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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

REVISÃO EFETIVA DE PROGRAMAS LÓGICOS (BAYESIANOS) A PARTIR

DE EXEMPLOS

Aline Marins Paes

Setembro/2011

Orientadores: Gerson Zaverucha

Vítor Manuel de Morais Santos Costa

Programa: Engenharia de Sistemas e Computação

Revisão de Teorias a partir de exemplos visa melhorar teorias geradas auto-

maticamente ou de�nidas por um especialista. Vários sistemas de revisão de teorias

foram projetados com sucesso no passado, porém eles não tem sido mais vastamente

utilizados. Argumentamos que a principal razão para esse fato é a ine�ciência destes

sistemas. Esta tese contribui na construção de sistemas de revisão de teorias prati-

cáveis. Para tanto, utilizamos técnicas de Programação em Lógica Indutiva (ILP)

e Busca Local Estocástica para reduzir o espaço de busca gerado por um sistema

de revisão de teorias de pimeira-ordem e mostramos experimentalmente que ele se

tornou tão e�ciente quanto um sistema de ILP padrão porém gerando teorias mais

acuradas. Apresentamos também uma aplicação com o jogo do xadrez que é re-

solvida com sucesso através de revisão de teorias, em constraste com o aprendizado,

que falha em adquirir a teoria correta. Como ILP manipula bem domínios multi-

relacionais mas falha em representar incerteza, há um grande interesse em juntar

aprendizado relacional com mecanismos de raciocínio probabilístico. Recentemente,

contribuímos com um sistema de revisão de teorias probabilísticas de primeira or-

dem, chamado PFORTE. Apesar de apresentar resultados promissores em domínios

arti�ciais, PFORTE enfrenta a complexidade de buscar e executar inferência pro-

babilística em grandes espaços, fazendo com que o mesmo não seja passível de ser

aplicado em domínios do mundo real. Assim, a segunda maior contribuição dessa

tese é endereçar os pontos de gargalo do processo de revisão lógico probabilístico.

Nós agregamos técnicas de ILP e modelos grá�cos probabilísticos para reduzir o

espaç de busca do processo de revisão e da inferência probabilística. O novo sistema

de revisão foi aplicado com sucesso em domínios do mundo real.
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Abstract of Thesis presented to COPPE/UFRJ as a partial ful�llment of the

requirements for the degree of Doctor of Science (D.Sc.)

ON THE EFFECTIVE REVISION OF (BAYESIAN) LOGIC PROGRAMS
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Aline Marins Paes

September/2011
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Theory Revision from Examples is the process of improving user-de�ned or

automatically generated theories, guided by a set of examples. Despite several suc-

cessful theory revision systems having been built in the past, they have not been

widely used. We claim that the main reason is the ine�ciency of these systems. This

thesis contributes with the design of feasible theory revison systems. To do so, we

introduce techniques from Inductive Logic Programming (ILP) and from Stochastic

Local Search to reduce the size of each individual search space generated by a FOL

theory revision system. We show through experiments that it is possible to have a

revision system as e�cient as a standard ILP system and still generate more accu-

rate theories. Moreover, we present an application involving the game of Chess that

is successfully solved by theory revision, in constrast with learning from scratch that

fails in correctly achieving the required theory. As ILP handles well multi-relational

domains but fails on representing uncertain data, there is a great recent interest in

joining relational representations with probabilistic reasoning mechanisms. We have

contributed with a probabilistic �rst-order theory revision system called PFORTE.

However, despite promising results in arti�cial domains, PFORTE faces the com-

plexity of searching and performing probabilistic inference over large search spaces,

making it not feasible to be applied to real world domains. Thus, the second major

contribution of this thesis is to address the bottlenecks of probabilistic logic revision

process. We aggregate techniques from ILP and probabilistic graphical models to

reduce the search space of the revision process and also of the probabilistic infer-

ence. The new probabilistic revision system was successfully applied in real world

datasets.
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Capítulo 1

Introdução

Inteligência arti�cial se concentra em construir programas de computador que re-

solvem problemas que requerem inteligência quando resolvidos por um ser humano.

Como uma entidade inteligente deve ser capaz de aprender, construir programas

que podem aprender ocupa um papel central em inteligência arti�cial. Esta tarefa é

estudada na área de aprendizado de máquina, cuja principal meta é construir pro-

gramas de computador que podem melhorar seu comportamento automaticamente

de acordo com sua experiência (MITCHELL, 1997). Algoritmos tradicionais de

aprendizado de máquina aprendem a partir de exemplos independentes e homogê-

neos, descritos como pares de atributo-valor, em formato proposicional. Entretanto,

em muitas aplicações do mundo real, os dados são multi-relacionados, altamente

estruturados e amostrados a partir de relações complexas. Consequentemente, al-

goritmos proposicionais não são apropriados para aprender a partir de tais dados.

Nesse caso, formalismos como lógica de primeira-ordem são mais adequados para

representar tais dados do que o clássico formato proposicional.

Programação em Lógica Indutiva (ILP) (MUGGLETON, 1992),

(MUGGLETON, DE RAEDT, 1994) é o processo de aprender automaticamente

teorias lógicas de primeira-ordem a partir de um conjunto de exemplos e conheci-

mento preliminar �xo, ambos escritos como programas lógicos. ILP oferece várias

vantagens. Com esse paradigma, é possível aprender a partir de uma linguagem

expressiva, de fácil entendimento para os humanos. Além disso, o conhecimento

preliminar é uma ferramenta útil para guiar o processo de aprendizado. Um grande

número de algoritmos e sistemas tem sido desenvolvidos para aprender nesse con-
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texto. Exemplos populares incluem FOIL (QUINLAN, 1990), Progol (MUGGLE-

TON, 1995b), Claudien (DE RAEDT, 1997), Aleph (SRINIVASAN, 2001a), Tilde

(BLOCKEEL, DE RAEDT, 1998), entre muitos outros. ILP tem sido aplicada com

sucesso em uma grande quantidade de aplicações, envolvendo principalmente quimio

e bio-informática (MUGGLETON, et al., 1992), (BRATKO, KING, 1994), (SRINI-

VASAN, et al., 1997b), (SRINIVASAN, et al., 2006), (TAMADDONI-NEZHAD,

et al., 2006), (SRINIVASAN, KING, 2008). A maioria dos sistemas de ILP apren-

dem uma cláusula de cada vez, empregando uma abordagem de cobertura: após

aprender uma cláusula, exemplos positivos cobertos por tal cláusula são removidos

do conjunto de exemplos, tal que somente exemplos positivos não cobertos per-

maneçam para serem explicados por novas cláusulas.

1.1 Revisão de Teorias Lógicas de Primeira-ordem

a Partir de Exemplos

Sistemas de ILP consideram o conhecimento preliminar como correto. Entretanto,

existem situações nas quais o conhecimento preliminar disponível está incompleto ou

somente parcialmente correto. Uma teoria pode ter sido de�nida por um especialista

do domínio, que baseia-se em suposições incorretas ou somente tem um entendimento

parcial, embora útil, do domínio. Ou pode ser o caso que novos exemplos, que não

podem ser explicados pela teoria corrente, se tornaram disponíveis. Ainda, pode ser

o caso que uma teoria considerando um domínio especí�co foi aprendida ou de�nida

por um especialista e agora seria útil transferi-la para um domínio relacionado ao

anterior. Em todos esses casos, uma vez que a teoria inicial provavelmente contém

informação importante, é desejável obter vantagens da mesma como um ponto de

partida para o processo de aprendizado, e repara-la ou mesmo melhorá-la. Ideal-

mente, essa abordagem deveria acelerar o processo de aprendizado e obter teorias

mais acuradas.

Vários sistemas de re�namento de teorias tem sido propostos em direção a essa

meta (SHAPIRO, 1981), (MUGGLETON, 1987), (WOGULIS, PAZZANI, 1993),

(WROBEL, 1994), (ADÉ, et al., 1994), (WROBEL, 1996), (RICHARDS, MOONEY,

1995), (GARCEZ, ZAVERUCHA, 1999), (ESPOSITO, et al., 2000). Tais sistemas

2



assumem que a teoria inicial é aproximadamente correta. Então, somente alguns

pontos (cláusulas e/ou literais) previnem a teoria de modelar corretamente a base

de dados. Portanto, deveria ser mais efetivo buscar por tais pontos na teoria e

revisá-los, do que usar um algoritmo que aprende uma nova teoria sem efetuar re-

visões.

Assim, sistemas de revisão de teoria operam buscando por pontos de revisão,

que são cláusulas ou literais considerados como responsáveis por falhas na teo-

ria, e então propondorevisões para esses pontos usando para tanto operadores de

revisão. Dessa forma, sistemas de revisão de teorias re�nam teorias inteiras ao

invés de cláusulas individuais. Apesar das vantagens de re�nar teorias inteiras

(BRATKO, 1999), infelizmente o espaço de busca de hipóteses candidatas é usual-

mente muito grande.

Considere, por exemplo, o sistema FORTE (RICHARDS, MOONEY, 1995),

que revisa automaticamente teorias lógicas de primeira-ordem a partir de um con-

junto de exemplos positivos e negativos. Seu primeiro passo é buscar pelos pontos

responsáveis pela classi�cação incorreta de exemplo. Após identi�car todos os pon-

tos de revisão na teoria corrente, FORTE propõe revisões para cada um desses

pontos, usando um conjunto de operadores de revisão. Tais operadores incluem

adicionar/excluir literais do corpo de uma cláusula e adicionar/excluir cláusulas da

teoria. Finalmente, a partir do conjunto de revisões sugeridas, FORTE escolhe uma

para ser implementada e reinicia o ciclo. Normalmente, cada passo do processo

de revisão gera um grande espaço de busca, dependendo do número de pontos de

revisão e da quantidade de possíveis revisões sugeridas para cada ponto.

Assim, apesar dos vários sistemas de revisão de teoria desenvolvidos no pas-

sado, eles não são mais vastamente usados. Conforme apontado em

(DIETTERICH, et al., 2008), existem duas principais razões para isso: (1) a falta

de aplicações com uma teoria inicial substancialmente codi�cada e (2) conforme

discutido acima, o grande espaço de busca que sistemas de revisão de teoria ex-

ploram. O primeiro já não é mais um grande problema, uma vez que conheci-

mento preliminar em larga escala em áreas como biologia tem se tornado disponíveis

(MUGGLETON, 2005). Portanto, existe uma necessidade crescente de sistemas de
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revisão de teoria e�cientes, de forma que as promessas de revisão de teorias possam

ser cumpridas.

A presente tese contribui nessa direção, de obter um sistema de revisão de

teorias relacionais efetivo, tanto no caso puramente lógico como no caso relacional

probabilístico. Nós demonstramos que a busca pode ser substancialmente melhorada

ao usar técnicas como limitar o espaço de busca de novos literais pela cláusula

mais especí�ca ou ao usar técnicas de busca local estocástica, com um desempenho

comparável ou melhor do que sistemas que aprendem a partir de uma teoria inicial

vazia. Também mostramos que técnicas de revisão de teoria podem ser aplicadas

com sucesso em uma aplicação desa�ante, onde um sistema que aprende do zero não

consegue ter sucesso. A seguir, cada contribuição individual dessa tese é introduzida.

1.1.1 Contribuições em Revisão de Teorias de Primeira-ordem
a Partir de Exemplos

Nesta tese nos focamos no sistema de revisão FORTE, uma vez que ele revisa teo-

rias automaticamente a partir de um conjunto de exemplos positivos e negativos.

FORTE executa uma busca iterativa hill climbing em três passos. Primeiro, ele busca

pelos pontos na teoria corrente considerados como responsáveis pela classi�cação in-

correta de algum exemplo. A seguir, ele busca por sugestões de modi�cações em

cada ponto de revisão, considerando operadores de revisão adequados. Por último,

ele escolhe qual revisão sugerida será implementada.

O tempo de execução depende fortemente do segundo passo. Ao buscar por

possíveis modi�cações a serem implementadas na teoria, FORTE leva em consider-

ação operadores que tentam generalizar ou especializar a teoria, conforme o ponto

de revisão. Para especializar teorias, FORTE sugere simplesmente apagar regras ou

adicionar literais no corpo de cláusulas existentes. Para generalizar teorias, FORTE

ele pode excluir literais do corpo de cláusulas ou adicionar novas regras na teoria. 1.

Dependendo do número de pontos de revisão, FORTE pode levar uma grande quan-

tidade de tempo para aplicar cada operador de revisão em cada ponto de revisão. Por

outro lado, pode ser que o especialista do domínio já tenha alguma ideia ou alguma
1FORTE tem outros operadores que nós não consideramos nessa tese, a saber os operadores de

absorção e identi�cação, baseados em resolução inversa
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restrição de como a teoria poderia ser modi�cada. Por exemplo, ele/ela poderia

querer uma nova teoria que preservasse todas as cláusulas originais e portanto apa-

gar regras não seria permitido. Considerando essas questões, o sistema FORTE foi

modi�cado nesta tese tal que seja possível restringir os operadores de revisão a serem

aplicados na teoria. Primeiro, nós observamos que é possível que um operador mais

simples (por exemplo, apagar regras em comparação com adicionar antecedentes)

já alcançou a meta da revisão e portanto não seria necessário propor modi�cações

mais complexas no ponto de revisão. Segundo, nós permitimos que o usuário de�na

de antemão o conjunto de operadores de revisão que poderão ser aplicados aos pon-

tos de revisão. Assim, a primeira contribuição dessa tese é a redução da quantidade

de possíveis operadores a serem aplicados aos pontos de revisão,.

Observamos também que FORTE gasta uma grande quantidade de tempo

escolhendo literais a serem adicionados a cláusulas, a saber quando aplicando os

operadores de adição de antecedentes e adição de regras. Isso é devido principal-

mente a abordagem top-down empregada no FORTE e que originou-se no sistema

FOIL (QUINLAN, 1990). Nesta abordagem, literais são gerados a partir da base

de conhecimento, sem levar em consideração o conjunto de exemplos. A base de

dados é utilizada somente para pontuar as hipóteses geradas obtidas a partir da

adição de cada literal candidato. Por outro lado, algoritmos padrão de ILP tais

como Progol (MUGGLETON, 1995b) e Aleph (SRINIVASAN, 2001a) utilizam uma

abordagem híbrida top-down e bottom-up para re�nar cláusulas. Primeiro, eles criam

a cláusula mais especí�ca, chamada daqui em diante deBottom Clause, a partir de

um único exemplo positivo, seguindo a abordagem de implicação inversa direcionada

a modos (MDIE) (MUGGLETON, 1995b). Próximo, essa Bottom Clause variabi-

lizada de�ne o espaço de busca por possíveis literais a serem adicionados na cláusula.

Com isso, a quantidade de literais é grandemente reduzida, quando comparada com

a quantidade de todos os possíveis literais gerados a partir da cláusula corrente.

Assim, a segunda contribuição dessa tese é substituir a geração de literais oriunda

do FOIL pelo uso da Bottom Clause. Conjuntos de literais subsumindo a Bottom

Clause são pontuados e o melhor é escolhido para ser adicionado a cláusula.

Para mostrar o poder do sistema de revisão, projetamos uma aplicação desa�-
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ante e que se aplica muito bem ao processo de revisão. O objetivo da aplicação é

adquirir regras de variantes do jogo de xadrez, tendo como ponto de partida as re-

gras do xadrez internacional. A motivação para o desenvolvimento de tal aplicação

é que ao longo dos anos, o jogo do xadrez tem inspirado a criação de várias vari-

antes, ou para serem mais desa�antes para o jogador, ou para produzir uma versão

mais rápida e/ou mais fácil (PRITCHARD, 2007). Adicionalmente, existem várias

variantes regionais do jogo do xadrez, como as versões japonesa e chinesa. Ideal-

mente, se as regras do xadrez foram obtidas previamente, seria útil usá-las como

ponto de partida para obter as regras de variantes. Entretanto, tais regras pre-

cisam ser não-trivialmente modi�cadas para representar os aspectos em particular

de cada variante. Em um jogo como o xadrez, essa tarefa envolve manipular bordas

de diferentes tamanhos, introduzir ou excluir novas peças e/ou novas regras e ainda

rede�nir o papel de peças especí�cas no jogo. Para tratar este problema do ponto

de vista de revisão de teoria, foi necessário desenvolver abdução (FLACH, KAKAS,

2000a) e negação por falha (CLARK, 1978) no sistema YAVFORTE.

Apesar de ser possível melhorar o tempo do processo de revisão com as modi-

�cações propostas no penúltimo parágrafo, sem prejudicar a acurácia do sistema, o

desempenho do sistema de revisão ainda deve ser reduzido, principalmente quando

ele manipula teorias e bases de dados grandes. Ao buscar por pontos de revisão,

o sistema primeiro seleciona os exemplos por uma grande quantidade de cláusulas

e/ou existam vários exemplos classi�cados incorretamente, a busca pelos pontos de

revisão pode sair muito cara. Além disso, se após selecionar os pontos de revisão

existirem várias cláusulas a serem revisadas, várias modi�cações serão propostas

para as mesmas. A situação ainda pode �car pior se o conhecimento preliminar e a

linguagem do domínio, de�nindo predicados e declarações de modo para os mesmos,

é grande o su�ciente para produzir uma enorme Bottom Clause. Em todas essas

situações, as modi�cações descritas anteriormente podem não ser su�cientes para

conduzir a um tempo de revisão aceitável. Para tornar o sistema tratável nesse

caso, propomos abandonar a completude do sistema de buscar e alterar todos os

pontos de revisão com todos os operadores possíveis em favor de encontrar uma boa

solução em um tempo aceitável. Para tanto, fazemos uso de técnicas de busca local
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estocástica (HOOS, STÜTZLE, 2005). Componentes estocásticos são introduzidos

nas buscas chave do processo de revisão, a saber: (1) na busca por pontos de re-

visão; (2) na busca pelos literais a serem sugeridos pelos operadores para entrarem

ou saírem de cláusulas; (3) na busca da operação a ser escolhida para modi�car

a teoria. Os componentes estocásticos são incluídos como parte do sistema YAV-

FORTE, de forma que os mesmos possam ser habilitados ou desabilitados para a

execução do processo de revisão.

Em suma, a contribuição em lógica de primeira-ordem de um ponto de vista

macro é a criação do sistema YAVFORTE, mais e�ciente que o sistema FORTE ao

reduzir os vários espaços de busca produzidos pelo processo de revisão. YAVFORTE

inclui uma aplicação mais �exível dos operadores de revisão, o uso da Bottom Clause

e de declarações de modos para limitar o espaço de busca de literais, abdução e

negação por falha, e componentes estocásticos nos processos chave da revisão. O

objetivo principal é tornar o processo de revisão tão e�ciente quanto um sistema de

ILP padrão, mas obtendo teorias �nais mais acuradas.

1.2 Aprendizado Lógico Probabilístico

A aplicação com sucesso de sistemas clássicos de ILP a domínios relacionais é fre-

quentemente limitada pela necessidade de representar incerteza e informação par-

cialmente observada. Embora técnicas tradicionais de aprendizado de máquina es-

tatístico tenham a habilidade de manipular incerteza, eles não podem representar

domínios relacionais, uma vez que eles são essencialmente proposicionais.

Assim, recentemente existe um grande interesse na integração de representação

de informação relacional com mecanismos de raciocínio probabilístico. Construir

linguagens e algoritmos para aprender hipóteses nessas linguagens é o principal as-

sunto de uma nova área da Inteligência Arti�cial chamada de Aprendizado Lógico

Probabilístico (PLL), também conhecida como Programação em Lógica Indutiva

Probabilística (PILP) e fortemente relacionada com Aprendizado Estatístico Rela-

cional (SRL). PLL lida com aprendizado de máquina em domínios relacionais onde

pode existir informação perdida, somente parcialmente observada, com ruído ou in-

certa. Vários formalismos têm sido desenvolvidos nesta área nas últimas décadas,
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incluindo SLP (Stochastic Logic Programs) (MUGGLETON, 1996), PRM (Probabi-

listic Relational Models) (KOLLER, PFEFFER, 1998), BLP (Bayesian Logic Pro-

grams) (KERSTING, DE RAEDT, 2001b), CLP(BN) (Constraint Logic Program-

ming with Bayes net) (SANTOS COSTA, et al., 2003a), MLN (Markov Logic Net-

works)

(RICHARDSON, DOMINGOS, 2006), ProbLog (DE RAEDT, et al., 2007), entre

outros. Na maioria de tais sistemas, o conhecimento é representado por cláusulas

de�nidas anotadas com distribuições de probabilidade. Inferência pode ser execu-

tada ou usando um mecanismo lógico que leva em consideração as probabilidades

ou através de um modelo grá�co probabilístico, construído a partir dos exemplos e

da hipótese corrente. Este é, por exemplo, o caso dos BLPs, que generalizam ambos

programas lógicos e redes Bayesianas. Inferência é executada sobre redes Bayesia-

nas, construídas a partir de cada exemplo e cláusulas no BLP, usando a abordagem

de Construção de Modelos Baseado no Conhecimento (NGO, HADDAWY, 1997).

A maioria dos algoritmos desenvolvidos em PLL assumem que ou as hipóte-

ses são inicializadas vazias ou então elas são inicializadas com um conhecimento

preliminar, mas as regras que de�nem esse conhecimento preliminar podem ser to-

das modi�cadas, considerando que todas elas estão no mesmo nível de corretude.

Este último caso é a abordagem empregada pelo algoritmo de aprendizado de BLP.

Existe menos trabalho envolvendo a tarefa de reparar ou melhorar uma hipótese

lógica-probabilística inicial.

1.2.1 BFORTE: em Direção a um Sistema de Revisão Efetivo

Como a tarefa de aprendizado consome tempo e a hipótese pode conter informação

valiosa, a mesma poderia ser considerada como ponto de partida e então ela seria

re�nada. Idealmente, isto resultaria em um tempo de aprendizado mais rápido e

hipóteses mais acuradas. Motivados pelos benefícios trazidos pela técnica de revisão

de teorias de primeira-ordem, nós propomos recentemente revisar automaticamente

BLPs (REVOREDO, ZAVERUCHA, 2002), (PAES, et al., 2005b), (PAES, et al.,

2005a), (PAES, et al., 2006a), o que produziu um sistema chamado de PFORTE.

Aprender ou revisar hipóteses probabilísticas de primeira-ordem introduz as-
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pectos interessantes. Em PLL é conveniente ver exemplos como evidências para

variáveis aleatórias. As distribuições de probabilidade darão uma estimativa se um

exemplo deve ser associado a um valor especí�co, digamos, um valor verdadeiro ou

falso. Seguindo uma abordagem discriminativa, uma teoria deveria ser revisada se

ela falha em gerar a distribuição de probabilidade apropriada para um exemplo.

Neste caso, dizemos que o exemplo está incorretamente classi�cado. A estratégia

empregada pelo sistema PFORTE é como segue. Primeiro, ele aborda incomple-

tudes na teoria, descobrindo pontos que falham em provar exemplos. PFORTE usa

operadores de generalização para propor modi�cações para aqueles pontos, escol-

hendo o melhor para corrigir. Essa fase usa uma busca hill climbing e para quando

não é mais possível encontrar uma revisão que melhore a cobertura de exemplos.

Segundo, PFORTE usa a teoria generalizada como ponto de partida para compor

o espaço de generalizações e especializações nos pontos da teoria que falharam em

produzir a distribuição de probabilidade correta. Nesse caso, cláusulas participando

da rede Bayesiana gerada a partir de um exemplo classi�cado incorretamente são

marcadas como ponto de revisão. Após esse passo, espera-se que o sistema retorne

um BLP mais acurado.

Embora nós tenhamos demonstrado que é possível obter BLPs mais acurados

com PFORTE comparando com o aprendizado do zero, o tempo que esse sistema

gasta para executar o processo completo de revisão é proibitivo. Nós identi�camos

pelo menos três gargalos responsáveis pelo alto tempo de execução do processo de

revisão do PFORTE:

� Escolha dos pontos de revisão. O algoritmo de aprendizado de BLPs inicia

a partir de uma teoria mais geral, porém exigindo que todas as variáveis que

aparecem na cabeça da cláusula também apareçam no corpo, e então tenta

modi�car cada cláusula dessa teoria para melhorar a verossimilhança dos da-

dos. PFORTE, por outro lado, propõe modi�cações apenas nas cláusulas us-

adas para construir redes Bayesianas de exemplos classi�cados incorretamente.

Embora PFORTE reduza o número de cláusulas sujeitas a modi�cações com-

parado com o aprendizado de BLPs, PFORTE ainda seleciona várias cláusulas

para serem revisadas, uma vez que a dependência existente entre os fatos do
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exemplo faz com que várias cláusulas diferentes sejam parte da rede Bayesiana.

Muitas delas não são relevantes para a classi�cação de um nó em particular.

� Tempo de inferência. Redes Bayesianas construídas a partir de exemplos rela-

cionais devem capturar os relacionamentos entre diferentes objetos do domínio.

Esse fato, adicionado a inerente complexidade da inferência em redes Baye-

sianas torna o cálculo das distribuições de probabilidade posteriores muito

custoso. Adicionalmente, como assumimos uma abordagem discriminativa,

toda possível modi�cação sugerida para o BLP corrente é pontuado usando

uma função de avaliação que deve inferir a distribuição de probabilidade de

cada variável de consulta. Por causa desses problemas, o tempo gasto em

inferências acaba por dominar o processo de revisão.

� Geração de literais a serem adicionados na cláusula. Similar ao FORTE,

PFORTE também considera adição de literais em cláusulas em dois opera-

dores de revisão, a saber adição de antecedentes e adição de regras. PFORTE

usa a abordagem top-down do FORTE para criar novos literais. Como na

revisão de primeira-ordem, tal abordagem produz um grande número de novos

literais a serem pontuados para entrarem ou não na cláusula sendo revisada.

Nós propomos várias contribuições com o objetivo de tornar o processo de

revisão de BLPs praticável. Primeiro, observamos que o número de pontos de revisão

pode ser reduzido, já que nem todas as variáveis aleatórias na rede Bayesiana de

um exemplo classi�cado incorretamente está de fato in�uenciando a distribuição de

probabilidade de um exemplo. O ideal seria então identi�car as variáveis relevantes

para a classi�cação incorreta, tal que somente as cláusulas relativas a tais variáveis

sejam candidatas a serem modi�cadas. Com essa meta, empregamos o conceito de

d-separação (GEIGER, et al., 1990) ao usar o algoritmo Bayes Ball (SHACHTER,

1998) para identi�car variáveis relevantes a variável que representa o exemplo. Bayes

Ball é um algoritmo de tempo linear que identi�ca o conjunto de nós relevantes para

uma variável de consulta, dada evidência em algumas outras variáveis. Dessa forma,

as variáveis aleatórias consideradas relevantes são selecionadas e as cláusulas que

deram origem as mesmas na rede Bayesiana são marcadas como pontos de revisão.
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Segundo, o tempo de inferência também pode ser reduzido se forem levados

em consideração somente os nós indispensáveis para computar a distribuição de pro-

babilidade da variável de consulta, ao invés de considerar a rede inteira. Com isso,

o tempo de inferência pode ser bastante reduzido, uma vez que, normalmente, redes

Bayesianas construídas a partir de exemplos relacionais contem muitos nós. Nós

considerados como indispensáveis para uma consulta são coletados pelo algoritmo

Bayes Ball. Além disso, o procedimento de construção de redes Bayesianas de BLPs

coleta todas as provas de cada instância para construir a rede Bayesiana relativa a

um exemplo. Várias cláusulas no conjunto de provas podem compartilhar as mesmas

características: além de conter os mesmos predicados, diferentes variáveis aleatórias

que se originaram das provas também podem possuir os mesmos valores de evidência

ou a falta de evidência. Assim, nós propomos agrupar variáveis aleatórias referentes

a mesma cláusula e que possuem os mesmos valores de evidência em apenas um nó da

rede. Após separar apenas os nós indispensáveis e agrupar variáveis com caracterís-

ticas idênticas, pode acontecer que redes referentes a variáveis de consulta diferentes

tenham um comportamento idêntico. Por comportamento idêntico, queremos dizer

que os nós são originados das mesmas cláusulas Bayesianas, as evidências são as

mesmas e as matrizes que representam o grafo qualitativo da rede Bayesiana tam-

bém são idênticas. Nesse caso, essas redes são agrupadas em apenas uma, tal que

a computação da distribuição de probabilidade das diferentes variáveis de consulta

seja feita apenas uma vez.

Terceiro, e motivados pela grande redução no tempo de execução ao usar a

Bottom Clause na revisão de teorias de primeira-ordem, propomos limitar o espaço

de novos literais dos operadores de adição de antecedentes e de regras com a Bot-

tom Clause. Nesse caso, a Bottom Clause é construída a partir de um exemplo

classi�cado incorretamente, independente de sua classe.

Em resumo, de forma geral, a contribuição dessa tese na área de revisão (e

aprendizado) de modelos lógicos probabilísticos, é a criação de um sistema chamado

de BFORTE. O objetivo é o desenvolvimento de um sistema de revisão de BLPs que

seja praticável e que consiga obter resultados melhores que o aprendizado/revisão

puramente lógico.
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1.3 Publicações

As seguintes publicações surgiram a partir do trabalho conduzido durante o desen-

volvimento da tese:

� �Using the Bottom Clause and Mode Declarations in FOL Theory Revision

from Examples�, publicado no Machine Learning Journal (2009)

(DUBOC, et al., 2009). Uma versão não expandida desse trabalho foi apresen-

tada no 18th International Conference on Inductive Logic Programming (ILP-

2008)

(DUBOC, et al., 2008). As principais ideias e algoritmos de tal artigo estão

apresentadas como parte do capítulo 3 e apêndice B.

� �Chess Revision: Acquiring the Rules of Chess through Theory Revision from

Examples�, apresentado por mim no 19th International Conference on Induc-

tive Logic Programming (ILP-2009) (MUGGLETON, et al., 2009b). Uma

versão preliminar do mesmo trabalho também foi apresentada por mim no

Workshop on General Game Playing / 21st International Joint Conference on

Arti�cial Intelligence (IJCAI-09) (MUGGLETON, et al., 2009a). Uma versão

mais detalhada desses artigos é apresentada no capítulo 4 e apêndice C.

� �ILP through Propositionalization and Stochastic k-term DNF Learning�

(PAES, et al., 2006b), que eu apresentei no 16th International Conference

on Inductive Logic Programming (ILP 2006) e que me motivou a iniciar os

estudos em algoritmos de Busca Local Estocástica. Esse artigo emprega busca

local estocástica para encontrar uma hipótese após proposicionalizar o con-

junto de exemplos. As principais ideias do artigo estão na última seção do

apêndice D.

� �Revising First-order Logic Theories from Examples through Stochastic Local

Search� (PAES, et al., 2007b), que eu apresentei no 17th International Con-

ference on Inductive Logic Programming (ILP-2007). Uma versão preliminar

em português desse artigo ganhou o prêmio de melhor artigo do VI Encontro

Nacional de Inteligência Arti�cial (PAES, et al., 2007a). O apêndice E é uma
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extensão signi�cativa desses artigos, pois agora usamos a Bottom Clause para

limitar o espaço de novos literais e incluímos três componentes estocásticos a

mais em diferentes passos do processo de revisão.

� �PFORTE: Revising Probabilistic FOL Theories� (PAES, et al., 2006a), apre-

sentado por mim no 2nd International Joint Conference (10th Ibero-American

Conference on AI, 18th Brazilian AI Symposium), 2006. Esse artigo estende o

sistema PFORTE introduzido em (PAES, et al., 2005b), ao incluir operadores

de generalização no segundo passo do processo de revisão. O algoritmo jun-

tamente com as principais ideias do sistema são revistos na última seção do

apêndice F.

Durante a pesquisa para o desenvolvimento da presente tese, eu também fui

co-autora dos seguintes artigos:

� �Combining Predicate Invention and Revision of Probabilistic FOL theories�

(REVOREDO, et al., 2006), apresentado por mim no 16th International Con-

ference on Inductive Logic Programming (ILP-2006) e publicado como um

artigo curto nos anais preliminares do congresso. Esse artigo introduz dois

operadores de revisão baseados em invenção de predicados. Devido ao alto

custo desses operadores, eles não foram considerados nos experimentos dessa

tese. Uma versão estendida desse artigo foi publicada em português no VI

Encontro Nacional de Inteligência Arti�cial (ENIA-2006).

� �On the Relationship between PRISM and CLP(BN)� (SANTOS COSTA,

PAES, 2009), apresentado como poster no International Workshop on Sta-

tistical Relational Learning (SIM-2009).

� �Revisando Redes Bayesianas através da Introdução de Variáveis Não-observadas�

(REVOREDO, et al., 2009), apresentado no VII Encontro Nacional de In-

teligência Arti�cial(ENIA-2009).

1.4 Organização da Tese

A tese está organizada como segue.
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O capítulo 2 revisa conceitos preliminares necessários ao entendimento da tese.

Assim, nele inserimos uma introdução a Programação em Lógica Indutiva e Revisão

de Teorias. O desenvolvimento dos conceitos relativos a esse assunto é feito no

apêndice A, onde são apresentados conceitos básicos de ILP, incluindo o processo

de construção da Bottom Clause. Conceitos chave de revisão de teorias e uma ex-

plicação detalhada do sistema FORTE também são apresentados nesse apêndice.

Nesse mesmo capítulo, revisamos conceitos básicos de Busca Local Estocástica. En-

tão, no apêndice D é feita uma revisão cuidadosa de algoritmos de busca local

estocástica. Finalmente, a última seção desse capítulo introduz aprendizado lógico

probabilístico e então remetemos ao apêndice F para explicações detalhadas dos

principais conceitos envolvidos nesse tipo de aprendizado. Para tanto, revemos con-

ceitos essenciais de redes Bayesianas, Programas Lógicos Bayesianos e nosso sistema

de revisão PFORTE como publicado em (PAES, et al., 2005b; PAES, et al., 2006a).

O capítulo 3 introduz as contribuições da tese em revisão de teorias lógicas de

primeira-ordem a partir de exemplos. Assim, temos a primeira seção introduzindo

o sistema YAVFORTE, que inclui o uso da Bottom Clause e declarações de modo e

redução da quantidade de operadores de revisão empregados no processo de revisão.

O apêndice B traz o detalhamento dessa contribuição e introduz o sistema YAV-

FORTE. Parte desse apêndice foi publicada em (DUBOC, et al., 2008; DUBOC,

et al., 2009). A próxima seção traz uma introdução ao problema da revisão do

xadrez tradicional para obter regras de variantes do xadrez. Então, no apêndice C

apresentamos o framework desenvolvido para atingir a meta da revisão das regras

do xadrez. Abdução e negação por falha são incluídas no sistema YAVFORTE para

lidar melhor com a teoria do xadrez. Este trabalho está publicado em (MUGGLE-

TON, et al., 2009b), (MUGGLETON, et al., 2009a), (MUGGLETON, et al., 2009c).

Finalmente, introduzimos a última contribuição dessa tese no que diz respeito a re-

visão de teorias de primeira-ordem, a saber a inclusão de componentes estocásticos

no processo de revisão. O apêndice E traz o detalhamento dos componentes es-

tocásticos introduzidos em cada passo chave do processo de revisão: a de�nição dos

pontos de revisão; dos literais a serem adicionados/removidos das cláusulas ao serem

sugeridas modi�cações nos pontos de revisão e �nalmente na busca pelo operador
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a ser utilizado para implementar a revisão �nal. Parte deste trabalho foi publicado

em (PAES, et al., 2007a; PAES, et al., 2007b).

O capítulo 4 introduz o sistema BFORTE. O apêndice G detalha cada modi�-

cação introduzida no processo de revisão para torná-lo praticável, a saber, o uso da

Bottom Clause, a redução do espaço de inferência e a redução do espaço de cláusulas

a serem modi�cadas.

Finalmente a tese é concluída no capítulo 5 e também apresentamos direções

futuras de pesquisa baseadas no trabalho que desenvolvemos na presente tese.

A versão completa da tese em inglês em formato contínuo (apêndices refer-

entes a capítulos nos seus lugares apropriados) encontra-se em www.cos.ufrj.br/

~ampaes/thesis_ampc.pdf. Sistemas desenvolvidos nessa tese e bases dados us-

adas para gerar experimentos com eles estarão disponíveis em www.cos.ufrj.br/

~ampaes/theory_revision.
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Capítulo 2

Conceitos preliminares

Nesse capítulo introduzimos os conceitos básicos necessários ao entendimento

da tese.

2.1 Programação em Lógica Indutiva e Revisão de

Teorias

Aprendizado de máquina é uma sub-área da Inteligência Arti�cial que estuda

sistemas que melhoram seu comportamento com experiência ao longo do tempo

(MITCHELL, 1997). Algoritmos de aprendizado de máquina tradicionais são proposi-

cionais, buscando por padrões a partir de dados de tamanho �xo e representados

como pares de atributos-valor. Assim, tais algoritmos assumem que objetos do

domínio são homogêneos e amostrados a partir de relações simples. Entretanto, da-

dos do mundo real contem diferentes tipos de objetos e múltiplas entidades, dispostos

tipicamente em várias tabelas relacionadas.

Programação em Lógica Indutiva (ILP) (MUGGLETON, 1992), (LAVRAC,

DZEROSKI, 1994), (MUGGLETON, DE RAEDT, 1994), (NIENHUYS-CHENG,

De Wolf, 1997), (DE RAEDT, 2008), também conhecida como Mineração de Dados

Multi-relacional (DZEROSKI, LAVRAC, 2001), combina aprendizado de máquina

e programação lógica para automaticamente induzir hipóteses escritas em lógica

de primeira-ordem a partir de dados multi-relacionados. Sistemas de ILP tem

sido experimentalmente testados em uma grande quantidade de aplicações impor-

tantes (KING, et al., 1995b), (SRINIVASAN, et al., 1997a), (MUGGLETON, 1999),

(FANG, et al., 2001), (KING, et al., 2004). Teorias aprendidas em ILP representam
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elegantemente e de forma expressiva situações complexas, envolvendo um número

variável de entidades e de relacionamentos entre elas. Tais teorias são geralmente

formadas com o objetivo de discriminar exemplos positivos de exemplos negativos,

dado conhecimento preliminar. O conhecimento preliminar consiste de fatos lógicos

e/ou regras de inferência.

Algoritmos de ILP assumem que o conhecimento preliminar é �xo e correto.

Entretanto, existem situações como a chegada de novos exemplos ou a de�nição

incorreta do conhecimento preliminar que fazem com que este último contenha regras

incorretas. É então necessário modi�cá-las para que elas se tornem corretas. Essa é

a tarefa de Revisão de teorias, que tem como meta consertas as regras responsáveis

pela classi�cação incorreta de algum exemplo. No apêndice referente a esse capítulo,

revisamos as principais técnicas usadas em ILP e os conceitos chave de revisão de

teoria. Atenção especial é dada ao sistema FORTE (RICHARDS, MOONEY, 1995),

uma vez que todos os sistemas desenvolvidos nessa tese são baseados nele. O leitor

familiar com ILP e revisão de teorias pode desconsiderar o apêndice A, que contém

esse capítulo de forma completa.

2.2 Busca Local Estocástica

Buscar em grandes espaços é um problema recorrente em Ciência da Com-

putação. Para conseguir boas hipóteses enquanto ainda mantendo a busca prat-

icável, pode-se tirar vantagem de algoritmos de busca local, que iniciam gerando

hipóteses em algum ponto do espaço de busca e depois disso, s movem do ponto

corrente para um ponto na vizinhança. Cada ponto tem um número relativamente

pequeno de vizinhos e cada movimento é determinado por uma decisão baseada em

conhecimento local (HOOS, STÜTZLE, 2005). Dessa forma, algoritmos de busca

local abandonam a completude para ganhar e�ciência.

É possível melhorar ainda mais a e�ciência e também escapar de ótimos lo-

cais ao tomar decisões randomizadas quando gerando ou selecionando candidatos

no espaço de busca de um problema, através de Algoritmos de Busca Local Estocás-

tica(SLS). Uma aplicação de sucesso e que tem servido de motivação para outros

trabalhos é na checagem de satisfatibilidade de fórmulas proposicionais, através
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do algoritmos bem conhecidos GSAT (SELMAN, et al., 1992) e WalkSAT (SEL-

MAN, et al., 1996). Um grande número de tarefas em áreas como planejamento,

escalonamento e satisfação de restrições podem ser codi�cadas como um problema de

satisfatibilidade. Observações empíricas mostram que SLS podem frequentemente

melhorar a e�ciência em tais tarefas (CHISHOLM, TADEPALLI, 2002; RÜCKERT,

KRAMER, 2003).

Randomização também pode ser usada para melhorar outras estratégias de

busca, como a busca backtracking. Por exemplo, técnicas de Reinícios Aleatórios

Rápidos (RRR) introduzem um elemento estocástico em busca no estilo backtrack

para reiniciar a busca a partir de outro ponto se nenhum progresso estiver sendo

obtido (GOMES, et al., 1998; GOMES, et al., 2000). Assim, também existe um

grande interesse em aplicar técnicas de SLS em mineração de dados, e mais especi�-

camente em mineração de dados multi-relacional. Trabalhos prévios na área de fato

mostram resultados promissores de técnicas estocásticas quando aprendendo teorias

a partir do zero em sistemas de ILP (PAES, et al., 2006b; �ELEZNÝ, et al., 2006).

Para dois algoritmos bem diferentes, resultados mostraram melhoras substanciais

em e�ciência, com pouco ou nenhum custo em acurácia.

Motivados por esses trabalhos, contribuímos nessa tese com o desenvolvimento

de métodos de busca local estocástica para revisar teorias lógicas de primeira-ordem.

Então, para fundamentar nossa abordagem, apresentamos no apêndice D uma visão

global de algoritmos de busca local estocástica e de métodos estocásticos empregados

em ILP.

2.3 Aprendizado Lógico Probabilístico

Algoritmos estatísticos de aprendizado de máquina tradicionais lidam com

incerteza mas assumem que os dados são independentes e identicamente distribuí-

dos (i.i.d). Por outro lado, algoritmos relacionais de aprendizado tem a capacidade

de representar objetos relacionados com múltiplos tipos, mas eles impõem severas

limitações para representar e raciocinar na presença de incerteza. Entretanto, na

maioria das aplicações do mundo real, dados são multi-relacionais, heterogêneos, in-

certos, parcialmente observados e com ruído. Exemplos incluem dados da web, dados
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bibliográ�cos, análises de redes sociais, dados químicos e biológicos, mapeamento

de robôs, linguagem natural, entre outros (LACHICHE, FLACH, 2002), (BAT-

TLE, et al., 2004), (GETOOR, et al., 2004), (JAIMOVICH, et al., 2005), (DAVIS,

et al., 2005a), (NEVILLE, et al., 2005), (WANG, DOMINGOS, 2008), (RAGHA-

VAN, et al., 2010). Portanto, para extrair toda informação útil de bases de dados

desse tipo, é necessário usar técnicas que lidam com representações multi-relacionais

e raciocínio probabilístico. Aprendizado Lógico Probabilístico (PLL), também con-

hecido como Programação em Lógica Indutiva Probabilística (PILP) (DE RAEDT,

et al., 2008a) e Aprendizado Estatístico Relacional(SRL) (GETOOR, TASKAR,

2007) é uma área emergente da Inteligência Arti�cial, que está na interseção de

raciocínio com incerteza, aprendizado de máquina e representação de conhecimento

relacional (DE RAEDT, 2008). Como tal, PLL é capaz de lidar com aprendizado

de máquina e mineração de dados em domínios complexos, onde a informação pode

estar perdida, parcialmente observada e/ou com ruído.

Um grande número de sistemas de PLL tem sido propostos nos últimos anos,

dando origem a vários formalismos para representar conhecimento lógico e proba-

bilístico. Os formalismos podem ser divididos em várias classes (GETOOR, 2007),

mas aqui optamos por colocá-los nos dois eixos mais relevantes (DE RAEDT, et al.,

2008a): os Modelos Probabilísticos Lógicos são extensões de modelos probabilísticos

que são capazes de lidar com objetos e relações ao incluir elementos lógicos ou rela-

cionais. Tipicamente, eles constroem um modelo grá�co probabilístico direcionado

ou não, usando a lógica como modelo. Dentro dessa categoria existe um grupo

de formalismos baseados em modelos direcionados, tais como Relational Bayesian

Networks (JAEGER, 1997), Probabilistic Logic Programs (NGO, HADDAWY, 1997;

HADDAWAY, 1999), Probabilistic Relational Models (PRM) (KOLLER, PFEFFER,

1998), (KOLLER, 1999), (FRIEDMAN, et al., 1999), (GETOOR, et al., 2001),

Bayesian Logic Programs (KERSTING, DE RAEDT, 2001d), (KERSTING, DE

RAEDT, 2001b), (KERSTING, DE RAEDT, 2001a), (KERSTING, DE RAEDT,

2007), Constraint Logic Programming for Probabilistic Knowledge (SANTOS COSTA,

et al., 2003a), Hierarchical Bayesian Networks (GYFTODIMOS, FLACH, 2004),

Logical Bayesian Networks (FIERENS, et al., 2005), Probabilistic Relational Lan-
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guage (GETOOR, GRANT, 2006), etc, e um grupo composto de sistemas baseados

em modelos não direcionados, tais como Relational Markov Networks (TASKAR,

et al., 2002), Relational Dependency Networks (NEVILLE, JENSEN, 2004) eMarkov

Logic Networks (SINGLA, DOMINGOS, 2005), (KOK, DOMINGOS, 2005),

(RICHARDSON, DOMINGOS, 2006), (DOMINGOS, LOWD, 2009).

No outro eixo estão os Modelos Lógicos Probabilísticos, que são formalismos

estendendo programas lógicos com probabilidades, mas permanecendo o mais próx-

imo possível da programação lógica ao anotar cláusulas com rótulos de probabili-

dade. Nessa classe, a inferência lógica é modi�cada para lidar com os parâmetros

de probabilidade. Formalismos nessa abordagem incluem Probabilistic Horn Ab-

duction (POOLE, 1993) e sua extensão Independent Choice Logic (POOLE, 1997),

Stochastic Logic Programs (MUGGLETON, 1996), (MUGGLETON, 2000), (MUG-

GLETON, 2002), PRISM (SATO, KAMEYA, 1997; SATO, KAMEYA, 2001), SAYU

(DAVIS, et al., 2005a; DAVIS, et al., 2005b; DAVIS, et al., 2007), nFoil (LANDWEHR,

et al., 2007), kFoil (LANDWEHR, et al., 2006), ProbLog (DE RAEDT, et al., 2007),

(KIMMIG, et al., 2008), (KIMMIG, 2010), entre outros.

Na presente tese contribuímos com um algoritmo para revisar de forma prática

um modelo que generaliza de forma elegante programas lógicos e redes Bayesianas,

a saber, Programas Lógicos Bayesianos (BLP). No apêndice F, revisamos os con-

ceitos necessários para entender BLPs e revisamos também nosso sistema de revisão

PFORTE.
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Capítulo 3

Contribuições em Revisão de Teorias
Lógicas de Primeira-Ordem a Partir
de Exemplos

Nesse capítulo introduzimos as contribuições da tese referentes a revisão de teorias

de primeira-ordem a partir de exemplos. Cada seção introduz uma contribuição

distinta, bem como um resumo dos resultados obtidos com as mesmas e conclusões

a respeito dos resultados.

3.1 YAVFORTE: Um Sistema Praticável de Revisão

de Teorias a Partir de Exemplos

Sistemas de revisão de teorias a partir de exemplos induzem hipóteses mais

acuradas que sistemas de ILP que aprendem a partir do zero. Entretanto, obter

tais teorias mais acuradas vem as custas de buscar em grandes espaços de hipóteses,

principalmente porque hipóteses em revisão de teorias são teorias inteiras ao invés de

cláusulas individuais, o que é conhecido como um problema difícil (WROBEL, 1996;

BRATKO, 1999). Portanto, é essencial desenvolver sistemas de revisão de teorias

e�cientes, tal que as vantagens deles se tornem evidentes. A partir do sistema

FORTE, neste capítulo contribuímos em direção a meta de identi�car os pontos de

gargalo do processo de revisão e desenvolver algoritmos baseados no estado da arte

de algoritmos de ILP para superá-los.

O pior gargalo do processo de revisão do sistema FORTE está relacionado com
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a geração de novos literais a serem pontuados, quando uma cláusula está sendo es-

pecializada nos operadores de adição de antecedentes e de adição de regras. FORTE

segue a abordagem a abordagem top-down do sistema FOIL (QUINLAN, 1990),

considerando todos os literais criados a partir da base de conhecimento para re�-

nar cláusulas, o que leva a um espaço de busca gigantesco e termina por dominar

o processo de revisão. Ao invés de usar uma abordagem top-down ao especializar

cláusulas, sistemas de ILP como Progol (MUGGLETON, 1995a) e Aleph (SRINI-

VASAN, 2001a) restringem o espaço de novos literais àqueles pertencendo a Bottom

Clause. A Bottom Clause contem os literais relevantes a um exemplo positivo, cole-

tados a partir da técnica de Resolução Inversa Direcionada a Modos (MDIE) (MUG-

GLETON, 1995b). Essa abordagem bottom-up e top-down híbrida frequentemente

gera muito menos literais, e também garante a cobertura de ao menos um exem-

plo positivo (aquele usado para gerar a Bottom Clause). Como parte da pesquisa

desenvolvida nessa tese, em (DUBOC, 2008) e (DUBOC, et al., 2009) a Bottom

Clause foi introduzida para limitar o espaço de busca de literais no sistema FORTE.

No apêndice B referente a esse capítulo, descrevemos os algoritmos usados para usar

a Bottom Clause nos operadores citados acima. Adicionalmente, mostramos como

melhorar o processo desenvolvido em (DUBOC, et al., 2009) ao (1) fazer com que

a construção da Bottom Clause comece a partir da cláusula base sendo revisada;

e (2) usar a teoria corrente para provar literais, ao invés de considerar apenas o

conhecimento preliminar. E ainda, nesssa tese usamos as declarações de modo para

decidir se um literal pode ser excluído do corpo da cláusula.

FORTE tem seis diferentes operadores de revisão e usualmente todos eles são

usados diversas vezes em uma única iteração para sugerir modi�cações nos pontos de

revisão. Assim, o espaço formado pelos operadores de especialização e generalização

pode se tornar grande o su�ciente para que a busca seja muito cara. Entretanto,

em muitos problemas, o especialista do domínio tem alguma ideia sobre os tipos de

modi�cações que devem ser feitos na teoria para que a mesma seja consertada ou

melhorada. Esse fato pode ser usado de forma vantajosa para reduzir o espaço de

busca de operadores.

No apêndice B, que detalha esse capítulo, descrevemos uma séria de mod-

22



i�cações implementadas no sistema FORTE para resolver as de�ciências listadas

acima. O sistema resultante é chamado de YAVFORTE (Yet Another Version of

FORTE) e inclui FORTE_MBC (DUBOC, 2008; DUBOC, et al., 2009) para

de�nir o espaço de novos literais. A seguir, apresentamos os resultados obtidos

com o desenvolvimento do capítulo e conclusões a respeito dos mesmos.

3.1.1 Resultados Experimentais

Em (DUBOC, et al., 2009) demonstramos experimentalmente os benefícios de usar

declarações de modos e a Bottom Clause ao revisar teorias lógicas de primeira-ordem.

Resultados experimentais apresentaram uma diminuição de em média 50 vezes no

tempo de execução, comparado com o sistema FORTE original, sem diminuir signi-

�cativamente a acurácia. Além disso, nós mostramos naquele trabalho que o sistema

de revisão fornece teorias mais precisas e menores, em comparação com um método

padrão indutivo que também usa a Bottom Clause. Com o sistema YAVFORTE,

gostaríamos de saber se é possível diminuir ainda mais o tempo de execução do

processo de revisão, sem diminuir a acurácia. Com tal objetivo, apresentamos os

resultados obtidos com a implementação atual, variando o conjunto de operado-

res usados para revisar a teoria, em comparação com a implementação do sistema

FORTE contendo o algoritmo do FORTE_MBC e também com o sistema Aleph.

Nós comparamos a média do tempo de execução, acurácia e tamanho das teorias,

em número de cláusulas e literais.

Datasets

Nós consideramos as mesmas bases de dados utilizadas em (DUBOC, et al., 2009),

nomeadamente o conjunto de dados do domínio do Alzheimer (KING, et al., 1995a),

composto por quatro conjuntos de dados e o conjunto de dados DssTox (FANG,

et al., 2001). O domínio do Alzheimer compara 37 análogos da Tacrine, um medica-

mento que combate a doença de Alzheimer, de acordo com quatro propriedades como

descrito abaixo, onde cada propriedade origina um conjunto de dados diferente:

1. inibir a amine recaptação, composto de 343 exemplos positivos e 343 exemplos

negativos
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2. baixo tóxicidade, com 443 exemplos positivos e 443 exemplos negativos

3. inibição alta da cholinesterase, composto de 663 exemplos positivos e 663

negativos e exemplos

4. boa reversão da de�ciência de memória induzida por scopolamine, contendo

321 exemplos positivos e 321 exemplos negativos

O domínio do Alzheimer considera 33 diferentes predicados e 737 fatos no

conhecimento preliminar.

O conjunto de dados DSSTox foi extraído do banco de dados da EPA NC-

TRER DSSTox. Ele contém informações estruturais sobre um conjunto diverso de

232 estrogênios sintéticos naturais e ambientais e as classi�cações em relação à sua

atividade de ligação para o receptor de estrógeno. O conjunto de dados é com-

posto de 131 exemplos positivos e 101 exemplos negativos. Existem 25 diferentes

predicados e 16.177 fatos no conhecimento preliminar.

Metodologia Experimental

Os conjuntos de dados foram divididos em 10 conjuntos disjuntos para usar a abor-

dagem de validação cruzada estrati�cada com 10-folds. Cada subconjunto mantém a

taxa de distribuição original de exemplos positivos e negativos (KOHAVI, 1995). O

teste de signi�cância utilizado foi o teste-t pareado corrigido (NADEAU, BENGIO,

2003), com p < 0, 05. Como a�rmado em (NADEAU, BENGIO, 2003), o teste-t

corrigido leva em conta a variabilidade devido à escolha do conjunto de treinamento

e não apenas aos exemplos de teste, o que poderia levar a uma subestimação gros-

seira da variância do estimador de validação cruzada e à conclusão errada de que o

novo algoritmo é signi�cativamente melhor quando não é. Todos os experimentos

foram executados em Yap Prolog (SANTOS COSTA, 2008).

As teorias iniciais foram obtidos a partir de Aleph sistema usando três con�g-

urações:

� A primeira con�guração ajuste é executada no Aleph com seus parâmetros

padrão, exceto para minpos 1, que foi de�nido como 2 para evitar que Aleph

1O parâmetro Minpos de�ne um limite inferior no número de exemplos positivos a serem cober-
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acrescentasse à teoria cláusulas instanciadas unitárias correspondentes a exem-

plos positivos. Essa con�guração é identi�cada nas tabelas como Teoria-def.

� A segunda con�guração, denominada bf Teoria-def+cl, executa o Aleph com

seus parâmetros padrão, exceto para os parâmetros minpos e clauselength,

para de�nir um limite superior sobre o número de literais em uma cláusula. Nós

escolhemos este último parâmetro, porque a implementação do YAVFORTE

também limita o número de literais em uma cláusula aceitável. Em todos os

sistemas, o comprimento máximo é de�nido como 5 no domínio do Alzheimer

e 10 no Dsstox, seguindo trabalhos anteriores (LANDWEHR, et al., 2007).

� A terceira con�guração, Theory-best, executa o Aleph com parâmetros da

literatura (HUYNH, MOONEY, 2008; LANDWEHR, et al., 2007). Assim,

seguindo (HUYNH, MOONEY, 2008), Aleph foi de�nido para rodar con-

siderando minscore como 0.6, a função de avaliação é a estimativa M (DZE-

ROSKI, BRATKO, 1992), ruído é 300 para Alzheimers e 10 para DSStox e

tamanho máximo da cláusula e minpos são de�nidos como no parágrafo ante-

rior. O comando induce_cover foi invocado para obter a hipótese �nal, ao

invés do �induce� padrão. A diferença é que exemplos positivos cobertos por

uma cláusula não são removidos antes da semeadura de um novo exemplo ao

usar induzir_cover. Observe que somente o tamanho máximo de cláusula é

usado como parâmetro também no YAVFORTE e FORTE_MBC, uma vez

que os sistemas de revisão não possuem os outros parâmetros.

A �m de identi�car se há algum benefício em pré-de�nir o conjunto de operado-

res aplicáveis ao revisar teorias, YAVFORTE é executado com 5 diferentes conjuntos

de operadores. Quatro con�gurações consideram uma combinação de um operador

de especialização junto com um operador de generalização. A última con�guração,

identi�cada nas tabelas como Y AV FORTE considera todos os operadores.

� YAV-del considera exclusão de regras como operador de especialização e ex-

clusão de antecedentes como operador de generalização.

tos por uma cláusula aceitável. Se a melhor cláusula cobre exemplos positivos abaixo deste número,
então ela não é adicionada à teoria atual (SRINIVASAN, 2001a)
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� YAV-add considera apenas a adição de antecedentes como operador de espe-

cialização e adição de regras como operador de generalização.

� YAV-add-del considera adição de antecedentes como operador de especial-

ização e exclusão de antecedentes como operador de generalização.

� YAV-del-add considera exclusão de regras como operador de especialização

e adição de antecedentes como operador de generalização.

Ambos YAVFORTE e FORTE_MBC executam o algoritmo Relational Path�nd-

ing, seguido por Hill climbing na adição de antecedentes, quando aplicável.

As tabelas e as �guras com os resultados estão no apêndice B.

Considerações a respeito dos resultados A partir dos resultados, podemos

concluir o seguinte:

� YAVFORTE é sempre mais rápido do que FORTE_MBC e até mesmo pro-

duz teorias mais acuradas, com diferença signi�cativa em quatro casos. Há

dois casos em que YAVFORTE retorna teorias piores do que FORTE_MBC:

Choline e DSSTox com os parâmetros do Aleph da literatura. No restante

dos casos, ambos os sistemas produzem resultados com acurácias similares. A

diferença de tempo se deve principalmente ao fato de que YAVFORTE pode

parar de propor alterações sem o uso de todos os operadores, quando um ope-

rador mais simples já atinge o potencial do ponto de revisão. Além disso, há

algum ganho no tempo ao incluir termos da cláusula base na Bottom Clause

antes da mesma ser gerada da forma padrão. Lembre-se que FORTE_MBC

uni�ca os termos da cláusula base e da Bottom Clause só depois que a Bottom

Clause é construída. Sobre a diferença de acurácia, há dois fatores responsáveis

por isso: (1) parar de propor revisões antes de tentar todos os operadores po-

dem fazer com que a revisão deixe de lado alguma revisão que poderia ser

melhor para o conjunto de teste. Este é o caso do conjunto de dados Choline;

também, o operador de exclusão de antecedentes do YAVFORTE não tenta

eliminar a prova de todos os exemplos negativos; ao invés disso, ele exclui

antecedentes seguindo um valor de pontuação. Enquanto este operador mais
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�exível é capaz de produzir resultados mais precisos nos quatro casos anterior-

mente mencionados, também é responsável pela pior revisão da teoria DSSTox.

