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Estudamos neste trabalho a aplicação da teoria dos problemas inversos em geofísi- 

ca. Analisamos analítica e numericamente um problema geofísico inverso. Desen- 

volvemos o operador do problema gravimétrico direto. Analisamos diferentes oper- 

adores de regularização e algorítmos para resolver problemas inversos. É proposta 

a minimização usando a norma "Total Variation, TV" para a reconstrução de es- 

truturas em blocos em geofísica. Comparamos os resultados dos diferentes métodos 

numéricos para resolver o problema inverso em geofísica. Demonstramos que a abor- 

dagem através da  norma de "Total Variation ", permite a reconstrução da funções 

não-suaves da  distribuição de densidade, e que não é possível a mesma, quando 

usados os métodos de regularização convencionais.. Finalmente, um algorítmo "reg- 

ularized adaptive gradient minimization " é apresentado para resolver o problema 

de TV. 
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This thesis analyzes analytically and numerically the geophysical inverse prob- 

lem of gravimetry, which is the recovery of density variations in the earth from 

measurements of its gravity field on the surface or in boreholes. This inverse prob- 

lem does not have a non-unique solution. Standard regularizing operators used for 

its solution and for the solution of other geophysical inverse problems tend to pro- 

duce smooth models. I propose instead the use of the Total Variation norm (TV) 

for reconstruction of blocky structures in geophysics. Numerical simulations of the 

different regularization schemes suggest that an inversion based on the TV norm can 

effectively recover piecewise constant density functions which is usually not possible 

with conventional methods. An efficient algorithm minimizing the TV norm can be 

obtained by regularized adaptive gradient minimizaton of a discretized TV opera- 

tor. Numerical results inverting 2D blocky strctures using this algorithm allows to 

recover sharp density contrasts and edges present in the true model. 
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Capítulo 1 

O problema 

Neste trabalho estudamos o problema de reconstrução de funções não suaves a par- 

tir de dados gravimétricos na presença de ruído. As bases da teoria gravitacional 

foram estabelecidas pelo Marquês de Laplace em 1782, mostrando que o potencial 

Newtoniano fora de um corpo segue a equação, 

Não entanto, o problema direto que abordaremos neste trabalho, leva a uma 

equação mais geral que acima, válida também dentro de um corpo, e é chamada 

equação de Poisson. 

onde, G é a Constante Gravitacional e p (x) é a função densidade do meio. 

A solução analítica da equação de Laplace é obtida usando o Teorema de Green, 

e para uma dada densidade p (x) é, 

A equação 1.2 é um caso particular da Integral de Fredholm de primeira espécie 

e descreve a formulação para o problema gravimétrico. 
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Figura 1.1 : Esquema do problema de inversão gravimétrica 

Em forma compacta pode ser escrita como 

4 = Kgrazi ( P )  (1.3) 

onde o operador depende nos parâmetros do modelo do problema físico. 

1.1 O problema gravimétrico inverso 

O problema de inversão gravimétrica é, dadas algumas observações do potencial 

gravimétrico, queremos determinar a função densidade fonte. 



inverse gravimetrk operator 

Figura 1.2: Instabilidade do operador gravimétrico inverso 

1.2 O problema mal-posto 

De acordo com (Hadamard, 1923) um modelo matemático de um problema físico e 

bem posto quando: 

1) A solução do problema existe 

2) Tem somente uma solução para o problema 

3) A solução depende de forma contínua com os dados, (figura 1.2). 

A solução da equação 1.3 não cumpre a terceira condição (estabilidade), nem a 

segunda (unicidade). 

A equação 1.3 é mal posta. A unicidade da solução pode ser restringindo o espaço 

das soluções, mas devido a instabilidade do operador inverso K - I  O problema requere 

uma técnica especial para sua solução. 



Capítulo 

Soluções do problema de inversão 
gravimet rica 

2.0.1 Regularização geral suave 

A principal idéia da  regularização é encontrar a solução do problema inverso, trans- 

formando um problema inverso mal-posto, dado pela equação 

numa sequência de problemas inversos bem postos, dependendo num parâmetro 

(a), com a propriedade que quando (a + O) a solução (p" + p) ,  ou em outras 

palavras, que pequenas variações nos dados representam pequenas variações na 

solução. 

Regularização de Tikhonov 

O problema de achar uma solução aproximada para o problema inverso mal posto 

2.1 se reduz a construção do operador de regularização e a solução do problema para 

este operador [14]. 

O operador de regularização pode ser construido substituindo o problema mal- 

posto original em todo o espaço 2.1 por uma sequência de equações bem condi- 

cionadas dentro de um conjunto corredor, 



inverse gravimetric operator 

Figura 2.1: Operador regularizado para o problema gravimétrico inverso 

onde os operadores inversos E;' são contínuos (figura 2.1) 

O parâmetro de regularização a! , pode ser obtido a partir da amplitude do ruído 

nos dados. O conjunto corrector [14], selecionado a partir do espaço do modelo (X), 

é chamado Estabilixador ou Funcional Estabilixante. 

Funcionais estabilizantes suaves 

Baseados numa solução suave, as seguintes funcionais estabilizantes quadráticas são 

comumente utilizadas, 



2.1 Minimização regularizada não-linear 

Vários métodos podem ser desenvolvidos para a minimização da  funcional de Tikhonov 

Apresentamos neste trabalho um método adaptativo baseado na direção de 

máxima descida. 

2.1.1 Método do " adaptive regularized gradient " 

O problema é minimizar o funcional de Tikhonov, usando como função estabilizante 

2.2, a norma mínima da solução. Extensão para 2.3 e 2.4 , é análoga. 

min P f f ( P )  = min IIF ( P )  - bllZ + a IlP - Poli; 
,€Rn 

aonde F é operador não-linear do problema direto 

po é o modelo a priori 

Escrevendo 2.5 em termos do produto interno, temos 

min ( F ( P )  - 4 F ( P )  - b )  + (QP - Po1 P - PO) 

queremos 6,Pf f (p)  = 0, (6,, é o operador variacional com respeito a p )  e variando 

6, temos, 

~ , P f f ( P )  = ( W ' ( P )  - 4 F ( P )  - b )  + a (6pP - Po, P - PO) 

6 



agora, lembrando que se K é diferenciavel podemos escreve-lo em termos da 

derivada de Frechet Fi então, 

6, F (x) E F (x + 6,) - F (x) = F)Jp 

então 

6pPa(P) = 2 (~3,, F(P) - b) + 20: (dp, P - Po) 

usando a definição de operador adjunto em [14] temos, 

ent 50 

= 2 (6P, (q)' (F(P) - b) + a (P - Po)) 

mas, queremos SPPa(p) = O para qualquer Sp, então é necessário que 

que são as equações de Euler-Lagrange. Para construir um processo iterativo 

para achar a solução, consideremos pk+~  como, 



usando a parte linear de 6,P" ( p ) ,  

onde O" é o tamanho do passo 

s" ( P )  = [@)*  (F(P) - b )  + a ( P  - Po)] ff 

e g" (p)é  a direção de máxima descida da funcional P" ( p ) .  

Para verificar que g" ( p )  é uma direção de descida da funcional P f f ( p )  , calcule- 

mos 6,Pa(p) ; 

6,Pff(P) = 2 (-Q"g" ( P )  1 g" ( P ) )  + 0 

devido a que (g" ( p )  , g" ( p ) )  > O . 

Então, temos, 

o tamanho do passo pode ser determinado utilizando uma minimização unidire- 

cional da funcional de Tikhonov. 

min (0,) = Pf f (pk+ l )  = P" (pk - okgk (pk ) )  
&€Rn 

O parâmetro de regularização a é uma seqüência de números reais (a  O...a,) , 

com ao > N , e a, < M , aonde N e M são usualmente um valor grande e pequeno, 

respectivamente e depende da naturaleza do problema. 

2.2 Problema discreto de inversão gravimétrica 
suave 

O problema discreto pode ser obtido a partir da redução do problema a dimensão 

finita. 



Representaremos como K , a matriz obtida do operador linear E. 
teremos então, quando a função estabilizante é a norma mínima da. solução, 

min PU(p) = min IKp - b l i  
P 

e no caso da função estabilizante é o operador 



Capítulo 3 

Regularização alternativa 
não-suave 

3.1 Definição da seminorma de Variação Total 

(TV) 

A definição de seminorma de Variação Total (TV) é, como em [3], 

J,, =def sup (-u div V) dx 
V E U  

aonde v são funções teste que, 

v = {v E C: (R, R ~ )  v(x)l 3 1 para todo x E R} 

Analizemos a seminorma TV. Por simplicidade consideremos o caso de uma 

função contínua 1D (fig. 3.1). 

3.1.1 TV para uma função continua 

Da definição 3.1 podemos escrever 

Caso: lD, e ucC1 (Ro,J 

Jtv = sup L -u v, dx = 
,EU 

integrando por parte temos, 



Figura 3.1: Exemplo função contínua 1D 



1 sup - (-U, V)  dx + uv I. = 
v E u  

mas como, v E C: (a, R ~ )  , então 

e se ter 

então obtemos 

Jtv = S, IuxI dx 

De 3.2 podemos ver que a definição 3.1 nos da  a variação da função no domínio 

R 

Consideremos agora para o caso discontinuo (fig. 3.2). 

