed by Nokia and
Daimler-Benz that are being studied in the context of the
FAMOOS Project [27], aiming at the transformation of
legacy OO systems into OO frameworks.

Although OO concepts are known by the academic
community for at least two decades, the design of a
flexible and reusable system is still a very difficult task.
It involves the identification of relevant objects, factoring
them into classes of correct granularity level,
hierarchically organizing them, defining class interfaces
and establishing the dynamics of collaboration among
objects. The resulting design should solve the specific
problem at hand but at the same time should be generic
enough to be able to address future requirements and
needs [10]. While performing these tasks, new OO
designers have to decide among several possible
alternatives, often presenting a tendency to apply non
OO techniques both because of their greater familiarity
with these techniques and time schedule pressures which
do not allow them to “waste time” searching for the best
solution.

In fact many of these problematic OO systems were
developed by teams where the majority of professionals
did not have enough experience to define the most
adequate construction for a given problem, in order to
make the design more flexible and resilient to change.

Many OO development methods appeared in this
decade, among them the ones described in [1], [25] and
[11]. Along with these methods, several tools became
available (e.g., Rational Rose [23] and Paradigm Plus
[20]). The emphasis of these methods and tools has been
on how to develop semantically correct OO models
regarding the constructions available in modeling
languages such as UML, for example. However, a correct
model does not necessarily mean that it is flexible and
reusable. Due to this fact, many organizations nowadays

depend on reviews performed by experts to increase
design quality and avoid too much effort on future
maintenance. These reviews are very costly and such
experts are scarce at the market.

This work presents an approach for both
reengineering problematic legacy OO systems, and
evaluating OO systems that are still under development.
This approach is supported by a tool that detects good
and bad OO design constructions, i.e., constructions
corresponding to standard solutions to recurring design
problems (design patterns), or constructions that can
result in future maintenance and reuse problems. With
this aid, it is possible to identify points in a system that
need to be modified in order to make it more flexible and
reusable, and to ease the system understanding as a
whole, including the badly documented systems, by
identifying existing design patterns.

The identification of problematic OO software
constructions is very difficult to be done manually. We
can highlight the following reasons for this difficulty:
• legacy systems that need to be reengineered are

usually medium/large in size, making manual search
for problems unfeasible;

• in most cases, the only reliable source for design
information is the source code. Models, when
available, either are out of date or are too superficial
to support a design analysis. However, manual
analysis of source code limits the scope of the
problems that can be found in a timely and
economically way;

• developers often do not know what kind of problems
they should be looking for. A database containing
potential design problems can provide a valuable
support in this case.

This paper is organized as follows: section 2
introduces some basic concepts regarding design patterns
and heuristics for the construction of good OO designs.
Section 3 discusses the anti-pattern concept and OO
design problems. Section 4 presents a tool for the
detection of good and bad OO design constructions,
called OOPDTool. In section 5, some related works are
discussed, and in section 6 the conclusions and future
works are presented.

2. Heuristics and Design Patterns

In works such as [24], [16], and [12], it is possible to
find a set of heuristics for achieving a quality OO design.
A design heuristic is a sort of guidance for making
design decisions. It describes a family of potential
problems and provides guidelines to aid the designer to
avoid them. Heuristics, such as “All data must be hidden

within its class” [24], direct designer’s decisions toward
a more flexible and reusable OO design. It is important
to note that a heuristic should not be considered as a law
that must be followed in all circumstances. It should be
seen as an element that, if violated, would indicate a
potential design problem.

Apart from these heuristics, the “design patterns
philosophy” [10] emerged as one possible way to capture
the knowledge of OO design experts allowing to easily
reuse well succeeded solutions to recurring problems
regarding design and software architectures.

Synthesizing the definitions of various authors ([5],
[8], [1], [15], [26] and [29]), it is possible to state that a
design pattern solves a recurring problem, in a given
context, by providing a proven working solution (not
speculations or theories), also indicating its
consequences, i.e., the results and tradeoffs of its
application, and providing information regarding its
adaptation to a problem variant. Every pattern is
identified by a name, forming a common vocabulary
among designers. While heuristics represent generic
directives to OO design, a design pattern is a solution to
a specific design problem.

