

CONTROLLING THE PARALLEL EXECUTION OF WORKFLOWS

RELYING ON A DISTRIBUTED DATABASE

Renan Francisco Santos Souza

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia de

Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

título de Mestre em Engenharia de Sistemas e

Computação.

Orientadora: Marta Lima de Queirós Mattoso

Rio de Janeiro

Julho de 2015

CONTROLLING THE PARALLEL EXECUTION OF WORKFLOWS

RELYING ON A DISTRIBUTED DATABASE

Renan Francisco Santos Souza

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO

GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E

COMPUTAÇÃO.

Examinada por:

Profa. Marta Lima de Queirós Mattoso, D.Sc.

Prof. Alexandre de Assis Bento Lima, D.Sc.

Profa. Lúcia Maria de Assumpção Drummond, D.Sc.

Prof. Daniel Cardoso Moraes de Oliveira, D.Sc.

RIO DE JANEIRO, RJ - BRASIL

JULHO DE 2015

iii

Souza, Renan Francisco Santos

Controlling the Parallel Execution of Workflows

Relying on a Distributed Database / Renan Francisco

Santos Souza. – Rio de Janeiro: UFRJ/COPPE, 2015.

XI, 86 p.: il.; 29,7 cm.

Orientadora: Marta Lima de Queirós Mattoso

Dissertação (mestrado) – UFRJ/ COPPE/ Programa de

Engenharia de Sistemas e Computação, 2015.

Referências Bibliográficas: p. 83-86.

1. Scientific Workflows. 2. Databases. 3. Distributed

Data Management. I. Mattoso, Marta Lima de Queirós II.

Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III

Título.

iv

Agradecimentos

Primeiramente, agradeço a Deus, porque dele, por ele, e para ele são todas as coisas,

inclusive minha vida e este trabalho.

Agradeço ao meu pai, ao Marcos, e, principalmente, à minha mãe. É notória sua

vontade de me apoiar e de me ver crescendo. Agradeço pelos sacrifícios necessários para

investir na minha educação. Tenho plena ciência de que sem sua ajuda, eu não teria

conseguido chegar até aqui e, por isso, serei eternamente grato.

Agradeço à Gisele, minha namorada, por ter sido minha principal motivação por todos

esses anos e por continuar dando um significado maior a todo meu esforço. Também agradeço

a seus pais e irmão pelo apoio e compreensão durante as ausências.

Agradeço à minha professora orientadora Marta Mattoso, de quem eu tenho orgulho

de ser aluno. Agradeço por ter me recebido tão bem em seu grupo de pesquisa, por ter me

ensinado não só técnicas de bancos de dados, mas principalmente a ter uma visão crítica e

analítica para trabalhos científicos, que vão muito além dos detalhes técnicos. Sua dedicação

ao trabalho e seu esforço me inspiram.

Agradeço ao Vítor Sousa, colega, amigo e orientador. Incontáveis pedidos de ajuda

atendidos, nas mais altas horas até de madrugada às vezes, foram essenciais para o

desenvolvimento deste trabalho. Sua orientação bem próxima e, principalmente, seu incentivo

foram determinantes para que eu prosseguisse adequadamente até o fim desta dissertação.

Muito obrigado, como sempre!

Agradeço ao professor Alexandre Lima, de quem eu sou fã, pelas incansáveis trocas

de e-mails, respondidos quase sempre imediatamente, e reuniões até sanar todas minhas

dúvidas, que frequentemente eram muitas. Sua ajuda foi essencial para que eu compreendesse

um problema difícil da minha dissertação, logo, para resolvê-lo também. Obrigado pela

paciência e insistência para que meus trabalhos fiquem sempre melhores. Ah, também

agradeço pelos cabelos brancos que ganhei depois de cursar suas disciplinas :).