3.1.2 TV para funções discontinuas 

Da definição 3.1 podemos escrever para uma função discontínua (fig. 3.2, 

Caso: lD ,  e ucCO (Ro,l) 

J~, = sup J -u v, dx = 
v E v  R 

dividindo a integral a cada lado da descontinuidade teremos, 

J~, = sup { lim - ia -u v, dx+ 
V E U  a t a -  

e integrando por partes em ambos termos, obtemos 

J,, = sup ( l im Jo- u v, dx - u(a)u(a) + 
V E U  a-ta-  



Figura 3.2: Exemplo função descontínua 1D 



e como v  E C,L (R, R ~ )  , então 

Jt, = sup [-v ( a ) u ( a - )  + v ( a ) u ( a + ) ]  
,Eu 

e para 
+1, (.(a+) - .(a-)) > O 

v ( a )  
-1, ( u ( a S )  - u ( a - ) )  < O 

então obteremos, 

Jt, = Iu(a+) - u ( a - )  1 
e também neste caso, pode ser visto que é obtida a variação da  função no domínio 

R. 

Apresentaremos agora, o problema de inversão gravimétrica usando a TV como 

estabilizador. 

3.2 TV no problema gravimétrico inverso. 

Usando a definição 3.1 podemos escrever para o problema gravimétrico em 2D, 

3.2.1 Equações de Euler-Lagrange para o problema PFV(p, b )  

As equações de Euler-Lagrange para o primero termo de 3.3 podem ser deduzidas a 

partir do apresentado no Capítulo 2. Para o segundo termo de 3.3 teremos,. 



2 

4.. ( p )  = 6,i, \j (E)) + (g) dx1dx2 = 

e colocando o operador b, dentro da  integral 

variando 6,, obtemos 

e reagrupando, 

e usando o Teorema de Green podemos escrever, 

então 3.4 sera satisfeita quando, 

finalmente as equações de Euler-Lagrange 3.3 podem ser escritas como, 





Capítulo 4 

Discret ização e Regularização 

O problema de minimização para o problema de inversão gravimétrica é, 

4.1 Discretização do operador do problema di- 
reto 

Na Figa. 4.1, apresentamos o esquema de um modelo discreto usado em diferentes 

aplicações geofísicas, aonde R = {R(ij), i = 1. .. .n,  j = 1. .m). 

A função p ( x )  é "piece-wise constant " e é dada. A mesma pode ser escrita 

como, 

í 1, x E Rilj 
onde Xi,j(x)= O nos outros casos 
e b ( y ) j  são os dados discretos obtidos em alguma parte do domínio 80. 

Da solução da  equação de Poisson temos, 



Figura 4.1: Discretização usando blocos rectangulares 



1 
g ( ~ )  = W = T  J R P(XP; d n  

mas, os gravímetros medem somente a componente vertical do vetor da gravi- 

dade, então teremos, 

A avaliação desta integral para diferentes geometrias é bem conhecida, alguns 

exemplos são [18], [29]. Uma abordagem comum é integrar 4.2 ao longo do eixo (x3) 

que tem densidade constante obtendo uma integral da  forma, 

Usando a observação que esta superfície de integração é equivalente a integração 

em dos passos ao longo do contorno da  superfície (F,) , teremos 

a solução numérica de 4.3 para um prisma rectangular pode ser encontrada em 

[18], [29], etc. e pode ser escrita, 

DO2-de-x log  + b 10g 

A figura 4.2 mostra as quantidades envolvidas em 4.4. 

Seja bj = dado discretos observados no ponto j, {j = I, .... m) e p ( x ) ~  = densi- 

dade constante no bloco i , então usando a notação matricial podemos escrever 



Observation 

Point . 
X 

Figura 4.2: Quantidades para o cálculo do efeito gravimétrico de um prisma 

aonde 

kij (x, y) = 2 7 DO2 - dO - x 10g 

e K é o operador gravimétrico direto. 



4.2 Discretização semi-norma TV 

Na figure 4.1 a densidade a ser calculada p (x) está representada num espaço em 2D 

, com x = (xl,  x2) e p (x) = p (xl,  2 2 ) .  Para o cálculo dos operadores da derivadas 

discretas na expressão da semi-norma TV 4.1, converteremos p (xl ,  xz) em um vetor 

em 1D vetor, usando uma ordenação linha a linha. 

4.2.1 Operador discreto das derivadas nas direções hori- 
zontal e vertical. 

Para a direções horizontal (xl) e vertical (x2), as derivadas discretas da função de 

distribuição de densidade no ponto i, j podem ser escritas como, 

8 ( P )  Pi , j  - P i , j + ~  

(.i)..- 2 ,J Ax2 

aonde Axl e Ax2 são o cumprimento do bloco. 

Ou então podemos escrever, 

Pll ) 

Pi j  

Pzx / 



Usando os operadores acima nas (eqs. 4.6 e 4.7) podemos escrever o operador 

discreto da variação total da  densidade como, 

TV (P) r C JIDxl (p)ljJ + [ D X ~  ( P ) I ~ ~ A X ~ ~ X ~  
23 

então o funcional discreta de Tikhonov pode ser escrita como, 

e nosso objetivo é PFTV + min 

4.3 Calculo discreto da variação da semi-norma 
TV 

A variação da semi-norma TV usando uma "forward approximation " da primeira 

derivada de 4.8 pode ser avaliada como, 

aTv (P) " ' T V  (p + qk16p) - TV (p) 
8Pkl 6, 

1 s e i = I c , j = l  
onde, r$ = 

O nos outros casos ' 

~ubstituindo'4.8 em 4.10 obtemos, 



C {[""I (P ) ] ,  + [""I ( P N }  t Ax1Ax2 
ij 23 

então as equações discretas de E-L são, 

1 

aonde, 
, ,  l s e i = k ,  j = l  

"j - O nos outros casos 

4.4 Solução das equações de E-L usando o método 
de "Adaptive Gradient Minimization " 

O algorítmo pode ser descrito sumariamente como, 

set a = a~ , p  = po 

23 



do until stopping criteria for [a] 

do until stopping criteria for [pk+,] 

end do [ ~ k + l ]  

choose new a by decreasing criteria 

end do [a] 

aonde a~ parâmetro de regularização, tomado para o problema sendo resolvido. 

Uma escolha muito grande do a~ fará o processo de minimização lento e uma escolha 

muito pequena de a~ fará o processo de minimização instável. 

po é o modelo apriori. Este é um ponto crítico do algorítmo. Usualmente esta in- 

formação é providenciada por levantamentos geológicos ou geofísicos prévios. Neste 

trabalho o objetivo são estruturas geológicas não-suaves. 

A importancia do modelo apriori (po), pode ser entendida se olhamos para o 

processo de regularização, como uma forma inteligente de introduzir informação 

para resolver o problema inverso mal-posto. Outra importante informação, pode 

ser introduzida através da escolha apropriada da função estabilizante, que melhor 

reflitam as propriedades da solução esperada. 

O algorítmo de "adaptive gradient minimization "avalia a solução sempre em 

menos de um par de minutos no pior caso, usando uma estação de trabalho "DEC3100n. 



O código do programa foi escrito em Matlab altamente vetorizado. Uma interface 

amigável está em desenvolvimento. 



Capítulo 5 

Resultados 

A figura 5.2 uma tentativa de recuperar a função densidade quando não é usada 

nenhuma regularização e o domínio da função é dividido em 240 blocos, tornando o 

problema altamente mal condicionado. 

O resultado é esperado e mostrado na figura 5.2 , aonde a amplitude da função 

solução é correta, mas sem nenhum significado físico (geológico). 

O resultado usando o operador da primeira derivada em 2D como apresentado no 

cap '3, é mostrado na figura 5.3 . Este resultado é um avanço importante na correta 

solução física do problema, quando comparado como 5.2 , mas falha em recuperar 

as características da função distribuição de desnsidade verdadeira. 

Um novo avanço na recuperação das características quando a função da dis- 

tribuição de densidade é não suave, é apresentada na figura 5.4, aonde foi utilizada 

a minimização da Variação Total da densidade na solução do problema. inverso. 

Uma imagem mais próxima da função não-suave original, foi possível ser recu- 

perada, devido ao fato que a funcional de TV não penaliza as discontinuidades ou 

variações rápidas na solução. 

A regularização convencional é fundamental para a obtenção de uma solução 

física viável. A regularização usando a norma de TV permite também a possibilidade 
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Figura 5.1: Distribuição de densidades do modelo verdadeiro 

de reconstruir funções de densidade não suave, o que não era possível dentro das 

aplicações geofísicas até o presente. 
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Figura 5.3: Solução usando a primeira derivada em 2D como Funcional Estabilizante 
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Capítulo 6 

Conclusões e Problemas em 
aberto 

6.1 Conclusões 

Uma forma de "definir " regularização, é como uma forma inteligente de intro- 

duzir informação a priori no  processo de inversão do problema físico mal posto. O 

método de regularização proposto baseado na funcional de TV é uma ferramenta 

mas apropiada que os métodos convencionais quando o objetivo e recuperar soluções 

não-suaves. 

Para o problema de inversão do potencial gravitacional, distribuições não suaves e 

com formas não-suaves, são melhor reconstruidas quando usada a norma de Variação 

Total da  solução como funcional estabilizante, ao invés dos operadores de regular- 

ização standard. 

Um algorítmo computacionalmente efetivo foi desenvolvido, usando uma approx- 

imação discreta das equações de Euler-Lagrange do problema de inversão gravimétrica, 

evitando a solução de uma equação de derivadas parciais em cada iteração. 

O algorítmo de " adaptive gradient minimization " foi implementado para resolver 

o problema numericamente, e mostrou ser eficiente para este tipo de problemas. 