The key to maximize reuse and minimize software
maintenance effort resides in trying to anticipate new
requirements, as well as possible changes on existing
ones, while designing the system. By using heuristics and
design patterns, it is possible to avoid that these
modifications result in great changes of the software
structure, since they allow a certain design aspect to vary
in an independent way, making it more resilient to a
particular kind of change. In [10], we can find common
causes for design inflexibility and the corresponding
design patterns that can be applied. For example, the
instantiation of an object by its class explicit specification
makes a design dependent on a particular
implementation and not on its interface. In this case, the
Abstract Factory, Factory Method and Prototype design
patterns can be applied to make the instantiation process
more flexible.

3. OO Design Problems and Anti-patterns

Software design is an iterative task and designers
often need to reorganize its elements in order to make
them more flexible. However, design methods and their
supporting tools that are available today focus on the
development of new systems. The same happens with the
use of heuristics and design patterns. Many organizations
have inflexible OO systems nowadays; many of which
are critical, incorporating undocumented business
knowledge. Moreover, it is almost always unfeasible,
from an economical point of view, to throw these systems

away and rebuild them from scratch using a more
flexible and reusable design. A more interesting solution
would be to reengineer those systems looking for
constructions that are responsible for the system
inflexibility, and replacing them by others that are more
flexible and resilient to change.

The study of anti-patterns has recently emerged as a
research area for detecting problematic constructions in
OO designs [4], [13]. An anti-pattern describes a
solution to a recurrent problem that generates negative
consequences to the project. An anti-pattern can be the
result of either not knowing a better solution, or using a
design pattern (theoretically, a good solution) in the
wrong context. When properly documented, an anti-
pattern describes its general format, the main causes of
its occurrence, the symptoms describing ways to
recognize its presence, the consequences that can result
from this bad solution, and what should be done to
transform it into a better solution.

However, the number of catalogued anti-patterns is
still small, if compared to the number of design patterns
available in the technical literature [5], [7], [10], [17]
and [28]. In [4], there is a list of some anti-patterns as,
for instance, the Blob anti-pattern. This anti-pattern
corresponds to an OO design solution that strongly
degenerates into a structured OO design style. It can be
recognized when responsibilities are concentrated on a
single object, while the majority of other objects are used
as mere data repositories, only providing access methods
to their attributes (get/set methods). This kind of solution
compromises the ease of maintenance and should be
restructured by better distributing system responsibilities
among objects, isolating the effects of possible changes.

Since the number of anti-patterns available in the
literature is still small, one possible way to guide the
process of searching for problematic solutions in OO
software design is by looking at design patterns
catalogues. These catalogues not only describe good
solutions applicable in a particular context, but also
informally discuss bad solutions that could have been
used instead. Those bad solutions can be formalized and
catalogued, composing a database of OO design
problems.

OO design heuristics can be another source for the
identification of design problems. The possible ways of
violating a particular heuristic correspond to potential
problems that can be found in a design. For instance, the
definition of attributes in the public area of a class
violates the principle “All data should be hidden within
its class” [24], corresponding, therefore, to a potential
design problem. It is not always true, however, that the
violation of an OO design principle corresponds to a
design problem, since a particular bad construction can

be driven by some specific requirements such as
efficiency, hardware/software constraints, among other
non functional ones.

4. OOPDTool

As mentioned before, our main goal is to provide
automated support both for reengineering legacy OO
systems, and evaluating OO systems that are still under
development. This support means detecting design
constructions that can make future system maintenance
harder, and helping replacing them by more flexible
ones. Therefore, we would like to identify points in the
system that should be modified in order to make it more
flexible and reusable. This paper presents a tool, named
OOPDTool, designed to support this task. As shown in
figure 1, there are four main modules composing the
OOPDTool architecture:
• Design Extraction: to automatically extract design

information from OO source code, generating a
design model in an object oriented CASE tool.

• Facts Generation: to generate a deductive database,
corresponding to the facts extracted from an OO
design. These facts are expressed in predicates
according to a metamodel for object-oriented design
representation.

• Expertise Capture: to capture knowledge about
good and bad OO constructions, generating a
deductive database of design patterns and anti-
patterns.

• OO Design Analysis: to analyze a design model
stored in the facts deductive database using an
inference machine, machine learning techniques and
the design patterns and anti-patterns knowledge
base. This analysis detects design fragments that can
result in future maintenance and reuse problems,
showing hints to the refactoring of those problematic
constructions into more flexible ones. This module
also allows the identification of design patterns used
by developers in an OO development.