Agradeço ao professor Daniel de Oliveira pela colaboração tão próxima e,

principalmente, pela sua dedicação. Também agradeço à professora Kary Ocaña por sua

bondade e palavras de incentivo. Agradeço à professora Maria Luiza Campos pelo carinho e

orientação de sempre. Também agradeço aos professores Cláudio Amorim, Myriam Costa e

Álvaro Coutinho pelas aulas de paralelismo. Agradeço à professora Lúcia Drummond por

aceitar fazer parte da banca desta dissertação.

v

Agradeço a todos os amigos que me apoiam e incentivam, seja com discussões e

ideias para meu trabalho, seja com singelas palavras de incentivo. Sua amizade é muito

importante para mim.

Também agradeço à Mara Prata, Ana Paula Rabello, Solange Santos e Gutierrez da

Costa, pela ajuda nas questões administrativas. Também agradeço à Sandra da Silva pelo

carinho.

Agradeço à CAPES pela concessão da bolsa de mestrado.

Finalmente, agradeço à equipe do NACAD-COPPE/UFRJ e ao professor Patrick

Valduriez (Grid5000) pela ajuda com os equipamentos usados nos experimentos e durante o

desenvolvimento deste trabalho.

A todos, muito, muito obrigado!

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Mestre em Ciências (M.Sc.)

GERÊNCIA DA EXECUÇÃO PARALELA DE WORKFLOWS APOIADA POR

UM BANCO DE DADOS DISTRIBUÍDO

Renan Francisco Santos Souza

Julho/2015

Orientadora: Marta Lima de Queirós Mattoso

Programa: Engenharia de Sistemas e Computação

 Simulações computacionais de larga escala requerem processamento de alto

desempenho, envolvem manipulação de muitos dados e são comumente modeladas como

workflows científicos centrados em dados, gerenciados por um Sistema de Gerência de

Workflows Científicos (SGWfC). Em uma execução paralela, um SGWfC escalona muitas

tarefas para os recursos computacionais e Processamento de Muitas Tarefas (MTC, do

inglês Many Task Computing) é o paradigma que contempla esse cenário. Para gerenciar

os dados de execução necessários para a gerência do paralelismo em MTC, uma máquina

de execução precisa de uma estrutura de dados escalável para acomodar tais tarefas. Além

dos dados da execução, armazenar dados de proveniência e de domínio em tempo de

execução permite várias vantagens, como monitoramento da execução, descoberta

antecipada de resultados e execução interativa. Apesar de esses dados poderem ser

gerenciados através de várias abordagens (e.g, arquivos de log, SGBD, ou abordagem

híbrida), a utilização de um SGBD centralizado provê diversas capacidades analíticas, o

que é bem valioso para os usuários finais. Entretanto, se por um lado o uso de um SGBD

centralizado permite vantagens importantes, por outro, um ponto único de falha e de

contenção é introduzido, o que prejudica o desempenho em ambientes de grande porte.

Para tratar isso, propomos uma arquitetura que remove a responsabilidade de um nó central

com o qual todos os outros nós precisam se comunicar para escalonamento das tarefas, o

que gera um ponto de contenção; e transferimos tal responsabilidade para um SGBD

distribuído. Dessa forma, mostramos que nossa solução frequentemente alcança eficiências

de mais de 80% e ganhos de mais de 90% em relação à arquitetura baseada em um SGBD

centralizado, em um cluster de 1000 cores. Mais importante, alcançamos esses resultados

sem abdicar das vantagens de se usar um SGBD para gerenciar os dados de execução,

proveniência e de domínio, conjuntamente, em tempo de execução.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the requirements

for the degree of Master of Science (M.Sc.)

