
G ~ D : UM MODELO DE GERENCIAMENTO HIERÁRQUICO DE APLICAÇ~ES

EM AMBIENTE DE COMPUTAÇÃO EM GRADE

Patrícia Kayser Vargas Mangan

TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS

PROGRAMAS DE PÓS-GWUAÇÃO DE ENGENHARIA DA UNIVERSIDADE

FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS

PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA

DE SISTEMAS E COMPUTAÇÃO.

Aprovada por:

,' V

Prof. Bruno ~ich&hulze, D.Sc.

RIO DE JANEIRO, RJ - BRASIL

MARÇO DE 2006

MANGAN, PATRÍCIA KAYSER VARGAS

GRAND: Um Modelo de Gerenciamento

Hierárquico de Aplicações em Ambiente de

Computação em Grade [Rio de Janeiro] 2006

XIII, 150p. 29,7 cm (COPPE/UFRJ, D.Sc.,

Engenharia de Sistemas e Computação, 2006)

Tese – Universidade Federal do Rio de

Janeiro, COPPE

1 - Processamento Distribuído

2 - Computação em Grade

3 - Gerenciamento de Recursos

I. COPPE/UFRJ II. Título (série)

ii

Agradecimentos

Gostaria de agradecer a todos os que direta ou indiretamente contribuíram para que eu

concluísse essa tese.

Ao CNPq pelo suporte financeiro.

Ao UniLaSalle, na figura de colegas e administradores, por me liberar e me incentivar

a realizar o curso de doutoramento.

A todos os colegas, professores e funcionários da COPPE/Sistemas da UFRJ.

Aos professores Vinod Rebelo e Cláudio Amorim fazerem parte da minha banca de

exame de qualificação. Aos professoes Cláudio Amorim, Felipe França, Bruno Schulze

e Cristina Boeres por terem aceitado participar da banca de avaliação de tese. A todos o

meu agradecimento por suas críticas construtivas.

Aos meus orientadores Inês de Castro Dutra e Cláudio F. R. Geyer que além de possui-

rem um grande conhecimento técnico são seres humanos ímpares. Com certeza o apoio,

o carinho e compreensão de ambos tornaram todo o estresse suportável e até agradável.

Sem a orientação e a amizade deles esta tese não existiria.

Aos colegas do LabIA, LENS e LAND que tornaram esta jornada mais agradável. A

Tatiana, Sérgio, José Afonso e Luciana que dividiram as incertezas dos primeiros anos.

Ao Vinícius, meu fiel aliado nas brigas operacionais com o Monarc e AppMan. Ao Luis

Otávio pela parceria no dia-a-dia do laboratório. A Carol por toda a ajuda, simpatia e

carinho.

A Marluce que, além de colega e parceira de trabalho, se tornou uma amiga muito

querida. Nenhuma palavra expressa minha admiração e meu carinho e meu agradecimento

por tudo que partilhamos neste anos de doutorado.

Aos colegas da UFRGS que sempre me acolheram com carinho no “saloon”. Em espe-

cial ao Lucas e ao Luciano pela parceria no desenvolvimento do AppMan. Aos amigos de

longa data Adenauer e Jorge e a minha irmã de coração Débora que sempre me passaram

carinho e confiança.

iii

Aos colegas do Rio2, que ajudaram a tornar a nossa estadia no Rio de Janeiro mais

divertida, com as parcerias para churrasco e tênis.

A amiga Andressa e sua família que nos acolheram como amigos e parceiros de car-

teado e orgias gastrônomicas.

A toda a minha família, pelo suporte afetivo e pelo incentivo. Em particular, o apoio

de todos, e em especial da minha mãe, nas últimas semanas foram fundamentais para a

conclusão deste texto. Agradeço o carinho de minha mãe, Lourdes, que é um referencial

pela seriedade com que assume seus compromissos. Ao meu avô, in memorian, devo

principalmente a lição de valorizar o estudo.

Ao meu marido, colega de trabalho e incentivador há mais de doze anos, o meu agra-

decimento pela companhia carinhosa, pelas críticas duras e consistentes e pelo apoio e

incentivo constantes para meu crescimento profissional e pessoal.

iv

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para

a obtenção do grau de Doutor em Ciências (D.Sc.)

GRAND: UM MODELO DE GERENCIAMENTO HIERÁRQUICO DE APLICAÇÕES

EM AMBIENTE DE COMPUTAÇÃO EM GRADE

Patrícia Kayser Vargas Mangan

Março/2006

Orientador: Inês de Castro Dutra

Cláudio Fernando Resin Geyer

Programa: Engenharia de Sistemas e Computação

Um ambiente computacional em grade apresenta desafios tais como o controle de um

grande número de tarefas e a sua alocação nos nodos da grade. Muitos dos trabalhos apre-

sentados na literatura não conseguem tratar adequadamente todos os aspectos relacionados

com o gerenciamento de aplicações. Alguns problemas que não são tratados adequada-

mente incluem gerenciamento de dados e sobrecarga das máquinas de submissão (i.e. as

máquinas onde as aplicações são submetidas). Esta tese trata destas limitações, focando

em aplicações que disparam um grande número de tarefas. Neste contexto é proposto e

avaliado um novo modelo de gerenciamento de aplicações denominado GRAND (Grid

Robust Application Deployment). Algumas das contribuições do modelo proposto são (1)

um particionamento flexível; (2) uma nova linguagem de descrição chamada GRID-ADL;

(3) uma hierarquia de gerenciadores que realizam a submissão das tarefas. Um protótipo

foi implementado e avaliado mostrando bons resultados relacionados ao gerenciamento de

recursos e de dados.

v

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements

for the degree of Doctor of Science (D.Sc.)

GRAND: A MODEL FOR HIERARCHICAL APPLICATION MANAGEMENT IN

GRID COMPUTING ENVIRONMENT

Patrícia Kayser Vargas Mangan

March/2006

Advisors: Inês de Castro Dutra

Cláudio Fernando Resin Geyer

Department: Computing and Systems Engineering

A grid computing environment presents challenges such as the control of huge num-

bers of tasks and their allocation to the grid nodes. Many works presented in the literature

can not deal properly with all issues related to application management. Some problems

that are not properly solved include data management and overload of the submit ma-

chines (i.e. the machine where the applications are launched). This thesis deals with these

limitations, focusing on applications that spread a very large number of tasks. In this

context, we propose and evaluate a new application management system called GRAND

(Grid Robust Application Deployment). Some of the contributions of the proposed model

are (1) a flexible partitioning ; (2) a new description language called GRID-ADL; (3) the

hierarchy of managers that perform task submission. A prototype was implemented and

evaluated showing good results related to resource and data management.

vi

Sumário

1 Introdução 1

2 O Modelo GRAND 7

2.1 Premissas . 7

2.2 Caracterização das Aplicações . 10

2.3 Gererenciamento de Dados . 11

2.4 Particionamento . 12

2.5 Modelo de Gerenciamento . 12

2.6 AppMan: Protótipo GRAND . 14

2.7 Conclusão . 15

3 Estrutura dos Apêndices 16

A Overview 18

A.1 Motivation . 18

A.2 Goals and Contributions . 20

B Grid Computing Concepts 23

B.1 Definitions of Grid Computing . 23

B.2 Grid Applications Classifications . 25

B.3 Classifying Grid Systems . 28

B.4 Conclusion . 29

C Application Management: Description and Clustering 31

C.1 Representing an Application as a Graph 31

C.2 Application Description Languages . 32

C.2.1 DAGMan . 33

vii

C.2.2 Chimera . 37

C.2.3 GXML . 39

C.2.4 AGWL . 40

C.2.5 XPWSL . 40

C.2.6 GEL . 43

C.3 Application Partitioning . 43

C.4 Conclusion . 48

D Application Management: Resource and Task Allocation 50

D.1 Resource Management Issues . 50

D.2 Scheduling Taxonomy . 52

D.3 Job Management Systems for Clusters 55

D.4 Scheduling Mechanisms for Grid Environments 56

D.4.1 Legion . 56

D.4.2 Globus . 57

D.4.3 Condor and Condor-G . 58

D.4.4 MyGrid and OurGrid . 59

D.4.5 MetaScheduler in GrADS Project 60

D.4.6 EasyGrid . 61

D.4.7 ISAM . 61

D.5 Comparison . 61

D.6 Conclusion . 65

E Experiments with Distributed Submission 66

E.1 Experiments using Condor . 66

E.1.1 Methodology . 66

E.1.2 Results and Analysis . 67

E.2 Experiments using Monarc . 74

E.2.1 Methodology . 75

E.2.2 Results and Analysis . 76

E.3 Conclusion . 81

viii

F GRAND: An Integrated Application Management System for Grid Environ-

ments 82

F.1 Premises . 83

F.2 Architectural Model Overview . 86

F.2.1 Model Components . 89

F.2.2 Model Components Interaction 91

F.3 Application and DAG Representation 95

F.3.1 Application Description and GRID-ADL 96

F.3.2 DAG and sub-DAGs Representation 99

F.4 GRAND Steps to Execute a Distributed Application 101

F.4.1 DAG Inference . 101

F.4.2 Clustering . 104

F.4.3 Mapping . 107

F.4.4 Submission Control . 109

F.5 Additional GRAND Services . 110

F.5.1 Data Management . 110

F.5.2 Monitoring . 113

F.6 Conclusion . 115

G AppMan: Application Submission and Management Prototype 116

G.1 Implementation Details . 116

G.1.1 Monitoring Graphical Interface 118

G.1.2 Data Management . 119

G.2 Experimental Results . 121

G.2.1 Resource Management Experiments 121

G.2.2 Data Management Experiments 123

G.3 Conclusion . 126

H Conclusion 127

H.1 Main Contributions . 128

H.2 Future works . 130

I GRID-ADL ABNF 131

ix

Referências Bibliográficas 134

x

Lista de Figuras

2.1 Categorias de aplicações de grade: (a) independent tasks, (b) loosely-

coupled tasks (phase), (c) loosely-coupled tasks (pipeline), e (d) tightly-

coupled tasks . 10

2.2 Principais componentes do modelo hierárquico de gerenciamento de tarefas 13

B.1 Grid application kind: (a) independent tasks, (b) loosely-coupled tasks

(phase), (c) loosely-coupled tasks (pipeline), and (d) tightly-coupled tasks 28

C.1 Diamond DAG example . 33

C.2 DAGMan input file . 35

C.3 Condor submit description files for DAG example 35

C.4 Another solution for DAG example: DAGMan input file and Condor sub-

mit description file . 36

C.5 DAG example expressed in Chimera VDL 38

C.6 DAG example expressed in GXML (skeleton) [14, 15] 39

C.7 DAG example expressed in AGWL (skeleton) 41

C.8 DAG example expressed in XPWSL . 42

C.9 DAG example expressed in GEL . 43

C.10 Kwok’s partial taxonomy of the multiprocessor scheduling problem [87] . 47

D.1 Part of the Casavant and Kuhl’s taxonomy [23] 53

E.1 Experiment 1 – Load average of the submit machine 68

E.2 Time measurements in the execution timeline 70

E.3 Condor Experiment 1 – average task time for centralized and distributed

submission . 72

E.4 Condor Experiment 1 – total execution time (sum) 72

E.5 Condor Experiment 1 – response time in seconds 73

xi

E.6 Condor Experiment 1 – percentage of executed tasks per machine 73

E.7 Condor Experiment 2 – percentage of executed tasks per machine 74

E.8 Monarc Experiment – methodology: DAG of tasks 76

E.9 Monarc Experiment: simulated grid elements 77

E.10 Monarc - cluster 40 CPUs: (a) CPU load average and (b) logical execution

time . 78

E.11 Monarc - cluster 80 CPUs: (a) CPU load average and (b) logical execution

time . 79

E.12 Monarc - grid, submit cluster with 5 CPUs: (a) CPU load average and (b)

logical execution time . 80

F.1 The GRAND model: steps to execute a distributed application 83

F.2 The GRAND model: a possible scenario 89

F.3 The GRAND model: hierarchical architecture - main components 91

F.4 The GRAND model: Application Manager details 92

F.5 The GRAND model: Submission Manager details 93

F.6 The GRAND model: Task Manager details 95

F.7 DAG used in input file examples . 97

F.8 Example of input file for the simple DAG (F.7(a)) 98

F.9 Input file for DAG example F.7(b) . 99

F.10 Input file for DAG example F.7(c) . 99

F.11 Example of XML manifest for Figure F.7(b) 101

F.12 Fragment of extended JSDL file for Figure F.7(b) 102

F.13 DAG description for Figure F.7(b) . 103

F.14 A possible example of clustering for Figure F.7(b) 103

F.15 Clustering algorithm for independent tasks application 105

F.16 Clustering algorithm for phases-loosely tasks application 106

G.1 AppMan executing main steps . 118

G.2 AppMan graphical interface for monitoring application execution: snapshots120

G.3 GRID-ADL code for experiment 1 . 121

G.4 Condor code for experiment 1 . 121

G.5 Application execution time for AppMan and Condor 123

G.6 Optimized stage in – scalability . 125

xii

Lista de Tabelas

B.1 Comparison of conventional distributed environments and grids [103] . . 25

C.1 Grid description languages: comparison 49

D.1 Comparison of presented schedulers – part I 62

D.2 Comparison of presented schedulers – part II 63

E.1 Experiment 1: Statistical values for centralized (c) and distributed (d) sub-

mission . 69

E.2 Experiment 2: Statistical values for centralized (c) and distributed (d) sub-

mission . 70

E.3 Condor Experiment 1 – response time in seconds 71

G.1 Execution Times: Condor and AppMan 122

G.2 AppMan experimental values obtained from six nodes 124

xiii

Capítulo 1

Introdução

O tema principal desta tese é o gerenciamento de aplicações em ambiente de computação

em grade. Foi proposto um modelo de gerenciamento hierárquico de aplicações denomi-

nado GRAND (Grid Robust Application Deployment). O texto da tese com o detalha-

mento deste modelo foi escrito em inglês e está apresentado em forma de apêndices. Este

capítulo e os próximos dois capítulos apresentam um resumo estendido em português.

Um sistema distribuído pode ser definido como “uma coleção de computadores inde-

pendentes que parecem ao usuário como um único computador” [130]. Na prática, poucos

sistemas distribuídos possuem um grau de transparência capaz de dar esta visão de recurso

único. Assim, embora algumas vezes questionável, a utilização de forma cooperativa e

transparente de recursos distribuídos considerando-os como um único e poderoso com-

putador é algo buscado há bastante tempo por diversos pesquisadores. Várias abordagens

vêm sendo propostas, como por exemplo, sistemas operacionais distribuídos e ambientes

de exploração de paralelismo implícito.

Uma das abordagens existentes é conhecida por diversos nomes tais como metacom-

puting, seamless scalable computing, global computing e, mais recentemente, grid com-

puting ou computação de grade [9]. Esta abordagem vem se mostrando viável tecnologi-

camente, mesmo quando a distribuição envolve grandes distâncias ou grande heterogenei-

dade de recursos. De fato, a computação de grade ou grid computing é uma proposta

promissora para resolver as crescentes demandas da computação paralela e distribuída

por transparência, desempenho e capacidade computacional através do uso de recursos

disponíveis em diferentes organizações.

Os ambientes de grade buscam utilizar de forma cooperativa e transparente recur-

sos distribuídos geograficamente considerando-os como se pertencentes a um único e

1

poderoso computador. Estes recursos manipulados podem ser de diferentes tipos, havendo

grande heterogeneidade dentro de uma mesma classe de recursos.

Segundo Foster et al. [54], o termo grid computing foi estabelecido no meio da dé-

cada de 90 para denotar “uma proposta de infraestrutura computacional distribuída para

engenharia e ciências avançadas”. Baker et al. [9] consideram que a popularização da

Internet e a disponibilidade de computadores poderosos e redes de alta velocidade a baixo

custo fornecem a oportunidade tecnológica de se usar as redes de computadores como um

recurso computacional unificado. Assim, devido ao seu foco em compartilhamentos inter-

organizacionais e dinâmicos, as tecnologias de grade complementam ao invés de competir

com as tecnologias de computação distribuídas existentes [54].

Uma definição um pouco mais precisa de grade é apresentada em Krauter et al. [84]:

“uma grade é um sistema computacional de rede que pode escalar para ambientes do

tamanho da Internet com máquinas distribuídas através de múltiplas organizações e do-

mínios administrativos. Neste contexto, um sistema computacional de rede distribuído é

um computador virtual formado por um conjunto de máquinas heterogêneas ligadas por

uma rede que concordam em compartilhar seus recursos locais com os outros.”

Assim, podemos dizer que a infraestrutura de grade deve prover de forma global e

transparente os recursos requisitados por aplicações de grande demanda computacional

e/ou de dados, como por exemplo aplicações em física de altas energias (HEP) ou em bi-

ologia. Esta infraestrutura pode ligar e unificar globalmente recursos diversos e remotos

abrangendo de sensores meteorológicos a dados de estoque, de supercomputadores parale-

los a organizadores digitais pessoais. Deste modo, é dito que ela deve prover “serviços per-

vasivos para todos os usuários que precisarem deles”. Esta conclusão leva ao conceito de

computação pervasiva (pervasive computing ou ubiquitous computing). Os termos “perva-

sivo” e “pervasiva” são utilizados em alguns textos sobre computação sem fio e de grade,

embora a tradução mais correta para o português talvez fosse difundido(a) ou ubíquo(a),

isto é, algo que está ao mesmo tempo em toda a parte. O objetivo dos pesquisadores neste

contexto é criar um sistema que esteja integrado ao ambiente computacional, estando to-

talmente conectado e constantemente disponível, bem como sendo intuitivo e realmente

portátil.

Existem três principais aspectos que caracterizam grids computacionais:

� heterogeneidade (heterogeneity): uma grade envolve uma multiplicidade de recur-

2

sos que são heterogêneos por natureza e que podem estar dispersos por numerosos

domínios administrativos através de grandes distâncias geográficas;

� escalabilidade (scalability): uma grade pode crescer de poucos recursos para mi-

lhões. Isto levanta o problema da potencial degradação do desempenho à medida

que o tamanho de uma grade cresce. Conseqüentemente, aplicações que requerem

um grande número de recursos dispersos geograficamente devem ser projetados para

serem extremamente tolerantes a latência;

� dinamicidade ou adaptabilidade (dynamicity or adaptability): em uma grade, a

falha de um recurso é a regra, e não a exceção. De fato, com tantos recursos, a

probabilidade de que algum recurso falhe é naturalmente alta. Os gerenciadores de

recursos ou aplicações devem adaptar o seu comportamento dinamicamente a fim

de extrair o máximo de desempenho a partir dos recursos e serviços disponíveis.

Um ambiente de grade ideal irá prover acesso aos recursos disponíveis de forma ho-

mogênea de tal modo que descontinuidades físicas tais como diferenças entre platafor-

mas, protocolos de rede e barreiras administrativas se tornem completamente transparen-

tes. Deste modo, deseja-se que um grid middleware torne um ambiente radicalmente

heterogêneo em um virtualmente homogêneo. Este ideal talvez seja algo impossível de

ser obtido, mas com certeza algum grau de homogeneidade e abstração deve ser fornecido

às aplicações.

Existem problemas ou sub-áreas com características de demandas computacionais par-

ticulares. Stockinger [125] afirma que é possível dividir os campos de pesquisa em grade

em duas áreas: Computational Grid e Data Grid. No primeiro caso, temos de certa forma

uma extensão natural da tecnologia de cluster, onde grandes tarefas computacionais devem

ser computadas em recursos computacionais distribuídos. Já um Data Grid trata do geren-

ciamento, localização (placement) e replicação eficientes de quantidades bastante grandes

de dados. Note que no primeiro caso existirão dados envolvidos, bem como no segundo

caso, tarefas computacionais também irão executar neste ambiente após a disponibilização

dos dados.

Pode-se identificar pelo menos três comunidades que precisam de acesso a fontes de

dados distribuídas [126], não considerando apenas as aplicações de data grid: (1) bi-

bliotecas digitais (e coleções de dados distribuídos): possuem serviços para manipulação,

3

procura e visualização de dados; (2) ambientes de grade para processamento de dados

distribuídos: permitem a execução de diversos tipos de aplicações tais como visualização

distribuída e descoberta de conhecimento; e (3) armazenamentos persistentes: disponibi-

lizam dados independentes da tecnologia de armazenamento. O ideal é que embora com

objetivos diferentes todas pudessem manipular seus dados em fontes distribuídas através

de uma interface (API – Application Programming Interface) comum. Esta API deve ser

igual seja qual for a forma de armazenamento: objetos em Bancos de Dados Orientados

a Objetos (BDOO), BLOBs (Binary Large OBject) em Banco de Dados objeto-relacional,

ou como arquivo.

Mesmo dentro de uma mesma comunidade ou classe de aplicação haverá caracterís-

ticas peculiares. Por exemplo, em ambientes de grade para processamento de dados dis-

tribuídos podemos verificar estas demandas peculiares pela caracterização de três classes

de aplicações: (a) Física de altas energias (High Energy Physics ou HEP): uma fonte

gerando grandes quantidades de dados (acelerador) que são utilizados por pesquisadores

em diferentes países [21]; (b) Observação da Terra: várias fontes distribuídas (estações)

gerando dados independentes que são posteriormente processados de forma integrada [120];

(c) Bioinformática: várias bases independentes, e freqüentemente heterogêneas, que pre-

cisam ser integradas para realizar uma determinada análise [86].

Na primeira aplicação, temos o problema de armazenar, em princípio em um único

local, um volume muito grande de dados gerado a partir de uma fonte única e encontrar

uma forma eficiente de difundir esses dados para locais cuja conexão possivelmente tenha

restrições de largura e banda, além de restrições de espaço de armazenamento local. Nos

dois outros casos, temos os dados globais formados a partir de informações armazenadas

de forma distribuída. A grande diferença é que no segundo caso temos o fator da hetero-

geneidade de armazenamento como um complicador.

Vários trabalhos vêm sendo propostos para tratar o gerenciamento de recursos e apli-

cações no ambiente de grade (computational grid) [9, 13, 50, 51, 101, 113]. No entanto,

escalonar e controlar a execução de aplicações compostas por centenas ou milhares de

tarefas ainda apresenta-se como um desafio técnico e científico. Isso se deve principal-

mente a dois fatores. Primeiro, o grande número de tarefas pode causar uma sobrecarga

na máquina de submissão. Segundo, o controle manual é proibitivo uma vez que estas

aplicações (a) utilizam uma grande quantidade de recursos e (b) podem levar vários dias

ou meses para serem concluídas com sucesso. Existem várias classes de aplicações que

4

podem ser caracterizadas como de alta demanda por recursos computacionais tais como

ciclos de CPU e/ou armazenamento de dados. Por exemplo, pesquisas em física de altas

energias (HEP) [21] e bioinformática [86] usualmente exigem processamento de grandes

quantidades de dados utilizando algoritmos que fazem uso de muitos ciclos de CPU.

Geralmente, estas aplicações são compostas por tarefas e a maioria dos sistemas trata

cada tarefa individualmente como se elas fossem aplicações stand-alone. Freqüentemente,

as aplicações são compostas por tarefas hierárquicas que precisam ser tratadas em con-

junto, ou porque elas precisam de alguma forma de interação com o usuário ou porque

precisam se comunicar. Estas aplicações também podem apresentar uma característica de

grande escala e disparar um grande número de tarefas exigindo a execução de centenas ou

centenas de milhares de experimentos.

A maioria dos sistemas computacionais existentes falha ao tratar dois problemas: (1)

o gerenciamento e o controle de um grande número de tarefas; e (2) a regulagem (ou

balanceamento) da carga da máquina de submissão e do tráfego da rede. Um trabalho na

direção do item (1) é o de Dutra et al. [39] que reporta experimentos de programação

em lógica indutiva que geraram mais de quarenta mil tarefas, e cujo foco era prover uma

ferramenta para o usuário para o controle e monitoração da execução de uma aplicação

específica.

Acredita-se que uma hierarquia de gerenciadores, que distribua dinamicamente da-

dos e tarefas, pode ajudar o gerenciamento de aplicações, tratando os problemas citados.

Este texto apresenta um modelo de gerenciamento deste tipo de aplicações, baseado em

submissão e controle particionados e hierárquicos, denominado GRAND (Grid Robust

Application Deployment) [114, 142, 143, 144, 145, 146, 147].

Este trabalho pressupõe que aplicações formadas por tarefas distribuídas devam ser

executadas em um ambiente heterogêneo de máquinas não necessariamente dedicadas,

podendo ser formado por diversos domínios (i.e, uma grade formada tanto por clusters

quanto por redes locais). Neste contexto, as tarefas podem ter dependências na sua ordem

de execução, mas não realizam comunicação por troca de mensagens.

O objetivo é garantir que, além da realização do escalonamento das tarefas, o ambiente

de execução realize o gerenciamento dos dados envolvidos na computação bem como a

autenticação e autorização para execução das tarefas. Também busca-se garantir a integri-

dade dos dados e controlar o fluxo no retorno dos arquivos de resultados.

O modelo de gerenciamento GRAND (Grid Robust Application Deployment) reali-

5

za a submissão e o controle de forma distribuída e hierárquica de aplicações compostas

por uma grande quantidade de tarefas em um ambiente de computação em grade. Este

modelo disponibiliza mecanismos para o gerenciamento hierárquico que pode controlar

a execução das tarefas preservando a localidade dos dados ao mesmo tempo que reduz a

carga das máquinas de submissão.

As principais contribuições desta tese são:

� a definição de um modelo arquitetural para realizar o gerenciamento de aplicações.

Este modelo, denominado GRAND, é composto por várias etapas e permite a dis-

tribuição da submissão e do controle da aplicação;

� uma nova linguagem de descrição de aplicação denominada GRID-ADL (GRID Ap-

plication Description Language), uma linguagem baseada em script com definição

implícita do grafo da aplicação e facilidades para expressar um grande número de

tarefas;

� um novo esquema XML para descrição de aplicações. Foi proposta uma extensão

do padrão JSDL [79] proposto pelo Global Grid Forum [61] permitindo expressar

dependências entre tarefas;

� escalonamento proposto dividido em etapas de agrupamento (clustering) e mapea-

mento (mapping). Foram propostos também uma taxonomia de aplicações e algo-

ritmos distintos para o tratamento de cada classe de aplicação;

� utilização de técnicas simples para o gerenciamento de dados que se mostraram

efetivas para um bom aproveitamento dos recursos computacionais;

� a implementação de um protótipo que permite a execução de aplicações no ambi-

ente ISAM/EXEHDA com algumas das principais funcionalidades deste modelo. O

protótipo foi avaliado com algumas aplicações.

No próximo capítulo apresenta-se os principais detalhes do modelo GRAND. No Capí-

tulo 3, apresenta-se as considerações finais relacionadas a este resumo estendido, bem

como a organização dos anexos contendo o detalhamento da tese.

6

Capítulo 2

O Modelo GRAND

Este capítulo apresenta uma visão geral do modelo GRAND bem como do protótipo App-

Man. Ele resume alguns dos principais pontos apresentado nos apêndices. O restante deste

capítulo está organizado da seguinte forma. Inicialmente apresentamos as premissas ini-

ciais que nortearam a concepção do modelo GRAND (Seção 2.1). Depois, as aplicações

mais importantes de ambiente de grade são caracterizadas (Seção 2.2).

Na Seção 2.3, alguns aspectos sobre gerenciamento de dados são apresentados. Uma

discussão sobre o particionamento de aplicações para execução em um ambiente de grade

é realizada na Seção 2.4. Depois, é apresentado o modelo de gerenciamento hierárquico

de aplicações GRAND, que pode controlar a execução de um grande número de tarefas

distribuídas preservando a localidade dos dados ao mesmo tempo que reduz a carga das

máquinas de submissão (Seção 2.5). Finalmente, o protótipo AppMan, implementado com

o middleware EXEHDA, é analisado (Seção 2.6) e as conclusões e trabalhos futuros são

apresentados (Seção 2.7).

2.1 Premissas

Considerando que atualmente os ambientes de grade envolvem principalmente instituições

de ensino e pesquisa, e partindo do pressuposto que nestas instituições estão sendo execu-

tadas aplicações usualmente classificadas como aplicações científicas, limita-se o escopo

do nosso ambiente alvo conforme descrito nos próximos itens.

Ambiente é heterogêneo. Heterogeneidade é característica inerente ao ambiente de grade.

Se a idéia é executar em ambiente de grade, nada mais natural que considerar heterogenei-

7

dade. Tratar heterogeneidade também afeta diretamente a política de escalonamento que

precisa saber que as máquinas têm características distintas de hardware e software.

Um grande número de tarefas pode ser submetido. Esta premissa é também uma das

motivações principais deste trabalho e é fundamental na definição de vários detalhes do

modelo. Por um número grande de tarefas, refere-se a aplicações que geram centenas ou

milhares de processos.

Um usuário pode submeter de sua máquina de submissão (home machine ou submit

machine) uma aplicação com dezenas de milhares de tarefas. Se toda a submissão e con-

trole forem realizadas por esta mesma máquina, provavelmente a máquina de submissão

irá responder de forma muito lenta ao usuário impossibilitando que ele/ela continue traba-

lhando nesta máquina. Este problema já é conhecido na literatura. Por exemplo, o geren-

ciador de recursos Condor [136] permite que o usuário especifique um limite de tarefas

que podem ser submetidas em uma máquina específica ao mesmo tempo. Acredita-se que

embora resolva o problema, esta não seja a melhor solução, uma vez que exige que o

usuário tenha alguma experiência prévia com submissão de tarefas no ambiente corrente

para determinar o limite apropriado que evite travar a máquina e ao mesmo tempo que

garanta um bom grau de concorrência.

Além disso, a monitoração da execução e o tratamento de erros de forma manual tam-

bém não é factível uma vez que este tipo de aplicação (a) usa um grande número de re-

cursos e (b) podem levar vários dias ou semanas para terminar com sucesso. Deste modo,

nossa proposta precisa ser escalável e deve prover retorno ao usuário.

Tarefas não se comunicam por troca de mensagem. Vários trabalhos permitem troca

de mensagens em ambiente de grade [81, 82]. Entretanto, troca de mensagens introduzem

vários aspectos a serem considerados nas fases de agrupamento e mapeamento. Por isso,

assumimos que as aplicações a serem gerenciadas pelo nosso modelo não se comunicam

por troca de mensagens.

Tarefas podem ter dependências com outras tarefas devido ao compartilhamento de

arquivos. Aplicações podem ser modeladas como um grafo de dependência de tarefas,

onde as dependências ocorrem devido ao compartilhamento de arquivos. Por exemplo, se

uma tarefa � produz um arquivo de saída
���

, que uma tarefa � utiliza como arquivo de

8

entrada, então a tarefa � deve aguardar até que a tarefa � termine a sua execução. Deste

modo, as decisões de escalonamento devem considerar tanto tarefas independentes quanto

com dependência.

Um grande número de arquivos pode ser manipulado pelas tarefas. Como as tarefas

podem se comunicar e sincronizar através de arquivos, cada tarefa normalmente manipu-

la pelo menos dois arquivos (uma entrada e uma saída). Como assumimos um número

grande de tarefas, conseqüentemente teremos um número grande de arquivos. Algoritmos

eficientes para manter a localidade dos dados e para transferir arquivos de forma eficiente

são cruciais para o sucesso do modelo.

Arquivos grandes podem ser usados na computação. A transferência de arquivos

muito grandes pode causar o congestionamento da rede, perda de pacotes e tornar o tempo

de transmissão muito alto. Preservar localidade, e o uso de técnicas de staging e caching

podem ajudar a minimizar a perda de desempenho devido a latência de transmissão de

dados.

A infraestrutura de grade utilizada é segura. Assumimos que existe uma conexão se-

gura entre os nodos da grade. Assumimos também que quaisquer tipos de autenticação

e autorizações necessários para a execução da aplicação serão disponibilizado por uma

infraestrutura de grade pré-existente. Por exemplo, o GSI [149] do Globus pode ser uti-

lizado.

A infraestrutura de grade utilizada permite a descoberta dinâmica de recursos. Des-

coberta (discovery) é um serviço que permite que um sistema recupere a descrição de

recursos. Existem vários serviços de descoberta para ambiente de grade reportados na

literatura [64, 99, 117]. Consideramos que a infraestrutura de grade disponibiliza um ou

mais serviços de descoberta.