E mostrado que os resultados obtidos neste trabalho para o problema de inversão 

gravimétrica podem ser estendidos para outras aplicações geofísicas. 



6.2 Problemas em aberto 

a) Discretização e regularização ou regularização e discretização como estratégia de 

solução. 

b) Um melhor entendimento dos efeitos da  norma TV, além dos analizados neste 

trabalho. 

c) Extensão para outras aplicações geofísicas. 

d) Definição da norma de Variação Total Variação vetorial em problemas geofísicos 

não-lineares e anisotrôpicos. 

e) Algorítmos eficientes para problemas de grande porte. 
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ABSTRACT 

This thesis analyzes analytically and numerically the geophysical inverse prob- 

lem of gravimetry, which is the recovery of density variations in the earth from 

measurements of its gravity field on the surface or in boreholes. This inverse 

problem does not have a non-unique solution. Standard regularizing operators 

used for its solution and for the solution of other geophysical inverse problems tend 

to produce smooth models. I propose instead the use of the Total Variation norm 

(TV) for reconstruction of blocky structures in geophysics. Numerical simulations 

of the different regularization schemes suggest that an inversion based on the TV 

norm can effectively recover piecewise constant density functions which is usually 

not possible with conventional methods. An efficient algorithm minimizing the TV 

norm can be obtained by regularized adaptive gradient minimizaton of a discretized 

TV operator. Numerical results inverting 2D blocky strctures using this algorithm 

allows to  recover sharp density contrasts and edges present in the true model. 
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CHAPTER 1 

EXTENDED ABSTRACT OF THE 

WORK 

Inverse problem of gravimetry is to determine the density distribution in the 

earth from measurements on its Gravity field (or its derivatives) on the surface 

or in boreholes. It  is well known to be non-unique in its general form. Discrete 

numerical formulations which can be unique are often ill-posed - a small variation 

in data can cause very large variation in the solution. 

Since, data can only be obtained a t  a discrete number of points and are contam- 

inated with noise, the inverse problem needs regularization. 

Different regularization techniques commonly used for solution of this inverse 

problem, and others inverse problems give reasonable solutions; however, they fail 

to  recover non-smooth density functions. 

I propose to use the Total Variation norm (TV) as a stabilization functional in a 

Tikhonov regularization scheme for reconstruction of blocky geophysical structures 

(i.e. piecewise constant density models). 

We show for a number of models in geophysics that the minimization of Total 

Variation norm permits reconstruction of sharp density contrast, which is not pos- 

sible with conventional regularization methods. This new approach is a promising 

research area since recover of non-smooth solutions to geophysical inverse problems 

has economically important application in exploration for ore bodies, detection of 

faults, mapping the shape of oil reservoirs, and in geotechnical surveying. 

We developed an alternative scheme to solve the Tikhonov parametrical func- 

tional with a TV stabilizer for the inverse gravitational problem, having the advan- 

tage to avoid to solving a partia1 differential equation on each iterakion, as did the 



procedures that have been used before in image denoising. The algorithm is based 

on discretizing the original problem first and then regularizing. 

A regularized adaptive gradient minimization algorithm is presented to solve the 

Tikhonov parametrical functional with a TV stabilizer. 

Finally an extension to other geophysical problems is shown, presenting the 

basic background involved in the construction of the forward operator for the other 

two main areas in geophysics, electromagnetic and seismic. It  can be seen that 

electromagnetic and seismic problems can be reduced to an analogous operator 

equation as for the inverse gravimetric problem studied in this thesis. Hence we 

expect that the results of the research are applicable in these situations as well. 

1.1 Structure of the thesis 
In chapter one we introduce the problem. We present the concepts for the 

evaluation of the forward operator for the gravitational potential problem. We 

discuss the inverse gravimetric problem and the special features of the inverse 

operator. It is shown that the problem has non-unique solution and that the 

solution does not depend continuously on the data. Therefore it is ill-posed in 

the Hadamard sense. In the situation when the available data are discrete and 

contaminated with noise, its solution requires application of regularized technique. 

In chapter two, we analyze analytically and numerically the inverse problem of 

gravitational potential. We introduce the Tikhonov regularization operator and the 

common stabilization functionals in use in geophysics to solve the inverse problem, 

which are quite efficient for reconstruction of smooth solutions, however they fail 

to recover non-smooth functions. 

We introduce the adaptive minimization basis for the minimization algorithm for 

the Tikhonov parametrical functional and show how the regularization parameter 

can be chosen. 

In chapter three, we present an alternative regularization. For non-smooth 

functions we introduce the Total Variation semi-norm and describe previous works 

in image processing. We illustrate the TV semi-norm for a 1D continuous and 

discontinuous functions. 



We present the 3D inverse gravity problem (where the function density is con- 

stant in one direction) when use the TV stabilization functional. 

We discuss a technique used in a11 denoising problems which ends up with a 

partia1 differential equation. 

In chapter four, we present an alternative solution scheme for the solution of 

the inverse gravity problem with a TV stabilizer, discretizing the parametrical 

functional and then regularizing the obtained finite dimensional operator. We 

present the discretization of the forward operator, the discrete derivative operators 

in both (x1,x2) directions, build the discrete Total Variation operator and the 

discrete first variation of the discrete TV operator. 

We present an adaptive gradient minimization technique to  solve the discrete 

Euler-Lagrange equations, avoiding solution of a PDE in each step of iteration as 

in the previous approaches. 

In chapter five we analyze the numerical results. We use a simulated example of 

density distribution (Bassrei, 1993 [I]) with sharp edges and sharp contrast, which 

make this function ideal to evaluate results from the different inversion schemes. 

We show an unphysical result, when no regularization is applied. We show 

the improvement obtained in the results, when used a smoothing criteria, like the 

2D first derivative stabilization functional. For large discretization the solution is 

stable and is more close to the true function, however fails to reconstruct the sharp 

features of the original density distribution function. 

We show the result obtained when the minimization of the total variation of the 

density function is performed, bringing the non-smooth features that were not able 

to  be recovered with the standard regularization techniques. This result represents 

an important advance in the geophysical inversion schemes, since many practically 

important density distributions are non-smooth functions. 

To better illustrate and compare the numerical results obtained in the different 

inversion schemes, we present the results of a sequence of iterations obtained during 

the inversion process for different inversion algorithms for the same problem, using 

the true model as a starting point. These numerical results obtained in the different 



inversion schemes, show how the initial solution is destroyed when smoothness is 

imposed by stabilizing operators. On the other hand, results show how TV stabilizer 

preserves the initial information during the inversion process, denoises it and fits 

the observed data. 

We analyze the monitoring result of the implemented adaptive gradient mini- 

mization in severa1 situations, showing the algorithm performance in terms of the 

number of iterations. 

In chapter six we present the conclusions of this thesis and the further research 

to be done in the direction of this work, which represents the first step in the 

recovering non-smooth density functions for the inverse problem of gravitational 

potential. 

Finally, we discuss the extension of this work for other fields in geophysics. 

1.2 Introduction 
In this work we study the inverse gravimetric problem. Geological structures 

such as a mineral deposit, an oil reservoir, a fault, a geotechnical structure, etc., 

having different density than the background earth, generate a gravitational field 

which changes slightly the gravitational field of the earth. This difference in 

gravitational field is noticeable on the surface of the earth and can be measured. It  

is called gravitational anomaly due to the underground body. 

The forward gravimetric problem is to  calculate the gravity anomaly generated 

by the underground body when the location of the body and its density contrast 

are known. The solution of this problem helps to build more accurately instruments 

that fit the necessary requirements and can be used in comparing anomalies caused 

by different gravimetric bodies. The opposite problem which is known as the 

inverse problem in geophysics is to  recover the location of the body and its density 

distribution from measured gravitational anomaly due to this underground body. 

More generally, the forward problem in geophysical research consists in the 

study of the response of a media with certain physical properties to different 

kinds of natural or artificial excitations. The most important geophysical fields are 

gravitational, magnetic, electromagnetic and seismic. These fields depend primary 



on the physical properties of the media (for example, properties of the rocks in an 

underground study). The inverse problem is to  determine the physical properties 

of the medium from measurements of its response to different natural or artificial 

excitations. 

Different geophysical methods are available today for solution of the forward and 

inverse problems, which are one of the main interest in the geophysics research. 

In this work we study the inverse gravimetric problem and, especially, reconstruc- 

tion of non-smooth functions from the data in the presence of noise. The basis of 

the theory of gravity fields was established in 1782 when Marquis de Laplace showed 

that the Newtonian potential (4) outside a body obeys a differential equation which 

is called now Laplace equation, 

Inside of the body the potential (6) satisfies the Poisson equation. 

where y is the Gravitational Constant and p (x) is the density function of the 

medium. When the function p (x) is known this equation describes the forward 

problem for gravitational potential. 

The analytical solution for the Poisson equation (1.1) is given by the Green's 

Theorem. For a given density p (x) the potential (4) a t  point y is, 

where G (y, x) is the solution for a point mass and R is the domain of integration 

corresponding to  the underground domain. 

The equation (1.2) is a particular case of a Fredholm integral of the first kind and 

describes the forward formulation for the gravimetry problem, or operator equation 

of the first kind ( [4]), 



where the operator K is definec cl by equation (1.2). A more detailec 

for the gravimetric problem will be approached in the next sections. 

6 

(1.3) 

i derivation 

1.3 Gravimetric Forward Models 

In this work we want to determine the location and shape of a blocky structure 

in the subsurface. The previous works dealing with gravimetric inverse problem 

developed effective and stable algorithms of solution of problem when the density 

function is smooth, for example [I]. 