CONTROLLING THE PARALLEL EXECUTION OF WORKFLOWS RELYING

ON A DISTRIBUTED DATABASE

Renan Francisco Santos Souza

July/2015

Advisor: Marta Lima de Queirós Mattoso

Department: Systems and Computer Engineering

Large-scale computer-based scientific simulations require high performance

computing, involve big data manipulation, and are commonly modeled as data-centric

scientific workflows managed by a Scientific Workflow Management System (SWfMS). In a

parallel execution, a SWfMS schedules many tasks to the computing resources and Many

Task Computing (MTC) is the paradigm that contemplates this scenario. In order to manage

the execution data necessary for the parallel execution management and tasks’ scheduling in

MTC, an execution engine needs a scalable data structure to accommodate those many tasks.

In addition to managing execution data, it has been shown that storing provenance and

domain data at runtime enables powerful advantages, such as execution monitoring, discovery

of anticipated results, and user steering. Although all these data may be managed using

different approaches (e.g., flat log files, DBMS, or a hybrid approach), using a centralized

DBMS has shown to deliver enhanced analytical capabilities at runtime, which is very

valuable for end-users. However, if on the one hand using a centralized DBMS enables

important advantages, on the other hand, it introduces a single point of failure and of

contention, which jeopardizes performance in a large scenario. To cope with this, in this work,

we propose a novel SWfMS architecture that removes the responsibility of a central node to

which all other nodes need to communicate for tasks’ scheduling, which generates a point of

contention; and transfer such responsibility to a distributed DBMS. By doing this, we show

that our solution frequently attains an efficiency of over 80% and more than 90% of gains in

relation to an architecture that relies on a centralized DBMS, in a 1,000 cores cluster. More

importantly, we achieve all these results without abdicating the advantages of using a DBMS

to manage execution, provenance, and domain data, jointly, at runtime.

viii

CONTENTS

CONTENTS .. VIII

LIST OF FIGURES ... X

LIST OF TABLES ... XI

1 INTRODUCTION .. 1

2 BACKGROUND ... 6
 Large-scale Computer-Based Scientific Experiments and HPC 6 2.1

 Data-Centric Scientific Workflows, Dataflows, and SWfMS ... 7 2.2

 Tasks, MTC and Parameter Sweep.. 8 2.3

 Bag of Tasks .. 9 2.4

2.4.1 Centralized Work Queue ... 10
2.4.2 Work Queue with Replication ... 12

2.4.3 Hierarchical Work Queue .. 13
 Provenance Database: storing the three types of data ... 15 2.5

 Principles of Distributed Databases ... 17 2.6

2.6.1 Data Fragmentation and Replication ... 18
2.6.2 OLTP, OLAP, Transaction Management, and Distributed Concurrency Control 18

2.6.3 Parallel Data Placement ... 20

 Parallel Hardware Architectures .. 20 2.7

 Performance Metrics.. 21 2.8

 Related Work ... 23 2.9

3 SCICUMULUS/C² .. 24
 SciWfA: a workflow algebra for scientific workflows ... 24 3.1

 Activation and Dataflow strategies ... 25 3.2

 Centralized DBMS .. 27 3.3

 Architecture and Scheduling ... 27 3.4

4 BAG OF TASKS ARCHITECTURES SUPPORTED BY A DISTRIBUTED

DATABASE SYSTEM ... 30
 Work Queue with Replication on multiple Masters .. 30 4.1