Cada nodo da grade possui o seu gerenciador de recursos local. Cada nodo da grade

possui o seu próprio sistema de gerenciamento de recursos (RMS) local.

Uma tarefa submetida à um RMS local irá executar até a sua finalização. Assumi-

mos também que uma vez que uma tarefa seja alocada, ela não será mais escalonada, ou

9

pelo menos qualquer tipo de migração ou re-escalonamento ocorrerá de forma transparen-

te.

2.2 Caracterização das Aplicações

Considerando-se aplicações típicas de ambientes de grade, sem troca de mensagens, que

podem se comunicar via troca de arquivos e que sabem previamente quantos processos

precisam ser criados, propõe-se a seguinte taxonomia de aplicações [143, 145, 146]:

� independent tasks ou tarefas independentes caracterizam o tipo mais simples de

aplicação onde as tarefas não possuem dependências entre si. Esse tipo de aplicação

é muitas vezes chamado de bag-of-tasks. Simulações de Monte Carlo, tipicamente

usadas em Física de Altas Energias (HEP) são exemplos deste tipo de aplicação;

� loosely-coupled tasks ou tarefas fracamente acopladas são caracterizadas por pou-

cos pontos de compartilhamento, i.e., uma aplicação dividida em fases (phases) ou

em seqüência (pipeline). Experimentos em programação em lógica indutiva são

exemplos de fracamente acoplada em fases;

� tightly-coupled tasks: ou tarefas fortemente acopladas caracterizadas por grafos

complexos. Aplicações de programação em lógica com restrições (CLP) normal-

mente se enquadram nesta categoria.

A Figura 2.1 ilustra de forma visual os grafos das aplicações que são típicos de cada

uma das categorias da taxonomia proposta.

1

2

5 6

3

4

N

…

(a) (b) (c) (d)

Figura 2.1: Categorias de aplicações de grade: (a) independent tasks, (b) loosely-coupled
tasks (phase), (c) loosely-coupled tasks (pipeline), e (d) tightly-coupled tasks

10

2.3 Gererenciamento de Dados

Uma das tarefas a serem tratadas pela infraestrutura de grade é o gerenciamento de dados,

estejam eles armazenados em arquivos ou em bases de dados. Como estas infraestruturas

ainda estão em desenvolvimento, ainda há muito a ser feito nesta questão. Inicialmente,

cada usuário resolvia o tratamento dos dados através de soluções específicas, muitas vezes

recorrendo a shell scripts ou a transferências de arquivo manuais via protocolo ftp. Vários

trabalhos vêm se preocupando principalmente com os dados em forma de arquivos, até por

ser relativamente simples extrair dados armazenados em um banco de dados para o formato

de arquivo texto. Existem propostas desde protocolos eficientes de transferência de dados

como o GridFTP [1] do Projeto Globus até sistemas de arquivos como o LegionFS [150].

No caso específico do modelo GRAND, será tratado apenas o gerenciamento de arquivos,

com relação a enviar dados para o local de processamento, bem como fazer o retorno dos

resultados (respectivamente stage in e stage out).

Um gerenciador de aplicações precisa controlar o envio dos dados e tarefas e o rece-

bimento dos resultados gerados das tarefas. A máquina na qual o usuário submete um

número grande de tarefas é denominada máquina de submissão (submit machine). Temos

uma arquitetura hierárquica onde na máquina de submissão fica um gerenciador que de-

lega o encargo de submeter as tarefas a outros gerenciadores, e aguarda o resultado final

da execução das tarefas sem ter que se preocupar com os detalhes. Esse gerenciador é

denominado Gerenciador de Aplicação (Application Manager ou AM).

O gerenciador da máquina de submissão dispara ou utiliza gerenciadores já previa-

mente inicializados do sistema que tem como função fazer o escalonamento das tarefas

(achar máquinas com que atendam aos requisitos do usuário). Além disso, ele deve procu-

rar privilegiar a localidade dos dados. Uma vez que os dados cheguem aos gerenciadores,

o envio dos resultados à máquina home é feita de forma controlada evitando congestiona-

mento.

Uma vantagem deste esquema é liberar a carga da máquina onde é feito o disparo da

aplicação, já que normalmente é a máquina de trabalho do usuário. Além disso, caso haja

falha em um dos gerentes, é mais barato fazer a recuperação (elimina o ponto único de

falha).

Além disso, são propostas otimizações no envio de arquivos de dados compartilhados

por mais de uma tarefa, permitindo a criação de uma espécie de cache.

11

2.4 Particionamento

O problema de particionamento a ser tratado neste contexto pode ser definido do seguinte

modo. Pressupõe-se que as aplicações submetidas são formadas por tarefas que podem

ter dependências na sua ordem de execução, mas não realizam comunicação por troca de

mensagens. Estas dependências são determinadas pelos dados de entrada e saída (normal-

mente arquivos de dados), conforme explicitado em um arquivo de descrição da aplicação.

A descrição da aplicação deve ser feita utilizando a linguagem de descrição GRID-

ADL (Grid Application Description Language) [114, 146] proposta nesta tese. Tal lin-

guagem é simples porém poderosa. Ela permite que grafos sejam descritos de forma im-

plícita.

Uma aplicação pode então ser representada como um grafo onde cada nodo repre-

senta uma tarefa e as arestas representam a ordem de precedência entre as tarefas. Este

grafo é necessariamente um grafo direcionado acíclico (DAG ou directed acyclic graph).

Para que este DAG possa ser executado, ele precisa primeiro ser particionado. Particiona-

mento neste contexto é a divisão do DAG em sub-grafos de tal forma que eles possam

ser alocados em diferentes processadores disponíveis de forma eficiente. Para realizar o

particionamento do DAG, será utilizado o algoritmo DSC (Dominant Sequence Cluster-

ing) [158]. O algoritmo DSC possui complexidade ���������	��
��������
 onde � é o número de

tarefas e � o número de arestas.

2.5 Modelo de Gerenciamento

O modelo GRAND trata três aspectos do gerenciamento de dados: (a) os dados de en-

trada são transferidos automaticamente para o local onde o arquivo será necessário como

ocorre em outros trabalhos (e.g. [135]); (b) como o volume de dados a ser tratado é poten-

cialmente muito grande, o modelo contempla o envio dos resultados ao usuário de forma

controlada para evitar congestionamento da rede; (c) o escalonamento prioriza a locali-

dade no disparo de tarefas para evitar transferências desnecessárias de dados transientes e

conseqüente degradação do desempenho.

O disparo e controle das aplicações é feito através de uma hierarquia de gerenciadores

conforme ilustrado na Figura 2.2: (nível 0) um usuário submete uma aplicação em uma

máquina através do Application Manager; (nível 1) os Application Managers enviam aos

Submission Manager descrições de tarefas; (nível 2) os Task Managers são instanciados

12

sob demanda pelos Submission Managers a fim de controlar a submissão de tarefas a

escalonadores de domínios específicos da grade; (nível 3) escalonadores nos domínios

específicos recebem requisições dos Task Managers e fazer a execução de fato das tarefas.

Figura 2.2: Principais componentes do modelo hierárquico de gerenciamento de tarefas

O Application Manager é encarregado de: (a) receber um arquivo de entrada descre-

vendo as tarefas; (b) particionar as tarefas em sub-grafos que são enviados para diferentes

Submission Managers, buscando manter a localidade de dados e minimizar a comunicação

entre os Submission Managers; (c) mostrar ao usuário, de forma amigável, informações

do estado da execução da aplicação.

As principais funções do Submission Manager são: (a) decidir a alocação dos sub-

grafos com base em informações dinâmicas sobre os recursos computacionais; (b) indicar

o estado da execução e falhas através de comunicação periódica com o Submission Man-

ager; (c) acompanhar o andamento da aplicação e recuperar falhas através de um registro

persistente (log); (d) criar e monitorar os Task Managers; (e) avaliar, durante a execu-

ção, se deve ou não continuar a execução de tarefas em máquinas que forem liberadas ou

retornarem após uma falha.

Cada Task Manager é responsável por: (a) se comunicar com o escalonador de um

determinado domínio a fim de garantir a execução remota de tarefas; (b) garantir a ordem

13

de execução de acordo com as dependências de dados; (c) controlar a transferência de

dados garantindo a disponibilidade dos dados de entrada e o recebimento dos dados de

saída.

O uso de uma hierarquia de escalonadores é considerado na literatura com uma boa

alternativa para o ambiente de grade [140, 84]. O principal diferencial do modelo proposto

é a hierarquia de gerenciadores de submissão acima do meta escalonador. Deste modo,

pode-se notar que o modelo proposto realiza um balanceamento da carga computacional

necessário para controlar a execução das tarefas, evitando que a máquina de submissão

fique sobrecarregada e que ocorra perda de dados por congestionamento da rede. Além

disso, permite que escalonadores já existentes sejam integrados em um único ambiente de

escalonamento.

2.6 AppMan: Protótipo GRAND

A entrada do protótipo é a descrição da aplicação. O usuário deve especificar a aplicação

através da linguagem de descrição GRID-ADL. Em GRID-ADL, o usuário descreve ape-

nas as características das tarefas incluindo arquivos manipulados. Como considera-se que

as dependências entre tarefas são programadas usando arquivos de dados, as dependências

entre as tarefas são inferidas automaticamente através da análise do fluxo de dados. O

parser para leitura do arquivo de descrição e a inferência do DAG foram implementados

usando a ferramenta JavaCC [78].

Uma vez que o DAG tenha sido obtido, o protótipo pode iniciar a execução do mesmo.

Para implementar as fases de submissão e controle da execução, utilizou-se a linguagem

Java dentro do ambiente EXEHDA.

EXEHDA (Execution Environment for High Distributed Applications) [155] é um

modelo destinado à execução de aplicações distribuídas. As aplicações alvo são distribuí-

das e contemplam mobilidade de hardware e software, sendo baseadas no paradigma de

programação empregado pelo projeto ISAM (Infra-estrutura de Suporte às Aplicações

Móveis)

O protótipo implementado possui um Application Manager para disparar e monitorar

a execução de cada aplicação em máquinas de uma rede local. Cada máquina possui um

Submission Manager. No estado atual da implementação, os Submission Managers não

se comunicam nem sabem a localização de outros Submission Managers. Deste modo, as

14

aplicações funcionam desde que se assuma que o particionamento gera grafos totalmente

disjuntos, i.e. sem dependência entre os Submission Managers, e (2) cada sub-grafo exe-

cuta até o final sem falhas. Uma interface gráfica simplificada apresenta para o usuário a

representação do DAG a medida que as tarefas são executadas.

Como principais contribuições desta implementação, destaca-se a possibilidade de ve-

rificar (1) a viabilidade do modelo proposto e (2) o potencial do ambiente de programação

ISAM/EXEHDA.

Como trabalhos futuros inclui-se o refinamento e a otimização do protótipo bem como

a obtenção de mais dados experimentais.

2.7 Conclusão

Este capítulo apresentou a visão geral da tese que trata do gerenciamento de aplicações em

ambientes de grade, focando em aplicações que disparam um grande número de tarefas e

dados através da rede da grade. Foi projetado um modelo arquitetural para ser implemen-

tado como um middleware denominado GRAND. A fim de projetar tal arquitetura, foi

considerado que os recursos e tarefas são modelados como grafos. Este texto apresentou

a implementação do modelo GRAND utilizando o ambiente de programação ISAM/EX-

EHDA.

15

Capítulo 3

Estrutura dos Apêndices

O detalhamento deste trabalho encontra-se nos apêndices, que constituem a tese propria-

mente dita, e está organizado do seguinte modo:

Apêndice A: Apresenta uma introdução com uma motivação e uma visão geral sobre a

tese.

Apêndice B: Apresenta os conceitos básicos de computação em grade (grid comput-

ing), incluindo classificações apresentadas na literatura, e nossa taxonomia proposta para

aplicações distribuídas.

Apêndice C: Trata de alguns dos principais aspectos relacionados ao gerenciamento de

aplicações.

Apêndice D: Analisa alguns dos gerenciadores de recursos (resource management sys-

tems ou RMSs) que são utilizados para gerenciar recursos, principalmente CPU, em nodos

de uma grade.

Apêndice E: Reporta os experimentos realizados para verificar a influência da submis-

são distribuída em um ambiente distribuído (cluster e/ou grid). Os dados dos experimentos

conduzidos em um cluster gerenciado pelo RMS Condor e em um ambiente de simulação

construído com o Monarc também são analisados.

Apêndice F: Apresenta e analisa as principais características e contribuições do modelo

de gerenciamento de aplicações proposto nesta tese. Este modelo é denominado GRAND

16

(Grid Robust Application Deployment) e propõe principalmente a utilização de uma es-

trutura hierárquica para realização do gerenciamento da aplicação.

Apêndice G: O protótipo implementado, denominado AppMan (Application Manager),

é apresentado, e alguns experimentos analisados.

Apêndice H: As considerações finais e os trabalhos futuros concluem a descrição da

tese.

Apêndice I: Ao final tem-se uma descrição da linguagem GRID-ADL, proposta nesta

tese, em notação ABNF.

17

Apêndice A

Overview

The subject of this thesis is the application management in a grid computing environment.

We understand application management in a grid environment as the task of submitting

and monitoring the execution progress of all tasks that compose the user application. Ap-

plication management encompasses several activities, as we will analyze in this thesis,

such as application description, mapping, submission, and monitoring .

We focus on applications that spread a huge number (thousands) of tasks and manip-

ulate very large number of files across the grid. We propose the GRAND (Grid Robust

Application Deployment) model [114, 142, 143, 144, 145, 146, 147] to perform such ap-

plication management.

A.1 Motivation

The term grid computing [50, 54] was coined in the mid-1990s to denote a distributed

computing infrastructure for scientific and engineering applications. The grid can federate

systems into a supercomputer beyond the power of any current computing center [10].

Several works on grid computing have been proposed in the last years [9, 13, 50, 51, 101,

113].

A grid computing environment supports sharing and coordinated use of heterogeneous

and geographically distributed resources. These computational resources are made avail-

able transparently to the application independent of its physical location as if they belong

to a single and powerful logical computer. These resources can be CPUs cycles, storage

systems, network connections, or any other resource made available due to hardware or

software. In the last years, many works on resource management for grid computing en-

vironments have been proposed [11, 26, 43, 84, 107, 134, 140, 159]. However, no single

18

work presented in the literature can deal properly with all issues related to application

management.

Grand Challenge applications are fundamental problems in science and engineering

with broad economic and scientific impact [65]. They have a high demand for computa-

tional resources such as CPU cycles and/or data storage. For instance, research in High

Energy Physics (HEP) and Bioinformatics usually requires processing of large amounts of

data using processing intensive algorithms. The major HEP experiments for the next years

aim to find the mechanism responsible for mass in the universe and the “Higgs” particles

associated with mass generation [21]. These experiments will be conducted through col-

laborations that encompass around 2000 physicists from 150 institutions in more than 30

countries. One of the largest collaborations is the Compact Muon Solenoid (CMS) project.

The CMS project estimates that 12-14 Petabytes of data will be generated each year [28].

In Bioinformatics, genomic sequencing is one of the hot topics. The genomic se-

quences are being made public on a lot of target organisms. A great amount of gene

sequences are being stored in public and private databases. It is said that the quantity of

stored genomic information should double every eight months. The more the quantity of

information increases, the more computation power is required [86].

There are several applications that can run in a grid computing environment. We con-

sider only applications composed by several tasks which can have dependencies through

file sharing. We classify those applications in three types, as we present in more detail

later on: independent tasks (bag-of-tasks), loosely-coupled tasks (few sharing points), and

tightly-coupled tasks (more complex dependencies).

Usually, applications are composed of tasks and most systems deal with each indi-

vidual task as if they are stand-alone applications. Very often, as for example in some

applications of HEP, they are composed of hierarchical tasks that need to be dealt with

altogether, either because they need some feedback from the user or because they need

to communicate. These applications can also present a large-scale nature and spread a

very large number of tasks requiring the execution of thousands or hundreds of thousands

of experiments. Most current software systems fail to deal with these two problems: (1)

manage and control large numbers of tasks; and (2) regulate the submit machine load and

network traffic, when tasks need to communicate. One work in the direction of item (1)

is that of Dutra et al. [39] that reported experiments of inductive logic programming that

generated over 40 thousand jobs that required a high number of resources in parallel in

19

order to terminate in a feasible time. However, this work was concentrated on provid-

ing an user level tool to control and monitor that specific application execution, including

automatic resubmission of failed tasks.

Dealing with huge amounts of data requires solving several problems to allow the

execution of the tasks as well as to get some efficiency. One of them is data locality.

Some applications are programmed using data file as a means of communication to avoid

interprocess communication. Some of the generated data can be necessary only to get the

final results, that is, they are intermediate or transient data which are discarded at the end

of the computation. Transient data can exist in loosely- and tightly-coupled tasks. We

consider that grouping dependent tasks and allocating them to the same grid node allows

to keep data locality. The goal is to get a high data locality so that data transfer costs are

minimized.

So, applications that spread a large number of tasks must receive a special treatment

for submission and execution control. Submission of a large number of tasks can stall the

machine. A good solution is to have some kind of distributed submission control. Besides,

monitoring information to indicate application progress must be provided to make the

system user friendly. Finally, automatic fault detection is crucial since handling errors

manually is not feasible.

Our work deals with these application control limitations, focusing on applications

that spread a very large number of tasks. These non trivial applications need a powerful

distributed execution environment with many resources that currently are only available

across different network sites. Grid computing is a good alternative to obtain access to the

needed resources.

A.2 Goals and Contributions

Two open research problems in grid environments are addressed in this work. The first

one is the task submission process. Controlling the execution of an application which is

embarrassingly parallel is usually not complex. However, if the application is composed

by a huge number of tasks, the execution control is a problem. Tasks of an application can

have dependencies. The user should not need to start such tasks manually. Besides, the

number of tasks can be very large. The user should not need to control start and termina-

tion of each task. Moreover, tasks should not be started from the same machine to avoid

20

(1) overloading the submit machine, and (2) the submit machine becomes a bottleneck. In

this work we employ a hierarchical application management organization for controlling

applications with a huge number of tasks and distribute the task submission among sev-

eral controllers. We believe that a hierarchy of adaptable and grid-aware controllers can

provide efficient, robust, and resilient execution.

The second open problem is the data locality maintenance when tasks are partitioned

and mapped to remote resources. In this work, the applications are distributed applications,

i.e. applications composed by several tasks. Tasks can be independent or dependent due to

file sharing. The application partitioning goal is to group tasks in blocks that are mapped to

available processors. This process must keep data locality, which means to minimize data

transfer through processors and to avoid unnecessary data transfers. This is fundamental

to get good application performance.

The main contributions achieved in this thesis are the following:

� the definition of an architectural model to perform application management called

GRAND (Grid Robust Application Deployment) [114, 143, 144, 145, 146, 147].

This model is composed by several steps we formalized and allows a distributed

submission of the application. GRAND is an application management system for

grid environments, and differs from other approaches [22, 89, 134] in that it incor-

porates features to support application scalability, data locality, and network flow

control;

� a new application description language, called GRID-ADL (Grid Application De-

scription Language) [114], a script like language with implicit DAG definition and

facilities to express a large number of tasks;

� a new XML-based description of application DAGs. It was proposed as an extension

of JSDL standard [79] proposed by the Global Grid Forum [61];

� the steps proposed includes clustering and mapping. Clustering is a kind of static

partitioning that is performed without information about the grid nodes. Clusters are

defined to be submitted altogether. An application taxonomy was proposed and we

argue that for different kinds of applications, there is a clustering algorithm more

appropriate;

21

� a prototype was implemented and evaluated [142, 144]. The obtained results showed

good scalability for resource and data management.

The remaining of this text is organized as follows. First, we present basic concepts

related to grid computing (Appendix B). Then, we analyze concepts and works related to

application management (Appendix C). We focus mainly on application partitioning. We

also analyze concepts and works in resource management for grid (Appendix D).

We introduce some experimental motivation to our model design in Appendix E. We

present and analyze our hierarchical model in Appendix F. We discuss some of the prob-

lems that need to be solved to satisfy user needs, which are the motivation to our model.

We also present our architecture.

Then, we analyze some results obtained using our prototype in Appendix G. Our

results show that our proposal is promising. Finally, we conclude this text with our final

remarks and future works (Appendix H).

22

Apêndice B

Grid Computing Concepts

Grid computing is closely related to the distributed computing and network research ar-

eas. It differs from conventional distributed computing in the focus on large-scale re-

source sharing, innovative applications, and, in some cases, high-performance and/or

high-throughput orientation [54, 88]. It also needs a network infrastructure to support

high-bandwidth consumption and/or high-throughput needs.

This chapter presents basic concepts related to grid computing. First, we present grid

computing definitions (Section B.1). Then, we discuss about grid applications (Section

B.2), and grid computational systems (Section B.3). Finally, some final considerations are

presented (Section B.4).

B.1 Definitions of Grid Computing

An increasing number of research groups have been working in the field of network wide-

area distributed computing [12, 36, 37, 62, 71, 97, 121, 135]. They have been imple-

menting middleware, libraries, and tools that allow cooperative use of geographically dis-

tributed resources. These initiatives have been known by several names [9, 113] such as

metacomputing, global computing, and more recently grid computing.

The term grid computing was coined by Foster and Kesselman [48] in late 90’s as

a hardware and software infrastructure that provides dependable, consistent, pervasive,

and inexpensive access to high-end computational capabilities. Actual grid computing

efforts can be seen as the third phase of metacomputing evolution as stated in the Meta-

computing’s paper of Smarr and Catlett in 1992 [123]: a transparent network that will

increase the computational and information resources available to an application. It is

also a synonym of metasystem [70] which “supports the illusion of a single machine by

23

transparently scheduling application components on processors; managing data migration,

caching, transfer, and the masking of data-format differences between systems; detecting

and managing faults; and ensuring that users’ data and physical resources are protected,

while scaling appropriately”.

The Global Grid Forum (GGF) [61] is a community-initiated forum of thousands of in-

dividuals, representing over 400 organizations in more than 50 countries. The GGF creates

and documents technical specifications, user experiences, and implementation guidelines.

The GGF’s Grid Scheduling Dictionary [112] defines grids as “persistent environments

that enable software applications to integrate instruments, displays, computational and

information in widespread locations”. But this definition is adopted by few researchers.

Since there is not a unique and precise definition for the grid concept, we present two

attempts to define and check if a distributed system is a grid system. First, Foster [47]

proposes a three point checklist to define grid as a system that:

1. coordinates resources that are not subject to centralized control...

2. ... using standard, open, general-purpose protocols and interfaces...

3. ... to deliver nontrivial qualities of service.

Second, Németh and Sunderam [103] presented a formal definition of what a grid sys-

tem should provide. They focused on the semantics of the grid and argue that a grid is not

just a modification of “conventional” distributed systems but fundamentally differs in se-

mantics. They present some criteria comparing distributed environments and grids that we

transcribe (Table B.1) and analyze. A grid can present heterogeneous resources including,

for example, sensors and detectors and not only computational nodes. Individual sites may

belong to different administrative domains. Thus, the user has access to the grid (the pool)

but not to the individual sites and access may be restricted. The user has limited knowl-

edge about each site due to administrative boundaries, and even due to the large number of

resources. Resources in the grid typically belong to different administrative domains and

also to several trust domains. Finally, while conventional distributed environments tend to

be static, except due to faults and maintenance, grids are dynamic by definition.

Németh and Sunderam [102] also made an informal comparison of distributed systems

and computational grids.

24

Table B.1: Comparison of conventional distributed environments and grids [103]

Conventional distributed environments Grids

a virtual pool of computational nodes a virtual pool of resources
a user has access (credential) to all the
nodes in the pool

a user has access to the pool but not to
individual sites

access to a node means access to all
resources on the node

access to a resource may be restricted

the user is aware of the capabilities
and features of the nodes

the user has limited knowledge about
each site

nodes belong to a single trust domain resources span multiple trust domains
elements in the pool 10-100, more or
less static

elements in the pool 1000-10000, dy-
namic

Besides, Foster et al. [54] presents the specific problem that underlies the grid concept

as coordinated resource sharing and problem solving in dynamic, multi-institutional vir-

tual organizations. The sharing is, necessarily, highly controlled, with resource providers

and consumers defining clearly and carefully what is shared, who is allowed to share, and

the conditions under which sharing occurs. A set of individuals and/or institutions that

agree with such sharing rules form what they call a virtual organization.

Though there might be a strong relation among the entities building a virtual organiza-

tion, a grid still consists of resources owned by different, typically independent organiza-

tions. This leads naturally to heterogeneity of resources and policies [115].

There are several reasons for programming applications on a computational grid. Lafo-

renza [88] presents some examples: to exploit the inherent distributed nature of an applica-

tion, to decrease the turnaround/response time of a huge application, to allow the execution

of an application which is outside the capabilities of a single (sequential or parallel) ar-

chitecture, and to exploit affinities between an application component and grid resources

with specific functionalities.

In the next sections we give some of the classifications found in the literature for grid

applications and systems.

B.2 Grid Applications Classifications

Foster and Kesselman [48] identify five major application classes of grid environments:

� Distributed supercomputing applications use grid to aggregate substantial computa-

tional resources in order to tackle problems that cannot be solved on a single system.

25

They are very large problems, such as simulation of complex physical processes,

which need lots of resources like CPU cycles and memory;

� High-Throughput Computing uses grid resources to schedule a large number of

loosely coupled or independent tasks, with the goal of putting unused processor

cycles to work. The Condor system [135] has been dealing with this kind of appli-

cation, as for example, in molecular simulations of liquid crystal and biostatistical

problems solved with inductive logic programming;

� On-Demand Computing applications use grid capabilities to meet short-term re-

quirements for resources that cannot be cost-effectively or conveniently located lo-

cally. For example, one user doesn’t need to buy a supercomputer to run an appli-

cation once a week. Another example, the processing of data from meteorological

satellites can use dynamically acquired supercomputer resources to run a cloud de-

tection algorithm;

� Data-Intensive Computing applications, where the focus is on synthesizing new in-

formation from data that is maintained in geographically distributed repositories,

digital libraries, and databases. This process is often computational and communi-

cation intensive, as expected in HEP experiments;

� Collaborative Computing applications are concerned primarily with enabling and

enhancing human-to-human interactions. Many collaborative applications are con-

cerned with enabling the shared use of computational resources such as data archives

and simulations. For example, the CAVE5D [24] system supports remote, collabo-

rative exploration of large geophysical data sets and the models that generated them.

Some examples of applications that are representative of these main classes of appli-

cations are the following:

Monte Carlo Simulation Monte Carlo experiments are sampling experiments, performed

on a computer, usually done to determine the distribution of a statistic under some set of

probabilistic assumptions [69]. The name Monte Carlo comes from the use of random

numbers.

26

In HEP, there are several applications to this technique. The results can usually be

obtained running several independent instances, with different parameters, which can be

easily executed in parallel.

Biostatistic Problems using Inductive Logic Programming (ILP) Dutra et al. [39]

reported experiments of ILP to solve biostatistic problems. Since, it is a machine learning

problem, it had two main phases: experimentation and evaluation. During the experimen-

tation phase, the user wants to run a learner, adjusting the learner parameters, using several

datasets, and sometimes, repeating the learning process several times. During the evalua-

tion phase, the user is interested in knowing how accurate a given model is, and which one

of the experiments gave the most accurate result.

Typically, these experiments need to be run in parallel in both phases. Due to the highly

independent nature of each experiment, all machine learning process can be trivially par-

allelized. However, all experiments of the first phase must be finished before proceeding

to the second phase.

Finite Constraint Satisfaction Problems (Finite CSP) Finite CSP [5] usually describe

NP-complete search problems. Algorithms exist, such as arc-consistency algorithms, that

help to eliminate inconsistent values from the solution space. They can be used to reduce

the size of the search space, allowing to find solutions for large CSP.

Still, there are problems whose instance size make it impossible to find a solution

in a feasible time with sequential algorithms. Concurrency and parallelism can help to

minimize this problem because a constraint network generated by a constraint program

can be split among processes in order to speed up the arc-consistency procedure. The

dependency between the constraints can be represented usually as a complex and highly

connected graph.

Considering the examples presented and other presented in the literature we certainly

have a wide variety of applications that can profit from grid infrastructure. These dis-

tributed applications can be expressed as a graph, and usually as a Directed Acyclic Graph

(DAG) as we present in more details in Section C.1. Because we intend to partition the

application graphs to map their tasks to resources, we propose the following taxonomy

for distributed applications in grid [143, 145, 146]:

27

� independent tasks: the simplest kind of distributed application is the one usually

called bag-of-tasks. It characterizes applications where all tasks are independents.

Monte Carlo simulations, typically used in HEP experiments, are examples of inde-

pendent tasks applications;

� loosely-coupled tasks: this kind of graph is characterized by few sharing points,

i.e, an application divided in phases or pipeline. The ILP experiments mentioned

are examples of phase loosely-coupled tasks;

� tightly-coupled tasks: highly complex graphs are not so often, but are more difficult

to be partitioned. Constraint logic programming applications fall in this kind.

We present in Figure B.1 visual representations of application graphs for each of the

presented categories.

1

2

5 6

3

4

N

…

(a) (b) (c) (d)

Figure B.1: Grid application kind: (a) independent tasks, (b) loosely-coupled tasks
(phase), (c) loosely-coupled tasks (pipeline), and (d) tightly-coupled tasks

This classification proposal is important in the definition of the application partitioning

approach of our model, as we will discuss later (Chapter F).

B.3 Classifying Grid Systems

A current classification of grid computing systems is computational and data grid [107].

The computational grid focuses on reducing execution time of applications that require a

great number of computer processing cycles or on execution of applications that can not

be executed sequentially. The data grid provides the way to solve large scale data man-

agement problems. Data intensive applications such as HEP and Bio-informatics require

both computational and data grid features.

28

Krauter et al. [84] presents a similar taxonomy for grid systems, which includes a third

category, the service grid:

� The computational grid category denotes systems that have higher aggregate com-

putational capacity available for single applications than the capacity of any con-

stituent machine in the system. It is subdivided into distributed supercomputing

(parallel application execution on multiple machines) and high throughput (stream

of jobs). A computational grid can also be defined as a “large-scale high perfor-

mance distributed computing environment that provide access to high-end compu-

tational resources” [112];

� The data grid is a terminology used for systems that provide an infrastructure for

synthesizing new information from data repositories that are distributed in a wide

area network;

� The service grid is the name used for systems that provide services that are not

provided by any single local machine. This category is further divided as on de-

mand (aggregate resources to enable new services), collaborative (connect users

and applications via a virtual workspace), and multimedia (infrastructure for real-

time multimedia applications).

Two publications emphasized the importance of middleware construction for a grid

environment and presented the main guidelines and concepts for exploiting this kind of

environment. One is the already referred “Grid Anatomy” [54], which starts using the

term grid. The “Metasystems” paper [70] is another paper that, actually, was published

first. In this paper, the authors state that the challenge to the computer science commu-

nity is to provide a solid, integrated middleware foundation on which to build wide-area

applications.

B.4 Conclusion

We conclude this chapter by emphasizing that grid is the result of several years of research.

There are several open research problems, and this work proposes solutions to some of

them.

29

An important issue to allow the application execution in a grid environment is the

application management. Application management, as we present in the next chapter, is

concerned with questions such as how to partition and describe the application.

Once the application is partitioned, one of the main challenges is the mapping of the

application to the large number of geographically distributed resources. Solutions to the

problems related to these issues in the grid computing context will be discussed in the

subsequent chapters and are the main theme of this thesis.

30

Apêndice C

Application Management: Description
and Clustering

In this chapter, we discuss application management related issues. In the literature, usually,

the user uses description languages such as VDL [55] and the DAGMan language [135]

to describe the application. As previously discussed, an application can be represented as

a graph, where each node represents a task and the edges represent the task precedence

order. When the application management system receives the application graph, it needs

to dispatch the tasks in the right order and control its execution. A partitioning algorithm

is required to allow parallel execution. So, initially we present how an application can be

represented as a graph and the meaning of application partitioning (C.1). In this chapter,

partitioning is mostly used as a synonym to graph clustering. Note that we also assume the

user or a preprocessor tool had identified the tasks before partitioning. Then, we discuss

some examples of how to represent the application as a graph (Section C.2) and how to

partition the application graph (Section C.3). Finally, we conclude with Section C.4.