In the contrast, we are not interested in structures that present smooth changes 

in densities or bodies without sharp shapes in the structure. 

Blocky structure is an often encountered object among geological and geotech- 

nical structures, examples are faults, mineral deposits, dikes, etc.. 

The methods developed previously for solutions of inverse problems give good 

results when recovering geological models where can be imposed smoothness of the 

solution, however, they fail to  recover non-smooth density function distributions. 

Our model is schematically represented in fig. 1.1. 

The forward problem is to calculate the gravitational potential generated on the 

surface by the underground distribution of mass. The corresponding operator is 

(1.3). 

We can consider a continuous distribution of mass as a collection of individual 

infinitesimal masses. The gravitational potential of a collection of masses is the sum 

of the gravitational attraction of the individual masses (superposition principle). 

The attraction of two particles is stated by Newton law, so we can write the 

potential of a body (figure 1.2) with density function p in the domain R , as 

where dm is the mass of an element of the volume dv, dv = dxdydx. 

The gravitational field is the gradient of the potential, 
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Figure 1.2. Gravitational attraction due to  a density distribution p. 



+ 
The component Fiof the vector field F in any direction 2 is equal to the 

derivative of the potential4 (work) in that direction, then in a Cartesian coordinate 

system the field in the x direction is 

analogously, we can obtain the component in the y direction, 

and in the z direction 

The function r is the distance from the observation point (x', y', z') to the point 

(x, y, z) inside the body, 

Taking derivative of the function r we obtain 

Adding the three components of the field we obtain 

F (x l ,  y', 2') = V 4  = F,;~ + F,;~ + F,;~ 



This is the total gravity field a t  the point (x', y', z') for a given mass distribution. 

Let r' be the unit vector 

[(x - x') i'% + (y - y') + (z - zl) i] 
T ) =  

Substituting this expression in (1.5) we obtain the final expression for the total 

gravity vector for a given anomalous mass. 

(1.6) 

Calculation of F for a given density function p is called the gravitational forward 

problem. 

1.4 The inverse gravimetric problem 
The inverse gravimetric problem is the following: given some observations of the 

gravity field, we want to determine the density function generating this gravitational 

field. Most gravimeters used in geophysical exploration do not measure the vector 

field F, they measure instead the variation in the vertical component of the total 

field (1.6). Hence the observed field gravity data are measurements of z-component 

of the gravitational field. 

Then the inverse gravimetric problem is to determine the unknown density 

function from measured vertical derivative of the potential: 

1 
observed-field-data (2') = -y 1 - (z - z') p (x, y, z )  dv 

R r3 (1.7) 

The inverse gravimetric problem is illustrated in Figure 1.3. In operator form: 

where b is measured vertical component of the field and Kg,,, is an integral 

operator (1.7). Hence the inverse problem for the gravitational potential can be 
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Figure 1.3. Inverse Gravimetric Scheme 



formulated as an inverse problem for a completely continuous operator. Unfortu- 

nately it can be shown ([4]) that the inverse operator K-' is not continuous . This 

implies that the solution ( p )  does not depend continuously on the measured vertical 

component of the gravitational field. 

1.5 111-Posed Problem 
According to (Hadamard, 1923) a mathematical model for a physical problem is 

well posed if: 

1) The solution to  the problem exists (existence) 

2) There is only one solution to the problem (uniqueness) 

3) The solution continuously depends on the data (stability) 

The solution for the equation (1.8) fails the third condition (stability), as well 

as the second (uniqueness). This is illustrated in figure 1.4 . 

Hence the gravity problem is ill-posed in the Hadamard sense. In this work 

we will concentrate on recovering a feasible physical solution when the problem 

is unstable. Also, the lack of stability can be considered as the most important 

obstacle for the solution of equation (1.8). The existence of the solution can 

be obtained by enlarging the solution space, and uniqueness, by increasing the 

restriction to the solution, but the lack of stability will require changes on the 

topology of the spaces. The theoretical background for the understanding and 

solution of ill-posed problems was stated by Tikhonov in 1943 [13] and in many 

publications by different researchers since then. In our work we will use Tikhonov 

approach for the solution of (1.8). 

1.5.1 Noisydata 

In this work we want to recover the density function distribution from an ob- 

served data. The first consideration is that any instrument used to measure these 

responses have limited accuracy, hence we have 

observed-data = theoretical-data + instrument-error 



inverse gravimetric operator 

Figure 1.4. Instability of the inverse gravimetric operator 



In practice, the observed readings are subject to many other sources of error, 

such as error of positioning, measuring fields components slightly deviated from the 

vertical, cultural noise, etc.. We just write 

observed-data = theoretical-data + noise 

where the noise term is the sum of contribution of errors from different sources. 

In most real situations there is not available much information about the noise 

characteristics in the observed data, due to the complexity involved in the field 

reading operation process. In our work, we will consider that the noise leve1 is 

bounded by a known value (E) as the only assumption. 

Then our inverse problem now can be written as 

K (p )  = b + b, 

with llbEll = E .  

Operator equation (1.9) is ill-posed (Lavrentev, [15]). This means that in the 

presence of a noise of small amplitude, we obtain a solution far away from the true 

one, due to the instability of the inverse operator K-l.  The problem requires a 

special technique for its solution. 



CHAPTER 2 

SOLUTIONS FOR THE INVERSE 

GRAVITY PROBLEM 

2.1 No Regularizat ion 
The inverse gravimetric problem was developed intensively in the 60's, when 

potential methods were in use in exploration geophysics [29], due to the fact that 

these methods were not very expensive and they gave good structural information 

about the subsurface. Since then, many regularization and optimization techniques 

were introduced to solve different types of inverse gravimetric problems. Most of the 

published works up to 1977 discussed mainly Minimum Least Square approaches. 

Then later papers were presented which used Linear Programming to solve this 

problem [17]. Later in 1980 some works solving the inverse gravimetric problem 

were published using Quadratic Programing [16]. 

One of the important references for the ill-posed problems arising in mathemat- 

ical models of physical problems was presented in Tikhonov, 1977 [14]. Since then 

many inverse gravimetric schemes were approached using the term "general smooth 

regularization " . 

2.2 General Smooth Regularization 
The main idea behind regularization is to find the solution of the inverse problem 

transforming one ill-posed inverse problem, given by the operator equation (1.9) 

K(p)  = b, p E X, b E D (2.1) 

where X and D are Hilbert spaces of density functions and the data, respectively, 

and b = btrw + bnoise , with Ilbnoise 1 1  = E 



in a sequence of well posed inverse problems depending on a parameter (a), with 

the property that  when ( a  + 0) the solution (p" -+ p). In other words regularized 

algorithm of solution of (1.9) provides a stable solution such that small variations 

in the data generate small variations in the solution. 

We will introduce some concepts for the understanding of this work, but the 

complete theoretical details can be found in [14]. 

2.2.1 Tikhonov Regularization 

Let distance between functions b and btTue in the space of data D be pD(b, btrue) 

and distance between the models p and ptrue in the space of models X be px (p,, ptrue). 

Definition 

An operator R(p, a) , a being a scalar parameter, is called the regularizing 

operator in some vicinity of the element btTue = K(ptrue) if there exist a function 

a (b) such that for any E > O it can be found a positive number b (e) such that if 

then 

where 

Pa = R (4 a (6)) (2.2) 

and it is illustrated in (figure 2.1). 

Then the problem of finding an approximate solution for the inverse ill-posed 

problem (2.1) is reduced to constructing a regularization operator (2.2) and solving 

the problem for this operator (figure 2.1) . Having introduced supplementary infor- 

mation about the solution, a regularizing operator can be constructed substituting 

the original ill-posed problem (2.1) by a sequence of well posed equations 



where the inverse operators K;'are continuous. 

The regularization parameter a , can be obtained from the amplitude of the noise 

in the data. A method of construction of a regularized operator was developed in 

Tikhonov which is based on selection of Stabilization Functional. 

Definition 

Let J (p) be a non negative functional in some metric space ( X ) .  J (p) is called 

Stabilization Functional, if for every number m > 0, the subset of elements p in X 

for which J (p) < m is a compact set of (X) and contains the solution ( p t r U e ) .  

The main application of the Stabilization Functional is to select from a11 possible 

solutions the ones that continuously depend on the data so that the problem can be 

reduced to the problem of minimization of stabilization functional on the correctness 

set or subset of possible solutions F,, 

min J (p) 
P E F ~  

with 

Fc = { P , ~ D  ( K  (P) , b )  E )  

This gives a clear interpretation of J as known in advance or prescribed proper- 

ties of the solution, such as belonging to specified class of functions, for example, 

smooth ones. 

2.2.1 .O. 1 Regularized Minimization Problem, Tikhonov Approach It 

can be proved ([30]) that if the problem has a solution, the solution occurs on the 

boundary of the constrained region. Thus, we can solve the problem of minimization 

of (2.3) subject to 

Introducing the Lagrange multiplier a we can write the Tikhonov Parametric 

Functional as an unconstrained functional Pa (p ,  b) ,  p E X ,  b E D , given by 



Pff (P, b) = ~ 2 ,  (K (P) , b) + aJ (P) 

and solve the unconstrained problem 

min P" (p, b) (2.4) 

where b is observed gravitational data and a is an unknown regularization 

parameter,which can be determined using the condition, 

Here c2 is the noise leve1 and p, is the solution of the minimization problem 

(2.4). 

Minimization problem (2.4) is a regularized problem. Its solution defines the 

operator R (a, b) such that the solution p can be obtained as 

p" = R (a, b) 

R (a, b) is a regularization operator for the original ill-posed problem (2.1). 