 Brief introduction to Architectures I and II ... 33 4.2

 Common Characteristics ... 34 4.3

 Architecture I: Analogy between masters and data nodes ... 36 4.4

4.4.1 Parallel data placement .. 36
4.4.2 Task distribution and scheduling ... 37

4.4.3 Load balancing ... 37

4.4.4 Algorithm for distributing dbs to achieve better communication load balance 38

4.4.5 Advantages and disadvantages .. 40

 Architecture II: Different number of partitions and data nodes 40 4.5

4.5.1 Parallel data placement .. 42
4.5.2 Task distribution and scheduling ... 42

4.5.3 Advantages and disadvantages .. 42

ix

5 SCICUMULUS/C² ON A DISTRIBUTED DATABASE SYSTEM 44
 Technology choice ... 44 5.1

 MySQL Cluster ... 46 5.2

 d-SCC Architecture ... 47 5.3

 SciCumulus Database Manager module .. 49 5.4

5.4.1 Pre-installation Configuration .. 49

5.4.2 Initialization Process .. 54
 Parallel Data Placement, BoT Fragmentation, and Tasks Scheduling 55 5.5

 Tasks Scheduling relying on the DBMS, MPI removal, and Barrier 57 5.6

 Fault tolerance and load balance ... 58 5.7

6 EXPERIMENTAL EVALUATION ... 60
 Workflows case studies ... 60 6.1

 Architecture variations .. 62 6.2

 Scalability, speedup, and efficiency .. 70 6.3

 Oil & Gas and Bioinformatics workflow .. 75 6.4

 Comparing d-SCC with SCC ... 76 6.5

7 CONCLUSIONS ... 79

REFERENCES ... 83

x

LIST OF FIGURES

Figure 1 – Centralized Work Queue design ... 11

Figure 2 – Work Queue with Replication design ... 12
Figure 3 – Hierarchical Work Queue design .. 14

Figure 4 – The PROV-Wf data model (Costa et al., 2013) .. 17
Figure 5 – SCC architecture ... 28
Figure 6 – Work Queue with Replication on Masters design. ... 31
Figure 7 – Architecture I: Master nodes are data nodes ... 36
Figure 8 - Algorithm for dbs distribution to slaves ... 39

Figure 9 – Architecture II: Analogy between masters and partitions of the work queue 41
Figure 10 – MySQL Cluster architecture ... 47

Figure 11 – Current d-SCC architecture: Architecture II accommodating MySQL Cluster

roles .. 48

Figure 12 – machines.conf file example containing 10 machines 49

Figure 13 – Example of a directory tree in a shared disk installation 52

Figure 14 – 1-map and 3-map SWB workflows experimented .. 61
Figure 15 – Deep water oil exploration synthetic workflow (adapted from Ogasawara et al.,

2011) ... 62

Figure 16 – SciPhy workflow (extracted from Ocaña et al., 2011).. 63
Figure 17 – Results of Experiment 1. Varying architecture: shared or dedicated nodes? 64

Figure 18 – Results of Experiment 2: increasing concurrency ... 65
Figure 19 – Results of Experiment 3. Varying architecture: changing the number of database

nodes. .. 67
Figure 20 – Results of Experiment 4. Varying architecture: increasing number of data nodes.

 .. 68
Figure 21 – Results of Experiment 5: varying configuration of the DDBMS. 69
Figure 22 – Results of Experiment 6: scalability analyzing execution time. 71
Figure 23 – Results of Experiment 6: scalability analyzing efficiency. 71

Figure 24 – Results of Experiment 7: varying complexity (tasks cost). 72
Figure 25 – Results of Experiment 8: speedup varying number of cores. 74
Figure 26 – Execution of Experiment 9: Deep water oil exploration synthetic workflow

results .. 75
Figure 27 – Results of Experiment 11: comparing d-SCC with SCC on 168 cores. 77

Figure 28 – Results of Experiment 12: comparing d-SCC with SCC on 1008 cores. 78

file:///D:/Dropbox-win/Dropbox/PendriveOnline/_Mestrado/_Pesquisa/_Dissertação/_CORRECOES/final/DISSERTACAO-FINAL----.docx%23_Toc427831727

xi

LIST OF TABLES

Table 1 – SciWfA operations (adapted from Ogasawara et al., 2011) 25

Table 2 – A summary of the advantages and disadvantages of both WQR and HWQ. 31
Table 3 – Parameters that need to be adjusted.. 41

Table 4 – DBMS technologies comparison .. 45
Table 5 – Important MySQL parameters defined ... 53
Table 6 – Simplified configuration of Architecture II, as utilized in our current concrete

implementation ... 56
Table 7 – Hardware specification of clusters in Grid5000 ... 60

Table 8 – Description of each run of Experiment 1. ... 64

1

1 INTRODUCTION

Large-scale computer-based scientific simulations are typically complex and require

parallelism on a High Performance Computing (HPC) environment, e.g., cluster, grid or cloud.