C.1 Representing an Application as a Graph

Usually, distributed applications can be expressed as a graph ��� �������
 , where � is a

set of weighted nodes representing tasks and � is the set of weighted edges that represent

dependencies between tasks [46, 75, 85]. This graph is usually undirected [85] and is

sometimes a Directed Acyclic Graph (DAG) [135].

A distributed application will usually run in several processors. Before executing, the

application must be partitioned.

31

Application partitioning can be defined as follows: tasks must be placed onto machines

in such a way as to minimize communication and achieve best overall performance of the

application [76]. Thus, application partitioning, in our work, is to divide the application

task graph in subgraphs such as they can be allocated to different available processors effi-

ciently. Efficiency can be measured considering the interprocessor communication and the

execution time. If they are kept low, the efficiency is high. Thus, application partitioning

can be done using graph partitioning techniques.

Graph Partitioning can be defined as the problem of dividing a set of nodes of a graph

into disjoint subsets of approximately equal-weight such that the number of edges with end

points in different subsets is minimized. Graph partitioning is an NP-complete problem

[59], thus heuristics must be applied.

Partitioning is a more general term, but in this thesis we are interested in a specific

class of grouping algorithms called clustering. As defined by Boeres and Rebelo [18],

clustering algorithms refers to “the class of algorithms which initially consider each task

as a cluster (allocated to a unique virtual processor) and then merge clusters (tasks) if the

completion time of the parallel program can be reduced.”

C.2 Application Description Languages

Some grid environments offer a description language by which the user can describe the

application. For example, VDL [55], in the context of the GriPhyN project[72], is being

used to describe task dependencies that are converted to a graph represented in another

language used by Condor DAGMan (Directed Acyclic Graph Manager) [135]. Condor

DAGMan manages task dispatching based on this graph. Another example is JSDL (Job

Submission Description Language) [20, 79, 80], which is a standard description language

being proposed by the Global Grid Forum [61]. JSDL allows the mapping from one sub-

mission language to another depending on the submission manager, and thus can solve

interoperability problems between resource managers. With JSDL, the user can express

attributes of individual jobs, but he/she cannot express an application graph. Since it can-

not express application DAGs, we will not present details about the JSDL syntax.

Three recent works on description languages are: (1) GXML, developed in the con-

text of the GANGA framework [14, 15], (2) AGWL (Abstract Grid Workflow Language),

developed in the context of the ASKALON Project [44], and (3) XPWSL (XML based Par-

32

allel Workflow Specification Language), proposed in the context of the JoiN platform [41].

Both are XML-based languages that can be used to express application characteristics and

task dependencies. Finally, GEL (Grid Execution Language) [94] is a scripting language

designed to express application for grid environments.

We use in this section the DAG example of Figure C.1 to illustrate how DAGs are

expressed in these systems. This simple example, sometimes referred as diamond, is fre-

quently used to illustrate languages functionalities. First, it is simple and small. Second,

it presents one-to-many and many-to-one dependencies. Supporting both kinds of depen-

dencies allows to support any phase task application.

Figure C.1: Diamond DAG example

Note that the DAG representation of an application is commonly used by parallel pro-

grammers. But this is quite similar to workflow terminology and technologies adopted

in information technology area. Nowadays, there is an increasing interest in exploiting

and adapting workflow ideas and techniques to grid environments. There are many efforts

towards the development of workflow management systems for grid computing, some of

the main works are described in Yu and Buyya’s survey [159]. Workflow is usually related

to automation of a business process. In the grid applications context, it normally repre-

sents the computation sequence that needs to be performed to analyze scientific datasets.

There are several works applying workflow techniques to grid problems, and some of the

languages described in the following sections are closely related to workflow research for

grid environments.

C.2.1 DAGMan

The Directed Acyclic Graph Manager (DAGMan) [33, 132, 135] manages dependencies

between tasks at a higher level invoking the Condor Scheduler to execute the tasks. Con-

dor, as we will present in Subsection D.4.3, finds resources for the execution of tasks,

33

but it does not schedule tasks based on dependencies. DAGMan submits jobs to Condor

in an order represented by a DAG and processes the results. Presently, DAGMan is a

stand-alone command line application.

DAG Representation DAGMan receives a file defined prior to submission as input,

which describes the DAG. Each node (task) of this DAG has a Condor submit description

file associated to be used by Condor. As DAGMan submits jobs to Condor, it uses a single

Condor log file to enforce the ordering required for the DAG. DAGMan is responsible for

submitting, recovery, and reporting for the set of programs submitted to Condor.

The input file used by DAGMan specifies four items: (1) a list of the tasks in the DAG.

This aims to name each program and specify each program’s Condor submit description

file; (2) processing that takes place before submission of any program in the DAG to Con-

dor or after Condor has completed execution of any program in the DAG; (3) description

of the dependencies in the DAG; and (4) number of times to retry if a node within the

DAG fails. The items 2 and 4 are optional.

Figure C.2 presents the DAGMan input file that describes the DAG example of Figure

C.1. The first four lines describe the tasks. Each task is described by a single line called a

Job Entry: job is the keyword to indicate it is a job entry, the second element is the name

of the task and the third is the name of the Condor submit file. Thus, a job entry maps a

job name to a Condor submit description file.

A job entry can also have the keyword DONE at the end, which identifies a job as

being already completed. This is useful in situations where the user wishes to verify

results, but does not require that all jobs within the dependency graph to be executed. The

DONE feature is also utilized when an error occurs causing the DAG to not be completed.

DAGMan generates a Rescue DAG, a DAGMan input file that can be used to restart and

complete a DAG without re-executing completed programs [33].

The last two lines in Figure C.2 describe the dependencies within the DAG. The PAR-

ENT keyword is followed by one or more job names. The CHILD keyword is followed by

one or more job names. Each child job depends on every parent job on the line. A parent

node must be completed successfully before any child node may be started. A child node

is started once all its parents have successfully completed.

Figure C.3 presents four Condor job description files to describe the four tasks of the

34

#
first_example.dag
#
Job A A.condor
Job B B.condor
Job C C.condor
Job D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

Figure C.2: DAGMan input file

DAG example. In this example, each node in a DAG is a unique executable, each with a

unique Condor submit description file.

#
task A
#
executable = A.exe
input = test.data
output = A.out
log = dag.log
Queue

#
task B
#
executable = B.exe
input = A.out
output = B.out
log = dag.log
Queue

#
task C
#
executable = C.exe
input = A.out
output = C.out
log = dag.log
Queue

#
task D
#
executable = D.exe
input = B.out C.out
output = final.out
log = dag.log
Queue

Figure C.3: Condor submit description files for DAG example

Figure C.4 is an alternative code to implement the DAG example. This example uses

the same Condor submit description file for all the jobs in the DAG. Each node within the

DAG runs the same program (/path/dag.exe).

The $(cluster) macro is used to produce unique file names for each program’s output.

$(cluster) is a macro, which supplies the number of the job cluster. A cluster is a set of jobs

specified in the Condor submit description file through a queue command. In DAGMan,

each job is submitted separately, into its own cluster, so this provides unique names for the

output files. The number of the cluster is a sequential number associated with the number

of submissions the user had done. For example, in the tenth Condor submission the cluster

35

number will be called “10”, and the first task of this cluster “1” or more precisely “10.1”.

In our example, if task A receives a cluster number “10”, its output file will be called

“dag.out.10”, and the output file for task B will be called “dag.out.11” due to the order of

the task definitions in the DAGMan input file.

We could also use the $(cluster) macro to run a different program for each task.

For example, the first line could be replaced by the following statement: executable =

/path/dag_${cluster}.exe

This example is easier to code but less flexible. A problem is how to specify the inputs.

For example, task B should receive as input the output of task A, whose name is dependent

on the variable cluster. But, the Condor DAGMan description language does not support

arithmetics to allow a code like input=dag.out.{$(cluster)-1}.

#
second_example.dag
#
Job A dag_job.condor
Job B dag_job.condor
Job C dag_job.condor
Job D dag_job.condor
PARENT A CHILD B C
PARENT B C CHILD D

#
dag_job.condor
#
executable = /path/dag.exe
output = dag.out.$(cluster)
error = dag.err.$(cluster)
log = dag_condor.log
queue

Figure C.4: Another solution for DAG example: DAGMan input file and Condor submit
description file

An alternative to allow the input description in this example is to use a VARS entry in

the DAGMan input file. Each task would have a VARS entry to define an input file name

(e.g. VARS A inputfile=“test.data”). The Condor submit file would have an extra line:

input = ${inputfile}.

Besides, two limitations exist in the definition of the Condor submit description file to

be used by DAGMan. First, each Condor submit description file must submit only one job

(only one queue statement with value one or no parameter). The second limitation is that

the submit description file for all jobs within the DAG must specify the same log. DAG-

Man enforces the dependencies within a DAG, as mentioned, using the events recorded in

the log file produced by the job submission to Condor.

Management The DAGMan literature does not present any algorithm for doing parti-

tioning. A job is submitted using Condor as soon as it is detected that it does not have

36

parent jobs waiting to be submitted.

Before executing the DAG, DAGMan checks the graph for cycles. If it is acyclic it

proceeds. The next step is to detect jobs that can be submitted.

The submission of a child node will not take place until the parent node has success-

fully completed. There is no ordering of siblings imposed by the DAG, and therefore

DAGMan does not impose an ordering when submitting the jobs to Condor. For instance,

in the previous example, jobs B and C will be submitted to Condor in parallel.

C.2.2 Chimera

The Chimera Virtual Data System (VDS) [8, 35, 56, 55] has been developed in the context

of the GriPhyN project [72]. The GriPhyN (Grid Physics Network) project has a team

of information technology researchers and experimental physicists, which aims to provide

infrastructure to enable Petabyte-scale data intensive computation.

Chimera handles the information of how data is generated by the computation. Chi-

mera provides a catalog that can be used by application environments to describe a set

of application programs ("transformations"), and then track all the data files produced by

executing those applications ("derivations").

DAG Representation The Chimera input consists of transformations and derivations

described in the Virtual Data Language (VDL). VDL comprises data definition and query

statements. We will concentrate our description on data definition issues. In Chimera’s

terminology, a transformation is an executable program and a derivation represents an

execution of a transformation (it is analogous, respectively, to program and process in the

operating system terminology).

Figure C.5 presents a VDL example that expresses the diamond DAG example. The

first two statements define transformations (TR). The first TR statement defines a trans-

formation named calculate that reads one input file (input a) and produces one output file

(output b). The app statement specifies the executable name. The keyword vanilla indi-

cates one of the execution modes of Condor. The arg statements usually describe how the

command line arguments are constructed. But, in this example, the special argument stdin

and stdout are used to specify a filename into which, respectively, the standard input and

output of the application would be redirected.

37

TR calculate{ output b, input a} {
app vanilla = "generator.exe";
arg stdin = ${output:a};
arg stdout = ${output:b};

}
TR analyze{ input a[], output c} {
app vanilla = "analyze.exe";
arg files = ${:a};
arg stdout = ${output:a2};

}
DV calculate { b=@{output:f.a},

a=@{input:test.data} };
DV calculate { b=@{output:f.b},

a=@{input:f.a} };
DV calculate { b=@{output:f.c},

a=@{input:f.a} };
DV analyze{ a=[@{input:f.b},

@{input:f.c}],
c=@{output:f.d} };

Figure C.5: DAG example expressed in Chimera VDL

The DV statements define derivations. The string after a DV keyword names the

transformation to be invoked. Actual parameters in the derivation and formal parameters

in the transformation are associated. Note that these four DV statements define, respec-

tively, tasks A, B, C, and D of the DAG example shown in Figure C.1. However, there

is no explicit task dependency in this code. The DAG can be constructed using the data

dependency chain expressed in the derivation statements.

Management Chimera uses a description of how to produce a given logical file. The

description is stored as an abstract program execution graph. This abstract graph is turned

into an executable DAG for DAGMan by the Pegasus planner which is included in the

Chimera VDS distribution. Chimera does not control the DAG execution: DAGMan is

used to perform this control.

Pegasus (Planning for Execution in Grids) [35, 109] is a system that can map and

execute workflows. Pegasus receives an abstract workflow description from Chimera, pro-

duces a concrete workflow, and submits it to Condor’s DAGMan for execution. The ab-

stract workflow describes the transformations and data in terms of their logical names. The

concrete workflow, which specifies the location of the data and the execution platforms, is

optimized by Pegasus: if data described within an abstract workflow already exist, Pegasus

reuses them and thus reduces the complexity of the concrete workflow.

38

C.2.3 GXML

The GANGA (Grid Application iNformation Gathering and Accessing) framework [14,

15] addresses the problem of interoperability between resource managers. This frame-

work provides some services related to application information such as discovery. The

application information definition is done by the user using the GXML. GXML allows to

describe jobs in a similar way to JSDL [79].

DAG Representation GXML is an XML language that allows to describe application

information including jobs, DAGs and loops. Not much detail is presented in the litera-

ture. The GXML code for our DAG example is presented in [14, 15] and reproduced in

Figure C.6 in order to show how dependencies between tasks are expressed. However, it

does not present how the user can indicate details about the tasks such as executable, input,

and output files. Note that dependencies between tasks are explicitly represented through

the flow:Depend tag.

<flow:Workflow flow:start="A">
<jsdl:Job jsdl:id="A">
...

</jsdl:Job>
<jsdl:Job jsdl:id="B">
<flow:Depend flow:success="A"/>
...

</jsdl:Job>
<jsdl:Job jsdl:id="C">
<flow:Depend flow:success="A"/>
...

</jsdl:Job>
<jsdl:Job jsdl:id="D">
<flow:Depend flow:success="B & C"/>
...

</jsdl:Job>
</flow:Workflow>

Figure C.6: DAG example expressed in GXML (skeleton) [14, 15]

It allows expressing loops using the flow:LoopCount tag.

Management The GANGA framework was developed using Java. It provides classes to

store application information parsed from the GXML input file. It also has converters to

Ganesh, an unpublished work on grid management, and to Condor’s DAGMan [33]. Once

39

a GXML file is converted to a DAGMan file, the application execution management can

be all done through DAGMan and the task execution through Condor.

C.2.4 AGWL

The ASKALON project [43] proposes AGWL (Abstract Grid Workflow Language) [44],

also an XML-based language. AGWL provides advanced workflow constructs to facilitate

the parallel execution of workflows in a grid environment. It allows to express control flow

information such as loops and branches and sub-workflows that can be invoked by other

workflows.

DAG Representation An AGWL specification contains activities to describe a DAG or

a more complex workflow. An activity can be either an atomic activity, which refers to a

single computational task, or a compound activity, which encloses some atomic activities

or other compound activities that are connected by control and data flows [44].

Figure C.7 presents the skeleton code of Diamond DAG example. The activity element

is used to describe a task, including details such as input and output files.

Management AGWL is converted to CGWL (Concrete Grid Workflow Language) that

combines the contents of the AGWL specification with information about the grid infras-

tructure. The CGWL specification is executed through an enactment engine provided by

ASKALON [43]. ASKALON is a grid service oriented middleware. The provided ser-

vices are built on top of the Globus toolkit.

C.2.5 XPWSL

XPWSL (an XML-based Parallel Workflow Specification Language) [41, 42] is a parallel

application specification language. XPWSL implements a specification model that allows

to specify DAGs and more complex structures.

DAG Representation XPWSL supports the following control structures: (1) sequential

block; (2) iterative block (or loop) for a fixed number of iterations; (3) conditional iterative

block; (4) switch/case block. An application is specified in XPWSL using a file with three

sections: header, assignment, and data link. The header section identifies the application.

It is useful to the user. The assignment section defines the files with the executable code

40

<agwl-workflow>
<activity name="A" type="teste:A">
<dataIn name="test.dat" > </dataIn>
...
<dataOut name="A.out"> </dataOut>

</activity>
<subWorkflow name="tasksBandC">
<body>

<activity name="B" type="teste:B">
<dataIn name="A.out" > </dataIn>
...
<dataOut name="B.out"> </dataOut>

</activity>
<activity name="C" type="teste:C">
<dataIn name="A.out" > </dataIn>
...
<dataOut name="C.out"> </dataOut>

</activity>
</body>

</subWorkflow>
<activity name="D" type="teste:D">
<dataIn name="B.out" > </dataIn>
<dataIn name="C.out" > </dataIn>
...
<dataOut name="D.out"> </dataOut>

</activity>
</agwl-workflow>

Figure C.7: DAG example expressed in AGWL (skeleton)

that will be used for each batch of tasks. The data link section defines the relationship

between the execution blocks of the application. The execution order respects the order of

the specification.

Figure C.8 presents the code for the diamond DAG example (Figure C.1). Note that a

task is identified using the id attribute. The id must be the letter T followed by a unique

numerical identifier. Thus, task ”A” was mapped to “T0”, “B” to “T1”, and so on. Note

that the documentation does not explain how to provide more than one input file to a task,

as needed by task “D”. We assume a syntax similar to AGWL.

Management The XPWSL is implemented in the JoiN platform. JoiN is a Java system

that allows execution of massively parallel applications in a non dedicated system. In JoiN,

the application is described using PASL (Parallel Application Specification Language),

which is a text file based on tags and sections. Since, PASL does not support all control

structures provided by XPWSL, JoiN was extended to support XPWSL [42].

41

<header>
<name>DAG example</name>
<description>same example previously used</description>

</header>

<assignment>
<task id="T0" delay="delay_A">
<path>/path</path>
<code>A.exe</code>

</task>
<task id="T1" delay="delay_B">
<path>/path</path>
<code>B.exe</code>

</task>
<task id="T2" delay="delay_C">
<path>/path</path>
<code>C.exe</code>

</task>
<task id="T3" delay="delay_D">
<path>/path</path>
<code>D.exe</code>

</task>
</assignment>

<datalink>
<block type="sequential">
<task_id>T0<task_id>
<multi>1</multi>
<input>test.dat</input>

<block>
<block type="sequential">
<task_id>T1<task_id>
<multi>1</multi>
<input>A.out</input>
<task_id>T2<task_id>
<multi>1</multi>
<input>A.out</input>

<block>
<block type="sequential">
<task_id>T3<task_id>
<multi>1</multi>
<input>B.dat</input>
<input>C.dat</input>

<block>
</datalink>

Figure C.8: DAG example expressed in XPWSL

42

C.2.6 GEL

GEL (Grid Execution Language) [94] is a script based language that allows a succinct

representation of parallel programs. It was developed in the Bioinformatics Institute at

Singapore. They aimed to be grid middleware independent. All middleware dependencies

are inserted into specific interpreter instances.

DAG Representation GEL allows the user to express acyclic and cyclic graphs, such

that dependencies between tasks are implicit in the syntactic structure of the script. GEL

programs consist of a combination of tasks (jobs) using some parallel or sequential con-

structs. The sequential constructs are the following: sequential composition, loop itera-

tion, and conditional if. Parallel execution is mainly parallel composition (tasks are inde-

pendent and can be executed in parallel) and parallel iteration (pfor or pforeach).

taskA = {exec="A.exe"; dir="/path"; args="test.dat"}
taskB = {exec="B.exe"; dir="/path"; args="A.out"}
taskC = {exec="C.exe"; dir="/path"; args="A.out"}
taskD = {exec="D.exe"; dir="/path"; args="B.out","C.out"}
taskA; taskB | taskC; taskD

Figure C.9: DAG example expressed in GEL

Management The GEL implementation has two components: a DAG builder and a

DAG executor. The current GEL implementation has five DAG executors: (1) SMP ma-

chines; (2) Sun GridEngine (SGE), (3) LSF, and (4) PBS for cluster environments; and (5)

Globus for grid environments.

C.3 Application Partitioning

One of the characteristics of grid applications is that they usually spread a very large num-

ber of tasks. Very often, these tasks present dependencies that enforce a precedence order.

In a grid, as in any distributed environment, one important issue to increase performance

is how to distribute the tasks among resources. Although research in scheduling is very

active, efficient partitioning of applications to run in a grid environment is a hot research

topic. A distributed application can be partitioned by grouping related tasks aiming to de-

crease communication costs. The partitioning should be such that dependencies between

43

tasks and data locality are maintained. Few partitioning works deal specifically with the

high resource heterogeneity and dynamic nature of grid environments.

We will now present some related works on graph partitioning techniques applied to

the application partitioning problem.

The conventional graph partitioning approach divides the nodes into � equally weighted

sets while minimizing interprocessor communication (crossing edges between partitions).

In other words, traditional graph partitioning algorithms compute a � -way partitioning of

a graph such that the number of edges that are cut by the partitioning is minimized and

each partitioning has an equal number of nodes.

Hogstedt et al. [76] considers a graph � � � � ��� ���
 , with a set of nodes � , a set

of edges � , and a set of distinguished nodes � � � , denoting machine nodes. Each

edge has a weight, denoted ��� for an edge �	� � . Each node
�� � can be assigned

to any of the machine nodes ���� . The machine nodes � cannot be assigned to each

other. Any particular assignment of the nodes of � to machines � is called a cut, in

which the weight of the cut is the sum of the weights of edges between nodes residing

on two different machines. The minimal cut set of a graph minimizes the interprocessor

communication.

Hogstedt et al. present five heuristics to derive a new graph, which is then partitioned

aiming to obtain the minimal cut (min-cut) set for the original graph. The five heuristics

are the following: (1) dominant edge: there is a min-cut not containing the heaviest edge � ,
so we can contract 1 � to obtain a new graph G’; (2) independent net: if the communication

graph can be broken into two or more independent nets, then the min-cut of the graph can

be obtained by combining the min-cut of each net; (3) machine cut: let a machine cut

�	� be the set of all edges between a machine ��� and non machine nodes N. Let �	� be

the sum of the weight of all edges in the machine cut ��� . Let the ��� ’s be sorted so that

���������������������� . Then any edge which has weight greater than ��� cannot be

present in the min-cut. (4) zeroing: if a node
 has edges to each of the � machines with

weights ����� �!���"�����#�$�&% , we can reduce the weights of each of the � edges from

to the machines by ��� without changing min-cut assignment; (5) articulation point: nodes

1The contraction of ')(+*-,/.1032 corresponds to replacing the vertex (and , by a new vertex 4 , and for
each vertex 5 not in ')(+*6,7. replacing any edge ')(+*65/. or '),8*65/. by the edge ')49*65/. . The rest of the graph
remains unchanged. If the contraction results in multiple edges from node 4 to another node 5 they are
combined and their weights added. [76]

44

that would be disconnected from all machines if node
 was deleted cannot be in min-cut,

thus they can be contracted.

Hendrickson et al. [75] also consider that minimizing the number of graph edge cut

minimizes the volume of communication. But they argue that the partitioning and map-

ping should be generated together to also reduce message congestion. Thus, they adapt

an idea of the circuit placement community called terminal propagation to the problem of

partitioning data structures among processors of a parallel computer. The basic idea of

terminal propagation is to associate with each vertex in the subgraph being partitioned a

value which reflects its net preference to be in a given quadrant board. In parallel comput-

ing, the quadrants represent processors or sets of processors. Their major contribution is a

framework for coupling recursive partitioning schemes to the mapping problem.

Karypis and Kumar [83] extend the standard partitioning problem by incorporating an

arbitrary number of balancing constraints. A vector of weights is assigned to each vertex,

and the goal is to produce a � -partitioning such that the partitioning satisfies a balancing

constraint associated with each weight, while attempting to minimize the edge-cut.

Hendrickson and Kolda [74] argue that the standard graph partitioning approach min-

imizes the wrong metrics and lacks expressibility. One of the metrics is minimizing edge

cuts. They present the following flaws of the edge cut metric: (1) edges cuts are not pro-

portional to the total communication volume; (2) it tries to (approximately) minimize the

total volume but not the total number of messages; (3) it does not minimize the maximum

volume and/or number of messages handled by any single processor; (4) it does not con-

sider distance between processors (number of switches the message passes through). To

avoid message contention and improve the overall throughput of the message traffic, it is

preferable to have communication restricted to processors which are near each other.

Despite the limitations of edge cut metric, the authors argue that the standard approach

is appropriate to applications whose graph has locality and few neighbors.

Hendrickson and Kolda [74] also argue that the undirected graph model can only ex-

press symmetric data dependencies. An application can have the union of multiple phases,

and this cannot generally be described via an undirected graph.

Kumar et al. [85] propose the MiniMax scheme. MiniMax is a multilevel graph par-

titioning scheme developed for distributed heterogeneous systems such as the grid, and

differs from existing partitioners in that it takes into consideration heterogeneity in both

the system and workload graphs. They consider two weighted undirected graphs: a work-

45

load graph (to model the problem domain) and a system graph (to model the heterogeneous

system).

Another class of related partitioning algorithms are the static scheduling of task prece-

dence graph. Kwok [87] presents a survey of the main static scheduling algorithms, where

he proposes a taxonomy reproduced in Figure C.10. In this thesis, we are concerned with

Arbitrary Graph Structure, since it allows to execute a larger number of applications. We

also want to allow the user or the program to express Arbitrary Computational Costs.

Task precedence graph With Communication is a more general case. It is important to

consider communication costs since in a heterogeneous environment, message passing or

file transfer through a slow link can cause application slowdown. We also are not inter-

ested in algorithms with Duplication since this would restrict to partition the application

where a task can be executed more than once producing always the same results (idempo-

tent tasks). Finally, for an initial partitioning of the tasks, we are interested in obtaining

a clustering according to data locality without considering where tasks will be executing,

thus, we are interested in algorithms with Unlimited Number of Processors. Sarkar apud

Yang and Gerasoulis [158] have proposed a two step method for scheduling with commu-

nication: (1) schedule an unbounded number of completely connected processors (cluster

of tasks); and (2) if the number of clusters is larger than the number of available proces-

sors, then merge the clusters until it gets the number of real processors, considering the

network topology (merging step). Thus, we could use any of the algorithms of this class

to implement the Sarkar’s step one.

For this class of algorithms, there are some well known works. A well know example

is the List Scheduling. Its basic mechanism is the following: “initially, priorities are

assigned to all tasks; and then, until all tasks have been scheduled, a list of tasks ready for

execution is formed from which the task with the highest priority is chosen to be scheduled

on the processor upon which it can execute earliest” [18]. List scheduling algorithms only

produce good results for coarse-grained applications.

An example of List Scheduling is the DSC (Dominant Sequence Clustering) algorithm

proposed by Yang and Gerasoulis [158]. Yang and Gerasoulis defines that a scheduled

DAG is a DAG with a given clustering (the task to processor assignment) and task execu-

tion ordering information. The critical path of the scheduled DAG is called the dominant

sequence (DS). A critical path is the longest path in a graph, including both nonzero com-

munication edge cost and task weights in that path. Reduction of the DS and consequently

46

Figure C.10: Kwok’s partial taxonomy of the multiprocessor scheduling problem [87]

of the parallel time is the key point of this algorithm. The basic mechanism is the fol-

lowing: initially each task belongs to a unit cluster; the DAG is analyzed bottom-up (or

top-down); each node in the DAG is analyzed according to a priority list constructed dy-

namically; when a node under analysis can decrease the DS if merged with a predecessor

(or successor) cluster, the merging is done and the communication between tasks in the

same cluster is considered zero; when all nodes are visited, the algorithm finishes.

Finally, an interesting work is the ARMaDA framework proposed by Chandra and

Parashar [25]. It does not perform DAG partitioning. ARMaDA is defined by its authors

as an adaptive application-sensitive partitioning framework for structured adaptive mesh

refinement (SAMR) applications. The goal is to adaptively manage dynamic applications

on structured mesh based on the runtime state. The authors argue that no single partition-

ing scheme performs the best for all types of applications and systems:

“Even for a single application, the most suitable partitioning technique

and associated partitioning parameters depend on input parameters and the

application’s runtime state. This necessitates adaptive partitioning and run-

47

time management of these dynamic applications using an application-centric

characterization of domain-based partitioners.” [25]

We believe that this statement applies to DAG partitioning problems as well.

C.4 Conclusion

In this chapter, some of the most well known application description languages for grid

environments were analyzed. All the analyzed languages have interesting features, but

none has all characteristics we think that would be necessary. So, we proposed a new

language in this thesis called GRID-ADL (Grid Application Description Language). Table

C.1 summarizes the main characteristics of description languages presented previously in

this chapter. In this table, we also included our proposed language, which is presented

in detail in Section F.3.1. GEL is the one that is closer to our needs and could have

been adapted to our work. However, it was published after GRID-ADL was proposed and

implemented. Actually, most of the presented languages published their work after we had

proposed GRID-ADL.

Most languages are associated to a specific execution environment. For GRID-ADL,

we used the information concerning the current prototype implementation, as will be pre-

sented in Chapter G. Concerning the GRAND model, GRID-ADL tasks can be mapped to

any resource management system (RMS). Besides, most of the languages does not present

automatic DAG inference. Systems like Chimera and DAGMan allow the user to specify,

and, in the case of DAGMan, control, dependencies among tasks. In these systems, the

user needs to specify dependencies among tasks using a description language. In DAG-

Man, the user explicitly specifies the task dependence graph, where the nodes are tasks and

edges represent dependencies that can be through data files or simply control dependen-

cies. In Chimera, the user only needs to specify the data files manipulation. GRID-ADL,

which is presented in detail in Section F.3.1, is also included in this table. GRID-ADL

automatically detects the DAG structure through data dependencies, while GEL detects

through control dependencies expressed by the declaration order in the description file.

Although almost all works deal with task dependency, they do not handle data locality.

Data locality should be preserved in order to avoid unnecessary data transfer, and con-

sequently, reduce network traffic. As the available systems do not deal with this issue,

transient files can be unnecessarily circulating in the network.

48

Table C.1: Grid description languages: comparison
Language Reference Grid

Middleware
RMS Language

Type
Workflow
struc-
ture

DAG DAG
inference

DAGMan 2002
[132, 135, 136]

DAGMan Condor plain no yes manual

VDL 2002
[8, 35, 55, 56]

DAGMan Condor plain yes yes automatic

GXML 2005 [14, 15] Ganesh or
DAGMan

Ganesh or
Condor

XML yes yes manual

AGWL 2005 [44] ASKALON Globus XML yes yes manual
XPWSL 2005 [41, 42] JoiN JoiN XML yes yes manual
GEL 2005 [94] GEL SMP,

SGE, LSF,
PBS, or
Globus

script no yes automatic

GRID-ADL 2004 [114,
143, 146]

AppMan AppMan
and/or
PBS

script no yes automatic

None of these works mentions any partitioning algorithm. Tasks are submitted one by

one when their dependencies are satisfied. We consider that an application partitioning

should be applied to get a more efficient execution. In this chapter, we presented several

alternatives that could be applied to solve this problem.

In the next chapter we discuss resource management issues that is another topic fun-

damental for computational grid environments. We consider that each domain in the grid

has a local RMS which can be accessed remotely to allow application scheduling deci-

sions. Using an RMS support, an application can be executed in the grid through a meta

scheduler.

49

Apêndice D

Application Management: Resource and
Task Allocation

A central part of a distributed system is the resource management system (RMS). There

are several RMSs to deal with cluster and local network resources. Recently, some RMSs

to deal with grid computing environment are being made available. A grid resource man-

agement system manages the pool of resources that are available and that can include

resources from different providers. Managed resources are mainly processors, network

bandwidth, and disk storage. Applications are executed using RMS information and con-

trol.

In this chapter we discuss the RMS subject. We present some initial background (Sec-

tions D.1 and D.2), and then some of the most important scheduling systems (Sections D.3

and D.4). We conclude with an analysis of the presented concepts and systems (Section

D.5).

D.1 Resource Management Issues

Scheduling is one of the most important and interesting research topics in the distributed

computing area. Casavant and Kuhl [23] consider scheduling as a resource management

problem. This management is basically a mechanism or policy used to efficiently and

effectively manage the access to and use of a resource by its various consumers. On the

other hand, according to the GGF’s Grid Scheduling Dictionary [112], scheduling is the

“process of ordering tasks on computer resources and ordering communication between

tasks”. Thus, both applications and system components must be scheduled.

50

Two key concepts related to scheduling and resource management are task and job.

They can be defined as follows according to Roehrig et al. [112]:

� Task is a specific piece of work required to be done as part of a job or application;

� Job is an application performed on high performance computer resources. A job

may be composed of steps/sections of individual schedulable entities.

Thus, to the rest of this text, we will be referring to applications as a set of tasks to be

executed.

The Resource Management System (RMS) is a central part of a distributed system.