As mentioned before, in most cases the source for the
identification of those constructions in legacy OO
systems is the source code, since design models, when
available, are outdated or too superficial to be used as the
main input to this task. Therefore, we need to extract
design information from source code. Considering that
we would also like to use this infrastructure when
developing new OO systems, we decided to add not only
this extraction module, but all other OOPDTool modules
to a very popular OO CASE tool: Rational Rose [23].

Figure 1: OOPDTool - Architecture

Rose is a CASE tool that supports OO analysis and
design activities, being able to generate models according
to Booch, OMT or UML notation. The information about
an OO model can be accessed through OLE components,
available in REI (Rose Extensibility Interface). Rose can
also be customized, allowing the addition of new features
as “Add-Ins”. By using the features described above, we
added all OOPDTool features to Rose, transforming it
into an environment that supports the construction of
object oriented design models and the evaluation of those
models against candidate problematic constructions.

In the following subsections OOPDTool modules are

described in detail.

4.1. Design Extraction

Although reverse engineering modules are available
in Rose for languages such as C++ and Java, the
information extracted are limited to those that can be
obtained from a structural analysis of the source code. In
C++, for instance, this information is captured from the
analysis of “header files”. Therefore, only structural
information such as packages, classes, attributes,
methods, and inheritance relationships can be retrieved,
narrowing the scope of patterns and anti-patterns
detection. To overcome this limitation, we need a design
extraction module that can be able to retrieve not only
the structural information captured by Rose
reengineering modules, but also information related to
the methods implementation. This extraction is done
according to a metamodel that defines the concepts
needed to the facts deductive database generation, which
will be presented in the next subsection.

 Based on the information retrieved by this
extraction, it is possible to know the attributes
manipulated by a particular method; how these
attributes are manipulated (read, write, parameter,
operation invocation); a method stereotype
(‘constructor”, “destructor”, “read accessor”, “write
accessor”, among others), and which collaborations are
necessary to the implementation of a particular method.
The analysis of method invocations is done in order to
gather information about dependencies between types
and not between objects, since the latter would require a
run-time analysis of the system. For each method,
OOPDTool generates a collaboration diagram with only
the direct calls presented in the method.

class TapeRental {
public:
 void addTape(Tape aTape) {..; aTape.price(); .. }
};

class Tape {
private:
 Film theFilm;
public:
 currency price() {...;theFilm.price(); ... }
};

class Film {
public:
 void price() { ...; }
};

Figure 2. Collaboration example

In the example shown in figure 2, OOPDTool would

OO Design

Facts
Generation

Facts
Deductive
Database

Design Patterns
and Heuristics

Deductive
Database

Anti-patterns
and Problems

Deductive
Database

Source
 Code

Design
Extraction

Detected Problems
 and

Hints for Better Solutions

OO Design
Literature

and
Experts

Expertise
Capture

OO Design Analysis
(using deductive inference and

Machine Learning)

extract information about the addTape method
corresponding to the invocation of the price operation of
an object of the Tape class or some descendant, meaning
that the TapeRental class is dependent on the Tape type.
Besides, the information about the invocation of the
price method of the Film class would be attached only to
the direct caller, i.e., the price method of the Tape class.
In this way, from each method, we extract only the
operation calls directly invoked from it, as we are only
interested in the direct dependency relationships
between classifiers.

From each operation invocation identified in the
implementation of a particular method, we capture the
following information: the operation called, the type
(class or interface) of the object referenced by the
method, and how this object is being accessed by the
method (i.e., as a parameter, a locally created object, a
global object, an attribute, or self). Considering the
example shown in figure 2, in the aTape.price()
collaboration present in the addTape method of the
TapeRental class, the called object (aTape) is a
parameter, while in the theFilm.price collaboration
present in the price method of the Tape class, the called
object (theFilm) is an attribute of the invoker object.

4.2. Facts Generation

Once the design information becomes available as a
Rose model, either as the result of a reverse engineering
process performed by the Design Extraction module or
as a result of a model construction in a forward
engineering process, the Facts Generation module
comes into action, generating a deductive database
which represents the facts captured from this design
information.

These facts are stated in predicates corresponding to
the constructions defined in a metamodel for object
oriented software. This metamodel was defined based on
the UML semantics metamodel [2] and on other papers
in this field [9], [18]. This metamodel defines the
entities and relationships that are relevant to design
patterns and anti-patterns identification, including not
only structural elements, but also dynamic elements
such as object instantiation and method calls, for
instance. In Appendix A, all predicates defined by the
metamodel are presented in detail.