These simulations are usually composed of the chaining of different applications, in which

data generated by an application are consumed by another, forming a complex dataflow.

These applications may manipulate a large amount of non-trivial data, making their

processing even more complex and time-consuming (i.e., weeks or even months of

continuous execution). For this reason, many scientific scenarios rely on the paradigm of

scientific workflows which have their executions orchestrated by a Scientific Workflow

Management System (SWfMS). SWfMSs provide the management of those scientific

applications, the data that flows between each application, and the parallel execution on the

HPC environment. A scientific workflow is composed of a set of activities – which are often

seen as scientific applications that represent solid algorithms or computational methods – and

a dataflow between each of them (Deelman et al., 2009). In Sections 2.1 and 2.2, we further

explain these concepts.

 In addition to the aforementioned aspects, during the long run of such simulations,

each activity in the workflow is repeatedly and extensively invoked in order to explore a large

solution space just varying the parameters or computational methods. For instance,

optimization problems, computational fluid dynamics, comparative genomics, and uncertainty

quantification problems are examples in which scientific applications need to compute a result

for each combination of parameters or input data (as cited in Dias, 2013). If the execution of

the linked scientific applications is managed by a SWfMS, it may handle each application

invocation that consumes a given combination of parameters and produces result (output data)

associated to that given combination. Additionally, we may say that an application or activity

is completely executed for a given workflow execution if, and only if, all those invocations

are completely finished. Moreover, each of these many invocations may be executed in

parallel on the HPC environment. The paradigm that contemplates this scenario is called

Many Task Computing (MTC), where each activity invocation is treated as a task (Raicu et al.,

2008). Furthermore, Walker and Guiang (2007) call the specific type of parallelism that

simultaneously executes each of those many tasks for a given combination of parameters as

parameter sweep (as cited in Mattoso et al., 2010). In Section 2.3, these terms will be further

elucidated.

2

 In this work, we focus on independent tasks within the parallel execution of a single

activity consuming multiple data. In other words, despite the inherent data dependency

between activities in a complex dataflow, each task of a single activity is independent of other

tasks from this same activity execution for other data. This type of problem, in which tasks

embarrassingly run in parallel, is dominant in many scientific scenarios (Benoit et al., 2010;

Oprescu and Kielmann, 2010). Further, we are especially concerned about how the SWfMS

manages the execution of those independent tasks for each activity of a workflow on the HPC

environment. For this reason, we use a classic term that is widely adopted by literature when

referring to independent tasks scheduling on HPC: Bag of Tasks (BoT) (Carriero and

Gelernter, 1990). In Section 2.4, we present different BoT variations, their scheduling policy,

and also how they relate to our approach that relies on scientific workflows.

 Furthermore, a SWfMS must not only manage tasks scheduling in workflow

executions, but also needs to collect provenance data to support the life cycle of a large-scale

computer-based scientific simulation (Mattoso et al., 2010). Provenance data contemplates

both information about workflows specification and information about how the data generated

during the workflow execution were derived, and that provenance may be even more

important than the resulting data. Storing provenance data is essential to allow result

reproducibility, sharing, and knowledge reuse in scientific communities (Davidson and Freire,

2008). In addition to data about workflow execution (needed to manage the parallel execution)

and data provenance, a SWfMS needs to manage domain-specific data. Enriching provenance

databases with domain data enables richer analyses (Oliveira et al., 2014). Thence, these three

types of data are expected to be managed by a SWfMS: (i) execution control data, (ii)

provenance data, and (iii) domain data. As a matter of simplicity, we are going to use the term

Provenance Database to refer to these three types of data, jointly, from now on.