Note that resource management is traditionally an operating system problem. Resource

management in a distributed system differs from that in a centralized system in a funda-

mental way [131]: centralized systems always have tables that give complete and up-to-

date status information about all the resources being managed; distributed do not. The

problem of managing resources without having accurate global state information is very

difficult. Managing large-scale collections of resources poses new challenges. The grid

environment introduces five resource management problems [32]: (1) site autonomy: re-

sources are typically owned and operated by different organizations, in different admin-

istrative domains; (2) heterogeneous substrate: sites may use different local RMS or the

same systems with different configurations; (3) policy extensibility: the RMS must sup-

port development of new application domain-specific management mechanisms, without

requiring changes to code installed at participating sites; (4) co-allocation: some applica-

tions have resource requirements that can be satisfied only by using resources simultane-

ously at several sites; and (5) online control: the RMS must support negotiation to adapt

application requirements to resource availability.

An RMS for grids can be implemented in different ways. But, it may not be possible

for the same scheduler to optimize application and system performance. Thus, Krauter et

al. [84] states that a grid RMS is most likely to be an interconnection of RMSs that are

cooperating with one another within an accepted framework. To make the interconnections

possible, some interfaces and components are defined in an abstract model.

Krauter et al. [84] also present a taxonomy that classifies RMSs by characterizing

different attributes. We used some of these criteria and others to compare the systems we

present in the next sections.

51

D.2 Scheduling Taxonomy

In this section we consider resource management concerning only job allocation to pro-

cessors. Several solutions have been proposed to this problem, which is usually called

the scheduling problem. Some authors studied solutions to this problem and presented

classifications. We present in this section some of the most well known classifications or

taxonomies.

Casavant and Kuhl [23] is one of the most referred scheduling taxonomies. They

propose a hierarchical taxonomy that is partially presented in Figure D.1, since we selected

some of the classifications that are relevant to this study. Besides, Casavant and Kuhl also

propose a flat classification from which we also selected just some issues.

At the highest level, they distinguish between local and global. Local Scheduling is

related with the assignment of a process to the time-slices of a single processor. Global

scheduling is the problem of deciding where (in which processor) to execute a process.

In the next level, beneath global scheduling, the time at which the scheduling or as-

signment decisions are made define static and dynamic scheduling.

Static scheduling can be optimal or suboptimal. In case that all information regarding

the state of the system as well as the resource needs of a process are known, an optimal

assignment can be made based on some criterion function (e.g. minimizing total process

completion time). When computing an optimal assignment is computationally infeasible,

suboptimal solutions may be tried. Within the realm of suboptimal solutions, there are two

general categories: approximate and heuristic.

The next issue, beneath dynamic scheduling, involves whether the responsibility for

the task of global dynamic scheduling should physically reside in a single processor (phys-

ically non-distributed) or whether the work involved in making decisions should be phys-

ically distributed among the processors. In this text, we use for simplicity non-distributed

(or centralized) and distributed scheduling instead of physically non-distributed and phys-

ically distributed. Within the range of distributed dynamic global scheduling, there are

mechanisms which involve cooperation between the distributed components (cooperative)

and those in which the individual processors make decisions independent of the actions of

the other processors (non-cooperative).

In addition to the hierarchical portion of the taxonomy, Casavant and Kuhl [23] present

other distinguishing characteristics which scheduling systems may have:

52

�
�

�
�

local

global
�

�
�

� �

�
�

�
� �

static

dynamic

�
�

�
�

optimal

suboptimal
�

�

�
�

approximate

heuristic

�
�

�
�

physically
distributed

physically
non-distributed

�
�

�
�

cooperative

non-cooperative

Figure D.1: Part of the Casavant and Kuhl’s taxonomy [23]

� Adaptive versus Nonadaptive: an adaptive solution to the scheduling problem is one

in which the algorithms and parameters used to implement the scheduling policy

change dynamically according to the previous and current behavior of the system

in response to previous decisions made by the scheduling system. A nonadaptive

scheduler does not necessarily modify its basic control mechanisms on the basis of

the history of system activity;

� One-Time Assignment versus Dynamic Reassignment: One-time assignment can

technically correspond to a dynamic approach, however it is static in the sense that

once a decision is made to place and execute a job, no further decisions are made

concerning the job. In contrast, solutions in the dynamic reassignment class try to

improve on earlier decisions. This category represents the set of systems that (1)

do not trust their users to provide accurate descriptive information, and (2) use dy-

namically created information to adapt to changing demands of user processes. This

adaptation is related to migration of processes.

The scheduling algorithm has four components [122]: (1) transfer policy: when a node

can take part of a task transfer; (2) selection policy: which task must be transferred; (3)

location policy: which node to transfer to; and (4) information policy: when to collect

system state information. Considering the location policy component, a scheduling algo-

rithm can be classified as receiver-initiated (started by the task importer), sender-initiated

(started by the task exporter), or symmetrically initiated. Their performance are closely re-

53

lated to system workloads. Sender-initiated gives better performance if workers are often

idle and receiver-initiated performs better when the load is high.

Another important classification is dedicated and opportunistic scheduling [111, 152].

Opportunistic scheduling involves placing jobs on non-dedicated resources under the as-

sumption that the resources might not be available for the entire duration of the jobs.

Using opportunistic scheduling, resources are used as soon as they become available and

applications are migrated when resources are no longer available. Dedicated schedul-

ing algorithms assume the constant availability of resources to compute fixed schedules.

Most software for controlling clusters relies on dedicated scheduling algorithms. The

applications that most benefit from opportunistic scheduling are those that require high

throughput rather than high performance. Traditional high-performance applications mea-

sure their performance in instantaneous metrics like floating point operations per second

(FLOPS), while high throughput applications usually use application-specific metrics, and

the performance might be measured in TIPYs (trillions of instructions per year).

In 1998, Berman [11] classified the scheduling mechanisms for grid in three groups.

Nowadays, a current concept is the Metascheduler as presented by the GGF [112]. Thus,

we consider that the scheduling mechanisms can be classified in four groups:

� task schedulers1 (high-throughput schedulers) promote the performance of the sys-

tem (as measured by aggregate job performance) by optimizing throughput. Through-

put is measured by the number of jobs executed by the system;

� resource schedulers coordinate multiple requests for access to a given resource by

optimizing fairness criteria (to ensure that all requests are satisfied) or resource uti-

lization (to measure the amount of resource used);

� application schedulers (high-performance schedulers) promote the performance of

individual applications by optimizing performance measures such as minimal exe-

cution time, speedup, or other application-centric cost measures;

� meta-scheduler is a scheduler that allows to request resources of more than one

machine for a single job. May perform load balancing of workloads across multiple

systems. Each system would then have its own local scheduler to determine how its

job queue is processed. Requires advance reservation capability of local schedulers.

1Berman called this kind of scheduler as job scheduler. We changed it to be consistent with the termi-
nology adopted in this text.

54

D.3 Job Management Systems for Clusters

We consider that a cluster may be made of a set of workstations, multiple CPU systems,

or a set of nodes in a parallel computer. Usually, this set of execution nodes or hosts

have a single batch server that manages batch jobs. The batch processing is related to the

following concepts [112]:

� Queue is a collection of schedulable entities, e.g. jobs (or job-related tasks) within

the (batch) queuing system. Each queue has a set of associated attributes that de-

termine which actions are to be performed upon each job within the queue. Typical

attributes include queue name, queue priority, resource limits, destination(s), and

job count limits. Selection and scheduling of jobs are implementation-defined. The

use of the term “queue” does not imply the ordering is “first in, first out”;

� Batch is a group of jobs which are submitted for processing on a computer and the

results of which are obtained at a later time;

� Batch Processing is the capability of running jobs outside the interactive login

session and providing for additional control over job scheduling and resource con-

tention;

� Batch Queue is an execution queue where the request actually is started from;

� Batch Server is a persistent subsystem (daemon) upon a single host that provides

batch processing capability;

� Batch System is a set of batch servers that are configured for processing. The

system may consist of multiple hosts, each with multiple servers.

The single batch system or centralized job management system lets users execute jobs

on a cluster. This system must perform at least the following tasks [133]: (a) monitor all

available resources; (b) accept jobs submitted by users together with resource requirements

for each job; (c) perform centralized job scheduling that matches all available resources

with all submitted jobs according to the predefined policies; (d) allocate resources and

initiate job execution; (e) monitor all jobs and collect accounting information.

55

Some of the most well know centralized job management systems are LSF (Load

Sharing Facility) [95, 96] from Platform Computing Corporation, SGE (Sun Grid En-

gine) [129] from Sun Microsystems, and PBS (Portable Batch System) [16]. The original

version of PBS is a flexible batch queuing system developed for NASA in the early to

mid-1990s. Nowadays, the Altair Grid Technologies offer two versions: OpenPBS [105],

the unsupported older original version and PBS Pro [108], the commercial version.

These three systems are general purpose distributed queuing systems that unite a clus-

ter of computers into a single virtual system to make better use of the resources on the

network. Most of them perform only dedicated scheduling, but SGE is also capable of

performing opportunistic scheduling.

Although they can automatically select hosts in a heterogeneous environment based

on the current load conditions and the resource requirements of the applications, they are

not suitable for grid environments. Actually, these systems are very important in our study

since they will take part in a grid environment as a “grid node”. However, they cannot

be used to manage a grid environment since they have scalability problems, have a single

point of failure, and do not provide security mechanisms to schedule across administrative

domains.

D.4 Scheduling Mechanisms for Grid Environments

Grid environments are composed by several trust domains. Usually, each domain has its

private scheduler, which works isolated from each other. A resource manager grid aware

is necessary to allow all these isolated schedulers to work together taking advantage of all

grid potential. Several works in the literature present scheduling mechanisms for grids. In

this section we present some of the most well know works: Legion (Subsection D.4.1),

Globus (Subsection D.4.2), Condor-G (Subsection D.4.3), OurGrid (Subsection D.4.4),

the GrADS’s Metascheduler (Subsection D.4.5), and ISAM (Subsection D.4.7).

D.4.1 Legion

The Legion Project of University of Virginia started in 1993. The main result is the Legion

system [26, 71, 93], which is nowadays an Avaki commercial product. Legion is an object

oriented infrastructure for grid environments layered on top of existing software services.

It uses the existing operating systems, resource management tools, and security mecha-

56

nisms at host sites to implement higher level system-wide services. The Legion design is

based on a set of core objects.

In Legion, resource management is a negotiation between resources and active objects

that represent the distributed application. In the allocation of resources for a specific task

there are three steps [137]: decision (considers task’s characteristics and requirements, the

resource’s properties and policies, and users’ preferences), enactment (the class object re-

ceives an activation request; if the placement is acceptable, start the task), and monitoring

(ensures that the task is operating correctly).

D.4.2 Globus

Globus [49, 52, 62, 116] is one of the most well know projects on grid computing. The

most important result of the Globus Project is the Globus Toolkit. The toolkit consists

of a set of components that implement basic services, such as security, resource location,

resource management, data management, resource reservation, and communication. From

version 1.0 in 1998 to the 2.0 release in 2002 and the latest 3.0, the emphasis is to provide

a set of components that can be used either independently or together to develop appli-

cations. The Globus Toolkit version 2 (GT2) design is highly related to the architecture

proposed by Foster et al. [54]. The Globus Toolkit version 3 (GT3) design is based on grid

services, which are quite similar to web services. GT3 implements the Open Grid Service

Infrastructure (OGSI) [53]. The current version, GT4, is also based on grid services, but

with some changes in the standard [124].

The Globus Resource Allocation Manager (GRAM) [32] is one of the available ser-

vices in Globus. Each GRAM is responsible for a set of resources operating under the

same site-specific allocation policy, often implemented by a local resource management

system, such as LSF or Condor. GRAM provides an abstraction for remote process queu-

ing and execution with several powerful features such as strong security and file transfer.

Thus GRAM does not provide scheduling or resource brokering capabilities but it

can be used to start programs on remote resources, despite local heterogeneity due to

the standard API and protocol. The Resource Specification Language (RSL) is used to

communicate requirements.

To take advantage of GRAM, a user still needs a system that can remember what jobs

have been submitted, where they are, and what they are doing. To track large numbers

57

of jobs, the user needs queuing, prioritization, logging, and accounting. These services

cannot be found in GRAM alone, but is provided by systems such as Condor-G [135].

The Globus research group and IBM provide in GT4 the WS-Resource Framework [153].

They released an initial architecture and specification documents with co-authors from

HP, SAP, Akamai, TIBCO and Sonic on January 20, 2004. The WS-Resource Framework

(WSRF) is an extension of OGSI. WSRF is a set of six Web services specifications. To

date, drafts of three of these specifications have been released, along with an architecture

document that motivates and describes the WS-Resource approach to modeling stateful

resources with Web services.

D.4.3 Condor and Condor-G

Condor High Throughput Computing System [132, 135, 152], or simply Condor, is a

specialized workload/resource management system for compute-intensive jobs. It can be

used to manage a cluster of dedicated nodes as well as to harness wasted CPU power from

otherwise idle desktop workstations. Using idle desktop workstation computational power

is the main difference between Condor and the traditional RMS. The Condor scheduling

policy can be classified as opportunistic.

Condor is composed of a collection of different daemons [152]. Condor exercises

administrative control over a Condor pool. A pool is a set of resources that report to a

single daemon called the collector. The collector is the central repository of information

in the Condor system. Almost all Condor daemons send periodic updates to it. Each update

is in the form of a ClassAd, a data structure consisting of a set of attributes describing a

specific entity in the system. The machine where the collector runs is referred to as the

central manager.

Condor has a mechanism called flocking that allows jobs to be scheduled across multi-

ple Condor pools [135]. Nowadays, it is implemented as direct flocking that only requires

agreement between one individual and another organization, but accordingly only benefits

the user who takes the initiative. A particular job will only flock to another pool when it

cannot currently run in the pool of submission. It is a useful feature, but is not enough to

enable jobs to run in a grid environment, mainly due to security issues.

Condor-G [57, 135] is the job management part of the Condor project to allow users to

access grid resources. Instead of using the Condor-developed protocols to start running a

job on a remote machine, Condor-G uses the Globus Toolkit to start the job on the remote

58

machine. Thus, applications can be submitted to a resource accessible through a Globus

interface.

Condor-G uses the protocols for secure inter-domain communications and standard-

ized access to a variety of remote batch systems from Globus. The user concerns of job

submission, job allocation, error recovery, and creation of a friendly execution environ-

ment comes from Condor.

The major difference between Condor flocking and Condor-G is that Condor-G allows

inter-domain operation on remote resources that require authentication, and uses Globus

standard protocols that provide access to resources controlled by other resource manage-

ment systems, rather than the special-purpose sharing mechanisms of Condor [57].

D.4.4 MyGrid and OurGrid

MyGrid [27, 106] enables the execution of bag-of-tasks parallel applications on all ma-

chines the user has access to. A bag-of-tasks application has completely independent

tasks. The authors [106] argue that scheduling independent tasks, although simpler than

tightly coupled parallel applications, is still difficult due to the dynamic behavior and the

intrinsic resource heterogeneity exhibited by most grids. The authors also indicate that it

is usually difficult to obtain good information about the entire grid as well as about the

tasks to make the scheduling plan. Thus, they propose a solution that does not require al-

most any kind of information: MyGrid uses a dynamic algorithm called Workqueue with

Replication (WQR).

The WQR is a dynamic scheduling algorithm that is not based on performance infor-

mation. It is an extension of the Workqueue algorithm.

The WQR algorithm uses task replication to cope with the heterogeneity of hosts and

tasks, and also with the dynamic variation of resource availability due to the load generated

by other users in the grid. Note that this strategy allows to deal only with the heterogeneity

related to computational capacity. It works like the Workqueue algorithm until all tasks are

assigned (“the bag-of-tasks becomes empty”). At this time, hosts that finished their tasks

are assigned to execute replicas of tasks that are still running. Tasks are replicated until a

predefined maximum number of replicas is achieved (in MyGrid, the default is one). This

replication leads to wasted CPU cycles. Note that the replication assumes that the tasks

do not cause side effects. If a task does not have side effects, it can be executed more than

once producing always the same final results.

59

MyGrid executes at the user level. There is a machine called home machine that coor-

dinates the execution of the applications through MyGrid. It is assumed that the user has

good access to the home machine (often it will be the user’s desktop). The home machine

schedules tasks to run on the grid machines using the WQR algorithm. Grid machines do

not necessarily share file systems with the home machine.

OurGrid [6, 7] extends the MyGrid efforts, including the utilization of grid technology

on commercial settings and the creation of large-scale community grids. OurGrid is a

resource sharing system based on peer-to-peer technologies. The resources are shared

according to a “network of favors model”, in which each peer prioritizes those who have

credit in their past history of interactions.

D.4.5 MetaScheduler in GrADS Project

The GrADS system [12] is an application scheduler. Its execution model can be described

as follows. The user invokes the Grid Routine component to execute his/her application.

The Grid Routine invokes the component Resource Selector. The Resource Selector ac-

cesses the Globus MetaDirectory Service (MDS) to get a list of machines that are alive

and then contact the Network Weather Service (NWS) to get system information for the

machines. The Grid Routine then invokes a component called Performance Modeler with

the problem parameters, machines and machine information. The Performance Modeler

builds the final list of machines and sends it to the Contract Developer for approval. The

Grid Routine then passes the problem, its parameters, and the final list of machines to

the Application Launcher. The Application Launcher spawns the job using the Globus

management mechanism (GRAM) and also spawns the Contract Monitor. The Contract

Monitor monitors the application, displays the actual and predicted times, and can report

contract violations to a rescheduler.

Although the execution model is efficient from the application perspective, it does

not take into account the existence of other applications in the system. Thus, Vadhiyar

and Dongarra [140] proposed a metascheduling architecture in the context of the GrADS

Project. The metascheduler receives candidate schedules of different application level

schedulers and implements scheduling policies for balancing the interests of different ap-

plications.

60

D.4.6 EasyGrid

EasyGrid [17, 19, 40] is a framework for the automatic grid enabling of MPI parallel

applications. It provides services oriented towards the individual application in such a

way that each application appears to have exclusive access to a virtual grid. EasyGrid

middleware provides application level scheduling.It employs a distributed hierarchy of

management processes to control de execution of MPI applications on a computational

grid [17].

D.4.7 ISAM

ISAM (Infra-estrutura de Suporte às Aplicações Móveis – Support Infrastructure to Mo-

bile Applications) [154, 155, 156] is a proposal of an integrated solution, from develop-

ment to execution, for general purpose pervasive applications. These applications are dis-

tributed, mobile, adaptive an reactive to the context. Aiming at supporting the follow-me

semantics (the application follows the user) for the pervasive applications, the ISAM mid-

dleware concerns with resource management in heterogeneous, multi-institutional, net-

works.

D.5 Comparison

We presented some of the most representative RMSs used nowadays in grid research. We

now present a brief comparison of them, summarized in Tables D.1 and D.2. We built this

table using some of the characteristics we considered more important to our work.

In Table D.1, the first column presents our classification presented in Section D.1

which includes Berman’s classification and the GGF metascheduler definition. PBS, LSF,

and SGE are task schedulers. Condor and Legion are resource schedulers and both support

at some extent scheduling over multiple domains. MyGrid and EasyGrid are classified as

application scheduler. Globus, Condor-G, the GrADS’ Metascheduler, and ISAM can be

classified as metaschedulers or high-level schedulers.

PBS, LSF, and Legion can also be classified as dedicated schedulers, SGE can work as

a dedicate scheduler as well as an opportunistic scheduler, while Condor is an opportunis-

tic scheduler. In our table, the symbol “–” means that the classification cannot be applied

to the corresponding system.

61

Table D.1: Comparison of presented schedulers – part I
System Classification Source Avail-

able

PBS task scheduler dedicated centralized OpenPBS – yes
PBSPro – no

LSF task scheduler dedicated centralized no
SGE task scheduler dedicated and

opportunistic
centralized no

Condor resource scheduler opportunistic centralized yes
Legion resource scheduler dedicated hierarchical no

MyGrid application sched-
uler

– centralized
(per application)

yes

EasyGrid application sched-
uler

– hierarchical no �

Globus metascheduler – hierarchical yes
Condor-G metascheduler – hierarchical yes
GrADS’
Metascheduler

metascheduler – hierarchical no

ISAM metascheduler – hierarchical no �

The third column indicates that PBS, LSF, SGE, and Condor have centralized sched-

ulers while Legion, Globus, Condor-G, GrADS’ Metascheduler, and ISAM are hierarchi-

cal. MyGrid was classified as centralized, but actually there is one instance of scheduler

for each running application.

Other criterion shown in the table (last column) is if there is source code available for

research purposes in a public repository. Some listed as no, could release source code on

demand and are marked with a “*”. Most of the RMS’ source code are available as our

table shows.

Table D.2 presents other aspects of these systems and is a continuation of the previous

table. All RMS use some kind of static information to take scheduling decisions. The

first column indicates if the RMS also needs some dynamic information (usually related

to resource utilization and availability). MyGrid is the only one that does not need any

dynamic information to make its decisions. MyGrid and ISAM use the task replication

technique to obtain fault tolerance and better performance at the cost of wasting some

CPU cycles.

Since computational grids are dynamic, jobs should adapt themselves according to

characteristics such as availability and load in order to obtain application performance.

Execution must be flexible and adaptive to achieve either robust or even good performance

due to heterogeneity of configuration, performance, and reliability in grid environments.

62

Table D.2: Comparison of presented schedulers – part II
System Dynamic

information
Migration Replication

PBS yes no no
LSF yes no no
SGE yes no no

Condor yes yes no
Legion yes yes no

MyGrid no no yes

EasyGrid yes no yes

Globus yes no no
Condor-G yes no no
GrADS’
Metascheduler

yes yes no

ISAM yes yes no

So, one of the approaches is that jobs are able to migrate. Migration [112] describes the

rearrangement of allocated resources within a resource pool. Several works deal with

the so called “opportunistic” migration of jobs when a “better” resource is discovered

[140, 141, 100, 3]. The Migration’s column indicates if the RMS can migrate a job after

its allocation. Condor, Legion, GrADS’ metascheduler, and ISAM can migrate a running

job for performance reasons. Condor can also migrate to avoid disturbing a user due to

opportunistic scheduling. Note that in Globus and Condor-G migration in the local RMS

can happen, but both cannot directly control this kind of mechanism.

The two most popular grid-aware systems are Condor and Globus. As mentioned be-

fore, Condor is a specialized workload management system for compute-intensive jobs.

Like other full-featured batch systems presented, Condor provides a job queueing mecha-

nism, scheduling policy, priority scheme, resource monitoring, and resource management.

Users submit their serial or parallel jobs to Condor, Condor places them into a queue,

chooses when and where to run the jobs based upon a policy, carefully monitors their

progress, and ultimately informs the user upon completion. Among other things, Con-

dor allows transparent migration of jobs from overloaded machines to idle machines and

checkpointing, which permits that jobs can restart in another machine without the need to

start from the beginning. These are typical tasks of a resource manager.

Globus, by its turn, is a whole framework that includes a set of services used, for ex-

ample, to securely transfer files from one grid node to another (GridFTP), to manage meta

data (MDS), and to allocate remote resources (GRAM). Condor-G [57] puts together Con-

63

dor facilities to manage jobs with the Globus grid facilities such as secure authentication

(GSI) and data transfer.

Condor applies an opportunistic scheduling policy that concentrates on allocating idle

resources to take advantage of idle CPU cycles. Globus focuses on providing several

different services to execute secure code on authorized machines.

Application management and control, load balancing and data locality are not their

main focus.

The Condor scheduling system and the MetaScheduler in the GrADS Project present

some similarities. Both support preemption of executing jobs to either accommodate other

jobs or to transfer the control of the resources to the resource owners. However, the first

is more concerned to free resources reclaimed by the owners whereas the second one tries

to get performance. Besides, the Condor’s Negotiator component has similar functionality

to the Metascheduler’s Contract Negotiator.

An aspect not covered in our tables is related to resource description. The resources

must be represented in a somehow independent way to manage the inherent heterogeneity

of grid environments. Legion has adopted the object model as a way to get a uniform

way to access the resources. Globus and Condor-G have decided to adopt a description

language which is translated to an internal representation.

All systems present some way to deal with faults. One important issue that RMS must

deal with is data loss. Most available software can not handle network traffic properly.

For example, Condor, one of the software that we had experience with, can either loose

jobs that were in the job queue, or generate corrupt data files, because of lack of network

flow control. The user is responsible to manually control the number of jobs that will

be simultaneously submitted in order to avoid network congestion. As a consequence of

the little attention given to flow control and data management, data loss can occur due to

overflow when too much traffic is generated on data and code transfers. Some experiments

reported on [39] illustrate this problem. From 45,000 tasks launched, around 20% failed

for several reasons, including data corrupted due to packet loss, and had to be re-submitted.

Other problem concerns application submission. In some systems, applications are

launched in the user machine. Because most grid aware software create one connection or

a new process to each launched job, the submit machine can become overloaded and have

a very low response time.

64

D.6 Conclusion

On the light of this discussion about grid aware systems and their limitations, we per-

formed some experiments to evaluate some of the problems, which are described in Ap-

pendix E, and discuss a promising solution to these limitations in the Appendix F.

65

Apêndice E

Experiments with Distributed
Submission

This chapter presents some computational experiments to evaluate how the number of

tasks affects submit machine load, and how centralized and distributed submissions affects

submit machine(s). Our main goals are: (1) to show that a hierarchy of submit machines,

i.e. distributed submission, is an important alternative in a grid environment; (2) to check

how much we can profit from a distributed submission schema compared to a centralized

one.

Two kinds of experiments are performed in two kinds of computational systems: ap-

plication execution in a local cluster with Condor system [136] and simulations of cluster

and grid environments in a single machine running the Monarc simulator [90]. Section

E.1 presents the results from experiments executed using Condor. Section E.2 presents the

results and analysis of the second experiment.

E.1 Experiments using Condor

We present in this section results from experiments that were executed using a cluster with

machines Pentium IV 1.8 GHz with 1 GB RAM. For our experiments, only seven nodes

were available, with Red Hat 7.3 (kernel 2.4.18-3) and Condor version 6.4.7, connected

with a 3Com gigabit Ethernet switch.

E.1.1 Methodology

We assume that there is a graph of independent tasks. The graph is described using a Con-

dor submission file. Instead of using a real application, we decide to run synthetic tasks.

66

Our tasks can be considered as synthetic tasks, since they do not represent a real applica-

tion. We created some deterministic jobs to be executed, because we were concerned in

having control of how much CPU would be used and how much data would be generated.

We implemented a C program that writes an amount of data and then performs a cal-

culation loop. This way we could simulate a CPU intensive application with deterministic

tasks and make it possible to vary the task execution times. We ran two experiments, each

one with tasks of different execution times: a few seconds (� 3 seconds) and some min-

utes (� 20 minutes). All tasks write around 10 kbytes of data, which is the average output

file size of ILP experiments reported in Dutra et al [39].

For both experiments, we defined two cases: (1) all tasks are submitted in a single

submit machine (centralized submission), and (2) the tasks are divided in two subgraphs,

each subgraph is submitted in a different submit machine creating two queues at the central

manager (distributed submission).

In both cases, the size of the application graph is variable. For the first experiment:

50, 100, 250, 500, 1000, 2000, 3000, 5000 or 7500 tasks. For the second: 50, 100, 250,

and 500. During execution, we get information from the /proc/loadavg directory, which

provides information about load averages for the Linux system.

E.1.2 Results and Analysis

In the first experiment, we monitored the submit machine during all execution time. At

each 5s, the load information was obtained from /proc/loadavg and stored to be analyzed

at the end of the execution. Figure E.1 presents the load average for the centralized sub-

mission. The dashed line represents the increase in the average load as the number of

submitted tasks increases. The vertical lines represent the standard deviation which is

quite high in all cases. It means that there were some load peaks during the experiment.

Note that the standandard deviation shows the load variation during one single execution.

At first, we thought this monitoring methodology would be sufficient to check how

much the machine was overloaded by the submission. However, this methodology was

not effective to detect machine saturation, because of the imprecision of the measurements

(the monitoring script was started and terminated by hand). We then tried to measure the

load during all execution time to detect load saturation caused both by submission and by

receiving results. However, for a large number of tasks, the submit machine also executed

some jobs producing a misleading load figure.

67

 0

 1

 2

 3

 4

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000

Lo
ad

Number Of Tasks

Load average with standard deviation
Load average

Figure E.1: Experiment 1 – Load average of the submit machine

Thus, we had two main problems with this approach: (1) since Condor does not present

a direct way to detect termination, we had to do some condor_q during the execution, and

this could cause changes in the machine load; (2) after submission, the submit machine

can be used as an execution machine. Thus, some of the load peaks can be caused either

by task execution or results gathering.

For Experiment 2, another load measurement methodology was adopted. A script file

was written to perform submission. Load information was collected in two moments:

before and after the condor_submit command.

Table E.1 presents statistical values related to tasks submission and execution times

for both centralized and distributed submissions for Experiment 1, and Table E.2 for Ex-

periment 2.

Different workloads were executed for Experiment 1 and Experiment 2 and are repre-

sented in column Tasks. Table E.2 presents the same information for Experiment 2. Table

E.1 shows for all workloads of Experiment 1, values related to time (column Time) of sub-

mission and of execution, and total time for centralized (c) and distributed (d) submission

(column Sub.). Figure E.2 presents graphically the time measurement.

The statistical values presented for both tables are: (a) Mean: the time average; (b) Std.

Dev.: standard deviation i.e. a measure of the dispersion of the frequency distribution;

(c) Median: the middle value in the distribution; (d) Min.: minimum value; (e) Max.:

maximum value; (f) Sum: the amount obtained as a result of adding the time for each task.