The metamodel defines the main entities of an OO
design (package, classifier, attribute, operation,
parameter), relationships between those entities
(dependency, realization, inheritance), and also
elements corresponding to the implementation of
methods such as an object instantiation, an object
destruction, a method invocation, and an attribute

access.
From a structural point of view, the Facts Generation

module generates a set of facts that describe all the
classifiers found in a model (classes, interfaces, and
basic data types), how those classifiers are organized
into packages, their attributes and operations, including
detailed information about each one (visibility, type,
scope, parameters, among others). The associations,
aggregations, and compositions are captured as pseudo-
attributes [2]. The inheritance relationships between
classifiers and the realization of a classifier are also
captured by specific predicates.

From a behavioral point of view, this module
generates facts about the implementation of each
method. Each object instantiation and destruction,
method invocation (of the same class or not), and
attribute access (read or write) are captured as
predicates. The capture of these behavioral elements is
essential for the identification of many design problems,
such as those related to object coupling.

The information generated by the Facts Generation
module is the source for pattern detection, representing
the result of the analysis of structural and behavioral
elements of an OO design.

4.3 Expertise Capture

Both good and bad constructions that OOPDTool is
able to detect in OO designs need to be defined
beforehand. The tool stores design patterns and anti-
patterns as deductive rules. Good constructions are
taken from patterns and heuristics available in the
technical literature and also from the knowledge
accumulated by OO experts in many projects,
formalizing them in the form of rules that define the
characteristics necessary to the recognition of a
particular construction in an OO design model.

Since each design pattern and anti-pattern is
captured by rules, OOPDTool allows the definition of
new rules so that new patterns and anti-patterns can be
detected. Therefore, the knowledge base can evolve as a
result of the organization experience in developing and
maintaining OO systems. These rules are expressed
using the same predicates employed in the OO design
facts representation, as described earlier.

Figure 3 shows an example of a design pattern
formalization. This rule allows not only the
AbstractFactory [10] pattern detection, but also the
identification of all the participants in a particular
instance of this pattern. In the Abstract Factory pattern,
those participants correspond to the AbstractFactory,
the ConcreteFactories, the AbstractProducts, and their
respective ConcreteProducts subclasses.

The rule illustrated in figure 3 defines the conditions
necessary for detecting the AbstractFactory pattern.
This rule uses the auxiliary predicates listed in figures 4
to 9.

abstractFactoryPattern(AbstractFactory,ConcreteFactories,
AbstractProducts,ConcreteProducts)
:- abstractFactory(AbstractFactory,AbstractProducts),
findAll(ConcreteFactory,concreteFactory(ConcreteFactory,
AbstractFactory), ConcreteFactories),
findAll (X, concreteProduct (X, AbstractProducts),
ConcreteProducts).

Figure 3 – Abstract Factory Pattern (Prolog rule)

abstractFactory (Class, AbstractProducts) :-
classifier(_, Class, _, "Class", "Abstract", "NotLeaf", "Root"),
findAll(AbstractProduct,instantiatesAbstractProduct(Class,
AbstractProduct),AbstractProducts), listSize(AbstractProducts,
Size),
Size > 1).

Figure 4 – Identification of an AbstractFactory
participant

concreteFactory (Class, AbstractFactory) :-
classifier (_, Class, _, "Class", "Concrete", _, _),
descendant (Class, AbstractFactory),
abstractFactory(AbstractFactory, AbstractProducts),
findAll(ConcreteProduct, instantiatesAbstractProduct (Class,
ConcreteProduct), ConcreteProducts),
listSize(ConcreteProducts, Size), Size > 1).

Figure 5 – Identification of a ConcreteFactory
participant, descendant from an AbstractFactory

abstractProduct (Product) :-
classifier(_,Product,_,"Class","Abstract","NotLeaf","Root"),
classifier(_,ConcreteProduct, _, "Class","Concrete",_,_),
ancestor (Product, ConcreteProduct).

Figure 6 – Identification of an AbstractProduct
participant

concreteProduct (ConcreteProduct, AbstractProducts) :-
descendant (ConcreteProduct, X),
member (X, ListaAbstractProducts).

Figure 7 – Identification of an ConcreteProduct
participant, descendant from an AbstractProduct.

instantiatesAbstractProduct (Class, AbstractProduct) :-
operation(Class, Oper, _, "Instance", "Public", _, "Virtual", _, _),
parameter(Oper, _, _, "Return", AbstractProduct),
abstractProduct (AbstractProduct).