No entanto, na maioria dos casos, YAVFORTE é capaz de revisar as teorias

tão bem quanto FORTE_MBC (sem diferença signi�cativa) com um tempo

de execução reduzido.

� Observe que os resultados do conjunto de dados Choline usando FORTE_-

MBC são, na maioria das �guras destacadas do resto. FORTE _MBC tem

mais di�culdade de revisar as teorias geradas a partir deste conjunto de dados

do que nos outros conjuntos de dados por duas razões principais: esse é o

conjunto de dados com o maior conjunto de exemplos e as teorias geradas a

partir do Aleph para ele têm o maior tamanho.

� YAVFORTE considerando apenas exclusão de antecedentes e exclusão de re-

gras como operadores de revisão atinge o tempo de revisão mais rápido e

produz as menores teorias. O que é interessante sobre essa con�guração é que,

com raras exceções (Choline com os melhores parâmetros do Aleph e DssTox),

os resultados mostram que usar apenas ambos operadores fazem com que o

sistema seja capaz de proporcionar melhorias signi�cativas sobre a teoria ini-

cial. Na verdade, no Toxic com os parâmetros da literatura no Aleph, essa

con�guração é a única oferecendo o melhor da revisão: a teoria �nal é a menor

e mais acurada e ainda foi revisada em menos tempo.

� Os resultados indicam que há benefícios de se considerar apenas um subcon-

junto dos operadores de revisão: na maioria dos casos obtêm-se teorias tão

acuradas e em menos tempo quanto aquelas obtidas ao considerar todos os

operadores. Assim, quando o perito da aplicação tem algumas dicas sobre o

que esperar da teoria revisada, ele poderia usar esse conhecimento para reduzir

o conjunto de operadores aplicável à revisão.

� É importante ressaltar que YAVFORTE considerando qualquer conjunto de

operadores é mais rápido do Aleph em 11 dos 15 casos, com a maioria das

con�gurações ainda retornando teorias mais acuradas. Com esse resultado,
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podemos a�rmar que obtivemos um sistema de revisão capaz de se comportar

melhor do que um sistema indutivo, considerando-se tanto tempo de execução

e acurácia.

3.1.2 Conclusões

Embora a pesquisa em revisão de teorias tenha ganhado muita atenção na década

de 1990, nos últimos anos a comunidade de ILP praticamente deixou de lado a

investigação nesta área, já que os benefícios de revisar teorias não podiam compensar

o esforço despendido pelo grande tempo de execução desses sistemas. Este capítulo

contribui para a mudança deste cenário, com base no sistema de revisão FORTE.

Primeiro, em (DUBOC, et al., 2009) nós, abandonamos a busca top-down de literais

com base no FOIL, a �m de utilizar a Bottom Clause, para reduzir o conjunto de

literais levados em consideração ao re�nar uma teoria, como sistemas padrão de ILP

fazem.

Nesse capítulo, melhoramos a escalabilidade do sistema de revisão ao (1)

fazendo o uso de operadores de revisão mais �exível, uma vez que é possível es-

colher quais os operadores vão ser considerados para revisar a teoria, (2) parar de

propor revisões em um ponto de revisão, assim que um simples operador já atingir

todo o potencial do ponto; (3) exigir que a cláusula re�nada continue a obedecer a

declaração de modo após um antecedente ser excluído. Além disso, também intro-

duzimos uma modi�cação no operador de exclusão de antecedentes, uma vez que

no FORTE original e FORTE_MBC um antecedente somente poderia ser excluído

quando nenhum dos exemplos negativos não provados se tornassem provados. Foi

necessário fazer esta exigência mais �exível porque há casos em que o conjunto de

exemplos falso negativos só é reduzido se a cláusula é permitida também cobrir al-

guns exemplos que antes eram verdadeiros negativos. Finalmente, modi�camos o

procedimento de construção da Bottom Clause do FORTE_MBC de duas maneiras:

(1) os termos da cláusula base instanciada são considerados como parte da Bottom

Clause, de modo que eles podem ser usados para trazer termos adicionais para a

Bottom Clause, e também para tornar desnecessário uni�car a cláusula base com a

Bottom Clause depois que esta última é construída, (2) a teoria corrente é levada
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em conta para provar literais a serem incluídas na Bottom Clause. Chamamos o

sistema, incluindo todos esses desenvolvimentos de YAVFORTE.

Resultados experimentais foram extraídos a partir de cinco conjuntos de dados

relacionais de referência, ou seja, quatro conjuntos de dados do domínio do Alzheimer

e o conjunto de dados DSSTox. Através deles, foi possível veri�car que o processo

de revisão pode ser de fato melhorado com as modi�cações propostas. YAVFORTE

é mais rápido que FORTE_MBC sem diminuir a acurácia. Na verdade, houve

casos em que a acurácia foi melhorada, considerando a teoria inicial. Também

foi possível ver que ao usar um conjunto de operadores de revisão mais �exível,

o tempo de execução é diminuído, enquanto a acurácia inicial ainda é melhorada,

embora não tanto como quando o conjunto completo de operadores é considerado.

Mais importante, nós mostramos que, quando o mesmo valor de parâmetro para

limitar o tamanho de uma cláusula é usado para a revisão e para o aprendizado a

partir do zero, a revisão executa mais rápido que o método indutivo. Dessa forma,

alcançamos nosso objetivo de elaborar um sistema de revisão tão e�ciente quanto um

sistema indutivo padrão, ao menos quando conjuntos de dados de tamanho regular

são usados.

Os conjuntos de dados utilizados neste capítulo não são considerados como ro-

bustos. Portanto, ainda precisamos veri�car como se comporta o sistema de revisão

quando os conjuntos de dados tem um grande número de exemplos e/ou conheci-

mento preliminar de grande porte. Além disso, como o sistema de revisão inicia o

aprendizado a partir de uma teoria inicial, se esta tem um grande número de cláusu-

las problemáticas, o sistema provavelmente vai se comportar mal. Nesse caso, pode

ser bem mais difícil de fazer a revisão do que aprender a partir do zero, uma vez que a

revisão tenta propor modi�cações para cada cláusula defeituosa. Em virtude desses

problemas, no capítulo 6 investigamos técnicas de busca local estocástica aplicada

ao processo de revisão.

29



3.2 Revisão no Xadrez: Adquirindo as Regras de

Variantes do Xadrez através de Revisão de Teo-

rias de Primeira-ordem a Partir de Exemplos

No recente artigo (DIETTERICH, et al., 2008), os autores apontam que

existiu um esforço considerável no desenvolvimento de sistemas de revisão de teorias

no passado, mas que a falta de aplicações adequadas a essa tarefa fez com que

tais sistemas não fossem amplamente implantados. Nesse capítulo pretendemos

contribuir na direção de projetar uma aplicação na área de jogos que se encaixa

perfeitamente em revisão de teorias.

Jogar é uma atividade humana fundamental e tem sido um tópico de muito

interesse na comunidade de Inteligência Arti�cial desde o começo da área. Jogos

frequentemente seguem rituais ou regras em domínios bem de�nidos, e portanto sim-

pli�cam a tarefa de representá-los como programas de computador. Por outro lado,

um bom desempenho em jogos requerem uma quantidade signi�cante de raciocínio,

fazendo com que essa área seja uma das melhores formas de testar inteligência simi-

lar a humana. A saber, bases de dados baseadas em jogos são testes de mesa comuns

para sistemas de aprendizado de máquina (FÜRNKRANZ, 2007). Usualmente, sis-

temas de aprendizado de máquina são usados para aprender dois tipos diferentes de

tarefas envolvendo jogos (FÜRNKRANZ, 1996). Uma primeira tarefa é aprender

um modelo a ser usado para decidir se um movimento no jogo é permitido ou não.

Ter tal modelo é fundamental para a segunda tarefa, que é aprender uma estratégia

vencedora (BAIN, MUGGLETON, 1994; SADIKOV, BRATKO, 2006). Na presente

tese, nós focamos na primeira tarefa. Com o objetivo de adquirir uma representação

signi�cativa para o conjunto de regras descrevendo um jogo, pode-se tirar vantagem

da expressividade da lógica de primeira-ordem e sua habilidade de representar indi-

víduos, suas propriedades e os relacionamentos entre eles. Assim, usando métodos

de ILP é possível - rudemente falando - induzir as regras do jogo escritas como um

programa lógico, a partir de um conjunto de exemplos e conhecimento preliminar.

Um trabalho anterior demonstrou a viabilidade de usar ILP para induzir uma

descrição baseada em regras do jogo do xadrez (GOODACRE, 1996). Entretanto,
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para aprender efetivamente a teoria do xadrez, é necessário induzir não somente o

conceito de legalidade de alto nível, mas também sub-conceitos para ajudar a clas-

si�car o movimento em legal ou ilegal. Considere, por exemplo, a Figura 4.1. No

primeiro caso, um rei está em cheque e portanto seu conjunto de movimentos permi-

tidos nesse momento são aqueles para sair do cheque. No segundo caso, uma peça

está protegendo o rei (ela é um pin). Tal peça só pode ser movida para posições

onde o rei continue protegido. Os conceitos de cheque e pin não são conceitos de

alto nível, pois uma peça não pode decidir se o movimento pretendido é permitido

apenas com base nos mesmos. Entretanto, eles são conceitos intermediários que

também devem ser induzidos pelo sistema. Os autores de (GOODACRE, 1996)

empregaram indução hierárquica para aprender um conceito de cada vez, iniciando

do conceito de mais baixo nível (nenhum outro conceito depende dele) e incremen-

talmente adicionando as de�nições aprendidas para a teoria, tal que fosse possível

aprender conceitos de nível intermediário e de mais alto nível.

Figura 3.1: Exemplos de situações em que um sistema de ILP deve aprender
de�nições de conceitos intermediários. A Figura mostra um tabuleiro de xadrez
com um rei em cheque. A Figura (b) mostra uma peça atuando como um pin.

Por outro lado, jogos são ambientes dinâmicos, onde suas regras estão sempre

sendo atualizadas para digamos, ser mais desa�ante para o jogador, ou para produzir

uma versão mais rápida e/ou mais fácil do jogo original. De fato, jogos populares

frequentemente tem diferentes versões regionais, que podem ser consideradas como

variantes ou mesmo novas versões do jogo. Considere, por exemplo, o jogo do

xadrez, sem dúvida o jogo de tabuleiro mais jogado no mundo. Existem diversas

variantes do xadrez, onde uma variante é de�nida como qualquer jogo que é derivado,
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relacionado ou inspirado pelo xadrez, tal que a captura do rei inimigo seja o objetivo

principal (PRITCHARD, 2007). Por exemplo, considere o jogo Shogi (HOOPER,

WHYLD, 1992), que é a versão japonesa mais popular do xadrez. Embora ambos

os jogos tenham regras similares e a mesma meta, eles também diferem em aspectos

importantes. Por exemplo, no Shogi uma peça capturada pode trocar de lado e

retornar ao tabuleiro 2, o que não é permitido no xadrez internacional. A Figura 4.2

mostra tabuleiros de várias variantes do xadrez. Idealmente, se as regras de uma

variante do jogo foram obtidas anteriormente, gostaríamos de tirar vantagem delas

como um ponto de partida para obter as regras de uma outra variante. Entretanto,

tais regras precisam ser modi�cadas para representar os aspectos particulares da

variante. Em um jogo como o xadrez essa é uma tarefa complexa, que pode requerer

manipular tabuleiros de diferentes tamanhos, introduzir ou excluir novas regras de

captura ou promoção e pode requerer uma rede�nição das peças no jogo.

Nós abordamos esse problema como uma instância de revisão de teorias a

partir de exemplos (WROBEL, 1996). Nessa tarefa, revisão de teorias se mostrar

bastante relacionada com Aprendizado por transferência (THRUN, 1995; CARU-

ANA, 1997), uma vez que as regras do xadrez internacional (a teoria inicial passada

para o sistema de revisão) foram previamente aprendidas usando ILP. Aprendizado

por transferência se concentra em reter e aplicar conhecimento aprendido em uma

ou mais tarefas relacionadas, para e�cientemente desenvolver uma hipótese efetiva

para uma tarefa completamente nova.

Mostraremos que é possível aprender regras para diferentes variantes do xadrez.

Para tanto, o sistema YAVFORTE foi modi�cado com (i) uma nova estratégia para

simpli�car a teoria inicial ao remover regras que não devem ser transferidas entre

as variantes; (ii) suporte a abdução e (iii) suporte a negação por falha. Experimen-

tos em variantes reais do xadrez mostram que nossa técnica pode transferir entre

variantes com tabuleiros maiores ou menores, adquirir regras não usuais e adquirir

diferentes peças. O apêndice C detalha nossas contribuições nesse tema e a próxima

seção mostra resumidamente os resultados obtidos nessa aplicação.

2É sugerido que esta regra inovativa foi inspirada pela prática de mercenários do século XVI
que trocavam sua lealdade quando capturados (PRITCHARD, 2007).
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Figura 3.2: Tabuleiros de variantes do xadrez. Na primeira linha, está o tabuleiro do
xadrez internacional; ao seu lado está o Xiangqi (xadrez chinês), seguido pelo Shogi
(xadrez japonês). Na próxima linha aparece uma das primeiras versões do jogo do
xadrez, chamado de Chaturanga (versão Hindu), seguida pelo xadrez em circulo e
uma versão mais moderna do Chaturanga, já bem similar ao xadrez internacional.
No último grupo aparecem o Shogi, xadrez anti-rei, Los Alamos e Grand xadrez,
nessa ordem.

3.2.1 Resultados Experimentais

Metodologia Experimental As variantes do Xadrez usadas nessa tese estão descritas

a seguir (PRITCHARD, 2007).

� Minixadrez Gardner. É o menor jogo de xadrez (5X5) em que todas as peças

e movimentos originais ainda são usados.

� Xadred em captura livre. Difere do xadrez Internacional ao permitir que cada

lado capture, além das peças inimigas, também as peças amigas, exceto pelo

rei.

� Xadres Neunerschach chess. É jogado em um tabuleiro 9X9, com duas peças

extras, mas sem a rainha. A primeira peça extra chama-seMarshall e se move

igual a rainha do xadrez internacional. A segunda peça extra se move como a
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rainha, mas somente duas casas e seu nome é Hausfrau.

Os resultados obtidos com as três variantes acima são exibidos no apêndice C.

3.2.2 Conclusões

Nesse capítulo contribuímos com um framework para revisar as regras do xadrez in-

ternacional com a meta de obter automaticamente as regras de variantes do xadrez,

a partir de exemplos. O framework é composto de um sistema de revisão de teorias,

as regras do xadrez internacional (expressas como a teoria inicial que é permitida a

ser modi�cada), a teoria fundamental do domínio (assumida como correta) e um ger-

ador de movimentos para a obtenção de exemplos. Nós descrevemos as modi�cações

realizadas no processo de revisão para melhor abordar a revisão do problema de

xadrez, incluindo (1) a introdução de um passo inicial para eliminar regras respon-

sáveis por exemplos negativos classi�cados incorretamente, (2) o uso de abdução em

três momentos diferentes do processo de revisão e (3) o uso de negação por falha.

Os resultados experimentais incluíram 3 variantes do xadrez, que vão desde uma

versão especializada do xadrez (minichess) para uma versão mais geral do xadrez

(incluindo um tabuleiro maior e peças novas). A revisão foi capaz de retornar teo-

rias �nais corretamente descrevendo a maioria das regras das variantes. Os casos

omissos foram devido à falta de exemplos de eventos raros durante um jogo, como

a promoção. Além disso, a teoria �nal se bene�ciaria de um procedimento de poda

para remover as cláusulas que se tornaram inúteis após a revisão.

Estamos conscientes de que os conjuntos de dados foram gerados de uma forma

bastante arbitrária, já que o número de exemplos e profundidade dos jogos foram

escolhidos de acordo com a necessidade de gerar situações necessárias para a revisão.

A melhor con�guração experimental deve incluir vários conjuntos de dados de pelo

menos tamanhos variados. Observe, contudo, que o nosso principal objetivo foi

demonstrar a capacidade do sistema de revisão adquirir as regras de variantes do

jogo, usando as regras do jogo internacional como ponto de partida. Além disso,

gostaríamos de mostrar que era necessário mudar o sistema base de revisão para

conseguir isso. Dessa forma, novas questões foram introduzidas no sistema de revisão

que também pode ser úteis para outros domínios, além do xadrez.
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Assim, como trabalho futuro, pretendemos experimentar mais o framework,

considerando conjuntos de dados de tamanhos diferentes. Gostaríamos de aplicar o

modelo a outras variantes mais complexas, ou seja, variantes regionais, como Shogi.

Shogi e diversas outras variantes do xadrez exigem o conhecimento de um conceito

inteiramente novo. A variante do xadrez conhecida como Einstein, por exemplo, tem

o conceito de rebaixamento, onde a cada vez que uma peça se move sem capturar

outra peça, ela é rebaixada a uma peça de menor valor. Tal conceito não existe

no xadrez internacional e portanto, seria necessário usar invenção de predicados

(MUGGLETON, BUNTINE, 1988) para obter as regras corretamente.

3.3 Revisando Teorias Lógicas de Primeira-ordem

com Busca Local Estocástica

Geralmente, um sistema de revisão de Teorias de Primeira-ordem executa seu

processo em três passos. Primeiro, ele busca por pontos na teoria responsáveis pela

classi�cação incorreta de algum exemplo. Segundo, ele sugere modi�cações em cada

ponto de revisão, incluindo adição e exclusão de literais em cláusulas e regras na

teoria. Finalmente, ele busca a partir dos possíveis operadores de revisão aquele

que será responsável por de fato implementar uma modi�cação na teoria corrente.

Em cada uma dessas buscas, um sistema como YAVFORTE segue uma estratégia

enumerativa, produzindo grandes espaços de busca que podem se tornar intratáveis,

de acordo com os seguintes fatores:

1. O número de exemplos classi�cados incorretamente, uma vez que o sistema de

revisão percorre as possíveis provas de cada exemplo procurando por pontos

de falha.;

2. O tamanho da teoria inicial, uma vez que toda cláusula na teoria pode ser um

potencial ponto de revisão;

3. A quantidade de cláusulas responsáveis pela classi�cação incorreta de algum

exemplo, uma vez que o sistema de revisão propõe modi�cações para cada um

deles;
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4. O tamanho da base de conhecimento e do conhecimento preliminar, uma vez

que novos literais devem ser gerados para serem adicionados nos corpos de

cláusulas, como sugestões de modi�cações a serem implementadas na teoria.

Adicionalmente, sistemas de revisão de teoria lidam com hipóteses que são

teorias inteiras ao invés de buscar por cláusulas individualmente a cada iteração.

Buscar por hipóteses compostas de teorias inteiras é conhecido como um problema

bem difícil (BRATKO, 1999). Como resultado, sistemas de revisão de teorias tradi-

cionais devem buscar em espaços extremamente grandes, podendo se tornar bastante

ine�cientes ou até mesmo intratáveis.

Os últimos anos tem mostrado que métodos de busca local estocástica, orig-

inalmente projetados para resolver problemas proposicionais combinatórios difí-

ceis (SELMAN, et al., 1992), (SELMAN, et al., 1996), (RÜCKERT, KRAMER,

2003), também podem executar bem em uma variedade de aplicações. Além disso,

combinar busca local estocástica com programação em lógica indutiva mostrou que

melhoras substanciais em e�ciência podem ser alcançadas, com pouco ou nenhum

custo em acurácia (SRINIVASAN, 2000), (PAES, et al., 2006b), (�ELEZNÝ, et al.,

2006), (MUGGLETON, TAMADDONI-NEZHAD, 2008). Tais resultados moti-

varam a contribuição deste capítulo. E além de tudo, nós levamos Trefheten's Maxim

No. 30 em alta consideração, que declara que se o espaço de busca é enorme, a única

forma razoável de explorá-lo é aleatoriamente (TREFETHEN, 1998). Assim, nossa

meta é alcançar um balanço entre e�ciência e e�cácia, ao diminui o impacto neg-

ativo dos fatores numerados acima no tempo de execução do processo de revisão.

Para tanto, sacri�camos completude para favorecer a descoberta de boas soluções

em um tempo razoável. Componentes estocásticos são incluídos nas buscas chave

do processo de revisão, a saber:

1. Busca por pontos de revisão: Uma decisão aleatória pode retornar um sub-

conjunto dos pontos de revisão ao invés de retornar todos eles.

2. Busca por literais: como as propostas de modi�cações são dominadas pela

adição e exclusão de literais de cláusulas, pode ser bené�co randomizar literais

gerados (PAES, et al., 2007a; PAES, et al., 2007b).
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3. Busca pela revisão a ser implementada: ao invés de propor todas as revisões,

podemos enumerar os operadores de revisão e escolher um aleatoriamente para

modi�car a teoria (PAES, et al., 2007b).

Experimentos preliminares com o sistema de revisão FORTE mostraram resul-

tados promissores ao incluir busca estocástica nas duas últimas buscas acima (PAES,

et al., 2007a; PAES, et al., 2007b). O apêndice E revisita aquele trabalho e mostra

como ele pode ser melhorado ao se projetar um número de busca estocástica em

cada passo do processo de revisão do sistema YAVFORTE. Observe que em (PAES,

et al., 2007a; PAES, et al., 2007b) componentes estocásticos foram introduzidos no

sistema FORTE, que não usava a Bottom Clause para limitar o espaço de novos

literais, ao contrário do presente trabalho.

3.3.1 Resultados Experimentais

Neste capítulo, gostaríamos de investigar se é possível reduzir o tempo de execução

do processo de revisão, mesmo quando o espaço de busca é maior do que o habit-

ual, pelo uso de técnicas de busca local estocástica. Assim, a grande questão que

gostaríamos de responder é se o tempo de execução do processo de revisão guiada

por algoritmos SLS, pode ser mais rápido do que a revisão tradicional, mas sem prej-

udicar a acurácia. A questão secundária é se a revisão consegue ser comparável ao

aprendizado a partir do zero em termos de tempo de execução, mas ainda alcançando

acurácias melhores. Para tanto, foram selecionados três conjuntos de dados que o

sistema YAVFORTE teve um tempo difícil para revisar. Os conjuntos de dados são

os seguintes.

Conjuntos de dados

� Pyrimidines: esse é um problema de relacionamento entre a atividade e a es-

trutura quantitativa (QSAR), envolvendo a inibição da E. Coli Dihydrofolate

Reductase por pyrimidines, que são antibióticos agindo para inibir a Dihydro-

late Reductase, uma enzima no caminho de formação do DNA (KING, et al.,

1992; HIRST, et al., 1994a). O conjunto de dados usado nesse trabalho é

composto de 2361 exemplos positivos e 2361 exemplos negativos.
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� Proteins: Envolve a tarefa de predição da estrutura secundária de uma pro-

teína. A tarefa é aprender regras para identi�car se um posição na proteína é

um (MUGGLETON, et al., 1992). O conjunto de dados possui 1070 exemplos

positivos e 970 exemplos negativos.

� Yeast_sensitivity (SPELLMAN, et al., 1998; KADUPITIGE, et al., 2009):

Esse é um conjunto de dados sobre o problema da interação do gene dayeast

Saccharomyces cerevisiae.O conjunto é composto de 430 exemplos positivos e

680 exemplos negativos e o conhecimento preliminar é composto de cerca de

170.000 fatos.

A metodologia experimental é a mesma empregada no capítulo 3. Para detal-

hes adicionais, consulte o apêndice E.

Antes de experimentar os algoritmos estocásticos com parâmetros especí�cos,

nós �zemos experimentos variando o valor dos diferentes parâmetros. Assim, vari-

amos o número máximo de pontos de revisão ao randomizar os pontos de revisão,

variamos as probabilidades dos caminhos aleatórios e variamos o número máximo

de iterações do algoritmo, quando assim era requerido. O apêndice E detalha cada

um desses experimentos.

Comparando Acurácia e Tempo de Execução dos Algoritmos Estocásticos
com Aleph e YAVFORTE sem os Componentes Estocásticos

Nessa seção, comparamos o desempenho dos algoritmos de busca local estocástica

com o estado-da-arte de um sistema de ILP e de revisão de teorias. Além de rodar

cada algoritmo estocástico individualmente, também os combinamos como segue.

1. Busca estocástica pelos pontos de revisão e busca estocástica por literais.

2. Busca estocástica pelos pontos de revisão e busca estocástica Hill climbing por

revisões.

3. Busca estocástica Hill climbing por revisões com busca estocástica por literais.

4. Busca estocástica pelos pontos de revisão com busca estocástica por literais e

busca estocástica Hill climbing por revisões.
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A partir dos resultados obtidos, seguem abaixo as conclusões mais relevantes.

� Todos os algoritmos de revisão nos três conjuntos de dados atingem acurácias

signi�cativamente melhores do que o sistema Aleph.

� Com exceção da busca gulosa por revisões, no conjunto de dados Pyrimidines,

não há diferença estatística signi�cativa entre a acurácia retornado pelo sis-

tema YAVFORTE e os algoritmos estocásticos.

� O melhor resultado de acurácia no conjunto de dados é conseguido através da

busca estocástica por literais combinada com a busca Hill climbing estocástica

por revisões, embora não seja signi�cativamente melhor que os outros.

� No conjunto de dados Proteins, os melhores resultados são obtidos pela busca

estocástica por literais e busca estocástica por literais combinado com busca

estocástica Hill Climbing por revisões.

� No conjunto de dados Proteins, a busca estocástica por pontos de revisão e a

busca estocástica gulosa por revisões atinge acurácias signi�cativamente piores,

em comparação com YAVFORTE e os melhores resultados dos algoritmos SLS.

� Ainda considerando o Proteins, não há diferença signi�cativa entre YAV-

FORTE e o resto dos algoritmos SLS.

� No conjunto de dados Yeast Sensitivity, a busca estocástica por literais e a

combinação dos três componentes estocásticos alcançam acurácias signi�cati-

vamente melhores do que YAVFORTE.

A partir desses resultados, podemos ver que os algoritmos SLS ou fornecem

acurácias melhores ou equivalentes em comparação com o sistema base YAVFORTE.

Além disso, eles são sempre muito melhores do que o sistema Aleph.

A partir dos resultados comparando tempo de execução, os seguintes aspectos

são observados.

� Conjunto de dados Pyrimidines.
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� O tempo de revisão de YAVFORTE é signi�cativamente mais lento do

que todos os outros algoritmos no conjunto de dados Pyrimidines.

� O único algoritmo signi�cativamente mais lento do que Aleph é SLS com

escapadas estocásticas para buscar revisões. Isso é provavelmente dev-

ido ao elevado número de iterações que o algoritmo precisa para obter

acurácias desejáveis.

� O algoritmo Hill Climbing estocástico por revisões combinado com a

busca estocástica por literais não apresentou diferença em relação ao

Aleph. Neste caso, a combinação destes algoritmos SLS leva mais tempo

para convergir.

� Todos os outros casos estocásticos são signi�cativamente mais rápidos do

que o Aleph.

� A maior velocidade de um algoritmo SLS, em comparação com YAV-

FORTE tem um fator de 17, enquanto a menor velocidade é de 4.

� No conjunto de dados Proteins todos os algoritmos SLS são signi�cativamente

mais rápidos do que Aleph e YAVFORTE, exceto para a busca estocástica

por literais, que é mais rápido que YAVFORTE mas não é signi�cativamente

diferente do Aleph. A maior velocidade de um algoritmo de SLS, em compara-

ção com YAVFORTE tem um fator de 16, enquanto a menor velocidade é 2X

melhor.

� No Yeast Sensitivity, o sistema Aleph é signi�cativamente mais rápido que

todos os algoritmos de revisão. Acreditamos que isto é devido ao enorme

conhecimento preliminar que esse conjunto de dados tem, o que faz com que

os testes de cobertura sejam mais lentos na revisão. Por outro lado, todos

os algoritmos SLS são signi�cativamente mais rápidos do que YAVFORTE. A

maior velocidade de um algoritmo SLS, em comparação com YAVFORTE tem

um fator de 26, enquanto a menor velocidade é 2X melhor.

A partir dos resultados, podemos concluir que com o uso de algoritmos de busca

local estocástica individualmente e, especialmente, combinando-os, é possível reduzir
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signi�cativamente o tempo de revisão e também ser mais rápido ou competitivo com

o aprendizado a partir do zero. Além disso, a acurácia alcançada por estratégias

SLS são sempre melhores do que o aprendizado a partir do zero e competitivo com

a abordagem tradicional de revisão.

3.3.2 Conclusões

Nesse capítulo, projetamos uma série de algoritmos de busca local estocástica para

explorar os espaços-chave do processo de revisão de forma mais e�ciente. Os al-

goritmos de busca local estocástica abandonam a completude para favorecer a de-

scoberta de boas soluções em um tempo razoável. A maioria deles são baseados em

caminhadas aleatórias, de modo que a escolha de seguir um movimento guloso ou es-

tocástico é feita de acordo com um parâmetro de probabilidade. Algoritmos estocás-

ticos foram implementados no sistema YAVFORTE (veja o capítulo 3 e (DUBOC,

et al., 2009)), em cada busca chave do processo de revisão.

Primeiro, um algoritmo SLS foi construído para evitar a coleta de todos os

pontos de revisão, de todos os exemplos classi�cados incorretamente. Com uma

probabilidade p, exemplos classi�cados erroneamente são randomizados e um número

pré-de�nido de pontos de revisão é gerado. A pesquisa é alternada com movimentos

gulosos, pois sem a probabilidade p todos os pontos de revisão encontrados na teoria

de cada instância classi�cada incorretamente são coletados. No entanto, através de

resultados experimentais, descobrimos que em vários casos não há necessidade de

empregar movimentos gulosos, uma vez que de�nir o parâmetro de probabilidade

em 100% já fornece bons resultados: o tempo de revisão é bastante reduzido e a

acurácia não é estatisticamente diferente em comparação com o sistema base de

revisão. O desempenho do componente estocástico na busca por pontos de revisão

é mais in�uenciado pelo parâmetro que de�ne o número de pontos de revisão que

deve ser retornado.

Em segundo lugar, os componentes SLS foram incluídos na busca por literais

a serem adicionados ou removidos de uma cláusula. A busca estocástica foi incluída

em ambos os algoritmos Hill Climbing e Relational Path�nding para especializar

cláusulas. No primeiro caso, quando o movimento é estocástico, literais da Bottom
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Clause são randomizados e o primeiro literal descoberto que melhorar a pontuação

é adicionado à cláusula. No algoritmo Relational Path�nding, caminhos criados a

partir da Bottom Clause e de um exemplo positivo são randomizados. Percebemos

a partir da avaliação empírica que, embora a busca estocástica por literais seja ca-

paz de reduzir o tempo de execução em relação a abordagem Hill Climbing gulosa

do YAVFORTE, se for executado sem os outros componentes estocásticos, não é

tão e�caz como os outros algoritmos SLS. As razões para isso são principalmente

devidas à Bottom Clause cláusula: ou ela é pequena e o componente estocástico

não faz uma muita diferença, ou ela é grande, mas nesse caso o uso de movimentos

estocásticos leva mais iterações para convergir do que a abordagem original. No-

vas abordagens podem ser investigadas para melhorar ainda mais este componente

estocástico, como pré-processamento de literais usando redes Bayesianas ou algo-

ritmos genéticos (OLIPHANT, SHAVLIK, 2008; MUGGLETON, TAMADDONI-

NEZHAD, 2008; PITANGUI, ZAVERUCHA, 2011).

Em terceiro lugar, quatro diferentes componentes estocásticos foram incluí-

dos para decidir qual revisão vai ser implementada. Três deles são baseados em

caminhadas aleatórias e um deles executa o algoritmo Simulated Annealing. Nos

resultados, foi possível ver que o algoritmo estocástico guloso ao busca por revisões,

que em ambos movimentos estocásticos e gulosos permite uma revisão com pontu-

ação piore do que a corrente ser implementada, não desempenha bem. Como uma

melhoria na pontuação não é sempre necessária, a acurácia se deteriora ao longo das

iterações. A abordagem de escapadas estocástica, que aceita movimentos ruins, mas

somente se ele não degradar tanto a pontuação, tem melhor desempenho do que a

abordagem gulosa, com boa acurácia e tempo de execução reduzido em vários casos.

No entanto, a estratégia mais simples, que com uma certa probabilidade random-

iza revisões e implementa a primeira a melhorar a pontuação, obteve os melhores

resultados globais.

As três estratégias acima foram comparadas individualmente e combinando

as melhores estratégias. A grande maioria dos casos mostrou que as abordagens

estocástica atingem acurácias melhores do que o aprendizado a partir do zero do

sistema Aleph, com tempo de execução mais rápido ou competitivos. Além disso, a
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acurácia na maioria dos casos são signi�cativamente equivalentes as do obtidas com

YAVFORTE, mas o tempo de execução é sempre muito mais rápido. No melhor

dos casos, um algoritmo SLS é de 25X mais rápido que o sistema YAVFORTE, com

acurácia equivalente.
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Capítulo 4

BFORTE: Resolvendo os Pontos de
Gargalo no Processo de Revisão de
Programas Lógicos Bayesianos

Inferência em Programas Lógicos Bayesianos é executada sobre redes construí-

das a partir de todas as provas do conjunto de exemplos. O algoritmo de aprendizado

de BLPs inicia a partir de um programa lógico maximamente geral e que satisfaça a

parte lógica dos exemplos. A seguir, re�namentos são propostos para cada cláusula,

através de adição e exclusão de literais. Dessa forma, o algoritmo de aprendizado de

BLPs requer buscar em um espaço grande de cláusulas candidatas, por um lado, e

a construção de todas as provas para construir as redes Bayesianas por outro lado.

Para cada hipótese candidata, deve-se executar inferência Bayesiana para computar

sua pontuação na presença de dados não observados.

O sistema PFORTE foi desenvolvido para obter BLPs acurados ao revisar

um BLP existente e modi�cá-lo apenas nas regras usadas em redes Bayesianas de

exemplos classi�cados incorretamente. Entretanto, apesar de resultados promissores

em domínios arti�ciais, PFORTE enfrenta gargalos similares aos do aprendizado de

BLPs e de outros algoritmos de aprendizado lógico estatístico, uma vez que PFORTE

também usa espaços de busca relacionados a programas lógicos e também executa

inferência em redes Bayesianas construídas a partir de cada exemplo relacional.

O objetivo do presente capítulo é abordar os pontos de gargalo do sistema

PFORTE. Primeiro, o espaço de possíveis re�namentos pode ser reduzido ao limitar

os novos literais a serem adicionados à cláusulas para aqueles presentes na Bottom
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Clause (MUGGLETON, 1995b; DUBOC, et al., 2009). Segundo, mostramos que

ao coletar pontos de revisão através do algoritmo Bayes Ball (SHACHTER, 1998)

fundamentalmente reduz o número de cláusulas marcadas como candidatas a serem

revisadas pelos operadores de revisão, assim como o tipo de operador que pode ser

aplicado. Terceiro, pontos de revisão lógicos e probabilísticos não são mais vistos

separadamente, evitando o custo de tratá-los em dois passos distintos do processo

de revisão. Quarto, observamos que redes construídas a partir de exemplos lógico

probabilísticos podem ter muitos literais em comum, devido a entidades compar-

tilhadas, resultando em redes conjuntas muito grandes. Assim, aplicamos métodos

para (1) agrupar cláusulas instanciadas a partir de um exemplo com características

idênticas, (2) separar nós indispensáveis para uma consulta especí�ca e executar

inferência apenas com eles e (3) sobrepor nós indispensáveis encontrados em para

instâncias diferentes. Tais métodos seguem as ideias em desenvolvimentos recentes

de inferência levantada (POOLE, 2003), (SALVO BRAZ, et al., 2005), (MEERT,

et al., 2010). Ao focar nos pontos de modi�cação realmente relevantes e capaci-

tar o processo de revisão a explorar todas as suas potencialidades, esperamos obter

um sistema de revisão de fato efetivo e praticável, conforme apontado por (DIET-

TERICH, et al., 2008) como um desenvolvimento necessário na área de SRL. O novo

sistema desenvolvido é chamado de BFORTE, se referindo a BLP, Bayes Ball and

Bottom clause.

O apêndice G detalha o desenvolvimento do sistema BFORTE.

4.1 Resultados Experimentais

Nessa seção, experimentamos o sistema de revisão BFORTE, comparando cada con-

tribuição desenvolvida neste capítulo com uma versão do sistema sem a contribuição.

Como não há implementação atual do algoritmo de aprendizado da estrutura de

BLPs, usamos nosso próprio sistema para fazer as comparações devidas. Optamos

por mostrar cada contribuição em separado, de modo que seja possível conhecer os

benefícios trazidos por elas.
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Bases de dados Conjuntos de dados usados nas comunidades de ILP e SRL foram

considerados. Eles são brevemente descritos a seguir.

1. UW-CSE é um conjunto de dados muito utilizado na comunidade de SRL

(SINGLA, DOMINGOS, 2005; RICHARDSON, DOMINGOS, 2006; KOK,

DOMINGOS, 2007). É composto por informações sobre o Departamento de

Ciência da Computação e Engenharia da Universidade de Washington. Exis-

tem 5 exemplos, onde cada um deles contém instâncias que representam uma

relação de orientação para uma linha de pesquisa diferente no departamento.

Há 113 instâncias da classe positiva e 2711 instâncias da classe negativa, e

2673 fatos.

2. Metabolism é uma base de dados fornecida pelo KDDCup2001 (CHENG,

et al., 2002b). Os dados consistem em cerca de 6910 fatos e 115 instâncias

positivas e 115 instâncias negativas. Como parte dos fatos representa a inter-

ação entre genes, as instâncias são reunidas em um mega exemplo contendo

todas as instâncias positivas e negativas.

3. Carcinogenesis é um domínio bem conhecido para a previsão de relação estrutura-

atividade (SAR) sobre a atividade em bioensaios de roedores (SRINIVASAN,

et al., 1997a). Há 162 instâncias da classe positiva e 136 instâncias da classe

negativa e 24342 fatos elas. Esse conjunto de dados é totalmente separável, já

que cada exemplo é composto de apenas uma instância.

Metodologia Experimental Os conjuntos de dados foram separados em 5 con-

juntos disjuntos para usar a abordagem de validação cruzada estrati�cada 5-folds.

Cada conjunto mantém a taxa de distribuição original de exemplos positivos e nega-

tivos (KOHAVI, 1995). Para evitar over�tting durante o processo de revisão, seme-

lhante a (BAIÃO, et al., 2003), aplicou-se 5 vezes a abordagem de validação cruzada

estrati�cada para dividir os dados de entradaem conjuntos disjuntos de treinamento

e teste e, dentro do conjunto de treinamento, aplicamos validação cruzada estrati�-

cada 2-fold para dividir os dados de treinamento em conjuntos disjuntos de treina-

mento e validação. O algoritmo de revisão monitora o erro com relação ao conjunto
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de validação após cada revisão, mantendo sempre uma cópia da teoria com a melhor

pontuação no conjunto de validação, e a melhor teoria salva é aplicada ao conjunto de

teste. O teste de signi�cância utilizado foi o teste t corrigido (NADEAU, BENGIO,

2003), com p < 0, 05.

As teorias iniciais para Carcinogenesis e Metabolism foram obtidas a partir

do sistema Aleph usando seus parâmetros padrão, exceto para o tamanho máximo

da cláusula, que é de�nido como 5, o ruído, de�nido como 30, e minpos, de�nido

como 2. Como UW-CSE é uma base de dados altamente desbalanceada, usamos a

estimativa M como função de avaliação, e o ruído de�nido como 1000.

Todos os experimentos foram executados em Yap Prolog (SANTOS COSTA,

2008) e Matlab. Para lidar com redes Bayesianas, o toolbox Bayes net (MURPHY,

2001) foi devidamente modi�cado para enfrentar as particularidades de BLPs. Re-

gras de combinação representadas em dois níveis, onde o primeiro nível (instanci-

ações diferentes da mesma cláusula) usa mdia como regra e o segundo nível (cláusu-

las diferentes com a mesma cabeça) usa mdia ponderada como função de combi-

nação. Para aprender os parâmetros, implementamos o algoritmo descida do gra-

diente discriminativo descrito em (NATARAJAN, et al., 2008), que minimiza o

erro médio quadrático. No UW-CSE, usamos o erro médio quadrático ponderado,

com o peso inversamente proporcional à distribuição das classes, de modo que os

parâmetros não favoreçam totalmente a classe negativa por causa de sua quanti-

dade de exemplos. Para realizar inferências, adaptamos o algoritmo de eliminação

de variáveis. Nós impomos um número mínimo de exemplos classi�cados incorreta-

mente como 2 para uma cláusula ser considerada como ponto de revisão, a �m de

evitar outliers. O limiar para indicar se uma instância foi classi�cada corretamente

é de�nido como 0, 5.

4.1.1 Comparando BFORTE com ILP e Revisão de Teorias
de Primeira-ordem

Em primeiro lugar, gostaríamos de saber se BFORTE consegue resultados com me-

lhor pontuação do que sistemas padrão de aprendizado em primeira-ordem. Nós

comparamos BFORTE depois de aprender os parâmetros iniciais e BFORTE de-
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pois de revisar a estrutura, com os sistemas Aleph e FORTE. As mesmas teorias

aprendidas pelo Aleph são fornecidas para ambos os sistemas de revisão.

Resultados podem ser vistos no apêndice G. A partir deles, foi possível veri�car

que BFORTE, ao revisar a estrutura inicial, pode melhorar as probabilidades dos

exemplos. Além disso, o valor �nal de pontuação é melhor do que os casos de

primeira-ordem, mostrando que é possível obter hipóteses mais acuradas quando a

incerteza é levada em consideração.

4.1.2 Melhorando o Tempo de Revisão com a Bottom Clause

Agora, gostaríamos de veri�car se a introdução da Bottom Clause para limitar o

espaço de literais pode diminuir o tempo de execução sem prejudicar a pontuação.

Para tanto, rodamos BFORTE utilizando a Bottom Clause e BFORTE usando o

algoritmo FOIL para gerar literais. Resultados do tempo de execução e pontuação

são exibidos no apêndice G. Como esperado, UW-CSE executa signi�cativamente

mais rápido quando a Bottom Clause é o espaço de busca de literais. Surpreenden-

temente, o resultado também é melhor ao usar a Bottom Clause, embora a diferença

não seja signi�cativa.

Infelizmente, não fomos capazes de coletar resultados do FOIL nos outros

dois conjuntos de dados, uma vez que o sistema computacional �ca sem memória

depois de algum tempo rodando. O motivo, além do espaço de busca muito maior

gerado para a abordagem FOIL, é que diferentemente de UW-CSE, Metabolism e

Carcinogenesis tem vários predicados com constantes de�nidas em declarações de

modo. A abordagem top-down do FOIL não pode gerar literais com constantes,

e então uma variável é colocada no lugar de uma constante possível. O problema

que ao colocar uma variável, o número de instanciações do literal pode �car muito

grande, gerando uma enorme quantidade de caminhos diferentes para a prova do

literal.

4.1.3 Seleção dos Pontos de Revisão

Neste experimento, vamos nos concentrar em saber se a abordagem do BFORTE

para selecionar pontos de revisão pode diminuir o tempo do processo de revisão.
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Devido às limitações do PFORTE e aprendizado de BLPs, principalmente em relação

ao espaço de busca de literais (seção anterior), nós comparamos o BFORTE ao

BFORTE simulando os algoritmos no que se refere à seleção de pontos de revisão.

Comparamos BFORTE com as con�gurações a seguir.

� BFORTE: esse é o sistema implementado com todas as contribuições apre-

sentadas neste capítulo: a Bottom Clause é usada para limitar o espaço de

busca de literais, os pontos de revisão são selecionados utilizando Bayes Ball

e procedimento de inferência é otimizado.

� PFORTE-like: esse caso considera a Bottom Clause para limitar o espaço

de busca de literais e o procedimento de inferência otimizado. No entanto, a

seleção dos pontos de revisão segue o sistema PFORTE, o qual considera todas

as cláusulas que aparecem na rede de uma instância classi�cada incorretamente

como pontos de revisão.

� BLP-like: esse caso considera a Bottom Clause para limitar o espaço de busca

de literais e o procedimento de inferência otimizado. No entanto, as hipóteses

candidatas a serem re�nadas incluem todas as cláusulas Bayesianas no BLP

corrente, seguindo o algoritmo de aprendizado de BLPs.

As tabelas com os resultados estão no apêndice G. O tempo de execução do

sistema BFORTE é signi�cativamente melhor do que ambos PFORTE-like e BLP-

like. PFORTE executa pior do que BLP, devido ao tamanho da rede, que em SRL

costuma ser bem grande. Nessa situação, o caso mais provável é que todas as

cláusulas sejam marcadas como ponto de revisão, mas PFORTE ainda gasta tempo

para veri�car instâncias classi�cadas incorretamente, enquanto BLP não precisa

desse passo. Apesar da pontuação �nal do BFORTE ser menor do que dos outros

sistemas, a diferença não é signi�cativa.

Infelizmente, não foi possível obter resultados com PFORTE ou BLP para o

Metabolism, pois a teoria para esse domínio tem cerca de 18 cláusulas e todas elas

eram marcadas para serem modi�cadas por todos os operadores nos demais sistemas,

o que causou problemas de memória para esses sistemas.
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Considerando o conjunto de dados do Carcinogenesis, BFORTE e PFORTE-

like se comportaram da mesma maneira, pois esse conjunto de dados é separável, o

que faz com que as redes sejam criadas apenas considerando as instâncias individuais.

4.1.4 Tempo de Inferência

Por �m, mostramos a redução no tempo de execução da inferência devido ao uso do

Bayes Ball e do agrupamento de cláusulas e redes. Note que todos os casos discutidos

anteriormente levam em conta a inferência com Bayes Ball, ao aprender ou revisar

teorias. Ao invés de executar o processo de revisão geral, optamos por executar

somente o procedimento que calcula a pontuação discriminativa para cada conjunto

de treinamento, considerando as teorias iniciais. Desta forma, somos capazes de ver

a melhora de tempo de execução na inferência sozinha, sem levar em conta as demais

particularidades do processo de revisão.

Os resultados para cada fold podem ser vistos no apêndice G. Vamos focar

primeiro no UW-CSE. O tempo de execução é reduzido por um fator de 170. A

maior redução se deve ao Bayes Ball, embora o agrupamento de nós semelhantes

também contribua. Por outro lado, a detecção de redes semelhantes não ajuda

muito na redução do tempo de execução.

O tempo de execução da inferência no Carcinogenesis não é diferente para

nenhum dos sistemas. Na verdade, na maioria dos casos, o tempo de execução

é um pouco pior, devido ao custo de execução do Bayes Ball. No entanto, para

um conjunto de treinamento em particular, ao executar a inferência sem agrupar

nós semelhantes, uma das cláusulas Bayesianas produz uma grande quantidade de

cláusulas instanciadas para fazer parte da rede �nal.

4.2 Conclusões

bordamos neste capítulo os gargalos da revisão de Programas Lógicos Bayesianos.

Mostramos através de resultados experimentos que é possível obter um sistema de

revisão viável e que fornece modelos mais precisos do que os sistemas de revisão de

teorias lógicas de primeira-ordem.

Primeiro, nos focamos na redução do espaço de busca de novos literais. O
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sistema de revisão anterior, PFORTE, gerava literais usando a abordagem do FOIL:

todos os literais criados a partir da linguagem e que tinham ao menos uma variável

em comum com a cláusula corrente eram considerados para serem adicionados à

cláusula. O espaço de busca de literais foi reduzido ao o limitarmos a Bottom Clause

de uma instância classi�cada incorretamente, e não houve prejuízo na acurácia.

Como uma única instância classi�cada incorretamente pode não carregar informação

su�ciente para gerar bons literais, pretendemos no futuro investigar o uso de várias

instâncias para criar a Bottom Clause.

Em seguida, nos focamos em reduzir o espaço de busca de cláusulas a serem re-

�nadas. O algoritmo de aprendizado de BLPs começa a partir de um conjunto inicial

de cláusulas Bayesianas e propõe modi�cações para cada uma delas. PFORTE con-

sidera todas as cláusulas utilizadas para construir a rede Bayesiana de um exemplo

onde havia uma instância classi�cada incorretamente. Ambos os sistemas geram um

grande espaço de busca que pode até mesmo tornar-se intratável. Nós mostramos que

é possível reduzir esse espaço de busca, marcando como pontos de revisão somente

as cláusulas que in�uenciam a distribuição de probabilidade calculada para instân-

cias classi�cadas incorretamente. O algoritmo Bayes Ball é usado para identi�car

essas cláusulas. Experimentos sugerem que o espaço de busca é de fato reduzido,

propondo melhorias apenas para as cláusulas pertinentes à instância classi�cada in-

corretamente. No futuro, gostaríamos de investigar com mais detalhes se é possível

reduzir o número de operadores de revisão de acordo com o ponto de revisão, como

já começamos a analisar neste capítulo.

Por �m, tentamos reduzir o grande espaço de busca de inferência, uma vez que

PLL gera redes Bayesianas para exemplos relacionais, que possuem muitas variáveis

aleatórias relacionadas. Para tanto, desenvolvemos um procedimento para consid-

erar apenas os nós identi�cados como indispensáveis pelo algoritmo Bayes Ball, para

o cálculo da distribuição de probabilidade de uma instância. Adicionalmente, reduzi-

mos o tamanho da rede, identi�cando cláusulas instanciadas, cuja única diferença são

os termos substituindo variáveis. Argumentamos que não é necessário representá-los

como nós separados na rede, o que faria o procedimento de inferência repetir vários

cálculos de distribuições de probabilidade. Além disso, identi�camos que depois
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de selecionar os nós indispensáveis, podem surgir "sub-redes", com exatamente a

mesma estrutura e evidências. Evitamos calcular as probabilidades para todas essas

redes, ao considerar apenas uma representante do grupo. Experimentos mostraram

que o tempo de inferência é de fato muito reduzido pelos algoritmos propostos.

Esse é apenas um pequeno passo na direção de trabalhos recentes sobre inferência

levantada (POOLE, 2003; SALVO BRAZ, et al., 2005; SINGLA, DOMINGOS,

2008; MILCH, et al., 2008; KOK, DOMINGOS, 2009; NATH, DOMINGOS, 2010;

MEERT, et al., 2010).

Para detalhes adicionais e trabalhos futuros nessa direção, consulte o apêndice

G.
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Capítulo 5

Conclusões Gerais e Trabalhos
Futuros

O presente capítulo sumariza as realizações desta tese e apresenta direções

para pesquisa futura no tema.

5.1 Sumário

A meta dessa tese foi contribuir com sistemas de revisão de teorias efetivos. Sem

dúvida, a principal razão para o abandono da pesquisa em revisão de teorias na

última década é o custo de buscar por revisões a serem implementadas em espaços

de busca muito grandes. Com essa tese, mostramos que é possível ter um sistema

de revisão de teoria que executa em um tempo praticável e ainda alcança teorias

mais acuradas do que o aprendizado do zero. Para tanto as seguintes contribuições

foram feitas:

No capítulo 3, contribuímos com um sistema de revisão nomeado de YAV-

FORTE, que foi construído a partir do sistema FORTE (RICHARDS, MOONEY,

1995). YAVFORTE oferece ao usuário a escolha de selecionar operadores de revisão,

tal que o número de propostas de modi�cações para uma teoria seja menor do que se

todos os operadores fossem aplicados. Foi mostrado experimentalmente que existem

vários casos em que um conjunto menor de operadores de revisão consegue alcançar

as mesmas acurácias do que se todos os operadores estivessem em uso, com a van-

tagem do tempo ser signi�cativamente reduzido. Adicionalmente, operadores de re-

visão são empregados a partir do mais simples para o mais complexo, tal que quando

um operador mais simples já for capaz de alcançar o potencial máximo do ponto de
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revisão, aplicar um operador mais complexo se torna desnecessário. Outra impor-

tante contribuição implementada como um componente do sistema YAVFORTE é

a construção da Bottom Clause (MUGGLETON, 1995b) e o uso de declarações de

modo para limitar o espaço de busca de novos literais a serem considerados para

especializar uma cláusula (DUBOC, et al., 2009). O uso da Bottom Clause reduz de

forma bastante signi�cativa o tempo total do processo de revisão, se comparado com

o sistema FORTE que gera literais seguindo o sistema FOIL (QUINLAN, 1990).

No capítulo 4 uma aplicação desa�ante baseada no jogo do xadrez foi projetada,

com o objetivo de mostrar o poder da revisão de teoria principalmente ao lidar

com predicados inter-dependentes. Foi desenvolvido um framework que inclui um

gerador de exemplos para variantes do xadrez, a teoria inicial descrevendo as regras

internacionais do xadrez, modi�cada a partir de um trabalho anterior (GOODACRE,

1996) e o sistema de revisão YAVFORTE com três importantes modi�cações: a

inclusão de um passo inicial de compressão da teoria, tal que a mesma se tornasse

mais simples para que todos os operadores fossem aplicados; o uso de estratégias

adicionais de abdução na busca por pontos de revisão e na aplicação de operadores

de revisão e suporte a negação por falha. Mostramos que após a revisão, é possível

obter teorias descrevendo variantes do xadrez, enquanto que ao aprender do zero,

considerando a teoria do xadrez como conhecimento preliminar apenas, o mesmo

não é possível. Dessa forma, também mostramos que problemas de transferência de

aprendizado podem ser manipulados através de revisão de teorias.

Finalmente, para que a revisão também se tornasse praticável em problemas

envolvendo teorias com muitas cláusulas e em bases de dados não triviais, com uma

quantidade considerável de exemplos e fatos, incluímos vários componentes estocás-

ticos no sistema YAVFORTE. No capítulo 6 explicamos detalhadamente os algo-

ritmos e espaços de busca de cada componente estocástico, que possuem em comum

o fato de encontrarem boas soluções ao invés de ótimas em um tempo razoável.Ao

randomizar pontos de revisão, operadores de revisão e literais a serem sugeridos a

saírem ou entrarem em cláusulas, conseguimos alcançar um tempo de aprendizado

de em média 25X mais rápido e com acurácias equivalentes ao sistema YAVFORTE.

Além disso, acurácias melhores e tempo de execução competitivos com um sistema
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indutivo padrão de ILP também foram alcançados.

No capítulo 8 contribuímos com um sistema praticável de revisão de Pro-

gramas Lógicos Bayesianos (BLP). Nós abordamos os pontos de gargalo do nosso

sistema de revisão anterior, chamado PFORTE, que se mostrou impraticável de ser

aplicado com bases de dados reais. Primeiro, seguindo nosso algoritmo FORTE_-

MBC (DUBOC, et al., 2009), incluímos a Bottom Clause para limitar o espaço de

novos literais no processo de revisão de BLPs, em ambos algoritmos hill climbing

e relational path�nding (RICHARDS, MOONEY, 1992). A seguir, abordamos a

seleção de pontos de revisão, ao usar o algoritmo Bayes Ball (SHACHTER, 1998)

para encontrar os nós que de fato in�uenciam uma instância prevista incorretamente.

Operadores de revisão tem como meta ou mudar a in�uência corrente ou trazer nova

in�uência através de modi�cações nas cláusulas referentes aqueles nós, tal que instân-

cias classi�cadas incorretamente possam se tornar corretas. Por último, atacamos

o espaço de inferência do sistema de revisão. Primeiro, apenas os nós considerados

como indispensáveis são levados em consideração ao computar a distribuição de pro-

babilidade de um nó. O conjunto de nós indispensáveis também é identi�cado pelo

algoritmo Bayes Ball. Segundo, cláusulas instanciadas com características idênticas

são sobrepostas na rede de um exemplo. Finalmente, conjuntos de nós indispen-

sáveis idênticos de exemplos diferentes são sobrepostos, tal que a distribuição de

probabilidade seja computada apenas uma vez para todos eles. Mostramos que com

essas otimizações o tempo de revisão é signi�cativamente reduzido, comparado com

o sistema PFORTE e também com o algoritmo de aprendizado de BLPs.

5.2 Trabalhos futuros: Revisão de Teorias de Primeira

Ordem

O tempo de execução da revisão de teorias lógicas de primeira-ordem pode ser ainda

mais reduzido se usarmos técnicas desenvolvidas em ILP para redução de complex-

idade da inferência. Por exemplo, estratégias que transformam consultas, desen-

volvidas em (SANTOS COSTA, et al., 2003b) podem reduzir o tempo de inferência

ao tornar as cláusulas mais e�cientes de serem avaliadas. Além disso, existe uma

grande necessidade de pontuar hipóteses de forma mais e�ciente, especialmente na
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presença de um grande conjunto de exemplos. Técnicas desenvolvidas para tornar o

teste de subsumption mais e�ciente (KUZELKA, ZELEZNÝ, 2008b), (KUZELKA,

ZELEZNÝ, 2008a), (SANTOS, MUGGLETON, 2011) e técnicas de aprendizado

incremental (LOPES, ZAVERUCHA, 2009) podem ajudar nessa direção.

O tempo de execução dos algoritmos estocásticos podem variar bastante, de-

pendendo das escolhas aleatórias feitas ao longo do processo de revisão. Para evitar

�car preso por muito tempo em uma busca improdutiva podem ser usadas estraté-

gias que reiniciam a busca a partir de diferentes pontos, na tentativa de retornar em

um ponto mais promissor. A estratégia desenvolvida em (�ELEZNÝ, et al., 2006)

pode ser aplicada no processo de revisão, em que depois de uma certa quantidade de

hipóteses serem avaliadas sem sucesso, a busca escolhe outro ponto para reiniciar.

Adicionalmente, busca estocástica também pode ser usada para estimar a cobertura

de cláusulas (SEBAG, ROUVEIROL, 1997).

Ainda existe a necessidade do desenvolvimento e descoberta de aplicações de-

sa�antes e que se encaixem bem em revisão de teoria, assim como �zemos com a

aplicação do xadrez. Áreas como aprendizado de gramáticas, processamento de lin-

guagem natural e biologia contem informação codi�cada o su�ciente para fornecerem

bons exemplos de problemas a serem manipulados por revisão de teoria.

5.3 Trabalhos futuros: Revisão de Modelos lógico-

probabilísticos

5.3.1 Revisão de Programas Lógicos Bayesianos

Inferência executada em redes Bayesianas podem dominar o tempo de execução do

processo de revisão, uma vez que esse é o procedimento executado mais vezes no

sistema. Mostramos nessa tese que o tempo de inferência pode ser reduzido ao

evitarmos computações repetidas e ao reduzirmos o espaço de inferência. Para me-

lhorar ainda mais o tempo de inferência, torna-se necessário explorar técnicas mais

so�sticadas de inferência levantada (POOLE, 2003), (KOK, DOMINGOS, 2009),

(KERSTING, et al., 2010). Além disso, similar ao caso de primeira-ordem, busca

local estocástica pode ser muito útil para explorar os espaços de busca dos diversos

componentes da revisão de BLPs de forma mais e�ciente.
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Na presente tese, abordamos a revisão usando um ponto de vista discrimi-

nativo: instâncias em exemplos recebem uma distribuição de probabilidade e, caso

a probabilidade da classe da instância não seja satisfatória, cláusulas Bayesianas

in�uenciando o cálculo daquela distribuição são revisadas. Uma questão que surge

é se a revisão também pode ser útil em uma abordagem generativa. Nesse caso, a

necessidade de revisão poderia ser indicada por, digamos, uma pontuação genera-

tiva baixa, como por exemplo, baixa verossimilhança. Dessa forma, exemplos não

seriam mais separados em variáveis de consulta e evidências, mas todas elas seriam

consideradas como de mesma importância, similar ao que é feito na con�guração de

aprendizado a partir de interpretações.