68

Table E.1: Experiment 1: Statistical values for centralized (c) and distributed (d) submis-
sion

Tasks Time Sub. Mean Std. Dev. Median Min. Max. Sum

50

Submission c 107.9400 61.1036 110.00 5.00 210.00 5397.00
d 196.6600 156.3943 200.00 8.00 376.00 9833.00

Execution c 3.9200 0.8769 4.00 3.00 5.00 196.00
d 6.0200 2.5354 6.00 3.00 10.00 301.00

Total c 111.8600 61.1328 113.00 8.00 215.00 5593.00
d 202.6800 156.8943 205.50 12.00 379.00 10134.00

100

Submission c 90.8900 43.2516 90.5000 6.00 173.00 9089.00
d 214.3700 165.3999 215.5000 8.00 422.00 21437.00

Execution c 4.9300 1.9083 5.0000 3.00 8.00 493.00
d 4.7900 1.6654 4.0000 3.00 8.00 479.00

Total c 95.8200 43.5953 95.5000 9.00 176.00 9582.00
d 219.1600 165.4037 218.5000 11.00 425.00 21916.00

250

Submission c 212.6720 117.9474 214.5000 7.00 409.00 53168.00
d 301.1800 191.7456 282.0000 9.00 633.00 75295.00

Execution c 4.2840 1.1280 4.0000 3.00 8.00 1071.00
d 4.2360 1.0700 4.0000 3.00 7.00 1059.00

Total c 216.9560 118.1403 218.5000 10.00 412.00 54239.00
d 305.4160 191.7565 285.0000 12.00 637.00 76354.00

500

Submission c 405.5380 227.3701 409.0000 7.00 801.00 202769.00
d 574.3280 363.5963 471.0000 9.00 1158.00 287164.00

Execution c 4.5520 1.7290 4.0000 3.00 9.00 2276.00
d 4.5120 1.4567 4.0000 3.00 9.00 2256.00

Total c 410.0900 227.3254 412.0000 10.00 804.00 205045.00
d 578.8400 363.5972 476.5000 12.00 1164.00 289420.00

1000

Submission c 1068.8520 590.1029 1105.5000 8.00 2006.00 1068852.00
d 971.0920 585.6023 867.0000 9.00 1918.00 971092.00

Execution c 4.3470 1.2570 4.0000 3.00 9.00 4347.00
d 4.5170 1.5595 4.0000 3.00 11.00 4517.00

Total c 1073.1990 590.1135 1109.5000 11.00 2010.00 1073199.00
d 975.6090 585.7662 871.0000 15.00 1921.00 975609.00

2000

Submission c 2306.6130 1299.7641 2352.0000 10.00 4757.00 4613226.00
d 1964.4805 1146.1761 1817.5000 10.00 3956.00 3928961.00

Execution c 4.3335 1.4827 4.0000 3.00 10.00 8667.00
d 4.9545 2.0242 4.0000 3.00 11.00 9909.00

Total c 2310.9465 1299.7020 2356.0000 13.00 4761.00 4621893.00
d 1969.4350 1146.1113 1822.5000 13.00 3961.00 3938870.00

3000

Submission c 3725.9780 2005.8243 3869.5000 33.00 7014.00 11177934.00
d 3285.6307 1822.1958 3186.0000 9.00 6321.00 9856892.00

Execution c 4.3133 1.4852 4.0000 .00 11.00 12940.00
d 4.7413 1.7801 4.0000 3.00 11.00 14224.00

Total c 3730.2913 2005.8161 3873.5000 36.00 7018.00 11190874.00
d 3290.3720 1822.1690 3191.0000 12.00 6324.00 9871116.00

5000

Submission c 7253.7438 3815.4792 7498.0000 19.00 13075.00 36268719.00
d 5508.9044 3134.6970 5358.0000 15.00 10963.00 27544522.00

Execution c 6.0598 1.9842 6.0000 3.00 26.00 30299.00
d 6.9050 6.9565 7.0000 3.00 356.00 34525.00

Total c 7259.8036 3815.6316 7504.0000 22.00 13078.00 36299018.00
d 5515.8094 3134.6459 5367.5000 20.00 10972.00 27579047.00

7500

Submission c 12006.3413 5957.6143 12673.0000 361.00 21131.00 90047560.00
d 9375.0604 5119.7247 9391.0000 34.00 17790.00 70312953.00

Execution c 6.4372 2.2508 7.0000 3.00 22.00 48279.00
d 4.7716 1.8624 4.0000 3.00 23.00 35787.00

Total c 12012.7785 5957.1864 12681.0000 368.00 21135.00 90095839.00
d 9379.8320 5119.9184 9395.5000 38.00 17793.00 70348740.00

69

Table E.2: Experiment 2: Statistical values for centralized (c) and distributed (d) submis-
sion

Tasks Time Sub. Mean Std. Dev. Median Min. Max. Sum

50

Submission c 4280.2000 2736.2375 4139.0000 4.00 8706.00 214010.00
d 4706.5000 2893.7614 4898.0000 5.00 9347.00 235325.00

Execution c 1269.0600 85.7318 1233.0000 1209.00 1615.00 63453.00
d 1265.6800 61.9817 1227.5000 1205.00 1412.00 63284.00

Total c 5549.2600 2749.4419 5584.5000 1217.00 9944.00 277463.00
d 5972.1800 2895.6075 6120.5000 1213.00 10644.00 298609.00

100

Submission c 8907.7100 5366.8455 9004.5000 5.00 17778.00 890771.00
d 11005.7900 3832.6245 10799.0000 4214.00 18755.00 1100579.00

Execution c 1262.9600 66.8299 1234.0000 1215.00 1587.00 126296.00
d 1246.9300 42.5192 1228.5000 1209.00 1381.00 124693.00

Total c 10170.6700 5349.3733 10228.0000 1226.00 18998.00 1017067.00
d 12252.7200 3825.2304 12057.0000 5435.00 19985.00 1225272.00

250

Submission c 22125.4560 13305.0442 21918.5000 3.00 45920.00 5531364.00
d 25442.0160 9162.2504 25578.0000 318.00 42885.00 6360504.00

Execution c 1240.5560 31.7401 1224.0000 1209.00 1343.00 310139.00
d 1249.6920 43.7549 1229.5000 1207.00 1380.00 312423.00

Total c 23366.0120 13306.5348 23156.5000 1225.00 47136.00 5841503.00
d 26691.7080 9159.8378 26824.5000 1625.00 44248.00 6672927.00

500

Submission c 49828.0240 29943.8155 48463.5000 6.00 102940.00 24914012.00
d 74674.1060 42339.9788 66607.5000 343.00 169463.00 37337053.00

Execution c 1270.7400 75.4304 1252.5000 781.00 2086.00 635370.00
d 1260.6660 53.8226 1234.5000 1206.00 1521.00 630333.00

Total c 51098.7640 29959.1608 49693.5000 1220.00 104157.00 25549382.00
d 75934.7720 42334.8140 67828.5000 1663.00 170726.00 37967386.00

Figure E.2: Time measurements in the execution timeline

70

All these data were obtained as follows: first, scripts are used to get information about

individual tasks in the Condor log files, then, these data is submitted to the SPPS statistic

program.

Figure E.3 presents the average total execution time for each workload in both cases

for Experiment 1. The total execution time is the sum of submission and execution times.

The total execution time linearly increases since the submission time increases as increase

the number of tasks to be executed.

Considering all workloads, with 95% of confidence and eight degrees of freedom, the
�

value is 1.614. Since it is lower than the
���

=1.860, the difference in performance for

centralized and distributed cases is not significant. However, if we consider only the five

last workloads, which have at least 1000 tasks, with 95% of confidence and four degrees

of freedom,
�

is 2.153. Since
� �

is equal to 2.132, for instances bigger than 1000 tasks,

the distributed submission is significantly different of centralized submission with 95% of

confidence.

Therefore, distributed submission is better for workloads bigger than 1000 tasks. This

is an interesting result, since we are concerned with applications with huge number of

tasks, in the order of thousands. This is an indication that having a distributed submission

can help decreasing the total execution time.

Figure E.4 shows the total application execution time, i.e., the sum of all tasks execu-

tion. This time is higher than the user response time.

The response time for Experiment 1 is presented in Table E.3 and Figure E.5. In most

cases, the response time is better for centralized submission, but for the higher instances

(5000 and 7500 tasks) the response time is better for distributed submission.

Table E.3: Condor Experiment 1 – response time in seconds
Number of Tasks Centralized Submission Distributed Submission

50 210 5605
100 173 5321
250 409 5870
500 801 5724

1000 2006 6100
2000 4757 7082
3000 7014 11587
5000 13075 11370
7500 21131 17790

Another interesting aspect to be analyzed is the load balancing of the execution ma-

chines. Figures E.6 and E.7 present load balancing information, respectively for Experi-

71

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000 6000 7000

T
as

k
E

xe
cu

tio
n

T
im

e
(a

ve
ra

ge
 in

 s
ec

on
ds

)

Number Of Tasks

centralized
descentralized

Figure E.3: Condor Experiment 1 – average task time for centralized and distributed sub-
mission

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 0 1000 2000 3000 4000 5000 6000 7000

T
ot

al
 A

pp
lic

at
io

n
T

im
e

(s
ec

on
ds

)

Number Of Tasks

centralized
descentralized

Figure E.4: Condor Experiment 1 – total execution time (sum)

72

 0

 5000

 10000

 15000

 20000

 25000

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
ot

al
 R

es
po

ns
e

T
im

e
(s

)

Number Of Tasks

centralized
distributed

Figure E.5: Condor Experiment 1 – response time in seconds

ment 1 and 2. For each execution, the bar represents the percentage of tasks each machine

executed. Each color represents a different machine in the cluster. We can observe that Ex-

periment 2 did not obtain a good load balancing. For instance, for 50 tasks submitted from

one machine, all tasks were executed in the same machine, and for bigger instances, most

used four or five machines. The distributed submission presented the best results consid-

ering load balancing. Experiment 2 allocated the seven machines in almost all cases.

For the second experiment, the cluster was isolated avoiding users from logging into

the machines, allowing a more stable testing environment. Besides, tasks take more time

to complete. Probably, these are the reasons for the general better load balancing.

Figure E.6: Condor Experiment 1 – percentage of executed tasks per machine

73

Figure E.7: Condor Experiment 2 – percentage of executed tasks per machine

Some possible drawbacks of the first experiment are: (1) results are specific to the

Condor environment, so some results may not be extrapolated to other RMSs; (2) we used

an old version of Condor, and maybe newer versions have better performance; (3) our

experimental environment was a small cluster and not a grid. Thus, we decided to perform

the simulations presented in the next section.

E.2 Experiments using Monarc

As a further step to analyze the distribution of the submission we decided to use simula-

tion. Simulation is a powerful tool to test distributed models. It is cheaper, simpler, faster,

and more flexible than running in a real environment, avoiding operational problems and

implementation dependent issues. Besides, it is possible to reproduce experiments that

otherwise would be non deterministic. It is easier to setup different parameters, simplify-

ing debugging and monitoring of events.

Several tools exist for simulation of distributed systems that allow grid environment

simulation [128]. Some are extensions of already available simulation tools while others

were implemented from scratch.

We analyzed four tools in a previous work [146], and we chose to use Monarc (Models

of Networked Analysis at Regional Center) [90, 91] as our simulation tool. Monarc is a

popular tool among physicists. It is written in Java and thus is portable. Besides, Monarc

presents high level abstractions suitable to our purposes.

74

Monarc is a discrete-event simulation tool that allows distributed system simulation. It

is part of the Monarc Project and it was developed by a team with members from CERN,

Caltech, and Politehnica University of Bucharest. Monarc is now in its second version

[138]. Legrand and Newman [90] report some experiments used to validate Monarc. They

compare simulation results with theoretical expected results based on queuing theory, and

they conclude that the simulation is quite close to the theoretical model. They also show

that the simulation tool reproduce results (job execution time) obtained with a real testbed.

Some characteristics of Monarc version 2.1.7 must be outlined, since they are relevant

for data analysis:

� Monarc aims at providing high level abstractions, thus some lower level aspects can-

not be analyzed, e.g. message package traffic. It is an advantage because irrelevant

details are omitted allowing a macro vision of the system. But, it can be a disad-

vantage, because some low level details should be monitored, e.g. limit of socket

ports;

� The simulator allows to allocate tasks into a CPU while there is available memory.

With this restriction, there is no simulation of swap;

� It is possible to set bandwidth limits and speeds of links between grid nodes (re-

gional centers). However, in the used version, the bandwidth limit was not respected.

Thus, network saturation tests could not be done;

� Monarc allows to create a task to be executed in a specific CPU. But, there is a

termination detection problem when the first CPU is manually scheduled;

� the standard scheduling algorithm is round-robin: each task is allocated for the first

free CPU, if there is no more free CPU, then for the first CPU with available memory,

otherwise it goes to the queue. There is no cost for scheduling (time for scheduling

equals zero).

The next sections will describe our experiments and results using Monarc.

E.2.1 Methodology

Two experiments were simulated: a cluster with a high speed network connection and a

small and heterogeneous grid. Both experiments were conducted with different workloads,

75

and different number of submit machines. All simulated tasks have the same character-

istics (same execution time and same memory consumption). The number of submitted

tasks was the same for both experiments and the number of submit machines was 1, 2, 3,

4, 16, and 40 or 80 for the experiment 1 and 1 to 5 to experiment 2. In the experiment 2,

the submission was restricted to a single grid node thus limiting to 5 machines.

As for the Condor experiment, we used an application composed by a set of indepen-

dent tasks. To simulate this application we constructed a DAG as represented in Figure

E.8. Initially, a set of small tasks is executed to simulate the cost of putting the tasks in

a central queue. To synchronize the termination of all small tasks indicating that the ap-

plication can start, a Barrier task is executed. This task has zero cost of execution and

communication. Then, a set of big tasks is executed. This set of big tasks represents the

real user task, and implements the cost of executing the real application. At the end, a task

GetStatistics is called to print execution information about the simulation.

Big Tasks

Small Tasks

n

GetStatistics

...54321

Barrier

n + 1n + 2n + 3n + 4n + 5...n + n

Figure E.8: Monarc Experiment – methodology: DAG of tasks

E.2.2 Results and Analysis

The Monarc simulator is deterministic, so the results we will present in this section are

the result of one single execution for each case. We simulated two medium clusters with,

respectively 40 and 80 machines and a small grid. The cluster machines are set as the

machines of our laboratory: each machine has the power equivalent of an AMD Athlon

XP 2GHz and 512MB of memory. The grid represents a real testbed set between some

76

Brazilian Universities. Figure E.9 represents the institutions, the number of machines each

one has, and the interconnection bandwidth.

Figure E.9: Monarc Experiment: simulated grid elements

The main results are presented in Figures E.10, E.11, and E.12. We can see in the

graphs of the three cases, that when the number of submit machines increases, the logical

time decreases and the CPU usage is better. For a small number of tasks, increasing the

number of submit machines can lead to a significant decrease in execution time.

These results are an indication that for a real environment would be possible to get bet-

ter performance if more than one submission queue is used. The results in Figures E.10(a)

and E.11(b) indicate that it is good to use as many machines as submit machines as pos-

sible. However, we must remember that there are some simplifications in our simulation

model that need to be considered before applying the results: (a) the simulation environ-

ment is dedicated (only tasks from the application were running); (b) it did not consider

file transfer costs; (c) it did not consider all network cost. So, probably there is a limit for

the number of submit machines that could be used in practice. This number will depend

on the load of the environment, the application characteristics and the number of tasks.

77

(a)

(b)

Figure E.10: Monarc - cluster 40 CPUs: (a) CPU load average and (b) logical execution
time

78

(a)

(b)

Figure E.11: Monarc - cluster 80 CPUs: (a) CPU load average and (b) logical execution
time

79

(a)

(b)

Figure E.12: Monarc - grid, submit cluster with 5 CPUs: (a) CPU load average and (b)
logical execution time

80

E.3 Conclusion

The experiments reported in this chapter are performed so we could get some real data

as basis for our hypothesis that a centralized submission is not a good option for large

number of jobs. The main conclusion we can get from our initial experiments is that a

distributed submission can be a good alternative.

In the next chapter we present a new application submission and management model

for grid environments that relies in the distributed control idea.

81

Apêndice F

GRAND: An Integrated Application
Management System for Grid
Environments

This section aims to address some of the issues related to the construction of an inte-

grated system to manage application in grid environments. Our proposed model is called

GRAND (Grid Robust Application Deployment) [114, 143, 144, 145, 146, 147]. More

specifically, we are concerned with the management of applications that spread a high

number of tasks (e.g. thousands) in a grid environment.

Application management consists in preparing, submitting, and monitoring the exe-

cution progress of all tasks that compose the user application. Application management

encompasses several activities. From application description to final results gathering,

there are several actions the system must perform including application deployment in

grid nodes. The GRAND model, mainly due to its hierarchical organization, has some

steps as presented in Figure F.1. This figure presents a schematic view of the main steps

necessary to execute a distributed application in GRAND.

The first step is called DAG inference: given an application description, the system

detects dependencies between tasks obtaining a directed acyclic graph (DAG). In the clus-

tering step, an application composed by several tasks is divided in subgraphs. Clustering

aims to get together tasks that are dependent or to obtain a group of independent tasks

that can be submitted together. Then, the obtained subgraphs can be assigned to resources

during the mapping step according to the available resources. Finally, the submission step

is responsible for allocating the chosen resources, ensuring (a) data staging, (b) executable

deployment, and (c) subgraphs execution on selected resources.

82

Figure F.1: The GRAND model: steps to execute a distributed application

This chapter discusses all these steps in detail. Before presenting our model to per-

form such steps, we present our premises (Section F.1). We advocate that a hierarchy of

managers that can dynamically distribute data and tasks can aid the task of application

management for applications that spread a high number of tasks. Then, we first present

an overview of the proposed hierarchy (Section F.2). Next, we introduce our application

description language and the XML based format to store DAG and sub-DAGs information

(Section F.3). Then all steps are analyzed (Section F.4) and services provided in GRAND

are presented (Section F.5). Finally, we conclude this chapter presenting some final con-

siderations (Section F.6).

F.1 Premises

The main premises assumed to the conception of our model are the following:

The execution environment is heterogeneous A grid environment is heterogeneous by

definition. We assume that grid nodes have machines that could have different software

83

and hardware configurations and this must be taken into consideration in our allocation

decisions.

A huge number of tasks can be submitted This assumption is also one of our motiva-

tions and is fundamental in the definition of several details in our model. By a huge number

of tasks we mean applications that will generate hundreds or thousands of processes.

Suppose the user submits in his/her home machine (i.e. a submit machine) an applica-

tion with, for example, ten thousand tasks. If all the submission and the control were done

in the same machine, probably this machine would stall and the user would not continue

to work there. This problem is already known in the literature. For example, Condor [135]

allows the user to specify a limit of jobs that can be submitted in a specific machine at

the same time. This is not the best solution, since users must have some previous experi-

ence with job submission in this environment to infer the appropriate limit avoiding stall

his/her machine and getting a good degree of concurrency. It is also a difficult task to be

accomplished manually.

Besides, monitoring execution and handling errors manually is not feasible since such

kinds of applications (a) use a great amount of resources, and (b) can take several days

or weeks to successfully terminate. Thus, our model needs to be scalable. It also must

provide execution feedback to users since execution will probably take several hours, days,

or even weeks.

Tasks do not communicate by message passing Several works allow message passing

in grid environments, such as MPICH-G2 [82] and Phoenix [81]. However, message pass-

ing introduces many aspects to be considered in the clustering and allocation phases. In

the context of this work, we decided to assume that our applications do not communicate

through message passing.

Tasks can have dependencies with other tasks due to file sharing Applications can

be modeled as a dependency graph of tasks due to file sharing. For example, if a task �
produces an output file

� �
that task � uses as its input file, then � must wait until task �

finishes. In this example, � and � are nodes and there is an edge from � to � , therefore

� can only be launched after � finishes its execution. This is a common assumption as

84

presented in Condor’s DAGMan [135] and Globus’ Chimera [55], and is presented in

many applications.

We consider that we always have a graph of tasks. A bag-of-tasks is the simplest way

an application can be organized: there are no dependencies between tasks, so they can

be executed in any order. Some Monte Carlo simulations can be classified in this group.

The grid system OurGrid [6, 7, 106] is an example of a system that deals properly with

this kind of application, and has proved its usefulness. Thus, the simplest graph has only

nodes and no edge but more complex graphs must also be supported. Some examples

of applications with dependent tasks were discussed in Section B.2. So, our scheduling

decisions consider independent tasks but also task precedence.

Huge number of files can be manipulated by tasks Tasks can communicate and syn-

chronize through files, so, each task usually will manipulate at least two files (one input

and one output). Since we assume a huge number of tasks, a very high number of files

must be managed. Efficient algorithms to keep data locality and to efficiently transfer files

are crucial to the success of the model under this assumption.

Huge files can be used in computation Huge file transfers could cause network conges-

tion, package loss, and can make transfer times unbearable. So, some kind of action must

be taken to control file transfer avoiding package loss and network saturation. Preserv-

ing data locality, and staging and caching techniques could help minimizing performance

losses due to data transfer latency.

Underlying grid environment is secure We assume that a secure connection is avail-

able between grid nodes. We also assume that user authentication and authorization are

available in the grid environment. For example, the Globus Security Infrastructure (GSI)

[149] can be used to satisfy our requirements, as well as the security issues provided by

the EXEHDA environment [157].

Underlying grid environment allows dynamic resource discovery Discovery is a ser-

vice that enables the system to retrieve resource descriptions. There are several resource

discovery proposals for grid environment [64, 99, 117]. We consider that the grid environ-

ment has available one or more discovery services that can be used to maintain a resource

85

directory service in our model. We consider a directory as a service to maintain and access

an information repository related to resources.

Each grid node has its local resource manager Local resource management systems

(lower-level schedulers or RMSs) can have several attributes such as presented in [118]

and [119]. We assume the following attributes will be available at each grid node:

� exclusive control: this attribute indicates if the local manager is in exclusive con-

trol of the resources. This information is useful to determine the reliability of the

scheduling information;

� consideration of job dependencies: the lower-level scheduler takes dependencies

between allocations into account if they are provided by the higher-level scheduling

instance. For instance, in case of a complex job request the lower-level scheduling

will not start an allocation if the completion of another allocation is required and

still pending.

If a scheduler checks these attributes, it can take an appropriate action to ensure a

good scheduling and a proper application execution. For instance, if a local resource man-

ager does not support job dependencies, the high-level scheduler must ensure the correct

submission order.

Another important aspect of this assumption, is that GRAND respects local scheduling

policies as well as specific administrative domain choices. We consider that most academic

cluster or local networks, that are already operating and can be integrated in a research

grid, have already local users, local job submission, and system administrators. GRAND

aims to be less intrusive as possible allowing different RMSs to exist in the same grid.

Task submitted to a local resource manager will run until completion We also as-

sume that once a task is allocated it will not be scheduled again or at least this will be

transparent to the higher level resource managers.

F.2 Architectural Model Overview

We designed an architectural model to be implemented at a middleware level. Our pro-

posal is a hierarchical management mechanism that can control the execution of a huge

86

number of distributed tasks preserving data locality while reducing the load of the submit

machines. The main idea is to balance the submission task control load into several ma-

chines. Our architectural model relies on already available software components to solve

issues such as allocation of tasks within a grid node, and authorization control.

We assume users submit applications to GRAND using our description language GRID-

ADL (Grid Application Description Language), that is described in detail next (Section

F.3.1). Each application has several tasks and can be represented as a Directed Acyclic

Graph (DAG). In our DAGs, the nodes represent tasks and edges represent dependencies

between tasks through data files access. Our system can infer automatically the DAG

through the analysis of the data flow.

The weight of a node denotes the required amount of computation. The user can

specify these values, to allow a better clustering. Otherwise, a same default value is set

to all nodes, i.e., tasks are considered as homogeneous. An expert user could be able to

make a good guess of task complexity, or at least to know if they are homogeneous or not,

based in his/her previous experience. Another possibility is to use some automatic tool to

infer the node weight. This tool can use complexity or granularity analysis (e.g. [34]).

Since we have a limited number of resources, nodes must be grouped to be executed

in the same execution unit (cluster or local network). We refer to this grouping as an

application clustering. We consider that a good clustering is the one that minimizes data

transfer (i.e. maximizing data locality) and maximizes application performance. Note that

clustering the DAG is a compromise between two conflicting forces: keeping nodes sep-

arate increases parallelism at the cost of communication, whereas clustering them causes

serialization but saves communication [45]. We describe how applications are clustered,

considering our application taxonomy (defined in Section B.2), in Section F.4.2. The user

can also store the results of this initial phase, i.e. task description, DAG structure and

clusters, as a set of XML files as described in Section F.3.2.

Then, the submission and execution control will be controlled by three components:

� Application Manager (AM): it is the high level controller that takes care of one spe-

cific application. GRAND instantiates a different AM for each application launched.

It runs on the user machine, also called submit machine. This component is respon-

sible for DAG inference, clustering, creation of submission managers and giving

feedback to the user;

87

� Submission Manager (SM): is responsible for mapping sub-DAGs to grid nodes.

GRAND creates one or several SM in the same local network where the AM is

instantiated, each one in a different machine. It can run sub-DAGs from different

applications;

� Task Manager (TM): is a wrapper capable of submitting tasks to a specific grid

node. Once an SM has made the allocation decisions, it chooses the appropriate TM

to submit task(s) to a grid node. Each SM communicates with one or more TM. Each

TM can communicate with one grid node.

Thus, GRAND instantiates one Application Manager per application and can use one

or several Submission Managers available in the local network. There is at most one Sub-

mission Manager per machine. There is an AM per application to decrease the complexity

of this component and because there is no need for synchronization between applications.

SM component can map clusters from different applications, as illustrated in Figure F.2.

Figure F.2 presents an example execution scenario. Note that in each machine with

one SM, there is one or more TMs. A machine could have more than one SM, but the

main idea behind fixing one SM per machine is to have only one subcomponent getting

information about grid nodes per machine. Besides, one SM per machine simplifies the

communication protocol with AM, SMs, and TMs.

Each TM can communicate with the RMS of a specific grid node to submit tasks.

If an SM wants to allocate tasks in two different grid nodes, it will use two different

TMs. Having different instances of TM for different kinds of RMSs allow to construct a

lightweight component, since it only needs to know how to communicate with an specific

RMS protocol. If two SMs want to communicate with the same RMS, they will use their

local instance of the appropriate TM. This minimizes communications between control

machines, i.e., machines of the local network that has an SM running.

Our task submission model can be classified as a high-level scheduler [118] since it

queries other schedulers for possible allocations. It can also be considered as a Super-

Scheduler, since it is a “process that will (1) discover available resources for a job, (2)

select the appropriate system(s), and (3) submit the job. Each system would then have its

own local scheduler to determine how its job queue is processed.” [112]

Thus, in our design we control the application through a hierarchical organization of

controllers that is transparent to the user. We believe a distributed hierarchical control

88

Figure F.2: The GRAND model: a possible scenario

organization meets the applications needs, is scalable and can alleviate the load of the

submit machine avoiding stalling the user working machine. In the next subsections, we

will present some details about these controllers.

F.2.1 Model Components

The user submits his/her application through a submit machine that is a machine that has

the Application Manager (AM) component installed, which is our higher level controller.

The higher level of the application control must infer the DAG and make the clustering

before starting submission process.

The AM is in charge of:

� processing the user submit file describing the tasks to be executed in order to infer

the application DAG (DAG inference step);

� clustering the tasks into subgraphs (Clustering step);

� choosing SMs to send the clusters; and

89

� showing, in a user friendly way, the status and monitoring information about the

application.

Note that the AM does not have information about individual resources available in

the system. It only keeps track of the SM status to avoid communicating with a failure or

overloaded node.

Subgraphs defined by the clustering algorithm are assigned to the second level con-

trollers, called Submission Managers (SMs), which will instantiate the Task Manager (TM)

processes to deal with the actual submission of the tasks to the nodes of the grid. This third

level is necessary to isolate implementation details related to specific local resource man-

agers.

The SM main functions are:

� to schedule clusters to grid nodes (Mapping step);

� to create daemons called TM to control actual task execution. Each daemon keeps

control of a subgraph of tasks defined by the clustering;

� to keep information about computational resources; and

� to supply monitoring and status information useful to the user. It stores the informa-

tion in a synthetic way. This information is sent to the AM that has the responsibility

to present data to the user. This periodic information flow is also used to detect

failures.

The Task Manager implements the Submission step and is responsible for

� communicating with a remote machine, at a grid node, which typically has a RMS;

� translating GRAND internal task description to a specific RMS submission format;

� launching tasks to remote nodes, typically through a local RMS request; and

� detecting faults with the grid node.

It works similarly to a wrapper being able to communicate with a specific local resource

manager. For example, a TM is instantiated to communicate with a grid node that uses

PBS while another TM can be instantiated to communicate with another grid node that

90

uses Condor. If none RMS is available, a direct way of instantiating remote tasks, in a

specific machine at the grid node, can be used.

We assume that our hierarchy of managers is running in the local network to (1) avoid

forcing that other sites run our daemons, and (2) to minimize communication time between

managers.

F.2.2 Model Components Interaction

Figure F.3 illustrates the three main components of our model and their relationship.

Figure F.3: The GRAND model: hierarchical architecture - main components

When the user submits his/her application in the submit machine, the AM is started due

to the current request. When an AM becomes active, it broadcasts a message to its local

network. All SMs reply to this message to inform their location and status. With these

replies information, the AM builds a private database of SMs. Thus, an SM can deal with

requests from several AM.

Figure F.4 presents some details about AM. First, the application description can be

a GRID-ADL specification or an XML file. If it is a GRID-ADL file, three procedures

must be executed: GRID-ADL parser, DAG inferrer, and clustering. If it is an XML file, it

91

already describes the DAG explicitly and the clusters. So, only an XML parser procedure

must be executed. In both cases, the application description will be provided to the Ap-

plication manager executor. The Application manager executor is the main component,

responsible for communicating with the SMs and for sending information to the user. It

keeps SM info in the Active SMs repository.

Figure F.4: The GRAND model: Application Manager details

The Application Manager Executor uses its local information and chooses one or more

SMs to accomplish the required tasks. The choice is done based on the following criteria

based on heuristics:

� the SMs that have recently communicated with the Application Manager and re-

ported that are not overloaded have preference to receive subgraphs. The periodical

communication can detect when a Submission Manager is faulty or overloaded and

thus not able to help in the task submission and control;

� the computational power of the machine, considering CPU and memory, determines

the upper bound on the number of subgraphs an SM can receive. The more memory

and CPU power a machine has, the more subgraphs its Submission Manager can

handle. This aims at avoiding to overload the machine;

92

� the AM keeps a weight for each SM. Greater values indicate powerful SMs. This

value is based on previous execution data and indicates how well the SM accom-

plished the tasks it received.

If there is no available SM or all SMs are overloaded, AM tries to instantiate a new

SM. A new SM can be instantiated when there is at least one available machine in the

local network. If there are more than one machine capable of running a new SM, the more

powerful machine with lower load is used.

The chosen SMs will receive subgraphs in an internal representation. At this moment,

there is no transfer of executables or input data files.

Then, periodically the SMs will communicate to the AM the execution progress. This

communication allows online monitoring information to the user and also fault detection.

Notice that we are assuming that all AM and SMs will run in machines that belong to the

local network to reduce latency and network traffic when submitting tasks.

Figure F.5 presents some details of this component. The Mapping service is the ele-

ment responsible for SM orchestration. It receives clusters from AM, and can communicate

with TM and other SMs, as well as contact the Directory service.

Figure F.5: The GRAND model: Submission Manager details

93

Communication between the SMs can happen, since some tasks in different subgraphs

can have dependencies. Therefore some synchronization points must be established. The

AM must send, included in the subgraph description, the identification of each manager

that is related to this subgraph. For example, suppose a Submission Manager ��� � has a

task B which must be executed after task A assigned to Submission Manager ��� � . In this

case, �/� � must send a message to ��� � when task A finishes.

Each SM must find the most suitable resources to run its subgraphs. A SM chooses a

grid node using the following criteria:

� the SMs keep a list of available grid nodes. Some subgraphs will have requirements

that just some grid nodes can match. Thus, grid nodes must match tasks require-

ments to be selected;

� for each grid node, an upper bound on the number of subgraphs it can receive will

be estimated. Ongoing submissions are taken into consideration;

� the SM keeps information about previous executions. It uses this information to

calculate a weight based on the application characteristics. Greater values for the

weight indicate “better” grid node candidates.

For making this choice, the SM must have information about the available grid nodes.

The Directory service element is responsible for getting information and storing it in the

Directory repository. When the mapping algorithm is executed, the Directory service is

consulted so as to obtain the matching grid nodes with some dynamic information that

gives an estimation about the current grid node capacity and load. Note that the SM is the

only component that has access to the grid discovery service and, therefore, access to grid

resource information. It must get information such as the grid node address, the available

RMS (if any), the physical resource characterization. It also gets dynamic information that

gives information about the load of the grid node. The needed information and the way

this information is manipulated by the SM is presented in Section F.4.3.

It is required a Task Manager, in the same machine of the SM, for each grid node an

SM can access. TMs can be dynamically activated and deactivated according to the SM

demands. The SM sends the subgraph to a TM according to the grid node chosen. In the

SM side, it is the TM Comm element that is in charge of activating and keeping track of

active TMs storing information in the Active TMs repository.

94

Figure F.6 presents the Task Manager details.

Figure F.6: The GRAND model: Task Manager details

The Task Manager is responsible for translating the internal subgraph description to the

appropriate format for task submission. For example, a Task Manager that communicates

with a Condor pool must prepare a Condor submit file and send the appropriate command

to start tasks. This translation is performed by the Translation service element. The RMS

Comm element is responsible for communicating with the RMS of a specific grid node,

sending tasks and receiving results, as well as getting status and monitoring information.

F.3 Application and DAG Representation

The steps of the GRAND model, represented in Figure F.1, require as initial input an

application description. Also, the clustering and the mapping steps need, respectively, a

DAG and a set of sub-DAG information. In this section, we explain how this information

can be represented to submit to GRAND. A user can present an application through a

GRID-ADL input file. GRID-ADL is a new language we proposed and Section F.3.1

presents it in detail. Also, a user or a program can provide a DAG and/or a set of sub-

DAGs description, skipping at least the DAG inference step. Actually, the GRAND model

95

also allows to export this information. In both cases, it must follow an XML format.

Section F.3.2 presents its DAG and sub-DAGs representation schema.

F.3.1 Application Description and GRID-ADL

Generally, users run their jobs using some kind of description file that contains character-

istics such as the tasks to be executed, the computational power required or the full path to

the executable. As most users are acquainted with this kind of routine, we opted to main-

tain this classical approach, and provide to the user a simple description language that can

quickly represent the user applications and needs.