Now we can use this approximation of the solution of 2.1 as a new minimization 

problem (Pff (p, b) -+ min) and take smaller values of the errors 6 closer to the 

original problem. We have replaced the initial ill-posed problem, by a sequence of 

problems where the operator R (a ,  b) is well posed. Our next consideration will be 

the selection of the stabilization functional. 

2.2.2 Smoothing Stabilization Functional 

Based on the smoothness of the solution the following quadratic stabilization 

functionals are commonly used [14], [15] 



JB(P)  = J I V P  ( x )  I 2  dx  
R 

with l ~ p ( x ) 1 ~  = (e)2 + (e)2 + (e)2 , or 

aZp(.) + a2,(x) a2,(x) with A p  ( x )  = ( a.; + ax; ) . 

2.3 Regularized non-linear gradient minimizat ion 

Different optimization schemes can be developed to  minimize the Tikhonov 

functional. We will illustrate the solution for the first case (MN), and analogously 

the methods were obtained for the other stabilization functionals presented in this 

work, in a11 cases using the gradient technique. In chapter 4, the implemented 

Adaptive Gradient Minimization algorithm will be described. 

2.3.1 Euler Lagrange Equations 

Let us consider a general non-linear forward operator F and the inverse problem 

for this operator. The minimum norm stabilization functional J (p)  = llplli is 

sometimes used in a form J (p)  = llp - po112 , where po is some apriori model. 

We want to minimize the Tikhonov parametric functional 

min Pf f (P)  = min IF  ( P )  - b112 + a IlP - Poli: 

where F is the forward non-linear operator, and 

po is the apriori model. 

Written in terms of inner products, the minimization problem is: 

The optimality conditions state that the solution of the minimization problem 

should satisfy the requirement that the variation of the functional with respect 

to p equal 0, 6,Pa(p) = O. Let 6, be the variational operator with respect to p, 

6, J = J ( p  + 6p) - J (p )  . Varying we will have, 



= 2 ( f iPF(P),  F(P) - b) + 2~ (SP, P  - Po) 

For differentiable F we can write in terms of the Frechet derivative FL , 

Then 

~ , P " ( P )  = 2 ( q p ,  F(P) - b) + 2~ (6p, P  - po) 

using the definition of adjoint operator, 

= 2 ( JP ,  ( q *  (F(P) - b ) )  + 2a (Jp ,  p  - po) 

then we obtain, 

= 2  ( S P ,  ( q *  (F(P) - h) + a ( P  - Po)) 

The requirement b,Pff(p) = O for any 6p, implies that;  

( q *  (F(P) - b) + a ( P  - PO)  = 0 (2.7) 

These are the Euler-Lagrange equations for the minimization problem (2 .5) .  

2.3.2 Gradient technique 

To construct an iterative process to  find the solution, let us take the Sp in (2.6)  

as a linear part of the 6,P" ( p ) ,  which corresponds to  the steepest ascent direction 

of P" (P)  

6P = -Q" [ ( q *  ( F ( P )  - b) + a ( P  - PO)]" = -Baga ( p )  

where -8" is the stepsize and 



s" ( P )  = [@)*  (F(P) - b) + a ( P  - Po)] 0 

and -ga (p )  is the steepest descent direction of the functional P a ( p ) .  

To see that this is a decreasing direction of the functional P a ( p )  , let us calculate 

~,P"(P)  ; 

because (g" ( P )  1 g" ( P ) )  2 0 . 
The step size (for a fixed value of a ) can be determined using one dimensional 

minimization procedures for the parametrical functional. 

Let pk be a solution constructed on the k iteration step and p k + ~  be the next 

approximation, pk+l = pk - 0;c"g;c" ( pk ) ,  where g: is the gradient of the parametrical 

functional P" at  the point pk. In order to  find the stepsize 8; we need to  solve the 

following unconstrained minimization problem: 

The regularization parameter a is one from a sequence of real numbers (ao. .  .a,), 

with ao > N , and a, < M , where N and M are usually a big real value and a 

small one, respectively, and depend on each specific problem. 

2.3.2.1 Euler Lagrange Equat ions for gravit at ional 
problem 

In the gravitational problem we deal with linear operator (1.8) and we assume 

no apriori model is given, then the regularized inverse problem can be formulated 

as a minimization problem, 

min IK ( P )  - bll2 + a lPl2 

The E-L equations for this problem are 



2.4 Choosing t he regularization parameter 

The automatic choice of the regularization parameter will influence the perfor- 

mance of the iterative minimization process of the Tikhonov parametrical func- 

tional. This is an important research area and many works have been published 

in this direction. In this work, we will not determine the regularization parameter 

automatically. We will do it, graphically (figure 2.2), following properties of the 

parametrical functional, stabilizer and misfit functional [14]. 

Figure 2.2 1141 shows behavior of the misfit functional 1 1  K (p) - 6 ;  and the 

stabilization functional 1 1  1 ;  (minimum norm problem) . When the parameter of 

regularization a tends to zero, the misfit goes to zero, however the norm of the 

solution becomes arbitrarily large. 

This demonstrates clearly the ill-posedness of the inverse gravitational problem. 

As it was mentioned in the previous chapter the gravity measurements of the 

vertical derivative of the potential field, btrUe are observed with some noise E.  

Here btru, is the true solution of the forward gravimetric problem and E the leve1 

of error in the observed data: 

The regularization parameter a can be obtained using the misfit constrained 

functional as a constraint in a minimization procedure 

2.5 Discrete inverse gravimetric problem 
Assuming smoothness of the solution we obtained the density distribution func- 

tion for the inverse gravimetric problems solving the Tikhonov functional for dif- 

ferent stabilization operators. 



2.5.1 Regularized Gravimetric Minimizat ion Problems 

Let K be the matrix obtained from the linear operator (2.1)  to  reduce the 

problem to a finite dimensional one. 

In this work we will consider the following smooth regularization to solve the 3D 

inverse gravimetric problems, with the density function constant in the x3 direction. 

o The Minimum Norm Problem [MN] is 

min P a ( p )  = min I K p  - b l i  + a 1 1 ( ~ ) 1 / 9  
P 

when the stabilization functional is the l 2  norm of the solution. 

o The 2D V minimum norm problem is 

when the stabilization functional is a norm of the gradient of the solution. 

The gravimetric operator is linear with respect to  ( p ) .  In more general non-linear 

geophysical application the operator can be linearized and the following solutions 

still can be used. 

2.5.2 Regularized Direct solution 

If K is a linear operator, then for the previous stabilization functional the direct 

Tikhonov solution of the minimization parametrical functional 

is unique ( [ 1 4 ] )  and can be expressed from the Euler-Lagrange equations (2.8)  

as : 

1 )  For M N  problem. 

p* = ( K ~ K  + ar)-' ~~b  (2 .9 )  

2 )  Generally when the stabilization functional J ( p )  = B p  with a given matrix 

B, the Euler-Lagrange equations are 



from where 

2.5.3 Analysis of the discrete Tikhonov solution 

The generalized singular value decomposition (GSVD) analysis of the Tikhonov 

solution gives us a good understanding of the effects of regularization. 

Let K E !Rmxn be matrix; B E !Rpxn matrix; p E !Rn, b E !Rm , m n , and the 

discrete Tikhonov minimization problem be, 

min Pa(p)  = min 1 1  K p  - b l l l +  u 1 1  ~ p l l ;  
P 

We can write the discrete Euler-Lagrãnge equations for (2.11) as (2.10), 

Let us assume that p 3 n , which means that the matrix B has rank smaller 

than n ,  and has non zero nu11 space. 

The stabilization functional described by the matrix B cannot be minimized 

in the directions corresponding to the nu11 space of the matrix B. We will show 

that the solution p* can not be regularized in these directions. It means that 

this functional violates the requirements of compactness of the set of p such that 

IB p l l ;  < rn . Hence using such a functional one needs to  be sure that the solution 

p* does not have components in this directions. 

In our case, the second stabilization functional, which is the norm of the gradient 

of the solution has a one-dimensional null-space consisting of constant functions. 

The same will be true for the Total Variation stabilization functional, which we 

consider in chapter 3. It  will follow from construction of our numerical scheme that 

the computed solution does not have a constant component. 

Using the GSVD for the matrix K and B [19], we can write 



and, 

w i t h O > t l  > [ 2 2 . - . > [ p a n d 0 2 r l  2 7 2 2  L . . >  rp 

where 

U E Rmxm , U = (ul,  . . . . . . . . , um),  is orthogonal matrix, UTU = In, 

V E Xpxp , V = (v1, ........, vp), is orthogonal matrix, VTV = Ip, 

and 

W E Rnxn , W = (wl, . . . .. . .. , w,) , is invertible, W-I exists. 

We show in the next section that the solution p* can be written as 

The elements [j and rj , are usually normalized via 

2 (<i + rj = 1) , { j  = 1, . .p} 

then the generalized singular values can be written as the ratio 

We assume the generalized singular values are ordered as 

Then we can write 

and using (2.14) we obtain 



We can see that the solution consists of two parts. The first one depends on the 

regularization 

From here we can see the effect of regularization on the solution p*. A good choice 

of the parameter of regularization a will damp the effect of the small eigenvalues 

in the solution p* (where o) i O) .  

The second part of the solution is 

which does not depend on the regularization. This is particular important 

because, it can be proved that wp+l ... wn form the basis for the nu11 space of B 

and it will be shown in the next section. This gives us the part of the solution that 

can not be regularized. 