5.3.2 Revisão de Programas Lógicos Estocásticos

Programas Lógicos Bayesianos codi�cam distribuições de probabilidade sobre mun-

dos possíveis, ao associar distribuições de probabilidade para possíveis valores de

átomos. Programas Lógicos Estocásticos (MUGGLETON, 2002), por outro lado,

seguem uma semântica distribucional baseada na frequência do domínio

(HALPERN, 1989), ao associar distribuições de probabilidade à átomos básicos

através de árvores de prova. Um SLP é composto por um conjunto de cláusulas

estocásticas no formato p : c, onde c é uma cláusula de�nida e p é um rótulo de pro-

babilidade. A soma dos rótulos de probabilidade de todas as cláusulas com o mesmo

predicado na cabeça deve ser um. SLPs combinam programas lógicos de�nidos com

Gramáticas Probabilísticas Livres de Contexto.

Nós projetamos um sistema chamado de SCULPTOR para revisar Programas

Lógicos Estocásticos. Exemplos no SCULPTOR possuem um rótulo de probabili-

dade, da mesma forma que (CHEN, et al., 2008) e este rótulo é usado para com-

putar o erro médio quadrático (RMSE). Exemplos com alto RMSE são escolhidos

para indicar as cláusulas que precisam ser revisadas. Operadores de revisão incluem

revisão dos rótulos de probabilidade, exclusão e adição de regras. Novas cláusulas

são criadas usando unfolding (SATO, 1992) em cláusulas existentes e em cláusulas

pertencentes a uma teoria top (MUGGLETON, et al., 2008).

Um primeiro protótipo do sistema SCULPTOR está implementado, requerendo
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ainda ser testado e avaliado experimentalmente. Gostaríamos de aplicar o sistema

SCULPTOR a desa�ante tarefa de revisar estratégias de jogos.

Para �nalizar, as principais realizações dessa tese foram (1) tornar a Revisão de

Teorias a Partir de Exemplos tão e�ciente quanto Programação em Lógica Indutiva,

porém mais acurada; (2) aplicar a revisão de teorias em uma aplicação de xadrez

onde ILP padrão falha; (3) atualizar nosso sistema de revisão de Programas Lógicos

Bayesianos para que o mesmo fosse aplicado efetivamente em problemas do mundo

real. Acredito que a revisão de teorias lógicas e probabilísticas de primeira-ordem

tem potencial para manipular aplicações do mundo real mais complexas do que

as técnicas mais simples de aprendizado de máquina. Com essa tese, conseguimos

mostrar que isso pode ser alcançado em um tempo praticável.
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Appendix A: Inductive Logic
Programming and Theory Revision

Machine learning is a sub area of arti�cial intelligence which studies systems

that improve their behavior over time with experience

(MITCHELL, 1997). Standard machine learning algorithms are propositional, search-

ing for patterns from data of �xed size and represented as attribute-value pairs. In

this way, they assume the objects of the domain are homogeneous and sampled from

a simple relation. However, real data usually contain many di�erent types of objects

and multiple entities, disposed typically in several related tables. Inductive Logic

Programming (ILP) (MUGGLETON, 1992; LAVRAC, DZEROSKI, 1994; MUG-

GLETON, DE RAEDT, 1994; NIENHUYS-CHENG, De Wolf, 1997; DE RAEDT,

2008), also known as Multi-Relational Data Mining (DZEROSKI, LAVRAC, 2001),

combines machine learning and logic programming to automatically induce sets of

�rst-order clauses (theory) from multi-relational data. ILP systems have been ex-

perimentally tested on a number of important applications (KING, et al., 1995b;

SRINIVASAN, et al., 1997a; MUGGLETON, 1999; FANG, et al., 2001; KING,

et al., 2004). Theories learned by ILP elegantly and expressively represent complex

situations, even involving a variable number of entities and relationships among

them. Such theories are formed with the goal of discriminating between positive

and negative examples, given background knowledge. The background knowledge

consists of a list of logical facts and/or a set of inference rules.

ILP algorithms assume the background knowledge is �xed and correct. How-

ever, it may be the case that background knowledge also contains incorrect rules and

therefore it would be necessary to modify them so that they become correct. This

is the task of Theory revision which has as goal to �x the rules responsible for the

99



misclassi�cation of some example. In this chapter, we start by reviewing the main

techniques used in ILP community in section 1. Next, we discuss theory revision in

section 5.3.2 with special attention to the system used in this thesis, the FORTE

system (RICHARDS, MOONEY, 1995). The reader familiar with ILP and Theory

Revision may skip this chapter.

Inductive Logic Programming

Inductive Logic Programming algorithms have as goal to induce from a set of training

examples a logic program describing a relational domain, using concepts de�ned in

the background knowledge. The returned logic program will be used to classify new

examples into positive or negative, using techniques such as resolution. A brief

description of some logic programming terms can be found in Table 1 and more

details can be explored in (STERLING, SHAPIRO, 1986; LLOYD, 1987; FLACH,

1994; NILSSON, MALUSZYNKSKI, 2000). The learning problem in ILP is usually

de�ned as follows.

Tabela 1: Some standard Logic Programming terms and their de�nitions
Term De�nition

constants Symbols for denoting individuals. Following Prolog convention,
we represent constants in lower case.

variables Symbols referring to an unspeci�ed individual. Following Prolog
convention, we represent variables in upper case.

predicate Symbols for denoting relations, such as mother, loves, etc.
term They are constants, variables or functions in predicates.
atom Formulas in the form p(t1, ..., tn), where p is a predicate

and t1, ..., tn are terms.
ground atom An atom which contains no variable
clause A formula ∀(L1 ∨ ... ∨ Ln), where each Li is a an atom

(positive literal) or the negation of an atom (negative literal)
de�nite clause A clause with exactly one positive literal, in the form A0 ← A1, ..., An,

or equivalently A0 ∨ ¬A1 ∨ ... ∨ ¬An,
where n ≥ 0. A0 is the head of the clause, whereas A1, ..., An is the
body of the clause.

fact A de�nite clause where n = 0.
Horn clause A clause with at most one positive literal.
Herbrand universe The set of all ground terms constructed from functors

and constants in a domain
Herbrand base The set of all ground atoms over a domain
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De�nition .1 Given:

� A set E of examples, divided into positive E+ and negative E− examples and

� Background knowledge BK,

both expressed as �rst-order Horn clauses.

Learn:

� A hypothesis H composed of �rst-order de�nite clauses such that BK∧H � E+

(H is complete) and BK ∧H 2 E− (H is consistent), i.e., H is correct.

Figure 1 brings a schema of the learning task in ILP.

Figura 1: Schema of the learning task in ILP, where BK is background knowledge,
E is the set of positive (E+) and negative (E−) examples and H ′ is the theory
learned by the ILP system.

Often it is not possible to �nd a correct hypothesis and then the criteria BK∧

H � E+ and B ∧H 2 E− are relaxed.

101



Learning Settings in ILP

The standard learning setting previously de�ned is known as learning from entail-

ment (FRAZIER, PITT, 1993). ILP algorithms may also follow the Learning from

interpretations approach (VALIANT, 1984; ANGLUIN, et al., 1992; DE RAEDT,

D�EROSKI, 1994), where the examples are Herbrand interpretations and the goal

is to induce a true hypothesis H in the minimal Herbrand model of BK ∧E. In this

setting, it is assumed the examples are completely speci�ed. Otherwise, the learning

is done from partial interpretations (FENSEL, et al., 1995) and H must be true in

the Herbrand model created by extending BK ∧ E. The generalization of learning

from partial interpretations is called learning from satis�ability (DE RAEDT, 1997).

In this last case, it is required that H ∧BK ∧ E 2 �.

From the point of view of examples representation, there are two learning

settings (DE RAEDT, 1997):

1. Extensional ILP. An example e ∈ E is a ground atom. In this case, the whole

BK is shared by all the examples, i.e., the conditions are the same for each

example. This setting is reduced to learning from entailment.

2. Intentional ILP. An example e ∈ E is a de�nite ground clause. Each example

may have di�erent information associated to them, i.e., the BK may be di-

vided into a set of de�nite clauses shared by all examples and sets of de�nite

clauses restricted to each example. This setting is reduced to learning from

satis�ability.

Usually, ILP systems such as (MUGGLETON, 1995a), Aleph (SRINIVASAN,

2001a), FOIL (QUINLAN, 1990), TopLog (MUGGLETON, et al., 2008) learn a

single target predicate, are extensional and learn from entailment. ILP algorithms

may also be designed to learn a set of target concepts, possibly related to each other.

CLAUDIEN (DE RAEDT, 1997) learns multiple predicates from interpretations.

TILDE (BLOCKEEL, DE RAEDT, 1998) has as goal to learn relational decision

trees from complete interpretations. Hyper (BRATKO, 1999) learns multiple related

predicates from entailment. We refer the reader to (LAVRAC, DZEROSKI, 1994;

DZEROSKI, LAVRAC, 2001; DE RAEDT, 2008) for more details on ILP systems.
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Ordering the Hypothesis Search Space

In order to generalize and/or specialize hypothesis in ILP it is used the framework

of θ-subsumption. A clause c1 θ-subsumes a clause c2 if and only if ∃ a variable

substitution θ such that c1θ ⊆ c2. Due to θ-subsumption, ILP algorithms may

traverse the search space from bottom to up (generalizing the hypothesis), from

top to down (specializing the hypothesis) or even combining both specialization

and generalization strategies. Top-down ILP systems such as (SHAPIRO, 1983),

(QUINLAN, 1990) and (DE RAEDT, DEHASPE, 1997) search the hypothesis space

by considering, at each iteration, all valid re�nements to a current set of candidate

hypotheses. The hypotheses are then evaluated considering their coverage of positive

and negative examples, and also measures such as the information gain or the length

of the clauses. This strategy considers the set of examples only to evaluate the

candidate hypotheses but no to create new hypotheses.

On the other hand, algorithms following a bottom-up strategy use the exam-

ples to propose hypotheses. They start with the most speci�c hypothesis and pro-

ceed to generalize it until no further generalizations are possible, without covering

some negative examples. Usually, they are based on (1) the least general general-

ization relative to the background knowledge (RLGG) (PLOTKIN, 1971), such as

it is done in Golem system (MUGGLETON, FENG, 1990) and its descendant Pro-

Golem (MUGGLETON, et al., 2010) or (2) inverse resolution (MUGGLETON, 1987;

MUGGLETON, BUNTINE, 1988; MUGGLETON, DE RAEDT, 1994). Nowadays,

it is common to somehow combine the bottom-up and top-down strategies, in or-

der to exploit the strengths of both techniques while avoiding their weaknesses.

This is the case of systems such as Progol (MUGGLETON, 1995a), Aleph (SRINI-

VASAN, 2001a), CHILLIN (ZELLE, et al., 1994), BETH (TANG, et al., 2003) and

TopLog (MUGGLETON, et al., 2008), among others.

Mode Directed Inverse Entailment and the Bottom Clause

The bottom clause (MUGGLETON, 1995a) ⊥ (e) with regard to a clause e and

background theory BK is the most speci�c clause within the hypothesis space that
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covers the example e, i.e.,

BK∪ ⊥ (e) � e (1)

Any single clause hypothesis covering the example e with regard to BK must

be more general than ⊥ (e). Any clause that is not more general than ⊥ (e) cannot

cover e and can be safely disregarded. Thus, the bottom clause bounds the search

for a clause covering the example e, as it captures all relevant information to e and

BK. A top-level algorithm of the bottom clause construction process de�ned in (DE

RAEDT, 2008) is reproduced here as Algorithm 1.

Algorithm 1 Top-level Algorithm of the Bottom Clause Construction Process (DE
RAEDT, 2008)

1: Find a skolemization substitution θ for e with regard to BK
2: Compute the least Herbrand model M of BK ∪ ¬body(e)θ
3: Deskolemize the clause head(eθ)←M
4: return the result of step 3

In order to understand how the bottom clause is constructed, consider the

example e as

nice(X)← dog(X).

and the BK as

animal(X)← pet(X).

pet(X)← dog(X).

First of all, notice that BK∪ ⊥ (e) � e is equivalent to BK ∪ ¬e � ¬ ⊥ (e). The

�rst step is to replace all variables in ¬ e by distinct constants not appearing in the

clause (skolemization). The result is one false ground fact coming from the head of

¬ eθ, since it is a de�nite clause and a set of positive ground facts coming from the

body of ¬ eθ. In the example above, considering the skolemization substitution as

θ = {X ← skol}, we have

¬eθ = {¬nice(skol), dog(skol)}

The next step is to �nd the set of all ground facts entailed by BK ∪ ¬e, i.e., the

ground literals which are true in all models of BK ∪ ¬e. This is achieved by com-
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puting the least Herbrand model of BK and ¬body(cθ). In the example, we have

¬ ⊥ (e)θ = ¬ eθ ∪ {pet(skol), animal(skol)}

Finally, each skolemization constant is replaced by a di�erent variable in ¬ ⊥ (e)θ

and the result is negated to obtain ⊥ (e). In the example,

⊥ (e) = nice(X)← dog(X), pet(X), animal(X)

In general, ⊥ could have an in�nite cardinality. Thus, Mode Directed Inverse

Entailment (MUGGLETON, 1995a) systems such as Aleph and Progol, consider

a set of user-de�ned mode declarations together with other settings to constrain

the search for a good hypothesis. A mode declaration (MUGGLETON, 1995a)

has either the form modeh(recall, atom) or modeb(recall, atom), where recall is an

integer greater than 1 or ′∗′ and atom is a ground atom. Modeh declarations indicate

predicates appearing in the head of clauses and modeb, predicates in the body of

clauses. Recall is the maximum number of di�erent instantiations of atom allowed

to appear in a clause (where '*' means an inde�nite number of times). Terms in

the atom are either normal or place-marker. A normal term is either a constant or

a function symbol followed by a bracketed tuple of terms. A place-marker is either

+type, -type or #type, where type is a constant de�ning the type of term. The

meaning of +, - and # is as follows.

� Input (+) - an input variable of type T in a body literal Bi appears as an

output variable of type T in a body literal that appears before Bi, or appears

as an input variable of type T in the head of the clause.

� Output(−) - an output variable of type T in the head of the clause must appear

as an output variable of type T in any literal of the body of the clause.

� Constant(#) - an argument denoted by #T must be ground with terms of

type T .

The Algorithm 2 illustrates in more details the construction of the bottom

clause in Progol (MUGGLETON, 1995a) system, considering modes declaration.
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The list InTerms keeps the terms responsible for instantiating the input terms in

the head of the clause and the terms instantiating output terms in the body of the

clause. The function hash associates a di�erent variable to each term. The depth of

a variable v in a de�nite clause C is 0 if v is in the head of C and (maxu∈Uvd(u))+1

otherwise, where Uv are the variables in the body of C containing v.

Algorithm 2 Bottom clause construction Algorithm (MUGGLETON, 1995a)
Input: Background knowledge BK, a positive example e, where ¬e is a clause

normal form logic program ¬a, b1, ..., bn
Output: The bottom clause BC

1: InTerms← ∅, ⊥← ∅
2: i← 0, corresponding to the variables depth
3: BK ← BK ∪ e
4: �nd the �rst modeh h such that h subsumes e with substitution θ
5: for each v/t in θ do
6: if v is a ] type then
7: replace v in h by t
8: if v is a + or − type then
9: replace v in h by vk, where vk is a variable such that k = hash(t)
10: if v is a + type then
11: InTerms← InTerms ∪ t
12: ⊥←⊥ ∪h
13: for each modeb declaration b do
14: for all possible substitution θ of arguments corresponding to + type by

terms in the set InTerms do
15: repeat
16: if b succeeds with substitution θ

′
then

17: for each v/t in θ and θ
′
do

18: if v corresponds to ] type then
19: replace v in b by t
20: else
21: replace v in b by vk, where k = hash(t)
22: if v corresponds to − type then
23: InTerms← InTerms ∪ t
24: ⊥←⊥ ∪b
25: until reaches recall times
26: i← i+ 1
27: Go to line 13 if the maximum depth of variables is not reached
28: return ⊥.

Suppose, for example, the modes declaration below, expressing a fatherhood

relationship, where the �rst argument is the recall number
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modeh(1, father(+person,+person))

modeb(10, parent_of(+person,+person))

modeb(10, parent_of(−person,+person))

and the background knowledge

parent_of(jack, anne)

parent_of(juliet, anne)

parent_of(jack, james)

parent_of(juliet, james)

and the example father(jack, anne). The most speci�c clause is

⊥= father(jack, anne)← parent_of(jack, anne), parent_of(juliet, anne)

where the �rst literal on the body was obtained by

modeb(10, parent_of(+person,+person)) and the second literal by

modeb(10, parent_of(−person,+person)).

The bottom clause with the constants replaced by variables is

⊥= father(A,B)← parent_of(A,B), parent_of(C,B)

The space complexity of the bottom clause is the cardinality of it and is

bounded by r(|M |j + j−)ij+ , where |M | is the cardinality of M (the set of modes

declarations), j+ is the number of + type occurrences in each modeb in M plus the

number of ˘ type occurrences in each modeh, j− is the number of ˘ type occurrences

in each modeb in M plus the number of + type occurrences in each modeh, r is the

recall of each mode m ∈M , and i is the maximum variable depth (MUGGLETON,

1995a). For more details on formal de�nitions of the Bottom Clause and Inverse

Entailment we refer the reader to (MUGGLETON, 1995a).

107



First-order Logic Theory Revision from Examples

ILP algorithms learn �rst-order clauses given a set of examples and a static and

assumed as correct background knowledge. On the other hand, theory revision from

examples (WROBEL, 1996) has as goal to improve a previously obtained knowledge.

To do so, theory revision assumes the provided BK may also contains incorrect rules,

which should be modi�ed to better re�ect the set of examples. Revision in certain

clauses of the BK can be avoided by letting a part of the preliminary knowledge

be de�ned as correct and invariant. Thus, in theory revision the BK is divided in

two parts: A set of rules assumed as correct and therefore not modi�able, called

here as Fundamental Domain Theory (FDT) (RICHARDS, MOONEY, 1995); and

the remaining rules which may be incorrect and are subject to modi�cations, called

the Initial Theory. The goal of a theory revision process is to identify points in

the initial theory which prevent it from correctly classifying positive or negative

examples, and propose modi�cations to such points, so that the revised theory

together with the FDT is as close to a correct theory as possible. The task of theory

revision from examples is de�ned as follows (WROBEL, 1996).

De�nition .2 Given:

� A background knowledge BK divided into

� A modi�able set of clauses which might be incorrect (H ′) and

� An invariant and assumed as correct set of clauses (FDT ) and

� A set of positive E+ and negative examples E− composing the set of examples

E

both written as logic programs;

Find:

� A revised theory H consisting of de�nite �rst-order clauses such that FDT ∧

H � E+ (H is complete) and FDT ∧ H ′ 2 E− (H is consistent), i.e., H is

correct and obeys a minimality criteria
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The minimality criteria may be seen as the attempt of obtaining a revised

theory as syntactically and semantically close as possible from the original BK.

Usually it is not possible to �nd a correct theory and such a criteria is relaxed to

�nd a theory as close to be correct as possible.

The schema of theory revision is shown in Figure 2. Note that ILP could be

seen as a subset of theory revision, where H ′ is empty and therefore BK = FDT .

Theory Revision is particularly powerful and challenging because it must deal

with the issues arising from revising multiple clauses (theory) and even multiple

predicates (multiple target concepts). Additionally, as the initial theory is a good

starting point and the revision process takes advantage of it, the theories returned

by revision systems are usually more accurate than theories learned from stan-

dard ILP systems using the same dataset. Several papers such as (SHAPIRO,

1981), (WOGULIS, PAZZANI, 1993), (RICHARDS, MOONEY, 1995), (BUNTINE,

1991), (TOWELL, SHAVLIK, 1994), (ADÉ, et al., 1994), (WROBEL, 1996), (RA-

MACHANDRAN, MOONEY, 1998), (GARCEZ, ZAVERUCHA, 1999), (ESPOS-

ITO, et al., 2000) show that propositional and �rst-order theory revision systems

are capable of learning more accurate theories than purely inductive systems and

using less examples.

Revision Points

Usually, the �rst step in a revision system is to identify the misclassi�ed examples.

A positive example not covered by the theory (a false negative) indicates the theory

is too speci�c and therefore needs to become more general. In the opposite case, a

negative example covered by the theory indicates it is too general and therefore it

needs to become more speci�c. In the former case we need to generalize the theory

and in the latter case we need to specialize the theory.

As the theory may be composed of several target concepts, described by sev-

eral clauses, it is necessary to �nd out which clauses and/or literals are responsible

for the misclassi�cation of the examples. Also, many clauses can be responsible for

proving negative examples as many clauses could be generalized so that the misclas-

si�ed positive examples become covered. In theory revision, the clauses and literals
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Figura 2: Schema of Theory Revision from Examples, where FDT is the �xed
preliminary knowledge and H ′ is the modi�able preliminary knowledge, E is the
set of positive (E+) and negative (E−) examples. H is the theory returned by the
revision system

.

considered as responsible for misclassifying examples are called revision points. It

is expected that modi�cations performed on such points improve the quality of the

theory. Depending on the type of the misclassi�ed example being considered we can

de�ne two types of revision points:

� Generalization revision points - Those are the points in the theory where proofs

of positive examples fail.

� Specialization revision points - clauses used in successful proof paths of nega-

tive examples.

Revision points were known as culprit clauses in MIS system(SHAPIRO, 1981),

which are clauses covering negative examples, found through the SLD tree, and

clauses not covering positive examples. In this last case, these clauses are leading

to missing clauses, which can be suggested by posing queries to an oracle and using

examples it already knows (DE RAEDT, 2008).

The speci�cation of the revision point determines the type of revision opera-

tor that will be applied to make the theory consistent with the dataset. One may

consider two types of operators: generalization operators, applied on generaliza-
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tion revision points and specialization operators, applied on specialization revision

points (WROBEL, 1996).

Revision Operators

Theory revision relies on operators that propose modi�cations at each revision point

aiming to transform a theory into another one. Any operator used in �rst-order

machine learning can be used in a theory revision system. In this work we use some

operators previously de�ned in (RICHARDS, MOONEY, 1995). Below, we brie�y

describe them. Next section we show in details how some of theses operators work.

The operators for specialization are:

• Delete-rule - this commonly used operator removes a clause that was used to

prove a negative example.

• Add-antecedent - this operator adds antecedents to an inconsistent clause.

Other approaches exist. Indeed, there are several specialization operators based on

the idea of inventing new concepts (predicate invention (STAHL, 1993; KRAMER,

1995)) while revising theories (WROBEL, 1994; BAIN, 2004).

Di�erent from specialization operators, which only modify existing clauses,

generalization operators may create entirely new clauses. As the goal is to cover

unprovable positive examples, any ILP operator which accepts positive examples as

input can be used. Next we cite usual generalization operators:

• Delete-antecedent - this operator removes failed antecedents from clauses that

could be used to prove positive examples.

• Add-rule - this operator generates new clauses, either from failed existing

clauses (deleting antecedents followed by addition of antecedents) or from

scratch (starting only from the generalized head of the example).

Other generalization operators exist. One can use abduction: �rst, look for a clause

that might satisfy the example but has missing premises, and then add the missing

premises. For more details on revision operators we refer the reader to (RICHARDS,

MOONEY, 1995) and (WROBEL, 1996).
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FORTE

In this work we follow the First Order Revision of Theories from Examples (FORTE)

system (RICHARDS, MOONEY, 1995), which automatically revises function-free

�rst-order Horn clauses. There are several �rst-order theory revision systems de-

scribed in the literature, including MIS (SHAPIRO, 1981), RUTH (ADÉ, et al.,

1994), MOBAL (WROBEL, 1993; WROBEL, 1994), INTHELEX (ESPOSITO,

et al., 2000), among others.

FORTE performs a hill-climbing search through a space of both specialization

and generalization operators in an attempt to �nd a minimal revision to a theory

that makes it consistent with the set of training examples. In order to �nd the

revision points FORTE follows a bottom-up strategy, as the training examples are

used to �nd out the clauses/literals presenting some problem. The key ideas of the

system are:

1. Identify all the revision points in the current theory using the misclassi�ed

training examples.

2. Generate a set of proposed modi�cations for each revision point using the

revision operators. It starts from the revision point with the highest potential,

de�ned as the number of misclassi�ed examples that could be turned into

correctly classi�ed from a revision in that point. FORTE stops to propose

revisions when the potential of the next revision point is less than the score

of the best revision to date. Conceptually, each operator develops its revision

using the entire training set. However, in practice, this is usually unnecessary

and thus FORTE considers only the examples whose provability can be a�ected

after by the revision.

3. Score each revision through the actual increase in theory accuracy it achieves,

calculated as the di�erence between the misclassi�ed examples which turned

into correctly classi�ed and the correctly classi�ed examples which turned into

misclassi�ed because of the revision.

4. Retain the revision with the highest score.
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5. Implement the revision in case the overall score is really improved.

The top-level algorithm is exhibited in 3. The algorithm �nishes when it cannot

�nd any revision capable of improving the score.

Algorithm 3 FORTE Algorithm (Richards and Mooney, 1995)

1: repeat
2: generate revision points;
3: sort revision points by potential (high to low);
4: for each revision point do
5: generate revisions;
6: update best revision found;
7: until potential of next revision point is less than the score of the best

revision to date
8: if best revision improves the theory then
9: implement best revision;
10: until no revision improves the theory;

Next we detail the learning setting and representation of the examples in

FORTE, followed by the procedures for �nding revision points and the algorithms

employed by each revision operator.

Examples Representation and Learning Setting

Most ILP algorithms employ the extensional approach to represent examples and

background knowledge. In this case, each example is a ground fact and the back-

ground knowledge is equally shared by all the examples. FORTE di�ers from them

representing the examples intentionally as they are written as sets of clauses in the

format

Ground Instances of Target Predicates← Conjunction of facts from the context.

The head of the above clause is a set of positive and/or negative ground facts,

with the same predicate as the concepts intended to be learned. The conjunction of

facts from the context is a set of de�nite clauses con�ned to the example, i.e., the

BK restricted only to that example. There is also a set of background clauses FDT

common to all the examples. The FDT and the BK restricted to each example

compose the background knowledge of the domain. In this way, each example can

be considered as a partial interpretation (DE RAEDT, 1997).
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Although the dataset is composed of partial interpretations, the learning re-

quirement is that the positive instances of each example are logically entailed by the

current hypothesis H ′ together with the background knowledge, i.e., ∀e∀e+ ∈ e,H ′∧

FDT ∧Be � e+ and the negative instances of each example are not logically entailed

by the hypothesis and background knowledge, i.e., ∀e∀e− ∈ e,H ∧ FDT ∧Be 2 e−,

where e+ represents the positive instances, e− represents the negative instances and

Be is the background knowledge con�ned to each example e.

It should be noted from section 5.3.2 that most ILP systems learn a single

target predicate only. FORTE, on the contrary, is able to learn multiple predicates

simultaneously. Such a task is facilitated because the search space is composed

of whole theories instead of individual clauses. When learning individual clauses

there is a great chance that the �nal returned theory is strongly composed of locally

optimal and unnecessarily long clauses. On the other hand, when learning whole

theories the �nal hypothesis tends to be globally optimal and smaller. However,

learning whole theories is known to be much more expensive than learning individual

clauses.

Finding revision points in FORTE

FORTE identi�es revision points by annotating proofs of incorrectly provable nega-

tive instances or by annotating attempted proofs of incorrectly unprovable positive

instances. When the goal is to �nd the specialization revision points, all the provable

instances are considered, since they are the ones whose provability may be a�ected

by a specialization in the theory: any of these instances might become unprovable

because of the specialization. These instances are either True Positive (TP) - cor-

rectly classi�ed positive instances - or False Positive (FP) - misclassi�ed negative

instances. The algorithm for collecting specialization revision points is shown in

Algorithm 4.

First, FORTE annotates each clause participating in the successful proof of

the instances. The positive instances are annotated separately from the negative

instances in the clauses. In case the clause has no annotation of false positive

instances, it is discarded. The remaining clauses compose the set of specialization
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Algorithm 4 FORTE Algorithm for collecting specialization revision
points (RICHARDS, MOONEY, 1995)

Input: The current theory H ′ and the FDT and EP , the set of provable instances
composed of the TP , the set of correctly provable positive instances; FP the set
of incorrectly provable negative instances

Output: RPS, a set of clauses marked as specialization revision points, each one
annotated with TPC, true positive instances relative to clause C, FPC, false
positive instances relative to clause C, and PC the potential of the revision
point

1: for each provable instance e ∈ EP do
2: Ce← clauses participating in the proof of the instance e using H ′ and FDT
3: for each clause C ∈ Ce do
4: if e ∈ FP then
5: FPC ← FPC ∪ e;
6: PC ← PC + 1;
7: else
8: TPC ← TPC ∪ e;
9: RPS ← RPS ∪ Ce;
10: for each clause C ∈ RPS do
11: if PC = 0 then
12: delete C from RPS;

revision points. The true positive and false positive instances relative to the clauses

are used to calculate the score of revision proposed to those points.

In case there are misclassi�ed positive instances, the goal is to �nd generaliza-

tion revision points. In this case, all the unprovable instances are considered, since

they are the ones whose provability may be a�ected by a generalization in the theory:

any of these instances might become provable because of the generalization. These

instances are either True Negative (TN) - correctly classi�ed negative instances - or

False Negative (FN) - misclassi�ed positive instances. In order to identify gener-

alization revision points, it is necessary to make annotations from failed proofs of

positive instances. Three types of points in the failed proof path are collected:

1. the literal in a clause responsible for the failure proof,

2. the clause whose body contains such literal and

3. the literals which might have contributed to the failure by assigning incorrect

values to variables (it is a contribution point).
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Thus, each time a backtrack occurs, the failed antecedent is noted and marked as

a failure point. Next, the literals binding values to variables in failure points are

collected recursively. Finally, the clauses with the failure antecedents and with the

contribution antecedents are also marked as failure points. This process is also

followed to identify which failure points are responsible for not proving negative

instances, since they might become provable after a revision in such points. The list

of TN and FN instances are used to calculate the potential of the revision point,

and, after proposing some revision, to calculate the score of the revision in such a

point. The procedure is exhibited as Algorithm 5.

Proposing revisions in FORTE

As stated before, the four basic revision operators add rules, delete rules, add an-

tecedents to clauses and delete antecedents from clauses. FORTE revision operators

are ultimately composed of these four basic operations, aggregated to techniques

for escaping local maxima, such as deleting/adding several antecedents at once

from/to a clause. Additionally, the system uses two operators based on inverse

resolution (MUGGLETON, 1992), namely the absorption and identi�cation opera-

tors. The operators are described in terms of the changes they make to the theory.

However, recall that each one is proposing a revision and not really implementing it

on the theory. This is only done after proposing all possible revisions and choosing

the one with the highest score. In order to calculate the score, FORTE employs a

simple evaluation function: the number of incorrect instances which become correct

less the number of correct instances which become incorrect because of the revision.

Next, we review the way FORTE revision operators work. Note that here we only

describe the cases for non-recursive clauses. For more details, including how FORTE

deals with recursive clauses, we refer the reader to the original paper (RICHARDS,

MOONEY, 1995).

Specialization operators

Delete rule The clause marked as a specialization revision point is deleted from

the theory. If there is only such a clause explaining a concept, it is replaced by
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Algorithm 5 FORTE Algorithm for collecting generalization revision
points (RICHARDS, MOONEY, 1995)

Input: The current theory H ′ and the FDT ; EU , the set of unprovable instances
composed of the TN , the set of correctly unprovable negative instances and FN
the set of incorrectly unprovable positive instances

Output: RPG, a set of clauses marked as generalization revision points, each one
annotated with TNC, true negative instances relative to clause C, FNC, false
negative instances relative to clause C, and PC the potential of the revision
point

1: for each unprovable instance e ∈ EU do
2: Try to prove instance e using H ′ and FDT
3: for each time that a literal fails do
4: collect the failed literal lfe;
5: collect the literals LCe responsible for binding variables in lfe, recur-

sively
6: collect the clauses Ce where lfe failed and where LCe appeared
7: if e ∈ TN then
8: TN_lfe← TN_lfe ∪ e
9: for each literal lce ∈ LCe do
10: TN_lce← TN_lce ∪ e
11: for each clause ce ∈ Ce do
12: TN_ce← TN_ce ∪ e
13: else
14: FN_lfe← FN_lfe ∪ e
15: P_lfe← P_lfe+ 1
16: for each literal lce ∈ LCe do
17: FN_lce← FN_lce ∪ e
18: P_lce← P_lce+ 1
19: for each clause ce ∈ Ce do
20: FN_ce← FN_ce ∪ e
21: P_ce← P_ce+ 1
22: RPG← RPG ∪ lfe ∪ LCe ∪ Ce
23: for each point P ∈ RPG do
24: if PG = 0 then
25: delete P from RPG;

concept :- fail. This simple process is stated as Algorithm 6.

Add Antecedents The operation of adding antecedents to clauses works through

two nested processes: the innermost case adds antecedents to the input clause in an

attempt to make as many as possible negative instances become unprovable. This

specialized clause is included in the revision. In case the specialized clause makes

previously provable positive become unprovable, the outer case restarts the special-
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Algorithm 6 FORTE Delete Rule Revision Operator Algorithm

Input: The current theory H ′ and the FDT , a clause C marked as specialization
revision point together with TPC, the set of correctly provable positive instances
using clause C and FPC, the set of incorrectly provable negative instances using
clause C

Output: A proposed revision Rev together with score Sc
1: Rev ← H ′ − C;
2: if C is the only clause explaining concept then
3: Rev ← Rev ∪ concept : −fail;
4: Sc← calculate_score(Rev, FDT , FPC, TPC)

ization from the original input clause, looking for alternative specializations which

retain the proof of positive instances while still making the negative instances un-

provable. The top-level process of this revision operator is exhibited as Algorithm 7.

Algorithm 7 FORTE Top Level Add Antecedents Revision Operator Algorithm

Input: The current theory H ′ and the FDT , a clause C marked as specialization
revision point together with TPC, the set of correctly provable positive instances
using clause C and FPC, the set of incorrectly provable negative instances using
clause C

Output: A proposed revision Rev, containing one or more clauses specialized from
C, together with score Sc

1: H ′ ← H − C
2: Rev ← H ′;
3: repeat
4: C ′ ← addAntecedents(C, H ′, FDT , TPC, FPC);
5: if C ′ is di�erent from C then
6: Rev ← Rev ∪ C ′;
7: FNC ← instances in TPC which become unprovable by Rev ∪ FDT
8: TPC ← FNC
9: until FNC = ∅ or it is not possible to create a specialized version of C (C ′ ==

C)
10: Sc← calculate_score(Rev, FDT , FPC, TPC)

There are two algorithms for adding antecedents to a clause, which may be

executed in replacement to line 4 of Algorithm 7:

1. Hill Climbing (Algorithm 8) - This algorithm follows FOIL (QUINLAN, 1990),

adding one antecedent at a time. It works as follows. First, all possible

antecedents are created and scored using a slightly modi�ed version of FOIL

scoring function, displayed in formula 2. There, Old_score is the score of the
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clause without the literal being evaluated, #TPCA is the number of positive

instances proved by the clause with the literal added to it and #FPCA is

the number of negative instances proved by the clause with the literal. The

di�erence concerns the fact that FOIL score counts the number of proofs of

instances, whereas FORTE counts the number of provable instances, ignoring

the fact that one instance may be provable in several di�erent ways. Next,

the antecedent with the best score is selected. If the best score is better than

the current clause score, the antecedent is added to the clause. This process

continues until either there are no further antecedents to be added to the clause

or no antecedent can improve the current score. This approach is susceptible

to local maxima.

foil_based_score = #TPCA∗(Old_score−log(#TPCA/(#TPCA+#FPCA)))

(2)

Algorithm 8 Hill climbing add antecedents Algorithm

Input: The current theory H ′ and the FDT , a clause C, TPC, the set of correctly
provable positive instances using clause C and FPC, the set of incorrectly prov-
able negative instances using clause C

Output: A (specialized) clause C ′

1: repeat
2: antes← generateAntecedents(C);
3: Ante← best antecedent from antes, scored with FPC and TPC;
4: if score_(C + ∪ ante) > score_(C) then
5: C ← C ∪ ante;
6: FPC ← FPC−instances in FPC not proved by C;
7: until FPC = ∅ or it is not possible to improve the score of the current clause
8: return C

2. Relational Path�nding (Algorithm 9 - This approach adds a sequence of an-

tecedents to a clause at once in attempt to skip local maxima, as, sometimes,

none of the antecedents put individually in the clause improves its perfor-

mance.

The Relational Path�nding algorithm is based on the assumption that gener-

ally in relational domains there is a path with a �xed set of relations connecting

a set of terms, and such path satis�es the target concept. Its goal is to �nd
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such paths given a relational domain, since important concepts are represented

by a small set of �xed paths between terms de�ning a positive instance. In

order to �nd the paths, the relational domain is represented as a graph where

the nodes are the terms and the edges are the relations among them. Thus, a

relational path is de�ned as the set of edges (relations) which connect nodes

(terms) of the graph. To better visualize such an approach, consider, for in-

stance, the graph in Figure 3, which represents part of the family domain.

Horizontal lines denote marriage relationships, and the remaining lines denote

parental relationships:

Figura 3: An instance of a relational graph representing part of the family do-
main (RICHARDS, MOONEY, 1995)

Now, suppose the goal is to learn the target concept grandfather, given an

empty initial rule and the positive instance grandfather(peter,anne). The re-

lational path between the terms peter and anne is composed of the relation

parents connecting peter to victoria, and also of the relation parents connect-

ing victoria to anne. From these relations, the path parents(peter,victoria),

parents(victoria,anne) is formed, which can be used to de�ne the target con-

cept grandfather(A,B) : −parents(A,C), parents(C,B).

From the point of view of theory revision, this algorithm can be used whenever

a clause needs to be specialized and it does not have relational paths connecting

its variables. In this case, a positive instance proved by the clause is chosen to

instantiate it, and, from it, relational paths to the terms without a relationship

in the clause are searched.

If the found relations introduce new terms appearing only once, FORTE tries
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to complete the clause by adding relations that hold between these singletons

terms and other terms in the clause; these new relations are not allowed to

eliminate any of the currently provable positive instances. If FORTE is unable

to use all of the new singletons, the relational path is rejected.

Algorithm 9 Top level Algorithm for Adding Antecedents to a Clause Using Rela-
tional Path�nding Approach

Input: The current theory H ′ and the FDT , a clause C, TPC, the set of correctly
provable positive instances using clause C and FPC, the set of incorrectly prov-
able negative instances using clause C

Output: A (specialized) clause C ′

1: ex← a positive instance from TPC, covered only because of C (and not because
of others clauses with the same head);

2: �nd all clauses created from C and from paths generated through the terms in
head of ex;

3: C ′ ← the clause retaining the most instances in TPC as provable, or, in case of
a tie, the shortest clause

4: FNC ← negative instances still provable
5: if FNC 6= ∅ then
6: C ′ ← Hill climbing add antecedents algorithm(C ′, TPC, FPC)
7: return C ′

Antecedents Generation Following FOIL approach, all the predicates in the

knowledge base are considered for creating literals to be added to the clause. A

literal is created from a predicate by instantiating its arguments by variables, while

respecting the following constraints:

1. At least one variable of the new literal must be in the clause being revised;

2. The arguments of the literals must obey the types de�ned in the knowledge

base.

The larger the number of new variables in the clause is, the more literals are

created. Actually, the space complexity grows exponentially in the number of new

variables since the complexity of enumerating all possible combinations of variables

is exponential in the arity of the predicate.

The algorithms for generating literals used by Hill climbing approach and

Relational Path�nding can be seen in Algorithm 10 and Algorithm 11, respectively.
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Algorithm 10 Hill Climbing Antecedents Generation Algorithm

Input: A clause C
Output: A set of literals antes
1: for each literal lit in the knowledge base do
2: varsC ← variables in C with their types;
3: argsL← terms in lit with their types;
4: for each combination comb of variables ∈ varsC in the arity of lit do
5: if comb is compatible with argsL considering the types in argsL then
6: create a new antecedent ante by replacing the terms of lit with

the variables in comb;
7: antes← antes ∪ ante;
8: n← arity of lit - 1;
9: i← 1;
10: while i ≤ n do
11: create a new variable v
12: varsN ← varsC ∪ v
13: for each combination comb of variables ∈ varsN in the arity of lit,

including at least one variable ∈ varsC do
14: if comb is compatible with argsL considering the types in argsL

then
15: create a new antecedent ante by replacing the terms of lit

with the variables in comb;
16: antes← antes ∪ ante;
17: i← i+ 1;

As already mentioned, the Relational Path�nding algorithm starts from a

clause grounded from a positive instance covered by the clause. The terms in the

ground clause will be the nodes in the graph, connected by the relations de�ned

in the body of the clause. The algorithm constructs the graph iteratively, starting

from these initial nodes and expanding them until �nding the relational paths. The

end values are the terms (nodes) created when a node is expanded.

In practice, Relational path�nding and Hill climbing algorithms might be ex-

ecuted competitively and then the clause chosen in the inner loop is the one with

the highest FOIL score. Also, if it is desired, only one of these two approaches may

be executed.

Generalization operators
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Algorithm 11 Relational Path�nding Antecedent Generation Algo-
rithm (RICHARDS, MOONEY, 1995)

Input: A clause C
Output: A set of sequence of literals paths
1: CI ← C instantiated with a randomly chosen positive instance;
2: �nd isolated sub-graphs among the terms in CI;
3: for each sub-graph do
4: terms become initial end-values;
5: repeat
6: for each sub-graph do
7: expand paths by one relation in all possible ways;
8: remove paths with previously seen end-values;
9: until intersection found or resource bound exceeded
10: if one or more intersections found then
11: for each intersection do
12: C ′ ← C with path-relations added;
13: if C ′ contains new singleton variables then
14: add relations using the singleton variables;
15: if all singletons cannot be used then
16: discard C ′;
17: replace terms with variables;
18: paths← paths ∪ C ′;

Delete antecedents The algorithm followed by the delete antecedents operator

is shown in Algorithm 12. The antecedents are deleted from a clause marked as

a generalization revision point using a hill climbing approach or a method that

removes a set of antecedents simultaneously, in case the hill climbing has no success.

The generalized clause is added to the proposed revision and the process restarts,

in an attempt to make remaining false negative instances become provable, until it

is not possible to create useful generalized versions of the original clause. The two

methods used to remove antecedents are described below.

1. The �rst method deletes one antecedent from the clause at each time, follow-

ing a hill-climbing approach. FORTE chooses the antecedent whose removal

makes the largest number of unprovable positive instances become provable,

requiring that no unprovable negative instance becomes provable. This pro-

cess is iterated until there are no antecedents in the clause whose deletion is

going to make misclassi�ed positive instances become provable. The process

is exhibited as Algorithm 13.
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2. Multiple antecedents are removed from the clause at once, in order to over-

come the vulnerability of the former approach to get stuck in local maxima.

First, the antecedents whose individual removal does not allow true nega-

tive instances become provable are collected. Then, combinations of such

antecedents are produced, looking for the combination that makes the largest

number of positive instances become provable without making negative in-

stances become provable. The process continues deleting antecedents in this

way, trying to prove as many positive instances as possible. This algorithm

is computationally expensive and it is only executed when the hill climbing

approach cannot propose any modi�cation in the current theory. It is shown

as Algorithm 14.

Algorithm 12 Top-level Delete Antecedents Revision Operator Algorithm

Input: The current theory H ′ and the FDT , a clause C marked as generalization
revision point together with TNC, the set of correctly unprovable negative in-
stances because clause C and FNC, the set of incorrectly unprovable positive
instances possibly because of clause C

Output: A proposed revision Rev, containing one or more generalized versions of
clause C, together with its score Sc

1: Rev ← H ′ − C
2: stop← false
3: repeat
4: C ′ ← hillClimbingDeleteAntecedents(C, TNC, FNC, Rev, FDT );
5: if C ′ = C then
6: C ′ ← delMultipleAntecedents(C, TNC, FNC, Rev, FDT );
7: if C ′ = C then
8: stop = true
9: if C ′ 6= C then
10: Rev ← Rev ∪ C ′

11: FNC ← FNC− instances in FNC which become provable by Rev
12: if FNC = ∅ then
13: stop← true
14: until stop == true

Add rules FORTE implements two operators for adding rules to the current the-

ory. It may create rules from an existing one or it may create a completely new rule

from scratch. In the �rst case, the operator makes a copy of the clause marked as
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Algorithm 13 Hill Climbing Delete Antecedents Algorithm

Input: A clause C, TNC, a set of unprovable negative instances, FNC, a set of
unprovable positive instances, a theory H ′′, the static BK FDT

Output: A (generalized) clause C
1: stop← false
2: repeat
3: for each antecedent ante ∈ C do
4: CTemp← C − ante
5: score_CTemp ← number of instances in FNC which are proved by

H ′′ ∪ CTemp ∪ FDT
6: score2_CTemp ← number of instances in TNC which are proved by

H ′′ ∪ CTemp ∪ FDT
7: if score_CTemp <= 0 or score2_CTemp > 0 then
8: discards CTemp
9: antes ← (CTemp, score_CTemp)
10: if antes neqemptyset then
11: C ← CTemp ∈ antes with the highest score score_CTemp
12: else
13: stop← true
14: until stop = true
15: return C

Algorithm 14 Delete Multiple Antecedents Algorithm

Input: A clause C, TNC, a set of unprovable negative instances, FNC, a set of
unprovable positive instances, a theory H ′′, the static BK FDT

Output: A (generalized) clause C ′

1: antes← all antecedents in C whose deletion does not change TNC
2: repeat
3: ante← an antecedent in antes
4: CTemp← C − ante
5: if no negative instance in TNC become provable by H ′′ ∪ CTemp ∪ FDT

then
6: C ← C − ante;
7: until there are no antecedents left to try
8: if one or more positive instances in FNC become provable by H ′′ ∪ CTemp ∪

FDT then
9: return C;

a generalization revision point and tries to modify such a copy of the clause in two

steps. First, antecedents are deleted from the clause while they make false nega-

tive instances become provable. Antecedents are deleted even though true negative

instances become provable. Then, the next step of the add rule operator is to add

antecedents to the created clause in an attempt to make such negative instances be
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unprovable again. This operation is performed by the add antecedents operators as

previously explained. The process is exhibited as Algorithm 15. The second add

rule operator starts by creating the head of the rule from a predicate marked as a

generalization revision point. The next step is to compose the body of the clause,

using the add antecedents operator.

Algorithm 15 Top-level Add rule Revision Operator Algorithm

Input: The current theory H ′ and the FDT , a clause C marked as a generaliza-
tion revision point together with TNC, the set of correctly unprovable negative
instances because clause C and FNC, the set of incorrectly unprovable positive
instances possibly because of clause C

Output: A proposed revision Rev, containing one or more generalized versions of
clause C, together with its score Sc

1: H ′′ ← H ′ ∪ C
2: C ′ clause C after deleting antecedents which make instances from FNC become

provable
3: H ′′ ← H ′ ∪ C ′

4: TPC ← instances in FNC which become provable by H ′′ ∪ FDT ∪ C ′

5: FPC ← instances in TNC which become provable by H ′′ ∪ FDT ∪ C ′

6: Rev′ ← addAntecedents(H ′′, FDT , C ′, TPC, FPC);
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Appendix B: YAVFORTE: A revised
version of FORTE, including Mode
Directed Inverse Entailment and the
Bottom Clause

Introduction

Theory revision systems usually induce more accurate theories than ILP techniques

learning from scratch. However, such more accurate theories come at the expense of

searching in a large search space, mainly because theory revision re�nes whole theo-

ries instead of individual clauses and this is known to be a hard problem (WROBEL,

1996; BRATKO, 1999). Therefore, it is essential to develop e�cient theory revision

systems so that the advantages of them become feasible. Focusing on FORTE the-

ory revision system, in this chapter we contribute towards this goal by identifying a

number of the bottlenecks of the revision process and developing algorithms based

on state-of-the-art ILP systems to overcome it. The worst bottleneck is related to

generation of literals to be included in the body of clauses, which is done inside

the add antecedents and add rules operators. FORTE followed the FOIL top-down

approach (QUINLAN, 1990), considering all the literals of the knowledge base to

create antecedents to clauses, which leads to a huge search space, dominating the

cost of the revision process. Instead of following a pure top-down approach when

specializing clauses, ILP algorithms such as Progol (MUGGLETON, 1995a) and

Aleph (SRINIVASAN, 2001a) restrict the search for literals to those belonging to

the Bottom Clause. The bottom clause contains the literals relevant to a positive
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example, collected from a Mode Directed Inverse Entailment (MDIE) search in the

BK. This hybrid bottom-up and top-down approach often generates much fewer

literals, and they are also guaranteed to cover at least one positive example (the

one used to generate the bottom clause) and for this reason it is a good option to

reduce the search space for literals in the revision process. As part of this work, in

(DUBOC, 2008) and (DUBOC, et al., 2009) the Bottom Clause approach is intro-

duced as the search space of literals to speed up FORTE. We describe that process

here and also how to further take advantage of the bottom clause by (1) allowing

its generation to start from a base clause and (2) using the current theory to create

literals, in addition to the BK. Moreover, we use mode directed search when deleting

antecedents from a clause so that after the deletion the clause is still valid according

to the mode declarations.

Besides following FOIL's pure top-down approach, FORTE has six di�erent

revision operators and may try to propose revisions suggested by all of them in a

single step, depending on the revision points found. This may lead to a large search

space of operators. In many tasks, the expert of the domain has some idea about

the kind of modi�cations the theory needs to represent. This could be used as an

advantage for reducing the search space of operators. Another weakness of FORTE is

that the delete antecedent operator does not allow any incorrectly provable negative

example to become unprovable, which may cause over�tting of the clause or not

generate a revision by this operator because of such a hard requirement.

In this chapter we describe a number of modi�cations performed on the FORTE

system to handle the shortcomings listed above. We call the resulting system as

YAVFORTE (Yet Another Version of FORTE), which includes FORTE_MBC

(DUBOC, 2008; DUBOC, et al., 2009) to create the search space of new liter-

als. The chapter starts by depicting the modi�ed top level revision process in sec-

tion 5.3.2. Next, modi�cations implemented on the revision operators are devised

in section 5.3.2, concerning mainly the use of Bottom clause and Mode Directed

Search. Experimental results are shown in section 5.3.2, followed by conclusions

about this work in section 5.3.2.
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Restricting the Search Space of Revision Operators

The original FORTE system proposes modi�cation in the theory through six di�er-

ent revision operators, four designed to generalize the theory and two designed to

specialize the theory. Moreover, it tries to apply all these possible operators, even

when one of them has already achieved its maximum potential1 or a maximum score.

Suppose for example that we have a clause proving 10 positive examples and 20 neg-

ative examples. Now, suppose an extreme case where these 10 positive examples are

also covered by another clause. Therefore, the simplest way to rectify the theory

would be deleting that clause. However, besides FORTE proposing the deletion of

the clause, it would also try to add antecedents to the body of the clause, so that

the negative examples become unprovable, which is clearly a waste of time. Thus,

in order to make the revision proposals more �exible and e�cient, we modi�ed the

revision process by including two amendments:

1. The user is able to stipulate which operators the system must apply in order

to propose modi�cations in the theory. In case the user does not specify any

operator, the system tries to apply all of them, according to the revision points.

Thus, the revision process is able to only specialize/generalize the theory, as

well as to apply a subset of specialization and/or generalization operators when

proposing modi�cations.

2. Instead of applying all possible revision operators on a revision point, the

system establishes an order of simplicity to apply the operators. Using this

order, in case a simpler operator has already achieved the maximum potential

or a maximum score, the system stops to propose modi�cations. Put in other

words, the system only applies a more complex operator when no simpler op-

erator simpler than it was able to attain the maximum potential or score. The

order imposed to specialization operators is �rst to apply the delete rule and

then the add antecedents operator, clearly because the number of operations

performed to evaluate the delete rule is much less than when proposing addi-
1Remember from the previous chapter that the potential is the number of examples indicating

the necessity of revision in one point.
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tion of antecedents. The order imposed to generalization revision operators is

delete antecedents, absorption, identi�cation, add rule. Delete antecedents has

as search space only the literals belonging to the initial clause. Identi�cation

and absorption de�nes their search space in terms of the literals presented in

the theory. Add rule �rst uses delete antecedents and then add antecedents

operators. This last operator may have a large number of literals to evaluate,

depending on the background knowledge and mode de�nitions, therefore we

assume it as the more complex generalization revision operator.

Algorithm 16 presents the modi�ed revision process, built upon Algorithm 3

of chapter 1.

Algorithm 16 YAVFORTE Top-Level Algorithm
Input: An initial theory T , background knowledge FDT , a set of examples E, list

of applicable operators Rev
Output: A revised theory T ′

1: if Rev = ∅ then
2: Rev ← all revision operators
3: GenRev ← ordered list of generalization operators in Rev, starting from the

simplest one
4: SpecRev ← ordered list of specialization operators in Rev, starting from the

simplest one
5: repeat
6: generate revision points;
7: sort revision points by potential (high to low);
8: for each revision point RP do
9: if RP is a specialization revision point then
10: for each revision operator RO ∈ SpecRev do
11: apply RO in RP
12: compute scoreRO

13: else
14: for each revision operator RO ∈ GenRev do
15: apply RO in RP
16: compute scoreRO

17: update best revision found;
18: until scoreRO = maximum score or RO achieved maximum potential

of RP
19: if best revision improves the theory then
20: implement best revision;
21: until no revision improves the theory;
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Improvements Performed on the Revision Operators

This section starts by reviewing the theory behind bottom clause and MDIE, since

we use them to restrict the search space of the add antecedents and the delete

antecedents operators. Next, the operator developed in (DUBOC, et al., 2009) to

add antecedents is reviewed but also including improvements performed on it in this

work. Then, we describe modi�cations implemented on delete antecedents operator.

Using the Bottom Clause as the Search Space of Antecedents
when Revising a FOL theory

FORTE, following FOIL, generates literals to be added to a clause obeying two

conditions: (1) the variables of the literals must follow their types de�ned in the

knowledge base and (2) they must have at least one variable in common with the

current clause. While this makes the generation of antecedents simple and fast, it

also leads to a large search space composed of all the possible literals of the knowl-

edge base. Such a large search space turns the complexity of the add antecedents

operation in a clause very high, contributing to the bottleneck of the revision pro-

cess. Aiming to reduce such cost, we implemented the following modi�cations to

FORTE system:

1. The variabilized bottom clause generated by Algorithm 2 became the search

space of literals, which reduces the search space and also impose the following

constraints:

� Limits the maximum number of di�erent instantiations of a literal (the

recall number);

� Limits the number of new variables in a clause;

� Guarantees that at least one positive example is covered (the one which

generates the bottom clause).

2. The mode declarations are used to further constrains the antecedents, which

means they only may be added to the clause if their terms respect the mode

de�ned in the knowledge base.
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3. Determination de�nitions of the form

determination(HeadPredicate/Arity, BodyPredicate/Arity)

state which predicates can be called in the clauses de�ning HeadPredicate.

The modi�ed version of FORTE considering mode declarations and the bottom

clause is called FORTE_MBC . Recall that when specializing a clause, the goal of the

operation is to make false positive examples become unprovable while still covering

true positive examples. Thus, the bottom clause is created immediately before the

search for antecedents begins, by saturating a positive example covered by the clause

being specialized (called base clause). The bottom clause is going to be composed

of the literals relevant to at least such a positive example and it is guaranteed to

be a super-set of the base clause. The created bottom clause becomes the search

space for antecedents, which improves the e�ciency of the addition antecedents

operation since it usually has many fewer literals than the previous space of the

whole knowledge base. It is important to emphasize that the constraints of FOIL

continue to be met here, as the arguments of the literals in the bottom clause must

obey their types and there is a linking variable between the literal being added in

the clause and the literals of the current clause.

Algorithm 17 shows the process of constructing the bottom clause in YAV-

FORTE. It di�ers from Algorithm 2 when the base clause has a non-empty body,

since in this case it is necessary to take into account the terms of the current clause.

Note that in (DUBOC, et al., 2009) the variables of the bottom clause were uni-

�ed with the variables of the base clause only after the Bottom Clause had been

constructed. Besides this being an expensive process involving lots of backtracks,

sometimes it was not possible to �nd a correct uni�cation. We noticed two of such

situations: cases where the example contains two or more equal terms in the head

but the base clause has two di�erent variables in their place (1) and when the base

clause has no constant in the head but the �rst modeh has a constant, or vice-verse

(2). In these cases the Bottom Clause would follow the uni�cation according to the

example, di�ering from the base clause and making more di�cult to �nd a substi-

tution that would match the bottom clause and the base clause. Thus, the �rst
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step in Algorithm 17 is to �nd the ground literals of the base clause considering the

example but maintaining the substitution of the variables in the base clause. Then,

the terms of the base clause are put in the list of terms to be used by the procedure

and the bottom clause is initialized with the literals of the base clause. The rest of

the process is the same as the original algorithm, except that we do not allow the

inclusion of a literal being already in the bottom clause. Note that if the clause is

being constructed from scratch, it is not necessary to keep an association with the

base clause passed as input argument. In this case, we completely follow the original

algorithm.

Another di�erence from the algorithm developed in (DUBOC, et al., 2009)

is the input: there, the bottom clause is constructed considering only the BK but

here we also allow the current theory to be used to produce literals. This is essential

in case we have intermediate clauses in the current theory.

Next, we show how the Bottom Clause is used as the space of new literals.

Using the Bottom Clause in Hill Climbing Add Antecedents Algorithm

The Hill Climbing add antecedents algorithm modi�ed from Algorithm 2.6, to take

into account the bottom clause as search space, is detailed in Algorithm 18. Both

algorithms di�er in three aspects:

1. Algorithm 18 has as �rst step the construction of the bottom clause in line

2, as it is used as search space for antecedents. In order to obtain the Bottom

Clause from a positive instance correctly proved by the base clause it is used

Algorithm 17.

2. Such a bottom clause becomes the input for antecedents generation in line 4.

This procedure is soon going to be explained in details.