Having an application represented as a graph in some description language is useful

not only to allow the user to specify dependencies, but also to be able to distribute the

tasks among the grid resources. The management system can use the graph to control

the dispatch of tasks among grid resources. Therefore, our second motivation to have a

powerful description language was also to be able to do application clustering. Application

clustering, in our work, means to divide the application task graph in subgraphs such as

they can be allocated to different available processors efficiently.

To allow clustering, the application must be represented and the dependencies ex-

pressed. Dependencies between tasks can be handled in three different ways:

1. Source code analysis: If the system has access to the user source files, it is not

difficult to parse read and write accesses to files. If the file names are hard wired in

the source code, it is sufficient to build a graph with all input/output dependencies.

If the file is not hard wired in the code, the system can build graph node stubs, and

fill the edges at execution time when the user submits the tasks, indicating the input

and output filenames in a description file or in the command line.

2. Description language: Another alternative is to provide the user with a description

language to explicitly express the DAG of tasks.

3. Runtime control: To launch all tasks at once and suspend whenever anyone accesses

a file for reading that is not available in the local disk or shared file system. This last

option does not need to handle an explicit graph, but makes the clustering process

more complex.

96

In this work, we focus on the second approach: the user must describe the application

in our high level description language and the system generates the DAG.

Besides, our language also allows for exploring compilation vectorization techniques [151]

to represent and manipulate sets of tasks, as we will discuss later on Section F.4.2.

Our description language is called GRID-ADL (Grid Application Description Lan-

guage). GRID-ADL has the legibility and simplicity of shell scripts and DAGMan [135]

language while presents data relations that allow to infer automatically the DAG in the

same way Chimera [55] does. The user submits a file describing only its tasks indicating

input and output files. Optionally, he/she can also include the kind of application (inde-

pendent, loosely-coupled, or tightly-coupled tasks) and application requirements.

Our language syntax is represented in Augmented Backus Naur Form (ABNF) [31]

in Appendix I. Since it is self explanatory, we will not explain all details of our descrip-

tion language. We will only highlight the main aspects using the three DAG examples

presented in Figure F.7.

(a) (b) (c)

Figure F.7: DAG used in input file examples

Our language has some similarities with the DAGMan description language. Some

main differences are the following:

� the user can give a hint on how the task graph can be classified (“independent",

“loosely-coupled”, or “tightly-coupled”). This is useful to speed up the clustering

phase, since there are different algorithms for each type of graph as we present in

the next section;

� the task description presents, besides a name and a submission file, input and output

file names;

� some shell script like constructions are available to facilitate the description of tasks.

The first two differences can be seen in Figure F.8. It presents an example where the

user first indicates that his/her application has a loosely-coupled graph (first statement).

97

The graph keyword is a hint the user gives to our system. It is an optional directive that

should be used to get a better performance when trying to infer the DAG. For instance, if

the user defines that the DAG represents independent tasks, it is not necessary to run the

algorithm to infer the DAG since there is no precedence order between tasks.

The next four subsequent lines describe four tasks using the statement task. For each

one the user needs to define a name, a submission file, one or more input files, and one or

more output files.

1 graph loosely-coupled
2 task A -e A.sub -i data.in -o a.out
3 task B -e B.sub -i a.out -o b.out
4 task C -e C.sub -i a.out -o c.out
5 task D -e D.sub -i b.out c.out -o data.out

Figure F.8: Example of input file for the simple DAG (F.7(a))

This example is simpler than the transformations and derivations used by the Chi-

mera description language while being more powerful than the DAGMan specification

language.

GRID-ADL also has some similarities to GEL scripting language [94]. The main dif-

ference is the DAG inference: GEL inference is based on control dependencies through

classical parallel constructs such as pfor and declaration order, while GRID-ADL allows

to detect data dependencies. GEL also provides some additional commands such as con-

ditional iterator (while), that GRID-ADL does not support.

Besides these direct and simple statements, we added to GRID-ADL some shell script

like constructions as illustrated in Figure F.9. In this example, some data is manipulated

by gnuplot to generate a graphic. The final task combines all result graphics in a single

postscript file.

A string variable assignment appears in the second and third statements. Then, the

first task is declared. Next, an iteration command is used to declare four tasks as well as

to store in the OUTPUT string variable the output file names. Then, the string variable is

used to indicate the input file of task 6. The final command defines that the files stored in

the string variable would not be copied back to the user workspace, i.e., they are transient

or temporary files. Thus, the transient statement is useful to avoid copying files generated

in the grid nodes that would be discarded because they do not belong to the final result.

98

This can minimize data transmission over the network and waste of data storage space in

the user machine.

1 graph loosely-coupled
2 OUTPUT = "out1.png"
3 gnuplot= "/usr/local/bin/gnuplot"
4 task 1 -e ${gnuplot} -a "1.txt" -i in1.dat
5 -o out1.png
6 foreach TASK in 2..5 {
7 task ${TASK} -e ${gnuplot} -a ${TASK}".txt"
8 -i in${TASK}.dat -o out${TASK}.png
9 OUTPUT = ${OUTPUT} + ";out"+${TASK}+".png"

10 }
11 task 6 -e prepare_print -i ${OUTPUT} -o data.ps
12 transient ${OUTPUT}

Figure F.9: Input file for DAG example F.7(b)

The third example, in Figure F.10, illustrates with only three lines how to define an

arbitrary number of tasks. In this case, we define an independent graph (a bag-of-tasks

application) with six tasks. The application run six Monte Carlo simulations, each one

receiving a different input file with a distinct seed. Note that in this example the task

name is omitted, and the system will assign names as an integer number according to the

creation order.

1 graph independent
2 foreach TASK in 1..6 {
3 task -e mcarlo -i ${TASK}.in -o ${TASK}.out
4 }

Figure F.10: Input file for DAG example F.7(c)

Our language presents some additional features that were not exemplified in our sam-

ple code: (a) GRID-ADL has a conditional statement if; and (b) GRID-ADL allows to

express application and/or task requirements. The syntax of both features are presented in

the ABNF of Appendix I.

F.3.2 DAG and sub-DAGs Representation

GRAND also offers an XML output describing explicitly task characteristics, task de-

pendencies, and clustering information. We believe XML is the appropriate language for

programs exchange and data processing, but is not the most appropriate for human users.

99

We include such kind of output to simplify future interactions with other Grid RMSs that

use XML for exchange data.

Being able to generate an XML output is a nice feature if the user wishes to exe-

cute the same application several times. Thus, the preprocessing phase is executed only

once, saving time, and the stored XML files are used as input to the GRAND prototype,

through the AM’s XML parser component. It is also a good choice to have XML files

if different clustering algorithms are to be tested. Only the clustering information part

must be changed. Our XML schemes are available from http://www.cos.ufrj.

br/~grand/2005/06/. To illustrate the XML generation and its use, we present an

example for the DAG of Figure F.7 (b) in Figures F.11, F.12, F.13, and F.14.

As JSDL (Job Submission Description Language) [20, 79] is being proposed as a stan-

dard language to describe grid applications, we base our task description on the JSDL’s

XML schema [80].

We extend the JSDL schema with a set of additional elements and attributes to describe

DAG and clusters. We could have generated all information inside a single XML file. We

opted for dividing it in several files because this organization is more flexible and also

reduces complexity for understanding the XML files. Besides, it would be easier to get

JSDL files generated by other programs.

We generate a zip file with four types of XML documents: a manifest, tasks, edges,

and clusters. The manifest file indicates the remaining XML documents inside the zip

file. This explicit indication of the files helps the automatic processing by XML tools.

Figure F.11 is an example of manifest file. Note that in this example there is only one file

of each type. For each file entry there is the specification of the file type. It is possible

to have some missing files. For example, for independent tasks application there is no

need of an edges file. Besides, it is possible to have more than one file of the same type.

For instance, we can have two different clustering alternatives or more than one job file to

compose an application. So, the file type helps to coordinate the processing order. Using

the manifest, the processing tool can check if the application description is complete.

The first XML file describing the application is the task description (task.xml). It uses

the JSDL schema from May 2005. Figure F.12 presents only a part of the required JSDL

file. It describes only one of the tasks (jobs), since the other tasks are described in a similar

way.

Task weight is an attribute commonly considered by clustering algorithms, but there

100

1 <?xml version="1.0" encoding="UTF-8"?>
2 <m:Manifest xmlns:m="http://www.cos.ufrj.br/~grand/2005/06/manifest"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://www.cos.ufrj.br/~grand/2005/06/manifest
5 /users/SO/kayser/jsdl/arquivos-artigo/manifest.xsd">
6 <m:FileEntry type="tasks" path="tasks.xml"/>
7 <m:FileEntry type="edges" path="edges.xml"/>
8 <m:FileEntry type="clusters" path="clusters.xml"/>
9 </m:Manifest>

Figure F.11: Example of XML manifest for Figure F.7(b)

is no such attribute in JSDL. Another common attribute is a unique job identifier. The

jsdl:ApplicationName element is not ensured as unique in JSDL. There is a need for an

unique identification because we need to refer to jobs when describing dependencies and

clustering as well as for scheduling purposes. On the other hand, JSDL is an extensible lan-

guage. For example, jsdl-posix is a JSDL extension which proposes additional attributes

to describe posix-like job parameters.

Thus, we added an unique identifier (grand:jobID) and a task weight (grand:jobWeight)

as can be observed in Figure F.12 at lines 17 and 18. We also need to add a reference to a

schema defining both elements as we can see in lines 6, 12, and 13.

The file edges.xml describes the dependencies among tasks describing the DAG. For

independent tasks applications, no file is generated since there is no edge between nodes.

Figure F.13 describes the DAG for our example.

Finally, the file clusters.xml describes the clusters of the application, as for example

we can observe in Figure F.14. Note that in these XML documents we refer to JobName

instead of TaskName, since we adopted JSDL standard which refers to jobs.

F.4 GRAND Steps to Execute a Distributed Application

This section presents the steps of the GRAND model, represented in Figure F.1: DAG

inference (Section F.4.1), clustering (Section F.4.2), mapping (Section F.4.3), and submis-

sion (Section F.4.4).

F.4.1 DAG Inference

As an initial approach, a quite simple algorithm can be used to infer a DAG with all tasks to

be executed. The GRID-ADL description language is parsed and interpreted in such a way

that for each task statement, a node in the DAG is created. Each node in the DAG stores

101

1 <?xml version="1.0" encoding="UTF-8"?>
2 <jsdl:JobDefinition
3 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/04/jsdl-posix"
4 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/04/jsdl"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
6 xmlns:jsdl-grand="http://www.cos.ufrj.br/~grand/2005/06/jsdl-grand"
7 xsi:schemaLocation="http://schemas.ggf.org/jsdl/2005/04/jsdl
8 /users/SO/kayser/jsdl/arquivos-artigo/ggf/jsdl.xsd
9 http://schemas.ggf.org/jsdl/2005/04/jsdl-posix

10 /users/SO/kayser/jsdl/arquivos-artigo/ggf/jsdl-posix.xsd
11 http://www.cos.ufrj.br/~grand/2005/06/jsdl-grand
12 /users/SO/kayser/jsdl/arquivos-artigo/jsdl-grand.xsd">
13 <!-- task 1 -->
14 <jsdl:JobDescription>
15 <jsdl:JobIdentification>
16 <jsdl:JobName>gnuplot invocation</jsdl:JobName>
17 <jsdl-grand:JobUID>1</jsdl-grand:JobUID>
18 <jsdl-grand:JobWeight>10.0</jsdl-grand:JobWeight>
19 </jsdl:JobIdentification>
20 <jsdl:Application>
21 <jsdl:ApplicationName>gnuplot</jsdl:ApplicationName>
22 <jsdl-posix:POSIXApplication>
23 <jsdl-posix:Executable>
24 /usr/local/bin/gnuplot
25 </jsdl-posix:Executable>
26 <jsdl-posix:Argument>1.txt</jsdl-posix:Argument>
27 <jsdl-posix:Input>in1.dat</jsdl-posix:Input>
28 <jsdl-posix:Output>out1.png</jsdl-posix:Output>
29 </jsdl-posix:POSIXApplication>
30 </jsdl:Application>
31 </jsdl:JobDescription>
32 ...
33 </jsdl:JobDefinition>

Figure F.12: Fragment of extended JSDL file for Figure F.7(b)

the main information about the task: name, command, and input and output files. Since

name is optional, if user has not specified a task name, an unique identifier is automatically

assigned at node creation. Once this structure is filled, for each task, it checks if any of

its input files is output of another task. When such input-output pair is found, and edge

between tasks is inserted. This is not an efficient algorithm, since it is ���6
 �
 , where
 is

the number of tasks (DAG nodes).

A more desirable approach would minimize memory consumption and have a bet-

ter complexity for dependency inference. In GRAND, each node does not need to be

explicitly defined, because tasks of an application can be described through an iterator

command, provided by GRID-ADL. This allows for a compact representation of the ap-

plication graph. It also allows for exploring compilation vectorization techniques [151] to

represent and manipulate sets of tasks. Thus, instead of storing the descriptions for each

task, we can store the description of how to obtain such tasks.

A proposal is to use a simple approach: the DAG inference is done in “two steps”:

102

1 <?xml version="1.0" encoding="UTF-8"?>
2 <ge:DAGDefinition xmlns:ge="http://www.cos.ufrj.br/~grand/2005/06/grand-edges"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://www.cos.ufrj.br/~grand/2005/06/grand-edges
5 /users/SO/kayser/jsdl/arquivos-artigo/grand-edges.xsd">
6 <ge:Edge weight="1.0" sourceJobID="1" targetJobID="6"/>
7 <ge:Edge weight="1.0" sourceJobID="2" targetJobID="6"/>
8 <ge:Edge weight="1.0" sourceJobID="3" targetJobID="6"/>
9 <ge:Edge weight="1.0" sourceJobID="4" targetJobID="6"/>

10 <ge:Edge weight="1.0" sourceJobID="5" targetJobID="6"/>
11 </ge:DAGDefinition>

Figure F.13: DAG description for Figure F.7(b)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <gc:ClusterSet xmlns:gc="http://www.cos.ufrj.br/~grand/2005/06/grand-clusters"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://www.cos.ufrj.br/~grand/2005/06/grand-clusters
5 /users/SO/kayser/jsdl/arquivos-artigo/grand-clusters.xsd">
6 <gc:ClusterDefinition clusterID="c0">
7 <gc:JobID> 1 </gc:JobID>
8 <gc:JobID> 2 </gc:JobID>
9 <gc:JobID> 3 </gc:JobID>

10 </gc:ClusterDefinition>
11 <gc:ClusterDefinition clusterID="c1">
12 <gc:JobID> 4 </gc:JobID>
13 <gc:JobID> 5 </gc:JobID>
14 <gc:JobID> 6 </gc:JobID>
15 </gc:ClusterDefinition>
16 </gc:ClusterSet>

Figure F.14: A possible example of clustering for Figure F.7(b)

(1) working with the loop command, then (2) expanding the loop command. This “ex-

panding” or “execution” corresponds to expand task description to a data structure stored

in memory to describe each task. Since it could require to consume more memory than

available in the submit machine, it could cause swap and thus overload and/or slowdown

the machine. Thus, the expand operation could be postponed until necessary. The first

step do a dependency analysis based on language syntax, and breaks the tasks into clusters

(or set of tasks) storing it as a loop command that must be expanded during mapping step.

For instance, a loop that creates one thousand tasks, represented by a foreach statement

with index from 1 to 1000, can be split into 10 cluster: from 1 to 100, from 101 to 200 and

so on. Thus, GRAND need to store for each of this clusters only the foreach’s statements

and the index range. This is less memory consuming than storing the description of all

these tasks.

A set of tasks (cluster or subDAG) can be expanded if some of its dependencies are

satisfied and there is an SM available to manage a cluster, i.e. the set of tasks are only

expanded when it will be manage by some SM.

103

F.4.2 Clustering

The clustering step aims at obtaining a set of clusters of tasks. These clusters can be

submitted almost independently. Since we are concerned with the submission of a huge

number of tasks in a highly dynamic environment, the actual scheduling (mapping) step

must be done dynamically. The clustering step should be done as fast as possible so

as not to delay submission and to minimize overhead. Clustering should not consider a

resource graph to produce clusters, because (1) only SMs need to get information about

grid resources, and (2) since we target long term running applications, grid node may

change during application execution, at least concerning CPU load, and also grid nodes can

be included or excluded from the grid. Since the application probably will take a long time

running, there is no advantage in getting an optimal mapping for a set of resources that will

change during the execution. A simple and quick algorithm would be preferable. Thus, we

consider an unbound number of homogeneous resources. Besides, the component that is

responsible for clustering does not need to have access to the directory service. Note that

the hierarchical submission is not enough to avoid overloading machines. The granularity

of the cluster must be set in order to avoid SM overloading.

So, we consider application clustering without associating it to resources. Our objec-

tive with this step is to obtain groups of tasks to be submitted together to maintain data

locality. For this step, we propose the use of different clustering algorithms according to

the application taxonomy presented previously in Section B.2.

Therefore in the case of independent tasks, clustering becomes simple, because tasks

are not dependent on each other. We need to cluster in blocks considering the computa-

tional power required for each task, but there is no restriction of which task will belong

to each block regarding to dependencies and data locality issues. Figure F.15 presents the

outline of this algorithm.

For this algorithm, as for the next two, we must define the size or granularity of the

cluster. The right size is a compromise of being set small enough to avoid SM overloading,

and large enough to get better performance due to efficient submission. We consider that a

small granularity must be set, and if during execution this becomes too small, two or more

clusters can be merged. Determining an actual number of tasks or complexity to define

the granularity is implementation dependent.

To determine the granularity of a cluster set, we must know how many tasks an SM can

104

Data: graph of tasks
Result: set of clusters
begin1

initialize set of clusters as empty;2

initialize current cluster as empty;3

while not at end of the graph do4

get next task;5

if current cluster reached granularity limit then6

add current cluster to set of clusters;7

initialize a new current cluster as empty;8

end9

add next task to current cluster;10

end11

add current cluster to set of clusters;12

return set of clusters13

end14

Figure F.15: Clustering algorithm for independent tasks application

deal without overloading the control machine. We argue that this is an implementation and

architecture dependent issue. We must consider the cost of individual task submission and

control machine power. The individual task complexity is a priori irrelevant, since it is

expected the same computational cost for submitting small or big tasks. The cost of task

submission is dependent on the implementation data structures and the number of threads

and/or processes used. To determine the control machine power requires that we have

dynamic information about the available machines at the local network.

Thus, we propose the following analytical model to calculate, dynamically and accord-

ing to the GRAND implementation, the maximum cluster granularity an SM can handle at

a given moment (MCG or maximum cluster granularity).

First, the maximum number of tasks an SM can handle (SM_MAX_TASKS) must be

calculated:

CPU_LIMIT � �
SM_CPU � CPU_MAX_ALLOWED ��� CPU_PER_TASK

MEM_LIMIT � �
SM_MEM � MEM_MAX_ALLOWED ��� MEM_PER_TASK

SM_MAX_TASKS ���	��
 � CPU_LIMIT � MEM_LIMIT �

Where, SM_CPU is CPU power in MFlops in the SM machine; SM_MEM is memory in

MBytes in the SM machine; CPU_PER_TASK is the amount of MFlops consumed by the

105

SM implementation to manage one task; MEM_PER_TASK is the amount of MBytes con-

sumed by the SM implementation to manage one task. The CPU_MAX_ALLOWED and

MEM_MAX_ALLOWED variables indicates, respectively, the percentage of CPU power

and memory that can be used by each SM, which is defined by the user or grid node ad-

ministrator.

Then, considering that the GRAND system knows the current number of tasks an SM

is managing at a given moment (SM_CURRENT_TASKS), it is possible to calculate the

MCG:

MCG � SM_MAX_TASKS � SM_CURRENT_TASKS

For loosely-coupled graphs, where tasks can have a low degree of dependency, we

considered that the application graph normally fits in some known patterns, as for instance

“pipelines” or “phases”. Figure F.16 presents an algorithm to cluster an phases graph. It

uses the bread-first search (BFS), which is a classical graph transversal algorithm [92].

While visiting the nodes a list is constructed. This list is used to construct the clusters

using the same grouping criteria of independent task algorithm.

Data: graph of tasks
Result: set of clusters
begin1

initialize set of clusters as empty;2

initialize current cluster as empty;3

traverse the graph using a breadth-first search, and for each new visited vertex,4

put it into the vertex list;
while not at end of the vertex list do5

get next task;6

if current cluster reached granularity limit then7

add current cluster to set of clusters;8

initialize a new current cluster as empty;9

end10

add next task to current cluster;11

end12

add current cluster to set of clusters;13

return set of clusters14

end15

Figure F.16: Clustering algorithm for phases-loosely tasks application

106

For tightly-coupled graphs, we consider that classical graph clustering can be used.

We analyzed several algorithms and we considered that the DSC algorithm [158], already

outlined in Section C.3, is a good choice. DSC has low complexity and performs better

than list scheduling algorithms because it is based on a more global view of the state of

the DAG [158].

F.4.3 Mapping

Once the application is conveniently clustered, we need to solve a second problem that

is how to map the clusters to the available grid nodes. As explained in Section F.1, we

assume that each grid node will have a local RMS to perform the scheduling of tasks that

belong to a cluster. The mapping step is presented in this section.

The assumption of a huge number of tasks has important consequences to the schedul-

ing architecture design. We cannot just submit tasks without controlling system parameters

and flow control as some systems do. For example, MyGrid [106] considers that making

a fast scheduling decision is more important. It is true for many applications, but for our

target applications it is necessary to keep track of system information. For example, if

the application takes several days to finish, one second to find a suitable cluster is not a

problem.

The Submission Managers are the components responsible for performing the mapping

step. In this step, an SM must send a query to the Directory Service to retrieve the matching

available resources.

The directory service can be implemented in two ways: (1) as a centralized service

in the local network; or (2) as a decentralized service. The centralized approach is easier

to implement. However, the server becomes a potential performance bottleneck and a

single point of failure. Thus the alternative is to implement a set of servers to provide

the directory service. To facilitate their implementation and the information consistency

between them, we propose the use of a peer organization.

Thus, the SM will access its local Directory Service, giving application’s constraint in-

formation, such as operating system platform required to run the application, or minimum

requirements such as computational power, memory, and disk space.

Then, when the SM receives the list of available grid nodes that match the requirements

from its Directory Service, it calculates four properties for each grid node:

107

� distance: it is a integer number that indicates the relative distance between submit

machine network and the grid node. Since latency should be minimized to get a

quicker data transfer, closer grid nodes are preferred, since normally the latency will

be lower. We assume three possible values: 0 for the submit node; 1 for regional

connections; and 2 for international connections.

� capacity: it indicates the link capacity. Since bandwidth should be maximized to get

a quicker data transfer, higher link capacities are preferred. Capacity must assume a

number indicating the capacity for each grid node using the same unity. For instance,

if there are two links, one of 1Gb and another with 100Mb, their capacity value must

be assigned to 1024 and 100 respectively;

� cpu: indicates the computing power of a grid node. It is the value of the following
formula:

cpu � � ��
��� �

number_of_cpus ��� individual_power � ��� node_load

Where, number_of_cpus is the number of machines or cpus available at the grid

node, and individual_power is the power represented in a standard measure: MFlops

(mega floating point operations per second) or MIPS (million instructions per sec-

ond). Note that we allow heterogeneous grid nodes. The node_load value is a per-

centage that indicates how busy is the grid node, and is used to not stimulate SM to

choose powerful grid nodes that are overloaded.

� memory: integer value to indicate average grid node memory capacity. It is mea-

sured in MBytes. For instance, if a grid node is a homogeneous cluster with all

machines with 1GB of RAM, the memory will be set to 1024.

Then, each grid node receives a value called preference, which is calculated according

to the following equation:

preference ��� � distance �
	����� ��� �
capacity �
	����� ������� � cpu ��	����� ��� �

memory ��	����� ���

So, the SM sorts the available grid nodes list according to the following criteria: bigger

preference comes first.

108

Note that all elements contribute with the same weight to the preference value. This

was chosen, because there is no indication in the literature that one of these aspects would

be prioritized for general cases. For data intensive applications, the first part of the equa-

tion should receive a bigger weight, since moving data can be the dominant part of the

execution. For compute intensive the second part of the equation should be priories, since

faster processors would lead to better performance. So, to keep it general, we did not give

priority to any factor. However, optionally, the user can modify the weight of these factors

according to his/her specific application. For instance, if the user knows its application is

a highly memory consuming application, he/she can put more priority to memory.

F.4.4 Submission Control

Each TM is attached to a specific grid node. A TM has the algorithm to map a task de-

scription to the submission format of a specific RMS. This mapping can be done directly

to a RMS or using a standard interface. Using RMS through command line interface is a

general way that work for any RMS available. However, since site policies differ widely

across grid node administrators, using an interface that encapsulate site-specific details

is desirable [38]. The GGF’s DRMAA (Distributed Resource Management Application

API) [38, 110] proposes an application programming interface for communicating with

RMS (also called distributed resource management systems). It has bindings for different

languages such as C, Java, and Perl that simplifies a DRMAA conformance implementa-

tion.

DRMAA proposes a common RMS API, that allows to submit, monitoring, and control

of tasks as well as retrieval of the finished job status. DRMAA provide access methods

such as drmaa_init and drmaa_exit for starting and stopping a DRMAA session with a

specific RMS. It also provides a task controlling routine, called drmaa_control, which

allows to start, stop, restart, or kill a task. These three methods are the base for TM

accessing RMS.

Nowadays, there is support for DRMAA API for Condor [29] (C bindings) and SGE [68]

(C and Java bindings). Support for other RMS are expected to be developed. Implementing

GRAND support for other RMSs, that does not directly support for DRMAA, is simpli-

fied using this standard API. The TM can prepare task submission according to DRMAA

methods, but instead of using a vendor provided API, it converts to a command line inter-

109

face. This command line, which is normally dependent of grid node configurations, can

be replaced as soon as a DRMAA implementation became available.

F.5 Additional GRAND Services

Data management for computing intensive applications is an important issue but it has

received little attention from grid-aware software developers. Such applications usually

consume and produce small files (e.g. few KBytes) that, in principle, should be easy to

manage and fit in any storage. However, computing intensive applications that spread

thousands of tasks across the grid nodes may consume and generate thousands of files,

that can deteriorate system’s performance, if they need to be moved across machines. If

the tasks present dependencies due to file sharing, another problem that is raised is data

locality. We present some solutions to these problems in Section F.5.1.

Another GRAND service is application monitoring, which is presented in Section F.5.2.

F.5.1 Data Management

Data management is a broad research area that encompasses several issues and has several

works reported in the literature. The grid infrastructure imposes some new challenges

related to scalability, locality, and fault tolerance. We deal with some data management

issues in the context of the GRAND middleware: data locality, automatic staging of data,

and optimization of file transfers.

During submission step, both SM and TM must cooperate to perform an efficient data

management, as we outline in this section.

The GRAND model is mainly concerned with applications that use data stored as plain

files. All data manipulated by the application is available as files, which can be available

in arbitrary locations. In its current version, the GRAND model is not concerned with

database access, although we believe it is an important issue. It also does not support

message passing applications.

Files can be already available from some repository or can be generated during applica-

tion processing. In the first case, some of the files are input files, considered as immutable

(read-only) files that contain data used by the tasks. Other files are executable files, which

must be available and installed in the grid node or must be downloaded by GRAND to

be executed by a task. Since both kinds of files, input and executable, are considered as

110

immutable, they will be staged in the grid node that executes the set of tasks that needs

them. Therefore these files do not need to be copied back to the repository or any other

disk area. The assumption of immutable files can be restrictive but is appropriate for ap-

plications that use data from shared repositories, as for instance some HEP collaborations

that make available files that are read-only after creation [127].

In the second case, files are generated during application processing. Some of them

are transient and considered temporary files used by dependent tasks. Transient files do

not need to be staged out, and therefore can be discarded at the end of the application

execution. They can not be discarded immediately after the dependent task uses them,

because other future tasks that may happen to run on the same grid node may need them.

Other files generated by tasks are the result files, which contain relevant data for the user

and must be staged out to some repository. The user must indicate which files are transient

otherwise GRAND assumes they are result files and stages out automatically.

From the several data management issues that an application management system

should deal with, we focus on (1) data locality, (2) automatic staging of data, and (3)

optimization of file transfer.

Data Locality An application management system should ensure data locality as much

as possible. In the context of this paper, data locality means dispatching to the same grid

node tasks that access the same input files, as well as producer and consumer(s) tasks of

a given file. Trying to keep data locality aims at reducing file transfers over the network.

This is desirable to avoid (1) slowing down the application due to transfer costs, and (2)

waste of resources (mainly network bandwidth).

In the GRAND model, data locality is a priority during the clustering step, when an

application composed by several dependent tasks is divided into subgraphs. Clustering is

performed without being associated to resources. The actual scheduling (mapping) step

must be done dynamically and on demand due to the dynamic nature of grid systems and

to the long term running nature of the applications. Our objective with the clustering

step is to obtain groups of tasks to be submitted together to maintain data locality. For

this step, we propose the use of different clustering algorithms according to the kind of

application [143]. Data locality is an issue for clustering loosely-coupled and tightly-

coupled tasks, since independent tasks have no file dependencies. A loosely-coupled graph

111

is characterized by a few sharing points and a regular shape like phases or pipeline, while

tightly-coupled has a complex graph.

Automatic Staging of Files In its current implementation, GRAND allows a limited

form of automatic staging of input files. The user must place the input files on an accessible

repository and from this repository, the input files are transferred automatically to the

executing grid node, or the files must be accessible through NFS. There is no support for

logical file names or access through a file catalog or service.

If tasks that belong to applications of different users or tasks that belong to the same

application share the same input files and are selected to run on the same grid node, then

the input files are copied only once to that grid node to avoid increasing the number of

file transfers unnecessarily. A cache scheme is implemented by each TM to support this

feature. Once the application is submitted, and the subgraphs are dispatched, the task

manager writes a record of which files are being transferred. We used a hash to locate

files in the cache. If later, other tasks need to access those files, no transfer needs to be

performed.

A second case where automatic staging is performed is on application termination.

Immediately after all tasks of an application finish execution, all result files are transferred

back to the user’s working space. Notice that if all tasks terminate execution at the same

time, all files will be transferred at the same time, which may cause network traffic con-

gestion, if the number of tasks is very large.

Experiments were performed to evaluate these strategies and are presented in the next

section.

Optimization of File Transfer The GRAND hierarchy helps to automatically promote

parallel transfer of results, and to some extent prevents network traffic congestion. How-

ever, other approaches such as network control flow algorithms should be used [58].

Our current implementation of GRAND does not prevent this situation, but we have

been working on a network control flow algorithm to handle this problem. At the moment,

we implemented a simplified, while effective, solution to prevent file losses. While stag-

ing in or out a file, if any exception occurs, a fault tolerance mechanism will be started.

When trying to stage a file, if there is an exception, for instance a connect exception, our

prototype assumes it is a temporary failure and will wait a random amount of time (some

112

milliseconds) before trying to download it again. This procedure will be repeated a limited

number of times (by default five times). This random waiting is similar to the CSMA/CD

protocol [77].

The Chimera system [55] has some similarities with our work: it deals with DAGs

of tasks and can infer the DAG automatically. However, it handles the information of

how data is generated by the computation but it does not control the DAG execution. It

has a planner that maps the stored abstract graph to a DAGMan description file, and the

execution is done in a Condor pool under the control of DAGMan [33]. Thus, files are

managed only at the meta data level. DAGMan controls the submission of tasks to Condor

RMS [30, 136]. Condor automatically stages in and out files using ftp. However, files

must be available in the submit machine, locally or through a shared file system. Besides,

there is no optimization in these operations, such as a data cache, or data locality, reported

in the literature.

More recent works such as the software used by LCG (Large Hadron Collider Compu-

tational Grid) [89] supports some features needed for application management on top of

Globus [52], Condor [136], and gLite [60]. However, the packages used by LCG do not

support distributed submission and data caching as provided by our system. Moreover,

data staging must be performed explicitly by the user.

F.5.2 Monitoring

Two informational GGF documents were used to guide the monitoring terminology and

decisions presented in this section: (1) the outline of the Grid Monitoring Architecture

(GMA) described in [139], and (2) the main events available in monitoring tools listed in

[73].