Figure 8 – Verification whether a classifier has an
operation that returns an AbstractProduct.

descendant (X,Y) :- inheritsFrom (X, Y).
descendant (X, Y) :- inheritsFrom(Z, Y), descendant (X, Z).
ancestor (X, Y) :- inheritsFrom (Y, X).

ancestor (X, Y) :- inheritsFrom (Z, X), ancestor (Z, Y).
Figure 9 – Identification of direct or indirect inheritance

In the same way, we can catalogue anti-patterns with
rules defined from predicates corresponding to the basic
OO constructions presented in the metamodel. For each
anti-pattern formalized using Prolog rules, we also
capture information that describes its general format,
the main causes of its appearance, the consequences that
this bad solution can generate and what should be done
to replace this solution by a better one. This better
solution can often point to the application of a design
pattern.

The anti-patterns can be captured directly from the
anti-patterns literature [18], or indirectly by looking for
violations of well known design heuristics and patterns.
Figures 10 to 12 show some examples of anti-patterns
that we have formalized using Prolog, originated from
possible violations of design heuristics.

The PublicVisibility anti-pattern (figure 10) detects
the definition of attributes in the public area of a class.
This contradicts the design heuristic: “All data should
be hidden within its class” [24].

publicVisibility (Class, Attribute) :-
classifier(_, Class, _, _, _, _, _),
attribute(Class, Attribute, _, "Public", _, _, _, _, _).

Figure 10 – PublicVisibility anti-pattern

The ProtectedVisibility anti-pattern (figure 11)
detects the definition of attributes in the protected area
of a class. This fact contradicts the design heuristic “All
data in a base class (superclass) should be private” [24].

protectedVisibility(Class, Attribute) :-
classifier(_, Class, _, _, _, _, _),
attribute(Class, Attribute, _, "Protected", _, _, _, _, _),
ancestor(Class, OtherClass).

Figure 11 – ProtectedVisibility anti-pattern

The ExpositionOfAuxiliaryMethod anti-pattern
(figure 12) detects the definition of methods in the
public interface of a class that are used only as auxiliary
methods for the implementation of other methods of this
class. This contradicts the design heuristic “Do not put
implementation details such as common-code private
functions into the public interface of a class” [24].

Beyond the anti-patterns derived from object
oriented design heuristics, we can also identify other
potentially problematic constructions by analyzing the
problems discussed in design patterns. As an example of
this strategy, we present the formalization of two anti-
patterns related to some creational design patterns [10].
The rules defined in figure 13 detect the presence of an
object with global scope, whose class would be better
defined by applying the Singleton design pattern.

The ManyPointsOfInstantiation anti-pattern
indicates that many points of the design are coupled to a
particular class and, therefore, to a particular
implementation. The design would be more flexible if a
creational design pattern as, for example,
AbstractFactory or Prototype, were used instead of the
direct instantiation spread in many points of the
software.

expositionOfAuxiliaryMethod (Class, Method) :-
classifier(_, Class, _, _, _, _, _),
operation(Class, Method, _, _, "Public", _, _, _, _),
findAll(ClientClass,externalClient(Method,ClientClass),
ClientClasses), listSize(ClientClasses, Size), Size = 0,
findAll(ClientClass,internalClient(Method,ClientClass,
InternalClients), listSize(InternalClients, InternalSize), InternalSize
> 0).

externalClient (Method, ClientClass) :-
operation (Class, Method, _, _, _, _, _, _, _),
operation (ClientClass, Caller, _, _, _, _, _, _, _),
invokes(Caller, Class, Method, _),
not (sameHierarchy(ClientClass, Class)).

internalClient (Method, ClientClass) :-
operation (Class, Method, _, _, _, _, _, _, _),
operation (ClientClass, Caller, _, _, _, _, _, _, _),
invokes (Caller, Class, Method, _),
sameHierarchy(ClientClass, Class).

sameHierarchy (X, Y) :- X = Y.
sameHierarchy (X, Y) :- descendant (X, Y).
sameHierarchy (X, Y) :- ancestor (X, Y).

Figure 12 – ExpositionOfAuxiliaryMethod anti-pattern

globalScopeObject (Object, Class) :-
classifier(_, "Logical View::Global", _, _, _, _, _),
attribute ("Logical View::Global", Object, _, "Public", _, Class, _, _,
_).

globalScopeObject (Object, Class) :-
classifier(_, X, _, _, _, _, _),
attribute(X, Object, "Class", "Public", _, Class, _, _, _).