Also the following characteristics were observed in the forward gravimetric op- 

erator which are typically seen in problems arising from the discretizations of the 

integral equations for physical models: 

a) the singular values o1 > o2 > ...... > o,-1 > op decay exponentially to zero 

(figure 2.3). 

This behavior of the singular values oj introduce significant instability in the 

solution when noise is present in the data. This can be easily seen from representing 

the solution in the basis of the matrix K. 

b) the singular vectors uj,  vj and wj tend to have more sign changes as j increases 

(figures 2.4, 2.5,2.6). 

2.5.4 Derivation of GSVD of Tikhonov solution 

Let us take a block matrix R E P x p ,  as the first p columns and rows, 



and in analogous way, let us take a block matrix M E Rpxp  as, 

then we can rewrite KTK using the defined block matrices as, 

Let us also rewrite BTB as 

Using these expressions in the Euler-Lagrange equations (2.12) we obtain: 

for the left hand side 

and for the right hand side 

Rearranging the left hand side and multiplied by (wT) frorn the left in both 

sides we obtain 



and for the right hand side 

Let y = W-'p* ; y E Rn. Modifying the previous equation we obtain the left 

hand side 

and for the right hand side 

R 0 0  R 0 0  ( o I . .  o ) uTb = ( o I . .  o) 

Now we can express the left hand side as 

\ 
Joining both sides we obtain 

also we had y = w-lp* ; y E $2" . Then the solution for p* can be written as 



Now we show (2.15) form the basis for the nu11 space of B .  Let W E RnXm 

W = ( w l ,  w2,  . . ., W j ,  .. . W,) 

We can write the identity matrix as 

I = w-'W = ( w- 'w , ,  w - ' w z ,  ..., ~ - ~ w j , . . . w - ~ W . )  

and using the result of the GSVD of B from (2.13) we have 

Then for j = p + 1, .. . . .n we have 

Therefore for j > p + 1, BwP+' = BW,+~ = . . . . . = Bwn = O . Hence w P + ~ .  . .wn 

form the basis for the nu11 space of B .  
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Figure 2.1. Regularized operator for the gravimetric problem 
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Figure 2.3. Exponetial decay of singular values of K (60x20) 
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Figure 2.4. Singular values and first left and right singular vectors of the 
discretized operator K (8 x 20) 
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Figure 2.5. Singular values and first left and right singular vectors of the 
discretized operator K (8 x 20) corresponding to the second singular value 
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Figure 2.6. Singular values and first left and right singular vectors of the 
discretized operator K (8x20) corresponding to the last singular value 



CHAPTER 3 

NON-SMOOTH ALTERNATIVE 

REGULARIZATION 

3.1 Previous Reference Work 

In 1992 Total Variation method was proposed in [5] to solve the denoising 

problem. A typical problem in image denoising is to determine an unknown image 

from noisy observed data. Some examples are shown in figure 3.1 and figure 3.2. 

The problem of image denoising can be written mathematically as 

where 

Bblur = I is Identity Operator for non-blurred images, or an integral operator 

(usually with gaussian kernel) for blurred images, 

u is real image; and 

(E + X) is noisy observed data. 

Hence for non-blurred images the problem of denoising is 



I Sample Denoising 1 

Original image Noisy image 

iterate #13 (solution) Sol. for quadr. funct. 

D a t a  provided by the Phillips Air Force Lab. at Kirkland 

AFB NM, through Prof. Bob Plemmons. 

Figure 3.1. Denoising problem, example 1 



Initial Imaae 

Figure 3.2. Denoising problem, example 2 



Total variation methods do better a t  restoring the edges of the original image in 

comparison with L2-based algorithms. 

3.1.1 Inverse Gravitational Problem for a non-smooth density 
function 

The inverse gravimetric problem can be written in a way similar to the image 

processing problem (3.1) when the operator K,,,, is used instead of the identity 

operator. 

where 

Kgra, is Forward Gravimetric Operator, 

p (x) is true density function distribution 

(b, + btTUe) is noisy observed data of the vertical component of the gravimetric 

field. 

Our goal is to be able to  recover non-smooth density distributions in geophys- 

ical problems which is difficult with standard regularization operators. Standard 

methods give results that are poor approximations when the original structure is 

" blocky " (non-smooth), which occurs in many geological structures. 

In this work we propose the minimization of the Total Variation norm of the 

density distribution, subject to  noise constraints based on Tikhonov approach 

presented in chapter 2. We first discuss some properties of the Total Variation 

seminorm. 

3.2 Definition of Bounded Variation seminorm or Total 
Variat ion (TV) 

The Bounded Variation seminorm or Total Variation (TV) of a function u is [3] 

Jtv =def SUP (-u div v) dx 
V E V  

where v is a d-dimensional test function defined in R, which is a t  least once 

differentiable and is zero on the boundaries, so that 



To analyze the Total Variation semi-norm, consider first the case of a continuous 

1D function (fig. 3.3). 

3.2.1 TV for continuous functions 

Let u E C' (Ro,1), then the TV of u on [0,1] is from definition (3.3) 

Jtv = sup L -u v, dx = sup - L (-u, v) dx + uv /i 
v Eu v € v  

where the second equality follows from integrating by parts. 

Since v E C: (R, R ~ ) ,  it vanish on the boundary, and 

If we could have 

+1, u, > o 
- l , u x  < O 

then we obtain 

(3.4) 

From (3.4) we can easily see that the definition (3.3) gives the variation of the 

function on the domain R. 

Consider now the case of a 1D discontinuous function (fig. 3.4). 

3.2.2 TV for discont inuous funct ions 

Let u E C1 (R0,'), (fig. 3.4) then from definition (3.3) gives 

Jtu = sup i u v, dx 
UEU 

Dividing the integral around the discontinuity, 

integrating both terms by parts 



Figure 3.3. 1D continuous example 



Figure 3.4. 1D discontinuous example 



a 

J ~ ,  = sup { lim 1 u v,  d s  - u ( a ) v ( a )  + 
a+a- 

Because v  E C: ( R ,  R ~ )  

Jt, = sup [-v (a )u (a - )  + v(a)u(a+)]  
vEv 

or 

Letting 

Jt, = sup ["(a) (++) - u ( a - ) ) ]  
,€v 

+i, (.(a+) - u (a - ) )  > O 
v ( a )  

-1, (u(a+)  - .(a-)) < O 

t hen 

J ~ ,  = lu(a+) - u (a - )  1 
In this case too, it can be seen definition (3.3) gives the variation of the function 

in the domain R. Therefore, TV of a function gives in a11 cases its variation, which 

is bounded, meanwhile the norm of the derivative for a discontinuous function is 

unbounded. 

Let us formulate now the inverse gravimetric problem using the TV as a stabi- 

lizer . 

3.3 TV minimization for the inverse gravity problem 
Using TV norm of the solution as the stabilizing functional for the inverse 

gravimetric problem as the following minimization problem gives 

min PFv(p, b) = min ( ( K p  - b((2  + a L (Vpj ds  (3.5) 

where IVpl = /m , and 0 is the domain in the earth where 

density is allowed to vary. 



3.3.1 Regularization and Discretization 

One way to solve (3.5) is numerically to derive the corresponding Euler-Lagrange 

equationç, and then solve the resulting partia1 differential equation (PDE) numer- 

ically using available PDE solvers. 

This method is effective for images because of the large number of pixels involved. 

However it  requires the expensive solution of a PDE on each step. We will consider 

an alternative method based on gradient minimization. The first step is t o  derive 

the Euler-Lagrange equations. 

3.3.2 Euler-Lagrange Equations for the PT, (p, b) problem 

The derivation of the Euler-Lagrange equation for the first term in (3.5) proceeds 

as in chapter two. For the second term, 

putting the 6, operator inside the integral gives 

Applying 6, gives 

which is rearranged to, 

Green's Theorem will recast the previous integral as the sum of a boundary 

integral 



and an integral over R 

The optimality condition is satisfied when 

= o  a n  

Thus the Euler-Lagrange equations for (3.5) are 

Equation (3.9) however is unstable because of the term 11 IVpJ. This can be 

overcome by regularizing, 

where ,O is a small positive number. 

The resulting PDE system to be solved is 

Different approaches have been used to solve the PDE resulting from the Euler- 

Lagrange equations: Time Marching (Rudin, 1992) [5], Fixed-Point lagged dif- 

fusitivity iteration (Vogel, 1995) [9], Primal-Dual algorithm (Chan, 1996). 



These approaches were based on particular features of the problem, available 

code, and mathematical orientation of the group that developed the numerical so- 

lution. Time Marching (Rudin, 1992) [5], Fixed-Point lagged diffusitivity iteration 

(Vogel, 1995) [9], Primal-Dual algorithm (Chan, 1996). 

Three common features in these algorithms are: 

i) they derive analytically the iteration equations 

ii) they discretize the resulting PDE 

iii) they use an efficient and well established PDE solver in each iteration (finite 

elements, finite difference, etc.). 

In this, the main idea will be to discretize the parametrical functional and then 

regularize the finite-dimensional problem. 



CHAPTER 4 

DISCRETIZATION AND 

REGULARIZATION 

The minimization problem for the inverse gravity problem using the TV func- 

tional is: 

where [ V p  = {o'.(")' , and R is the domain of integration describing 

earth surface domain containing underground structures of interest. 

4.1 Discretization of the forward operator 

In figure (4.1) we show a scheme of a discrete model commonly used in many 

geophysical application for the domain C! , which presents R as a union of small 

rectangular blocks: R = {R( i j ) ,  i = l . . . . n x~ ,  j = l . . n x z )  

The adopted discretization for R uses rectangular blocks with their principal 

axes oriented in the same direction as the gravitational attraction vector and its 

normal defined a t  the reference surface (see figure 1) .  