As a design decision, GRAND always relies in available software components when it

means avoid interfering with local administrators decisions and avoid to oblige installing

a specific software. For monitoring resources, we believe there are several good options

that are already being used in practice (e.g. [98, 104]). Thus, the GRAND model provides

a monitoring service related to application execution. It is not intended to make available

full details regarding resources available at grid nodes. All resource information will be

provided through querying a directory service provided by local grid node administrators.

Before presenting the proposed monitoring service, we list which events from existing

resource monitoring services GRAND uses for allocation decisions.

113

Using available resource monitoring tools Most grid node administrators will provide

restrict access to resources. Thus, our monitoring tool uses available resource monitoring

tools available at grid nodes, instead of consulting each resource directly.

Submission Managers subscribe as consumers of directory services to receive event

publication information produced by grid nodes. From the usual information provided by

monitoring tools [73], GRAND queries for the following:

� Host architecture: name of host architecture;

� Host OS: name and version of host operating system;

� Physical memory: total memory on a host;

� CPU load: fraction of the CPU that is no idle;

� Available memory: memory not allocated.

The first three event types are used to apply user constraints when selecting possible

nodes to execute. The CPU load and available memory event types are used to choose the

less overload option, as explained previously (Section F.4.3).

Providing an application monitoring service GRAND provides a monitoring service

through a directory service called GRID-AMDS (Grid Application Monitoring Directory

Service). Following the GMA specification, GRID-AMDS must provide four functions:

add, update, remove and search.

The add function adds an entry to the directory. The entry consists of an application

description with the following items:

� ID: application unique identifier, generated using submit machine IP number, sub-

mission date, and submission time information;

� user: the user name of the user that started this application;

� inputFile GRID-ADL description file name;

� total: total number of tasks;

� finished: number of already executed tasks;

114

� tasks: list describing information of each individual task. Each element describes

the following attributes:

– taskID;

– predecessors: taskID of all predecessor tasks;

– status: indicates if the tasks is (1) waiting for some task to finish; (2) ready

to execute, but waiting for resources); (3) executing in some grid node; or (4)

finished its execution;

– node: for status waiting and ready it is empty, otherwise, it indicates in which

grid node it is executing or had executed. executed.

The update function updates some set of tasks’ elements to indicate status changes and

update node information.

The remove function removes the entire application entry. It can be called when appli-

cation has finished and the user is no longer interested in monitoring information.

Finally, the search function can be invoked by a consumer to return information about

the application status. The search can be used to return the ID, given user name and/or

submit machine IP and/or GRID-ADL description file name. Having an application ID,

the user can search task information: search can retrieve the entire list of tasks, or a partial

list according to the status desired (waiting, ready, executing, and/or finished).

F.6 Conclusion

This chapter presented the main aspects of the GRAND application management model.

To evaluate the main ideas of the GRAND model, we implemented a prototype. In

the next chapter, we present some implementation issues as well as we analyze some

experimental results.

115

Apêndice G

AppMan: Application Submission and
Management Prototype

In this chapter we present an overview of the GRAND implementation. We have imple-

mented a prototype of the GRAND model called AppMan (Application Manager) [142,

144]. AppMan implements the basic main features of GRAND, including distributed task

submission and application monitoring, while giving feedback to the user. Initial results

show that our approach can be more effective than other approaches in the literature.

The remaining of this chapter is organized as follows. First, in Section G.1 we outline

the prototype implementation that implements some of the GRAND functionalities. In

Section G.2, we present and analyze results of our prototype. Finally, in Section G.3, we

conclude this chapter with our final remarks and future work.

G.1 Implementation Details

AppMan is implemented in Java to allow portability. It uses the JavaCC [78] tool to imple-

ment the GRID-ADL parsing and interpretation. Our parser puts the complete application

DAG into a matrix and use this matrix to infer dependencies between tasks. The App-

Man runtime environment uses the services provided by EXEHDA [155] middleware that

allows remote execution and monitoring. EXEHDA, which stands for “Execution Envi-

ronment for Highly Distributed Applications”, has facilities to instantiate remote objects

and to coordinate their operation, as well as an integrated monitoring architecture.

Figure G.1 shows a possible scenario of AppMan running over a grid environment.

One instance of AppMan and EXEHDA needs to be present in every machine of the grid.

Any machine can submit or run tasks. However, inside each grid node, at most one ma-

116

chine will run EXEHDA daemon as a base. Users can provide input files in a web server,

as illustrated in the example scenario, or in its local file system.

Step 1 in Figure G.1 represents the user submitting a description file in GRID-ADL.

The GRID-ADL description file is parsed, and the application graph is built in memory. A

clustering algorithm is executed, and the sub-DAGs of the application graph are obtained.

The Application Manager (AM) is started. Then, the Application Manager instantiates

Submission Managers (SM in step 2), and distributes some subgraphs to the SMs. Input

files and the executable are fetched from a web server (step 3). In its current version,

AppMan requires that the user indicates the machines where the Submission Managers

(SM) will run. With this simplification, a new SM is instantiated for each application in

each machine specified. After creating the SMs, the Application Manager (AM) assigns

subgraphs to each SM. The SMs report to the AM the tasks progress. Each SM, indepen-

dently, checks the list of available machines and chooses where to run using a round-robin

approach. Round-robin [130] is one of the simplest scheduling algorithms, which is star-

vation free and threats all schedulable elements as having the same priority.

Then, a Task Manager (TM) is instantiated, which creates the remote task and monitors

it until it successfully completes.

Before starting the execution of a task, AppMan transfers all input files specified in

the GRID-ADL description to a temporary directory in the remote machine where the task

will be executed, a kind of sand-box. The file transfer is performed automatically. Some

optimization takes place during staging as we discuss later (Section G.1.2).

Then, each SM gets updated information, through the EXEHDA information service,

about available nodes. Each SM chooses where to run its tasks using a round-robin ap-

proach and instantiates TMs to allocate the remote tasks (step 4).

AppMan implements some fault tolerance features. If input files cannot be transferred,

it waits and then tries again, assuming that a temporary communication failure occurred. If

a task finishes but the expected output file is not generated, the task is resubmitted. In both

cases, this process is repeated up to a determined number of times. If the limit is reached,

a permanent fault if assumed, and the application is aborted. The user is informed of a

possible task or application bug or problems with grid resources.

117

Figure G.1: AppMan executing main steps

G.1.1 Monitoring Graphical Interface

An online monitoring graphical interface provides visual execution feedback to users.

It runs independent from execution, reading the log files to get some information and

communicating directly with the AM to refresh progress information. AM implements a

simplified version of the GRID-AMDS (Grid Application Monitoring Directory Service)

presented in Section F.5.2. Instead of a GRID-AMDS that stores information about all ap-

plications running in the local network, each AM provides the directory service concerning

the application it is monitoring.

By using this graphical tool, the user can have an idea of the application execution

progress. As the user will probably be running experiments for days or weeks, this be-

comes a very important and essential tool.

The interface shows the task graph (tasks, dependencies, and clustering) and a progress

bar. Each node has four possible colors: (a) red: it depends on data not yet available; (b)

yellow: task ready to execute, waiting for a free resource; (c) green: represents a running

task; (d) blue: a completed task.

118

Figure G.2 shows two snapshots of two small applications to illustrate the color feed-

back and the bar progress indicator.

G.1.2 Data Management

In our current implementation of the GRAND model, all files need to be explicitly defined

by the user using GRID-ADL, with exception of the executable file that can be already

available and installed at the grid nodes. Besides, input files need to be available through

a shared file system or in a public repository. However this is only to simplify the im-

plementation, because files can be automatically located in the grid data space if one uses

a grid-aware distributed file system [66, 150], and/or the user compiles the application

with a special compiler that translates file operations at source level to a code that handles

remote file accesses [136]. That way, instead of yielding an error message, a task may

suspend execution if it tries to access an input file that is not locally available.

In fact, a mechanism like that is already used for transient files, when handling depen-

dent tasks. GRAND adopts this approach to allow user applications to execute without

any modification or intervention.

For the experiments reported at this work, we are using a Submission Manager (SM)

that can select individual machines, working as a simplified RMS. When a SM receives a

sub-DAG (cluster), it must select a machine available in the same grid node to execute the

task. The TM component instantiates the task process directly into a machine inside the

grid node. We implemented a simple scheduling policy, since GRAND does not aim to be

an RMS. This SM implementation in the AppMan prototype can be used as an alternative

RMS in a local network that does not have any one installed. Initial evaluation showed

good results for small tasks compared to traditional RMSs [142].

The SM component in AppMan is responsible for downloading task files, before send-

ing a request to the TM to instantiate the task. In a cluster or local network with NFS, the

SM creates a directory in a temporary area, which is a kind of sandbox, since tasks can

only write in this area. Then, all input and executable files required by the task are copied

to this directory. Since some tasks can share input files, or use the same executables, the

SM checks if the required file is already in the sandbox area, before downloading it. This

sandbox works as a data cache for tasks that run on the same grid node.

119

(a)

(b)

Figure G.2: AppMan graphical interface for monitoring application execution: snapshots

120

G.2 Experimental Results

In this section we present results produced by AppMan, implementing the main function-

alities of GRAND, including the distributed submission of tasks. Two experiments are

reported, respectively, in Section G.2.1 and G.2.2.

G.2.1 Resource Management Experiments

We ran a program that performs mathematics calculation in a local network with 4 avail-

able machines with different configurations. The machines are Atlhon XP 2 GHz, 512

MB, with Linux kernel 2.4.21-20.EL. This cluster was not dedicated to our experiments,

but almost none user was accessing it during our experiments, since there were few user

accounts and all users know the experiments were running. This application was chosen

as an exerciser to AppMan. The application is composed of tasks, where each task takes

few seconds to run.

In order to show how effective are the design features of GRAND, we compare the

AppMan results with the same application running using only Condor. When submitting

the application to Condor, we queued jobs in a ClassAd submission file.

1 graph independent
2 foreach ${n} in 0..100
3 do
4 task ${n} -e "chmod a+x teste; ./teste > t.out."${n}
5 -i /home/SO/kayser/tmp/teste -o "t.out."${n}
6 done

Figure G.3: GRID-ADL code for experiment 1

Figure G.2.1 shows the factorial application description written in GRID-ADL. Ac-

cording to this description, 100 tasks are created, whose executable is the file teste,

with each one consuming one input file (indicated by the -i syntax) and producing one

output file (indicated by the -o syntax). Note that in this example, the executable is pro-

vided as an input file for implementation simplification.

1 output = t.out.$(Process)
2 error = t.error.$(Process)
3 log = t.log.$(Process)
4 executable = /home/SO/kayser/tmp/teste
5 queue 100

Figure G.4: Condor code for experiment 1

121

Table G.1: Execution Times: Condor and AppMan
tasks SM task sub. time task exec. time app. exec.

time

10
a1 1.10 (0.88) 2.30 (0,48) 19.82
a2 1.20 (0.79) 2.50 (0.53) 19.89
a3 1.90 (1.10) 2.10 (0.74) 19.75
c 12.80 (5.98) 0.30 (0.48) 22.00

50
a1 9.56 (4.09) 7.58 (2.98) 42.83
a2 8.62 (4.23) 7.52 (2.89) 42.83
a3 8.58 (3.88) 7.68 (2.88) 37.57
c 53.52 (29.57) 0.02 (0.27) 103.00

100
a1 16.13 (8.30) 10.63 (2.64) 66.68
a2 17.46 (8.50) 8.62 (2.90) 65.63
a3 16.62 (7.92) 11.39 (3.18) 65.59
c 104.83 (58.56) 0.08 (0.27) 205.00

200
a1 27.65 (12.58) 11.30 (2.61) 113.61
a2 28.09 (11.89) 13.21 (2.86) 115.63
a3 21.14 (12.66) 16.44 (8.25) 118.19
c 206.39 (117.20) 0.10 (0.29) 407.00

300
a1 62.36 (42.30) 28.41 (15.32) 303.30
a2 59.23 (39.71) 26.91 (13.58) 295.50
a3 57.49 (39.27) 28.36 (14.19) 288.63
c 305.70 (174.52) 0.11 (0.31) 606.00

500
a1 14.56 (9.05) 8.39 (3.49) 276.37
a2 16.02 (10.53) 8.11 (2.89) 273.35
a3 17.90 (11.67) 9.97 (4.22) 288.69
c 508.60 (292.80) 0.11 (0.31) 1018.00

This example does not present dependent tasks, but AppMan is capable of handling

dependencies.

Table G.1 shows the average task execution and application execution time running

the application factorial using AppMan, and using only Condor. Column SM indicates the

number of Submission Managers created by AppMan to distribute the task submission (a1

corresponds to 1 SM, a2 corresponds to 2 SMs and a3 corresponds to 3 SMs) as well as the

Condor (c) execution times. The submission and execution time columns present average

and standard deviation between parenthesis. All times are presented in seconds. The “task

sub. time” column for AppMan corresponds to the time to instantiate the SM and actually

select a node to dispatch the task. The “task sub. time” in Condor includes the time the

task spend on the task queue.

It becomes very clear from this table that AppMan consistently completes an applica-

tion in much less time than Condor. As the number of tasks to be submitted increases, this

difference becomes even higher, being almost 5 times better when running AppMan with

500 tasks. Condor employs a more sophisticated form of matching resources to tasks by

using the matchmaking algorithm. This may be one of the reasons why it takes longer to

complete the application. On the other hand, in this particular experiment, Condor relied

only on NFS to transfer the application input and output files to and from the user’s home

122

directory. AppMan actually transferred all input and output files to and from a web site

using ftp. As AppMan can dispatch several tasks to the same machine, it is possible that

several processes compete for the same processor. It is more efficient for small tasks, since

tasks can be submitted in parallel. Condor always dispatches only one task per processor,

and this is the reason for the lower average execution times for Condor. On the other hand,

tasks take longer to be dispatched and to start running, delaying the whole application

progress. Figure G.5 plots the application execution time, allowing to better visualize the

AppMan performance.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 50 100 150 200 250 300 350 400 450 500

A
pp

lic
at

io
n

E
xe

cu
tio

n
T

im
e

(s
)

Number Of Tasks

AppMan - 1 SM
AppMan - 2 SM
AppMan - 3 SM

Condor

Figure G.5: Application execution time for AppMan and Condor

As this experiment ran using only 4 machines, the best average task execution is ob-

tained with smaller numbers of Submission Managers (1 or 2). We expect this scenario to

change when using more resources. In any case, this experiment shows that the time taken

to execute the 100 tasks of this application by Condor is too high compared to the time

taken to execute the same 100 tasks by AppMan. This may indicate that Condor may im-

pose a too high overhead when running with a greater number of tasks, and that AppMan

could be an alternative solution as a resource manager.

G.2.2 Data Management Experiments

For this experiment, our workload is composed of experiments that run for a short period

of time (approximately 3 seconds per each task). We vary the number of tasks per appli-

123

cation and the sizes of output files (results) produced by the tasks. We ran the experiments

using two versions of AppMan: (1) without optimization, where input files are always

transferred to the executing nodes, and (2) with optimization, where input files are cached

at nodes with a SM. We also use two ways to obtain input files: via NFS and via ftp from a

public site. All experiments were performed with the AppMan prototype over a local 100

Mbps Ethernet network with four machines Pentium IV 1.8 GHz with 1 GByte of RAM

and two Atlhon XP 2GHz with 512 MByte of RAM. This experimental environment was

a lab local area network with frequent users. To minimize interference, most experiments

run at holidays and weekends, or at least at night.

AppMan used two types of protocol to obtain input files without optimizing file trans-

fers (NFS and FTP) – and one with optimization (FTP). Using NFS, we copied files from

directories on the NFS server of the local area network. FTP was used to get files from a

web repository located in the same institution, but in a different network.

Table G.2 shows experimental data for AppMan, varying number of tasks from 50 to

200. The first column of this table shows the number of tasks for each run. The second

column shows the input file size to be used by the tasks.

The third, fourth, and fifth columns show the total execution time for all tasks, respec-

tively, for NFS and FTP transfers and FTP transfers with optimizations.

One curious aspect of this table is that the ftp protocol outperforms the NFS protocol

as the size of the input files increases. This highlights the overhead of the NFS protocol

when compared with the ftp protocol in a local network.

Table G.2: AppMan experimental values obtained from six nodes

number
of tasks

input file
size

NFS FTP optimized
FTP

50 10Kb 192.910 197.865 84.161
500Kb 197.197 206.162 82.211
1Mb 206.205 225.335 93.149

100 10Kb 408.950 461.429 156.657
500Kb 408.834 438.488 233.906
1Mb 509.584 406.442 223.649

200 10Kb 809.055 794.715 248.922
500Kb 797.519 806.289 253.789
1Mb 1234.024 826.37 260.501

124

Figure G.6: Optimized stage in – scalability

The file transfer optimization uses a cache per task manager to keep track of files

already available locally. We can clearly observe that the use of a cache per TM causes

a positive effect in performance as we increase the number of tasks and the size of the

input files. With the optimized version using FTP we have gains of more than 50% when

transferring files of 1 Mbyte of size, running an application with 200 tasks.

These results show the need for data management for small to medium files and rela-

tively small number of tasks. Data management is even more important when we increase

the number of tasks and file sizes. We have been working on a medium to large scale

experiment to improve our AppMan prototype and include new features that can facilitate

data management. Figure G.6 outlines our initial results for bigger files (in the graph, up to

5Mb per task) and bigger number of tasks (up to 300). This graph indicates the scalability

of the approach.

We presented simple, but effective techniques based on caching and data locality mech-

anisms to support data management of applications. Our aim was to propose a simple ap-

proach, i.e., with a low computational complexity, to avoid overloading the management

system. The presented experimental evaluation shows promising results.

125

G.3 Conclusion

We presented some preliminary evaluation of our prototype. Our initial results show that

it is worthwhile distributing submission.

As a future work, we intend to complete the AppMan Task Manager in order to support

interface with resource managers such as PBS [105] and Condor [135]. Besides, we intend

to implement on demand file transfer (not all input files need to be specified).

In the current implementation, AppMan allocation decisions are based in the round-

robin algorithm. We only get machines’ addresses. We intend to use EXEHDA moni-

toring information to get dynamic information and implement the algorithm proposed in

GRAND model.

Our main longer term step will be to have all the GRAND functionalities implemented

and tested with real applications on a real grid environment.

126

Apêndice H

Conclusion

The assumption of submitting a huge number of tasks has become more important as new

grid systems and environments are deployed worldwide. With more available resources,

the user has the possibility of performing many more experiments that can easily saturate a

working machine, if all tasks are launched simultaneously. The increase in the number of

tasks that a user can now submit has a great impact to the scheduling architecture design.

In this thesis, we proposed and evaluated the GRAND model, that deals with applica-

tion management in grid environments, focusing on applications that spread a very large

number of tasks. We presented a general framework for grid environments, whose cen-

tral idea is to have a flexible partitioning and a hierarchical organization where the load

of the submit machine is shared with other machines. Our proposal takes advantage of

hierarchical structures, because this is one of the most appropriate organization for grid

environments.

We designed and implemented an architectural model at a middleware level. We con-

sider that the resources and tasks are modeled as graphs. Our architectural model handles

some important issues in the context of applications that spread a huge number of tasks:

(1) partitioning applications such that, when possible, dependent tasks will be placed in

the same grid node to avoid unnecessary migration of intermediate and/or transient data

files, (2) partitioning applications such that tasks are allocated close to their required in-

put data, (3) distributing the submission process such that the submit machine do not get

overloaded, and (4) ensuring result files integrity.

This architectural model relies on already available software components to solve is-

sues that otherwise would interfere in grid node administrative policies. The main services

we would expect to be available at the grid infrastructure are: (1) RMS to provide alloca-

127

tion of tasks within a grid node, (2) resource monitoring tool inside the grid nodes; and (3)

authorization control mechanisms.

We assume users submit applications to the system using our description language

GRID-ADL (Grid Application Description Language) [114]. A GRID-ADL description

file contains tasks description, which includes files that need to be staged. Each application

has several tasks and can be represented as a Directed Acyclic Graph (DAG). In our DAGs,

the nodes represent tasks and edges represent dependencies between tasks through data

files access. Our system can infer automatically the DAG through the analysis of the data

flow. A clustering algorithm is used to produce sets of tasks that can be submitted at the

same time.

In order to support application scalability, GRAND relies on a hierarchical model

where the tasks that compose the user’s application are submitted from different machines,

i.e., the application submission procedure is distributed among managers that are hierar-

chically organized. This contrasts to other grid systems where the submission is central-

ized on just one machine which can deteriorate response time [22, 52, 136, 150] and delay

the execution of all tasks [142].

The submission and execution control are managed by three hierarchical components:

(a) Application Manager(AM): is the high level controller that takes care of one specific

application, and is responsible for DAG inference, clustering, and giving feedback to the

user; (b) Submission Manager(SM): is responsible for mapping clusters to grid nodes; (c)

Task Manager(TM): is a wrapper capable of submitting tasks to a specific grid node.

The rest of this section presents our main contributions (Section H.1) and some future

works (Section H.2).

H.1 Main Contributions

The main contribution of this thesis it is the definition of the GRAND model. This model

was presented in detail in this thesis and allows to handle a huge number of tasks in a grid

environment. Besides, we can outline some other contributions:

Proposal of the GRID-ADL language. GRID-ADL is a script-like language that allows

to easily describe a huge number of tasks, with implicit DAG definition. GRID-ADL

was proposed as a compact way to describe tasks, decreasing time to read application

128

description files. This representation also helps scalability: instead of storing all task

descriptions in memory, GRAND unfolds tasks descriptions on demand.

Definition of a new XML-based description of application DAGs. This thesis pre-

sented some XML schemas to allow description of tasks, dependencies of tasks, and clus-

ters of tasks. This schemas were proposed as an extension of JSDL standard [79] proposed

by the Global Grid Forum [61].

Application management in several steps. Task management in two steps: clustering

and mapping. The proposed steps are useful to understand the GRAND model as well

as to guide new application management system design. The clustering and mapping steps

are needed to submit the application tasks. Clustering is a kind of static partitioning that is

performed without information about the grid nodes. Clusters are defined to be submitted

altogether. An application taxonomy was proposed and we argue that for different kinds

of applications, there is a clustering algorithm more appropriate. Each cluster is assigned

to a SM, which is responsible for performing the mapping step.

The mapping step maps the clusters to the available grid nodes. We proposed a sched-

uling function to guide mapping decisions. This function considers four dynamic infor-

mation: distance, capacity, cpu, and memory.

Data management and monitoring services were defined. As part of the application

management system, data management and monitoring are essential. We presented simple

and effective ways to perform data management as well how to get monitoring information

from available monitoring tools.

Implementation and evaluation of AppMan prototype. We implemented a prototype

called AppMan, and performed some experiments. Our experimental results are promis-

ing. For instance, an application can conclude execution in far less time (5 times faster)

than other solutions that maintain a centralized task queue for submission, as we increase

the number of tasks. We also showed the need for careful data management in grid envi-

ronments, even with a small number of tasks and relatively small data files.

129

H.2 Future works

As future work, we intend both to improve model and prototype.

Our model is concerned with scheduling tasks whose requirements are mainly memory

and CPU. We are not considering special cases where tasks must have access to a specific

resource such as a detector, a local database, or a special supercomputer. This kind of

situation can occur in many real applications and must be considered in future works.

From the model point of view, any RMS can be used in the grid nodes. However, our

prototype AppMan is only performing its own resource management. An integration with

PBS [105], Condor [30] and SGE [67] resource management systems (RMSs) is under

development.

We presented our model and implementation of the GRAND data management model.

Automatic file transfer, without user intervention, is one of the goals of GRAND that

was successfully implemented at the AppMan prototype. But we believe there is room

for improvements. For instance, the GridFTP service [2] could be transparently used by

AppMan to profit of some of its features, mainly stripped file transfer.

The GRAND model does not propose a replication model, but we intend to study the

integration of our automatic data stage procedure to some replica catalog service, such as

GRESS [160] or RLS [63].

Finally, there are some works aiming at integrating databases into the grid infrastruc-

ture [4, 148]. This is an important research topic which was not covered in the GRAND

model and remains for a future work.

130

Appendix I

GRID-ADL ABNF

1 ;
2 ; The input_file non-terminal is the starting point of this grammar
3 <input_file> = [<graph_definition>]
4 [<application_requirements>]
5 <set_of_task_definition>
6 [<transient_file_definition>]
7 ;
8 ; Optional graph definition
9 <graph_definition> = "graph" <graph_type>

10 <graph_type> = "independent"
11 / "loosely-coupled"
12 / "tightly-coupled"
13
14 ;
15 ; Optional application requirements definition
16 ; This application constraints are based on a small subset of
17 ; Condor’s ClassAd machine attributes
18 <application_requirements> = "requirement" "=" "(" <list_of_requirements’> ")"
19 <list_of_requirements’> = <constraint>
20 / "(" <constraint>")"
21 1*(<cond_operation> "(" <constraint> ")") ")"
22
23 <constraint> = ("SysOp" ("==" / "!=") <sys_op>)
24 ; the operating system running on the machine
25 / ("Memory" <logical_operation> <number>)
26 ; memory available in the machine, expressed in megabytes
27 / ("Arch" ("==" / "!=") <arch>)
28 ; the architecture of the machine
29 / ("CPUs" <logical_operation> <number>)
30 ; number of CPUs in this machine, i.e.
31 ; 1 = single CPU machine,
32 ; 2 = dual CPUs, etc.
33 <sys_op> = "LINUX" ; for LINUX 2.x.x kernel systems
34 / "WINDOWS" ; for Windows system
35 <arch> = "INTEL" ; Intel x86 CPU (Pentium, Xeon, etc)
36 / "IA64" ; Intel 64-bit CPU
37 / "SGI" ; Silicon Graphics MIPS CPU
38 / "SUN4u" ; Sun UltraSparc CPU
39
40 ;
41 ; Required task definition section
42 <set_of_task_definition> = <task_definition>
43 / <loop>
44 / <if>
45 / <assignment>
46 / (<task_definition> <set_of_task_definition>)
47 / (<loop> <set_of_task_definition>)
48 / (<assignment> <set_of_task_definition>)
49 / (<if> <set_of_task_definition>)

131

50
51
52 <task_definition> = "task" [<task_name>] "-e" <executable>
53 "-i" <filenames> "-o" <filenames>
54 ["-c" <number>] ["done"]
55 <task_name> = <string> / <var> / <noum>
56 <executable> = <string>
57
58 <loop> = "foreach" (<var> / <noum>) "in" <range>
59 "{" <set_of_task_definition> "}"
60 <range> = <number> .. <number>
61 / "{" <symbols> "}"
62 <symbols> = <string>
63 / <string> ";" <symbols>
64
65 <if> = "if" <conditional_list> "{" <set_of_task_definition> "}"
66 ["else" "{" <set_of_task_definition> "}"]
67 <conditional_list> = <conditional>
68 / "(" <conditional> 1*(<cond_operation> <conditional>) ")"
69 <conditional> = "(" <operator> <logical_operation> <operator> ")"
70 <cond_operation> = "&&" / "||"
71 <logical_operation> = "==" / "!=" / ">" / ">=" / "<" / "<="
72
73
74 <assignment> = <noum> "=" <assignment’>
75 <assignment’> = <operator>
76 / <operator> <operation> <operator>
77 / (<var>/<number>) <math_operation> (<var>/<number>)
78
79 ;
80 ; Optional transient file definition
81 <transient_file_definition> = "transient" <filenames>
82
83
84 ;
85 ; Core definitions
86 <operator> = <var>
87 / <string>
88 / <number>
89 <operation> = "+" / "-"
90 <math_operation> = "*" / "/" / "^"
91
92 <filenames> = <filename_unix>
93 / <filename_windows>
94 / <filename_unix> ";" <filenames>
95 / <filename_windows> ";" <filenames>
96 <filename_unix> = <noum>
97 / <noum> <filename_unix>
98 / <noum> "." <string>
99 / "/" <noum> <filename_unix>
100 <filename_windows> = <char> ":" <filename_windows2>
101 / "\\" <noum> "\" <filename_windows2>
102 <filename_windows2> = <noum>
103 / <noum> "." <noum>
104 / "\" <noum> <filename_windows2>
105
106 <var> = "${" <noum> "}"
107 <string> = <dquote> <noum’> <dquote>
108 <noum> = <char> <noum’>
109 <noum’> = <char>
110 / <special_char>
111 / <digit>
112 / <char> <noum’>
113 / <special_char> <noum’>
114 / <digit> <noum’>
115 <char> = %x01-1F ; a-z / A-Z
116 <special_char> = "-" / "_"
117

132

118 <number> = <digit>
119 / <number> <digit>
120 <digit> = %x30-39 ; 0-9
121 <dquote> = %x22 ; " (double quote)

133

Referências Bibliográficas

[1] ALLCOCK, W., BRESNAHAN, J., FOSTER, I., et al., “GridFTP Protocol Spec-

ification”, September 2002. Technical Report. Available at http://www.

globus.org/research/papers/GridftpSpec02.doc.

[2] ALLCOCK, W., BRESNAHAN, J., KETTIMUTHU, R., et al., “The Globus striped

GridFTP framework and server”, In: Proceedings of the 2005 ACM/IEEE confer-

ence on Supercomputing, (Washington, DC, USA), p. 54, IEEE Computer Society,

2005.

[3] ALLEN, G., ANGULO, D., FOSTER, I., et al., “The Cactus Worm: Experiments

with dynamic resource discovery and allocation in a grid environment”, The Inter-

national Journal of High Performance Computing Applications, v. 15, n. 4, pp. 345–

358, 2001.

[4] ALOISIO, G., CAFARO, M., FIORE, S., et al., “The Grid-DBMS: Towards dy-

namic data management in grid environments”, In: Proceedings of IEEE Inter-

national Conference on Information Technology: Coding and Computing (ITCC

2005), v. II, pp. 199–204, 4-6 April 2005.

[5] ANDINO, A. R., ARAÚJO, L., SÁENZ, F., et al., “Parallel execution models for

constraint programming over finite domains”, In: Proceedings of the International

Conference Principles and Practice of Declarative Programming (PPDP’99),

(Paris, France), pp. 134–151, September 29 – October 1 1999.

[6] ANDRADE, N., BRASILEIRO, F. V., CIRNE, W., et al., “Discouraging free riding

in a peer-to-peer cpu-sharing grid”, In: Proceedings of the 13th International Sym-

posium on High-Performance Distributed Computing (HPDC-13 2004), (Honolulu,

HW, USA), pp. 129–137, IEEE Computer Society, 2004.

134

[7] ANDRADE, N., CIRNE, W., BRASILEIRO, F. V., et al., “OurGrid: An approach

to easily assemble grids with equitable resource sharing”, In: Proceedings of the

9th Workshop on Job Scheduling Strategies for Parallel Processing, (Seattle, WA,

USA), pp. 61–86, June 2003.

[8] ANNIS, J., ZHAO, Y., VOECKLER, J., et al., “Applying Chimera Virtual Data

concepts to cluster finding in the sloan sky survey”, In: Proceedings of the 2002

ACM/IEEE conference on Supercomputing, (Baltimore, Maryland, USA), pp. 1–

14, November 16-22 2002.

[9] BAKER, M., BUYYA, R., LAFORENZA, D., “The Grid: International efforts in

global computing”, In: Proceedings of the International Conference on Advances

in Infrastructure for Electronic Business, Science, and Education on the Internet

(SSGRR 2000), (Rome, Italy), pp. ?–?, July 31 – August 6 2000.

[10] BELL, G., GRAY, J., “What’s next in high-performance computing?”, Communi-

cations of The ACM, v. 45, n. 2, pp. 91–95, February 2002.

[11] BERMAN, F., “High-Performance Schedulers”, In: The Grid: Blueprint for a New

Computing Infrastructure (FOSTER, I., KESSELMAN, C., eds.), pp. 279–309,

Morgan Kaufmann, 1998.

[12] BERMAN, F., CHIEN, A., COOPER, K., et al., “The GrADS Project: Software

Support for High-Level Grid Application Development”, The International Journal

of High Performance Computing Applications, v. 15, n. 4, pp. 327–344, 2001.

[13] BERMAN, F., FOX, G., HEY, T., Grid Computing: Making the Global Infrastruc-

ture a Reality. 1 ed. John Wiley & Sons Inc., April 2003.