Figure 13 –Global Scope Object anti-pattern

manyPointsOfInstantiation (Class, NPoints) :-
findAll (Creator, doInstantiation(Creator, Class), Creators), listSize
(Creators, Size), Size> NPoints).

doInstantiation (Creator, Class) :-
operation (Creator,Operation, _, _, _, _, _, _, _),
creates (Operation, Class, _).

Figure 14 – ManyPointsOfInstantiation anti-pattern

4.4. OO Design Analysis

The last OOPDTool module, the Design Analysis
module, is responsible for analyzing the facts deductive
database corresponding to the OO design being verified,
and trying to find some match with the constructions

captured by the Expertise Capture module, using the
Visual Prolog 5 inference machine.

The user selects one or more problem categories, and
one or more problems classified in the selected category.
This module identifies all the design fragments that
satisfy the Prolog rules defined for the detection of those
problems.

A report is generated indicating each problem found,
the elements responsible for its occurrence, and also
possible ways to overcome it. These possible better
solutions correspond to the anti-pattern information
captured by the Expertise Capture module. For example,
if the tool finds the PublicVisibility anti-pattern, it
points the attribute and the class where it occurs,
showing that a possible solution would be to move the
attribute to the private area of the class, and to create
accessor methods (get and set methods) for retrieving
and modifying this attribute.

Another result that can be achieved with this module
is the identification of design patterns used in the
evaluated design. By selecting the desired design
patterns, the user obtains as a result, a report indicating
the design patterns found and also all the elements
matching each participant role in the pattern. For
example, If the tool detects an instance of the
AbstractFactory design pattern, it would show not only
the presence of this pattern in the design but also all
classes corresponding to the Abstract Factory, Concrete
Factories, Abstract Products and Concrete Products
participants found in this design pattern instance.

5. Related Works

Several works related to the reengineering of legacy
object oriented systems and design patterns detection
have appeared in the last five years.

Cinnéide [6] describes a tool called Design Pattern
Tool that does some refactorings in programs written in
Java. This tool is limited to refactorings related to object
instantiation anti-patterns.

Zimmer [30] reports experiences using design
patterns, general OO design rules, and metrics in
reorganization of object oriented systems. He describes a
method used in the restructuring of a hypermedia OO
application with the incorporation of more flexible
design constructions. However, no supporting tool is
mentioned in this work.

KT is a tool developed by Brown [3] that can reverse
engineer OO designs from source code written in
Smalltalk. KT detects three design patterns as described
in [10]: Composite, Decorator, and Template Method.
Algorithms specially designed to detect them do the

identification of instances of those patterns. However,
the tool does not provide support to the detection of
other patterns or even code written in other languages,
because it searches for specific Smalltalk constructions
using an algorithm also specific for the detection of each
pattern.

Krämer [14] presents a supporting tool, Pat, for the
design recovery process which searches for structural
design pattern in an object oriented design model. The
design constructions are also represented in Prolog.
However, the patterns detected by this tool are limited
since the reverse engineering task is done by a Case tool
(Paradigm Plus) that is only able to recover structural
design elements. Therefore, Pat cannot detect design
patterns that require semantic information about
behavior and collaboration between classes as, for
instance, object instantiation, method invocation or
attribute access. We consider that recovering
information about the object collaborations, including
the use of polymorphism, is indispensable for serious
recovery of pattern-based design constructions.

6. Conclusions and Future Work

This work has shown that it is possible to provide
automated support to the detection of problematic
constructions in object oriented applications. We have
incorporated this support as an “add-in” to a largely
used OO CASE tool, Rational Rose. Besides providing
support to the reengineering process of legacy OO
applications, this tool can also be a valuable aid to the
development of new systems. As the developer builds an
OO model, he can use OOPDTool to help him in
detecting potentially problematic constructions. This
support can bring benefits such as maintenance cost
reduction since it is much cheaper to fix a bad design
fragment before it is already codified and tested.

By using Prolog rules to define the constructions
detected by OOPDTool, it is easier to expand the scope
of detection. It is possible to add new heuristics,
patterns, and problematic constructions as new reports
in the technical literature appear and developers gain
more experience.
OODPTool can also be used to identify existing design

patterns in an application, even if it were not designed
with those patterns explicitly in mind. The design
patterns identification makes it easier to understand a
legacy system, and also highlights deficiencies in specific
parts of the system or even the lack of knowledge of well-
known patterns. This support allows the project manager
to detect the need to invest on training particular team
members in a way that they can learn and become
proficient on the use of those standard design patterns.