In short, (i) execution control data are related to information about scheduling tasks to

computing resources, which computing resources are being used and how, and it is also

possible to register data about the health of the system and hardware. (ii) Provenance data are

related to how the data were derived, including computing methods or algorithms used in the

process, data owner, workflow specification, simulation site, and other pieces of information.

(iii) Domain data are mostly the main interest for the scientists and are specific for each

problem, application or scientific domain and are closely related to both previous types of

data. Further explanation will be given in Section 2.5

Managing all these data may not be trivial in large-scale scenarios and at least two

issues are discussed. First, most SWfMSs manage their execution data using a centralized

3

data repository, which may generate bottlenecks, jeopardizing the performance of the system.

Second, a trade-off between performance and analytical capabilities needs to be addressed.

On the one hand, a system may use a distributed data control by storing multiple flat log files

during execution, which is in general easier and faster to store, but harder to analyze,

especially when there are many big log files. On the other hand, a system may store data in a

structured database management system (DBMS) during execution, which amplifies the

analytical capabilities, but it is in general more complex and slower to store than simply

appending into log files. Further, the more data a SWfMS gathers and stores in a DBMS, the

more analytical features it provides to the end-user, but also the more complex it becomes to

manage. To tackle this, a system may attempt to combine performance and analytical

capabilities by storing only one of the three types of data (e.g., execution data) in a DBMS

during execution, whereas provenance data are captured in log files and eventually stored in

the DBMS usually in the end of the execution. In related work section (Section 2.9), we are

going to mention SWfMSs that uses a distributed data control based on flat files and another

one that stores execution data in a DBMS. Mostly, known SWfMSs do not store domain data

in the DBMS. Hence, provenance data analyses at runtime are limited and, more importantly,

joint analyses of the provenance database (i.e., including execution and domain data) are not

enabled in such systems.

However, it has been shown that storing all three types of data, jointly, in a

provenance database during workflow execution delivers many powerful advantages. The

advantages include discovery of anticipated results (Oliveira et al., 2014), workflow

execution monitoring associating to domain data generated throughout the dataflow (Souza et

al., 2015), and interactive execution, also known as user steering (Mattoso et al., 2015).

Moreover, in such integrated database, a data model may be used to structure fine-grained

information enabling even greater analyses. For example, it is possible to register which

specific task (from all those many tasks) is related to a specific domain datum and where this

task is running among all the computing resources on the HPC environment – all this may be

associated to the domain data in the dataflow. Additionally, if a SWfMS uses a data model

that contemplates provenance data following a recognized standard, such as the PROV-DM

proposed by the World Wide Web Consortium (Moreau and Missier, 2013), interoperability

between existing SWfMSs that also collect provenance data may be facilitated.

Nevertheless, the trade-off between such fine-grained analytical capabilities and

performance remains an open issue. SciCumulus/C² (SCC) is a SWfMS that stores fine-

grained data in a provenance database, managed by a DBMS during workflow execution

4

(Silva et al., 2014). As we are going to explain in details in Chapter 3, SCC is based on

Chiron (Ogasawara et al., 2011) and on SciCumulus (Oliveira et al., 2010), which introduced

this approach of storing the three types of data in a provenance database managed by a

centralized DBMS (e.g., PostgreSQL
1
 or MySQL

2
). By doing this, SCC enables many

important analytical capabilities, but its performance may be compromised in large-scale

scenarios. Not only performance may be an issue, but also the utilization of a centralized

DBMS may introduce other typical problems in HPC, such as single point of failure and

contention. For this reason, the data gathering mechanism at runtime must be highly efficient

and take these known HPC issues into account to attempt to provide both performance and

analytical capabilities.