[14] BHATT, H. S., BHANSALI, D., SHAH, S. N., et al., “GANGA: Grid Applica-

tion iNformation Gathering and Accessing framework”, In: Proceedings of the 2nd

Workshop on Grid Computing and Applications, (Biopolis, Singapore), pp. ?–?,

May 05 2005.

[15] BHATT, H. S., BHANSALI, D., SHAH, S. N., et al., “GANGA: Grid Application

iNformation Gathering and Accessing framework”, International Journal of Infor-

mation Technology, v. 11, n. 4, pp. 58–73, 2005.

135

[16] BODE, B., HALSTEAD, D. M., KENDALL, R., et al., “The Portable Batch Sched-

uler and the Maui scheduler on linux clusters”, In: Proceedings of the Usenix Con-

ference, (Atlanta, GA, USA), October 12–14 2000.

[17] BOERES, C., NASCIMENTO, A. P., REBELLO, V. E. F., et al., “Efficient hierar-

chical self-scheduling for MPI applications executing in computational grids”, In:

MGC ’05: Proceedings of the 3rd international workshop on Middleware for grid

computing, (New York, NY, USA), pp. 1–6, ACM Press, 2005.

[18] BOERES, C., REBELLO, V. E. F., “On Solving the Static Task Scheduling Problem

for Real Machines”, In: Models for Parallel and Distributed Computation: Theory,

Algorithmic Techniques and Applications (CORRÊA, R., DUTRA, I. D. C., FIAL-

LOS, M., et al., eds.), Kluwer Academic Publishers, 2001.

[19] BOERES, C. B., REBELLO, V. E. F., “EasyGrid: Towards a framework for the au-

tomatic grid enabling of MPI applications”, In: Proceedings of the 1st International

Workshop on Middleware for Grid Computing (Middleware Workshops 2003), (Rio

de Janeiro, Brazil), pp. 256–260, June 16–20 2003.

[20] BRISARD, F., LY, A., “Job Submission Description Language (JSDL) Specification

– version 1.0”, November 7th 2005.

[21] BUNN, J. J., NEWMAN, H. B., “Data Intensive Grids for High Energy Physics”,

In: Grid Computing: Making the Global Infrastructure a Reality (BERMAN, F.,

FOX, G., HEY, T., eds.), pp. 859–906, Wiley & Sons, 2003.

[22] BUYYA, R., ABRAMSON, D., GIDDY, J., “ Nimrod/G: An architecture of a re-

source management and scheduling system in a global computational grid”, In:

HPC Asia 2000, (Beijing, China), pp. 283–289, May 14-17 2000.

[23] CASAVANT, T. L., KUHL, J. G., “A Taxonomy of Scheduling in General-Purpose

Distributed Computing Systems”, IEEE Transactions on Software Engineering,

v. 14, n. 2, pp. 141–154, February 1988.

[24] “Cave5D Release 1.4”. http://www.ccpo.odu.edu/~cave5d/.

[25] CHANDRA, S., PARASHAR, M., “ARMaDA: An adaptive application-sensitive

partitioning framework for SAMR applications”, In: Proceedings of the 14th

136

IASTED International Conference on Parallel and Distributed Computing and Sys-

tems (PDCS 2002), (Cambridge, MA, USA), pp. 446–451, ACTA Press, November

2002.

[26] CHAPIN, S. J., KATRAMATOS, D., KARPOVICH, J., et al., “Resource manage-

ment in Legion”, In: Proceedings of the IPDPS ’99 5th Workshop on Job Schedul-

ing Strategies for Parallel Processing (JSSPP ’99), (San Juan, Puerto Rico, USA),

pp. 162–178, April 16 1999.

[27] CIRNE, W., MARZULLO, K., “Open Grid: a user-centric approach for grid

computing”, In: Proceedings of the 13th Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD 2001), (Pirenópolis, GO, Brazil),

pp. 106–111, September 10th–12th 2001.

[28] “The Compact Muon Solenoid (CMS) Project”, 2005. http://lcg.web.

cern.ch/.

[29] CONDOR EXTENSIONS, 2006. http://sourceforge.net/projects/

condor-ext.

[30] Condor Project Homepage, 2006. http://www.cs.wisc.edu/condor/.

[31] CROCKER, D., OVERELL, P., “Augmented BNF for Syntax Specifications:

ABNF”, October 2005. IETF-RFC 4234. Available at http://www.ietf.

org/rfc/rfc4234.txt.

[32] CZAJKOWSKI, K., FOSTER, I., KARONIS, N., et al., “A resource management

architecture for metacomputing systems”, In: Proceedings of the IPPS/SPDP ’98

Workshop on Job Scheduling Strategies for Parallel Processing, pp. 62–82, 1998.

[33] “Directed Acyclic Graph Manager”. http://www.cs.wisc.edu/condor/

dagman/.

[34] DEBRAY, S., LIN, N.-W., HERMENEGILDO, M., “Task granularity analysis in

logic programs”, In: Proceedings of the 1990 ACM Conf. on Programming Lan-

guage Design and Implementation, pp. 174–188, ACM Press, June 1990.

137

[35] DEELMAN, E., BLYTHE, J., GIL, Y., et al., “Workflow Management in GriPhyN”,

In: Grid Resource Management: State of the Art and Future Trends (NABRZYSKI,

J., SCHOPF, J. M., WEGLARZ, J., eds.), pp. 99–116, Kluwer Academic Publish-

ers, 2003.

[36] DEFANTI, T. A., FOSTER, I., PAPKA, M. E., et al., “Overview of the I-WAY:

Wide-Area Visual Supercomputing”, The International Journal of Supercomputer

Applications and High Performance Computing, v. 10, n. 2/3, pp. 123–131, Sum-

mer/Fall 1996.

[37] “Distributed.Net”, 2004. http://www.distributed.net/.

[38] “Distributed resource management application api working group (drmaa-wg)”.

http://www.drmaa.org/.

[39] DUTRA, I. D. C., PAGE, D., SANTOS COSTA, V., et al., “Toward automatic

management of embarrassingly parallel applications”, In: Proceedings of the 26th

International Conference on Parallel and Distributed Computing (Europar 2003),

(Klagenfurt, Austria), pp. 509–516, August 2003.

[40] “The EasyGrid project’s research, reference and resource library”. http://

easygrid.ic.uff.br/.

[41] ENOMOTO, C., HENRIQUES, M. A. A., “A flexible specification model based on

XML for parallel applications”, In: Proceedings of the 17th Symposium on Com-

puter Architecture and High Performance Computing (SBAC-PAD 2005), (Rio de

Janeiro, RJ, Brasil), pp. 109–116, October 24-27 2005.

[42] ENOMOTO, C., HENRIQUES, M. A. A., “Implementação de uma linguagem de

especificação de aplicações paralelas baseada em XML para o sistema join”, In:

Anais do VI Workshop em Sistemas Computacionais de Alto Desempenho (WSCAD

2005), (Rio de Janeiro, RJ, Brasil), pp. 81–88, October 24-27 2005.

[43] FAHRINGER, T., JUGRAVU, A., PLLANA, S., et al., “ASKALON: A Tool Set

for Cluster and Grid Computing”, Concurrency and Computation: Practice & Ex-

perience, v. 17, n. 2–4, pp. 143–169, 2005.

138

[44] FAHRINGER, T., QIN, J., HAINZER, S., “Specification of grid workflow applica-

tions with AGWL: An abstract grid workflow language”, In: Proceedings of Cluster

Computing and Grid 2005 (CCGrid 2005), (Cardiff, UK), May 9–12 2005.

[45] FEITELSON, D. G., RUDOLPH, L., “Parallel job scheduling: issues and ap-

proaches”, In: Job Scheduling Strategies for Parallel Processing (FEITELSON,

D. G., RUDOLPH, L., eds.), pp. 1–18, Springer-Verlag, 1995. Lecture Notes in

Computer Science Vol. 949.

[46] FJÄLLSTRÖM, P.-O., “Algorithms for Graph Partitioning: A Survey”, Linköping

Electronic Articles in Computer and Information Science, v. 3, n. 010, 1998.

[47] FOSTER, I., “What is the Grid? A Three Point Checklist”, Grid Today, v. 1,

n. 6, July 22 2002. Available at http://www.gridtoday.com/02/0722/

100136.html.

[48] FOSTER, I., KESSELMAN, C., “Computational Grids”, In: The Grid: Blueprint

for a New Computing Infrastructure (FOSTER, I., KESSELMAN, C., eds.), pp. 15–

52, San Francisco, California, USA, Morgan Kaufmann, 1 ed., 1998.

[49] FOSTER, I., KESSELMAN, C., “The Globus project: A status report”, In: Proc.

IPPS/SPDP ’98 Heterogeneous Computing Workshop, pp. 4–18, 1998.

[50] FOSTER, I., KESSELMAN, C., The Grid: Blueprint for a New Computing Infras-

tructure. 1 ed. San Francisco, California, USA, Morgan Kaufmann, 1998.

[51] FOSTER, I., KESSELMAN, C., The Grid: Blueprint for a New Computing Infras-

tructure. 2 ed. San Francisco, California, USA, Morgan Kaufmann, 2004.

[52] FOSTER, I., KESSELMAN, C., NICK, J., et al., “Grid Services for Distributed

System Integration”, IEEE Computer, v. 35, n. 6, pp. 37–46, June 2002.

[53] FOSTER, I., KESSELMAN, C., NICK, J., et al., “The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration”, June 2002.

Available at http://www.globus.org/research/papers/ogsa.pdf.

[54] FOSTER, I., KESSELMAN, C., TUECKE, S., “The Anatomy of the Grid: En-

abling Scalable Virtual Organizations”, The International Journal of High Perfor-

mance Computing Applications, v. 15, n. 3, pp. 200–222, Fall 2001.

139

[55] FOSTER, I., VOECKLER, J., WILDE, M., et al., “Chimera: A virtual data system

for representing, querying and automating data derivation”, In: Proceedings of the

14th Conference on Scientific and Statistical Database Management, (Edinburgh,

Scotland), July 2002.

[56] FOSTER, I., VOECKLER, J., WILDE, M., et al., “The Virtual Data Grid: A

new model and architecture for data-intensive collaboration”, In: Proceedings of

the First Biennial Conference on Innovative Data Systems Research (CIDR 2003),

(Asilomar, CA, USA), January 5-8 2003.

[57] FREY, J., TANNENBAUM, T., FOSTER, I., et al., “Condor-G: A Computa-

tion Management Agent for Multi-Institutional Grids”, Cluster Computing, v. 5,

pp. 237–246, 2002.

[58] FULP, E. W., REEVES, D. S., “Distributed network flow control based on dy-

namic competive markets”, In: Proceedings International Conference on Net-

work Protocol (ICNP’98), (Austin Texas), October 13-16 1998. Available at

http://citeseer.nj.nec.com/fulp98distributed.html.

[59] GAREY, M. R., JOHNSON, D. S., Computers and intractability: a guide to the

theory of NP-Completeness. New York, Freeman, 1979.

[60] gLite – Ligthweight Middleware for Grid Computing, 2006. http://glite.

web.cern.ch/glite/.

[61] “Global Grid Forum”. http://www.ggf.org/.

[62] “The Globus Toolkit”, 2006. http://www.globus.org/toolkit/.

[63] Globus Alliance, “GT 4.0 Replica Location Service (RLS)”, 2006. http://www.

globus.org/toolkit/docs/4.0/data/rls/.

[64] GONG, Y., DONG, F., LI, W., et al., “VEGA infrastructure for resource discovery

in grids”, J. Comput. Sci. Technol., v. 18, n. 4, pp. 413–422, 2003.

[65] “Grand challenge applications”. http://www-fp.mcs.anl.gov/

grand-challenges/.

140

[66] GRID-SEQUENTIAL ACCESS VIA METADATA (GRID-SAM) PROJECT, T.,

2006. http://venus.cs.ttu.edu/SAM/.

[67] “Grid Engine Project Home”. http://gridengine.sunsource.net/.

[68] “gridengine: Developing applications with the DRMAA java language bindings”.

http://gridengine.sunsource.net/project/gridengine/

howto/drmaa_java.htm.

[69] GRIER, D. A., “Systems for monte carlo work”, In: Proceedings of the 19th Con-

ference on Winter Simulation, pp. 428–433, ACM Press, 1987.

[70] GRIMSHAW, A., FERRARI, A., LINDAHL, G., et al., “Metasystems”, Communi-

cations of the ACM, v. 41, n. 11, pp. 46–55, 1998.

[71] GRIMSHAW, A. S., FERRARI, A., KNABE, F., et al., “Wide-Area Computing:

Resource Sharing on a Large Scale”, IEEE Computer, v. 32, n. 5, pp. 29–36, May

1999.

[72] “GriPhyN – grid physics network”. http://www.griphyn.org/.

[73] GUNTER, D., MAGOWAN, J., “An analysis of “Top N” Event Descriptions”, Jan-

uary 2004. GGF Discovery and Monitoring Event Descriptions Working Group.

http://www.gridforum.org/documents/GFD.25.pdf.

[74] HENDRICKSON, B., KOLDA, T. G., “Graph partitioning models for parallel com-

puting”, Parallel Computing, v. 26, n. 12, pp. 1519–1534, 2000.

[75] HENDRICKSON, B., LELAND, R., VAN DRIESSCHE, R., “Enhancing data lo-

cality by using terminal propagation”, In: 29th Hawaii International Conference

on System Sciences (HICSS’96) Volume 1: Software Technology and Architecture,

(Maui, Hawaii, USA), pp. 565–584, January 03–06 1996.

[76] HOGSTEDT, K., KIMELMAN, D., RAJAN, V. T., et al., “Graph cutting algo-

rithms for distributed applications partitioning”, ACM SIGMETRICS Performance

Evaluation Review, v. 28, n. 4, pp. 27–29, 2001.

141

[77] Institute of Electrical and Electronics Engineers, “Carrier Sense Multiple Access

with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifi-

cations”, 1985. ANSI/IEEE Std 802.3-1985.

[78] “javacc: Javacc project home”. https://javacc.dev.java.net/.

[79] “Job Submission Description Language WG”. https://forge.gridforum.

org/projects/jsdl-wg/.

[80] “JSDL WG – project documentation”. http://forge.gridforum.org/

docman2/ViewCategory.php?group_id=122&category_id=814.

[81] KANEDA, K., TAURA, K., YONEZAWA, A., “Routing and resource discov-

ery in phoenix grid-enabled message passing library”, In: Proceedings of the 4th

IEEE/ACM International Symposium on Cluster Computing and the Grid (CCgrid

2004), (Chicago, Illinois, USA), April 19–22 2004.

[82] KARONIS, N., TOONEN, B., FOSTER, I., “MPICH-G2: A Grid-Enabled Imple-

mentation of the Message Passing Interface”, Journal of Parallel and Distributed

Computing, v. 63, n. 5, pp. 551–563, May 2003.

[83] KARYPIS, G., KUMAR, V., “Multilevel algorithms for multi-constraint graph par-

titioning”, In: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing,

pp. 1–13, IEEE Computer Society, 1998.

[84] KRAUTER, K., BUYYA, R., MAHESWARAN, M., “A Taxonomy and Survey

of Grid Resource Management Systems for Distributed Computing”, Software –

Practice and Experience, v. 32, n. 2, pp. 135–164, 2002.

[85] KUMAR, S., DAS, S. K., BISWAS, R., “Graph partitioning for parallel appli-

cations in heterogeneous grid environments”, In: International Parallel and Dis-

tributed Processing Symposium (IPDPS’02), (Fort Lauderdale, CA, USA), April

15–19 2002.

[86] KURATA, K.-I., SAGUEZ, C., DINE, G., et al., “Evaluation of unique sequences

on the european data grid”, In: Proceedings of the First Asia-Pacific bioinformatics

conference on Bioinformatics 2003, pp. 43–52, Australian Computer Society, Inc.,

2003.

142

[87] KWOK, Y.-K., AHMAD, I., “Static scheduling algorithms for allocating directed

task graphs to multiprocessors”, ACM Computing Survey, v. 31, n. 4, pp. 406–471,

1999.

[88] LAFORENZA, D., “Grid Programming: some indications where we are headed”,

Parallel Computing, v. 28, n. 12, pp. 1733–1752, December 2002.

[89] LCG Middleware, 2006. http://lcg.web.cern.ch/lcg/activities/

middleware.html.

[90] LEGRAND, I., NEWMAN, H. B., “The MONARC toolset for simulating large

network-distributed processing systems”, In: Winter Simulation Conference 2000,

pp. 1794–1801, 2000.

[91] LEGRAND, I. C., DOBRE, C. M., STRATAN, C., “MONARC 2 (Mod-

els of Networked Analysis at Regional Centers) – distributed systems sim-

ulation”. http://monalisa.cacr.caltech.edu/MONARC/Papers/

MONARC_Implementation.zip.

[92] LEISERSON, C. E., CORMEN, T. H., An Introduction to Algorithms. The MIT

Press, 1990.

[93] LEWIS, M. J., FERRARI, A. J., HUMPHREY, M., et al., “Support for Extensibility

and site autonomy in the Legion Grid System Object Model”, Journal of Parallel

and Distributed Computing, n. 63, pp. 525–538, May 2003.

[94] LIAN, C. C., TANG, F., ISSAC, P., et al., “GEL: grid execution language”, Journal

of Parallel and Distributed Computing, v. 65, n. 7, pp. 857–869, 2005.

[95] “Load Sharing Facility (LSF)”. http://accl.grc.nasa.gov/lsf/.

[96] “Plataform LSF Family”. http://www.platform.com/products/

LSFfamily/.

[97] LU, P., “The Trellis project”. http://www.cs.ualberta.ca/~paullu/

Trellis/.

143

[98] MASSIE, M. L., CHUN, B. N., CULLER, D. E., “The ganglia distributed monitor-

ing system: design, implementation, and experience”, Parallel Computing, v. 30,

n. 7, pp. 817–840, July 2004.

[99] “GT Information Services: Monitoring & Discovery System (MDS)”. http://

www.globus.org/toolkit/mds/.

[100] MONTERO, R. S., HUEDO, E., LLORENTE, I. M., “Grid resource selection for

opportunistic job migration”, In: 26th International Conference on Parallel and

Distributed Computing (Europar 2003), (Klagenfurt, Austria), pp. 366–373, August

2003.

[101] NABRZYSKI, J., SCHOPF, J. M., WEGLARZ, J., Grid Resource Management:

State of the Art and Future Trends. Kluwer Academic Publishers, 2003.

[102] NEMETH, Z., SUNDERAM, V., “A comparison of conventional distributed com-

puting environments and computational grids”, In: Proceedings of the Interna-

tional Conference on Computational Science (ICCS2002), (Amsterdam, Nether-

lands), pp. 729–738, April 2002. LNCS 2329.

[103] NEMETH, Z., SUNDERAM, V., “A formal framework for defining grid systems”,

In: Proceedings of the Second IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGRID2002), (Berlin, Germany), pp. 202–211, May

21–24 2002.

[104] NEWMAN, H. B., LEGRAND, I. C., GALVEZ, P., et al., “MonALisa: A dis-

tributed monitoring service architecture”, In: Computing in High Energy and Nu-

clear Physics (CHEP03), (La Jolla, California, USA), March 24-28 2003.

[105] “Open PBS (Portable Batch System)”. http://www.openpbs.org/main.

html.

[106] PARANHOS, D. D. S., CIRNE, W., BRASILEIRO, F. V., “Trading cycles for infor-

mation: Using replication to schedule bag-of-tasks applications on computational

grids”, In: Proceedings of the 26th International Conference on Parallel and Dis-

tributed Computing (Euro-Par 2003), pp. 169–180, August 2003.

144

[107] PARK, S.-M., KIM, J.-H., “Chameleon: A resource scheduler in a data grid envi-

ronment”, In: Proc of 3st International Symposium on Cluster Computing and the

Grid, (Tokyo, Japan), pp. 258–, May 12 - 15 2003.

[108] “PBS Pro Home”. http://www.pbspro.com/.

[109] “Planning for execution in grids”. http://www.isi.edu/~deelman/

pegasus.htm.

[110] RAJIC, H., BROBST, R., CHAN, W., et al., “Distributed Resource Manage-

ment Application API 1.0 Specification”, June 2004. http://www.ggf.org/

documents/GWD-R/GFD-R.022.pdf.

[111] RAMAN, R., LIVNY, M., SOLOMON, M., “Matchmaking: Distributed resource

management for high throughput computing”, In: Proceedings of the Seventh IEEE

International Symposium on High Performance Distributed Computing, (Chicago,

USA), pp. 140–147, July 28-31 1998.

[112] ROEHRIG, M., ZIEGLER, W., WIEDER, P., “Grid Scheduling Dictionary of

Terms and Keywords”, document gfd-i.11, Global Grid Forum, Nov 2002.

Available at http://forge.gridforum.org/projects/ggf-editor/

document/GFD-I.11/en/1.

[113] ROURE, D. D., BAKER, M. A., JENNINGS, N. R., et al., “The Evolution of

the Grid”, In: Grid Computing: Making the Global Infrastructure a Reality

(BERMAN, F., FOX, G., HEY, T., eds.), pp. 65–100, Wiley & Sons, 2003.

[114] SANCHES, J. A. L., VARGAS, P. K., DUTRA, I. C., et al., “ReGS: user-level

reliability in a grid environment”, In: Cluster Computing and Grid 2005 (CCGRID

2005), (Cardiff, UK), May 9–12 2005.

[115] SANDER, V., ALLCOCK, W., CONGDUC, P., et al., “Networking Issues

of Grid Infrastructures”, document draft-ggf-ghpn-netissues-0, version 1,

Global Grid Forum, June 2003. Available at http://forge.gridforum.

org/projects/ggf-editor/document/Networking_Issues_of_

Grid_Infrastructures/en/1/Networking_Issues_of_Grid_

Infrastructures.pdf.

145

[116] SANDHOLM, T., GAWOR, J., “Globus Toolkit 3 Core – A Grid Service Con-

tainer Framework”, May 2003. White paper. Available at http://www-unix.

globus.org/toolkit/3.0beta/ogsa/docs/gt3_core.pdf.

[117] SCHAEFFER FILHO, A. E., SILVA, L. C., YAMIN, A. C., et al., “PerDiS: A

scalable resource discovery service for the ISAM pervasive environment”, In: Pro-

ceedings of the 1st International Workshop on Hot Topics in Peer-to-Peer Systems

(Hot-P2P), pp. 80–85, IEEE Computer Society, 2004.

[118] SCHWIEGELSHOHN, U., YAHYAPOUR, R., “Attributes for Commu-

nication between Scheduling Instances”, December 2001. Available at

http://ds.e-technik.uni-dortmund.de/~yahya/ggf-sched/

WG/sched_attr/SchedWD.10.6.pdf.

[119] SCHWIEGELSHOHN, U., YAHYAPOUR, R., “Attributes for Communication be-

tween Scheduling Instances”, In: Grid Resource Management (NABRZYSKI, J.,

SCHOPF, J. M., WEGLARZ, J., eds.), pp. 41–52, Kluwer Academic Publishers,

2004.

[120] “SDSS - Sloan Digital Sky Survey”. http://www.sdss.org/.

[121] “SETI@home – The Search for Extraterrestrial Intelligence at Home”, 2004.

http://setiathome.ssl.berkeley.edu/.

[122] SINGHAL, M., SHIVARATRI, N. G., Advanced Concepts in Operating Systems:

Distributed, Database, and Multiprocessor Operating Systems. New York, MIT

Press, 1994.

[123] SMARR, L., CATLETT, C. E., “Metacomputing”, Communications of the ACM,

v. 35, n. 6, June 1992.

[124] SOTOMAYOR, B., CHILDERS, L., Globus Toolkit 4: Programming Java Ser-

vices. Morgan Kaufmann, 2006.

[125] STOCKINGER, H., “Distributed database management systems and the data grid”,

In: Eighteenth IEEE Symposium on Mass Storage Systems, (Hyatt Regency Is-

landia, San Diego, USA), April 17-20 2001.

146

[126] STOCKINGER, H., RANA, O. F., MOORE, R., et al., “Data management for grid

environments”, In: European High Performance Computing & Networking (HPCN

2001), (Amsterdam, The Netherlands), pp. 151–160, June 2001.

[127] STOCKINGER, H., SAMAR, A., HOLTMAN, K., et al., “File and object replica-

tion in data grids”, In: 10th IEEE International Symposium on High Performance

Distributed Computing, pp. 76–86, August 7–9 2001.

[128] SULISTIO, A., YEO, C. S., BUYYA, R., “A Taxonomy of Computer-based Sim-

ulations and its Mapping to Parallel and Distributed Systems Simulation Tools”,

International Journal of Software: Practice and Experience, v. 34, n. 7, pp. 653–

673, 2004.

[129] Sun Microsystems, “Sun Cluster Grid Architecture”, sun one grid engine white

papers, Sun Microsystems, 2002. Available at http://wwws.sun.com/

software/grid/SunClusterGridArchitecture.pdf.

[130] TANENBAUM, A. S., Distributed Operating Systems. Prentice Hall, 1995.

[131] TANENBAUM, A. S., VAN RENESSE, R., “Distributed Operating Systems”, ACM

Computing Surveys (CSUR), v. 17, n. 4, pp. 419–470, December 1985.

[132] TANNENBAUM, T., WRIGHT, D., MILLER, K., et al., “Condor – A Distributed

Job Scheduler”, In: Beowulf Cluster Computing with Linux (STERLING, T., ed.),

pp. 307–350, MIT Press, October 2002.

[133] TAREK EL-GHAZAWI, P. I., GAJ, K., ALEXANDRIDIS, N., et al., “Conceptual

Comparative Study of Job Management Systems”, technical report, George Ma-

son University, USA, February 21 2001. Available at http://ece.gmu.edu/

lucite/reports/Conceptual_study.PDF.

[134] TAYLOR, I., WANG, I., SHIELDS, M., et al., “Distributed computing with Triana

on the Grid”, Concurrency and Computation: Practice and Experience, v. 17, n. 1–

18, pp. 1197–1214, 2005.

[135] THAIN, D., TANNENBAUM, T., LIVNY, M., “Condor and the Gri d”, In: Grid

Computing: Making The Global Infrastructure a Reality (BERMAN, F., FOX, G.,

HEY, T., eds.), John Wiley, 2003.

147

[136] THAIN, D., TANNENBAUM, T., LIVNY, M., “Distributed computing in practice:

the Condor experience”, Concurrency and Computation: Practice and Experience,

v. 17, n. 2–4, pp. 323–356, February – April 2005.

[137] The Legion Group, “Legion 1.8 – Developer Manual”, 2001.

[138] The MONARC Project – Models of Networked Analysis at Regional Centres

for LHC Experiments, “Distributed computing simulation”. http://monarc.

web.cern.ch/MONARC/sim_tool/.

[139] TIERNEY, B., AYDT, R., GUNTER, D., et al., “A Grid Monitoring Architecture”,

January 2002. GGF Performance Working Group. http://www.gridforum.

org/documents/GFD.7.pdf.

[140] VADHIYAR, S. S., DONGARRA, J. J., “A metascheduler for the grid”, In:

11th IEEE International Symposium on High Performance Distributed Computing

(HPDC-11), (Edinburgh, Scotland), pp. 343–354, July 24 – 26 2002.

[141] VADHIYAR, S. S., DONGARRA, J. J., “A performance oriented migration frame-

work for the grid”, In: 3rd International Symposium on Cluster Computing and the

Grid (CCGRID 2003), (Tokyo, Japan), pp. 366–373, May 12 – 15 2003.

[142] VARGAS, P. K., DE CASTRO DUTRA, I., DO NASCIMENTO, V. D., et al., “Hi-

erarchical submission in a grid environment”, In: 3rd International Workshop on

Middleware for Grid Computing, (Grenoble, France), November 28 – December 2

2005.

[143] VARGAS, P. K., DUTRA, I. C., GEYER, C. F., “Application partitioning and hi-

erarchical management in grid environments”, In: 1st International Middleware

Doctoral Symposium 2004, (Toronto, Canadá), pp. 314–318, October 19th 2004.

[144] VARGAS, P. K., SANTOS, L. A. S., DUTRA, I. C., et al., “An implementation

of the GRAND hierarchical application management model using the ISAM/EX-

EHDA system”, In: III Workshop on Computational Grids and Applications,

(Petrópolis, RJ, Brazil), January 31 – February 2 2005. Available at http:

//virtual.lncc.br/wcga05/text/7483.pdf.

148

[145] VARGAS, P. K., DUTRA, I. D. C., GEYER, C. F., “Hierarchical Resource Man-

agement and Application Control in Grid Environments”, Tech. Rep. ES-608/03,

COPPE/Sistemas - UFRJ, 2003. Relatório Técnico.

[146] VARGAS, P. K., DUTRA, I. D. C., GEYER, C. F., “Application Partitioning and Hi-

erarchical Application Management in Grid Environments”, Tech. Rep. ES-661/04,

COPPE/Sistemas - UFRJ, 2004. Relatório Técnico.

[147] VARGAS, P. K., DUTRA, I. D. C., GEYER, C. F., “Gerenciamento hierárquico de

aplicações em ambientes de computação em grade”, In: Escola Regional de Alto

Desempenho (ERAD 2004), (Pelotas, RS), 13 a 17 de janeiro 2004.

[148] WATSON, P., “Databases and the Grid”, UK e-Science Programme Technical Re-

port Series UKeS-2002-01, National e-Science Centre, February 2002. Docu-

ment produced by “Database Access and Integration Services Working Group"of

Global Grid Forum. Available at http://www.cs.man.ac.uk/grid-db/

papers/dbg.pdf.

[149] WELCH, V., SIEBENLIST, F., FOSTER, I., et al., “Security for grid services”, In:

12th IEEE International Symposium on High Performance Distributed Computing

(HPDC’03), (Seattle, Washington), pp. 48–57, June 22–24 2003.

[150] WHITE, B. S., WALKER, M., HUMPHREY, M., et al., “LegionFS: A secure and

scalable file system supporting cross-domain high-performance applications”, In:

Proceedings of the 2001 ACM/IEEE conference on Supercomputing (Supercomput-

ing ’01), (Denver, USA), November 2001.

[151] WOLFE, M., High-Performance Compilers for Parallel Computing. Addison Wes-

ley, 1996.

[152] WRIGHT, D., “Cheap cycles from the desktop to the dedicated cluster: combining

opportunistic and dedicated scheduling with condor”, In: Proceedings of the Con-

ference on Linux Clusters: The HPC Revolution, (Champaign - Urbana, IL, USA),

June 2001.

[153] “The WS-Resource Framework”, 2005. http://www.globus.org/wsrf/.

149

[154] YAMIN, A., AUGUSTIN, I., BARBOSA, J., et al., “ISAM: a pervasive view in

distributed mobile computing”, In: Proceedings of the IFIP TC6 / WG6.2 & WG6.7

Conference on Network Control and Engineering for QoS, Security and Mobility

(NET-CON 2002), pp. 431–436, October 23–25 2002.

[155] YAMIN, A., AUGUSTIN, I., BARBOSA, J., et al., “Towards Merging Context-

aware, Mobile and Grid Computing”, International Journal of High Performance

Computing Applications, v. 17, n. 2, pp. 191–203, June 2003.

[156] YAMIN, A., BARBOSA, J., SILVA, L. C. D., et al., “A framework for exploit-

ing adaptation in high heterogeneous distributed processing”, In: Proceedings of

the XIV Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD), (Vitória, ES, Brasil), October 28–30 2002.

[157] YAMIN, A. C., Arquitetura para um Ambiente de Grade Computacional Dire-

cionado às Aplicações Distribuídas, Móveis e Conscientes do Contexto da Com-

putação Pervasiva. PhD thesis, II/UFRGS, Porto Alegre, RS, Brasil, 2004.

[158] YANG, T., GERASOULIS, A., “DSC: Scheduling Parallel Tasks on an Unbounded

Number of Processors”, IEEE Transactions on Parallel and Distributed Systems,

v. 5, n. 9, pp. 951–967, 1994.

[159] YU, J., BUYYA, R., “A Taxonomy of Workflow Management Systems for Grid

Computing”, Technical Report GRIDS-TR-2005-1, Grid Computing and Dis-

tributed Systems Laboratory, University of Melbourne, Australia, March 2005.

[160] ZHAO, Y., HU, Y., “GRESS – a grid replica selection service”, In: ISCA 16th

International Conference on Parallel and Distributed Computing Systems PDCS-

2003, August 2003.

150