Since our approach is based on a metamodel
comprising not only static elements of an OO model such
as classes, their operations and attributes, but also
behavioral ones (method invocations, object
instantiation, among others), it is possible to detect
several design patterns and anti-patterns that are not
captured by other approaches based solely on structural
components.

We are currently working on a new version of
OOPDTool, incorporating machine learning techniques,
in particular Inductive Logic Programming (ILP) and
Case-Based Reasoning (CBR) [19]. The main objective
is to detect design constructions with structures similar
to a particular pattern but with some sort of variation
that makes it undetectable on an perfect matching
algorithm using the Prolog inference machine. To
achieve this goal, we are using notions of similarity
applied to first order logic based on works such as [21]
and [22]. As future work, we want to extend the tool so
that it will be able to learn new patterns and also refine
existing ones. This will increase the accuracy of the
pattern detection process.

Appendix A – Metamodel predicates

The predicates used in the representation of OO design
constructions are :
• package(Name,Stereotype,ParentName): represents

a package definition. A package is a general
mechanism used for organizing model elements in
groups.

• packageDependency(PackageClient,
PackageSupplier): represents a dependency
relationship between two packages: one is a client
and the other is a supplier.

• classifier(Package,ClassifierName,Stereotype,Type,
Abstract/Concrete,isLeaf,isRoot): indicates a class,
interface or basic data type definition.

• visibilityInPackage(Package, Classifier, Visibility):
represents the classifier visibility (public, protected,
private) in a package.

• realizes(Classifier,RealizedClassifier): represents
the existence of a realization relationship between
two classifiers as, for example, a class
implementing the operations defined by an
interface.

• inheritsFrom(SpecificClassifier,GenericClassifier):
represents an inheritance relationship between two
classifiers.

• attribute(Classifier,AttributeName,Scope,Visibility,
Type,Modifiability,Multiplicity,Aggregation):

indicates the presence of an attribute or a pseudo-
attribute (an association with a classifier) [21] in a
class definition. It also captures the attribute scope
(class or instance), its visibility (public, protected or
private), if its value can be modified or not, its type,
multiplicity (1 or many), and the semantic of the
association with the attribute type (association,
aggregation or composition).

• operation(Classifier,OperationName,Scope,
Visibility,Stereotype,Polymorphism,Abstract/
Concrete,Const/NonConst): represents an operation
defined in a class, indicating its scope (class or
instance), its visibility (public, protected, private),
stereotype (constructor, destructor, read accessor,
write accessor, other), if the operation can be
redefined by subclasses, if it modifies the object
state, and whether it is only a declaration (Abstract)
or a method implementation (Concrete).

• parameter(Operation, ParameterName, Order,
Direction, ParameterType): represents a parameter
expected by an operation. The direction indicates
whether it is an input, output, input/output or a
return value.

• creates(Caller,Classifier,Constructor): represents
the invocation of a class constructor resulting in an
object instantiation. This predicate indicates which
operation is responsible for the invocation (caller).

• destroys(Caller, Classifier, Destructor): represents
the invocation of an object destructor. This
predicate indicates which operation is responsible
for this invocation.

• invokes(Caller, Classifier, Operation, AccessType):
represents the invocation of an operation. Caller
corresponds to the method where this invocation
occurs, Classifier is the type of the called object.
Operation is the name of the called operation and
AccessType tells how the called object is known in
the caller method. AccessType can be the object
itself (self), a parameter, an object created in the
caller method (local object), a global scope object or
an attribute of the caller object.

• access(Operation, Attribute, AccessType): indicates
that an operation accesses a particular attribute.
This access can be a value retrieval or modification,
an operation call or even passing this attribute as an
argument in some operation call.