3. As the bottom clause created in the beginning is not modi�ed during the

execution of this algorithm, it is necessary to remove the antecedent added

to the clause from the bottom clause, in line 11. From this last di�erence, it

follows that the algorithm also stops when there is no more literal left in the

bottom clause.
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Algorithm 17 Bottom clause Construction Algorithm in FORTE-MBC
Input: The current theory H ′ and the FDT , a clause C, Ex, an instance
Output: The bottom clause BC

1: if C has an empty body then
2: ⊥← Algorithm 2(H ′, FDT , Ex);
3: else
4: InTerms← ∅, ⊥← ∅
5: Cground ← instantiation of the clause C using H ′, FDT , and Ex, with

substitution θ maintaining the variables of C
6: for each v/t in θ do
7: InTerms← InTerms ∪ t
8: ⊥←⊥ ∪C
9: i← 0, corresponding to the variables depth
10: BK ← FDT ∪ Ex
11: for each modeb declaration b do
12: for all possible substitution θ of arguments corresponding to + type

by terms in the set InTerms do
13: repeat
14: if b succeeds with substitution θ

′
then

15: for each v/t in θ and θ
′
do

16: if v corresponds to ] type then
17: replace v in b by t
18: else
19: replace v in b by vk, where k = hash(t)
20: if v corresponds to − type then
21: InTerms← InTerms ∪ t
22: if b /∈ C then
23: ⊥←⊥ ∪b
24: until reaches recall times
25: i← i+ 1
26: Go to line 14 if the maximum depth of variables is not reached
27: return ⊥.

4. There is a parameter specifying the maximum size a clause is allowed to have.

Using the Bottom Clause in Relational Path�nding Add Antecedents
Algorithm

The Relational Path�nding algorithm adding more than one antecedent at once in

a clause and considering as search space the bottom clause is exhibited in Algo-

rithm 19.

There are only two major di�erences between Algorithm 19 and Algorithm

2.7: the creation of the bottom clause from a positive example covered by the
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Algorithm 18 Hill Climbing Add Antecedents Algorithm Using the Bottom Clause
Input: The current theory H ′ and the FDT , a clause C, TPC, the set of correctly

provable positive instances using clause C and FPC, the set of incorrectly prov-
able negative instances using clause C, CL, maximum size of a clause

Output: A (specialized) clause C ′

1: Ex← an instance from TPC;
2: BC ← createBottomClause(Ex, H ′, FDT , C); %use Algorithm 17
3: repeat
4: antes← getAntecedentsfromBC(C, BC);
5: Ante← best antecedent from antes, scored with FPC and TPC;
6: if score_(C ∪ ante) > score_(C) then
7: C ← C ∪ ante;
8: remove Ante from BC
9: FPC ← FPC−instances in FPC not proved by C;
10: until FPC = ∅ or there are no more antecedents in BC or it is not possible to

improve the score of the current clause or |C| = CL
11: return C

base clause happens before the searching for relational paths (1); consequently, the

bottom clause is used as search space for paths, together with the same positive

example used to generate the bottom clause and the base clause (2).

Using the Bottom Clause as Search Space for Antecedents Generation

The original FORTE dynamically generates antecedents at each iteration of the add

antecedents procedure, since it is necessary to collect the variables of the current

clause to create new literals. FORTE_MBC, on the contrary, generates literals stat-

ically, at the beginning of the process by creating the bottom clause. However, not

every literal in the whole bottom clause can be added to a current clause in a speci�c

moment. Suppose, for example, the clause head(A,B). whose body is empty is be-

ing specialized. The modeh de�nition to this predicate is modeh(1, head(+ta,+ta)),

indicating that it can be used in the head of a clause and it is allowed only one

instantiation of it (recall = 1) since we deal with de�nite clauses, and their ar-

guments are both of input, whose types are ta. Consider the BK and a positive

instance producing the bottom clause

head(A,B) : −body1(A,C), body2(B,C), body3(C,A).
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Algorithm 19 Top-level Relational Path�nding Add Antecedents Algorithm Using
the Bottom Clause
Input: The current theory H ′ and the FDT , a clause C, TPC, the set of correctly

provable positive instances using clause C and FPC, the set of incorrectly prov-
able negative instances using clause C

Output: A (specialized) clause C ′

1: Ex ← an example from TPC, covered only because of C (and not because of
others clauses with the same head);

2: BC ← createBottomClause(Ex, H ′, FDT , C); %use Algorithm 17;
3: �nd all clauses created from C and from paths generated through the terms in

head of ex, considering BC as search space;
4: C ′ ← the clause retaining the most instances in TPC as provable, or, in case of

a tie, the shortest clause
5: FNC ← negative instances still provable
6: if FNC 6= ∅ then
7: C ′ ← Hill climbing add antecedents algorithm(C ′, TPC, FPC)
8: return C ′

based on the following mode declaration:

{modeb(∗, body1(+ta,−ta)),modeb(∗, body2(+ta,−ta)),modeb(∗, body3(+ta,−ta)}

which indicates that the clause can have in�nite di�erent instantiations of the pred-

icates bodyi (recall = ∗) and the arguments of these predicates have both type ta,

where the �rst one is an input term and the second one is an output term. In case

every literal in the bottom clause is a candidate to specialize the base clause, the

literal body3(C,A) could be added in the current clause. However, notice the vari-

able C is in the place of an input term and therefore such a variable should have

appeared before in the current clause, which is not the case. To consider only the

FOIL constraint of having a connection variable between the clause and the literal

is not enough, since in this case body3(C,A) would be valid because of the second

variable. Note that such a literal is correctly placed inside the bottom clause because

the variable C appeared before in body2(B,C). Because of that ILP systems such as

Progol and Aleph take advantage of the order of literals in the bottom clause when

choosing an antecedent to be added to a clause. We follow a di�erent approach

for collecting the eligible literals to be added to a clause, from a bottom clause. A

literal in the bottom clause is a candidate to be included in a current clause if and
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only if their input variables have already appeared before in another literal of the

current clause. Thus, Line 4 of Algorithm 18 is composed of two steps: (1) collect

the literals of the current bottom clause and (2) validate such candidate antecedents

to verify if each one of them is actually allowed to be part of the clause, according

to their input variables.

In regard to the Relational Path�nding Algorithm we follow a slightly di�erent

approach. First of all, it is important to notice that the generation of antecedents

to this algorithm is the same as the one performed in Algorithm 9, with only one

obvious di�erence: now the literals are searched in the bottom clause generated at

the beginning of the process. Thus, when looking for paths the literals considered to

be in a path are the ones from the bottom clause, but still taking into account the

end values of the relational paths. However, we do not validate literals concerning

modes immediately before they are considered to be in a path, since more than one

antecedent will be added at once. In this way, it may be the case the whole path is

valid according to the modes but the isolated literal would not be. Thus, the whole

path is validated according to mode declarations: if the relational path does not

obey the modes it is discarded just before it is evaluated. Line 3 of Algorithm 19

returns the clauses created from C and from paths, but ensuring such clauses are

valid according to mode declarations.

Remarks about the Complexity of Antecedents Addition

The revision process of FORTE has an exponential complexity in the size of the in-

put theory and in the arity of the theory predicates (RICHARDS, MOONEY, 1995).

When adding antecedents to a rule, the number of permutations of arguments to a

predicate is an exponential function of the predicate's arity. Thus, the space com-

plexity of possible literals grows exponentially on the number of new variables, since

the complexity of enumerating all possible combinations of variables is exponential

according to the arity of the predicate. On the other hand, the space complexity of

the bottom clause is the cardinality of it and is bounded by r(|M |j + j−)ij+ , where

|M | is the cardinality of M (the set of mode declarations), j+ is the number of +

type occurrences in each modeb in M , plus the number of − type occurrences in
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each modeh, j− is the number of − type occurrences in each modeb in M plus the

number of + type occurrences in each modeh, r is the recall of each mode m ∈ M ,

and i is the maximum variable depth (MUGGLETON, 1995a). On the same way

the use of the bottom clause brings the advantage of reducing the search space of

Progol when compared to a top-down approach as FOIL, the use of the bottom

clause also reduces the search space of antecedents of FORTE, which originally gen-

erated antecedents based on FOIL. However, it is important to point out that this

advantage is only guaranteed if the i variable is small enough. In the extreme case

that i and the background knowledge are both large, the bottom clause has a very

large number of literals and hence the search space is as large as or even larger than

the search space of FORTE. Considering exactly this problem, (TANG, et al., 2003)

proposed the BETH system, which makes use of a hybrid top-down and bottom-up

approach when constructing the bottom clause, aiming to reduce the cardinality of

the bottom clause and consequently the search space of literals.

Modifying the Delete Antecedent Operator to use Modes Lan-
guage and to Allow Noise

Using Mode Directed Search when Deleting Literals from a Clause

Besides using the theory of MDIE for generating the bottom clause and take advan-

tage of it when adding literals to be added to a clause, we would also need to yield a

theory that follows the modes language. This is not only a requirement to make the

�nal theory valid according to the modes, but is also essential to the specialization

procedure since, as it was said before, the �rst step is to include the terms in the

base clause as terms to be used in the bottom clause. Such terms must correctly

follow the modes, otherwise it will not exist a match for them in the bottom clause

construction procedure.

To begin with, we assume the initial theory follows the modes established

in the language bias. To continue following modes when revising the theory, it is

necessary to validate each single proposed modi�cation according to them. When

specializing clauses, this is already done, since any literal to be added to the body of

a clause comes from the bottom clause and immediately before to be indeed included,
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it is checked if it obeys any mode. It remains to be checked whether a proposed

modi�cation does not make the theory invalid according to the modes when it is

generalized. Thus, a mode check is included after deleting a literal from the body

of the clause being generalized. It works as follows. Immediately before evaluating

a literal to be removed from a clause, it is checked if the resulting clause follows one

of the modes assertions. The inspection will prevent a literal to be removed in case

it falls in one of two cases: (1) the literal to be removed is the only one with an

output variable of the head of the clause; or (2) the literal to be removed is the only

one with a variable that is input to other literal. Both cases would make the clause

not follow the modes language and therefore the procedure does not allow this to

happen.

Allowing noise in Delete Antecedent Operator

In addition to using modes de�nitions to validate a deletion of a literal from a clause,

we also remodel the delete antecedents operator so that it becomes more �exible in

the sense of allowing noise, i.e., true negative instances become provable. Rather

than specifying a maximum number of negative examples to be considered as noise,

as it is done in Aleph and Progol systems for example, the number of negative

examples that a clause may cover is decided by the score of the clause. Thus, at

each iteration the antecedent improving the score at most is selected. In case after

deleting such an antecedent from the body of a clause the score is improved, yet a

true negative instance becomes false positive, the procedure nevertheless proceeds

to further deletions. The deletion of antecedents stops when it is not possible to

improve the score, following a classical greedy hill climbing approach. This modus

operandi is used in deletion antecedents operator and to delete antecedents in order

to create a new rule from an existing one (add rules operator).

Experimental Results

We have already experimentally demonstrated in (DUBOC, et al., 2009) the bene-

�ts of using mode declarations and the bottom clause when revising FOL theories.

Experimental results have presented a speed-up of 50 times compared to the original
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Algorithm 20 Remodeled Greedy Hill Climbing Delete Antecedents Algorithm

Input: A clause C, TNC, a set of unprovable negative instances, FNC, a set of
unprovable positive instances, a theory H ′′, the static BK FDT

Output: A (generalized) clause C
1: scoreC ← compute current score
2: repeat
3: for each antecedent ante ∈ C do
4: CTemp← C − ante
5: scoreCTemp ← compute score for CTemp
6: antes ← (CTemp, scoreCTemp)
7: C ← CTemp ∈ antes with the highest score scoreCTemp

8: if scoreCTemp is better than scoreC then
9: C ← CTemp
10: scoreC ← scoreCTemp

11: until it not possible to improve score
12: return C

FORTE system, without signi�cantly decreasing accuracies. Additionally, we have

shown there that the revision system provides more accurate and smaller theories,

compared to a standard inductive method also based on the bottom clause. In this

chapter, we would like to know if it is possible to further decrease the runtime of

the revision process without decreasing the accuracy. With this goal, we present

the results obtained from the current implementation, varying the set of operators

used to revise the theory, compared to the implementation of FORTE containing

FORTE_MBC algorithm and also to Aleph system. We compare the average run-

time, accuracy and size of the theories, in number of clauses and literals.

Datasets We consider the same datasets used in (DUBOC, et al., 2009), namely

the Alzheimer (KING, et al., 1995a) domain, composed of four datasets and the

DssTox dataset (FANG, et al., 2001). Alzheimer domain compares 37 analogues

of Tacrine, a drug combating Alzheimer's disease, according to four properties as

described below, where each property originates a di�erent dataset:

1. inhibit amine re-uptake, composed of 343 positive examples and 343 negative

examples

2. low toxicity, with 443 positive examples and 443 negative examples

140



3. high acetyl cholinesterase inhibition, composed of 663 positive examples and

663 negative examples and

4. good reversal of scopolamine-induced memory de�ciency, containing 321 pos-

itive examples and 321 negative examples

Alzheimer domain considers 33 di�erent predicates and 737 facts in background

knowledge. DssTox dataset was extracted from the EPA's DSSTox NCTRER Database.

It contains structural information about a diverse set of 232 natural, synthetic and

environmental estrogens and classi�cations with regard to their binding activity for

the estrogen receptor. The dataset is composed of 131 positive examples and 101

negative examples. There are 25 di�erent predicates and 16177 facts in backgrund

knowledge.

Experimental Methodology The datasets were split up into 10 disjoint folds

sets to use a K-fold strati�ed cross validation approach. Each fold keeps the rate

of original distribution of positive and negative examples (KOHAVI, 1995). The

signi�cance test used was corrected paired t-test (NADEAU, BENGIO, 2003), with

p < 0.05. As stated by (NADEAU, BENGIO, 2003), corrected t-test takes into

account the variability due to the choice of training set and not only that due to

the test examples, which could lead to gross underestimation of the variance of

the cross validation estimator and to the wrong conclusion that the new algorithm

is signi�cantly better when it is not. In this work, we are assuming that both

modes and types de�nitions are correct and therefore cannot be modi�ed. All the

experiments were run on Yap Prolog (SANTOS COSTA, 2008).

The initial theories were obtained from Aleph system using three settings:

� The �rst setting runs Aleph with its default parameters, except for minpos2,

which was set to 2 to prevent Aleph from adding to the theory ground unit

clauses corresponding to positive examples. It is identi�ed in the Tables as

Theory-def.
2Minpos parameter set a lower bound on the number of positive examples to be covered by an

acceptable clause. If the best clause covers positive examples below this number, then it is not
added to the current theory ()
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� The second setting named as Theory-def+cl, runs Aleph with its default

parameters, except for minpos and clauselength parameters, to set an upper

bound on the number of literals in a clause. We choose this last parameter

because YAVFORTE implementation also limits the number of literals in an

acceptable clause. To all systems, clause length is de�ned as 5 in Alzheimer

domain and 10 in Dsstox, following previous work (LANDWEHR, et al., 2007).

� The third setting, Theory-best runs Aleph with �literature� parameters ac-

cording to previous work (HUYNH, MOONEY, 2008; LANDWEHR, et al.,

2007). Thus, following (HUYNH, MOONEY, 2008), Aleph was set to consider

minscore as 0.6, evaluation function is M-estimate (DZEROSKI, BRATKO,

1992), noise is 300 for Alzheimers and 10 for DSStox and clause length and

minpos are de�ned as above. Additionally, induce_cover command was in-

voked instead of the standard �induce�. The di�erence is that positive exam-

ples covered by a clause are not removed prior to seeding on a new example

when using induce_cover. Note that only clause length parameter is used in

YAVFORTE, as the others parameters are not implemented there.

To generate such theories, the whole dataset was considered but using a 10-fold

cross validation procedure. Thus, a di�erent theory was generated for each fold and

each one of these theories was revised considering its respective fold (the same fold

is used to generate and revise the theories).

In order to identify if there are any bene�t on pre-de�ning the set of applica-

ble operators when revising the theories, YAVFORTE is run with 5 di�erent sets

of operators. Four settings consider a combination of one specialization operator

together with one generalization operator. The last setting, identi�ed in tables as

Y AV FORTE considers all operators.

� YAV-del considers delete rule as specialization operator and delete antecedents

only as generalization operator.

� YAV-add considers only addition of antecedents as specialization operator

and addition of rules as generalization operator.
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� YAV-add-del considers additions of antecedents as specialization operator

and delete antecedents as generalization operator.

� YAV-del-add considers delete rules as specialization operator and add an-

tecedents as generalization operator.

Both YAVFORTE and FORTE_MBC run add antecedents algorithm con-

sidering Relational Path�nding algorithm, followed by Hill climbing in Alzheimers

domains. As DSSTox top-level predicate is unary, Relational Path�nding is not ap-

plicable. Because of that, only Hill climbing algorithm is taken into account. Both

systems considers clause length parameter as 5 for Alzheimers and clause length as

10 for DssTox.
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Results and remarks about them Tables 2, 3, 4, 5 and 6 bring the results for

Amine, Toxic, Choline, Scopolamine and DssTox datasets, respectively. The best

values for each column are in bold, but we require that, in case the best runtime or

theory size result is of one of the revision settings, the accuracy of the initial theory

is still improved. The symbol ♦ identi�es the cases where the runtime and accuracy

of the new systems have signi�cant di�erence compared to Aleph. The symbol •

is used for a similar reason, comparing YAVFORTE with its di�erence settings to

FORTE_MBC. Finally, ? identi�es the cases where there is signi�cant di�erence

between YAVFORTE disregarding some revision operator and YAVFORTE using

all the operators. From the results we make remarks as follows.

� YAVFORTE is always faster than FORTE_MBC and even produces more

accurate theories with signi�cant di�erence in four cases. There are two cases

where YAVFORTE returns worse theories than FORTE_MBC: Choline and

DSSTox with the literature Aleph parameters. In the rest of the cases both

systems produces similar accuracy results. The di�erence in time is mainly due

to the fact that YAVFFORTE may stop to propose revisions without using all

operators, when a simpler operator already reaches the potential of the revision

point. Additionally, there is some gain in time when terms of the base clause

are included in the set of terms of the bottom clause before generating literals.

Remember that FORTE_MBC is used to unify the terms of the base clause

and the bottom clause only after the bottom clause has been constructed.

Concerning the di�erence in accuracy, there are two factors responsible for

that: (1) to stop proposing revisions before trying all operators may cause the

revision let aside some revision that could be better to the test set. This is the

case with Choline dataset; also, delete antecedents operator in YAVFORTE

does not try to eliminate the proof of all negative examples; instead it deletes

antecedents following a score value. While this more �exible operator is able

of producing more accurate results in the four cases previously mentioned, it

is also responsible for worse revision of the DSSTox theory. However, in most

cases, YAVFORTE is able to revise theories as well as FORTE_MBC (without

signi�cant di�erence) in reduced runtime.

149



� Note that the results for Choline dataset using FORTE_MBC are in most

of the �gures detached from the rest. FORTE_MBC has a harder time to

revise the theories generated from this dataset than in the others datasets for

two main reasons: this is the dataset with the largest set of examples and the

theories generated from Aleph for it have the highest size.

� YAVFORTE considering only delete antecedents and delete rules as revision

operators achieves the fastest revision system and produces the smallest theo-

ries according to both number of literals and number of clauses. What is

interesting about this setting is that with rare exceptions (Choline with best

parameters of Aleph and DssTox), the results show that those both opera-

tors alone are able to provide signi�cant improvements over the initial theory.

Actually, in Toxic with literature Aleph parameters this setting is the one pro-

viding the best revision: the �nal theory is the smallest and more accurate

and it even has been revised in less time.

� The results indicate that there are bene�ts of considering only a subset of the

revision operators: most cases produce theories as accurate as when consider-

ing all operators and in less time. Thus, when the expert of the application

has some insight on what to expect from the revised theory, he could use this

knowledge to reduce the set of applicable revision operators.

� It is important to emphasize that YAVFORTE considering any set of operators

is faster than Aleph in 11 of 15 cases, with most of the settings still returning

more accurate theories. With this result, we can claim that a revision system is

capable to behave better than an inductive system, considering both runtime

and accuracy.

Figures 4, 5 and 6 exhibit scatter plots for all systems and theories, considering

theories learned with Aleph default parameters, Aleph default plus clause length

changed and Aleph best parameters, respectively. Symbols in the bottom right

corner indicate the best results. Note that when considering default parameters

Aleph concentration is in bottom left corner: runtime is small, at the cost of bad

accurate theories. When changing clause length parameter, the situation slightly
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Figura 4: Scatter plot for all datasets and systems settings considering theories
learned by Aleph with its default parameters

Figura 5: Scatter plot for all datasets and systems settings considering theories
learned by Aleph with its default parameters, except for clause length

changes for accuracy, but runtime increases, as expected. Better parameters improve

accuracy, at the cost of increasing runtime. Most of the cases FORTE_MBC is in

higher y-axis than the others systems, although it is more present in the left side,

indicating its accuracies results are still elevated, compared to Aleph. YAVFORTE

settings, on the other hand concentrates in the bottom (right) corner, indicating in

the overall they are capable of producing the best accurate theories, in less time.
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Figura 6: Scatter plot for all datasets and systems settings considering theories
learned by Aleph with better parameters settings than just default

Conclusions

Although work in theory revision gained great attention in the 1990s, in recent years

ILP community had practically set aside research in this area, since the bene�ts of

revising theories could not outweigh the large runtime e�ort expended by those

systems. This chapter contributes towards changing this scenario, based on the

FORTE revision system. First, in (DUBOC, et al., 2009) we have abandoned the

top-down search of literals based on FOIL in order to use the Bottom clause, to

reduce the set of literals taken into account when re�ning a theory, as standard ILP

systems do. In this chapter we further improve the scalability of the revision system,

by (1) making the use of revision operators more �exible, once it is possible to

choose which operators are going to be considered to revise the theory; (2) stopping

to propose revisions in one revision point as soon as a simpler operator already

achieves the full potential of the point; (3) requiring the clause continues to obey

mode declaration after an antecedent is deleted. Moreover, we also introduced one

modi�cation in the delete antecedents operator, once in the original FORTE and

FORTE_MBC an antecedent could be deleted only when none of the true negative

instances become provable. It was necessary to make this hard requirement more
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�exible because there are cases when the set of false negative instances is only

reduced if the clause is allowed to also prove some negative instances. Finally, we

have modi�ed the bottom clause construction procedure of FORTE_MBC in two

ways: (1) the terms of the ground base clause are considered to be part of the bottom

clause, so that they can be used to bring further terms to the bottom clause, and

also to make unnecessary to unify the base clause with the bottom clause after this

last one is constructed; (2) the current theory is taken into account to prove literals

to be included in the Bottom clause. We named the system including all this issues

as YAVFORTE.

Experimental results were extracted from �ve relational benchmark datasets,

namely four datasets from Alzheimer domain and the DSSTox dataset. Through

them, it was possible to verify that the revision process can be indeed improved with

those modi�cations. YAVFORTE is faster than FORTE_MBC without decreasing

the accuracy. In fact, there were cases where the accuracy was further improved,

considering the initial theory. It was also possible to see that when we turn the set

of revision operators more �exible, the runtime diminishes while the initial accuracy

is still improved, though not that much as when the complete set of operators are

considered. More important, we could show that when the same parameter for

limiting the size of a clause is used for revising and for learning from scratch, the

revision performs faster than the inductive method. In this way, we achieve our goal

of devising a revision system as feasible as a standard inductive system, at least

when datasets of regular size are used.

Datasets used in this chapter are not considered as robust ones. Therefore,

we still need to verify how the revision system behaves when the datasets have a

large number of examples and/or large background knowledge. Also, as the revision

system starts from an initial theory, if this one has a large number of faulty clauses,

the system is probably going to behave badly. In this case, it is going to be more

di�cult to do the revision than learning from scratch, since the revision must pro-

pose modi�cations to each faulty clause. Because of those issues, in chapter 6 we

investigate stochastic local search techniques applied to the revision process.
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Appendix C: Chess Revision:
Acquiring the Rules of Variants of
Chess through First-order Theory
Revision from Examples

Motivation

In the recent paper (DIETTERICH, et al., 2008), the authors point out that there

was considerable e�ort in the development of theory revision systems in the past,

but the lack of applications suited to that task made those systemsnot be widely

deployed. In this chapter we intend to contribute in this direction by designing an

application in the area of games that �ts perfectly to theory revision.

Game playing is a fundamental human activity, and has been a major topic

of interest in AI communities since the very beginning of the area. Games quite

often follow well de�ned rituals or rules on well de�ned domains, hence simplifying

the task of representing them as computer programs. On the other hand, good

performance in games often requires a signi�cant amount of reasoning, making this

area one of the best ways of testing human-like intelligence. Namely, datasets based

on games are common testbeds for machine learning systems (FÜRNKRANZ, 2007).

Usually, machine learning systems may be required to perform two di�erent kinds

of tasks (FÜRNKRANZ, 1996). A �rst task is to learn a model that can be used

to decide whether a move in a game is legal, or not. Having such a model is

fundamental for the second task, where one wants to learn a winning strategy (BAIN,

MUGGLETON, 1994; SADIKOV, BRATKO, 2006). We focus on the the �rst task
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in this work. In order to acquire a meaningful representation of the set of rules

describing a game, one can take advantage of the expressiveness of �rst-order logic

and hence its ability to represent individuals, their properties and the relationship

between them. Thus, using ILP methods it is possible - roughly speaking - to induce

the game's rules written as a logic program, from a set of positive and negative

examples and background knowledge.

Previous work has demonstrated the feasibility of using ILP to acquire a rule-

based description of the rules of chess (GOODACRE, 1996). However, to e�ectively

learn chess theory, it is necessary to induce not only the top-legal concept of how a

piece should legally move, but also subconcepts to help on that task. Consider, for

example, Figure 7. In the �rst case, a king is in check and therefore its only legal

moves are those which get it out of check. In the second case, a piece is playing the

role of protector to the king (it is a pin). Before moving such a piece one should

realize if the king continues to be protected, if the piece leaves its position. Those

are intermediate concepts that must also be induced by the revision system. The

authors of (GOODACRE, 1996) employed hierarchical induction to learn a concept

at each time, starting from the lowest level concept and incrementally adding the

learned de�nitons to the �nal theory, until it reaches the ultimate goal: learning the

concept of legal moves.

Figura 7: Visualization of situations when an ILP system should learn de�nitions
for subconcepts. Figure (a) shows a board of chess with a checked king. Figure (b)
shows a piece working as a pin.

On the other hand, game playing is a dynamic environment where games are

always being updated, say, to be more challenging to the player, or to produce an
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easier and faster variant of the original game. In fact, popular games often have

di�erent regional versions, that may be considered variants or even a new version

of the game. Consider, for example, the game of Chess, arguably, the most widely

played board game in the world. It also has been a major game testbed for research

on arti�cial intelligence and it has o�ered several challenges to the area. There are

numerous chess variants, where we de�ne chess variant as any game that is derived

from, related to or inspired by chess, such that the capture of the enemy king is the

primary objective (PRITCHARD, 2007). For instance, the Shogi game (HOOPER,

WHYLD, 1992), is the most popular Japanese version of Chess. Although both

games have similar rules and goal, they also have essential di�erences. For example,

in Shogi a captured piece may change sides and return to the board 3, which is not

allowed in Western Chess. Figure 8 shows boards of several chess variants. Ideally, if

the rules of a variant of a game have been obtained, we would like to take advantage

of them as a starting point to obtain the rules of a variant. However, such rules need

to be modi�ed in order to represent the particular aspects of the variant. In a game

such as chess this is a complex task that may require addressing di�erent board

sizes, introducing or deleting new promotion and capture rules, and may require

rede�ning the role of speci�c pieces in the game.

In this work, we address this problem as an instance of Theory Revision from

Examples (WROBEL, 1996). In this case, theory revision is closely related to Trans-

fer Learning (THRUN, 1995; CARUANA, 1997), since the rules of international

chess (the initial theory for the theory revision system) have been learned previ-

ously using ILP. Arguably, transfer learning is concerned about retaining and ap-

plying the knowledge learned in one or more tasks, to e�ciently develop an e�ective

hypothesis for a completely new task while theory revision deals with very related

problems. For example, transfer learning may carry out a mapping between two

di�erent predicates but theory revision systems are not designed to perform such

a task. However, after mapping one predicate to another it is usually necessary

to change the de�nition of the predicate, which is in fact a task of theory revision.

Thus, theory revision may be seen as an important part of transfer learning systems.
3It is suggested that this innovative drop rule was inspired by the practice of 16th century

mercenaries who switched loyalties when captured (PRITCHARD, 2007).
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Figura 8: Boards of variants of chess. In the �rst row it is the international Chess, on
its side it is the Xiangqi (Chinesse chess), followed by Shogi (Japanese Chess). Next
row it one of the �rst chess games, the Chaturanga in the Hindu version, followed
by the Chess in the Round game and a more modern version of Chaturanga, quite
close to the International Chess. In the last group it is Shogi, Anti King Chess, Los
Alamos and Grand chess, in this order.

We show that we can learn rules between di�erent variants of the game of

chess. Starting from YAVFORTE revision system explained in a previous chapter,

we contribute with (i) a new strategy designed to simplify the initial theory by

removing facts that will not be transferred between variants; (ii) support for ab-

duction; and (iii) support for negation as failure. Experimental evaluation on real

variants of chess shows that our technique can transfer between variants with smaller

and larger boards, acquire unusual rules, and acquire di�erent pieces. This chapter

is organized as follows. First, we describe the components besides the revision sys-

tem composing the framework for revising the rules of chess in section 5.3.2. Next,

the modi�cations performed on YAVFORTE to support abduction and negation so

that the problem is best addressed are described in section 5.3.2. Finally, we show

the e�ectiveness of our approach through experimental results on chess revision in

section 5.3.2 and conclude the work in section 5.3.2. A reduced version of this chap-
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ter has been published in (MUGGLETON, et al., 2009b) and (MUGGLETON,

et al., 2009a).

Revision Framework for Revising Rules of Chess to

Turn Them in the Rules of Variants

The framework designed in this work for revising rules of chess so that laws of a

variant of this game can be found is composed of �ve components, three of them

are input components, one is the transformer component and the last one is the

resulting component. The input components are (1) the initial theory, containing

rules of international chess learned previously from examples and/or de�ned by an

expert of the domain, (2) a set of examples re�ecting the laws of the game's variant

and responsible for pointing out where the initial theory di�ers from the domain

of the variant and (3) a set of fundamental concepts supporting the provability of

the initial theory. The transformer component is the theory revision system, which

is responsible for modifying the initial theory according to the examples so that

it re�ects the rules of the variant of the game. Finally, the last component is the

resulting revised theory, which ideally is a logic program capable of deciding whether

a move in the game is legal or not, according to its governing rules. Figure 9 displays

the components of the framework and how they cooperatively work to achieve the

goal.

The Format of Chess Examples

As most ILP frameworks, theory revision re�nes an initial theory from a set of

positive and negative examples. The Chess domain addressed in this work has as

positive instances the legal moves allowed by the rules of the game. Consequently,

the negative instances are the illegal moves, i.e., the moves not obeying the rules of

the game. In order to represent the moves executed during a game, the dataset is

composed of a set of simulated games up to a speci�ed number of rounds. The moves

are within a game aiming to represent castling and en-passant, which require the

history of the games, and promotion, which require update of the board. In case of

castling, history is necessary to check whether the king and rook has already moved
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Figura 9: Components of the chess revision framework: Initial theory is going to be
revised by the Revision system, using FDT and Dataset. Dataset is created from
the Examples generator component.

in previous rounds. To allow an en-passant it is necessary to check the immediately

preceding move. Promotion requires to replace the promoted pawn with another

piece in subsequent moves.

We take advantage of FORTE examples representation discussed in chapter 1,

where an example obeys the format

Ground Instances of Target Predicate← Conjunction of facts from the context

Thus, the ground instances of the target predicate are instances of legal (positive

instances) and illegal (negative instances) moves and the facts from the context are

the positions of the pieces related to each round (the board of the game). Each

simulated game has its separate set of legal and illegal moves and set of positions of

the piece during the game, in the format exhibited in Table 7.

The terms of the target predicate are the round of the move, with 1 as the �rst

round, 2 the subsequent round, and so on, and the current and next status of the

piece. The status is the name of the piece, its color and position, composed by File

and Rank. For example, move(9, pawn,white, c, 7, rook, white, c, 8) states that in

round 9 a white pawn moved from c, 7 to c, 8 and is promoted to a rook, i.e, its next

status is rook, white, c, 8. Similarly, themove(5, bishop, black, c, 8, bishop, black, e, 5)

states that in round 5 the black bishop moved from c, 8 to e, 5. The facts from the
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Tabela 7: Format of one example in Chess dataset
Target Predicate:

Positives:
move(Round,Piece,Colour,File,Rank,NextPiece,

NextColour,NextFile,NextRank),...
Negatives:

move(Round,Piece,Colour,File,Rank,NextPiece,
NextColour,NextFile,NextRank),...

Context:
board(Round,Piece,Colour,File,Rank),...
out_board(Round,Piece,Colour,-1,-1),...
out_board(Round,Piece,Colour,0,0),...

context represent the position of the pieces on the board at each round of the game,

through the predicate board/5 and the pieces removed of the game by capturing or

promotion moves, through the predicate out_board/5. In out_board/4 predicate,

the two last terms are −1,−1 in case of a capture and 0, 0 in case of a promotion.

The board setting is updated according to the legal move(s) performed on the

previous round. Suppose, for example, the white bishop move above. There is a fact

board(5, bishop, black, c, 8) in that example and after the move, another fact is gener-

ated to represent the new position of the piece, namely board(6, bishop, black, e, 5).

Suppose there were a fact board(5, pawn,white, e, 5) in the context of this same

game. Thus, when the bishop has moved it captured a white pawn, which �pro-

duces� another fact out_board(6, pawn,white,−1,−1) in the new setting of the

board. The board facts for the �rst round are composed of the initial position of the

pieces for the game and therefore they are the same for each example in the dataset.

Figure 10 shows the initial board for the international chess and board/5 predicates

representing it.

A move generator procedure is responsible for creating the dataset of simulated

games, since we could not �nd any saved games for variants of chess. Basically,

it starts from the initial board setting and successively chooses a piece from the

current board, generating legal moves for it. After that it chooses at random one

of the legal moves to be the positive example of the round. Then, it generates il

illegal moves from pieces chosen at random from the current board to compose the

160



Figura 10: The initial setting of the board in international chess and atomic facts
corresponding to it. Figure of the board is taken from http : //www.mark −
weeks.com/aboutcom/bloa0000.htm

set of negative examples of the round. Note that only one legal move is chosen

because naturally each round of the game has one legal move. However, several

possible illegal moves are selected, since they are not in fact performed. Moreover,

the board must be updated based on the legal move, which does not happen from

illegal moves, allowing us to have as many negative examples for each round as

desired. The process continues up to the speci�ed maximum number of rounds,

respecting for each round the piece with the right to play. It may be also necessary

to represent negative examples created from a non-existing board. This is the case of

negative examples representing non-existing pieces or non-existing positions in the

game. A variant of chess which does not use all the usual pieces or it uses a smaller

board would require that. In this situation, a random board is created, speci�cally

to represent such a negative example. Algorithm 21 shows the steps necessary to

generate the set of examples. Table 8 exhibits part of one example in the dataset,

extracted from a chess variant known as Gardner mini-chess (5X5 board).
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Tabela 8: Part of one example in Mini-chess Dataset
example(

% positive examples
[move(p1,pawn,white,a,2,pawn,white,a,3),
move(p2,pawn,black,c,4,pawn,black,c,3),
% Note this is precisely the black pawn that moved from c,4 to c,3
%in round 2
move(p4,pawn,black,c,3,pawn,black,b,2),...,
move(p23,knight,white,c,3,knight,white,a,4),
% A pawn is promoted to a knight
move(p24,pawn,black,2,black,knight,c,1),
move(p25,rook,white,d,1,rook,white,d,2)],

% negative examples
% promotion in an existing rank (therefore, from a non-existing board)
[move(r94,pawn,bishop,white,b,7,bishop,white,b,8),
move(p1,pawn,white,c,2,pawn,white,b,2),...,
move(w84,queen,black,f,2,queen,black,b,2),...,
move(p10,pawn,black,d,4,pawn,black,d,1),...,
move(p25,king,white,e,1,king,white,f,1)],

% facts from the context: board setting for each round
board(p26,king,white,a,1),board(p26,knight,black,c,1),...,
board(p25,knight,black,d,5),board(p25,rook,black,e,5),...,
% A white pawn has been promoted to a knight
% The fact such a pawn does not more belong to the board is
% represented by out_board predicate
out_board(p24,pawn,white,0,0),
board(p24,knight,white,a,4),...,
board(p23,pawn,white,a,3),board(p23,knight,white,c,3),...,
board(p23,rook,black,e,5),...,
% The black queen has been captured
out_board(p25,queen,black,-1,-1),...,
board(p5,rook,white,e,1),board(p5,queen,white,a,2),
% Board updated after fourth round: a black pawn has moved to b,2
board(p5,pawn,black,b,2),...,board(p5,pawn,black,e,4),...,
board(p5,knight,black,d,5),board(p4,king,white,a,1),...,
% Board updated after third round: the white queen has moved to a,2
board(p4,queen,white,a,2),board(p4,pawn,white,b,2),...,
board(p3,king,white,a,1),board(p3,queen,white,b,1),...,
%Board updated after second round: a black pawn has moved to c,3
board(p3,pawn,black,c,3),...,board(p2,pawn,white,e,2),...,
%Board updated after �rst round: a white pawn has moved to a,3
board(p2,pawn,white,a,3),board(p2,pawn,black,a,4),...,
board(p1,bishop,white,c,1),board(p1,rook,white,e,1),
board(p1,pawn,white,a,2),board(p1,pawn,white,b,2),...,
board(p1,knight,black,d,5),board(p1,rook,black,e,5),
% Non-existing boards are uptaded after a negative move
board(r95,bishop,white,b,8),...,board(w9,rook,black,b,1)
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Algorithm 21 Chess examples generator Algorithm
Input: The initial board setting CB, int d, representing the depth of each ex-

ample/game, int il, number of negative examples for each round, number of
examples n

Output: A dataset for a chess variant
1: nex← 1
2: while nex <= n do
3: round← 1
4: current_board← CB
5: color ← white
6: while r <= d do
7: piece← choose a piece with color color from current_board
8: legal_moves← generate legal moves for piece ∈ CB
9: pos_move_round← a move chosen at random from legal_moves
10: neg_moves_round ← il illegal moves generated at random from CB

and/or a non-existing board
11: current_board ← update current_board according to

pos_move_round
12: color ← black
13: r ++
14: n++

The Background Knowledge

In the chess revision problem, the initial theory describes the rules of the standard

game of chess, which will be modi�ed to state the rules of the variants, using ap-

propriate examples. This theory is inspired on the one learned in (GOODACRE,

1996) where hierarchical structured induction was employed in Progol system to

learn clauses from the lowest level predicate (which does not have any other target

predicate in the body) to the top-level predicate (the one which is not in the body

of any other predicate). The resulting theory was approved by Professor Donald

Michie, who was a world authority in computer chess research. To accomplish that,

a set of examples were generated at each time as the target predicate of the respec-

tive level. Thus, di�erent from her, the examples were not represented within a

game, but isolated from each other.

The major di�erences between the theory exploited in the present work and the

one learned in (GOODACRE, 1996) concern the clauses describing special moves

namely, castling, en-passant and promotion, since the authors of that work opted
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by not representing those moves. Additionally, we try as much as possible to avoid

negated literals with output variables to increase e�ciency, as explained above, and

because of that some rules were re-learned to obey this requirement.

Initial Theory

* The initial theory, which must be revised to turn into the theory of the variant

game rules, describes the rules for achieving a legal move following the rules of

chess (BURG, JUST, 1987). From a query about the legality of the move, the �rst

step of the logic program is to inspect whether the opponent king is in check. If

so, it is illegal to move the piece and the clause does not succeed. Otherwise, it

proceeds trying to �nd a valid next position for the piece. In more detail:

1. Either the piece is a king, and:

(a) It must be in a valid position (existing �le and rank), and,

(b) it must not go next to the opponent king, and,

(c) it must not go into check, that is to a position threatened by an opponent

piece and,

(d) it cannot go to a position where there is already a piece of the same color,

and then,

(e) it can perform castling with a rook, if the castling conditions hold; or,

(f) it moves one square in any direction to anexisting position in the board.

2. Or the piece is not a king, and:

(a) It must be in a valid position (existing �le and rank), and,

(b) it cannot move if its king is in double check (in this situation the only

piece allowed to move is the king), and,

(c) if it is protecting the king from a check (absolute pin) it can only move

to a position where it continues protecting the king, or,

(d) it can move to stop a check if the king is in simple check, either by captur-

ing the threatening piece or by blocking the path between the threatening

piece and the king, as long as it also respects conditions (g) and (h), or,
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(e) it may perform an attack, only in case the intended position is already

occupied by an opponent piece, by moving according to the direction it

is allowed to, except for the pawn, or,

(f) if the piece is a pawn, and ((d) or (e)), it can perform an en-passant

move; otherwise it captures one square diagonal, or,

(g) if the intended position is not occupied, the piece moves without capturing

other piece;

(h) except for a knight, it must not pass over any other piece on the board

while going to its next position;

(i) �nally, it must move according to its basic move (bishops diagonally,

rooks orthogonally, etc), to a valid position in the board (existing �le

and rank).

(j) If the piece is a pawn reaching the last rank it is promoted. The pawn

can move 2 squares vertical forward only if this is its �rst move in the

game.

Note that if the rules of the variant of the chess di�er from the standard chess

in any of the conditions above, the revision process must identify this through the

examples and change those rules, so that they re�ect the rules of the variant.

The pieces, �les, ranks and color are represented in the initial theory as ground

facts, where each fact is related to a piece, a �le, a rank or a color allowed in the

game of chess, as exhibited in Table 9.

Tabela 9: Ground facts representing pieces and colors in the game and �le and ranks
of the board, considering the interantional Chess
Pieces Colors Files Ranks
piece(rook). �le(a). �le(e). rank(1). rank(5).
piece(knight). �le(b). �le(f). rank(2). rank(6).
piece(bishop). piece(pawn). color(white). �le(c). �le(g). rank(3). rank(7).
piece(queen). piece(king). color(black). �le(d). �le(h). rank(4). rank(8).

In order to avoid output variables in negated literals, some clauses were mod-

i�ed to provide the same de�nition but using only input variables. Suppose, for ex-

ample, the clause below explaining the concept of check, where the terms related to

165



the piece checking the opponent king are uni�ed with (Piece, Colour1, F ile1, Rank1).

check(Round, P iece, Colour1, F ile1, Rank1, king, Colour2, F ile2, Rank2)←

nequal(Colour1, Colour2),

%load the information about a piece on the board

board(Round, P iece, Colour1, F ile1, Rank1),

attack(Round, P iece, Colour1, F ile1, Rank1, king, Colour2, F ile2, Rank2).

The clause above holds true if there is an opponent piece attacking the king;

in this case (Piece, Colour1, F ile1, Rank1) states the opponent. If one simply needs

to know whether the king is in check or not, the information regarding the attacking

piece can be only local to the clause, i.e., it is not necessary to return them as answer

substitution. Thus, a simpli�ed predicate for deciding if the king is in check has a

clause wherein all variables may be considered input:

check(Round,King, Colour2, F ile2, Rank2)←

check(BoardID, P iece, Colour, F ile1, Rank1, king, Colour2, F ile2, Rank2).

In this case, the predicate check/5 has as input only the information about

the king which might be in check, i.e., Colour2, F ile2, Rank2 refers to the color and

position of the possibly checked king.

Now, we can have not(check(Round,King, Colour2, F ile2, Rank2)) in the body

of a clause where all the terms are input variables, such as load, if we have a subgoal

board(Round,King, Colour2, F ile2, Rank2) �rst. The same was done with other

concepts in the theory appearing as negated literals in the body of some clause. Al-

though this optimization was not required by the revision itself, it was an important

useful step to achieve e�cient construction of the bottom-clause.

The clauses representing special moves such as castling, en-passant and pro-

motion were written by an expert and inserted by hand into the initial theory in

appropriate clauses. De�ning some part of the knowledge with the help of an expert

in the domain is usual in theory revision area.
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Fundamental Domain Theory

Besides the initial theory, there is previous knowledge about the domain which is

assumed as correct and therefore does not need to be revised. Fundamental Domain

Theory contains de�nitions valid to the standard chess and also to the chess vari-

ants. During the revision process, this set of clauses is not modi�ed and some of the

clauses in the theory being revised need to use them so that they can be satis�ed.

After the revision process, the clauses in the FDT, together with the revised theory,

will compose the theory of the chess variant. FDT is mainly responsible for keeping

the de�nitions of fundamental concepts such as di�erences between positions (�les

or ranks), relations of equality, non-equality, greater than or less than between �les

and ranks, directions, among others. Below there is an example of a clause belong-

ing to FDT, which de�ned the concept of northdirection.

%( b,2 is north from b,3)

direction(File, Rank1, F ile, Rank2, north)← less_thanRank1, Rank2).

where less_than concept is de�ned as

less_than(A,B)← integer(A), integer(B), !, A < B.%for ranks

less_than(A,B)← name(A), name(B), A < B.%for files

The initial theory has 109 clauses with 42 intermediate predicates and the

FDT 42 clauses. The work in (GOODACRE, 1996) had 61 clauses in the BK and it

learned 61 clauses. The di�erence in the total number of clauses is from the clauses

that were added to avoid output variables in negated literals, as explained in the

previous section, and from clauses representing special moves.

Modifying YAVFORTE to Acquire Rules of Chess

Variants

Unfortunately, the revision algorithm described in chapter 5.3.2 cannot tackle the

problem of revising between variants of chess. Analysis showed that chess generates
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a very large search space that could not be addressed well with uninformed search.

Moreover, we must consider changes in the domain (such as di�erences in board

size), that are not addressed well through the standard revision operators. We

therefore propose a number of modi�cations to the current version of the system,

described as follows.

Starting the Revision Process by Deleting Rules

In an attempt to decrease the complexity of the theory and consequently of the

whole revision process, we introduce a �rst step of deletion of rules. This process is

performed as a hill-climbing iterative procedure, where at each iteration the clauses

used in proofs of negative examples are selected, each one is deleted in turn using

the delete rule operator and the resulting theory is scored. The modi�ed theory

with best score is selected for the next step. The process �nishes when no deletion

is able to improve the score.

A similar algorithm was proposed to revise ProbLog programs (DE RAEDT,

et al., 2008b), where it has shown to be quite e�ective at �nding minimal explana-

tions. In our case, the goal would be to �nd a �common denominator� between the

two di�erent games. We found this procedure both reduces theory size and noise,

namely when the target theory is a specialized version of the initial theory. On the

other hand, it could implicate that the �nal revision is not the �minimally revised�

one, since the proof of negative examples could be avoided through addition of few

antecedents to the rules. However, the bene�ts on the decrease of runtime outweighs

the possibility of returning a non-minimal revision.

After this step, the algorithm is executed as usual. The procedure for deleting

rules is exhibited as Algorithm 22 and it is executed before the line 1 of the Algo-

rithm 16. Note that the operator for deleting rules might be normally used again

during the rest of the revision process (since it is one of the revision operators).

Using abduction during the revision process

Abduction is concerned with �nding explanations for observed facts, viewed as miss-

ing premises in an argument, from available knowledge deriving those facts (FLACH,
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Algorithm 22 First Step for Deleting Rules
1: repeat
2: generate specialization revision points;
3: for each specialization revision point (a clause) do
4: delete clause;
5: update best revision found;
6: if best deletion improves the current score then
7: delete clause with best score;
8: until no deletion improves the theory;

KAKAS, 2000a). Usually, theory revision systems, including FORTE, use abduc-

tion when searching for generalization revision points, to locate faults in a theory

and suggest repairs to it. Using abduction, a revision system determines a set of

assumptions (atomic ground or existentially quanti�ed formulae) that would allow

the positive example to be proved. Consider, for example, the theory below, taken

from (MOONEY, 2000)

p(X) : −r(X), q(X).

q(X) : −s(X), t(X).

and the positive instance p(a), with BK r(a), s(a), v(a), unprovable by the current

theory. The algorithm discovering revision points would �nd out by abduction that

the instance is unprovable because the literal t(a) fails. One of its suggestions to �x

the theory would be to add a new de�nition for t(X)

We further bene�t from abduction in three distinct situations of the revision

process.

Intermediate Predicates Abduction Intermediate predicates are those ones

appearing in the head of clauses and also in the body of others clauses, but there

is neither example nor facts in the dataset corresponding to them. Suppose, for

example the extracted piece of the chess theory in Table 10. The clause we show in

the table handles the case of a king moving by calling the clause de�ning how a king

should legally move. Note that there are two clauses for doing this, one of them

dealing with a king in check and another one to handle a move of a king not in check.
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Predicates kingmove/7, kingmove_in_check/7 and kingmove_no_check/7 are

intermediate predicates, as they appear in the body of clauses and also in the head

of others clauses. The instances in the dataset are of predicate move/4 only.

Tabela 10: An extracted piece of the chess theory, to exemplify the need of abduction
when learning intermediate concepts

move(BoardID, king, Color, File1, Rank1, king, Color, File2, Rank2):-
�le(File1), rank(Rank1),
�le(File2), rank(Rank2),
color(Color1), nequal(Co lour,Color1),
equal(Piecek, king), % no constants in negated predicates
% there is only one king of Color1 in the board
board(BoardID, Piecek,Color1, File3, Rank3),
% the king is not in check
not(any_check(BoardID, Piecek, Color1, File3, Rank3)),
% clause de�ning the legal move of a king
kingmove(BoardID, king, Co lour, File1, Rank1, File2, Rank2).

kingmove(BoardID, king, Co lour, File1, Rank1, File2, Rank2):-
kingmove_in_check(BoardID, king, Co lour, File1, Rank1, File2, Rank2).

kingmove(BoardID, king, Co lour, File1, Rank1, File2, Rank2):-
kingmove_no_check(BoardID, king, Co lour, File1, Rank1, File2, Rank2).

It may be the case that the clause(s) de�ning intermediate predicates are

wrongly de�ned. The error propagates to clauses containing literals with such pred-

icate in their bodies, and so on. In this situation, such a literal is marked as a revision

point, since it is in the path of the failing/successful proof of some positive/negative

example. Suppose, for example there is no de�nition or a wrong de�nition for a king

moving when it is in check, as in the example of Table 10.

In the �rst case, when the predicate is contributing to a positive example not

to be proved, besides trying to modify clauses from where the intermediate predicate

is called, the revision is going to propose the following modi�cations concerning the

predicate itself:

� Delete antecedents from the body of the clause de�ning an intermediate pred-

icate, if such a clause exists;
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� Add rules with the intermediate predicate in the head of the clause.

In the second case, an intermediate predicate is in the path of a successful

proof of a negative example. Possible proposed modi�cations trying to solve this

problem are going to be:

� Delete the rule with the intermediate predicate in the head.

� Add antecedents to the body of such a clause.

The second modi�cation of each item concerns re�ning the clause by adding

literals to its body. As we discussed in the previous chapter, this search space is com-

posed of literals in the Bottom Clause, generated from a positive example covered by

the clause, whose example predicate is the same as the one in the head of the clause.

The problem is we have no examples for such intermediate predicates. In the chess

theory, for example, the instances correspond to move predicates, but there is no ex-

ample in the dataset for kingmove, kingmove_in_check, or kingmove_no_check.

Therefore, we need to tackle non-observation predicate learning (MUGGLE-

TON, BRYANT, 2000), where the concept being learned di�ers from that observed

in the examples. We introduce intermediate predicate abduction in order to �fabri-

cate� the required example. From a positive instance belonging to the answer set

(relevant examples) of the intermediate clause, i.e, the proof of the instance includes

the clause, we obtain an �intermediate instance� using the current theory and FDT.

The procedure takes an example from the answer set together with the interme-

diate predicate and instantiates such a predicate to its �rst call encountered when

attempting to prove the goal. The proof starts from the example and �nds an instan-

tiation for the speci�ed intermediate predicate. After constructing the intermediate

example, the bottom clause construction procedure is ready to run, followed by the

re�nement of the clause. The whole procedure can be visualized in Algorithm 23.

In Table 10, assume the predicate kingmove_in_check/7 is marked as a re-

vision point and move(p12, king, black, e, 9, king, black, b, 2) is one of the relevant

examples. The intermediate instance kingmove_in_check(p12, king, black, e, 9, b, 2)

would be generated by the procedure, by �rst calling clause corresponding tomove/7

171



predicate, next calling clause with kingmove/7 in its head and �nally instantiating

the intermediate instance.

FORTE also uses a similar procedure to generate extensional de�nitions for

lower level recursive predicates, when revising theories with recursive clauses. In

(MUGGLETON, BRYANT, 2000) the procedure we employ here to abduct the in-

termediate instance is used to obtain �contra-positive examples� to the intermediate

predicates and then construct a Bottom Clause for them.

Note that we can only reach an intermediate predicate from higher level clauses.

In case there already exists a correct clause de�ning such a predicate, there is no

need to further re�ne it and such a literal is a candidate to be included in the body

of higher level clauses (clauses where the intermediate predicate is in the second

term of a determination de�nition). However, if there is no clause de�ning this

predicate, and also it does not belong to the body of a higher level clause, currently

the revision process has no means of reaching this predicate and consequently pro-

pose the creation of a clause for it. This happens because, in order to make some

modi�cation in the provability of the example, the revision would have to be able

to include the intermediate predicate in the body of some clause taking part in the

proof of the example, and at the same time to create a clause for the intermediate

predicate. Nowadays, the revision system is not capable of proposing modi�cations

to more than one revision point at the same time. On the other hand, if there is

a de�nition of the intermediate predicate, even if it is not correct for all required

examples, but it solves the problems of some of them, the revision would be able to

include such a predicate in the body of a clause. In a future iteration, the predicate

should be marked as revision point and have its de�nition modi�ed, so that the

missing examples before become correctly proved. To sum up, although we do not

escape from the limitations of inverse entailment (YAMAMOTO, 1997) with this

procedure, it is enough to attend this class of requirement when revising a chess

theory.

To �nish, it is worth mention there is great interest on learning concepts from

non-observed predicates in ILP community, by handling two strategies of logical rea-

soning: induction and abduction (FLACH, KAKAS, 2000b; INOUE, 2001; MOYLE,
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2003; RAY, et al., 2004).

Algorithm 23 Algorithm for Re�ning a Clause whose Head Corresponds to an
Intermediate Predicate
Input: A theory T and FDT BK, a positive instance pi, a clause C = l : −Body0,

where l corresponds to an intermediate predicate, and Body0 is a (possible
empty) set of literals

Output: A possibly re�ned clause C ′ = l : −Body0 +Body1
1: ipi← Algorithm 24
2: BC ← Bottom clause created from ipi, T and BK
3: C ′ ← C re�ned with literals in BC
4: return C ′

Algorithm 24 Algorithm for fabricating an intermediate instance
Input: A theory T and FDT BK, a positive instance pi, a clause C = l : −Body0,

where l corresponds to an intermediate predicate, and Body0 is a (possible
empty) set of literals

Output: An intermediate instance ipi
1: repeat
2: choose a clause to start the proof of pi
3: while l /∈ the derivation path or the proof does not �nish, with a failure or

a success do
4: continue to build the proof tree
5: if l is the atom in the leaf of the proof path then
6: try to prove l : −Body0, accordingly uni�ed
7: if it is possible to prove l : −Body0 then
8: ipi← ground atom coming from the proof of l
9: until ipi is found

Abducting Atomic Facts to be Part of the Theory The simpler way of

employing abduction in theory revision is to include in the theory assumptions

that would allow positive examples become provable. Thus, the need for intro-

ducing an abducible predicate is identi�ed during the search for generalization re-

vision points. Suppose, for example, the extracted piece of the chess theory in

Table 10. Assume the goal is to modify the theory so that it is possible to represent

a game of chess played in a larger board, say a 9X9 board. The positive instance

move(p12, [king], black, e, 8, e, 9) will fail, since it would not be possible to prove

rank(9).

We let any failing predicate to be a candidate to be abducted, once it obeys

three additional requirements: (1) the predicate must have a modeh de�nition in
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modes declaration, so that it can become a clause whose body is empty, (2) there

must have at least one modeh de�nition with only constants as its terms, and

(3) the predicate must be de�ned as abducible. To abduct rank(9), as necessarily

demonstrated in the example above, a modeh(1, rank(#rank)) would be required

to be in modes de�nitions.

There is a maximum number of abducible predicates allowed in the theory,

in order to prevent it to have several predicates maybe proving only one positive

example. Note that this abduction is part of the add new rule operator, which

acts on predicates, by creating an explanation for it. Because of that, an abducted

predicate is only proposed as a revision if there is no way of creating a clause with

such a predicate in its head. Thus, what really happens is: if the add new rule

operator is unable of creating a clause de�ning the predicate, it is checked if it is

abducible and if the maximum number of abducible predicates has not yet been

reached. If the answer is a�rmative, the operator looks for the modeh de�nition

mentioned above and from it and an instance indicating the necessity of abduction,

the atomic fact is created. As it is a proposed revision, the fact is only abducted

if it brings an improvement to the current theory. Note that it is necessary to call

Algorithm 24 so that the �nal atomic fact is found out. The algorithm performing

this task is exhibited as Algorithm 25.

Note that if the abducible predicate becomes a faulting point in the theory, it

may eventually be generalized/specialized in the next iterations.

Algorithm 25 Atomic Facts Abduction Algorithm
Input: Modes de�nitions M , abducible predicate pred/N , maximum number of

abducible maxabd, Theory T , FDT BK, a positive instance pi
Output: An atomic fact pred(t1, ..., tn), proposed to be included in T
1: if number of abducible predicates so far is less than maxabd then
2: pred(t1, ..., tn)← Algorithm 24
3: if pred(t1, ..., tn) matches a modeh de�nition, where the terms are constants

only then
4: return pred(t1, ..., tn)

Look-ahead abduction The last abduction approach addressed in this thesis is

to use a strategy called here as look-ahead abduction, acting under the search for revi-
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sion points. It works as follows. When searching for generalization revision points,

it is assumed that faulty abducible predicates are true and the search continues,

looking for further revision points, possibly depending on the abducible predicate.

In this way, it is possible to �x a clause with at least two problematic literals, since

the �rst one failing is considered as proved.

Suppose, for example, we have the positive instance a(1, 2), the negative in-

stance a(1, 3), the clause a(X,Y ) : −b(X,Z), c(X, Y, Z) and BK d(1, 2, 4), d(1, 2, 5).

The positive instance a(1, 2) is unprovable and then generalization revision points

must be found. When doing that, it is noticed the literal b(1, Z) cannot be proved.

Thus, originally, the search for revision points �nishes, marking that clause and the

literals b(X,Z) and a(X,Y ) as generalization revision points. Notice that the revi-

sion points search procedure has no means to verify whether c(1, 2, Z) could or not

be proved, since the literal before it has already failed.

Although there are two revision points (the single clause and predicate b/2) it

may be the case that no revision is able to �x the misclassi�cation of the positive

instance, without also making the negative instance provable. Considering the most

common delete antecedent and add rule operators, note what the revision operators

could propose:

1. Deleting either antecedent b(X,Z) or c(X, Y, Z): this does not make the pos-

itive instance become provable.

2. Creating the most general rule a(X,Y ) would make the negative instance

provable. Only the most general rule could be created to this case.

3. Creating a rule capable of proving b(1,_) does not solve the problem of the

non-proof for c(1, 2,_) and therefore does not bring any bene�ts to the theory.