The function p ( x )  is a given piece-wise constant function defined as: 

1, x E Qi,j 
where 

0 ,  ot herwise. 
The vector b = { b j )  is the discrete data measured on some part of the boundary 

aC!, bj is the discrete observation. 

From the solution of Poisson equation we have 



observation points 
................ ......... - ------- ---- ............. ........ 

earth surJace ...................... 

Figure 4.1. Discretization using rectangular blocks 



and 

1 
~ ( Y ) = v I = Y /  R P ( x ) ~ -  r d a  

As gravimeters measure the vertical component of the vector of gravity, the 

measured function is 

The evaluation 

examples are [18], 

of this integral for different geometries is very well known, some 

[29]. A common approach to  integrate (4.2) along the (x3) axis 

in which p has constant density. 

Then we obtain 

d 1 
- log -p (z) d S  = y f ( ~ 1 ~ x 2 )  d S  

b = 7 S , a x 2  r S, 
Using the observation that this surface integration is equivalent to a two-step 

integration around the boundary of the surface (F,), we have 

b =  S, f ( x 1 , ~ 2 ) d S = ~ ~ ~ ~ ( ~ l , X 2 ) d x 2  (4.3) 

The numerical solution of (4.3) for a rectangular prism can be found in [18], [29], 

etc. and can be written as 

Figure 4.2 shows the quantities in (4.4). 

Let bj be discrete data in the observation point j, j = 1, .... m and pl be constant 

density inside the block 1, 1 = nxl (i- 1) + j, for the block Rij,. Using matrix notation 

we can write 



where 

DO2 - de1 - x log 

and the values of b, D ,  r l ,  r2, rg ,  rq,& and O2 are shown in figure 4.2 

4.2 Discretization of the TV semi-norm 
In figure 4.1 the unknown density p ( x )  is defined in a 2D domain, with x = 

( x l ,  x2 )  and p ( x )  = p ( x l ,  2 2 ) .  Representing the forward operator K in matrix 

form in the previous subsection we converted p ( x l ,  x2 )  in a 1D vector, using row- 

by-row ordering. We will use the same convention for the calculation of the discrete 

derivatives operators for the TV semi-norm in the second term of (4.1). 

Figure 4.3 shows the row and column order in the 2D discretization. 

In matrix notation we can write p as 

where X = nxl are the number of blocks in the xl direction and Z = nx2 are 

the number of blocks in the x2 direction. 

The 1D vector representation of is p = [ p l ,  p2 . . . pnlT,  n = nxl  * nx2 and for 

1 = nx l ( i  - 1) + j , pl = pij with pij be the density of the block Rij: 



Observation 

Point . 
X 

Figure 4.2. Quantities for calculation of a prism gravity effect 



earth surface ....................... 

x2 

Figure 4.3. Row and Column order in the 2D discretization 



4.2.1 Discrete horizontal and vertical derivative operators 

The horizontal and vertical direction the discrete derivative of the density dis- 

tribution function a t  the point i, j can be written 

/ Pll 

and 

P = 

where Axi and Ax2 are the block lengths in xl and 2 2  directions. 

We can build a discrete derivative operator DX1 for the horizontal direction 

P12 

Pix 
P2 1 

using the matrix 

i row.  t 

\ Pzx 

Pll 

Pij 

Pzx 

Then having denoted this matrix as DX1 we can write 



And we can build a discrete derivative operator DX2 for the vertical direction 

using the following matrix: 

Pll 

Pij 

Pzx , 

Hence 

/ Pii 

Using the derivatives operators for the horizontal and vertical directions (eqs. 

(4.6) and (4.7) ) we can write the discrete total variation operator: 

Now the discrete parametrical functional with a Total Variational functional can 

be written as 



and we want to minimize this functional with respect to  p: PzTV + min. 

4.3 Discrete calculation of variation of the TV 
semi-norm 

Using the approximation of the first derivative of (4.8) the TV semi-norm can 

be evaluated at the cell kl as 

( P )  E ~ T V  ( p  + qklSp) - TV ( p )  
d ~ k l  6~ 

1, zj 2 = k , j  = l  
where # = and Sp is a smaller number. 

0, otherwise 
Substituting (4.8) in (4.10) we obtain the following expression, 

The discrete Euler-Lagrange equations are 



4.4 Solving the Euler-Lagrange equations 
This work examined three different choices for the Tikhonov stabilization func- 

tional: a minimum norm operator, a 2D first derivative operator, and 2D Total 

Variation operator. Solutions for each individual problem could be obtained ex- 

ploiting the individual structure of the specific problem in each situation, such as 

being linear, quadratic, etc. 

Instead an algorithm was developed to solve the minimization problems for a11 

the different parametrical functionals in a way that avoids particular computational 

difficulties for each case. The adaptive gradient minimization developed in this work 

fits the above requirements. 

The algorithm minimize the parametrical functional for a fixed value of a! then a! 

is reduced using decreasing criteria. The iterations are performed until the stopping 

criteria are reached. 

The gradient based algorithm can be summarized as follows: 

take a! = OIL and p = po 

do until stopping criteria for a! ([14],[30],[15]) 

do until stopping criteria for pk+1 ([14], [30], [l5]) 

find <k from Pa(pk+l) = Pa(pk - <E gff(pk)) = min 



end do Pk+l 

choose new a by decreasing criteria ([I41 ,[30] ,[l5]) 

end do a 

Here a~ is a regularization parameter which should have the "right "size for the 

problem being solved. Too big an initial choice for a~ will make the minimization 

process slow and too small a value will make it unstable. 

po is a prior model. This is one critica1 point in the algorithm. Usually this prior 

model is provided from previous geological or geophysical study in the area. In this 

work we focus our attention on non-smooth geological structures. 

[E is the step length at the iteration k for a fixed value of a. 

pk is the value of the density function a t  the iteration k.  

The importance of the prior model can be seen from the fact that regularixation 

is a smart way to  introduce information to solve the ill-posed problem [14]. Also 

important is the smart selection of the stabilization functional, which reflects the 

properties of the expected solution. 

Three criteria are involved in the algorithm: stopping criteria for [a],  stopping 

criteria for [ P ~ + ~ ] ,  and decreasing criteria for [a],  and they are based on the same 

common condition. Actions are taken (stop or decrease, etc.) when no improve- 

ments are verified in the solution for the density function. Some heuristic criteria 

were implemented to ensure this condition, they are small variation of the norm of 

the solution over severa1 iterations, number of iterations, etc.. 

The following minimization is performed for each parametric functional, 

find Jk from Pff(pkS1) = Pa(pk - [E gff(pk)) = min 



where P" can be: 

and 

The gradient ga(pk) of the parametrical functionals are, respectively, 

where again 
1, i f i = k ,  j = 1  
0, otherwise. 

For a11 functionals the adaptive gradient minimization performs the evaluation 

of the solution usually in less than a couple of minutes in the worst case (for the 



largest discretizations, 240 cells). A typical convergence results for this algorithm 

is shown in figure 4.4. 

This code was written in Matlab and is highly vectorized. A user friendly 

interface is under development . 



misfit 

iterations 

Figure 4.4. Convergence results 



CHAPTER 5 

ANALYSIS OF THE NUMERICAL 

RESULTS 

5.1 Model considerat ions 
The numerical results that follow were calculated for a piecewise density function 

that exhibits sharp density contrast and sharp edges (figure 5.1). This model was 

previously used in (Bassrei, 1993 [I]),  where the author analyzes smooth regu- 

larization techniques, minimizing the second differences of the model parameters. 

The observations are performed on the earth surface in 20 stations aligned on the 

horizontal direction (xl). 

We will consider initially only computer noise added during the computing of the 

numerical solution, avoiding particular noise distributions influencing the inversion 

results. The regularization parameter was allowed to  decrease until no improvement 

in the solution was obtained due to the presence of low leve1 amplitude noise. 

Discretizaton plays an important role in the inverse gravimetric problem, because 

in its continuous form this problem is already ill-posed. As shown in chapter 2, it 

will become even more ill-posed with the increasing the number of discretization 

cells. Hence regularization is required in order to obtain a stable solution ([14],[15]). 

5.2 General Inversion results for large discretizations 
Figure 5.2 shows an attempt to recover the density function when no regular- 

ization is used. The domain is divided in 240 cells, which turns the problem into 

highly ill-posed one. The result in figure 5.2 shows the correct amplitude of the 

recovered density function, but physically has no meaning. 



Results of inversion using the 2D first derivative operator are shown in figure 

5.3 and is an important improvement in the physical solution, when compared with 

figure 5.2. But this method fails to recover the non-smooth original density function 

distribution. 

A second important improvement is shown in the next result (figure 5.4) , when 

for the same discretization, we use the minimization of the Total Variation of the 

density function. A closer image to the original non-smooth function is recovered 

due to  the fact that the TV functional does not penalize sharp density contrast. 
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Figure 5.1. Non-Smooth density model 



x i "o"= inv. data, solid=ref. data 
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Figure 5.2. Solution for a Non-Remlarized scheme 
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Figure 5.3. Solution for a 2D First Derivative scheme 
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Figure 5.4. Solution for a 2D Total Variation Scheme 



5.2.1 Comparison of the inversion schemes 

A better understanding of the different regularization schemes and their solutions 

are given by the following results, which use the true density of the model as 

the starting point in the inversion procedure. A reduced discretization (60 blocks 

instead of 240) is used to  improve the resolution for the smoothing regularization 

operators. 