References

[1] G. Booch, “Object Oriented Analysis and Design with
applications”, 2nd ed., Addison-Wesley, 1994.
[2] G. Booch, I. Jacobson, J. Rumbaugh. “The Unified
Modeling Language for Object Oriented Development – UML

Semantics – version 1.1”, URL: http://www.omg.org. – 1997.
[3] K. Brown. “Design Reverse-Engineering and Automated
Design Pattern Detection in Smalltalk” . Master Thesis. URL:
http://www2.ncsu.edu/eos/info/tasug/kbrown/thesis2.htm,
1997.
[4] W. Brown, R. Malveau, H. McCormick III, T. Mowbray. “
Anti-patterns – Refactoring Software, Architectures, and
Projects in Crisis”, Wiley Computer Publishing, 1998.
[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.
Stal, “ Pattern-Oriented Software Architecture: A System of
Patterns” , John Wiley & Sons, 1996.
[6] M. Cinnéide, P. Nixon. “Program Restructuring to
Introduce Design Patterns. Proc. of the Workshop on Object
Oriented Software Evolution and Re-Engineering”, ECOOP,
1998.
[7] J. Coplien, D. Schmidt. “Pattern Languages of Program
Design 1” . Addison Wesley, 1995.
[8] J. Coplien, “ Software Patterns”, SIGS Books, 1996.
[9] S. Demeyer, S. Tichelaar, P. Steyaert. “FAMOOS –
Definition of a Common Exchange Model”. URL:
http://www.iam.unibe.ch/~famoos/InfoExchFormat/
[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides. “Design
Patterns: Elements of Reusable Object Oriented Software”,
Addison-Wesley, Reading, MA, 1995.
[11] I. Jacobson, M Christerson, P. Jonsson, G. Overgaard..
“Object Oriented Software Engineering”. Addison-Wesley,
Workingham, England. 1992.
[12] R. Johnson and B. Foote. Designing reusable classes.
Journal of OO Programming, 1(2): 22-35, June 1988.
[13] A. Koenig. “Patterns and Anti-patterns”. Journal of Object
Oriented Programming. March-April 1995.
[14] C. Krämer, L. Prechelt. “ Design Recovery by Automated
Search for Structural Design Patterns in Object Oriented
Software”. Proceedings of the Working Conf. on Reverse
Engineering, IEEE CS press, Monterrey, November 1996.
[15] D. Lea, Christopher Alexander. “An Introduction for
Object-Oriented Designers”. ACM SIGSOFT Software
Engineering Notes 19, 1, 1994.
[16] K. J. Lieberherr. “Adaptive Object Oriented Software. The
Demeter method with propagation patterns”. PWS Publishing
Company. 1996.
[17] R. Martin, D. Riehle, F. Buschmann. “Pattern Languages
of Program Design 3”. Addison Wesley, 1998.
[18] G. Maughan, J. Avotins. “A Meta-model for Object
Oriented Reengineering and Metrics Collection”. Eiffel
Liberty Journal. Vol. 1, No. 4., 1998. URL:
http://www.elj.com/elj/v1/
n4/metamodel/
[19] T. M. Mittchel. “Machine Learning” . McGraw Hill, 1997.
[20] Platinum Technology IP, Inc., Oakbrook Terrace, IL –
Paradigm Plus - www.platinum.com
[21] J. Ramon, M. Bruynooghe, and W. Van Laer. “Distance
measures between atoms”. In Proceedings of the CompulogNet
Area Meeting on 'Computational Logic and Machine Learning',
pp. 35-41, 1998.

[22] J. Ramon and M. Bruynooghe. “A framework for defining
distances between first-order logic objects. In Proc. of the 8th

International Conference on Inductive Logic Programming”.

Lecture Notes in Artificial Intelligence, pp. 271-280. Springer-
Verlag, 1998.
[23] Rational Software Inc., Santa Clara, CA. – Rational Rose
98 - www.rational.com
[24] A. Riel, “Object Oriented Design Heuristics”. Addison-
Wesley, 1996.
[25] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen. “Object Oriented Modeling and Design”, Prentice-
Hall, Englewood Cliffs, New Jersey, 1991.
[26] D. Schmidt, R. Johnson, M. Fayad, “Software Patterns”.
Communications of the ACM, Special Issue on Patterns and
Pattern Languages, Vol. 39, No. 10, October 1996.

[27] Software Composition Group (SCG) - FAMOOS Project.
URL: http://iamwwww.unibe.ch/~famoos.
[28] J. Vlissides, J. Coplien, N. Kerth. “Pattern Languages of
Program Design 2”. Addison Wesley, 1996.
[29] J. Vlissides. “Patterns: The Top Ten Misconceptions”.
Object Magazine, March 1997, SIGS Publications, Inc.
[30] W. Zimmer. “Experiences using Design Patterns to
Reorganize an Object Oriented Application”. Proc. of the
Workshop on OO Software Evolution and Re-Engineering,
ECOOP, 1998.