However, if we assume b/2 as an abducible predicate during the search for

revision points, c(X,Y, Z) is also marked as a generalization revision point and a

rule could be created to explain c(1, 2,_), say c(X, Y, Z) : −d(X,Y, Z). Later, either

b(X,Y ) would have to be removed from the clause or a de�nition would be created

for it (possibly including the single assumption b(1, 2)).
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For a more concrete example regarding the chess revision problem, consider

the case of a game that has a di�erent piece, say a counselor, that moves exactly

like the bishop, but it cannot move backwards, only forward. Consider a simpli�ed

version of the move concept, in Table 11. The revision system cannot de�ne the

basic move for such a new piece, as it is required that the piece itself is known by

the theory. However, if one abducts the literal piece(counselor) during the search for

revision points, the system would be able to mark basic_move as revision point, and

then propose a de�nition for it. The abducted literal piece(counselor) is going to

be part of the proposed revision, besides the possibly created de�nition for basic_-

move(BoardID, counselor, ...).

Tabela 11: An extracted piece of the chess theory, to exemplify the need of abducting
predicates when searching for revision points

move(BoardID, Piece, Co lour, File1, Rank1, Piece, Co lour, File2, Rank2):-
�le(File1), rank(Rank1),
�le(File2), rank(Rank2),
color(Co lour), piece(Piece),
% the piece is on the board
board(BoardID, Piece, Co lour, File1, Rank1),
% any others necessary veri�cations
...
basic_move(BoardID, Piece, Co lour, File1, Rank1, File2, Rank2).

% how a bishop moves
basic_move(BoardID, bishop, Co lour, File1, Rank1, File2, Rank2) :-

% abs_fdi�(File1, File2, Di�), abs_rdi�(Rank1, Rank2, Di�).

Thus, to outline the problem of more than one faulty literal in a clause, we

take advantage of abduction and consider abducible predicates (up to a maximum

number of predicates) in the theory under revision. To do so, if a failing abducible

literal is found during the search for generalization revision points (points failing

on proving positive examples), it is assumed as correct and kept around in the

revision point structure as a pending abducible predicate. Note that in this moment

the literal must be an atomic fact. The search for revision points proceeds, by
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possibly including other abducible predicates as pending facts, until the proof tree

reaches either a leaf or a failing literal not considered as abducible. In the �rst

situation, the proposed revision is to include the abducible literals in the theory,

as they were new rules, similar to what is done in the previous subsection. In the

second case, the system marks the failing literal as a generalization revision point

with pending abducible literals. When proposing modi�cations to such a point, the

abducible predicates are considered as part of the theory. Eventually, in case the

revision is chosen to be implemented, besides the generalization performed in the

revision point, the system must also include the abducible predicates, otherwise the

generalized revision point would continue failing.

Note that if the abducted predicate prevents some positive example of be-

ing proved or helps a negative example to be proved, the next iterations are going

to mark them as generalization/specialization revision points. The process of ob-

taining abductive explanations and possibly generalizing them later is performed

in (MOYLE, 2003), but to learn clauses (completing de�nitions of background pred-

icates) and not to revise them.

Using negated literals in the theory

YAVFORTE and FORTE_MBC are neither able to introduce negated literals in the

body of the clause nor to revise negated literals. Negation is essential to elegantly

model the chess problem, since we need to represent concepts such as the king is

not in check or a piece is not landing on another piece, among others.

In order to add negated literals in body of clauses it is required that the Bottom

Clause construction procedure is able to elicit them. Therefore, it is necessary to

explicitly specify modeb and determination declarations for them. In the �rst case,

the modeb declaration must be in the format:

modeb(RecallNumber, not(literal(Modes)))

stating that not(literal(...)) can appear in the body of some clause. Determination

declaration must be in the format

determination(HeadPredicate/Arity, not(BodyPredicate/Arity))
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stating that not(BodyPredicate/Arity) is allowed to be in the body of the clause

whose head has HeadPredicate/Arity. In contrast to Aleph, we explicitly de�ne

the arity of the negated literal in determination de�nitions.

Inclusion of negation into logic programs is traditionally considered as a hard

task since the incorporation of full logic negation tends to super-exponential time

complexity of the prover. One of the most successful and widely alternative to full

negation is the procedural approach of Negation as Failure (NAF) (CLARK, 1978).

One of the major drawbacks of NAF is that it cannot produce answer substitutions

(new bindings) to negated query variables, requiring the negated literal is ground

in order to be proved. If one wants more than a simple �yes� or �no� as answer, it

is better not to apply negation as failure, since it may result in �oundering of the

goal (MARRIOTT, et al., 1990; DRABENT, 1996). As a result, to use pure NAF

inside the bottom clause construction procedure it is necessary to ensure there are

no free variables in any not(Goal) that might be called. To do so, the mode type

of all variables of negated literals must be of input so that it is guaranteed when

not(Goal) is called, all terms are ground, since they should had been instantiated

by previous literals.

The initial theory learned for the game of chess used in this work makes use

of negated literals with output variables, since in some cases it is necessary to check

out the negation of a concept. For example, it could be necessary to verify whether

a king is not in check through the clause de�ning the check concept itself. Nor-

mally, such a clause should provide as output the piece responsible for putting the

king in check. To address this problem the work presented in (GOODACRE, 1996)

made a special provision: a rede�nition of not was introduced to the general proof

which, after succeeding on the fail of the literal, it skolemises the variables so that

they cannot be used again. We add the further requirement in the bottom clause

construction procedure to guarantee the output variables of such literals are sin-

gleton (they appear only once in the clause) and therefore they must not be used

as input variables of others literals. Although we have re-learned some concepts

so that output variables in negated literals become dispensable (subsection 5.3.2),

we let the implementations above in the system, to attend a situation where this
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re-learn process would not be possible. Constant modes are not allowed in both

works, since this would involve generating literals with all possible values, leading

to a very ine�cient process.

In case it is essential to bind variables in a negated query, the alternative

most used to overcome the drawbacks of NAF is to employ constructive negation

techniques (CHAN, 1988; DRABENT, 1995). It extends the NAF to handle non

ground negative subgoals so that it is possible to construct new bindings for query

variables. It works as follows: after running the positive version of the negated literal

in the same way NAF does, the solution of the possibly non ground goal is collected

as a disjunction and then this disjunction is negated to get a formula equivalent to

the negative subgoal. The chess problem addressed here has not showed necessary

to use constructive negation, since the initial theory does not need to bind variables

from negated literals to answer some query. However, it would be nice to implement

such an approach to the general case of negation in the revision process. We leave

this question to future work.

In addition to inserting negated literals in the body of clauses, it may be

the case that a negated literal is the culprit for the misclassi�cation of examples.

Remember from the laws of chess that a king cannot move next to the other king,

in such a way that this last king can reach the former after a basic move. In the

theory we tackle here, this is veri�ed through a negated literal, as exempli�ed in

line 6 of Table 12.

Tabela 12: An extracted piece of the chess theory, to exemplify the need of marking
a negated literal as a revision point

kingmove1(BoardID, king, Color, File1, Rank1, File2, Rank2):-
not(any_land_on(BoardID, king, Color, File1, Rank1, Color, File2, Rank2)),
color(Color), nequal_color(Color,Color2),
board(BoardID, king, Colour2, Filek, Rankk),
basic_move(BoardID, king, Color, File1, Rank1, File2, Rank2),
not(king_next_king(BoardID, king, Color2, Filek, Rankk, king, Color, File2, Rank2)).

king_next_king(BoardID, king, Color1, File1, Rank1, king, Color2, File2, Rank2):-
basic_move(BoardID, king, Color1, File1, Rank1, File2, Rank2).
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Now, suppose a variant of chess that is more restricted to obey this rule: a king

cannot move to a position that is reachable by the other king after two basic moves.

In this case, a positive example would be unprovable, since king_next_king/9 would

succed, making its negation to fail. To �x this problem, one could modify the second

clause in the table, so that it becomes more speci�c. One possible modi�cation is

to add a second basic_move/7 predicate in the body of the rule. Note that the

clause is going to be specialized, even though we want to solve the problem of a

positive example. Because the revision has been indicated by a negated literal, it

is necessary to reverse the proposed modi�cations: a clause corresponding to the

negated literal must be specialized to �x the misclassi�cation of positive examples,

since this is going to make the clause not to be satis�ed and therefore its negation

succeed. Similarly, in situations where a negative example has been proved because

the negation of a literal succeeds, it is necessary to generalize such a clause so that

it can be satisi�ed and its negation fails.

We thus introduced a procedure for handling a faulty negated literal during

the revision process. Roughly speaking, if the negated literal is responsible for a

failed proof of positive examples, it is treated as a specialization revision point. On

the other hand, if the negated literal conducts to a proof of a negative example,

it is treated as a generalization revision point. This is a preliminary attempt at

introducing non-monotonic reasoning in YAVFORTE.

Experimental Results

Experimental methodology To show experimental results obtained with the frame-

work discussed in the paper, we generated datasets for 3 di�erent chess variants.

The variants are described as follows, selected from (PRITCHARD, 2007).

� Gardner minichess. Minichess comprises a set of chess variants played with

regular pieces and standard rules, but on smaller boards. There are games

played on boards of size 3X3, 4X4, 4X5, 5X5, 5X6 and 6X6. The goal of this

family of games is to make the game simpler and shorter than international

chess. Figure 11 shows several initial boards for minichess games. Here we
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focus on Gardner's minichess, which is the smallest chess game (5X5) in which

all original chess pieces and legal moves are still used, including pawn double

move, castling and en-passant.

� Reform chess, also known as Free capture chess di�ers from the international

chess because either side may capture its own men, as well as the opponent's.

Only the friendly king cannot be captured.

� Neunerschach chess is played on a board 9X9, with two extra pieces but re-

moving the queen. The �rst one is called Marshall and moves like a queen.

The second extra piece moves like a queen, but only two squares and it is

named Hausfrau. The pieces are arranged in the board following the order:

Rook-Knight-Knight-Marshall-King-Hausfrau-Bishop-Bishop-Rook.

Figura 11: Initial boards of minichess games, taken from Wikipedia

We employed the framework described in this chapter to obtain theories de-

scribing each one of the above variants. We performed 5X2-fold cross validation

and scored the revisions using f-measure. The datasets are arbitraly composed of 5

simulated game (example), where each round has 1 positive and 5 negative examples
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and the maximum round for each game is 25.

Next we present the evaluation measures obtained from each variant in Ta-

ble 13.

Tabela 13: Evaluation of the revision on chess variants
Variant # Pos. # Neg. # Facts in # Initial # Final Initial Final

examples examples Context clauses clauses Acc (%) Acc (%)
Gardner 97 500 3294 151 147 59 99.83
minichess
Reform chess 100 500 3360 151 154 93 100
Neunerschach 100 500 12651 151 160 87 100
chess

Note that the variant with a smaller board had the size of the theory decreased

but the others variants, which include all the rules of chess and also additional ones,

had the size of the theory increased. We could say that the �rst case is a specialized

version of the chess while the others are a more general version of the game. The

number of clauses include the initial (revised) theory and the FDT, which is �xed.

Notice that using only the initial theory can still achieve a good accuracy, as most

rules are shared between di�erent variants. On the other hand, accuracies were

signi�cantly improved through revision in every case, suggesting that the revision

makes the dataset be correctly re�ected.

The next subsection discusses speci�cally the revisions performed by the sys-

tem in each variant together with remarks about them.

Discussions about the automatic revisions performed by the
revision system

Gardner's Mini-chess

The system performed the following revisions on the initial theory to obtain a correct

theory for Gardner minichess:

1. The delete rule step was able to remove the following clauses from the theory:

file(f), file(g), file(h), rank(6), rank(7), rank(8). After that, any negative

example coming from an invalid position or going to an invalid position be-

comes non-proved, since they do not attend one of the conditions 1.(a) , 1.(f),

2.(a) or 2.(h) of section 5.3.2.
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2. The add rule generalization operator added the following clauses to the theory:

� basic_move(pawn, black, F ile, 4, F ile, 2), that allows the black pawn to

move 2 squares. This is necessary because in the chess theory the black

pawn moves 2 squares only from rank 7 (within the condition 2.(i)), which

is not a valid rank in the Gardner Chess.

� promotion_zone(pawn,white, F ile, 5), that allows the white pawn be

promoted when reaches the last rank of the Gardner mini-chess board.

Remarks about the revision/learning process in Gardner Mini-chess

� The �nal accuracy was on average 99.83%, since not all folds contained exam-

ples for promotion and black pawn moving 2 squares, as these moves are

scarcely executed during the game.

� Promotion occurs rarely in both chess and in Gardner mini-chess, since

usually the pawn is captured before reaching the last rank.

� The initial double moves of pawns are di�cult in Gardner's smaller board,

since, and di�erently from chess, the intended positions (rank 4 for white

pawn and rank 2 for black pawn) are already occupied by opponent pieces

and the pawn cannot capture a piece through its usual move.

� The best �nal theory is able to correctly classify all the moves of this variant,

although it did not remove the clauses de�ning pawn double move from rank 7

to rank 5 and black pawn promotion when it reaches the rank 8, as to perform

the former moves the pawn would have to be on rank 7. As previously stated,

the clause de�ning this rank was removed from the theory and therefore it

became an invalid rank. In this way, the condition 2.(a) of section 5.3.2 is not

satis�ed and the piece cannot move anyway. A post-pruning procedure should

remove such useless clauses from the theory, so that the best �nal theory would

perfectly correspond to the target theory of Gardner Mini-chess.

� We have tried to run Aleph and Progol 5 to �nd the rules of Gardner's

minichess. As they do not revise a theory, we let the initial theory and FDT be
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the background knowledge. Aleph abduction procedure was not working prop-

erly. Progol, on the other hand, was able to abduct predicates basic_move

and promotion_zone. However, it did not let such a predicate be in the �nal

theory, as according to its evaluation function, there had been no improvement

in score. The revision system is more fortunate in this question, since it fo-

cuses on the misclassi�ed examples to propose revisions. Progol could neither

delete rules, as this is not one of its re�nements operators.

Reform chess: Unusual capture rule

The system performed the following revisions on the initial theory:

1. According to condition 1.(e) of section 5.3.2, the king must not go to a position

where there is already a friendly piece. This is declared through subgoals of the

form not(land_on(.., Colour, ..., Colour, ...)) in the clauses de�ning how a king

may move. As free capture chess allows the king to capture a friendly piece, the

delete antecedent operator removed these literals from their respective clauses.

2. In the original theory, a piece may move to an occupied position only if an

opponent piece is there. This is de�ned as a move by the attack concept. In

Reform chess the piece is also allowed to attack a friendly piece. Because of

that, the revision chosen to be implemented in most of the folds is proposed

by the add rule operator. The main literals in the body of such a rule, allows

an attack to a piece of the same color, only if such a piece is not a king. Note

that the original rule de�ning the attack concept remains on the theory.

3. Progol does not proposed to create new rules for the same predicate as the

revision. Instead, it tried to learn a new de�nition of the top-level move

predicate, without success.

Unusual pieces and larger board: Neunerschach

The system performed the following revisions on the initial theory:

1. The delete rule step discussed in section 5.3.2 removed the clause piece(queen)

from the theory;
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2. Abduction when searching revision points (third introduced type) added the

facts piece(marshall) and piece(hausfrau) to the theory and, just after that,

3. From the rules de�ning the basic moves of the queen, the add rule operator

created rules for the marshall by replacing the constant queen from the head

of such rule by marshall. This was done by �rst treating the constants in the

clause, substituting them by equality predicates. FORTE always does that

before searching for revision points. Then, the literal was deleted and the

constant marschall was made to replace queen;

4. The add new rule operator included the following new rules in the theory

� Rules de�ning the basic move of hausfrau, so that this piece can move

diagonally and orthogonally, but only two squares;

� New ground clauses, produced by abduction of the second type, to make

the last �le and rank valid, namely, file(i) and rank(9).

Remarks about the revision process in Neunerschach chess Note that

without the abduction procedure it would be di�cult for the revision process to

induce the rules for the new pieces, since �rst of all, the piece must be valid to

match condition 2.(a) of section 5.3.2 and only after that the piece can try to move.

Thus, only including the clauses de�ning the pieces would not bring any bene�t to

the theory, since there were not any clauses de�ning how such pieces should move.

Additionally, as the pieces did not exist on the theory, the search for revision points

procedure would not be able to reach the literals de�ning the basic moves of the

pieces and then identify them as revision points. Even if it could, de�ning the basic

moves of the clauses is not enough for they to move, since they must be valid in the

theory.

The move generator procedure was not able to generate games with promotion

cases for this dataset, probably due to the size of the board X maximum number

of rounds in the game. Thus, the revision process failed on correcting the rules of

promotion, which would allow the pawn to be promoted to the new pieces and the

white pawn be promoted in rank 9, instead of in the rank 8. We expect that using
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games with a larger number of rounds will allow us to represent them, but at the

cost of much larger datasets.

Finally, Progol was able of proposing abduction of predicates �le/1, rank/1

and piece/1, but it could not create clauses de�ning basic moves of the new pieces.

Conclusions

We presented a framework for learning variants of a game through automatic theory

revision from examples. The framework is composed of a Theory Revision system,

the chess initial rules (expressed as the initial theory which is allowed to be modi�ed)

and fundamental domain theory (assumed to be correct) and a move generator for

obtaining the examples. We described the modi�cations performed on the revision

process to best address the revision of chess problem, including (1) the introduction

of an initial step for deleting rules responsible for misclassi�ed negative examples,

(2) the use of abduction in three di�erent moments and (3) the use of negation. The

experimental results encompassed 3 variants of chess, ranging from a specialized

version of chess (minichess) to a more general version of chess (including a larger

board and new pieces). The revision was able to return �nal theories correctly

describing most of the rules of the variants. The missing cases were due to the lack

of examples of rare events during a game, such as the promotion. Also, the �nal

theory would bene�t from a post pruning procedure to remove clauses that have

become useless after the revision.

We are aware that the datasets were generated in a quite arbitrary way, since

the number of examples and depth of the games were chosen according to the need

of generating situations necessary for the revision. A better experimental setting

should include several datasets of at least varying sizes. Notice however that our

primary goal was to demonstrate the capability of the revision system acquiring the

rules of variants of the game, using the rules of the traditional game as starting

point. Also, we would like to show that it was necessary to change the base revision

system to achieve that. In this way, new issues were introduced in the revision

system that can also be useful for others domains besides chess.

Thus, as future work, we intend to further experiment the framework with
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datasets varying on the number of maximum rounds and simulated games. We

would like to apply the framework to other more complex variants, namely regional

variants, such as Shogi. Shogi and several others variants of chess require the knowl-

edge of an entirely new concept. The Einstein chess variant, for example, has the

concept of demotion, where each time a piece moves without capturing it is �de-

moted� to a less valuable piece. This concept does not exist in international chess

and if one would like to obtain the theory for this variant, literals for demotion would

have to be included in the language by hand. This is not the best scenario, since it

is assumed the previous knowledge concerns the situations occurring in traditional

chess only. Therefore, the revision system would greatly bene�t from predicate

invention operators (MUGGLETON, BUNTINE, 1988).

A more ambitious future work is learning playing strategies (BAIN, MUG-

GLETON, 1994). In this case, we would like to obtain strategies for playing the

variants of chess from strategies of chess. To do that we believe we would bene�t

from probabilistic theory revision, so that uncertainty about the strategies could be

represented.

Finally, we would like to apply theory revision to others tasks involving transfer

learning, such that the domains share the same predicates language. We believe in

this way it would not be necessary to map between predicates of one domain to

predicates of another domain.
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Appendix D: Stochastic Local Search

Searching over large spaces is a recurrent problem in Computer Science. In

order to get good hypotheses while still keeping the search feasible, one may take

advantage of local search algorithms, which start generating candidate hypothesis

at some location of the search space and afterward moving from the present location

to a neighbouring location in the search space. Each location has a relatively small

numbers of neighbours and each move is determined by a decision based on local

knowledge (HOOS, STÜTZLE, 2005). In this way, they abandon completeness to

gain e�ciency.

It is also possible to further improve e�ciency and also escape from local op-

tima by making use of randomised choices when generating or selecting candidates in

the search space of a problem, through the Stochastic Local Search Algorithms(SLS).

One major motivation and successful application of SLS has been in satis�ability

checking of propositional formulae, namely through the well-known GSAT (SEL-

MAN, et al., 1992) and WalkSAT (SELMAN, et al., 1996) algorithms. A large

number of tasks in areas such as planning, scheduling and constraint solving can

be encoded as a satis�ability problem, and empirical observations show that SLS

often can substantially improve their e�ciency (CHISHOLM, TADEPALLI, 2002;

RÜCKERT, KRAMER, 2003).

Randomisation may also be used to improve other search strategies, such as

backtracking search. For example, Rapid Randomised Restarts (RRR) introduces a

stochastic element intro backtrack-style search in order to introduce restart search

from scratch if we are not making progress (GOMES, et al., 1998; GOMES, et al.,

2000). This led to an interest in applying such techniques on data-mining appli-

cations, and more speci�cally on multi-relational data-mining. Initial work on the

area has indeed shown promising results for stochastic techniques when learning
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theories from scratch in ILP systems (PAES, et al., 2006b; �ELEZNÝ, et al., 2006).

For two very di�erent algorithms, results showed very substantial improvements in

e�ciency, with little or no cost in accuracy.

Motivated by these work, this thesis also contributes in the development of SLS

methods when revising �rst-order and probabilistic logical models. Thus, in order

to ground the contributions of next chapter, this chapter presents an overview of

SLS algorithms and SLS methods employed in Inductive Logic Programming. The

chapter starts by describing standard SLS methods in section 5.3.2. Then, well-

known and vastly used SLS algorithms, such as GSAT and WalkSAT, are reviewed

in section 5.3.2. Finally, in section 5.3.2, SLS algorithms designed to e�ciently learn

�rst-order logic theories are discussed. In this last section it is included one technique

developed with our contribution, where �rst-order logic theories are learned using

propositionalization combined with a SLS algorithm (PAES, et al., 2006b).

Stochastic Local Search Methods

The key ideas of the search process performed by a Stochastic Local Search Algo-

rithm are as follows.

1. Initialisation: An initial candidate solution is selected, usually by generating

a candidate at random;

2. Move step: Iteratively, the process (at random) decides to move from the

present candidate solution to a local neighbouring candidate solution, usually

(but not always) considering a function to evaluate the neighbours.

3. Stop criteria: The process is �nished when it attends a termination criteria,

which could be a maximum number of iterations or a solution has been found.

Suppose for example, a Stochastic Hill Climbing (or Iterative Descent) strat-

egy (RUSSELL, NORVIG, 2010). It starts from a randomly selected point in the

search space (initialisation) and tries to improve the current candidate solution by

choosing with uniform probability distribution a neighbour of the current candidate

(move), but requiring the value of the evaluation function is improved. The process
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�nishes when none of the neighbours improves the evaluation function (stop crite-

ria). A Greedy Stochastic Hill Climbing strategy (or Discrete Gradient Descent)

would try to perform the best move by choosing uniformly the next candidate solu-

tion in the set of maximally improving neighbours (the best possible improvement).

As such a method requires a complete evaluation of all neighbours in each iteration,

one may prefer a First Improvement neighbour selection strategy, which moves to

the �rst neighbour encountered improving the value of the evaluation function.

SLS Methods Allowing Worsening Steps

It is easy to note that the performance of a SLS algorithm (as it also occurs in other

local search methods) strongly depends on the size of the neighbourhood. The larger

is the neighbourhood, the more potentially better candidate solutions it contains. In

fact, the ideal case is to have an exact neighbourhood: the neighbourhood relation for

which any locally optimal candidate solution is guaranteed to be the globally optimal

solution. Obviously, taking into account an exact neighbourhood relation prevents

the search method to be stuck in very low-quality local optima. However, it is also

much more expensive to determine search improving steps in exact neighbourhoods.

It is possible to escape from local optima and avoid an expensive search con-

sidering a fairly simple neighbourhood and allowing the search strategy to perform

worsening steps. Usually, a strategy following this idea alternates with a �xed

frequency between selecting an improving neighbour and selecting a neighbour at

random. In order to avoid cycles, which may happen if the random walk is undone

in subsequent improvement steps, the algorithm can probabilistically decide in each

step whether to apply an improvement step or a random walk step. The family of

algorithms following this strategy is called Randomised Iterative Improvement (RII)

and its top level search step is exhibited as Algorithm 26. A RII algorithm does not

terminate as soon as a local optima is encountered. Instead it may stop the execu-

tion when it reaches a number of iterations or when a number of search steps has

been performed without making progress in improvement. It is proved that when

the search process runs long enough, eventually an optimal solution to any problem

instance is found with arbitrarily high probability (HOOS, STÜTZLE, 2005).
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This method had been successfully applied to SAT problems, through the

WalkSAT algorithm (SELMAN, et al., 1996), which we will discuss more thoroughly

in next sections.

Algorithm 26 Top-level Step Function Performed by an Algorithm using Ran-
domised Iterative Improvement method (HOOS, STÜTZLE, 2005)

Input: problem instance π, candidate solution s, walk probability wp
Output: candidate solution s′

1: u← random(0,1) # returns a number between zero and one
2: if u ≤ wp then
3: s′ ← random_walk_step(π, s)
4: else
5: s′ ← improvement_step(π, s)
6: return the result of step 3

Another mechanism for allowing worsening steps it to accept a worsening step

depending on the deterioration in the evaluation function value, i.e., the worse a

step is, the less likely it would be performed. The algorithms following such strategy

compose the family of Probabilistic Iterative Improvement (PII). In each step of the

search process a PII algorithm selects a neighbour according to a given function

p(g, s), which determines a probability distribution over neighbouring candidate

solutions of s based on their evaluation function values g.

A vastly used strategy, which is closely related to PII is the Simulated Anneal-

ing (SA) method (KIRKPATRICK, et al., 1983; GEMAN, GEMAN, 1984; CERNY,

1985; LAARHOVEN, ARTS, 1987) (Top-level algorithm in 27). SA starts from a

random initial solution s and in each iteration of the search a neighbour s′ of s

is selected at random. Usually, the search makes the decision of moving to s′ or

staying in s based on a value T , which is adjusted at each step t by an scheduling

function. Standard SA always accepts the candidate s′ in case it has a score better

than s. When it does not happen, s′ is accepted with a probability calculated as the

exponential of di�erence between both scores divided by T . Thus, the worse is the

move and the less is the value T , the less exponentially is the probability. Thus, bad

moves are chosen more frequently at the beginning of the search, when the value of

T is high, and they become more di�cult to be accepted as the value of T decreases.

It has been proved that if the value of T is reduced slowly enough, the algorithm
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�nds a global optima with probability close to 1 (RUSSELL, NORVIG, 2010).

Algorithm 27 Simulated Annealing algorithm (GEMAN, GEMAN, 1984)

Input: Integer number k and limit; a �oat number lam
Output: a solution s

1: s← random generated candidate solution
2: for t from 1 to ∞ do
3: T ← scheduling(t, k, limit, lam)
4: if T == 0.0 then
5: return s
6: s′ ← a neighbour of s, chosen at random from the neighbourhood relation
7: ∆ E ← score(s′) - score(s)
8: if ∆ E > 0 then
9: s← s′

10: else
11: s← s′ only with probability e∆ E/T

Rapid Random Restarts

Another way of escaping from local optima is to simply restart the search algorithm

whenever it reaches a local minimum (maximum). Such a strategy works reasonably

well when the number of local optima is rather small or reinitialising the process is

not very costly. The development of this approach was motivated by the recognised

variability in performance found in combinatorial search methods (GOMES, et al.,

1998; GOMES, et al., 2000), such as satisfaction constraint problems. Often, the cost

distributions of a complete backtracking search have very long tails and an average

erratic behaviour. Search algorithms with RRR include a stochastic component

in backtracking style search. The key idea is to restart the search, possibly from

another random initial seed, if it is not making any progress after a number of tries.

To do so, a cuto� speci�es a number of attempts of �nding the best solution before

restarting from another point.

A simple example of RRR strategy applied to a hill-climbing algorithm con-

ducts a series of improving moves from a random initial candidate solution. The

algorithm is complete with probability close to 1 for the simple reason that it will

eventually generate the goal solution as the initial solution. If each iteration of

the hill climbing has a probability p of success, the expected number of restarts is
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1/p (RUSSELL, NORVIG, 2010).

Other SLS approaches

Others SLS methods exist.ILS (LOUREN�O, et al., 2002) combines two types of

SLS methods, one in each step. One step reaches local optima as fast as possi-

ble and the other step escapes from local optima. At each iteration, Iterated Lo-

cal Search (ILS) �rst applies a perturbation to the current candidate solution s,

yielding a modi�ed candidate solution s′. A local search is performed from s′ un-

til a local optimum s′′ is obtained. Finally, an acceptance criteria decides if the

next candidate solution is s′ or s′′. Greedy Randomised Adaptive Search Procedures

(GRASP) (FEO, RESENDE, 1995) randomise the construction method of candi-

date solutions such that it can generate a large number of good starting points for

a local search procedure. Evolutionary algorithms are a large and diverse class of

stochastic search methods strongly inspired by models of the natural evolution of

biological species (BÄCK, 1996). Generally speaking, evolutionary algorithms such

as genetic algorithms (MITCHELL, 1996) start with a set of candidate solutions

and repeatedly apply three genetic operators, namely selection, mutation and re-

combination, replacing partially or completely the current population by a new set

of candidate solutions. For the knowledge of the much many others SLS approaches

and a better understanding of the methods brie�y described in this section, we refer

the reader to (HOOS, STÜTZLE, 2005).

Stochastic Local Search Algorithms for Satis�ability

Checking of Propositional Formulae

Stochastic local search has been used since the early nineties to solve hard combina-

torial search problems, starting from the seminal algorithm published independently

by Selman (SELMAN, et al., 1992) and Gu (GU, 1992). This SLS algorithm was

able to solve hard satis�ability problems in only a fraction of the time required by

the most sophisticated complete algorithms. The satis�ability problem in proposi-

tional logic (SAT) must decide whether there exists an assignment of truth values

to the variables of a formula F under which F evaluates to true (a model of F). SLS
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are among the most successful methods for solving the search variant of SAT, i.e.,

to �nd models for a given formula rather than to decide if such a model exists. In

the following we discuss the seminal GSAT algorithm (SELMAN, et al., 1992) and

its most arguably prominent derivative, the WalkSAT algorithm (SELMAN, et al.,

1996).

The GSAT Algorithm

GSAT (SELMAN, et al., 1992) original algorithm is a SAT solver based on a greedy

hill climbing procedure with a stochastic component. It is based on a one-�ip-

variable neighbourhood in the space of all complete truth values assignments of

a given formula, written in conjunction normal form (CNF), i.e., a conjunction of

clauses, where each clause is a disjunction of literals. Thus, two variable assignments

are neighbours i� they di�er in the truth assignment of exactly one variable. GSAT

uses an evaluation function g(F, va) that maps each variable assignment va to the

number of clauses of the given formula unsatis�ed under va. At each iteration of the

algorithm, g(F, va)must be minimised by �ipping the value of one variable, since the

goal is to �nd a model of F, therefore evaluated to zero under g(F, va). The variable

to be �ipped is selected at random from the neighbourhood of current candidate

solution minimising the number of unsatis�ed clauses (HOOS, STÜTZLE, 2005).

Algorithm 28 presents the basic GSAT algorithm. It has two nested loops, with

the inner loop starting from a randomly chosen truth assignment of the variables

in CNF formula F . Then, it iteratively �ips the variable resulting in a maximal

decrease in the number of unsatis�ed clauses. If there is a tie, the variable to be

�ipped is chosen at random from the set of variables improving the score at most.

The inner loop continues until it �nds an assignment of variables satisfying F or

when it reaches a user de�ned number of steps. In case no model is found after

a maximum number of steps, GSAT reinitialises the search at another randomly

chosen truth assignment of F . This is strictly necessary, since the inner loop gets

easily stuck in local minima. The outer loop follows trying to �nd a model of F

until a user de�ned number of tries. After the maximum number of tries without

�nding a solution, the algorithm ends with �no solution found�.
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Algorithm 28 GSAT Algorithm (SELMAN, et al., 1992)

Input: Positive integers maxFlips and maxTries; a CNF formula F
Output: model of F or �no solution found�

1: for try from 1 to maxTries do
2: va← a randomly generated assignment of the variables in formula F
3: for step from 1 to maxSteps do
4: if va satis�es F then
5: return va
6: v ← randomly selected variable �ipping which minimises the number

of unsatis�ed clauses
7: t← t with v �ipped
8: return �no solution found�

Due to the greedy hill climbing nature of GSAT, it su�ers from a severe stagna-

tion behaviour, getting easily stuck in local optima for any �xed number of restarts.

Thus, GSAT has been extended into to other search strategies in order to improve

its performance. One of the most prominent is the GWSAT algorithm (SELMAN,

KAUTZ, 1993) which decides at each step with a �xed probability np whether to do

a standard GSAT step or to �ip a variable selected uniformly at random from the

set of all variables occurring in unsatis�ed clauses. The probability np is called walk

probability, noise setting or noise level. The WalkSAT algorithm, which we discuss

next is derived from GWSAT.

The WalkSAT Algorithm

WalkSAT (SELMAN, et al., 1994; SELMAN, et al., 1996; SELMAN, et al., 1997)

changes GSAT based algorithms mainly by considering only a dynamically deter-

mined subset of the GSAT static neighbourhood relation. This is e�ectively done

by �rst considering only variables occurring in unsatis�ed clauses. Then, in order to

�nd the next assignment, the variable to be �ipped is selected from that set in two

steps. In the �rst step, a clause c, which is unsatis�ed under the current assignment

of truth values, is selected at random. Next, in a second step, the new assignment

results by �ipping one of the variables appearing in c. This general procedure of the

WalkSAT architecture is exhibited as Algorithm 29. Note that as GSAT, WalkSAT

starts from a randomly generated assignment of the variables in initial formula. Also
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as GSAT, it considers a maximum number of tries and a maximum number of steps

in order to �nd the solution.

Algorithm 29 WalkSAT General Algorithm (SELMAN, et al., 1994)

Input: Positive integers maxFlips and maxTries; a CNF formula F; a heuristic
function hf

Output: model of F or �no solution found�

1: for try from 1 to maxTries do
2: va← a randomly generated assignment of the variables in formula F
3: for step from 1 to maxSteps do
4: if va satis�es F then
5: return va
6: unsat← the set of all unsatis�ed clauses under va
7: c← a randomly selected clause from unsat
8: v ← a variable selected from c according to the heuristic function hf
9: t← t with v �ipped
10: return �no solution found�

The general procedure requires a heuristic function as input to decide which

variable is going to be selected, in line 8 of the algorithm. The most commonly used

heuristic function applied into the WalkSAT architecture �rst scores each variable

v by counting the number of currently satis�ed clauses that will become unsatis�ed

by �ipping the variable. Then, it tries to perform a zero damage step: if there is

a variable with score equal to zero, that is, if the the clause c becomes satis�ed by

�ipping the variable v without damaging another clause, then v is �ipped (if there is

more than one variable in this situation, one of them is chosen at random). In case

it is not possible to follow the zero damage step, WalkSAT must decide which step

to follow: a random walk step or a greedy step. The decision is taken considering a

walk probability wp as follows:

� With a certain probability wp one of the variables from the clause c is selected

at random to be �ipped (random walk step);

� With probability 1 − wp the variable with the minimal score calculated as

above is selected to be �ipped (greedy step)

This heuristic function is presented as Algorithm 30.
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Algorithm 30 Most Used Heuristic Function into WalkSAT Architecture

Input: va a variable assignment of a formula F ; a clause c; wp, a walk probability
Output: v a variable to be �ipped

1: scores← for each variable in c, the number of clauses that are currently satis�ed,
but become unsatis�ed if the variable is �ipped

2: if min(scores) = 0 then
3: v ← a random variable from c whose score is min(score)
4: else
5: with probability wp do
6: v ← a random variable from c
7: otherwise
8: v ← a random variable from c whose score is min(score)

Following the success of GSAT/WalkSAT based algorithms to check the sat-

is�ability of propositional formulae, a large number of randomised strategies were

derived from them to solve tasks in areas such as planning, scheduling and constraint

solving. Empirical observations show that SLS often can substantially improve their

e�ciency (CHISHOLM, TADEPALLI, 2002; RÜCKERT, KRAMER, 2003; RÜCK-

ERT, KRAMER, 2004).

Stochastic Local Search in ILP

Most Inductive Logic Programming algorithms perform search on a large search

space of possible clauses, leading to huge time and storage requirements and urging

for clever search strategies (PAGE, SRINIVASAN, 2003). It is therefore unsurprising

that research on stochastic search has taken place since early ILP days (KOVACIC,

et al., 1992). Many of the ILP algorithms indeed include a limited amount of

stochastic search. As an example, GOLEM system randomly select examples as

seeds to start their search (MUGGLETON, FENG, 1990). Next we present recent

work on stochastic search in ILP.

Stochastic Local Search for Searching the Space of Individual
Clauses

A recent study in ILP implemented and evaluated the performance of several ran-

domisation strategies in the ILP system Aleph (�ELEZNÝ, et al., 2002; �ELEZNÝ,
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et al., 2004; �ELEZNÝ, et al., 2006), using Aleph deterministic general-to-speci�c

search as reference. Aleph runs a covering algorithm which obtain hypotheses induc-

ing clauses one by one, until all the positive examples are covered. Roughly, Aleph's

covering procedure is composed of two nested loops. The inner loop starts with the

generation of the bottom clause from a seed example. Then, a clause with the best

score is generated by adding antecedents from the bottom clause. The outer loop

of the covering algorithm removes already covered positive examples from the set of

examples and the inner loop restarts with this new set of examples. The procedure

continues until there are no move not-covered positive examples or it is not possible

anymore to generate clauses obeying the setting of parameters de�ned by the user.

Note that the inner iteration returns a single clause generated independently from

the clauses previously added to the theory. Thus, the stochastic strategies developed

in that study were framed in terms of a single clause search algorithm.

They designed four randomised restart strategies to search the ILP subsump-

tion lattice, namely (1) A simple randomised search strategy (RTD); (2) A Rapid

Random Restart strategy (RRR); (3) A GSAT based strategy and (4) a WalkSAT

based strategy. The randomised strategies di�er on how to choose the saturated

example, on which clause to start from, on which clause to try next, on whether

to do greedy or full search, and on whether to do bidirectional re�nement or not,

following the main properties:

1. the saturant example is chosen at random in all randomised algorithms, instead

of being the �rst positive example as in the deterministic reference strategy;

2. the search starts from a clause selected with uniform probability from the set

of allowable clauses, except for the RTD search which which starts from the

most general de�nite clause (SRINIVASAN, 2000);

3. GSAT and WalkSAT strategies update the list of possible modi�cations in the

current hypothesis greedily, i.e., only the newly explored nodes are retained,

whereas RRR and RTD maintain a list of all elements.

4. the selection of next clause follows a random choice in WalkSAT and in RTD,

according to the following criteria: with probability 0.5 the clause with the
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highest score is chosen at random and otherwise a random clause is chosen

with probability proportional to its score. The others strategies choose the

clause with the highest score.

5. GSAT, WalkSAT and RRR perform bidirectional re�nement, combining spe-

cialisation and generalisation, instead of only performing specialisations of the

clause being re�ned.

6. All strategies include restarts based on a cuto� parameter, de�ned as the

maximum number of clauses evaluated on any single restart.

It was observed that if a near-to-optimal value of the cuto� parameter (the

number of clauses examined before the search is restarted) is used, then the mean

search cost (measured by the total number of clauses explored rather than by cpu

time) may be decreased by several orders of magnitude compared to a determinis-

tic non-restarted search. It was also observed that di�erences between the tested

randomised methods were rather insigni�cant.

There are others approaches of SLS methods for searching the space of can-

didate clauses. Particularly, Muggleton and Tamaddoni-Nezhad have been con-

ducting research based on the stochastic search performed by genetic algorithms

(TAMADDONI-NEZHAD, MUGGLETON, 2000; MUGGLETON, TAMADDONI-

NEZHAD, 2008). Their approach is built on the fact that to �nd desirable consis-

tent clauses in ILP systems it is necessary to evaluate a large number of inconsistent

clauses, and such consistent clauses are located at the fringe of the search space.

The approach is composed of two components. The �rst one, called Quick Generali-

sation (QG), carries out a random-restart stochastic bottom-up search to e�ciently

generates a population of consistent clause on the fringe of the re�nement graph

search without needing to explore the graph in detail. The second component is

a Genetic Algorithm which evolves and re-combines those seeded clauses, instead

of performing the A* of Progol system. The experiments performed in that work

indicate that QG/GA algorithm can be more e�cient than the standard re�nement

graph search of Progol system, while generating similar or better solutions.

The approaches just reviewed were both framed in a single clause search algo-
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rithm. One consequence of this is that the statistically assessed performance ranking

of individual strategies may not be representative of their performance when used for

an incremental entire-theory construction due to the statistical dependence between

the successive clause search procedures.

Another issue concerns the time spent to evaluate a candidate hypothesis.

Even though the search space is reduced because of SLS methods, there is a large

amount of time used to check whether a hypothesis should be chosen as the next

candidate solution. In the next section we present methods to learn theories which

try to overcome both covering and hypothesis evaluation pitfalls.

Stochastic Local Search in ILP for Searching the Space of
Theories and/or using Propositionalization

The standard greedy covering algorithm employed by most ILP systems is a short-

coming of typical ILP search. There is no guarantee that greedy covering will yield

the globally optimal hypothesis; consequently, greedy covering often gives rise to

problems such as unnecessarily long hypothesis with too many clauses. To over-

come the limitations of greedy covering, the search can be performed in the space

of entire theories rather than clauses (BRATKO, 1999). However, there is a strong

argument against this: the search space composed of theories is much larger than

the search space of individual clauses. It is interesting then to apply an e�cient

search strategy such as SLS for searching hypothesis in the space of theories and

hence uniting the bene�t of both techniques.

Stochastic local search algorithms for propositional satis�ability bene�t from

the ability to quickly test whether a truth assignment satis�es a formula. As a result,

many possible solutions (assignments) can be tested and scored in a short time. In

contrast, the analogous test within ILP�testing whether a hypothesis covers an

example�takes much longer, so that far fewer possible solutions can be tested in

the same time.

Thus, considering both motivations above, in a recent work (PAES, et al.,

2006b) we have applied stochastic local search to ILP, but not to the usual space

of �rst-order Horn clauses. Instead, we used a propositionalization approach that
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transforms the ILP task into an attribute-value learning task. In this alternative

search space, we can take advantage of fast testing as in propositional satis�ability.

Additionally, we use a non-covering approach to search in the space of theories

since now we are dealing with a more e�cient search strategy and we also turn the

relational domains into a simpler propositional one. Then, we use a SLS algorithm

to induce k-term DNF formulae, which performs re�nements on an entire hypothesis

rather than a single rule (RÜCKERT, KRAMER, 2003).

Propositionalization

Propositionalization is a method to compile a relational learning problem to an

attribute-value problem, which one can solve using propositional learners (LAVRAC,

DZEROSKI, 2001; KROGEL, et al., 2003). During propositionalization features

are constructed from the background knowledge and structural properties of indi-

viduals. Each feature is de�ned as a clause in the form fi(X) := Liti,1, ..., Liti,n

where the literals in the body are derived from the background knowledge, and the

argument in the clause's head is an identi�er of the example. The features are the

attributes which form the basis for columns in single-table (propositional) repre-

sentations of the data. If such a clause de�ning a feature is called for a particular

individual and this call succeeds, the feature is set to �true� in the corresponding

value column of the given example; otherwise it is set to �false�.

There are several propositionalization systems such as RSD

(�ELEZNÝ, LAVRAC, 2006) and SINUS (LAVRAC, DZEROSKI, 1994), among

others. In this work we used RSD as the base propositionalization system. RSD

constructs features by discovering statistically interesting relational subgroups in a

population of individuals4.

Stochastic Local Search in k-term DNF Relational Propositionalised Do-
main Learning

After propositionalising the relational domain, we apply an SLS algorithm to learn

k-term DNF formulae from the feature-value table. The aim in k-term DNF learning

is to induce a formula of k terms in disjunctive normal form, where each term is a
4RSD is publicly available at http://labe.felk.cvut.cz// zelezny/rsd
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conjunction of literals (KEARNS, VAZIRANI, 1994). k-term DNF learning is a NP-

hard problem of combinatorial search. The SLS algorithm designed in (RÜCKERT,

KRAMER, 2003) to solve k-term DNF learning is reproduced here in Algorithm 31.

The algorithm starts generating randomly a hypothesis, i.e., a DNF formula

with k-terms and then re�nes this hypothesis in the following manner. First, it picks

a misclassi�ed example at random. If this example is a positive one the hypothesis

must be generalised. To do so, a literal has to be removed from a term of the

hypothesis. Now, with probability pg1 and pg2 respectively, the term and a literal

in this term are chosen at random. Otherwise the term in the hypothesis which

di�ers in the smallest number of literals from the misclassi�ed example and the

literal whose removal from the term decreases the score at most are chosen. On

the other hand, if the example is a negative one, it means that the hypothesis must

be speci�ed. Therefore, a literal has to be added in a term. The term is chosen at

random from those ones which cover the misclassi�ed negative example. In a similar

way to the last case, either with probability ps the literal to be added in this term

is chosen at random or a random literal which decreases the score at most is taken.

This iterative process continues until the score is equal to zero or the algorithm reach

a maximum number of modi�cations. All the procedure is repeated a pre-speci�ed

number of times.

It is important to mention that Algorithm 31 performs re�nements of an en-

tire hypothesis rather than a single rule. A detailed analysis of SLS performance

compared to WalkSAT shows the advantages of using SLS to learn a hypothesis as

short as possible (RÜCKERT, KRAMER, 2003).

Experiments and remarks about them Two ILP benchmarks were considered

in the paper (PAES, et al., 2006b): the East-West Trains (MICHALSKI, LAR-

SON, 1977) and Mutagenesis Data (SRINIVASAN, et al., 1996). They were both

propositionalised by RSD, producing a set of features in attribute-value form. Then,

the K-term DNF SLS learner were compared to Aleph in its default mode and to

Aleph using GSAT search as explained in section 5.3.2, both using the original re-

lational dataset. Additionally, the propositionalised domains were given as input
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Algorithm 31 A SLS algorithm to learn k-term DNF formulae (RÜCKERT,
KRAMER, 2003)

Input: Integers k and maxSteps; probability parameters pg1, pg2 and ps; a set of
examples E in attribute-value form

Output: A k-term DNF formula

1: H ← a random generated DNF formula with k terms
2: steps← 0
3: while score(H) 6= 0 and steps < maxSteps do
4: steps++
5: ex← a incorrectly classi�ed example under H, get at random from E
6: if ex is a positive example then
7: with probability pg1 do
8: t← a random term from H
9: otherwise
10: t ← the term in H that di�ers in the smallest number of literals

from ex
11: with probability pg2 do
12: l← a random literal in t
13: otherwise
14: l← the literal in t whose removal decreases scoreL(H) most;
15: H ← H with l removed from t
16: else if ex is a negative example then
17: t← a (random) term in H that covers ex;
18: with probability pS do
19: l← a random literal m so that t ∧m does not cover ex;
20: otherwise
21: l← a literal whose addition to t decreases scoreL(H) most
22: H ← H with l added to t

to Part (FRANK, WITTEN, 1998) and Ripper (COHEN, 1995), two popular rule

learners algorithms. Besides the fact that they do not use SLS, they also di�er from

K-term DNF learner in the use of a covering approach. The results were compared in

terms of compression achieved, cpu time consumed and predictive accuracy. They

indicated that DNF/SLS performs faster w.r.t. all other tested methods when it

comes to short theories (in number of rules). Comparing to relational methods,

the performance gap was signi�cantly large (in orders of magnitude), while corre-

sponding predictive accuracy does not favor either of SLS/DNF or the relational

methods. Comparing to the propositional methods, this performance gap is much

smaller, while SLS/DNF's short theories exhibit slight superiority in terms of pre-

dictive accuracy.

203



There are other approaches to induce hypothesis using SLS with or without

propositionalization. For instance, (SERRURIER, PRADE, 2008) employs Simu-

lated Annealing to induce hypothesis directly - do not using neither propositional-

ization nor covering. The candidate hypothesis are generated by a neighbourhood

relationship derived from a re�nement operator de�ned over hypothesis. In this

case, the neighbourhood of a current hypothesis H is composed by adding or re-

moving clauses from H or still by applying a re�nement operator (downward or

upward) on each one of its clauses. In (JOSHI, et al., 2008; SPECIA, et al., 2009)

was developed an approach to construct features randomly in order to build modes

to assist the task of Word Sense Disambiguation. A randomised search procedure

based on GSAT and using theory-error-guided sampling is designed for dynamically

construct the features and generate the output model. The procedure is composed

of two nested steps: the outer loop iterates R times, where R is a pre-de�ned number

of restarts and the inner loop executes M times, where M is a pre-de�ned number

of local moves. In the outer loop, a sample of n acceptable features is generated,

where a feature is considered as acceptable it covers at least s examples, has a min-

imal pre-de�ned precision p and obeys constraints of the language. A model is then

constructed from this set of features. The inner loop iteratively selects a new subset

of features based on the errors made by the current features on the current model.
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Appendix E: Revising First-Order
Logic Theories through Stochastic
Local Search

Introduction

Usually, a First-Order Theory Revision system perform search in three steps. First,

it searches for points in the theory responsible for misclassifying an example. Sec-

ond, it searches for possible modi�cations to be implemented within each revision

operator, including addition and deletion of antecedents in the body of clauses.

And �nally, it searches from a number of available revision for the one which will

be responsible for implementing a modi�cation to the theory. In each one of these

searches, a system such as FORTE and its descendants systems follow an enumer-

ative strategy, engendering large search spaces that may grow to be intractable,

according to the factors below.

1. The number of misclassi�ed examples, since the revision system traverses each

example's proof looking for faulty points;

2. The size of the initial theory, since every clause on it might be potential revision

points;

3. The number of clauses responsible for misclassifying an example, since the

revision system proposes modi�cations to each one of them;

4. The size of the knowledge base and background knowledge, since antecedents

must have to be generated and added to the body of clauses, as possible
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modi�cations to be implemented on the theory.

Additionally, theory revisions systems do tackle whole theories instead of step-

wise search for individual clauses as most ILP systems do. Search over whole theories

is known to be a hard problem (BRATKO, 1999). As a result, traditional theory

revision systems must search over extremely large spaces, and can become rather

ine�cient and even intractable.

The last years have shown that stochastic local methods, originally designed

to solve di�cult combinatorial propositional problems (SELMAN, et al., 1992; SEL-

MAN, et al., 1996; RÜCKERT, KRAMER, 2003), can also perform well in a variety

of applications. Moreover, combining Stochastic Local Search with inductive Logic

Programming has shown very substantial improvements in e�ciency, with little or

no cost in accuracy (SRINIVASAN, 2000; PAES, et al., 2006b; �ELEZNÝ, et al.,

2006; MUGGLETON, TAMADDONI-NEZHAD, 2008). Such results motivate the

contribution of this chapter. Further, we take Trefheten's Maxim No. 30 into high

consideration, which states that if the search space is huge, the only reasonable

way to explore it is at random (TREFETHEN, 1998). Thus, we aim to achieve a

balance between e�ciency and e�cacy, by decreasing the negative impact of the

mentioned factors on the running time of theory revision. To do so, we sacri�ce

completeness in favor of �nding good solutions rather than optimal ones, by means

of SLS techniques. Stochastic components are included in the key searches of the

revision process, namely:

1. Search for revision points: A random decision may return a subset of the

revision points instead always returning all of them.

2. Search for literals: as the proposals of modi�cations are dominated by addition

and deletion of antecedents, one may bene�t from randomising antecedent

search (PAES, et al., 2007a; PAES, et al., 2007b).

3. Revision search: rather than proposing all revisions, one might enumerate the

possible modi�cations and choose one to implement at random (PAES, et al.,

2007b).
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Preliminary experiments with the theory revision system FORTE showed good

promise from introducing stochastic search at the last two searches above (PAES,

et al., 2007a; PAES, et al., 2007b). This chapter revisits that work enhancing it

by designing a number of stochastic search in every step of YAVFORTE system.

Note that in (PAES, et al., 2007a; PAES, et al., 2007b) stochastic components were

introduced in original FORTE system and in the present work they are built upon

YAVFORTE system, including the bottom clause to bound the search space and

mode declarations as the language.

The outline of this chapter is as follows. Firstly, section 5.3.2 brings the

stochastic algorithm developed to search for the revision points. Next, stochastic

algorithms applied within the revision operators, for choosing literals to be added

to or removed from a clause, are devised in section 5.3.2. Then, we present a num-

ber of SLS algorithms for deciding which revision operator will be responsible for

modifying the theory in section 5.3.2. Finally, experimental results are presented in

section 5.3.2, followed by conclusions in section 5.3.2.

Stochastic Local Search for Revision Points

FORTE-based systems follow the key steps below in order to generate revision

points:

1. Identify the misclassi�ed instances;

2. Through the misclassi�ed examples, �nd the clauses and/or antecedents re-

sponsible for such misclassi�cations. These points will compose the set of

revision points;

3. Calculate the potential of each revision point. Remember that the potential is

the number of examples which identify the necessity of modifying the revision

point;

4. Identify the relevant examples for each revision point, i.e., the examples whose

provability can be a�ected after proposing some revision in that point. This

is essential to make the evaluation of revision operators more e�cient by not
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proving every example at each modi�cation, since only the proofs of relevant

examples must be re-done when proposing modi�cations on speci�c points of

the theory.

It can be seen from the steps above that there are two major factors working

together to possibly increase the cost of searching for revision points: the set of

examples and the size of the theory. This happens because each example must be

tested on the theory, either to identify faulty clauses or literals or to check whether

the example is relevant to the revision point. Moreover, each clause in the theory

may be tested as a potential revision point. Therefore, what it is done in this

thesis is to decrease the work performed in those tests by introducing a stochastic

component within the search for revision points. Rather than always looking for all

revision points in the theory, the stochastic component allows only a subset of that

group to be sought.

The strategy developed in this chapter does not only avoid searching in the

whole theory for revision points but also avoids considering all misclassi�ed exam-

ples. It works by alternating between stochastic and complete moves according to

a certain probability, a method that can be seen as an instance of Randomising

Iterative Improvement and WalkSAT techniques. Thus, with a probability prp the

stochastic move is taken and the procedure will look for only a subset of all the pos-

sible revision points. The size of the subset is previously de�ned by the user, with

its default value as 1. Otherwise, a complete move is taken just as in the original

algorithm.

The stochastic move works as follows to gather the subset of revision points.

First, it selects a misclassi�ed example at random. Then, revision points are col-

lected from such an example. In case this single misclassi�ed instance already pro-

duces the required number of revision points, the procedure stops. If it produces

more than that, the number is chosen at random from them. If the instance does not

have enough revision points, the procedure proceeds to collect more revision points

by choosing another misclassi�ed example at random. After collecting the subset of

random revision points, it is time to �nd out the relevant examples. This is neces-

sary to compute the potential and also to consider only those examples to be proved
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again when evaluating a modi�cation on the revision point. Note that in case the

probability prp is 100% and the subset is required to be composed of only one revision

point, the approach employed here follows the same line of thought of (RÜCKERT,

KRAMER, 2003), although there they address propositional learning. Algorithm 32

brings the procedure for collecting revision points using a stochastic component.

Algorithm 32 SLS Algorithm for generating revision points

Input: A set of positive and negative examples E, divided into ECC, the correctly
classi�ed examples and EIC, the incorrectly classi�ed examples, Theory T ,
probability p1, A integer k

Output: A set of revision points RP

1: RP ← ∅
2: with probability p1 do
3: while #RP < k do
4: ex← a misclassi�ed instance chosen at random from EIC;
5: num_rp = k −#RP
6: RPex ← at most num_rp revision points generated from ex;
7: RP ← RP ∪RPex;
8: otherwise
9: RP ← the revision points generated from all misclassi�ed examples in E
10: for each revision point rp ∈ RP do
11: identify the relevant examples for RP ;
12: calculate the potential of RP ;
13: sort RP by potential;
14: return rps;

It is important to stress that examples from both classes have the same chance

to be chosen at random. This is particularly important when we have skewed

datasets, with one class largely dominating the other on the number of examples.

Algorithm 32 introduces the stochastic component as an alternative path in Algo-

rithms 2.2 and 2.3, by avoiding in stochastic moves to search for revision points

at each clause of the theory and not considering all misclassi�ed examples. In this

way, roughly speaking, instead of getting a complexity time bounded by the num-

ber of training examples times the size of the theory, we get for stochastic moves

a time complexity limited to the number of required revision points, which in the

best case is only 1. Note that in the complete case, the theory is traversed even

to the correctly classi�ed examples, because it is in this moment that the relevant

examples are collected. Although the stochastic search still has to �nd the relevant

209



examples for the revision points in the set of all training examples, this is also a

reduced search, since it is restricted to the set of revision points instead of traversing

the whole theory. Additionally, in case the search returns only one kind of revision

points, two distinct cases be addressed: (1) the revision point is a generalisation one

and then only unprovable examples are considered (true negatives and false nega-

tives) or (2) the revision point is a specialisation one and only provable examples

(true positives and false positives) are considered.

Stochastic Local Search for Literals

The main goal of introducing antecedents to a clause is to stop proving negative

examples while continues covering as much of the originally proved positive examples

as possible. To do so, the operator can proceed from two approaches. Either it uses

a hill-climbing procedure, where at each iteration the antecedent which improves the

score at most is chosen to be added in the clause or it uses the relational path�nding

algorithm, where more than one antecedent can be added to a clause at once. These

two approaches can also be combined, with the relational path�nding algorithm

being executed and, next, antecedents being added to a clause through the hill-

climbing algorithm. Both approaches consider the bottom clause generated from a

covered positive example as their search space.

Similarly, the delete antecedents operator has the goal to make the clause to

start proving positive examples while still does not proving as much of the negative

examples as possible. To achieve its goal, this operator either removes one antecedent

at once from the clause, using a hill-climbing approach, or it can delete multiple

antecedents at once to escape from maxima local. However, this last approach is

only used when the latter does not produce any results, since it is expensive to list

and test the combination of all possible literals to be removed from the clause. Both

approaches require the modes language to be obeyed after a removal.

Add antecedentes and delete antecedents are the basic operations performed

into all operators of YAVFORTE with the exception of delete rule: Specialisation

is performed either by adding antecedents to a clause or deleting clauses from the

theory; generalisation is achieved by either deleting antecedents from a clause or
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creating new clause. In this last case it is possible to create a clause from another

one, by leaving the original one in the theory and deleting antecedents followed by

adding antecedents from its copy. It is also possible to create a completely new

using the add antecedents operator in a clause with a predicate in its head, properly

de�ned in a modeh declaration.