5.2.2 Smooth regularization results 

Figure 5.5 shows the initial function density distribution used in the adaptive 

gradient minimization when a minimum norm and a 2D derivative operator are 

used as stabilizers in Tikhonov parametrical functional. 

Figure 5.6 and figure 5.7 show the distribution of the density in the beginning 

of the iterative minimization process when a big penalty is imposed. This destroys 

a11 information about the solution by smoothing the density function during these 

iterations. Also, no improvement is observed in the misfit functional due to the 

large value of the regularization factor. Figure 5.6 shows the result for the case of 

the minimum norm used as a stabilizer, and figure 5.7 shows the results in the case 

of the 2D first derivative operator taken as the stabilization functional. 

The density distributions are very smooth, which show these types of regular- 

ization destroy information about non-smooth features of the solution. 

When the regularization factor is small enough, an improvement in comparison 

with previous iterations starts to be seen in the misfit. Figure 5.8 shows an 

intermediate result for the 2D first derivative stabilizer. 

Figure 5.9 and figure 5.10 show the final result for the two inversion schemes, with 

the minimum norm stabilizer and 2D first derivative stabilizer, respectively. These 

results were obtained using regularization, and they better express feasible physical 

features than when no regularization is used (fig. 5.2). However these results did 

not preserve the non-smooth information that was contained in the starting point. 

Even when the starting point was the true density distribution function the solution 



constructed in the process of minimization of the parametrical functional is very 

smooth. 

As it was mentioned before, there are many practically important situations 

where non-smooth density distributions give a better picture of the earth model. 

Initial models presenting these features are often available from previous research in 

the area, but as it was shown by the previous results, smoothing techniques would 

not preserve this information. 
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Figure 5.5. True initial density function 
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Figure 5.6. Minimum Norm Stabilizer, second iteration 
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Figure 5.7. 2D First Derivative operator, third iteration 
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Figure 5.8. Intermediate smooth iteration (2D grad. stabilizer) 
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Figure 5.9. Minimum Norm Stabilizer, final iteration 
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Figure 5.10. 2D First Derivative operator, final iteration 



5.2.3 Non-smoot h regularization results 

Results presented in the previous section show that the penalty term will smooth 

the solution for large values of the regularization parameter, destroying the infor- 

mation even when we started from the true solution. 

5.2.4 Large Discretization 

In the next figures we show the results of the minimization of the Total Variation 

norm of the solution. The chosen initial model was finely discretized (240 cells) and 

it was an approximation of the true solution with 25% noise added (figure 5.11). . 

Fine discretization does not affect TV results, as much as the previously analyzed 

schemes do due to the fact that there is no smoothness requirement imposed on the 

solution. 

Figure 5.12 shows the density distribution a t  the beginning of the adaptive 

gradient minimization. In the fifth iteration no improvement is made in the misfit 

due to the large value of the regularization factor. However, most of the noise in the 

solution is removed, preserving non-smooth information from the previous steps. 

The eventual minimization of the data misfit preserves those features (figure 5.16). 

5.2.5 Reduced discretizat ion 

The next result presents a less ill-posed problem, with only 60 cells in the dis- 

cretization of the model, but with smoothing because of the discrete approximation 

of the TV semi-norm. A starting model containing very poor a priori information 

is used. 

The initial model is shown in figure 5.14. 

Iteration 14 in the minimization of the total variation of the density function is 

shown in figure 5.15. The model still reflects the a priori information in "building 

" a non-smooth solution. Figure 5.16 shows the final result. The discrete approxi- 

mation of the T V  on a coarse grid introduces some smoothness in the solution, but 

still gives a "flatter "model than standard regularization schemes. 



x i O-' "o"= inv. data, solid=ref. data 
2 I I o o b o '  I I I I I 

1.8- 0  
O O 0 0  O O 

1.6 - O O 
Q 
Z 1.4- O 
u 

1.2- 

1 - 

tvxi1220- Starting Model 

Figure 5.11. TV semi-norm Stabilizer, starting model (240 cells) 
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Figure 5.12. TV semi-norm stabilizer, intermediate iteration (240 cells) 
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Figure 5.13. TV semi-norm stabilizer, final solution (240 cells) 
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Figure 5.14. TV semi-norm Stabilizer, starting model (60 cells) 
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Figure 5.15. TV semi-norm stabilizer, intermediate iteration (60 cells) 
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Figure 5.16. TV semi-norm stabilizer, final solution (60 cells) 



5.3 Application of TV method to noisy data 
The next two inversion results are obtained from models where 6% gaussian noise 

was added to  the gravitational data calculated in 20 stations at the top reference 

surface. 

The first 240 cells model is shown in figure 5.17. It roughly represents a geological 

fault separated by a low density structure. A second 240 cells model related to the 

shape of an oil reservoir is shown in figure 5.19. In this model, measurements are 

simulated to be taken in a borehole in the bottom of the reservoir. For convenience 

the display in figure 5.19 is flipped top to bottom , so that depth is increasing 

in positive vertical direction on this figure, and the zero-th layer of the blocks 

corresponds to the most deep undersurface structures. The measurements now 

take place a t  the top of the model. 

The presence of noise in the gravity data limits the accuracy in the inversion 

scheme, which will be reflected in the quality of the recovered density distribution. 

The inversion results are shown on figures 5.18 and 5.20. We can see that the 

method still is able to  recover part of the non-smooth features of the true models. 

In spite of the presence of noise in the gravity data, the constructed solution is close 

to  the true density distribution. This illustrates the stability of the reconstruction 

algorit hm. 
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Figure 5.17. Fault model with noisy gravity data 
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Figure 5.18. Inversion result, fault model with noisy data 
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Figure 5.19. Oil reservoir model with noisy gravity data 
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Figure 5.20. Inversion result, oil reservoir model with noisy data 



CHAPTER 6 

CONCLUSIONS AND FURTHER 

WORK 

The approach in this work can be extended to other geophysical measurements. 

Here we present the fundamental equations for other geophysical applications, 

which can be formulated as operator equations analogous to  the gravimetric prob- 

lem. 

6.1 Extension to other geophysical problems. 
Electromagnetic fields are generated by Maxwell's equations which consist of 

Ampere's Law, 

Faraday's Law, 

the compatibility equations, 

where 

V . J = Q  

V . J o = Q D  

and constitutive relations for linearized isotropic materials: Ohm's law, 

j = aE (6.4) 

and for D and B , reflecting the electromagnetic properties of a medium, 



Here, 

E is the vector electric field, and D is the electric displacement field, 

H is the vector magnetic field, B is rnagnetic induction, 

J and Q are the electric density currents and the spatial density of impressed 

(source) charges, 

JD and QD are the electric density currents and the spatial density electric 

charges of the externa1 charges, 

E ,  p and a are the permittivity, the magnetic permeability, and electric conduc- 

tivity, respectively. 

The forward electromagnetic problem is to  calculate the solution of equation 

(6. I),  (6.2) ,(6.3) and (6.4) for the given model parameters (E , p , a ) .  

We can see that this is a system of linear differential equations. They can be 

summarized as an operator equation, 

where the operator Ke, is called the forward operator for the electro-magnetic 

problem. 

The problems for static magnetic and static electric fields are particular case of 

this operator, so that the operator equation for the corresponding forward problems 

can be expressed analogously. 

The inverse problem now is to determine the electromagnetic parameters of the 

medium. The difference with gravitational problem is that the equation (6.5) is not 

linear with respect to the parameters of the medium ( c ,  p , a). However, if a good 

initial model is available, it can be linearized, and the linearized problem can be 

solved a t  each iteration step. 

The basis of the study of the theory of seismic wave fields is described by the 

acoustic wave equation 



where p is the pressure field and v is the velocity of the wave propagation. Solu- 

tion of the acoustic wave equation for a given v describes the forward formulation 

for the seismic problem. The resulting operator equation for the forward problem 

can be expressed as 

where the operator K,,i,mic is the forward operator for the seismic problem. 

In this work we solved the operator equation for the gravitational potential 

problem. In the operator form this equation is analogous to the equations (6.5) 

and (6.6) arising in other geophysical fields, hence it can be expected that the 

results of this work can be extended to these fields as well. 

6.2 Conclusions 
One way to  define regularization is as a srnart way to input apriori information 

in the inversion process. This work has shown that regularization by the Total 

Variation method is a more appropriate than the standard regularization schemes, 

when the gold is to recover non-smooth solutions. 

For the inverse problem of gravitational potential, functions with sharp density 

contrast and shapes are better reconstructed using TV norm as a stabilization 

functional instead of standard smoothing operators. 

An effective computational algorithm is developed using a discrete approxima- 

tion of the Euler-Lagrange equations, which avoids solving a PDE in each iterative 

step. 

The adaptive gradient minimization is constructed to solve the problem numer- 

ically and it is shown to be efficient for this type of problems. 

We expect that the results obtained in this work for the inverse gravity problem 

can be used in other geophysical applications. 



6.3 Further Work 
Further analysis of the effectiveness of different approaches such as discretization 

and regularization or regularization and discretization for the solution of large scale 

inverse problem. 

Understanding of other effects of TV regularization on the solution besides the 

considered in the present work. 

Extension to other geophysical problems. 

Vector total variation norm applied to anisotropic non-linear geophysical prob- 

lems. 

Efficient optimization codes for large scale geophysical problems, performing 

automatic selection of the regularization parameter with an optimal decreasing 

criteria. 
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