Regarding addition of antecedents there are three main factors impacting the

search space of the bottom clause: (1) the size of the intentional and extensional

background knowledge, (2) the amount of di�erent modeb de�nitions to the predi-

cates together with the recall of each one of them, and (3) the value set to variables

depth. In fact, as it was shown in Algorithm 5.3, the cardinality of a bottom clause

is bounded by r(|M |j + j−)ij+ , where |M | is the cardinality of the set of modes

declarations, j+ is the number of + type occurrences in each modeb in M plus the

number of ˘ type occurrences in each modeh, j− is the number of ˘ type occurrences

in each modeb in M plus the number of + type occurrences in each modeh, r is the

recall of each mode m ∈ M , and i is the maximum variable depth. Thus, the bot-

tom clause generates a search space of exponential size w.r.t. the maximum variable

depth. In case the recall r is de�ned as ∗, which is the most common case, all the

possible instantiations of a literal are going to be collected in the BK. Because of

that, the size of the BK also in�uences the cardinality of the bottom clause.

Possibly, each element of the bottom clause may be tested on each example

relevant to the clause being specialised, excluding those who does not have vari-

ables compatible to the mode declarations of the clause (although they also slightly

in�uence the running time since they must be tested to check the compatibility).

Additionally, in the worst case, to specialize one single clause it is necessary to pick

up literals from the bottom clause as many times as the maximum size set to a clause.

Considering all these factors, addition of antecedents is an expensive operation and

still performed many times during the whole revision process. Not counting the rela-

tional path�nding algorithm which is expensive for itself (RICHARDS, MOONEY,

1992). Therefore, we intend to make the add antecedents operator, and conse-

quently the revision process, more e�cient by introducing stochastic components

on this. Once again, we sacri�ce completeness to gain e�ciency when proposing
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modi�cations on the theory by adding antecedents to clauses or creating new rules.

Deleting antecedents is obviously a less expensive operation than adding an-

tecedents. The search space is composed of only the literals in the clause. Because

of that at each iteration an antecedent is deleted the search space of the next iter-

ation is reduced. Thus, in the worst case the search space of tested literals at each

iteration has all antecedents in the body of the current clause. Note that sometimes

the search space is is less than the size of the clause because some literals can make

the clause incompatible to the modes de�nitions when removed from it. However,

they still increases the running time, although slightly, since it is necessary to check

if they can or cannot be a candidate to be deleted. Additionally, in the worst case,

the operation of deleting antecedents may be performed |clause| times in case dele-

tions always improve the score. Thus, although bene�ting less than when adding

antecedents, we can also improve running time of the proposals of modi�cations

by making the delete antecedent operator more e�cient. Aiming this goal, we also

introduce stochastic search when deleting antecedents, either when proposing gen-

eralisations on a single clause or when generalising the theory by creating a new rule

from an existing one.

Stochastic versions of the delete antecedents and add antecedents algorithms

were developed, performing according to the following strategy. They may perform

either a random or a greedy move, depending upon a �xed probability. While the

greedy move is the same for both approaches, since in this case the original algorithm

is maintained, the random move di�ers for each approach. Next we devise each

approach separately.

Stochastic Component for Searching Literals

The algorithm introducing a stochastic component follows a stochastic hill climbing

technique and adopts a conservative strategy even when performing a random move,

by maintaining the requirement of improving the value of the evaluation function,

and by re�ning clauses in the same way as it is done in the original algorithm. The

stochastic component is employed for choosing the next candidate clause. The de-

cision of not allowing bad moves to escape from local maxima is arguably justi�ed
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because adding/deleting a sequence of literals at once, using the relational path�nd-

ing algorithm or the algorithm for deleting multiple antecedents, may already be

able of escaping from local maxima. Basically, a random walk is carried out by tak-

ing a random step for choosing the next candidate clause with a �xed probability pl,

In case the probability pl is not achieved, the original greedy hill climbing algorithm

is performed. This algorithm is built upon the following decisions.

� De�ning the search space: Candidate clauses are formed by adding/deleting

a single literal or a sequence of literals in the current clause, depending on the

algorithm employed (greedy hill climbing or relational path�nding/deletion of

multiple antecedents). The literals to be added/deleted are elected di�erently,

depending upon the move is greedy or stochastic. In case the move is greedy,

the approach is pure hill climbing in the sense the current clause and candidate

clauses di�er by only one literal and the goal is to add antecedents, the set of

possible antecedents to be added to a clause is composed by literals taken from

the bottom clause. Similarly, when adding a sequence of literals, the paths

are created considering the literals of the bottom clause. When deleting an-

tecedents in the greedy move, candidate clauses are created either by removing

a single literal or by removing a combination of literals. In case the move is

random and the goal is to add single antecedents, a literal picked at random

from the bottom clause is added to the current clause to form a candidate

clause. Similarly, a path created from the literals of the bottom clause in rela-

tional path�nding algorithm is chosen at random. To delete antecedents from

a clause in a stochastic move, the body of the clause is randomised and then

a literal is chosen. In a similar way, combinations of literals are randomised

and one of them is taken at random. In all of the cases, the candidate clause

must be valid according to the modes declarations.

� Choosing the next clause: Since this conservative approach requires the

next clause improves the current score, in all cases listed above this demand

must be attended. However, in greedy moves, all candidate clauses are tested

on the examples in order to calculate their score and the one improving the

213



score at most is the chosen one, while in random moves, the �rst randomly

generated candidate clause improving the score is chosen. In others words,

to choose at random the next clause, a single candidate clause formed as ex-

plained in the last topic has its score computed using the set of examples.

If this clause already improves the score, it is going to be the next clause.

Otherwise, it is necessary to choose another candidate clause, which is clearly

formed as explained above, by selecting a random literal or a sequence of lit-

erals. This procedure continues until �nding a candidate clause improving the

score or to �nd out that there is no clause able to do that, �nishing the op-

erator procedure. The only exception is the relational path�nding algorithm,

since its procedure allows a path to be chosen if the score is not changed (nei-

ther increased nor decreased). It only allows that because after it runs, hill

climbing is employed to further specialize the resulting clause. Note that in

the best case only one candidate clause is evaluated, which makes the run time

of the procedure independent on the size of the bottom clause in case of spe-

cialisations, or on the current clause, in case of generalisations. In the worst

case all possible candidate clauses are evaluated as in greedy steps. Choosing

next clause in random moves greatly bene�ts from do not computing score for

each possible candidate, which is the most expensive task performed inside

the original algorithms since it is necessary to check the provability of each

relevant example.

� Stop criteria: As usual in hill climbing approaches, the algorithm stops when

there are no more candidate clauses improving the score, either because the

set of generated candidate clauses are not able to do that, or because there

are no further valid clause to be evaluated.

Algorithm 33 substitutes hill-climbing addition of antecedents, exhibited as

Algorithm 18 in both add-antecedent specialisation operator and second phase of

the add-rule generalisation operator. The algorithm starts by generating the bottom

clause from a covered positive example, as it is done in the original Algorithm.

After that, it performs a random walk, following the approach of algorithms such
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as WalkSAT, and decides the type of the move, based on a �xed probability pls. In

case pls is not reached, the algorithm performs a greedy hill climbing step, exactly

as it done in the original algorithm: all valid (according to modes) candidate clauses

formed by adding the literals from the bottom clause to the current clause are

evaluated on the examples. Then, the candidate clause improving the score at most

is selected. If there is no such improving clause, the procedure returns nothing.

If the probability pls is reached, a random step is taken: a literal is selected at

random from the bottom clause and added to the current clause. After the candidate

clause is validated relative to the modes, it is evaluated using the examples. In

case such a clause improves the current score, it is chosen to replace the current

clause. Otherwise, it is discarded and another candidate clause is selected. This

procedure continues until �nds a clause improving the score or until exhausting all

the possibilities. Finally, the candidate clause replaces the current clause (if there is

one) and the algorithm proceeds to the next iteration. This procedure is performed

until there is no further clause improving the score or if is reaches the maximum

size de�ned to clauses.

Relational path�nding algorithm provides a sequence of antecedents to be in-

troduced in a clause. The algorithm searches for all possible sequences and chooses

the one with the highest score. In case of a tie, the smallest sequence is chosen.

A stochastic version of this algorithm selects the sequence to be added to the cur-

rent clause according to a stochastic decision: with a probability pls it chooses a

sequence at random from all the possible generated paths; otherwise it proceeds as

in the original algorithm. We do not generate paths at random, since this algorithm

tries to �nd a sequence of literals connecting the variables in the head of the clause,

and to introduce a randomness component into this process could either disregard

a possible valid sequence or to force the procedure to backtrack to several previ-

ous points. As it was said before, this algorithm is quite expensive by itself and

therefore introduce more backtracks on it goes contrary to our primary objective of

reducing run time. Therefore, the bene�t the stochastic algorithm brings is to avoid

computing score considering the set of examples for each possible sequence, which

is obviously an expensive task. Algorithm 34 shows such procedure.
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Algorithm 33 Algorithm for adding antecedents using hill-climbing SLS

Input: A clause C, CL, maximum size of a clause, pls, the probability for deciding
which move is going to be taken

Output: A (specialised) clause C ′

1: repeat
2: currentScore← compute score of C;
3: BC ← createBottomClause(...);
4: with probability pls do
5: repeat
6: ante ← an antecedent chosen at random from BC, whose input

variables are already in C (therefore it obeys modes);
7: C ′ ← C with ante added to it;
8: candidateScore score of C ′;
9: if candidateScore > currentScore then
10: C ← C ′

11: currentScore← candidateScore
12: else
13: BC ← BC − ante
14: until C = C ′ or BC 6= ∅
15: otherwise
16: for each antecedent ante ∈ BC do
17: C ′ ← C with ante added to, in case C + ante obeys the modes

declarations;
18: candidateScore score of C ′;
19: bestClause← candidate clause with the highest candidateScore
20: if candidateScore > currentScore then
21: C ← bestClause
22: currentScore← candidateScore
23: remove ante from BC
24: FPC ← FPC−instances in FPC not proved by C;
25: until FPC = ∅ or there are no more antecedents in BC or it is not possible to

improve the score of the current clause or |C| = CL
26: return C

Algorithm 34 Stochastic Relational-path�nding

1: generate all possible sequence of antecedents through relational_path�nding
algorithm and the Bottom clause;

2: with probability pl2 do
3: choose a sequence at random;
4: otherwise
5: choose a sequence with the highest score or the one with less antecedents

in case of a tie;
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The delete-antecedent operator bene�ts less from stochastic local search than

add-antecedent, since the search space is restricted to goals in the clause, and is

therefore much smaller. The hill-climbing stochastic algorithm for antecedent dele-

tion is shown in Algorithm 35. Notice that delete-antecedent is also part of add-rule,

with the latter using it in its �rst phase. The algorithm follows exactly the same

random walk approach as previous algorithms seen in this section. First, it decides

which type of move it is going to take, namely, a greedy move or a random move,

based on a �xed probability plg. In case the move is greedy, it uses the original

algorithm to propose deletions of antecedents. Otherwise, it selects at random a

literal to be removed from the clause. Both cases require an improvement on the

score to indeed remove a literal from the clause.

Algorithm 35 Algorithm for deleting antecedents using hill-climbing SLS

Input: A clause C, plg, the probability for deciding which move is going to be taken
Output: A (generalised) clause C

1: repeat
2: currentScore← compute score of C;
3: antes← antecedents from the body of C;
4: with probability plg do
5: repeat
6: ante ← an antecedent chosen at random from antes, whose re-

moval from C still makes it valid relative to modes;
7: C ′ ← C with ante deleted from it;
8: candidateScore← compute score of C ′;
9: if candidateScore > currentScore then
10: C ← C ′

11: currentScore← candidateScore
12: else
13: antes← antes− ante
14: until C = C ′ or antes = ∅
15: otherwise
16: for each antecedent ante ∈ antes do
17: C ′ ← C with ante deleted from;
18: candidateScore← compute score of C ′;
19: bestClause← candidate clause with the highest candidateScore
20: if candidateScore > currentScore then
21: C ← C ′

22: currentScore← candidateScore
23: until no antecedent can improve the score;
24: return C
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A stochastic version of the delete multiple antecedents algorithm was also

developed. However, this algorithm is executed only when the hill-climbing approach

for deleting antecedents is not capable of deleting any antecedent. It is quite simple

and it only di�ers from the original one by the stochastic decision introduced to

decide which movement to make, greedy or random. A greedy move previews all

possible combinations of literals from the body of the clause to choose the best

among them, while a random move chooses the �rst combination improving the

current score. Note that both cases only delete antecedents if after the deletion the

clause continues to obey modes declarations. This algorithm is better visualised

in 36.

Algorithm 36 Stochastic version of the algorithm for deleting multiple antecedents

1: with probability plg do
2: generate all possible sequence of antecedents from the clause;
3: choose a sequence at random;
4: otherwise
5: choose a sequence with the highest score;

Stochastic Local Search for Revisions

YAVFORTE employs two specialization revision points, namely delete rule and add

antecedent, and three generalisation revision points, namely delete antecedent, add

rule (creating a rule by an existing one, by copying the original, deleting antecedents

from it, followed by adding antecedents on it) and add new rule (creating a clause

from scratch). Even employing all those revision operators, it may be the case

that the set of revision points has only few components, either because the theory

has only few failure points or because the stochastic search for revision points was

applied and only a subset of the revision points is given back. In such a situation, the

search space for selecting the operator which will be indeed responsible for modifying

the current theory can be small enough to not largely in�uence the runtime of the

revision process. However, this small search space does not always occur, making

the choice of the revision operator be an important factor of cost during the revision

process, since it is necessary to evaluate each possible revision yielded by the proposal

218



of each revision operator on each matching revision point.

In this way, the revision process can also bene�t from stochastic search to

reduce runtime when selecting the revision operator which will be the responsible for

implementing some modi�cation on the theory. Additionally, the revision can also

take advantage of stochastic local search techniques to escape from local maxima.

Aiming that goals, we designed four stochastic version of the top level algorithm

of YAVFORTE. They di�er mainly in the decision made to implement a revision,

since in some algorithms a bad move can be executed. The algorithms are called as

follows.

1. Stochastic greedy search with random walk

2. Stochastic hill-climbing search with random walk

3. Stochastic hill-climbing with stochastic escape

4. Simulated annealing search

Next we discuss each one of these algorithms.

Stochastic Greedy Search for Revisions with Random Walk

This approach follows Randomised Iterative Improvement technique and its most

famous instance, namely WalkSAT algorithm, and accordingly, it performs random

walks, alternating between greedy and stochastic moves, based on a �xed probabil-

ity. In case this �xed probability is not reached, the algorithm performs a greedy

move, by proposing all possible modi�cations on the theory though the application

of each matching revision operator to each found revision point, in the same fash-

ion the original algorithm does. Then, the best proposed revision is chosen to be

implemented. Note that this move is greedy only, rather than greedy hill climbing

as in original algorithm and therefore the score may be worse than the current one.

In case the �xed probability is reached, the algorithm performs a stochastic

move, selecting at random a revision to be implemented from all the possible ones.

There is no requirement on the selected revision: it is neither mandatorily the best

possible revision nor it is required to improve current score. It is just a revision
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proposed on a revision point by a matching revision operator. Because of that, it is

not necessary to explicitly propose and evaluate all the possible revisions, since no

assumptions are made on the score. Thus, it is enough to enumerate the possible

revisions through the revision points and the revision operators suitable to be ap-

plied on each of those revision points. For each revision point, the list of possible

revisions gets an entry containing a tuple with the revision point plus a matching

revision operator. For instance, regarding a single specialisation revision point SRP

and assuming both revision operators are employed in the revision process, there is

going to be two tuples in the list: one containing SRP plus add-antecedent and an-

other containing SRP plus delete-rule. The same is done for generalisation revision

points. From such enumeration, a revision can be chosen at random and then be

implemented.

Note that bad moves are always allowed in this greedy stochastic approach.

On one hand, this ability makes the algorithm capable of always escaping from

local maxima. On the other hand, some moves can conduct the theory to such a

damaged state that the revision process will not be able to recover from it. However,

modi�cations are performed on failure points and revision operators are designed

to propose worthwhile revisions on those points, which makes the risk of really

deteriorating the theory very small. To summarise, the key ideas of Stochastic

Greedy Search with Random Walk algorithm are:

� Composing the space of candidate hypothesis: the search space is

formed di�erently depending on the type of the move. If the move is greedy,

the search space is composed of all possible proposals of revisions applied on

each revision point by the matching revision operators. If the move is stochas-

tic, the candidate hypothesis are also all the possible revisions, however, as

one of them are going to be chosen at random, the candidates are not in fact

proposals of revisions, but instead a representative tuple of the real revision.

Each tuple contains the revision point and a possible revision operator to be

applied on it.

� Choosing the revision to be implemented: In a greedy move, all revi-
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sions composing the search space of candidate hypothesis are evaluated by an

evaluation function and the best revision is indeed implemented on the cur-

rent theory. In a stochastic move, a tuple representative of one real revision

is chosen at random to be implemented. As the revision has not been already

proposed before to be chosen as it happens in greedy moves, it is necessary to

check if it is really possible to modify the theory with that revision. In other

words, it may be the case the chosen revision cannot produce any modi�cation

in the theory. This is the case, for example, of trying to delete a rule and it

is the last one for a top level predicate, or still if is not possible to delete or

add antecedents on the clause. In such a situation, the procedure must choose

another revision from the list until the list is empty. If it is possible to propose

a revision from the tuple, then it is implemented on the theory.

� Stop criteria: The revision process stops under three circumstances: (1)

when there are no more revisions to be implemented, (2) when the revision

reaches a maximum score on the training set (for example, in case the evalu-

ation function is accuracy, the maximum score could be 1.0) or (3) when the

procedure implements a maximum number of revision (performs a maximum

number of steps).

The procedure is exhibited in Algorithm 37 as a simpli�ed and replacing version

of Algorithm 16. By simpli�ed version we mean some lines are omitted, specially

those concerning the application of only required revision operators. The algorithm

starts by computing the score of the current theory, since one of the stop criteria is

the score reaches a maximum value. Next, it starts a loop which is going to stop

according to the criteria established just above. Inside the loop, the �rst matter to

worry about is �nding revision points. Note that either the original algorithm or

the stochastic algorithm may be used to this task, depending on the user preference.

Then, as usual, the move must be chosen. In a stochastic move, it is necessary

to �nd a random "implementable"revision. To do so, the revisions are enumerated

considering each revision point and revision operators that are applicable on them.

A revision is then selected at random and the system tries to implement in on the
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current theory. If it is possible, the procedure proceeds to the next iteration. On

the contrary, another revision is chosen at random, until one of them can indeed be

implemented or there are no more possible revisions. In case the move is greedy,

proposals of revisions are generated and scored in the same way the YAVFORTE top-

level algorithm does. However, here the best revision is implemented even though

the score is not improved.

Algorithm 37 Stochastic Greedy Search for Revisions with Random Walk

Input: An initial theory T , A Background Knowledge FDT , a set of examples E,
integer maxSteps, real maxScore

Output: A revised theory T ′

1: score← score of T
2: steps← 0
3: repeat
4: generate revision points
5: with probability prev do
6: possibleRevisions possible revisions enumerated from the revision

points and respective revision operators
7: repeat
8: nextRevision ← a revision chosen at random from

possibleRevisions
9: T ′ ← implements nextRevision
10: until T 6= T ′ or possibleRevisions = ∅
11: otherwise
12: generate all possible revisions from the revision points and respective

revision operators
13: compute score of each proposed revision
14: nextRevision← revision with the highest score
15: T ← implements nextRevision
16: score← score of T
17: steps ++;
18: until score >= maxScore or steps = maxSteps or T has not been modi�ed

While Stochastic Greedy strategy is able to escape from local maxima, it is

also a risky approach, since as we discussed before there is a chance of the theory de-

teriorates in one iteration and never recover again. Next section we present a second

algorithm for selecting a revision to be implemented that is based on a Stochastic

Hill-Climbing strategy, and therefore does always request a revision improving the

current score.
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Stochastic Hill-Climbing Search for Revisions with Random
Walks

The Stochastic Hill Search with RandomWalks algorithm, as the previous algorithm,

also alternates between greedy and stochastic moves. However, However, whatever

the move is, it is required an improvement in the score to go ahead. In this way, it is

the most similar to the original algorithm comparing to all the approaches designed

in this section. As usual, with a �xed probability prev the algorithm chooses at

random a revision to be implemented from the list of possible revisions. Such a list

is an enumeration of revision point − operator tuples formed exactly in the same

way that the previous discussed algorithm.

In order to guarantee the improvement in the score the revision chosen at

random is evaluated according to some function and it is veri�ed if its score is

better than the current one. If so, the revision is implemented. If do not, another

revision is chosen at random until the procedure �nds a revision with a score better

than the current one, or there are no more possible revisions to be implemented.

The bene�t in runtime brought by this approach relies on the fact that in random

moves it is not necessary to explicitly propose and compute the score of all possible

revisions. Proposing and computing all revisions in random moves will only happen

in very unlikely cases where there is only one revision improving the score and it is

the last to be chosen.

When the �xed probability prev is not reached, the move is greedy. As the

approach is greedy hill climbing, it is necessary to propose and evaluate all the

possible modi�cations on the theory and then to choose the best one, just as the

original algorithm does. The revision process stops when there are no more revisions

capable of improving the score. The key components of the strategy are as follows.

� Composing the space of candidate hypothesis: The set of candidate

hypothesis is composed of the same elements as in the previous stochastic

algorithm.

� Choosing the revision to be implemented: In a greedy move, all revisions

composing the search space of candidate hypothesis are evaluated and the best
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revision is indeed implemented on the current theory, only if it improves the

current score. In a stochastic move, a tuple representative of one real revision

is chosen at random to be implemented. As the revision has not been already

proposed before to be chosen as it happens in greedy moves, it is necessary to

check if it is really possible to modify the theory with that revision and also if

it is able of improving the current score. In case a revision chosen at random is

implementable and improves the score, it is indeed implemented. Otherwise,

another revision must be chosen from the list of possible revision, until the list

is empty.

� Stop criteria: The revision process stops under two circumstances: (1) when

there are no more revisions to be implemented so that the score is improved

or (2) when the revision reaches a maximum score on the training set.

The algorithm is exhibited as Algorithm 38 and as before we omit some obvi-

ous lines concerning the applicability of revision operators. It starts by computing

the score of the current theory, since is is the base for verifying any improvement.

Then, it performs an iterative hill climbing procedure, where at each iteration the

revision points are generated and either a greedy or a stochastic move is accom-

plished, depending on a �xed probability prev. If a stochastic move is selected, then

representatives of possible revisions are collected, encompassing each revision point

together with each revision operator applicable to that point. An element from

that collection is chosen at random and after proposing the selected revision in a

temporary variable, the new score is computed. In case there is an improvement

on the score, the proposed revision is accepted as next revision. On the contrary,

it is required to pick up another revision, until �nding one able of improving the

score or giving up because there is no such a revision. If the move is chosen to be

greedy, then, as in the original algorithm, the revisions are generated by a number of

matching revision operators and scored with an evaluation function, until the max-

imum potential of a revision point is achieved by some revision. Afterwards, the

revision with the highest score is selected and implemented in case the current score

is improved with that revision. The procedure stops when the theory under revision
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reaches a maximum score or when there are no revision capable of modifying the

current theory so that the score is improved.

Algorithm 38 Stochastic Hill-climbing Search for Revisions with Random Walk

Input: An initial theory T , A Background Knowledge FDT , a set of examples E,
integer maxSteps, real maxScore

Output: A revised theory T ′

1: score← compute score of T
2: repeat
3: generate revision points
4: with probability prev do
5: possibleRevisions possible revisions enumerated from the revision

points and respective revision operators
6: repeat
7: nextRevision ← a revision chosen at random from

possibleRevisions
8: T ′ ← T after implementing nextRevision
9: scoreNextRevision← score of T ′

10: if scoreNextRevision > score then
11: T ′ ← T
12: score← scoreNextRevision
13: else
14: possibleRevisions← possibleRevisions− nextRevision
15: until T ′ = T or possibleRevisions = ∅
16: otherwise
17: generate all possible revisions from the revision points and respective

revision operators
18: compute score scoreNextRevision of each proposed revision
19: nextRevision← revision with the highest score
20: if scoreNextRevision > score then
21: T ← implements nextRevision on T
22: score← scoreNextRevision
23: until score = maxScore or T has not been modi�ed

Next section we present an intermediate strategy between both of the stochas-

tic algorithms discussed here. It is able to perform bad moves aiming to escape from

local maxima, but only under a stochastic move.

Hill-Climbing Search for Revisions with Stochastic Escapes

The stochastic greedy algorithm �rst presented here may deteriorate the theory since

it always allows bad moves to be performed. The previous algorithm, on the other

hand, never allows a bad move, which can not avoid it gets stuck in local maxima.
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Besides, even when the move is stochastic it has to search for a revision improving

the score, adding an extra factor of cost, compared to the former algorithm. Aiming

to overcome those issues, a third stochastic version of the algorithm 16 is designed

on this section. The strategy exploited here is to try escape from local maxima

when performing a stochastic move and implement the best candidate otherwise.

Thus, as usual, with a certain probability prev, the algorithm performs a stochastic

escape, choosing a revision to be implemented at random even if its score is not

better than the current one. On the other hand, when the move is greedy, this

algorithm proceeds as originally, selecting the revision with the highest score and

demanding such a score is better than the current one. If there is no such a revision,

the algorithm continued to the next iteration in an attempt to reach the probability

prev and then to perform a stochastic move. The procedure stops when it reaches

a maximum number of steps or when it reaches a maximum score. As before, we

summarise the key components.

� Composing the space of candidate hypothesis: The set of candidate

hypothesis is composed of the same elements as in the previous stochastic

algorithms.

� Choosing the revision to be implemented: In a greedy move, it behaves

as the greedy component of Stochastic Hill-Climbing and hence the original

revision algorithm. Thus, all revisions composing the search space of candidate

hypothesis are evaluated and the best revision is implemented on the current

theory, only if it improves the current score. However, in case no revision

improves the score, instead of terminating like those algorithms, Hill-climbing

with Stochastic Escape continues to the next iteration. In a stochastic move,

it may implement a revision with a bad score, but only if it does not degradate

that much the score. To decide how much degradation it is allowed, we use a

function based on a pertubation strategy (HOOS, STÜTZLE, 2005), de�ned

as score+0.5 ∗ (Potential+ score). Potential is the number of examples that

indicated the need of revising a point and therefore is the maximum score that

a revision could have.
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� Stop criteria: The revision process stops under two conditions, namely:

(1) when the revision reaches a maximum score or (2) when the procedure

performs a maximum number of steps.

Algorithm 39 exhibits the Hill-climbing with Stochastic Escape procedure. The

�rst component of the main loop, which is executed when the move is stochastic,

chooses a revision at random. In case its score obeys the "perturbation"constraint, it

is implemented. Otherwise, the algorithm proceeds to a next iteration. The second

component, the greedy move, behaves as the Stochastic Hill-climbing. Nevertheless,

the algorithm has a stopping criteria di�ering from previous algorithms, as it stops

only when a maximum score is reached or when a maximum number of iterations

is executed. Such a criteria consents the procedure proceeds to a next iteration

without implementing any revision, which happens when the greedy move cannot

�nd any revision capable of improving the current score or a randomized revision

degradating the score more than it is allowed.

Finally, we would like to have an algorithm which does not take greedy deci-

sions and also accepts bad moves under a certain condition. As this idea is quite

similar to what is achieved with Simulated annealing techniques, we implemented a

version of this strategy on the base of the top-level revision algorithm.

Simulated Annealing Search for Revisions

Simulated annealing chooses at each iteration a candidate hypothesis at random and

in case the current score is not improved, it uses a scheduling function to decide if

such a hypothesis can be accepted as next hypothesis. As simulated annealing always

selects a revision at random, it can be arguably faster than the previous algorithms

developed in this section, since it never evaluates all the possible modi�cations on

the theory. However, it can take more iterations to converge. It is proved that, if the

value returned by the scheduling function is reduced slowly enough, the algorithm

will �nd the optimal global (RUSSELL, NORVIG, 2010). Here we follow exactly the

same idea and implement the simulated annealing as one of the stochastic algorithms

for selecting revision to be implemented. The key components of the algorithm are

as follows.
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Algorithm 39 Hill-Climbing Search for Revision with Stochastic Escape

Input: An initial theory T , A Background Knowledge FDT , a set of examples E,
integer maxSteps, real maxScore

Output: A revised theory T ′

1: score← compute score of T
2: steps← 0
3: repeat
4: generate revision points
5: possibleRevisions possible revisions enumerated from the revision points

and respective revision operators
6: with probability prev do
7: repeat
8: nextRevision ← a revision chosen at random from

possibleRevisions
9: score′ ← compute score of nextRevision
10: if score′ + 0.5(Potentil + score′) > 0 then
11: T ′ ← implements nextRevision
12: else
13: T ′ ← T
14: possibleRevisions← possibleRevisions− nextRevision
15: until T 6= T ′ or possibleRevisions = ∅
16: otherwise
17: generate all possible revisions from the revision points and respective

revision operators
18: compute score scoreNextRevision of each proposed revision
19: nextRevision← revision with the highest score
20: if scoreNextRevision > score then
21: T ← implements nextRevision on T
22: score← scoreNextRevision
23: steps++
24: until score >= maxScore or steps = maxSteps
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� De�ning the search space of candidate hypothesis: Candidate hypoth-

esis are exactly the same of the stochastic components of previous algorithms.

Thus, the candidate hypothesis are all the possible revisions applied to each

revision provided revision point, but without proposing them to compose the

search space. Instead, they are representative tuples of each real revision,

where each tuple is a revision point and a possible revision operator to be

applied on it.

� Choosing the revision to be implemented: The revision to be imple-

mented is chosen at random from the search space of candidate hypothesis.

A proposal of the revision is generated and its score is computed. If such a

score is better than the current one, the revision is implemented on the current

theory. Otherwise, the revision is implemented only if a certain probability

is reached. This probability is de�ned from the di�erence between the cur-

rent score and the score of the revision, divided by the value computed with

the scheduling function. The scheduling function, among others parameters,

takes into account the number of steps performed so far. It may be the case

that an iteration gets to the end without implementing any revision, precisely

when a revision got at random neither can improve the current score, nor it is

acceptable as a bad move.

� Stop criteria: The revision process stops under three conditions, namely:

(1) when there are no possible revision to be implemented or (2) when the

scheduling function returns zero or (3) when the theory achieves a maximum

score.

Algorithm 40 brings Simulated strategy performed on the search for revisions.

Besides the usual parameters, it requires a parameter indicating the maximum num-

ber of iterations limit and a reduction factor lam. The main loop starts by gener-

ating the revision points as usual, followed by the enumeration of tuples of possible

revisions to be implemented upon such revision points. As the revisions are not

really proposed before one of them has been chosen, it is necessary to check out

whether it is possible to implement that revision on the theory. In possession of
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an implementable revision, the algorithm must decide whether it is going indeed

be implemented on the current theory. To do so, �rst it is veri�ed if the score can

be improved after implementing the revision, which in an a�rmative case, makes

the revision be implemented. If the score is not improved the revision might be

implemented anyway, but only when a scheduling function returns a value higher

than a random probability. The scheduling function guarantees that the more iter-

ations the algorithm performs the less is the chance of a bad move be selected. The

algorithm may proceed without implementing any revision on that iteration and it

�nishes the revision process when the scheduling function return 0.0.

Algorithm 40 Simulated Annealing Search for Revisions

Input: An initial theory T , A Background Knowledge BK, a set of examples E
Output: A revised theory T ′

1: score← score of T
2: S ← 1
3: repeat
4: generate revision points
5: T ′ ← T
6: possibleRevisions possible revisions enumerated from the revision points

and respective revision operators
7: repeat
8: nextRevision← a revision chosen at random from possibleRevisions
9: if it is possible implement nextRevision on T then
10: T ′ ← implements nextRevision
11: else
12: possibleRevisions← possibleRevisions− nextRevision
13: until possibleRevisions = ∅ or T ′ 6= T
14: if T ′ 6= T then
15: scoreNextRevision← compute score of T ′

16: ∆ E ← scoreNextRevision− score
17: if ∆ E > 0 then
18: T ← T ′

19: score← scoreNextRevision
20: else
21: S ← scheduling(t, limit, lam)
22: if S 6= 0.0 then
23: with probability e∆ E/S do
24: implements nextRevision
25: score← scoreNextRevision
26: t++
27: until S = 0
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Experimental Results

In this chapter, we would like to investigate if it is possible to reduce runtime of

the revision process, even when the search space is larger than usual, by the use

of Stochastic Local Search techniques. Thus, the major question we would like to

answer is whether the runtime of the revision process guided by SLS algorithms,

can be faster than the traditional revision but without harming accuracy. A sec-

ondary question is if we can also be comparable to learning from scratch in terms of

learning time, while reaching better accuracies than this approach. In this way, we

have selected three ILP datasets that YAVFORTE had a hard time to revise and

compared accuracy and runtime obtained from Aleph (), YAVFORTE (see chapter

3) and stochastic algorithms. The datasets are as follows.

Datasets

� Pyrimidines: this is a Quantitative Structure Activity Relationships (QSAR)

problem, concerning the inhibition of E. Coli Dihydrofolate Reductase by

pyrimidines, which are antibiotics acting by inhibiting Dihydrolate Reduc-

tase, an enzyme on the pathway to forming DNA (KING, et al., 1992; HIRST,

et al., 1994a). The dataset we used in this work is composed of 2361 positive

examples and 2361 negative examples.

� Proteins: This is a task of secondary structure protein prediction. The task

is to learn rules to identify whether a position in a protein is in an alpha-

helix (MUGGLETON, et al., 1992). We considered a dataset with 1070 posi-

tives and 970 negatives.

� Yeast_sensitivity (SPELLMAN, et al., 1998; KADUPITIGE, et al., 2009):

This is a dataset concerning the problem of gene interaction of the yeast Sac-

charomyces cerevisiae. It is composed of 430 positive examples and 680 nega-

tive examples. It has a huge background with approximately 170,000 facts.

Experimental Methodology The datasets were splitted up into 10 disjoint folds

sets to use a K-fold strati�ed cross validation approach. Each fold keeps the rate
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of original distribution of positive and negative examples (KOHAVI, 1995). The

signi�cance test used was corrected paired t-test (NADEAU, BENGIO, 2003), with

p < 0.05. As stated by (NADEAU, BENGIO, 2003), corrected t-test takes into

account the variability due to the choice of training set and not only that due to the

test examples, which could lead to gross underestimation of the variance of the cross

validation estimator and to the wrong conclusion that the new algorithm is signi�-

cantly better when it is not. All the experiments were run on Yap Prolog (SANTOS

COSTA, 2008).

The initial theories were obtained from Aleph system using parameters default,

except for clause length, which is de�ned as 10 , noise, de�ned as 30, nodes set to

10000 and minpos, set to 2. The use of those parameters has been inspired on

the work of (MUGGLETON, et al., 2010). To generate such theories, the whole

dataset was considered but using a 10-fold cross validation procedure. Thus, a

di�erent theory was generated for each fold and each one of these theories is revised

considering its respective fold (the same fold is used to generate and revise the

theories). Theories returned by Aleph have about 200 clauses for each dataset,

which makes them di�cult for YAVFORTE to revise. Stochastic algorithms were

run 5 times because of the random choices.

Behavior of the Stochastic Local Search Algorithms with Dif-
ferent Parameters

First, we would like to observe how the di�erent stochastic strategies behave with

di�erent parameters. To do so, we used the datasets Pyrimidines and Proteins and

plot curves for each individual algorithm, with di�erent appropriate parameters.

Varying Number of Revision Points We start by comparing the revision time

and accuracy results of Algorithm 6.1, which includes a stochastic component when

searching for revision points, with di�erent amounts of maximum revision points

returned. Figures 12 and 13 exhibit the results for Pyrimidines and Proteins, respec-

tively, with probability parameters �xed to 100% and 50% and number of revision

points de�ned as 1, 5, 10 and 20. As expected, runtime increases as more revision

points are returned. However, accuracies are not signi�cantly di�erent when 5 or
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more revision points are found out. Accordingly, choosing only one revision point

makes the revision system extremely fast, but at the expense of worse accuracies.

Accuracies are not signi�cantly di�erent when the probability is either 100% or 50%.

Figura 12: Comparing runtime and accuracy of Algorithm 6.1 in Pyrimidines
Dataset, with number of revision points varying in 1, 5, 10, 20. Probabilities are
�xed in 100% and 50%.

Figura 13: Comparing runtime and accuracy of Algorithm 6.1 in Proteins Dataset
with number of revision points varying in 1, 5, 10, 20. Probabilities are �xed in
100% and 50%.

Varying Number of Iterations Algorithms Stochastic Greedy(6.6) and Hill

Climbing with stochastic Escape (6.8) considers as stop criteria a maximum number

of iterations. Simulated annealing also takes into account a limit to decide stopping,

which is the parameter limit in Algorithm(6.9). In order to check the performance
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of these approaches when facing di�erent maximum iterations, we �xed the prob-

ability of random walks in 100% and 50% for the two �rst cases and plotted the

accuracy versus runtime achieved by the algorithms. The graphics are exhibited in

Figures 14 and 15, for Pyrimidines and Proteins datasets, respectively.

In the Pyrimidines dataset, Simulated annealing is the fastest algorithm but

it only achieves accuracy equivalent to the other algorithms when the number of

iterations is 40. We perform some additional tests to see if by increasing the number

of iterations, simulated annealing would perform better, but we only veri�ed higher

runtime, while accuracies were stationed.

Fixing the probabilities as 100% for the two others algorithms makes them to

execute very fast. However, always to perform stochastic moves does not improve

accuracies of the theories as it could. We see that by looking at the performance of

these algorithms when the probability is �xed in 50%: although the revision process

takes more time, since in greedy moves all revisions are evaluated so that the best

one is chosen, the accuracies are also signi�cantly higher. Hill Climbing stochastic

escape algorithm with 50% of probability is the algorithm achieving best accuracies,

in the same runtime as the second best algorithm, which is the Greedy Stochastic

algorithm, also considering 50% of probability.

In the proteins dataset, it is interesting to see that the best accuracy was

achieved by Simulated Annealing in less time than most of the cases. All the other

algorithms behaves as the Pyrimidines dataset: Considering probabilities of 50%

yields better accuracies, achieved in slower revision time. However, Hill climbing

stochastic escape with 100% in this case is also able to achieve accuracies statistically

equivalent to the 50% cases, in less time.

Those curves suggest that when increasing the number of iterations the systems

are slower, as expected, but their accuracies are not signi�cantly changed.

Varying Probability Values Probability parameters are responsible for deciding

the type of the move the algorithm is going to follow: either the move is greedy, and

the best hypothesis found from the set of all generated hypothesis, is chosen to be

implemented, or the move is stochastic and possible hypothesis are randomized. All
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Figura 14: Comparing runtime and accuracy of SLS algorithms in Pyrimidines
Dataset, varying maximum number of iterations, which is set to 10, 20, 30, 40.
Probabilities are �xed in 100% and 50%, when it is the case.

Figura 15: Comparing runtime and accuracy of SLS algorithms in the proteins
dataset, varying maximum number of iterations, which is set to 10, 20, 30, 40.
Probabilities are �xed in 100% and 50%, when it is the case.

algorithms but Simulated Annealing follow this strategy. To see the performance

of the algorithms when facing di�erent probability parameters, we plot accuracy

versus runtime curves for each algorithms, considering probabilities as 100%, 80%,

60% and 40%. Maximum number of iterations for Hill climbing with stochastic

escape and Stochastic Greedy algorithms for choosing revisions are set to 20, since

in previous section we see this value has the best balance between accuracy and

runtime. Maximum number of revision points is set to 10.

In Pyrimidines dataset, the performance of Greedy and Stochastic Escape
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algorithms follow the same pattern: the smaller is the probability, higher accuracies

are achieved at the expense of higher runtime. However, while Stochastic Escape

can reach accuracy very close to the other algorithms, in the best case, accuracies

of Greedy algorithm are always signi�cantly slower than the other algorithms. The

accuracies achieved by the rest of the algorithms slightly changes, but they are

not signi�cantly di�erent, no matter the probability value is. On the other hand,

the smaller is the chance of choosing a stochastic move, the slower is the revision

process. It is interesting that in these cases, even always following a stochastic

move (probability set to 100%), accuracies are not signi�cantly a�ected. Thus,

we can conclude from this dataset that, if the stochastic move does not demands

an improvement on the score, which is the case of Greedy and Stochastic Escape,

probabilities play a fundamental role. On the other hand, if both moves require

improvement on the score (stochastic Hill climbing), high probabilities can yield the

same results as low probabilities, but in less time.

Proteins dataset has similar results. In this case, the stochastic hill climb-

ing search for revisions and stochastic search for literals achieve the best accuracy

results, but at the expense of higher runtime.

Figura 16: Comparing runtime and accuracy of SLS algorithms in Pyrimidines
Dataset, with probabilities varying in 100, 80, 60, 40. Maximum number of it-
erations is �xed in 20, when it is the case.
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Figura 17: Comparing runtime and accuracy of SLS algorithms in Proteins Dataset,
with probabilities varying in 100, 80, 60, 40. Maximum number of iterations is �xed
in 20, when it is the case.

Comparing Runtime and Accuracy of SLS Algorithms to Aleph
and YAVFORTE

In this section we would like to compare the performance of Stochastic Local Search

Algorithms to state-of-the-art learning from scratch and revision systems. We com-

pare the accuracy and runtime of Aleph and YAVFORTE (see chapter 3) to the SLS

algorithms presenting a better trade-o� between accuracy and runtime. In addition

to Pyrimidines and Proteins, we also consider here the Yeast sensitivity dataset,

but in this case, concerning the search for revisions, we show the results only for

stochastic Hill climbing, since this has the best accuracy results for the other two

datasets. Besides running individually the stochastic algorithms for each key search,

we also combine stochastic algorithms as follows.

1. Stochastic search for revision points with stochastic search for literals.

2. Stochastic search for revision points with stochastic Hill climbing search for

revisions.

3. Stochastic Hill climbing search for revisions with stochastic search for literals.

4. Stochastic search for revision points with stochastic search for literals and

stochastic Hill climbing search for revisions.
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Figures 18, 19 and 19 presents the accuracies returned by the systems for

Pyrimidines, Proteins and Yeast sensitivity datasets, respectively. The parameters

used to each system are presented in parenthesis, where the �rst value is a prob-

ability parameter and the second value (when it is the case) it is the number of

iterations/revision points. Next, we discuss the most relevant cases observed in the

graphic.

� All revision algorithms in the three datasets achieve accuracies signi�cantly

better than Aleph system.

� Except for Greedy Search for revisions, in Pyrimidines dataset there is no

statistical signi�cant di�erence between the accuracy returned by YAVFORTE

and the stochastic algorithms.

� Best accuracy result for Pyrimidines is achieved by stochastic search for literals

combined with Hill climbing stochastic search for revisions, although it is not

signi�cantly better than the others.

� In Proteins dataset, best results are achieved by stochastic search for literals

and stochastic search for literals combined with Hill climbing stochastic search

for revisions.

� In Proteins dataset, stochastic search for revision points and stochastic greedy

search for revisions achieves signi�cantly worse accuracies, compared to YAV-

FORTE and best SLS results.

� There is no signi�cant di�erence between YAVFORTE and the rest of the SLS

algorithms.

� In Yeast Sensitivity dataset, stochastic search for literals and the combination

of the three stochastic components achieve signi�cantly better accuracies than

YAVFORTE.

� The other SLS algorithms do no present signi�cant di�erence compared to

YAVFORTE
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From these results, we can see that SLS algorithms either provide better or

equivalent accuracies compared to the baseline revision system YAVFORTE. In ad-

dition, they are always signi�cantly better than Aleph system.

Figura 18: Comparing accuracy of SLS algorithms to Aleph and YAVFORTE in
Pyrimidines Dataset. Results of SLS algorithms are the ones with a best trade-o�
between accuracy and runtime. Parameters of probability, number of iterations and
number of revision points are in parenthesis.

Figura 19: Comparing accuracy of SLS algorithms to Aleph and YAVFORTE in
Proteins Dataset. Results of SLS algorithms are the ones with a best trade-o�
between accuracy and runtime. Parameters of probability, number of iterations and
number of revision points are in parenthesis.

Figures 21, 22 and 23 exhibit runtime of Aleph, YAVFORTE and SLS algo-

rithms for Pyrimidines, Proteins and Yeast sensitivity, respectively. The following

issues are observed from the results graphically represented in the �gures.
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Figura 20: Comparing accuracy of SLS algorithms to Aleph and YAVFORTE in
Yeast Sensitivity Dataset. Results of SLS algorithms are the ones with a best trade-
o� between accuracy and runtime. Parameters of probability, number of iterations
and number of revision points are in parenthesis.

� Pyrimidines Dataset

� Revision time of YAVFORTE is signi�cantly slower than all other algo-

rithms in Pyrimidines dataset.

� In Pyrimidines dataset, the only algorithm signi�cantly slower than Aleph

is SLS with revisions escape. This is likely due to the high number of

iterations.

� Stochastic Hill climbing search for revisions combined with stochastic

search for literals does not present di�erence compared to Aleph. In

this case, the combination of these SLS algorithms takes more time to

converge.

� All the other SLS cases are signi�cantly faster than Aleph.

� Higher speed of a SLS algorithm, compared to YAVFORTE has a factor

of 17, while smallest speed up is 4.

� In Proteins dataset all SLS algorithms are signi�cantly faster than Aleph and

YAVFORTE, except for stochastic search for literals, which is faster than

YAVFORTE but it is not signi�cantly di�erent than Aleph. Higher speed of

a SLS algorithm, compared to YAVFORTE has a factor of 16, while smallest

speed up is 2.
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� In Yeast sensitivity, Aleph is signi�cantly faster than all revision algorithms.

We believe this is due to the huge background knowledge this dataset has, that

makes coverage tests slower and revision must perform much more such kind

of tests than learning from scratch approaches. On the other hand, all SLS

algorithms are signi�cantly faster than YAVFORTE. Higher speed of a SLS

algorithm, compared to YAVFORTE has a factor of 26, while smallest speed

up is 2.

Figura 21: Comparing runtime of SLS algorithms to Aleph and YAVFORTE in
Pyrimidines Dataset. Results of SLS algorithms are the ones with the best trade-o�
between accuracy and runtime. Parameters of probability, number of iterations and
number of revision points are in parenthesis.

From the results, we can conclude that using stochastic local search algorithms

individually and specially combining them, it is possible to greatly reduce the revi-

sion time and also to be faster or competitive with learning from scratch. Moreover,

accuracies achieved by SLS strategies are always better than learning from scratch

approach and competitive with traditional revision approach. Thus, we positively

answer both questions posed in the beginning of this section.

Conclusions

In this chapter we designed a set of stochastic local search algorithms for exploring

the key search spaces of the revision process more e�ciently. The algorithms aban-

don completeness in favor of �nding good solutions in a reasonable time. Most of
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Figura 22: Comparing runtime of SLS algorithms to Aleph and YAVFORTE in
Proteins Dataset. Results of SLS algorithms are the ones with the best trade-o�
between accuracy and runtime. Parameters of probability, number of iterations and
number of revision points are in parenthesis.

Figura 23: Comparing runtime of SLS algorithms to Aleph and YAVFORTE in Yeast
Sensitivity Dataset. Results of SLS algorithms are the ones with the best trade-o�
between accuracy and runtime. Parameters of probability, number of iterations and
number of revision points are in parenthesis.

all are based on random walks, so that the choice of pursuing a greedy or a stochas-

tic move is made according to a probability parameter. Stochastic algorithms were

implemented in YAVFORTE system (see chapter 3 and (DUBOC, et al., 2009)) in

every key search of the revision process.

First, a SLS algorithm was built to avoid collecting all revision points from all

misclassi�ed examples. With a probability p, misclassi�ed examples are randomized
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and a pre-de�ned number of revision points is generated. The search is alternated

with greedy moves, since without the probability p all revision points found in the

theory from each misclassi�ed instance are collected. However, through experimental

results we found out that in several cases there is no need of employing greedy moves,

since de�ning the probability parameter as 100% already achieves good results:

the revision time is greatly reduced and accuracies are not statistically signi�cant

di�erent compared to the baseline system. The performance of stochastic component

in the search for revision points is more in�uenced by the parameter de�ning the

number of revision points that should be returned.

Second, SLS components were included in the search for literals to be added

to or removed from a clause. Stochastic search was included in both hill climb-

ing and relational path�nding algorithms for specializing clauses. In the �rst case,

when the move is stochastic, literals from the Bottom Clause are randomized and

the �rst literal found that improve the score is added to the clause. In relational

path�nding, paths created from the Bottom Clause and a positive instance are ran-

domized. In this work, we used both algorithms cooperating to each other, when

relational path�nding was applicable. We noticed from the empirical evaluation

that, although the stochastic search for literals is able to reduce runtime compared

to hill climbing greedy approach of YAVFORTE, if it is executed without the other

stochastic components, it is not much e�ective as the other SLS algorithms. The

reasons for that are mainly due to the Bottom clause: either it is small and the

stochastic component does not make a huge di�erence, or it is large, but in this

case the use of stochastic move takes more iterations to converge than the original

approach. Novel approaches can be investigated to further improve this stochastic

component, such as pre-process literals using Bayesian networks or genetic algo-

rithms (OLIPHANT, SHAVLIK, 2008; MUGGLETON, TAMADDONI-NEZHAD,

2008; PITANGUI, ZAVERUCHA, 2011).

Third, four di�erent stochastic components were included to decide which re-

vision is going to be implemented. Three of them are based on random walks and

one of them performs a simulated annealing algorithm. In the results we could see

that the stochastic greedy algorithm for searching revisions, which in both stochastic
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and greedy moves allows a revision with score worse than the current one be imple-

mented, does not performs well. As an improvement in score is always not required,

the accuracy deteriorates along the iterations. The stochastic escape approach, that

accepts bad moves but only if it does not degrade so much the score, performs

better than greedy, with good accuracy and runtime results in several cases. How-

ever, the simplest strategy, that with a certain probability randomizes revisions and

implements the �rst one improving the score, achieved the best overall results.

The three strategies above were compared both individually and combining the

best strategies. The vast majority of the cases showed that stochastic approaches

achieve better accuracies than the learning from scratch Aleph system, with faster

or competitive runtime. Moreover, accuracies in most of the cases are signi�cantly

equivalent to YAVFORTE but the runtime is always much faster. In the best case,

an SLS algorithm is 25X faster than YAVFORTE, with equivalent accuracy.

We see at least two di�erent topics for further investigation concerning SLS

in �rst-order logic revision: the use of rapid randomized restart strategies, already

employed in ILP in (�ELEZNÝ, et al., 2004; �ELEZNÝ, et al., 2006), that would

avoid being stuck in unproductive re�nements by restarting after a certain criteria

from another random point; and the use of stochastic component in coverage tests,

as it is done in (SEBAG, ROUVEIROL, 1997; KUZELKA, ZELEZNÝ, 2008b).

244



Appendix F: Probabilistic Logic
Learning

Traditional statistical machine learning algorithms deal with uncertainty by

assuming the data are independent and identically distributed (i.i.d). On the other

hand, relational learning algorithms have the capability to represent multi-typed

related objects, but they impose severe limitations for representing and reasoning

in the presence of uncertainty. However, in most real-world applications, data is

multi-relational, heterogeneous, uncertain and noisy. Examples include data from

web, bibliographic datasets, social network analysis, chemical and biological data,

robot mapping, natural language, among others (LACHICHE, FLACH, 2002; BAT-

TLE, et al., 2004; GETOOR, et al., 2004; JAIMOVICH, et al., 2005; DAVIS, et al.,

2005a; NEVILLE, et al., 2005; WANG, DOMINGOS, 2008; RAGHAVAN, et al.,

2010). Therefore, in order to extract all useful information from those datasets

it is necessary to use techniques dealing with multi-relational representations and

probabilistic reasoning. Probabilistic Logic Learning (PLL), also called Probabilistic

Inductive Logic Programming (PILP) (DE RAEDT, et al., 2008a) and Statistical

Relational Learning (SRL) (GETOOR, TASKAR, 2007) is an emerging area of arti-

�cial intelligence, lying at the intersection of reasoning about uncertainty, machine

learning and logical knowledge representation (DE RAEDT, 2008). As such, PLL is

able to deal with machine learning and data mining in complex relational domains

where information may be missed, partially observed and/or noisy.

A large number of PLL systems have been proposed in the last years, giv-

ing rise to several formalisms for representing logical and probabilistic knowledge.

The formalisms can be divided into several general classes (GETOOR, 2007), yet

here we choose to put them in the two more relevant axes (DE RAEDT, et al.,
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2008a): Logical Probabilistic Models (LPM) are extensions of probabilistic models

that are able to deal with objects and relations by including logical or relational

elements. Typically, they build a directed or undirected probabilistic graphical

model to reasoning about uncertainty using logic as a template. Inside this cat-

egory there is a group of formalisms based upon directed probabilistic graphical

models, composed of Relational Bayesian Networks (JAEGER, 1997), Probabilistic

Logic Programs (NGO, HADDAWY, 1997; HADDAWAY, 1999), Probabilistic Rela-

tional Models (PRM) (KOLLER, PFEFFER, 1998; KOLLER, 1999; FRIEDMAN,

et al., 1999; GETOOR, et al., 2001), Bayesian Logic Program (BLP) (KERSTING,

DE RAEDT, 2001d; KERSTING, DE RAEDT, 2001b; KERSTING, DE RAEDT,

2001a; KERSTING, DE RAEDT, 2007), Constraint Logic Programming with Bayes

Nets (CLP(BN)) (SANTOS COSTA, et al., 2003a), Hierarchical Bayesian Networks

(GYFTODIMOS, FLACH, 2004), Logical Bayesian Networks (FIERENS, et al.,

2005), Probabilistic Relational Language (GETOOR, GRANT, 2006), etc, and a

group composed of systems built upon undirected probabilistic graphical models,

including Relational Markov Networks (TASKAR, et al., 2002), Relational Depen-

dency Networks (NEVILLE, JENSEN, 2004) and Markov Logic Networks (MLN)

(SINGLA, DOMINGOS, 2005; KOK, DOMINGOS, 2005; RICHARDSON, DOMIN-

GOS, 2006; DOMINGOS, LOWD, 2009).

In the other axis are the Probabilistic Logical Models (PLM), which are for-

malisms extending logic programs with probabilities, staying as close as possible to

logic programming by annotating clauses with probabilities. In this class, the log-

ical inference is modi�ed to deal with the parameters of probabilities. Formalisms

following this approach include Probabilistic Horn Abduction (POOLE, 1993) and

its extension Independent Choice Logic (ICL) (POOLE, 1997), Stochastic Logic Pro-

gram (SLP) (MUGGLETON, 1996; MUGGLETON, 2000; MUGGLETON, 2002),

PRISM (SATO, KAMEYA, 1997; SATO, KAMEYA, 2001), Logic Programs with

Annotated Disjunctions (VENNEKENS, et al., 2004), SAYU (DAVIS, et al., 2005a;

DAVIS, et al., 2005b; DAVIS, et al., 2007), nFoil (LANDWEHR, et al., 2007),

kFoil (LANDWEHR, et al., 2006), ProbLog (DE RAEDT, et al., 2007; KIMMIG,

et al., 2008; KIMMIG, 2010), among others.
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The present work aims to contribute to the rule-based formalism using the

directed probabilistic graphical model of Bayesian networks. BLP was chosen to

conduct the research of theory revision in PLL since it elegantly instantiates both

logic programs and Bayesian networks. Next we bring some details on the fundamen-

tals of BLPs, starting from Bayesian Networks in section 24, immediately followed

by the ideas behind BLPs in section 5.3.2. Finally, we review our revision system

PFORTE in section 5.3.2.

For some basic concepts from probability theory we refer to (FELLER, 1970;

ROSS, 1988; PEARL, 1988; DEGROOT, 1989).

Bayesian Networks: Key Concepts

Complex systems involving some sort of uncertainty may be characterized through

multiple interrelated random variables, where the value of each variable de�nes an

important property of the domain. In order to probabilistically reason about the

values of one or more variables, possibly given evidence about others, it is necessary

to construct a joint distribution over the space of possible assignments to a set of ran-

dom variables. Unfortunately, even in the simplest case of binary-valued variables,

the representation of a joint distribution over a set of not assumed independent ran-

dom variables χ = X1, ..., Xn requires the speci�cation of the probabilities of at least

2n di�erent assignment of values x1, ..., xn. It is obviously unmanageable to explicitly

represent such a joint distribution. Probabilistic Graphical Models (PGMs) provide

mechanisms for encoding such high-dimensional distributions over a set of random

variables, structuring them compactly so that the joint distribution can be utilized

e�ectively (KOLLER, FRIEDMAN, 2009). They use a graph-based representation,

where the nodes correspond to the random variables in the domain and the edges

correspond to direct probabilistic interactions between the variables. There are two

most common used families of PGM, one representing the domain through undi-

rected graphs and the other through directed graphs. In the �rst case lies theMarkov

networks (aka Markov random �eld), consisting of an undirected graph G and a set

of potential functions φk (PEARL, 1988). The graph has a node for each random

variable and the model has a non-negative real-valued potential function for each
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clique in the graph. Markov networks are useful in modeling problems where one

cannot naturally de�ne a directionality to the interactions between the variables.

The representative of the second case are the Bayesian networks (PEARL, 1991)

whose edges of the graph have a source and a target. Next we describe Bayesian

networks thoroughly, since it is the underlying probabilistic graphical models of

BLPs.

In order to review the main concepts of Bayesian networks we use the following

convention: X denotes a random variable, x a state, X a set of random variables

and x a set of states.

Bayesian networks represent the joint probability distribution P (Xi, ..., Xn)

over a �xed and �nite set of random variables {Xi, ..., Xn}. Each random variable

Xi has a domain(Xi) of mutually exclusive states. They allow a compact and natural

representation of the set of random variables by exploiting conditional independence

properties of the distribution.

We say a variable X is conditionally independent of a variable Y , given a

variable E, in a distribution P if P (X|Y,E) = P (X|E). Conditional independence

is denoted by (X ⊥ Y |Z).

In order to represent the connections between random variables, as well as their

probability distributions, a Bayesian network is composed of two components, as

follows. Qualitative or logic component of a Bayesian network : it is an augmented

Directed Acyclic Graph (DAG) G whose nodes are the random variables in the

domain and whose edges correspond to direct in�uence among the random variables.

The parents of a variable Xi are the variables represented by the nodes whose edges

arrive in Xi. Similarly, the children of a variable Xj are variables represented by the

nodes whose edges come from Xj. Henceforward, we use the terms �variables � and

�nodes � interchangeably. The local independence assumption in a Bayesian network

states that a variable Xi is conditionally independent of its non-descendants in the

network, given a joint state of its parents, i.e.:

(Xi ⊥ Non−DescendantsXi
|Parents(Xi)) (3)

where Parents(Xi) denotes the states of the parents of node Xi, and if the
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node has no parents, then P (Xi|Parents(Xi) = P (Xi)

The independence assumption allows it to write down the joint probability

distribution as

P (X1, ..., Xn) =
n∏

i=1

P (Xi| Parents(Xi)) (4)

by applying the independence assumption to the chain rule expression of the joint

probability distribution.

Quantitative component of a Bayesian network. Because of the independence

assumption, each node is associated to a local probability model that represents the

nature of the dependence of each variable on its parents. Thus, each node has a

Conditional Probability Distributions (CPDs), cpdXi, specifying a distribution over

the possible values of the variable given each possible joint assignment of values to

its parents, i.e, P (Xi|parents(Xi). If a node has no parents, then the CPD turns into

a marginal or prior distribution, since is conditioned on an empty set of variables.

Consider, for instance the following problem from genetics (FRIEDMAN, et al.,

1999; KERSTING, et al., 2006): It is a genetic model of the inheritance of a single

gene that determines the blood type of a person. Each person has two copies of

the chromosome containing this gene, one inherited from her mother and another

inherited from her father. Occasionally, a person is not available for testing, and yet

because of the clari�cation of crime, test of paternity, allocation of (frozen) semen

etc. it is often necessary to estimate the blood type of the person. A blood type can

still be derived for that person through an examination and analysis of the types of

family members.

To represent this domain we would have for each person three random vari-

ables: one representing her blood type (btperson), another one representing the gene

inherited from her father (pcperson) and the last one representing the gene inher-

ited from her mother (mcperson). The possible values for btperson are in the set

domain(btperson) = {a, b, o, ab} and the domain for mc and pc are the same and

composed of {a, b, o}. In this example the independence assumptions are clear due

to the biological rules: once we know the blood type of a person, additional evi-

dence about others members of the family will not provide new information about

the blood type. In the same way, once we know the blood type of both parents,
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we know what each of them can pass on to their descendants. Thus, �nding new

information about a person's non-descendants does not provide new information

about blood type of the person's children. Those local dependencies are better vi-

sualized through the Bayesian network of the Figure 24. For example, regarding the

biological point of view, the blood type of Susan is correlated with the blood type

of her aunt Lily, but once we know the blood type of Allen and Brian, the blood

type of Lily is not going to be relevant to the blood type of Susan. Each variable

has an associated CPD, coding the probability of a person has one of the values of

the domain as her blood type, given each possible assignment of the genes inherited

from her parents.

Figura 24: Bayesian network representing the blood type domain within a particular
family

D-separation

Independence properties in probabilistic graphical modes can be exploited in order

to reduce the computation cost of answering queries process. If one guarantees that
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a set of nodes X is independent from another set of nodes Y given E, then in the

presence of evidence about the nodes in E, an observation regarding variables in

X cannot in�uence the beliefs about Y. The independence assumptions satis�ed

by a Bayesian network can be e�ciently identi�ed using a graphical test called d-

separation (GEIGER, et al., 1989). The intuition above this test encompasses four

general cases, illustrated in Figure 25, from where we would like to analyze whether

knowing an evidence about a variable X can change the beliefs about a variable Y,

in the presence of evidence about variables E. Naturally, when variables X and Y

are directly connected, they are able to in�uence each other. Now, consider the four

cases where variables X and Y are connected through E.

� The �rst case represents an indirect causal e�ect, where an ancestor X of Y

could pass in�uence to it via E. Consider, for example, the Bayesian network

of Figure 24. If one wants to know the blood type of Susan and do not know

the gene she receives from its mother (mc_Susan is unknown), the gene its

mother received from its grandmother (mc_Allen variable is known) is able

to in�uence the beliefs on which blood type Susan is. On the other hand, if

one already knows the gene Susan received from its mother, the gene passed

from Susan'grandmother to Susan' mother no longer in�uences her blood type.

Going back to the general case, X can only in�uence Y in the presence of E

if E is not observed. In this case, we say the evidence E blocks in�uence of X

over Y , as de�ned in De�nition .3.

� The next case is the symmetrical case of the last one: we want to know whether

evidence above a descendant may a�ect an indirect ancestor. In our running

example, this is the case of trying to know whether the gene Allen received

from its mother (random variable mc_Allen) is a�ected by the knowledge of

the blood type of Susan (bt_Susan). As before, once the gene Susan received

from Allen is known (random variable mc_Susan is observed), bt_Susan is

not able to a�ect the beliefs on mc_Allen. However, in case mc_Susan is

missing, bt_Susan has a free path to reach mc_Allen and therefore to a�ect

its value.
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� A common cause case is represented in Figure 25(c), where the node E is

a common cause to nodes X and Y . In the Bayesian network of the exam-

ple, this is the case of variables mc_Allen, mc_Susan and bt_Allen, where

mc_Allen is a common cause for the others variables. The bloodtype of Allen

(bt_Allens) and the gene Susan received from her mother Allen (mc_Susan)

are correlated, since knowing the bloodtype of Allen helps us to predict the

gene she received from her mother (mc_Allen) and consequently, the gene

Allen has transmitted to her daughter Susan. However, in case mc_Allen is

observed, knowing the bloodtype of Allen provides no additional information

to predict the gene she transmitted for her daughter, as the information of

which gene she has is stronger than her bloodtype. Thus, in the general case,

variables sharing a common cause are able to in�uence each other if the path

of common causes between them if free of evidences, in another words, the

path is unblocked.

� Figure 25(d) represents a common e�ect trail. Structures in the form X →

E ← Y are called v-structures. The three cases previously discussed share a

pattern: X can in�uence Y via E is and only if E is not observed. In constrast,

a common e�ect trail is di�erent as X can in�uence Y via E if and only if E

is observed. This is easier to see through an example: consider the random

variables mc_Susan, pc_Susan and bt_Susan in Figure 24 and suppose we

would want to know the gene Susan received from her father (random vari-

able pc_Susan). If the blood type of Susan is known, the evidence about

mc_Susan is able to in�uence the beliefs on pc_Susan. Knowing the gene

she received from her mother and her blood type a�ects the beliefs about the

gene she received from her father. For example, knowing her blood type is A

and the gene her mother transmitted to her is o, the only possible gene she

received from his father is A. However, if we do not know the blood type of

Susan, it is not possible that the gene she received from her mother a�ects

our beliefs on the gene she received from her father. Thus, if the common

e�ect variable is not observed, knowing about a parent variable cannot a�ect

our expectation about the others parents.

252



Figura 25: The four possible edge trails from X to Y, via E. Figure (a) is an indirect
causal e�ect; Figure (b) is an indirect evidential e�ect; Figure (c) represents a
common cause between two nodes and Figure (d) shows a common e�ect trail.

De�nition .3 Block: Let X and Y be random variables in the graph of a Bayesian

network. We say an undirected path between X and Y is blocked by a (set of) variable

E if E is in such a path and in�uence of X cannot reach Y and change the beliefs

about it because of evidence (or lack of it) of E.

The d-separation test guarantees that X and Y are independent, given E if

every path between X and Y is blocked by E and therefore in�uence cannot �ow

from X through E to a�ect the beliefs about Y (KOLLER, FRIEDMAN, 2009;

DARWICHE, 2010). If the path is not blocked, we say there is an active trail

between the two sets of nodes.

De�nition .4 Active trail: Given an undirected path X1 
 ... � Xn in the graph

component of a Bayesian network, there is an active trail from X1 to Xn given a

subset of the observed variables E, if

� whenever we have a v-structure Xi−1 → Xi ← Xi+1, then Xi or one of its

descendants are in E;

� in all the others cases no other node along the trail is in E.

An active trail indicates precisely a path in the graph where in�uence can �ow

from one node to another one. Thus, we say that one node can in�uence another if
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there is any active trail between them. The de�nition below provides the notion of

separation between nodes in a directed graph.

De�nition .5 d-separation: X and Y are d-separated by a set of evidence variables

E if there is no active trail between any node X ∈ X and Y ∈ Y given E, i.e, every

undirected path from X to Y is blocked.

Consider, for example the network in Figure 24, and the random variables

bt(Lily) and bt(Susan). There is a path between them composed for the nodes

bt(Lily)← mc(Lily)← mc(Gy)→ mc(Allen)→ mc(Susan)→ bt(Susan)

that is an active trail: the path is a common cause trail, and there is no observed

node between them blocking the in�uence of bt(Lily) over bt(Susan). Note, however,

in case there is an observed node in the path between them, say, mc(Susan), the

path would be no longer an active trail, since this evidence would block the in�uence

of bt(Lily).

It has been proved that X ⊥ Y|E if and only if E d-separates X from Y in

the graph G (GEIGER, et al., 1989; GEIGER, et al., 1990).

Bayes Ball

In order to answer a probabilistic query more e�ciently, it is useful to identify

the minimal set of relevant random variables, which are the ones in�uencing the

computations. (SHACHTER, 1998) developed a linear time algorithm to identify

conditional independence and requisite information in a Bayesian network, named

the Bayes Ball algorithm, based on the concept of D-separation. Requisite infor-

mation is composed of the nodes for which conditional probability distributions or

observations might be needed to compute the probability of query nodes, given evi-

dence. Bayes Ball works by using an analogy of bouncing a ball to visit the relevant

nodes in the net, starting from the query nodes. From there, the ball may pass

through the node from one of its parents to its children and vice-verse, may bounce

back from any parent to all the others parents of the node or from any child to

all children of the node or may be blocked. The move the ball takes also depends
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whether the node is observed or not and/or whether the node is deterministic or

not. Precisely,

� An observed node, deterministic or not, always bounces balls back from one

parent to all its others parents, in order to identify common e�ect trails. How-

ever, such a node blocks balls from children, i.e., if a ball comes from one of

its children it is not passed anymore from this node.

� An unobserved non deterministic node passes balls from parents to its children

and from a child to both its parents and to others children.

� An unobserved deterministic node always passes the ball coming from its child

to its parents and from a parent to its children.

Algorithm 41 formalizes what we have just said, with some important ad-

ditions to guarantee that the same action is not repeated and that the algorithm

�nishes:

� It marks visited nodes on the top(bottom) when the ball is passed from a

node to its parents(children). When a node is marked in the top (bottom) the

algorithm has no need to visit the node's parent (children) anymore.

� It maintains a schedule of nodes to be visited from parents and from children,

so that the move of the ball can be determined;

� It makes sure that the ball visits the same arc in the same direction only once.

After visiting all scheduled nodes, the algorithm returns as the minimum set

of requisite information to answer a query P (X|E) the observed nodes which were

visited and all residual nodes marked on the top, with the visit starting from the

nodes in X. It also identi�es the nodes not marked on the bottom as irrelevant to

estimate X, that is those nodes conditionally independent on X, given E.

It is proved that X ⊥ Y|E if and only if Y ⊆ I, where I is the set of condi-

tionally independent nodes from X given E, as determined by Algorithm 41. As any

edge is traversed at most once in each direction, the complexity of the algorithm
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Algorithm 41 The Bayes Ball Algorithm to Collect Requisite Nodes in a Net-
work (SHACHTER, 1998)

Input: a Bayesian network B, a set F of deterministic nodes; A set X of query
nodes; A set E of observed nodes

Output: A minimum set R of requisite nodes, which might be needed to compute
P (X|E) and the set I of irrelevant nodes, where X ⊥ I|E

1: Initialize all nodes in B as neither visited, nor marked on the top, nor marked
on the bottom.

2: Create a schedule of nodes to be visited, initialized with each node in X to be
visited as if from one of its children.

3: while there are still nodes scheduled to be visited do
4: Pick any node K scheduled to be visited and remove it from the schedule.

Either K was scheduled for a visit from a parent, a visit from a child, or
both.

5: Mark K as visited.
6: if K /∈ E and the visit is from a child then
7: if the top of K is not marked then
8: mark its top and schedule each of its parents to be visited;
9: if K /∈ F and the bottom of K is not marked then
10: then mark its bottom and schedule each of its children to be vis-

ited.
11: if the visit to K is from a parent then
12: if K ∈ E and the top of K is not marked then
13: mark its top and schedule each of its parents to be visited;
14: if K /∈ E and the bottom of K is not marked then
15: mark its bottom and schedule each of its children to be visited.
16: R← nodes in E marked as visited ∪ nodes marked on top
17: I ← nodes not marked on the bottom
18: return R and I

is O(n +m), where n is the number of nodes and m is the number of edges in the

graph.

Figure 26 shows an example of the execution of Bayes Ball algorithm in a

Bayesian network extracted from Figure 24. The visit starts from the random vari-

able bt_Susan, as it had been visited before from a child. Next,

� As bt_Susan is not observed, it is marked in the bottom, in the top and passes

the ball to its parents. Then, nodes mc_Susan and pc_Susan are scheduled

to be visited. This corresponds to lines 6− 10 of Algorithm 41.

� Node pc_Susan is picked in the schedule. As it is an observed node, visited

from a child, the ball is not passed anymore from it. In another words, its
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Figura 26: The ball visiting nodes with Bayes Ball algorithm. Red nodes are ob-
served and green node is the query node.

evidence blocks in�uence to its child that could pass through it.

� Node mc_Susan is marked in the bottom and in the top and passes the ball

from its child to both its parents (mc_Allen and pc_Allen) and its child

(bt_Susan), since it is not observed.

� Node bt_Susan is visited again, this time from its parent, but there is nothing

further to do, since it has already been marked in both directions.

� Node pc_Allen receives the ball, but it does not pass the ball anymore, since

it is an observed node visited from a child.

� Node mc_Allen is marked in the top and in the bottom and bounces the ball

to its children, mc_Susan and bt_Allen.

� Nodemc_Susan is visited again, this time from its parent, but there is nothing

further to do, since it has already been marked in both directions (bottom and

top).

� bt_Allen in an observed node, visited from a parent, and therefore is marked

in the top (line 13 of the algorithm). Then, it bounces the ball back to all its

parents, in an attempt to �nd out a common e�ect trail between its parents.
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mc_Allen is marked in both directions: there is nothing more to do with it.

pc_Allen is again visited from a child. As there is no nodes scheduled to be

visited anymore, the algorithm �nishes.

Requisite nodes to compute the probability of bt_Susan are the set of nodes

{pc_Susan,mc_Susan, pc_Allen,mc_Allen, bt_Allen}. Note that there is an in-

direct causal e�ect trail from pc_Allen to bt_Susan, viamc_Susan. Also, there is a

common cause trail between bt_Allen and bt_Susan via {mc_Allen,mc_Susan}.

Additionally, pc_Allen is able to in�uence the beliefs in mc_Allen via bt_Allen, as

they form a common e�ect trail (v-structure). In�uence cannot �ow from bt_Brian

and pc_Brian to bt_Susan, as they are blocked by the evidence of pc_Susan.

Inference in Bayesian Networks

Typically, a Bayesian network is used to compute marginal distributions of one or

more query nodes, given some of the others nodes are clamped to observed values.

Inference is the computation of these marginal probabilities, de�ned as

P (X|E) ∝
∑

Z 6=X,E

P(X,E,Z) (5)

where E represents a set of observed variables (the evidence), X is the set of

unobserved variables whose values we are interested in estimating and Z are the

variables whose values are missing (the hidden nodes). For very small Bayesian net-

works it is easy to marginalize sums directly. But unfortunately, the number of terms

in the sum will grow exponentially with the number of missing values in a network,

making the exact computation of marginal probabilities intractable for arbitrary

Bayesian networks, In fact, this is known to be a NP-hard problem (COOPER,

1990; DAGUM, LUBY, 1993). The good news is that some cases it is possible to

exploit the graph structure so that the exact computation of marginal probabili-

ties has complexity linear in the size of the network. This is precisely the case of

polytree networks. In this case, exact inference such as variable elimination (LI,

D'AMBROSIO, 1994), which exploits the chain-rule decomposition of the joint dis-

tribution and marginalizes out the irrelevant hidden nodes can be used e�ciently.
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There is also a family of algorithms named junction tree which work by joining

variables in cluster nodes so that the resultant network becomes a polytree.

Learning Bayesian Networks from Data

Typically, learning in Bayesian networks has as ideal goal to return a model B∗ =

(G∗, θ∗), where G∗ is a Directed Acyclic Graph and θ∗ is a set of probability pa-

rameters. They both together should precisely capture the underlying probability

distribution P ∗ governing the domain. To do so, both the structure of the Bayesian

network (the DAG) and local probability modes (CPDs) may be learned using an

Independently and Identically Distributed (IID) data set D = d[1], ...,d[M] of M

examples sampled independently from P ∗. However, the ideal goal is generally not

achievable because of (1) computational costs and (2) limited data set providing

only an approximation of the true distribution. Thus, learning algorithms attempt

to return the best approximation to B∗, according to some performance metric. As

the metric is often a numerical criterion function, the learning task can be seen as

an optimization problem, where the hypothesis space is the set of candidate mo-

dels and the criterion for qualifying each candidate is the objective function. One

common approach is to �nd B that maximizes the likelihood of the data, or more

conveniently its logarithm, since the products are converted to summation. The

Log-Likelihood (LL) is de�ned as

LL(B|D) =
M∑
k=1

logP (d[k]) =
M∑
k=1

V∑
j=1

logP(d[k]j|parents(d[k]j)) (6)

where each example d[k] is composed of a set of V random variables d[k]j. Note

that the likelihood function has the property of decomposability, where each variable

is decomposed in a separate term. From a statistic point of view, the higher the

likelihood, the better the Bayesian network is of representing P∗. When the model

is learned by maximizing the likelihood or a related function, we have a generative

training, since the models is trained to generate all variables (FRIEDMAN, et al.,

1997). Alternatively, if it is known in advance that the model is going to be used

to predict values to random variables X from Y, the training may be done dis-

criminatively (ALLEN, GREINER, 2000; GREINER, ZHOU, 2002; GROSSMAN,
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DOMINGOS, 2004), where the goal is to get P(X|Y) to be as close to the real

distribution P ∗(X|Y) as possible. In this case, the objective function typically used

is the Conditional Log-likelihood (CLL), computed as

CLL(B|D) =
M∑
k=1

logP (d[k]i|d[k]1, ..., d[k]i−1) (7)

where d[k]i is the class variable and d[k]1, ..., d[k]i−1 are the others variables.

Notice that

LL(B|D) = CLL(B|D) +
M∑
k=1

logP (d[k]1, ..., d[k]i−1)

Because of that, maximizing CLL leads to better classi�ers than when maximizing

LL, since the contribution of CLL(B|D) is likely to be swamped by the generally

much larger (in absolute value) logP (d[k]1, ..., d[k]i−1) term. In fact, (FRIEDMAN,

et al., 1997) shows that maximizing the CLL is equivalent to minimize the prediction

error, since this metric takes into account the con�dence of the prediction. However,

di�erent from LL, CLL does not decompose into a separate term for each variable,

and as a result there is no known closed form for computing optimal parameters.

There are three situations concerning the observability of the dataset one may

encounter when learning Bayesian networks (KOLLER, FRIEDMAN, 2009):

1. The dataset is complete or fully observed in such a way that each example has

observed values for all the variables in the domain.

2. The dataset is incomplete or partially observed, i.e, some variables may not be

observed in some examples.

3. The dataset has hidden or latent variables, whose value is never observed in

any example. It may be the case that we are even unaware of some variables

(we do not know they exist), since it is never observed in the data. Despite of

it, they might play a central role to understand the domain.

In respect to what must be learned from data to result in a Bayesian network,

we have two distinct cases :
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1. The graph is known (although it is not necessarily the correct one) and it is

only required that the parameters are learned from data;

2. Both the graph structure and parameters are unknown and it is necessary to

learn them both from the dataset.

Parameters estimation

The problem of CPDs estimation for a Bayesian network is concerned with estimat-

ing the values of the best parameters θ of a �xed graph structure. It is particularly

important because, although estimating the graph structure is arguably easy for an

expert of the domain, eliciting numbers is di�cult for people and may be unreliable.

Besides the graph structure, the random variables and the values they can take are

assumed to be known. The problem is usually solved by �nding the Maximum Like-

lihood Estimator (MLE), which is the set of parameters with the highest likelihood.

However, others measure functions can be used.

When the dataset is complete, learning CPDs by MLE decomposes into sepa-

rate learning problems, one for each CPD in the Bayesian network, and maximum

likelihood estimation reduces to frequency estimation. Thus, to calculate the prob-

ability of a variable X assume value x when its parents assume the set of values

parents it is used the formula

P (X = x| Parents(X) = parents) =
N(X = x,Parents(X) = parents)

N(Parents(X) = parents)
(8)

where N(X = x,Parents = parents) is the number of training instances in

the dataset where X has the value x and its parents have the values parents.

When the dataset is only partially observed, the maximum likelihood estima-

tion cannot be written in a closed form, since it is a numerical optimization problem

with all the known algorithms working under nonlinear optimization. Algorithm

such as Expectation-Maximization (EM)(DEMPSTER, et al., 1977), (LAURITZEN,

1995), (MCLACHLAN, KRISHNAN, 1997) and gradient descent (BINDER, et al.,

1997) are used in this case. Here we give an overview of the popular EM algorithm.
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EM algorithm EM is based on the idea that since it is not possible to calculate

the real frequency counting, because some of the examples may have missing values,

such counting should be estimated from the data. Then, these estimates can be used

to maximize the likelihood. The algorithm assumes an initial set of parameters,

which may be initialized at random, and iteratively performs the two steps below

until convergence:

E-step: Based on the dataset and the current parameters, the distributions

over all possible completion of each partially observed instance are calculated (ex-

pected counts). In order to calculate such distributions, the procedure must infer

the probability of each variable for each value of its domain, using the current CPDs.

M-step: Each completion estimated above is treated as a fully observed data

case, weighted by its probability. Then, each (weighted) frequency counting is used

to calculate the improved parameters. The log-likelihood is calculated and in case

it converges, the procedure stops. Otherwise, it iterates to E-step, but now using

the newly computed CPDS.

Structure Learning

Often it is easy for a domain expert to provide the structure of the network, since

it represents basic causal knowledge. However, this is not always the case and

sometimes the causal mode may be unavailable or subject to disagreement. In

these situations, it is necessary to search for a graph �tting the dataset. Learning

a whole Bayesian network gets more complicated in the presence of incomplete

data, since inference is necessary to produce the expected counts, and the problem

is compounded in the presence of hidden variables: in this case the domain and

number of hidden variables must also be selected from dataset.

Using a naive approach, structure learning may start with a graph with no

edges and iteratively add parents to each node, learning the parameters for each

structure and measuring how good is the resulting model using an objective function.

Or still, it may start with a random generated initial structure and use a search

approach to modify the current structure, by adding, deleting or reversing edges.

Since the resulting graph structure cannot have cycles, it is necessary to either de�ne
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beforehand an ordering to the variables or search for possible orderings (RUSSELL,

NORVIG, 2010). To measure how well a model explains the data, one may use a

probabilistic function such as log-likelihood, perhaps penalizing complex structures

by using for example the MDL principle (LAM, BACCHUS, 1994). Is is important

to note that for each graph candidate parameters may change and therefore they

will need to be re-estimated. In case the dataset is complete, only the variables

involved with the modi�cation must have theirs CPDs re-learned (decomposability

property). Unfortunately, this does not happen when the dataset is incomplete,

since local changes in the structure may result in global changes in the objective

function and because of that the parameters of CPDs may change. In this case it is

imperative to apply a heuristic solution such as Structural EM (FRIEDMAN, 1998)

to return the �nal Bayesian network.

The situation gets even worse in the presence of hidden variables. Including

hidden variables in a network can greatly simplify the structure by inducing a large

number of dependencies over a subset of its variables. However, it is important to

analyze the trade-o�s, since learning a structure with hidden variables is far from

trivial: it is necessary to decide how many of them are going to be included, their

domains and also where to include them in the structure. If the number of variables

and their domain is previously informed, it is possible to treat this problem as an

extreme case of learning with incomplete data, where such variable(s) are never

observed. There are several approaches developed to learning with hidden variables,

typically based on the idea of using algebraic (KEARNS, MANSOUR, 1998; TIAN,

PEARL, 2002) or structural (ELIDAN, et al., 2000) signatures. Recently, we also

contributed with a method for adding hidden variables in the structure of Bayesian

networks, based on a discriminative approach and theory revision (REVOREDO,

et al., 2009).

Bayesian Logic Programs: A Logical Probabilistic

Model Extending Bayesian Networks

Although Bayesian networks are one of the most important e�cient and elegant for-

malism for reasoning about uncertainty, they are a probabilistic extension of propo-
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sitional logic (LANGLEY, 1995). Indeed the qualitative component of a Bayesian

network corresponds essentially to a propositional logic program. Consider, for ex-

ample, the network exhibited in Figure 24. The in�uence relations of such a Bayesian

network can be represented trough the propositional logic program in Table 14,

where the random variables in the Bayesian network correspond to logical atoms

and the direct in�uence relation corresponds to immediate consequence operator.

Tabela 14: Propositional Logic Program representing the network in Figure 24

bt_Susan | mc_Susan, pc_Susan.
bt_Allen | mc_Allen, pc_Allen.
bt_Brian | mc_Brian, pc_Brian.
bt_Lily | mc_Lily, pc_Lily.
bt_Gy | mc_Gy, pc_Gy.
bt_Anty | mc_Anty, pc_Anty.
mc_Susan | mc_Allen, pc_Allen.
pc_Susan | mc_Brian, pc_Brian.
mc_Allen | mc_Gy, pc_Gy.
pc_Allen | mc_Anty, pc_Anty.
mc_Lily | mc_Gy, pc_Gy.
pc_Lily | mc_Anty, pc_Anty.
mc_Brian.
pc_Brian.
mc_Gy.
pc_Gy.
mc_Anty.
pc_Anty.

Bayesian networks thus inherit the limitations of propositional logic, namely

the di�culties to represent objects and relations between them. In the example just

discussed, a new family would require a whole new graph. However, if we had the

set of de�nite clauses in Table 15, we can take advantage of the domain regularities,

by applying the rules upon di�erent variables binding.

Bayesian Logic Program (BLP) (KERSTING, DE RAEDT, 2001d; KERSTING,

DE RAEDT, 2001a; KERSTING, 2006) were developed to combine the advantages

of the elegant and e�cient formalism of the Bayesian networks with the expres-

sive powerful representation language provided by Logic Programming. The goal

is therefore to eliminate the disadvantages of propositionality in Bayesian networks
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Tabela 15: First-order Logic Program representing the regularities in the network
of Figure 24

bt(X) | mc(X), pc(X).
mc(X) | mother(Y,X),mc(Y ), pc(Y ).
pc(X) | father(Y,X),mc(Y ), pc(Y )

and the lack of reasoning under uncertainty within ILP. The key idea is to associate

the clauses above to a CPD, that characterizes the probability of the head of the

clause, given the literals in the body. This is exhibited in Table 16.

Tabela 16: First-order Logic Program representing the regularities in the network
of Figure 24, where each CPD is represented as a list of probability values.

bt(X) | mc(X), pc(X), [0.97, 0.01, 0.01, 0.01, ..., 0.01, 0.01, 0.01, 0.97].
mc(X) | mother(Y,X),mc(Y ), pc(Y ),

[0.93, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, ..., 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.93].

pc(X) | father(Y,X),mc(Y ), pc(Y ),
[0.93, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, ..., 0.01, 0.01, 0.01, 0.01, 0.01,

0.01, 0.01, 0.93].
mc(X), [0.3, 0.3, 0.4]
pc(X), [0.4, 0.3, 0.3]

Next we de�ne the BLPs language in more details.

Bayesian Logic Programs: Key concepts

Bayesian atoms and predicates A Bayesian predicate p/n is a �rst-order pred-

icate with arity n and a a set of �nite and mutually exclusive states associated to it

(its domain). An atom of the form p(t1, ..., tn) is a Bayesian atom if p/n is Bayesian,

and both share the same domain. A Bayesian predicate p/l is generically a set of

random variables, while a Bayesian ground atom pθ is a random variable over the

states domain(p/l).

Bayesian Clause A Bayesian clause c is an expression of the formA|A1, ..., An, n ≥

0, where A is a Bayesian atom and each Ai is a Bayesian atom or a logical atom.

The symbol | is used to highlight the conditional probability distribution. The set
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of Bayesian atoms in the body of c directly in�uence the Bayesian atom in the head

of c. Thus, there is a CPD cpd(c) associated with each Bayesian clause c, encod-

ing P (head(c)|body(c) and representing the conditional probabilities distributions of

each ground instance cθ of the clause c. Logical atoms do not have probabilistic

in�uence in the Bayesian atom in the head of c, Note that as logical atoms do not

correspond to random variables they do not have a representation in cpd(c), serving

only to instantiate variables in the clause.

The clause mc(X)|mother(Y,X),mc(Y ), pc(Y ) in the genetic example is a

Bayesian clause, where mc/1 and pc/1 are Bayesian predicates with domainmc/1 =

domainpc/1 = {a, b, 0} andmother(Y,X) is a logical atom, used to do the connection

between logical variables X and Y . In this context, mc(susan) represents the gene a

person named Susan inherits from her mother as a random variable over the states

{a, b, 0}.

Combining rule It may be the case that several ground clauses have the same

head, for example, there are two clauses c1 and c2 such that head(c1θ1) = head(c2θ2).

The clauses specify cpd(c1θ1) and cpd(c2)θ2) but not the required probability distri-

bution P (head(c1θ1)|body(c1θ1)∪ body(c2θ2). Typically, in order to get such a distri-

bution combining rules are employed. A combining rule is a function that maps �nite

sets of conditional probability distributions {P (A|Ai1, ..., Aini)|i = 1, ...,m} onto one

combined conditional probability distribution P (A|B1, .., Bk) with {B1, ..., Bk} ⊆

∪m
i=1{Ai1, ..., Aini}. For each Bayesian predicate p/l there is a corresponding com-

bining rule cr(p/l) such as noisy-or (JENSEN, 2001), noisy-max (DÍEZ, GALÁN,

2002), (weighted)-mean (NATARAJAN, et al., 2008).

De�nition .6 A BLP consists of a set of Bayesian clauses. For each Bayesian

clause c there is exactly one conditional probability distribution cpd(c)and for each

Bayesian predicate p/l there is exactly one combining rule cr(p/l).

Well-de�ned BLP As a logical probability model, inference in BLP is executed in

a Bayesian network generated from the BLP B and the least Herbrand model LH(B)

associated to the domain and the BLP. The nodes in the DAG(B) correspond to
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ground atoms in LH(B), encoding the direct in�uence relation over the random

variables in LH(B). Thus, there is an edge from a node X to a node Y if and only

if there is a clause c ∈ B and a substitution θ such that y = head(cθ), x ∈ body(cθ)

and for all ground atoms Z ∈ cθ, z ∈ LH(B). Although indeed the Herbrand base

HB(B) is the set of all random variables we can talk about, only the atoms in the

least Herbrand model constitute the relevant random variables, as they are the true

atoms in the logical sense, and because of that only they are going to appear in the

DAG(B). Each node in DAG(B) is associated to a CPD cpd(cθ) where head(cθ) =

y, after applying a combining rule of the corresponding Bayesian predicate to the set

of CPDs related to the corresponding variabilized clause. We say a BLP B is well-

de�ned if and only if LH(B) 6= ∅, the graph associated to B is indeed a DAG and

each node in DAG(B) if in�uenced by a �nite set of random variables. If B is well

de�ned, it speci�es a joint distribution P (LH(B)) =
∏

X∈LH(B) P (X|parents(X))

over the random variables in LH(B).

Answering queries procedure

As well as in Bayesian networks, any probability distribution over a set of ran-

dom variables can be computed in a BLP. A probabilistic query to a BLP B is an

expression of the form

?−Q1, ..., Qm|E1 = ei, ..., Ep = ep

where m > 0, p ≥ 0, Q1, ..., Qm are the query variables and E1, ..., Ep are the

evidence variables and {Q1, ..., Qm, E1, ..., Ep} ⊆ HB(B). The answer for such query

is the conditional probability distribution

P (Q1, ..., Qm|E1 = ei, ..., Ep = ep)

The least Herbrand model and consequently its corresponding Bayesian network may

become too large to perform inference. However, it is not necessary to compute the

whole Bayesian network but instead only a part of it, called the support network .

The support network N of a random variable X ∈ LH(B) is the induced sub-

network of {X} ∪ {y|Y ∈ LH(B) and Y influences X}. The support network of a
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�nite set {X1..., Xn} ∈ LH(B) is the union of the support networks for each variable

Xi. Thus, the support network constructed to answer a probabilistic query consists

of the union of the support networks for each query variable and each evidence

variable. (KERSTING, DE RAEDT, 2001b) proved that a support network of a

�nite set X ⊆ LH(B) is su�cient to compute P (X).

In order to construct the support network of a query variable X it is necessary

to gather all ground clauses employed to prove : −X. The set of all proofs is all

the information needed to compute the support network. The proofs are typically

constructed by using the SLD-resolution procedure. After that, it may be necessary

to combine multiple copies of ground clauses with the same head using the corre-

spondent combining rule. Finally, to indeed calculate the probability distribution,

the support networks of each Bayesian atom which is part of the probabilistic query

are united, giving rise to a DAG. Such a DAG, together with the CPDs resulting or

not of combining rules, and the states of each evidence variable, can be provided to

any inference algorithm so that the probability of the query is computed.

Algorithm 42 Algorithm for Inducing a Support Network from a Probabilistic
Query (KERSTING, DE RAEDT, 2001a)

Input: A probabilistic query ?−Q1, ..., Qn|Ev1 = ev1, ..., Evm = evm
Output: A support network N related to the probabilistic query
1: for each variable Xi ∈ {Q1, ..., Qn, Ev1, ..., Evm} do
2: compute all proofs for Xi

3: extract the set S of ground clauses used to prove Xi;
4: combine multiple copies of ground clauses H|B ∈ S with the same H,

generating the support network Ni for Xi;
5: N ← ∪k

i=1Ni;
6: N ← prune(N);

Consider, for example, the logical part of a BLP in Table 17 and the query

?− bt(susan)|bt(brian) =′ a′, pc(brian) =′ a′, pc(susan) =′ o′, pc(allen) =′ o′,

bt(allen) =′ a′

Predicates mother and father are deterministic. In order to prove the query

bt(susan), the �rst clause in the table is instantiated with the substitution X/susan.
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Tabela 17: Qualitative part of a Bayesian Logic Program

bt(X)| mc(X), pc(X).
mc(X)| mother(Y,X),mc(Y ), pc(Y ).
pc(X)| father(Y,X),mc(Y ), pc(Y ).
mother(allen, susan).
father(brian, susan).
pc(allen).
mc(allen).
mc(brian).
pc(brian).

Then, the procedure tries to prove mc(susan) and gets mother(Y, susan), mc(Y ),

pc(Y ). The variable Y is substituted by allen, because of ground atom

mother(allen, susan), and then the algorithm reaches the ground atoms mc(allen),

pc(allen). The same is done to prove pc(susan). From this set of proofs, the sup-

port network in Figure 27(a) is built, by adding one node to each ground Bayesian

atom in the proof and including an edge from an atom directly in�uencing another

atom, following the Bayesian clauses. Next, following the same procedure, support

networks are built for the evidence atoms, giving rise to the networks (b), (c), (d),

(e) and (f) in Figure 27. Next step is to unite all those support networks, which is

done by merging the random variables shared by more than one network. The �nal

network is exhibited in Figure 28.

Learning BLPs

As usual in machine learning, BLPs are learned from a set of examples D. Each

example Dl ∈ D has two parts, a logical part and a probabilistic part. The logical

part is a Herbrand interpretation, more speci�cally the least Herbrand model of the

BLP we want to learn. Thus, techniques used in learning from interpretation setting

of ILP can be adapted for learning the qualitative part of the BLP, which implies

that the hypothesis space is composed of sets H of Bayesian clauses such that all

Dl ∈ D is a model of H. Notice that, it is necessary to check whether the candidate

hypothesis H is acyclic on the data, i.e, for each example of the data set the induced

Bayesian network's graph must be acyclic. The probabilistic part is composed of a
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Figura 27: Support networks created from the query variable bt(susan) and evidence
variables bt(brian), pc(brian), pc(susan), pc(allen) and bt(allen).

possibly partial assignment of values to the random variables in the least Herbrand

model. One example of data case for the genetics example above would be:

{bt(susan) =?,mc(susan) =?, pc(susan) =′ o′, pc(allen) =′ o′,

pc(brian) =′ a′, bt(brian) =′ a′, bt(allen) =′ a′,mc(allen) =?,

mc(brian) =?,mother(allen, susan), father(brian, susan)}

where ? indicates a missing value for the random variable. Besides the logic

part, a candidate hypothesis must also take into account the joint distribution over

the random variables induced by the probabilistic part of the examples. To match

this requirement, the conditional probabilities distributions are learned from the

data set and a probabilistic scoring function. Thus, the �nal goal is to �nd the

hypothesis H, acyclic on the data, with the examples Dl ∈ D being models of

H in the logical sense and where H best matches the examples according to the
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Figura 28: Bayesian network after joining same random variables from di�erent
support networks from Figure 27.

scoring function. To achieve this last requirement, the parameters of the associated

conditional probability distributions inH must maximize the scoring function, which

matches the learning setting of CPDs in Bayesian networks. Next, we see more

details of how to estimate the parameters of BLPs and how to traverse the hypothesis

space using re�nement operators from ILP.

Parameter estimation in BLPs

In order to learn the parameters of a BLP, Bayesian networks are built from each

example together with the current BLP. Thus, parameters estimation in BLPs fol-

lows the main ideas of parameters estimation in Bayesian networks. If the induced

data set is completely observed, frequency estimation is achieved by counting. If

there are missing values, it is necessary to use an algorithm capable of estimating

the counts. However, parameters estimation di�ers from traditional algorithms of

Bayesian networks because of the following reasons:

� In traditional Bayesian network setting, each node in the network has its

separate CPT. In BLPs, CPDs are associated to Bayesian clauses rather than

ground atoms what makes multiple instances of the same rule to share the

same CPT. As a result, more than one node in the network may have the

same CPT. Thus, parameters are learned considering Bayesian clauses instead

of individual nodes in the network. Because of that, more than one node in the
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same network may be taken into account to learn the same CPT. This situation

is illustrated in Figure 29, where nodes in magenta are yielded from the same

Bayesian clause ci = bt(X)|mc(X), pc(X). Each one of them is going to be

considered as a separate "experiment"to estimate parameters of the Bayesian

clause that originates them. Thus, considering EM algorithm, parameters are

estimated using the formula

cpd(ci)jk =

∑m
l=1

∑
θ P (head(ciθ) = uj, body(ciθ) = uk|Dl)∑m

l=1

∑
θ P (body(ciθ) = uk|Dl)

(9)

where uj stands for the values in the domain of head(ci), uk stands for each

combination of values of the Bayesian atoms in body(ci) and θ denotes substitu-

tions such that the exampleDl is a model of ciθ. The formula represents the ac-

tion of computing the CPD for a clause ci by taking into account each node pro-

duced from a substitution θ applied to the clause. In Figure 29, substitutions

θ applied to the Bayesian clause ci are {X/susan}, {X/Allen}, {X/Brian}.

Figura 29: Bayesian network representing the blood type domain within a particular
family. Nodes in magenta are yielded by the same Bayesian clause.

� The formula above computes the CPD of an individual clause ci by estimating

the joint probability of the head of the clause together with its body. The

probabilities are computed through the Bayesian network produced by the

examples. Thus, it is required that each node corresponds to a head of exactly

one clause. In case combining rules are not handled properly, this is not going

to happen with the Bayesian network produced from an example. Suppose,
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for example, that we have in a BLP the three clauses below:

pred(X)|pred1(X,Y ).

pred(X)|pred2(X,Y ).

pred(X)|pred3(X,Y ).

Then, suppose a substitution θ = {X/1}. After the substitution, we have the

ground clauses

pred(1)|pred1(1, 2).

pred(1)|pred2(1, 3).

pred(1)|pred3(1, 4).

The support network built from those ground clauses is going to be the one

presented in Figure 30(a). Note that, as pred(1) is the same random vari-

able, the support network of each ground clause has been joined to produce

the �nal network. The problem is, the requirement that each node is pro-

duced by exactly one clause is not attended if the support network is built like

that. Therefore, it is necessary to assume independence of causal in�uences

(ICI) (HECKERMAN, BREESE, 1994), (ZHANG, POOLE, 1996), which al-

lows that multiple causes on a target variable can be decomposed into several

independent causes, whose e�ects are combined to yield the �nal value. As

combining rules are employed to compute the �nal required probability distri-

bution of the random variable, it is necessary to assume they are decomposable,

i.e., they allow to decompose each random variable corresponding to the same

ground head into several possible causes. This is expressed by adding extra

nodes to the induced network, which are copies of the ground head atom.

With this modi�cation in the network, each node is produced by exactly one

Bayesian clause ci and each node derived from ci (the yellow nodes) can be

seen as a separate experiment for computing CPD(ci). Those extra nodes

are considered hidden, since the value given in the example is relative to the

instance itself and not to each representative of a rule. A network with the

extra nodes is exhibited in Figure 30(b).
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Figura 30: Figure (a) is a Bayesian network without adding extra nodes to represent
decomposable combining rules. Node pred(1) is produced by three di�erent clauses.
Figure (b) is the induced network reprsenting decomposable combining rules by
adding extra nodes (yellow nodes) so that each node is produced by exactly one
Bayesian clause. Nodes n_?pred(1) has the domain of pred and cpd(c) associated.

In this work, we follow the representation of combining rules de�ned in

(NATARAJAN, et al., 2008), where ground clauses are combined in two lev-

els. The �rst level combines di�erent instantiations of the same clause with a

common head, while a second level combines di�erent clauses with the same

head. Suppose for example, in addition to the ground clause above, we would

have also

pred(1)|pred1(1, 3)

pred(1)|pred1(1, 4)

Then, instances from the �rst clause are combined in one level and the others

clauses are combined in the second level. Di�erent combination functions may
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be applied to each level. The �nal network is reproduced in 31.

Figura 31: Decomposable combining rules expressed within a support network.
Instantiations of the same clause and di�erent clauses are combined separately.
Nodes l1_n?_pred(1) represent di�erent instantiations of the same clause and nodes
l2_n?_pred(1) represent di�erent clauses.

Structure learning in BLPs

The algorithm proposed in (KERSTING, DE RAEDT, 2001b) for learning BLPs

traverse the hypothesis space using two ILP re�nement operators: ρs(H), which adds

constant-free atoms to the body of a single clause c ∈ H and ρg(H), responsible for

deleting atoms from the body of a single clause c ∈ H. The algorithm is reproduced

as Algorithm43 and work as follows. First, a hypothesis H0, possibly generated

from a learning from interpretation algorithm such as CLAUDIEN (DE RAEDT,

BRUYNOOGHE, 1993; DE RAEDT, DEHASPE, 1997), is assumed as the starting

point and the parameters maximizing the log-likelihood LL(D,H) are computed.

Then, following a basic greedy hill-climbing, the neighbors of H0 are induced using

the dataset D and the re�nement operators ρs(H0) and ρg(H0), requiring that they

induce acyclic Bayesian networks and proves all examples in D. The candidate
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hypothesis are scored using the set of support networks and a probabilistic scoring

function and the one with the best evaluation is considered as the next hypothesis

if it has an evaluation better than the current hypothesis. This process continues

until there are no further improvements in the scoring function.

Algorithm 43 Algorithm for learning BLPs (KERSTING, DE RAEDT, 2001b)

Input: A �nite dataset D, a set of Bayesian clauses H_0
Output: A BLP B
1: Θ← parameters maximizing LL(D,H)
2: H ← H0 ∪Θ
3: compute ScoreH
4: repeat
5: for each H ′ ∈ ρ g(H) ∪ ρ s(H) do
6: if H ′ proves D then

7: if the Bayesian networks induced from H ′ and D are acyclic then

8: Θ′ ← parameters maximizing LL(D,H ′)
9: compute scoreH′

10: if scoreH′ > score(H) then
11: H ← H ′

12: scoreH ← scoreH′

13: Θ← Θ′

14: until there are no candidate hypothesis H ′ scoring better than H
15: return H

Note that the re�nement operators may be applied in all Bayesian clauses of

the current hypothesis in order to generate their neighbors, which arguably causes

the structure learning to be very expensive. Next section, we present the �rst theory

revision system designed to revise logical probabilistic models such as BLPs.

PFORTE: Revising BLPs from Examples

Revising �rst-order logic theories aims to start from an initial theory and modify

it in order to return a more accurate model compared to learning from scratch

techniques. Similarly, one may have an initial logic probabilistic model with only

some points preventing it of correctly re�ecting the domain. Such a model could be

obtained from the following sources:

� A domain expert elicited the clauses which are not necessarily re�ecting the

dataset;
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� An ILP or PLL system learned the model considering an old data set and now

there are new examples not necessarily re�ected by the old model;

� An ILP or PLL system learned the model considering the current dataset, but

it could still be improved by revision techniques. In case it was learn from an

ILP system, the uncertainty in the domain was not considered and the revision

could improve the model.

Usually, it would be more valuable to search for those revision points and mod-

ify them, instead of discarding the original model or proposing modi�cations to all

its points, as it is done in BLP structure learning algorithm. This approach should

not only produce more accurate methods but also reduce the cost of searching in

the space of clauses and parameters. In the probabilistic logic case, new questions

arise, since the starting model is composed by two related parts: the clauses and

the probabilistic parameters. Thus, in order to check whether the model should be

revised one must take into account these two components when proposing modi�-

cations. Moreover, as the inference to answer queries is performed in the induced

probabilistic graphical model, it is also through them that we should look for the

problematic points. With this motivation, we developed the �rst probabilistic �rst-

order revision system designed to revise Bayesian Logic Programs. It was named

PFORTE since it was built upon FORTE system (REVOREDO, ZAVERUCHA,

2002; PAES, 2005; PAES, et al., 2005b; PAES, et al., 2005a; PAES, et al., 2006a).

This section reviews the PFORTE system as published in (PAES, et al., 2006a).

PFORTE: Key concepts

Task de�nition

• Given: an incorrect initial logical probabilistic logic model, a consistent set of

examples, background knowledge composed of Bayesian and/or logical clauses.

• Find: a revised logical probabilistic model that is complete considering the

given examples and has the highest score given some metric.

In order to �nd this "minimally revised"and complete model, PFORTE works

in two steps: the �rst component addresses theory incompleteness by using gen-
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eralization operators only; the second component addresses classi�cation problems

using both generalization and specialization operators.

PFORTE terminology is de�ned as follows:

Logical probabilistic model: The logical probabilistic model is a BLP, com-

posed of a a set of Bayesian clauses, as de�ned in 5.3.2.

In the Genetics domain, concepts might include the blood type, bt(person).

De�nition .7 (PFORTE Example) The schema of an example (Di) is:

Di = {Instances,Deterministic, Evidences}

An instance is an instantiation of a predicate, with an associated value from the

domain of the corresponding Bayesian predicate; Deterministic are literals do not

representing random variables and Evidences are Bayesian atoms with a (partial)

assignment of values from their respective domains.

We built this de�nition following BLPs, where the logical part (qualitative) is each

ground atom in Instances,Deterministic and Evidences sets and the assignment

of values in Instances and Evidences is the probabilistic part (quantitative). The

dataset might be composed of several examples. Instances and Evidences in one

single example are mutually dependent, while di�erent examples are assumed as

independent from each other. In the Genetics domain, one example could be the

one represented in Table 18.

Tabela 18: Format of an example in PFORTE system

[
[bt(susan) =′ o′, bt(brian) =′ a′, bt(allen) =′ a′]
[mother(allen, susan), father(brian, susan)]
[mc(susan) =?, pc(susan) =′ o′, pc(allen) =′ o′, pc(brian) =′ a′,mc(allen) =?,

mc(brian) =?]
]

Note that from a logical point of view all the instances are assumed as positive,

so that the �nal model must cover them, and the class from which the instance

belongs is indicated by the value associated to such an instance.
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De�nition .8 (Completeness) Given a set of examples D, where Di ∈ D and

Di = {Insts,Dets, Evs} we say that a BLP B is complete considering these exam-

ples if and only if

∀Di ∈ D, ∀Ij ∈ logical part of Insts : B ∪Dets ∪ logical part of Evs ` Ij

Provability is established using standard SLD-resolution, taking the instance to be

the initial goal.

De�nition .9 (Classi�cation) Given an instance we say that this instance is cor-

rectly classi�ed if the probability value computed to its real class is higher than a

pre-de�ned threshold. For example, consider Di exempli�ed above. We say that the

instance bt(susan) is correctly classi�ed, if using an inference method in its sup-

port network, the probability value computed to class a is higher than a pre-de�ned

threshold. Otherwise we say that this instance was misclassi�ed.

The PFORTE Algorithm

PFORTE is a greedy hill-climbing system composed of two steps. The �rst step

focuses on generating a theory as complete as possible, by addressing failed examples.

The second step has as goal to induce a theory as accurate as possible, by addressing

misclassi�ed examples. Both steps follow the key ideas below in a greedy hill-

climbing search:

1. Identi�cation of revision points. In the �rst step, those are the clauses failing

to prove instances and they are called logical revision points. In the second

step, those are the points responsible for the misclassi�cation of instances, dis-

covered through a probabilistic reasoning mechanism (named as probabilistic

revision points.

2. Proposal of modi�cations to the revision points using revision operators. As all

the instances are positive and the �rst step aims to make the hypothesis proves

all the examples, only generalization operators are necessary. This di�ers from

the second step, where both generalization and specialization operators are

applied, in an attempt to make the �nal hypothesis more accurate.
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3. Score the proposed revisions. Each proposed revision, even the ones contem-

plated in the �rst step, is scored by a probabilistic evaluation function such as

log-likelihood or conditional log-likelihood, since the ultimate goal is to re�ect

the joint probability distribution over the random variables in the data set.

4. Choice of the revision to be implemented. Both steps choose the revision with

the highest score to be implemented, in case its score is better than the score

of the current hypothesis. The �rst step requires the coverage is improved as

well, while the second step requires the accuracy is also improved.

5. Stop criteria. The �rst step stops when there are no further generalizations

capable of improving the coverage. The Second step stops the whole procedure

when there are no further revisions proposed to the revision points capable of

improving the accuracy.

Algorithm 44 shows how the key ideas are implemented. The �rst step fo-

cuses on generating a complete hypothesis by only addressing failed examples. To

do so, it revises the initial hypothesis iteratively, using a hill-climbing approach.

Each iteration identi�es the logical revision points, where a revision has the poten-

tial to improve the theory's coverage. A set of revisions generalizing the current

hypothesis are proposed and scored on the training set. The best one is selected

and implemented in case the current coverage is improved. This process continues

until the �rst step cannot generate any revisions which improve example coverage.

It is expected that the revised hypothesis will be complete considering the data set.

This complete BLP is the starting point to the second step of PFORTE. This

step tries to improve classi�cation by modifying the probabilistic revision points.

Both generalization and specialization operators are applied on such points and as

in the �rst step, the revisions are scored, the best one is chosen and implemented if

it improves the accuracy. This greedy hill-climbing process proceeds until either no

further revision improves the scoring function or the probabilistic accuracy cannot

be improved.

Next will detail the main parts of PFORTE's algorithm: generation of revision

points, generation of possible revisions to this revision points and how to score the
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Algorithm 44 PFORTE Algorithm (PAES, et al., 2006a)

Input: An initial logical probabilistic model B, the background knowledge BK,
and a set of examples D

Output: A revised logical probabilistic model B
1: repeat
2: generate logical revision points;
3: for each logical revision point do
4: generate and score possible revisions;
5: update best revision according to the score and also improving cover-

age;
6: if best revision improves coverage then
7: implement best revision;
8: until no revision improves coverage
9: repeat
10: generate probabilistic revision points;
11: for each probabilistic revision point do
12: generate and score possible revisions;
13: update best revision found according to the scoring function and im-

proving the probabilistic accuracy;
14: if best revision improves the probabilistic accuracy then
15: implement best revision;
16: until no revision improves score

proposed modi�cations.

Generating Revision Points

Revision points are places in a theory where errors may lie. PFORTE considered

two types of revision points:

• Logical revision points. These points are generated in the same way

FORTE does for generalization revision points, by annotating places in the

theory where proofs of instances fail. These are places where the theory may

be generalized in order to become complete. We follow the annotation process

originally proposed by Richards and Mooney (RICHARDS, MOONEY, 1995):

each time there is a backtrack in the proof procedure, the antecedent in which

the clause failed is kept; this antecedent is a failure point. In addition, other

antecedents that may have contributed to this failure, perhaps by binding

variables to incorrect values (the contributing points) are also selected. Both

failure and contributing points are considered logical revision points.
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• Probabilistic revision points. These points are generated from misclassi-

�ed instances, by following a prediction criteria which takes into account the

probability distribution and the dependency among the Bayesian atoms. Thus,

to generate the probabilistic revision points, the support networks built from

the examples are collected and used to perform inference over the instances,

now represented as query random variables. The value inferred in the network

for each query variable is compared to the original value from the dataset and,

in case they di�er, the instance is considered as misclassi�ed. The probabi-

listic revision points are then any clauses taking part in the network of the

misclassi�ed instance.

Algorithm 45 Algorithm for generating Probabilistic Revision Points in a Logical
Probabilistic Model such as BLP

Input: A LPM B; Background knowledge BK; A set of examples D
Output: A set of revision points RP
1: RP ← ∅
2: for each example Di ∈ D do

3: d← Bayesian network built from B,BK,Di

4: for each random variable v in Di which is an instance (query Bayesian atom)

∈ Di do

5: valueNode← class of v inferred by a probabilistic inference engine

6: valueExample← class of the Bayesian atom ∈ Di

7: if ∃ valueExample and valueExample 6= valueNode then

8: GRP ← nodes in d
9: for each Bayesian clause c ∈ B do

10: if head(c) uni�es with a random variable in GRP then

11: RP ← RP ∪ c
12: return RP

Revision operators

In order to be able to repair arbitrarily incorrect theories, revision operators must

be able to transform any theory in the language into another. Depending on the

type of revision points di�erent operators can be used.

• Operators for logical revision points. To propose modi�cations for logical

revision points we use all FORTE generalization operators. The di�erences are

in delete_antecedent and add_rule operator.
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a) delete_antecedent operator in FORTE deletes as many antecedents as

possible while negative examples are not proved. As we do not have neg-

ative examples, this operator stops removing antecedents when examples

became proved or the scoring function cannot be improved.

b) Original add_ruleoperator works in two steps after copying the incorrect

clause. First, it removes the failed antecedents in order to prove previ-

ously unproved positive instances and then it adds new antecedents in an

attempt to not cover negative examples. In PFORTE this operator was

changed so that after removing the failed antecedents in a rule, PFORTE

adds antecedents in an attempt to improve the value of the probabilistic

scoring function.

• Operators for probabilistic revision points. To propose modi�cations for

probabilistic revision points PFORTE also uses FORTE operators, in this case

generalization and specialization operators, with slight modi�cations. When

specializing clauses, PFORTE di�ers from FORTE in three di�erent actions:

1. Antecedents with the highest score are added while they are able to im-

prove the score of the current hypothesis, di�ering from FORTE which

stops to addantecedents when there are no provable negative examples

and all the provable positive examples continue to be covered.

2. FORTE may create more than one specialized version of the revision

point in one revision, since a re�nement of a clause can make provable

positive examples become unprovable. As PFORTE cares for more than

provability, it returns one specialized version of the original clause.

Similarly, when deleting antecedents, the antecedent chosen to be removed

is the one with the highest score. The algorithm for deletion/addition of

antecedents is detailed in 46.

Finally, the add_rule operator works combining both operators described

above: �rst it deletes antecedents and then it adds antecedents. All oper-

ators for probabilistic revision points must also enforce examples covering and

283



Algorithm 46 Algorithm for deletion/addition of antecedents in PFORTE

repeat
for each antecedent in a clause/space of possible antecedents do

if after deletion/addition covering of examples still holds then
score this modi�cation

delete/add antecedent with the highest score
until no antecedent can be deleted/added without decreasing the score

range restriction of the clauses.

PFORTE_PI (REVOREDO, et al., 2006; REVOREDO, 2009) was developed

to incorporate two novel revision operators based on predicate invention (MUGGLE-

TON, BUNTINE, 1988; STAHL, 1993; MUGGLETON, 1994; KRAMER, 1995) in

PFORTE system. The �rst operator, called Compaction creates new predicates to

be head of clauses by absorbing a set of literals from the body of others clauses, in

an attempt to decrease the complexity of literals and parameters in the LPM. The

other operator, called augmentation, replaces a literal from the body of a clause by

a new invented predicate, creates a clause with such a literal in the head and tries

to specialize this new clause. As usual, the specialization and implementation of the

predicate invention operators are only implemented if the score is improved.

Scoring possible revisions

Each proposed revision receives a score. Based on this score, PFORTE chooses

the best one to be implemented. Since for each proposed modi�cation the LPM is

changed, it is necessary to re-learn the CPDs of the clauses. To do so, �rst PFORTE

builds the support networks for each example generating a data set composed by

these support networks. Having the set of support networks, the next step is to learn

the CPDs for each clause, where Maximum Likelihood Estimation(MLE) approach

is employed in the same way it is done in parameters estimation for BLPs. After

learning and updating the CPDs for each clause, PFORTE calculates the score for

the proposed modi�cation using a probabilistic scoring function such as LL or CLL.

The algorithm for scoring possible revision is detailed in 47

PFORTE was applied in three arti�cially generated datasets (PAES, et al.,
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Algorithm 47 Algorithm to Score Possible Revisions in PFORTE
Input: A LPM B, a set of examples D, Background knowledge BK, a scoring

function F
Output: Score ScoreB of B, considering D,BK and F
1: S ← emptyset
2: for each example Di ∈ D do
3: S ← S∪ support network built for Di

4: Θ∗ ← learned CPDs considering S;
5: scoreB compute score using F and considering Theta∗, S;

2005b; PAES, et al., 2006a). The two-phase algorithm revising an initial BLP was

successfully compared to the algorithm starting the learning from scratch (without

an initial theory). However, when we tried to run PFORTE with more complex

datasets, such as the ones used in SRL community, the system either could not

�nish the revision in reasonable time or it could not �nish the revision at all, due

to memory problems.

In (MIHALKOVA, et al., 2007) it was developed an algorithm for transfer

learning between two Markov Logic Network models, where the �rst step perform

mapping between predicates and the second step revises the �rst model learned.

The second step uses revision operators in a fashion similar to PFORTE.
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Appendix G: BFORTE: Addressing
Bottlenecks of Bayesian Logic
Programs Revision

Inference in Bayesian Logic Programs is performed on networks built from all

the proofs of the set of examples. The algorithm for learning BLPs starts from

a maximally general logic program satisfying the logical part of the examples and

proposes re�nements to each clause, by adding or deleting literals. In this fashion,

learning BLPs requires searching over a large search space of candidate clauses, on

the one hand, and the construction of all proofs to build the Bayesian networks,

on the other. For each candidate theory one may have to perform full Bayesian

inference, in order to compute scores in the presence of non-observed data.

The PFORTE system was developed to obtain accurate BLPs by revising an

existing BLP and modifying it only in the rules used in Bayesian networks of misclas-

si�ed examples. However, despite promising results on arti�cial domains, PFORTE

faces similar bottlenecks as BLP and other SRL learning algorithms, as it must also

address the large search space of logic programs and also perform inference.

The goal of this chapter is to address these bottlenecks of PFORTE system.

First, the space of possible re�nements can be reduced by limiting the candidate

literals to be added to a clause to the ones present in the Bottom Clause (MUG-

GLETON, 1995b). Second, we show that collecting revision points through Bayes

Ball (SHACHTER, 1998) ultimately reduces the number of clauses marked as can-

didates for being revised by revision operators, as well as the type of the operator

applied on them. Third, we do not separate revision points as logical and pro-

babilistic avoiding the cost of treating them in two separate steps of the revision

286



process. Instead, the algorithm performs a single iterative procedure by considering

all revision points as probabilistic ones. Fourth, we observe that in SRL example

networks can overlap due to shared entities, resulting in large joint networks. We

apply methods to (1) to overlap ground clauses with identical features, (2) to sepa-

rate the requisite nodes for a speci�c queryand (3) to overlap requisite nodes found

for di�erent instances. Such methods follow the ideas of recent developments in

lifted inference (POOLE, 2003; SALVO BRAZ, et al., 2005; MEERT, et al., 2010).

By focusing on the relevant modi�cation points and enabling the revision process to

explore its full potentialities more e�ciently, we expect to obtain an indeed e�ective

and feasible revision system, as pointed out in (DIETTERICH, et al., 2008) as a

necessary development in SRL area. We named this new system BFORTE, referring

to BLP, Bayes Ball and Bottom clause.

The rest of this chapter is organized as follows. Section 5.3.2 address search

space of new literals to the ones presented in the Bottom Clause. Section 5.3.2 ad-

dress the search space of revision points by presenting the one step revision algorithm

and the algorithm for collecting revision points with D-separation. Section 5.3.2 ad-

dress the methods developed to reduce inference space, which is most often built

to score each proposed revision. Section 5.3.2 shows experimental results obtained

from BFORTE system and section 5.3.2 �nally concludes the chapter.

Addressing Search Space of New Literals

The operators that generate the largest search space are the ones that search for new

literals to be included in the body of clauses. This includes both add-antecedents and

add-rule operators. PFORTE applies FOIL (QUINLAN, 1990) top-down strategy

to make new literals. As expected of a top-down approach, the number of generated

literals may be huge, depending on their de�nitions and the background knowledge.

Moreover, the literals generated will often not be much signi�cative, as no insight is

given on which terms should be an input/output variable or a constant. Whenever

we add a new literal to a body of a clause, each generated literal must be scored so

that the best is chosen. Adding literals to Bayesian clauses causes a modi�cation to
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the qualitative part of the BLP, so it is necessary to re-learn the parameters a�ected

by the revision. Taking everything into consideration, adding literals to clauses

outweighs the time expended proposing modi�cations and dominates the runtime of

the revision process.

In BFORTE we use the Bottom Clause to compose the search space of evalu-

ated literals to be added to a clause. The use of the Bottom Clause greatly decreases

the number of possible literals, by limiting the candidate clauses to subsets of the

Bottom clause. The use of the Bottom Clause in BFORTE follows the procedure

devised in (DUBOC, et al., 2009) with small di�erences in the implementation. The

most signi�cant di�erence is in that the Bottom Clause is generated from a positive

example, covered by the current clause, since their goal when specializing clauses

is to continue proving positive examples while making negative examples become

unprovable. Here, the Bottom Clause is generated from a misclassi�ed instance, no

matter its class. It is still required that the instance is covered by the base clause,

since the clause before being re�ned is a subset of the bottom clause.

As in (DUBOC, et al., 2009) literals in the clause must obey mode decla-

rations. Additionally, through determinations declarations, it is possible to de-

�ne an ordering to random variables. Remember that a determination declaration

determination(pred1/N1, pred2/N2) indicates that pred2/N1 may appear in the

body of a clause whose head comes from pred1/N2. By exploring all determina-

tions, the system can identify which random variables can be a parent to another

random variable. Those are random variables produced by literals in the place of

pred2/N2. Moreover, it can also identify the opposite: which random variables may

to be children of another random variable in the Bayesian network of an example.

Those are random variables generated from predicates in the place of pred1/N1 in

determinations declarations.

Bayesian networks may be used to perform two reasoning strategies: bottom-

up reasoning, when it goes from e�ects to causes, and top-down reasoning, when the

reasoning goes from causes to e�ects (SPIRTES, et al., 2001; PEARL, 2009). We

can compare these reasoning strategies to the steps performed by the operator when

taking into account the Bottom Clause: �rst, the bottom clause is generated from
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the instance, which is similar to search for causes from an e�ect (the instance); next,

the literals in the bottom clause may be added to the body of a Bayesian clause � the

algorithm tries to improve the BLP by adding causes to e�ects. In fact, the causal

relationship is used as a guide to construct the graph structure. Note, however, that

the process of constructing the Bottom Clause and taking literals from it comprises

only one level of reasoning, since only literals directly in�uencing the instance, i.e.,

the ones with an edge going to the head random variable, are collected. Thus, the

literals in the Bottom Clause representing random variables may be direct causes of

the e�ect represented by the random variable in the head of the Bayesian clause.

It is important to notice that the Bottom Clause procedure is instance driven.

Literals are collected considering only one instance, making the choice of literals

biased by such an instance. Another instance might point out more worthwhile

literals, i.e., literals whose corresponding random variables would produce a stronger

in�uence and/or over more instances. One alternative strategy would be to collect

the Bottom Clause for more than one single instance within an example. Arguably,

the space of candidate literals would be larger. Thus, one could consider to reduce

the search space by measuring the volume of information �owing between the two

random variables involved � the one from candidate literals and the one from the

head of the clause (CHENG, et al., 2002a). We intend to investigate this strategy

in future work.

Addressing Selection of Revision Points

Bayesian Revision Point

The key step of the revision process is to identify revision points. BLP classi�ca-

tion strategy is to build Bayesian networks, grounded from the set of examples and

the current Bayesian clauses, and perform inference on them in order to compute

probabilities for queries. Thereby, it is natural to use the same mechanism to �nd

the points responsible for a misclassi�cation. PFORTE considers two types of re-

vision points: logical and probabilistic ones. In the �rst case, in the same fashion

as logical theory revision, clauses failing to prove an instance are marked to be

generalized. Recall that in PFORTE every instance is positive in the logical sense,
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and its evidence value de�nes the class to which the instance belongs. If the exam-

ple is unprovable, PFORTE could not compute a probability for it. In the present

work we do not consider logical revision points separated from probabilistic revision

points. Instead, in case the example is unprovable, we compute a probability for

it by always including a default node in the Bayesian network, i.e., a node ground

from a most general clause for the instance predicate. If such a default node gives

a probability below a threshold to the correct class, then it will be marked as a re-

vision point. Considering that we may now select revision points from the Bayesian

network constructed to the example, we de�ne Bayesian revision points as follows.

De�nition .10 (Bayesian Revision Point) Let B be the Bayesian network built

from Bayesian clauses and an example D. In case an instance from D is misclassi�ed

after applying an inference engine in B, there is a maximum set S of nodes together

with their respective CPDs in B relevant to assessing the belief in the instance.

Bayesian revision points are the Bayesian clauses used to yield nodes in S.

Following such a de�nition, BFORTE requires only one iterative step to �x

the BLP: at each iteration Bayesian revision points are found and revision operators

propose re�nements on them. Note that default nodes are only introduced when

there are unprovable instances. They can also lead to Bayesian revision points,

but in this case, the only possible revision proposed to them is to create new rules.

Algorithm 48 presents the top-level procedure of BFORTE, modi�ed from Algorithm

7.4 by removing its �rst step (line 1 to line 8). As before, the algorithm follows an

iterative hill climbing procedure, where at each iteration Bayesian revision points

are collected at �rst, revisions are proposed to the revision points and their score

are computed. The revision with the best score is chosen to be implemented, but

only if it is capable of improving the current score of the BLP.

An observation about score computation is necessary here. As the proposed

revisions are going to modify the qualitative part of the BLP, it is also necessary to

re�ect those modi�cations in the quantitative part of the model. Thus, at each pro-

posed modi�cation we re-learn the parameters involved in the modi�ed structure.

BLP revision presented in this work has an inherent discriminative behavior: we
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are concerned with predictive inference and revision points are found out through

misclassi�ed instances. In this way, it is more appropriate to employ a discrimina-

tive evaluation function such as conditional log-likelihood, root mean squared error

or precision-recall based functions. Additionally, the model would bene�t from a

discriminative training of the parameters. Because of that, we implemented the

gradient descent learning of parameters to minimize the mean squared error, as ini-

tially designed in (NATARAJAN, et al., 2008). The method is based on representing

combining rules in two levels: the �rst one combines di�erent instantiations of the

same rule, where they all share the same ground head, and the second one combines

di�erent clauses with the same ground head, as explained in section 7.2.3.

Algorithm 48 BFORTE Top-Level Algorithm

Input: A BLP BP , the background knowledge BK, a set of examples D, a set OP
of revision operators to be considered to revise clauses

Output: A revised BLP BP ′

1: learn probability parameters of BP
2: repeat
3: generate Bayesian revision points;
4: for each Bayesian revision point do
5: for each revision operator ∈ OP do
6: propose revision
7: score revision
8: update best score revision found;
9: if best revision improves the current score then
10: implement best revision;
11: until no revision improves score

Searching Bayesian Revision Points through D-Separation

Originally, PFORTE denoted as probabilistic revision points all clauses whose head

took part in the Bayesian network where an instance had been misclassi�ed. Al-

though the set of candidate clauses to be modi�ed is smaller than in Kersting's

BLPs learning algorithm, since not all clauses appear in every network, depending

upon the size of the network several Bayesian clauses are going to be marked to

be modi�ed by the revision operators. Howevver, not all clauses that are used to

generate the network may be relevant to the classi�cation of the query.

Algorithms for learning Bayesian networks are generally grouped into two cate-
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gories: scoring based methods (HECKERMAN, 1996; TIAN, 2000; CHICKERING,

2002), which uses a heuristic to construct the graph and a scoring function to eval-

uate it; and constraint-based methods (VERMA, PEARL, 1990; SPIRTES, et al.,

2001; CHENG, et al., 2002b; CAMPOS, 2006), relying on conditional independece

tests to build the model. There is also a recent e�ort in getting the best of both

worlds, by developing strategies combining these two approaches (TSAMARDINOS,

et al., 2006; PELLET, ELISSEEFF, 2008). In this work, we follow the second group

of algorithms when identifying Bayesian revision points, by designing a procedure

that analyses the dependency relationships of a misclassi�ed instance. Accordingly,

active paths are searched to identify the nodes in the network that exerts in�uence

over misclassi�ed instances. By a path we mean any consecutive sequence of edges,

without regarding their directionalities. A path is active if it carries information or

dependence from one node to another through this sequence of edges. Whenever

there is an active path between two variables, we say they are d-connected. Formally,

this concept is de�ned as follows.

De�nition .11 (D-connection for directed graphs (PEARL, 1988)) For dis-

joint sets of vertices, X, Y and E, X is d-connected to Y given E if and only if for

some X ∈ X and Y ∈ Y, there is an (acyclic) path U from X, Y such that:

� U is composed of a direct connection for X and Y : X ← Y or X → Y ;

� U indicates an indirect causal/evidential e�ect: X ← W ← Y or X → W ←

Y , W /∈ E;

� U represents a common cause: X ← W → Y , W /∈ E;

� U represents a common e�ect (a v-structure): X → W ← Y , W or any of its

descendants ∈ E.

If no path between the set of nodes is active, the variables are d-separated.

In this case, there is a variable in the undirected path blocking in�uence from one

node to another. To detect the nodes d-connected to the misclassi�ed node, we take

advantage of linear-time Bayes Ball (Algorithm 7.1), starting from the misclassi�ed
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query node. Algorithm 49 presents the top-level procedure for collecting revision

points, which is performed as line 3 of Algorithm 48. First, it is necessary to

identify the misclassi�ed instances in each example. To do so, each instance at

each example has its marginal probability computed. Note that when computing a

marginal probability for a speci�c query, others instances in the same example are

considered as evidence, as it is usually done in collective inference (JENSEN, et al.,

2004). In this case the algorithm proceeds to run Bayes Ball, so that the active paths

leading to the misclassi�ed nodes can be identi�ed, and consequently the relevant

nodes are selected. The set of relevant nodes are considered as the requisite nodes

(observed nodes that had been visited and nodes marked in the top) and also the

nodes marked in the bottom, i.e., all nodes that are not discovered as irrelevant by

the Bayes Ball algorithm. Finally, the clauses corresponding to the relevant nodes

are identi�ed and marked to be revised.

Algorithm 49 Top-level Selection of Revision Points
Input: A value of threshold T , A set N of Bayesian networks, each corresponding

to an example
Output: A set of Bayesian Clauses RP , marked as revision points
1: RP ← ∅
2: for each Bayesian network Ni ∈ N do
3: for each query instance id ∈ Ni do
4: compute the probability P (id = class) using an inference engine, where

class is the value of id in the dataset
5: if P (id = class) < T then
6: Relevant← nodes marked as relevant by Bayes Ball Algorithm
7: RP ← RP∪ clauses corresponding to nodes in Relevant set

Analyzing the Bene�ts Brought by Revision Operators Ac-
cording to D-Separation

In this section we analyze the behavior of revision operators by considering whether

the modi�cations they propose are capable of modifying the in�uence �owing in the

Bayesian network. The question that arises is whether the revision operators are

capable of changing existing in�uence that is likely to make the instance misclassi-

�ed and/or to create new connections in�uencing such instances. Additionally, to

check whether the operator really brings bene�ts to the BLP, this last is scored after
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modi�ed using Bayesian networks built from the set of examples. In this way, the

modi�cations proposed on the BLP form a hybrid mechanism combining indepen-

dence tests and scored heuristic search methods.

To analyze the modi�cations proposed by the operators, we focus attention

to the directions that the ball is bounced from/to nodes in Bayes Ball algorithm,

aiming to disregard modi�cations that cannot bring additional or modify current

in�uence over the query node. Additionally, we must also consider whether the

modi�cation can change the set of Bayesian clauses instantiated by the example to

build the Bayesian network, since this also can change the in�uence coming to a

node. Remember from section 7.2.2 that a directed edge in included between a pair

of nodes if there is a ground clause whose head is represented by the node where

the edge arrives and whose body contains a representative of the node from where

the edge leaves. We proceed by discussing each possible situation ocurring in nodes

marked as relevant separately.

Non-observed node visited from a child (NOC node) A non-observed node

visited from a child passes ball from the child to (1) its parents, so that additional

indirect causal in�uence might be brought, and to (2) its children, that can also

bring back further indirect e�ect in�uence, as visualized in Figure 32. Naturally,

the visiting child is also likely to in�uence the visited node. The node representing

the misclassi�ed instance itself is such a kind of this node, since the visit starts

from it as it had been visited from a child, according to Algorithm 41. In this case,

the set of operators are going to behave as follows, as graphically represented in

Figures 33, 34, 35 and 36.

� Delete rule operator. As the clause whose head represents such a NOC node

is deleted, the �ow of in�uence through this path is withdrawn. Thus, this

indirect causal/e�ect in�uence to the misclassi�ed instance brought by this

node is removed from the network. While this is a radical approach, it can

reduce the size of the BLP and consequently of the Bayesian networks.

� Add antecedent operator. A NOC node passes ball to its parents, in an attempt

to discover further in�uence to itself. Adding literals to the body of such a
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Figura 32: Non-observed node visited from a child, where shadow nodes are observed
nodes. Figure (a) shows a non-observed node visited from a child. Figure (b) shows
this node passing the received ball to its parents and children.

Figura 33: An example of the e�ect of deleting a rule corresponding to a non-
observed node visited from a child, in a misclassi�cation node visiting scenario.

clause is going to add additional parents to clause head, and consequently a

new �ow of in�uence might be brought in, in the case of the examples remain

provable after the modi�cation. On the other hand, in�uence passing through

this node is removed in the case of an example that becomes unprovable,

similar to what happens in del rule operator. Note that this is di�erent from a

standard Bayesian operation, since here changing the set of clauses covering an

instance is also going to change the Bayesian network built from the example.
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Figura 34: An example of the e�ect of adding antecedentes to a rule corresponding
to a non-observed node visited from a child, in a misclassi�cation node visiting
scenario.

� Delete antecedents operator. In the same spirit to add antecedents might

bring new pro�table in�uence over the node, deleting antecedents may remove

nodes whose in�uence through it from one of its parents contributes to wrong

prediction.

Figura 35: The e�ect of deleting antecedentes to a rule corresponding to a non-
observed node visited from a child, in a misclassi�cation node visiting scenario

� Add rule. As a new rule shares the set of satis�ed examples with the old rule

making rise to a NOC node, two situations may arise: (1) the new rule and

old rule(s) give rise to the same ground atom in their head, which is going

to be included in the support network. In BLPs, this require that the �nal

probability value is obtained through a combination function. The second
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possible situation (2) happens when the new and old rule do not share the

same ground atom in their heads. In this case, the node coming from the head

of the new rule may bring new in�uence, as it is likely to become a mate to

the NOC node.

Figura 36: The e�ect of adding a new rule from a non-observed node visited from
a child, in a misclassi�cation node visiting scenario. Figure (a) shows a situation
where the old and new rules had to be combined. Figure (b) shows the case where
both rules were not combined.

Observed node visited from a child (OC node) Observe in Algorithm 41

that an observed node visited from a child blocks balls from children, i.e., if a ball

comes from one of its children it is not passed anymore from the OC node. This

happens because the evidence of the node makes the path from its children through

it inactive. Therefore, an OC node d-separates its child of the others nodes in the

graph, i.e., nodes which could be reached if it was possible to pass through an OC

node. This is exhibited in Figure 37, where the arrows indicate the direction of

the visit. Although OC nodes are marked as a revision point, since they are not

considered as irrelevant for the misclassi�ed instance, not all operators are going to

propose pro�table modi�cations to change/modify the in�uence exerted by them.

� In case the rule whose head corresponds to an OC node is deleted from the BLP,

its child would lose its in�uence. As this last node is considered a requisite
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node, this operator may bring bene�ts to the model, in case the in�uence of

such a node is bad to most of the query nodes. Therefore, this is an eligible

operator to modify the set of in�uent connections to the misclassi�ed instances.

� At �rst sight adding antecedents to the body of a clause whose head makes rise

to an OC node, does not create new �ow of in�uence, since any of its parents

is blocked by its evidence. However, we must pay attention to the fact that

those nodes are originated from Bayesian clauses, which are in essence logical

clauses. In this way, add antecedents operator may remove some instances

from the set of examples proved by the clause. The possible consequence

is that the head of the clause is not able anymore to produce the OC node

indicating a revision point. This is similar to the case of delete rule operator.

� Deleting antecedents from the body of a clause has two possible consequences

in this case. First, the OC node is going to lose a parent. As its parents are

blocked by its own evidence, this brings no changes in the �ow of in�uence.

Second, because a clause that has had one or mode antecedents deleted is more

general than before, additional proof paths from the same clause may arise to

build the Bayesian network. The ground heads of those additional paths either

are the same as the previous OC node, or they induce new ground heads. In

the �rst case, those equal nodes must be combined but besides sharing the

same CPD (as they come from the same clause), they will also continue to

contribute with the same evidence (as they come from the same ground fact).

On the other hand, in case the modi�ed clause produces new ground heads

there is a chance that they are going to bring new in�uence to the child from

whom the ball came. Consider, for example, a meaningless ground clause

below that has given rise to an observed node in the network:

pred1(1, 2) : −pred2(1, 3), pred3(3, 2), pred4(2).

Now, suppose pred3(X, Y ) is chosen to be deleted from the original clause.

One possible consequence would be the appearance of a new ground clause

with the same ground head as before, say
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pred1(1, 2) : −pred2(1,_), pred4(2).

that had not appeared before because there is no pred3(4, 2) in the dataset.

Note that both ground clauses have the same head and accordingly they are

going to be combined. However, the random variable pred(1, 2), continues to

be an observed node visited from a child, therefore, it is still a "blocking"node.

On the other hand, it may be the case a new ground rule is produced after the

deletion of the antecedent pred3(X,Y ), for example:

pred1(1, 5) : −pred2(1,_), pred4(5).

Such a clause could not be produced before because there is no pred3(_, 5) in

the background. This clause has a chance to bring new in�uence to the node

from which the ball come, as pred1(1, 5) may become an ancestor of it.

� Add rule. Similarly to deleting antecedents case, adding new rules may bring

additional evidence to the network.

Figura 37: Observed node visited from a child, where shadow nodes are observed
nodes. Figure (a) shows an observed node visited from a child. Figure (b) shows
this node blocking the ball.
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Non-observed node visited from a parent (NOP node) Besides collecting

evidence for itself, a non-observed node could be visited from its parent in an attempt

to create an indirect e�ect path through one of its children, as can be seen in

Figure 38. However, if this is really the case such a node would also be marked as

non-observed visited from a child (NOC node) and therefore would attend a previous

discussed case. Thus, deleting the rule corresponding to such a node head would only

make the BLP, and consequently the Bayesian networks more compact. Similarly,

adding antecedents to its body could only bring in�uence to their children, but this

is also treated by the visit coming from a child case.

The operators left are the ones involving logic generalization. First, one may

try to delete antecedents from such a clause in an attempt to generate new proof

paths for some instance and consequently new ground heads forming a "brother-

hood"relationship with the NOP node. In case the node visiting the NOP node

remains as its parent (it is not one of the deleted antecedents), there will be a link

to the node(s) coming from such new instantiations. There is a chance those new

nodes bring together new evidence, as they are going to represent di�erent ground

facts of the dataset. The exact same situation may happen when adding new rules

from such a NOP node. In this case, the link to the parent will exist if the visiting

parent is also an element in the body of the just created clause.

Consider, for example the ground clause

pred(1, 2)|pred1(1, 3), pred2(3, 4), pred3(4, 2), pred4(2, 2).

and assume the node yielded from pred(1, 2) is a NOP node, visited from the node

produced from pred1(1, 3). Now, consider that the Bayesian predicate pred3 is

deleted from the clause. This could generate a new ground clause, say

pred(1, 4)|pred1(1, 3), pred2(3, 5), pred4(4, 4)

since pred(1, 4) could not be proved by this clause before because there is no

pred3(5, 4) in the dataset. Note in Figure39 that there could be a new common

cause trail in the network, due to this modi�cation.
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Figura 38: Non-observed node visited from a parent, where shadow nodes are ob-
served nodes. Figure (a) shows a non-observed node visited from a parent. Figure
(b) shows this node passing the ball to its children.

Figura 39: The e�ect of deleting antecedents from a clause whose head is a non-
observerd node visited from a parent. Figure (a) is the network before deleting
antecedents. Red node is the visiting parent and yellow node is the visited node.
Figure (b) shows a possible resulting network, after the clause becomes more general.
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Observed node visited from a parent (OP node) The last case concerns an

evidence node which is visited from a parent and bounces the ball back to its others

parents, in an attempt to produce a common e�ect scenario, as the one presented

in Figure 40. All operators may change the active paths as it is discussed next.

� Deleting the rule represented by such a node is going to cut it o� the active

path discovered by the visit. If the OP node contributes to a wrong prediction

in this active path, removing the node from the network can repair misclassi�ed

instances.

� Deleting antecedents is bene�cial for two reasons: �rstly, as in previous cases,

the generalization of the rule can bring additional active paths built from new

instantiations of the rule, that did not exist before because of the antecedent(s)

deleted. Secondly, deleting antecedents from the rule may remove the link to

the visiting parent and, similar to the delete rule case, withdraw an in�uence

contributing to the wrong prediction, exerted by the OP node. Moreover,

deleting antecedents from such a node can remove common e�ect paths.

� Adding new rules has similar e�ects as the delete antecedents case: proofs not

existing before may bring additional in�uence to the path, in case active path

are also formed by the instantiations of the new rule and new common e�ect

paths may arise from the added rule.

� Adding antecedents may bring two di�erent consequences: the �rst one is

similar to the result of deleting the rule, and may remove the link to the

visiting parent, by making the clause more speci�c after some antecedents are

added to it. Thus, the previous proof conducting to the parent node would fail.

The second consequence is that adding antecedents in the body of such a clause

might create further common e�ect in�uence path, which could be useful in

correcting the misclassi�cation of the example because of new evidence.

Remarks about Revision Operators and D-connection

One can see that are several issues concerning the real bene�ts a revision operator

might bring. For example, some of the modi�cations are only likely to create/remove
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Figura 40: Observed node visited from a parent, where shadow nodes are observed
nodes. Figure (a) shows a observed node visited from a parent. Figure (b) shows
this node passing the ball back to its parents.

a connection when the set of ground Bayesian clauses changes after the revision.

Moreover, some modi�cations are likely to bring/remove in�uence to �x misclas-

si�cation, but this is not guaranteed, as they can/cannot make new active paths

depending on the evidence. Moreover, some modi�cations depend whether a literal

continues to be in the body of a clause, making sure a connection in the network

is not removed. This can be true for one instance, but may not happen in other

instances. As to check all possible cases is expensive, encompassing not only con-

nections that are going to be removed but also of the active paths that are going to

be created, we only disregard the operators guaranteed to not change in�uence that

could �x the misclassi�ed instance. Anyway, by computing the score of the revision

it is veri�ed whether the modi�cation is going to improve the current BLP.

Notice that the revision operators used in this work do not compose a complete

set of possible modi�cations to the BLP. To give an example, note that new active

paths could be created by adding rules or antecedents leading a parent to visit

and/or be visited from a child. To achieve this goal, the revision would be able

to mark revision points not only throughout the Bayesian networks but also from

the knowledge base itself, by identifying all possible determinations leading to new
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connections coming from children to misclassi�ed instances in the graph. Suppose,

for example, that we have the Bayesian clause below, marked as revision point.

pred1(A,B) : −pred2(A,B).

It would be possible that a non existing clause could provide new information

to pred1/2, say a clause such as

pred3(A,B) : −pred1(A,B).

As pred3/2 does not represent any instance in the examples and there is not an

existing connection between pred3 and pred1, such a clause would not be proposed

by the revision system.

BFORTE and its antecessor PFORTE cannot identify those possible new con-

nections, as Bayesian revision points are identi�ed through paths existing at the

moment that an instance is misclassi�ed. In this way, we cannot guarantee that we

implement the complete set of possible modi�cations to improve classi�cation in a

BLP.

Finally, the BLP could be compacted by identifying clauses that are completely

useless to any example in the dataset. Those correspond to nodes identi�ed as

irrelevant by Bayes Ball algorithm. To achieve this, Bayes Ball would have to run

for each instance in the dataset. Then, the intersection of irrelevant nodes would

correspond the clauses that could be safely removed from the BLP.

Algorithm 50 exhibits the procedure for applying revision operators to revision

points, extended from lines 3-7 of Algorithm 48. It brings an optimization on the use

of the four revision operators. First, when looking for revision points, it is necessary

to keep the type each node matches, according to the four groups listed before. As

the marked node is mapped to a Bayesian revision point (a Bayesian clause), the fact

it is observed or not, visited from a child or from a parent, is stored together with

the revision point. From our analysis, only deleting rules and adding antecedents

to a non-observed evidence are guaranteed to not present any chance to change the

connections to the misclassi�ed instance. In all other cases, the proposed revision

may change the Bayesian network. Therefore, before proposing the revision, it is
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necessary to be sure that a Bayesian revision point is not identi�ed only through

that kind of visit.

Algorithm 50 Generation of Revision Points and Revisions Top-Level Procedure
Input: Set of Bayesian networks BN built from the dataset and current BLP
Output: Set of revisions Proposed to Bayesian revision points
1: BRP ← Bayesian revision points identi�ed through Algorithm 49, slightly mod-

i�ed to keep around the type of the node (OC, NOC, OP, NOP)
2: for each Bayesian revision point BR ∈ BRP do
3: if type of BR is not only NOP then
4: propose modi�cation to BR using all four operators
5: else
6: propose modi�cations to BR using delete antecedents and/or add rules

operator
7: compute the score for each proposed revision

Next section we discuss how to reduce the amount of the time expended in the

revision by reducing the inference space.

Addressing Inference Space

In order to build Bayesian networks from the set of examples, PFORTE collects all

ground clauses taking part in every possible way of proving instances and evidences

in an example. Those ground Bayesian atoms become nodes in the Bayes net, and

they are connected when there is a direct in�uence between them. As the instances

and evidences in a single example are not i.i.d, each Bayesian network may have a

large number of nodes and edges connecting evidences, instances and non-evidence

nodes, leading to high inference run times.

Aiming to reduce the space where inference is performed, it is necessary to di-

minish the size of nodes to be considered by the inference engine. Making inference

more e�cient in relational probabilistic systems has been pursued by the devel-

opment of lifted inference methods (POOLE, 2003; SINGLA, DOMINGOS, 2008;

MILCH, et al., 2008; MEERT, et al., 2010), which mostly reduces the networks

by exploring symmetries and grouping variables with identical behavior. Here, we

decrease the search space of the inference procedure by disregarding non requisite

nodes of an instance. Non requisite nodes can be deleted from the network and we
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would still be able to resolve the query, as they are unable of in�uencing the in-

stance. In addition, clauses and networks exhibiting identical behavior are grouped

together so that they dot not have its score and parameters computed repeatedly

unnecessarily.

Collecting the Requisite Nodes by d-separation

As said before, the networks built from examples are usually very large, since they

are composed of the union of all possible proofs of each instance and each evidence.

However, it is usually the case that for computing marginal probabilities for one

instance only a subset of that large network is really relevant. We call the network

composed of this subset of nodes as minimum requisite network for a query.

De�nition .12 The minimum requisite network g for a query node n is a subset

of the original large network G built to the whole example, that contains only the

requisite nodes necessary to compute the marginal distribution of n. All the others

nodes in G can be safely disregard so that the query is still resolved by g.

We make use of Bayes Ball algorithm (SHACHTER, 1998) to �nd out which

nodes in the network are required to compose the minimum requisite network. In

this way, instead of performing inference in one large network, the inference takes

into account only a small subset of that network, namely the nodes which are really

relevant for resolving the query. To collect such requisite nodes, the algorithm starts

from one instance id in the original example and uses Bayes Ball to identify the min-

imum set of nodes required to compute the probability of id. This set is composed

of visited observed nodes and those nodes marked in the top. Following collective

inference (JENSEN, et al., 2004), the other queries instances in the example are

treated as evidences when collecting the requisite nodes for id. Algorithm 51 brings

the top-level procedure to identify requisite nodes and perform inference only over

them.

Algorithm 51 is called at each time it is necessary to compute marginal prob-

abilities, namely, to learn parameters and compute scores, when changes occur in

the structure of the BLP.
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Algorithm 51 Top-level Procedure for Performing Inference over Requisite Nodes
Only
1: for each example Di ∈ D do
2: build the graph GDi for Di, joining support networks built from proof tree

for each instance and evidence
3: for each instance id ∈ Di which is a node nid in GDi do
4: consider nid as a query node
5: visit nodes in GDi starting from nid, using Bayes Ball algorithm
6: requisite← visited observed nodes ∪ nodes marked in the top
7: compute probability distribtion for id using only requisite

Bayes ball was also used in SRL context to build up a lifted inference engine

in (MEERT, et al., 2010). There, they apply the Bayes Ball directly in the ground

graph construction procedure. We are going to investigate in the future whether

that algorithm can save further time to the inference process.

Grouping together Ground Clauses and Networks

When constructing Bayesian networks relative to examples, every successful proof

of an Bayesian atom is gathered together to build the graph of the net. However,

it is often the case that a large number of those ground clauses shares exactly the

same features: they are instantiated from the same Bayesian clause, and therefore

they have the same conditional probability distribution; additionally, they have the

same evidence associated to each of its Bayesian ground atom. In this way, the only

di�erence among them would be the terms of ground Bayesian atoms. However,

for the Bayesian network, atoms are mapped to nodes, which cannot "see"those

terms anyway. Therefore, it is a waste of resources to represent each Bayesian atom

obeying these conditions as di�erent nodes in the graph. Consider, for example, the

following meaningless ground clauses.

pred(A,B) : −pred1(C,A), pred1(C,B).

and suppose that for a ground atom t1, t2 we have several possible instantia-

tions for the variable C, producing, for instance

pred(t1, t2) : −pred1(r1, t1), pred1(r1, t2).

pred(t1, t2) : −pred1(r2, t1), pred1(r3, t2).

pred(t1, t2) : −pred1(r3, t1), pred1(r3, t2).
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...

pred(t1, t2) : −pred1(r30, t1), pred1(r30, t2).

Now, suppose that, say 25, of these share the same evidence for pred1(X, t1),

pred1(X, t2). Instead of mapping each one of those nodes above to a separate node

in the Bayesian network, we could put together the 25X2 nodes of the same evidence

and 5X2 separate nodes.

Thus, to prevent this waste of resources performed by BLP network construc-

tion, we developed a procedure for grouping together di�erent instantiations of the

same Bayesian clause that behaves in exactly the same way. This group of similar

nodes make rise to a mega node in the network, instead of only a single node.

De�nition .13 Let SN be the set of nodes originated from di�erent successful proof

paths created using Bayesian clauses Bcc and an instance ins. A mega node is

de�ned as the grouping of a set of nodes in SN , which are relative to the same Bcc,

and that shares the same evidence.

Because of that, a random variable in the graph is not necessarily a single

ground Bayesian atom, but could be representative of a group of several Bayesian

atoms. The number of atoms mapped to the same node is kept so that it is taken into

account when learning parameters. Notice that we employed the same schema of

combining rules as (NATARAJAN, et al., 2008), where instantiations of clauses with

same head are combined in two levels: one level considers di�erent instantiations

of the same rule, while another level considers di�erent rules with the same ground

head, as explained in section 7.2.3. Thus, the clauses we mapped here to the same

nodes would be combined anyway in the �rst level we just mentioned. However,

although they would contribute in the same way for the �nal probability, since

they share the same association of evidence values and CPDs, the inference engine

could not have knowledge on that and it would compute their probability over and

over again. Moreover, as decomposable combining rules are applied in BLPs, each

di�erent instantiation would be seen as a "separate experiment", by adding extra

nodes in the network to represent them. By keeping the amount of ground atoms
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overlapped together in a mega node, those nodes are still contributing as a separate

experiment for the computation of parameters.

We also employ another way of overlapping components so that inference en-

gines have to deal with a smaller space. This is the case when more than one graph

have the same properties: the nodes are coming exactly from the same clauses, and

evidence for those nodes are also the same. This is naturally a situation less fre-

quent than the one we discussed immediately before, but still it can also happens

mainly when Bayes Ball is applied to split the original networks in groups of smaller

ones. To map more than one network to the same, it is required that (1) they have

the same number of nodes; (2) they have the same edges connecting each pair of

nodes (3) each group of child + parents are relative to the same Bayesian clause, so

that the probability distribution associated to them in the di�erent graphs are the

same, and (4) the nodes have the same value of evidence, in case they are observed.

The instances relative to networks grouped to one overlapped mega network are kept

around, so that it can be taken into account when learning parameters or computing

probabilities.

We show in Algorithms 52 and 53 the procedures for detecting and grouping

together groups of nodes with the same behavior.

Algorithm 52 Top-level Procedure for Detecting Similar Ground Clauses and Map-
ping them to Only One
1: for each ground clause clauseiθ1 ∈ proof trees of the same example do
2: for each ground clause clausejθ2, i 6= j ∈ proof trees of examples do
3: if clausei comes from the same Bayesian clause as clausej then
4: for each Bayesian atom aki ∈ clauseiθ1 and akj ∈ clausejθ2 do
5: if value associated to aki 6= value associated to akj then
6: go to line 2
7: remove clausejθ2 from proof tree
8: increase number of mapped clauses associated to clauseiθ1

Experimental results

This section we experiment our revision system BFORTE, by comparing each con-

tribution developed in this chapter with a version of the system without the contri-

bution. As there is no current implementation of BLP structure learning algorithm,
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Algorithm 53 Top-level Procedure for Detecting Similar Networks and Mapping
them to Only One
1: for each network Ni do
2: for each network Nj, i 6= j do
3: if DAG(Ni) == DAG(Nj) then
4: for each node nki ∈ Ni and node nkj ∈ Nj do
5: if nki comes from a di�erent clause as nkj or nki has an evi-

dence value di�erent from nkj then
6: go to line 2
7: increase number of group of nets associated to Ni

8: associate instance(s) of Nj to corresponding node(s) of Ni

9: disregard Nj

we use our own system to make the due comparisons. We opted by showing each

contribution separately, so that it is possible to know the bene�ts brought by them.

Datasets We have considered datasets used in ILP and SRL communities. They

are brie�y described as follows.

1. UW-CSE is a vastly used dataset in SRL community (SINGLA, DOMIN-

GOS, 2005; RICHARDSON, DOMINGOS, 2006; KOK, DOMINGOS, 2007).

It consists of information about the University of Washington Department of

Computer Science and Engineering. There are 5 examples, where each one of

them contains instances representing a relationship of advisedby for a di�erent

research line of the department. There are 113 instances of the positive class

and 2711 instances of the negative class, and 2673 ground facts.

2. Metabolism is based on the data provided by KDD Cup 2001 (CHENG, et al.,

2002b). The data consists of 6910 ground facts about 115 positive instances

and 115 negative instances. As part of the facts represents the interaction

between genes, we gathered together in one examples all the positive and

negative instances.

3. Carcinogenesis is a well-known domain for predicting structure-activity re-

lationship (SAR) about activity in rodent bioassays (SRINIVASAN, et al.,

1997a). There are 162 instances from the positive class and 136 instances

from the negative class and 24342 ground facts about them. This dataset is
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totally separable, as each example is composed of only one instance.

Experimental Methodology The datasets were splitted up into 5 disjoint folds

sets to use a K-fold strati�ed cross validation approach. Each fold keeps the rate of

original distribution of positive and negative examples (KOHAVI, 1995). To avoid

over�tting during the revision process, similar to (BAIÃO, et al., 2003), we applied

5-fold strati�ed cross validation approach to split the input data into disjoint training

and test sets and, within that, a 2-fold strati�ed cross-validation approach to split

training data into disjoint training and tuning sets. The revision algorithm monitors

the error with respect to the tuning set after each revision, always keeping around

a copy of the theory with the best tuning set score, and the saved "best-tuning-

set-score"theory is applied to the test set. The signi�cance test used was corrected

paired t-test (NADEAU, BENGIO, 2003), with p < 0.05. As stated by (NADEAU,

BENGIO, 2003), corrected t-test takes into account the variability due to the choice

of training set and not only that due to the test examples, which could lead to gross

underestimation of the variance of the cross validation estimator and to the wrong

conclusion that the new algorithm is signi�cantly better when it is not.

The initial theories for Carcinogenesis and Metabolism were obtained from

Aleph system using default parameters, except for clause length, which is de�ned as

5, noise, de�ned as 30, and minpos, set to 2. As UW-CSE is a highly unbalanced

data, we use m-estimate as evaluation function and noise set for 1000. To generate

such theories, the whole dataset was considered but using a 5-fold cross validation

procedure. Thus, a di�erent theory was generated for each fold and each one of these

theories is revised considering its respective fold (the same fold is used to generate

and revise the theories).

All the experiments were run on Yap Prolog (SANTOS COSTA, 2008) and

Matlab. To handle Bayesian networks, we have re-used Bayes Net Toolbox (MUR-

PHY, 2001), properly modi�ed to tackle the particularities of BLPs. Combining

rules are represented in two levels, where the �rst level (di�erent instantiations of

the same clause) uses mean as combining rule and the second level (di�erent clauses

with the same head) uses weighted−mean as combination function. To learn param-
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eters, we implemented discriminative gradient descent described in (NATARAJAN,

et al., 2008) that minimizes mean squared error. For the UW-CSE, we use a weighted

MSE, with the weight inversely proportional to the distribution of the classes, so

that the parameters do not totally favor negative class because of its amount of

examples. To perform inference, we adapted variable elimination inference engine

to handle combination rules. We impose a minimum number of misclassi�ed exam-

ples as 2 to a clause be considered as revision point, in order to avoid outliers.

Threshold for indicating if an instance is correctly predicted is de�ned as 0.5.

Comparing BFORTE to ILP and FOL Theory revision

First of all, we would like to know whether BFORTE achieves better score results

than standard �rst-order logic systems. We compared BFORTE after learning the

initial parameters (after line 1 of Algorithm 48) and BFORTE after revising structure

to Aleph and FORTE. The same theories Aleph learn are provided to both revision

systems. The �rst two columns of Table 19 present the results of conditional log-

likelihood achieved after learning initial parameters and after the revision process is

�nished, respectively. Third and fourth column present the score of BFORTE after

learning initial parameters and after the revision process is �nished. The last two

columns presents the score of Aleph and FORTE, respectively. Bold faces indicate

the best score results obtained from all systems. The symbol ♦ indicates the cases

where score of BFORTE is signi�cantly better than score of Aleph. The symbol •

indicates the cases where BFORTE is signi�cantly better than FORTE. Finally, ?

emphasizes the cases where it was possible to obtain an improvement after revising

the structure.

Tabela 19: BFORTE compared to Aleph and FORTE

System/ BFORTE BFORTE BFORTE BFORTE Aleph FORTE
Dataset Params Struct Params Struct Score Score

CLL CLL Score Score

UW-CSE -0.2142 -0.0746? 0.3504 0.5363♦ ? • 0.3684 0.2864
Metabolism -0.784 -0.6912? 60.00 64.76♦ ? • 56.51 59.57
Carcinogenesis -0.6712 -0.6618 59.38 61.30♦• 55.0 55.70

From the table we can see that BFORTE, by revising the structure, can im-
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prove the probabilities of examples, since conditional log-likelihood has signi�cant

increased in two of the three cases. The �nal value of the score function is better

than the �rst-order systems in all cases, showing that it is possible to obtain more

accurate systems when uncertainty is taken into account. Moreover, in two cases

the revision in structure improved the initial score. Although learning parameters

has improved the initial score of Carcinogenesis compared to �rst-order systems, the

�nal score is not signi�cantly better than the initial score.

Speed up in the revision process due to the Bottom clause

Now, we would like to verify whether introducing the Bottom Clause as space of

literals can decrease the runtime without harming the score. To focus on this issue,

we run BFORTE using the Bottom Clause procedure and BFORTE using FOIL

algorithm to generate literals. Results of runtime and score are exhibited in Table 20.

As expected, UW-CSE performs signi�cantly faster when the Bottom Clause is the

search space of literals. Surprisingly, the score is also better in the Bottom Clause

case, although the di�erence is not signi�cant. By analyzing the results of each fold,

we found out that one fold has a higher score for the FOIL case, as it adds to a

clause one literal that has not appeared in the Bottom Clause of the chosen example

in BFORTE case. A similar situation also happens in another fold, but this time

the literal added to the clause in one of the iterations makes the theory performs

worse in the validation set. As a result, BFORTE has a better score for this fold.

Unfortunately, we were not able to collect FOIL results in the other two

datasets, as the system runs out of memory after some time running. The rea-

son, besides the much larger search space generated for FOIL approach, is that

di�erently from UW-CSE, Metabolism and Carcinogenesis have several predicates

with constants de�ned in mode declarations. The top-down approach of FOIL can-

not generate literals with constants, and then a variable is put in the place of a

possible constant. The problem that arises is the large number of instantiations of

the same literal, yielding a huge amount of di�erent proof paths for the same literal.

Consider, for example, the following mode de�nition of a predicate in Carcinogenesis

domain.
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modeb(∗, atm(+drug,−atomid,#element,#integer,−charge)).

Types element and integer are de�ned as constants. Bottom Clause construc-

tion procedure is able to �nd a constant to the place of such mode, since it is created

from a particular instance. Those constants are going to limit the ground facts that

can be uni�ed with this literal. However, FOIL puts variables in third and fourth

terms. As a consequence, every possible atm/5 ground literal in the dataset is able

to unify with the variabilized new literal, producing in certain cases a huge amount

of di�erent proofs that Matlab cannot handle. Note that, this is an additional com-

plexity of BLPs compared to the �rst-order case, as in this last it is not necessary

to collect all possible proofs explaining an example.

Tabela 20: Comparison of runtime and accuracy of BFORTE with Bottom Clause
and BFORTE using FOIL to generate literals.

BFORTE BFORTE without BC
Learning Score Learning Score

Dataset Time Time
UW-CSE 8061.07? 0.5363 10884.16 0.5159
Metabolism 7184.15 64.76 N/A N/A
Carcinogenesis 8812.16 61.30 N/A N/A

Selection of Revision Points

In this experiment, we focus on the question of whether the BFORTE approach to

select revision points can decrease learning time. Due to the limitations of PFORTE

and BLP, specially concerning the search space of literals (previous section), we com-

pare BFORTE to BFORTE simulating those algorithms with regard to the selection

of revision points. Notice that this is necessary, specially because those systems

cannot run in two cases without bounding the search space to the Bottom Clause,

as we can see in Table 8.2. The compared settings are as follows.

� BFORTE: this is the system implemented upon all the contributions presented

in this chapter: the Bottom clause is used to bound the search space of lit-

erals, revision points are selected using Bayes Ball and inference procedure is
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optimized.

� PFORTE-like: this case considers Bottom clause to bound the search space

and optimized inference. However, selection of the revision points follows

PFORTE system, where all clauses appearing in the network of a misclassi�ed

instance are marked as revision points.

� BLP-like: this case considers Bottom clause to bound the search space and

optimized inference. However, selection of the revision points follows BLP

structure learning algorithm, where all Bayesian clauses in the BLP are re�ned.

We call the last two cases as PFORTE-like and BLP-like because original

PFORTE and BLP learning algorithm have none of the improvements we designed

in this chapter.

Table 21 shows the results of runtime, accuracy and number of revised clauses

for each setting. The symbol ? indicates the cases where there is signi�cant di�erence

between BFORTE and PFORTE-like and symbol • indicates a signi�cant di�erence

between BFORTE and BLP-like. Runtime of BFORTE is signi�cantly better than

both PFORTE-like and BLP-like. Note that PFORTE performs worse than BLP.

This is due to the size of the network: as the network of UW-CSE is quite large and

PFORTE selects all clauses taking part in a network of a misclassi�ed instance, it

always marks the whole theory as revision points. Thus, it has the same search space

as BLPs. However, as BLPs modi�es all Bayesian clauses and PFORTE performs

inference to �nd out the misclassi�ed instances, it expends more time to �nish the

revision process than BLP-like. On the other hand, the score of BFORTE is worse

than PFORTE and BLP, although not signi�cantly. The reason for that di�erence is

that in one fold di�erent theories are kept by the validation set during the learning.
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Unfortunately, we cannot obtain results in reasonable time using either

PFORTE or BLP settings for Metabolism dataset (< 48h). This is mainly due

to the large search space that is explored, since, during the learning time that we

could trace, they mark 18 clauses on average to be modi�ed, which is the same

number of clauses in the initial theory. The same situation of UW-CSE happens

here comparing PFORTE and BLP: as this dataset yields a single large network,

PFORTE marks every clause to be revised. BFORTE considers only 6.3 clauses

on average to be revised, which is due to the smart selection of revision points

conducted by Bayes Ball algorithm.

A di�erent situation happens with Carcinogenesis. As the instances are not

related in this dataset, there is a Bayesian network for each instance, yielding smaller

individual networks than in previous cases. In this way, BFORTE and PFORTE-

like select the same clauses as revision points. This is also because the clauses

producing ascendant nodes to the top-level instances are derived from clauses in

the �xed background knowledge, and therefore cannot be modi�ed. Additionally,

the ground facts produced by them are considered as non-observed. Hence, even

though they were modi�able, they would non-observed parent nodes whose parents

are observed and therefore Bayes Ball would also consider them as revision points.

Finally, we see that runtime of BLP-like is much worse than revision systems, since

in this case it alone marks all clauses from the theory as revision points.

Inference time

Finally, we show the reduction in runtime of the inference due to the use of Bayes Ball

and the grouping of clauses and networks. Note that all cases previously discussed

takes into account inference with Bayes Ball when learning or revising theories. In-

stead of running the whole revision process, we opted for running only the procedure

that computes the discriminative score for each training set, considering the initial

theories. In this way, we are able to see the improvement in runtime inference alone,

without taking into account the particularities of the revision process. Additionally,

running original inference of PFORTE and BLP makes the revision/learning process

extremely slow.
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Tables 22, 23 and 24 shows the runtime for computing accuracy in UW-CSE,

Metabolism and Carcinogenesis, respectively, of �ve settings: BFORTE, with all im-

provements presented in section 5.3.2, BFORTE without collecting requisite nodes

with Bayes Ball, BFORTE without detecting similar networks, BFORTE without

overlapping same rules and inference performed in original PFORTE/BLP i.e, in-

ference is performed without any of the algorithms presented in section 5.3.2. Let

�rst focus on UW-CSE dataset. Observe that the runtime is reduced by a factor

of 170 from the full BFORTE setting. The largest reduction is due to Bayes Ball,

although grouping similar nodes also contributes. On the other hand, detecting

similar networks does not help in the reduction of the runtime. In two folds Matlab

runs out of memory for PFORTE/BLP. Metabolism dataset has similar results of

UW-CSE, since they both are highly relational datasets, but in this case we were

able to collect the values for all training sets.

Tabela 22: Inference runtime in seconds for UW-CSE dataset.
Setting/ BFORTE BFORTE, BFORTE BFORTE PFORTE/
Training set without without without BLP

Bayes Ball similar nets grouping rules
1 18.44 1247.72 20.28 74.62 N/A
2 4.16 89.36 4.40 15.34 443.62
3 4.56 92.80 4.74 23.92 693.98
4 22.86 1880.38 25.30 97.94 N/A
5 3.44 66.76 3.52 15.00 443.72

Tabela 23: Inference runtime in seconds for Metabolism dataset.
Setting/ BFORTE BFORTE, BFORTE BFORTE PFORTE/
Training set without without Without BLP

Bayes Ball similar nets Grouping rules
1 10.98 677.62 676.90 23.30 1505.58
2 9.16 541.82 542.44 19.90 1103.22
3 13.02 827.56 826 29.92 1990.48
4 8.24 487.14 485.78 15.68 958.98
5 11.44 697.44 696.70 21.30 1330.40

The inference runtime of Carcinogenesis it is not di�erent from PFORTE and

BLP. In fact, in most of the cases, the runtime is slightly worse, due to the cost

of executing Bayes Ball. However, the fourth training set has a particular behavior
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when running BFORTE without grouping rules. In this case, one of the Bayesian

clauses yields a large amount of ground clauses to be part of the �nal network.

Without grouping similar rules, the �nal Bayesian network is too large for Matlab

to handle.

Tabela 24: Inference runtime in seconds for Carcinogenesis dataset.
Setting/ BFORTE BFORTE, BFORTE BFORTE PFORTE/
Training set without without Without BLP

Bayes Ball similar nets Grouping rules
1 5.24 4.36 4.12 6.66 5.08
2 5.34 4.44 4.30 7.50 5.78
3 4.64 3.92 3.70 6.04 4.68
4 9.70 8.96 8.64 N/A N/A
5 4.48 3.76 3.46 9.48 6.96

Conclusions

We addressed in this chapter the bottlenecks of Bayesian Logic Programs revision.

We showed through experiments that it is possible to obtain a feasible revision

system that provides more accurate models than �rst-order logic systems, when the

domain is uncertain.

First we focused on the reduction of new literals search space. The baseline sys-

tem, PFORTE, generates literals following a FOIL's top down approach: all possible

literals from the language that had at least one common variable with the current

clause were considered to be added to a clause. We were able to reduce the search

space of literals by de�ning it as the Bottom Clause of a misclassi�ed instance. We

show in the experiments that the search space is reduced without harming the score

achieved by the system. As a single misclassi�ed instance may not carry su�cient

information to produce good literals, in the future we would like to investigate the

use of more several instances to create the Bottom Clause. Additionally, we could

also take into account the probabilistic information to create/remove literals from

the Bottom clause, for example by measuring the information that literals could

pass to the clause (CHENG, et al., 2002a; OLIPHANT, SHAVLIK, 2008; PITAN-

GUI, ZAVERUCHA, 2011). The work in (MIHALKOVA, MOONEY, 2007) employs
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Bottom-up learning, by considering the network of examples to reduce the search

space of possible re�nements. We intend to investigate how such an approach could

also be followed when re�ning Bayesian Logic Programs. It does not seem that

there is a direct way of doing that, since we construct the Bayesian networks from

the ground clauses, instantiated by the examples, whereas Markov Logical Networks

de�nes the graph from the constants in the domain.

Next, we addressed the search space of clauses to be re�ned. BLP learning

algorithm starts from an initial set of Bayesian clauses and proposes modi�cations

to each one. PFORTE considers all the clauses used to build the Bayesian network

of an example where there was a misclassi�ed instance. Both systems generate a

large search space that can even become intractable. We showed that it is possible

to reduce this search space by marking as revision points only the clauses that

in�uence the probability distribution computed for the misclassi�ed instance. We

used the Bayes Ball algorithm to identify those clauses. Experiments suggested that

the search space is indeed reduced by proposing re�nements only to the clauses

relevant to the misclassi�ed instance. In the future, we would like to investigate in

more details if it is possible to reduce the number of revision operators according to

the revision point, as we started to analyze in this chapter. Additionally, search for

revision points guided by examples may not identify all possible places bringing new

in�uence to a misclassi�ed instance. In the future, we intend to investigate whether

it is possible to have a good balance on e�ciency and score when choosing revision

points in promising places, but still outside the set pointed out by the instance.

Finally, we addressed the large inference search space due to the large Bayesian

networks produced by PLL examples. First, we developed a procedure to only con-

sider the requisite nodes identi�ed by Bayes Ball algorithm, when performing in-

ference. Second, we reduced the size of the network by identifying ground clauses

whose only di�erence are the terms replacing variables. We argue that it is not

necessary to represent them as separate nodes in the network, what would make the

inference procedure to repeat several probabilities computations. Third, we identi-

�ed that after selecting the requisite nodes, there are "subnetworks"with exactly the

same structure and evidences. We avoid to compute the probabilities for all those
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networks, by taking into account only one representative of the group. Experiments

showed that the inference runtime is in fact greatly reduced by the algorithms we

proposed. Note that the we only took a simple step in the direction of recent work

on lifted inference (POOLE, 2003; SALVO BRAZ, et al., 2005; SINGLA, DOMIN-

GOS, 2008; MILCH, et al., 2008; KOK, DOMINGOS, 2009; NATH, DOMINGOS,

2010; MEERT, et al., 2010). There is much more to be done and investigate to

ful�ll the advantages of lifted inference. For example, the ground clauses that are

grouped together could represent more than one Bayesian clause, if the information

they have are the same.

Through preliminary experiments, we noticed that the revision greatly de-

pends on the initial theories. Aleph system may not be appropriate to learn initial

theories for giving rise to BLPs. Indeed, the authors of BLP argued that Claudien

system (DE RAEDT, DEHASPE, 1997), which learns from interpretations, is more

adequate to produce most general clauses. In the future we intend to create several

di�erent theories, from di�erent �rst-order systems and compare the revised BLPs,

starting from them.

In the experiments reported here, the threshold for marking an instance as

misclassi�ed was set at 0.5, which is usually considered in binary domains. That

value may not be the best for evaluating the models. Thus, we intend to create curves

showing the behavior of the system with di�erent thresholds. Also, an evaluation

function that is independent from the threshold should be applied, such as the ones

considering the area under the curve. Last, it is essential to compare BLPs to others

SRL languages, such as Markov Logic Networks.

We conclude by observing that as stochastic local search has been showed to be

quite e�ective in the �rst-order revision case, we intend to implement in BFORTE

the same SLS techniques considered in YAVFORTE system.
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Appendix H: The Laws of
International Chess

Here we summarize the main rules of the traditional game of chess, set up by Fédéra-

tion Internationale des Échecs (FIDE), also known as the World Chess Organisa-

tion (FIDE, ).

1. Chess is a game played by two people on a chessboard divided into 64 squares

of alternating colour, with 32 pieces (16 for each player) of six types. Each

player has control of one of two sets of coloured pieces (white and black).

White moves �rst and the players alternate moves. Each type of piece moves

in a distinct way. The goal of the game is to checkmate, i.e. to threaten the

opponent's king with inevitable capture.

2. At the beginning of the game the pieces are arranged as shown in Figure 41.

3. Each square of the chessboard is identi�ed with a unique pair of a letter and a

number. The vertical �les are labelled a through h. Similarly, the horizontal

ranks are numbered from 1 to 8. Each square of the board is uniquely identi�ed

by its �le letter and rank number. The white king, for example, starts the game

on square e1.

4. During the game, a piece may be captured and then removed from the game

and may not be returned to play for the remainder of the game. The king can

be put in check but cannot be captured.

5. Pieces can move as follows:

� The king can move exactly one square horizontally, vertically, or diago-

nally. At most once in every game, each king is allowed to make a special
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move, known as castling (see below).

� The rook moves any number of vacant squares vertically or horizontally.

It also is moved while castling.

� The bishop moves any number of vacant squares in any diagonal direction.

� The queen can move any number of vacant squares diagonally, horizon-

tally, or vertically.

� The knight moves in an �L� or �7� shape (possibly inverted): it moves

two squares like the rook and then one square perpendicular to that.

� A pawn can move forward one square, if that square is unoccupied. If

it has not yet moved, the pawn has the option of moving two squares

forward provided both squares in front of the pawn are unoccupied. A

pawn cannot move backward. Pawns are the only pieces that capture

di�erently from how they move. They can capture an enemy piece on

either of the two spaces adjacent to the space in front of them (i.e., the

two squares diagonally in front of them) but cannot move to these spaces

if they are vacant.

Figura 41: Initial position of a Chess board: �rst row: rook, knight, bishop, queen,
king, bishop, knight, and rook; second row: pawns

6. Castling consists of moving the king two squares towards a rook on the player's

�rst rank, then moving the rook onto the square over which the king crossed.

Castling can only be done if the king has never moved, the rook involved
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has never moved, the squares between the king and the rook involved are not

occupied, the king is not in check, and the king does not cross over or end on

a square in which it would be in check (see �gure 42).

Figura 42: Castling from the queen side and from the king side (�gure is due to
http : //www.pressmantoy.com/instructions/instruct_chess.html)

7. En-passant happens if player A's pawn moves forward two squares and player

B has a pawn on its �fth rank on an adjacent �le and B's pawn capture A's

pawn as if A's pawn had only moved one square. This capture can only be

made on the immediately subsequent move. In Figure 43 the black pawn moves

from b7 to b5 and the white at c5 capture it en passant, ending up on b6.

Figura 43: En-passant move. Figure is from http :
//www.learnthat.com/courses/fun/chess/beginrules15.shtml

8. If a pawn advances to its eighth rank it is promoted to a queen, rook, bishop,
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or knight of the same colour, according to the players desire.

9. When a player makes a move that threatens the opposing king with capture,

the king is said to be in check. The de�nition of check is that one or more op-

posing pieces could theoretically capture the king on the next move (although

the king is never actually captured). If a player's king is in check then the

player must make a move that eliminates the threat(s) of capture. The possi-

ble ways to remove the threat of capture are: (1) Move the king to a square

where it is not threatened. (2)Capture the threatening piece (possibly with

the king, if doing so does not put the king in check). (3) Place a piece between

the king and the opponent's threatening piece.

10. If the king is in double check, i.e., threatened by two di�erent pieces, the only

piece allowed to move is the king itself, since no other piece is able to take

away the king from the threat.

11. If a piece is protecting the king from a check it is only allowed to move to

another position where it continues protecting the king (the piece is called as

absolute pin).

12. If a player's king is placed in check and there is no legal move that player can

make to escape check, then the king is said to be checkmated and the game

ends.
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