Therefore, the problem we want to tackle in this dissertation can be enunciated as

follows. To the best of our knowledge, SCC is the only SWfMS that uses a DBMS to manage

the entire provenance database at runtime, which enables powerful analytical capabilities, but

it relies on a centralized DBMS. By relying on a centralized DBMS, a single point of failure

is introduced – that is, if a node that hosts the DBMS fails, the workflow execution is

interrupted. Furthermore, when compared with a distributed DBMS, a centralized DBMS has

less ability to handle a very large number of requests per unit of time. To cope with this, SCC

implements a centralized architecture in which there is a single node that is the only one able

to access the database and is responsible for scheduling tasks to other nodes and for storing

gathered data in the provenance database, as we are going to explain in details in Section 3.4

Nevertheless, such centralized architecture introduces a contention point in a single central

node. This contention is more evident in a large scenario with multiple processing units

requesting tasks to the node, which would also downgrade performance.

As a solution, decades of theoretical and practical development and optimizations on

Distributed Database Management Systems (DDBMS) motivate their usage on a distributed

system such as a parallel SWfMS. It is known that, compared with a centralized DBMS, a

DDBMS can handle larger datasets, take more advantage of the HPC environment, and

consider important issues in distributed executions, e.g., fault tolerance, load balancing, and

distributed data consistency (Özsu and Valduriez, 2011). Thus, using a DDBMS may be a

potential alternative for supporting an efficient structured data gathering mechanism at

runtime. For this reason, in our solution, we propose a novel architecture for scheduling MTC

tasks in a parallel workflow execution relying on a DDBMS to manage the entire provenance

1
 www.postgresql.org

2
 www.mysql.com

5

database. Our main goal is to provide a decentralized parallel execution management. To do

so, we propose taking off the responsibility of a central node to receive requests from and

send tasks to all other processing nodes. Instead, we want the distributed database system to

serve as a decentralized data repository which all processing nodes are able to access.

Furthermore, by using a DDBMS, we are able to enhance the data gathering mechanism at

runtime; take more advantages of the HPC environment; and improve the system’s

performance, load balance, fault tolerance, and availability. More importantly, we do not

abdicate all the advantages of using a DBMS to manage the provenance database at runtime.

We call the SWfMS that runs on top of such architecture as SciCumulus/C² on a

Distributed Database System (d-SCC). We especially discuss important issues like

synchronization, availability, load balancing, data partitioning, and task distribution among all

available resources on the HPC environment.

Particularly, by developing d-SCC we can enumerate the following contributions. (i)

We proposed a novel design of a distributed architecture for a parallel SWfMS that relies on a

DDBMS, describing tasks scheduling, load balancing, fault tolerance, distributed data design

(i.e., fragmentation and allocation), and parallel data placement; (ii) We implement it based

on a SWfMS that uses a centralized DBMS to manage the provenance database and discuss

the main difficulties; (iii) We remove the single point of failure introduced by the centralized

DBMS; (iv) We alleviate the contention introduced by the centralization on a single central

node; (v) We take more advantages of the HPC environment by distributing the database on

more computing resources; (vi) By using a DDBMS, we may handle larger datasets

maintaining good efficiency; (vii) Since a DDBMS can handle a larger number of requests,

we rely on it and make a lot of use of its synchronization mechanisms to keep our distributed

provenance database consistent; (viii) Like SCC, d-SCC also manages the provenance

database at runtime, maintaining all its inherited advantages previously mentioned.

The remainder of this dissertation is organized as follows. In Chapter 2, we present the

background needed for this dissertation. In Chapter 3, we show SciCumulus/C² (SCC), the

SWfMS on which this work is based, explaining its architecture and workflow algebra. In

Chapter 4, we introduce our novel distributed architecture that relies on a DDBMS. In

Chapter 5, we present our parallel SWfMS solution called d-SCC, which runs on top of our

proposed architecture. We especially discuss its implementation details and challenges faced

during development. In Chapter 6, we show our experimental evaluation. Finally, we

conclude this dissertation and foresee future work in Chapter 7.

6

2 BACKGROUND

In this chapter, we introduce the theoretical principles that give foundation for this

dissertation. This dissertation is inserted in the context of supporting large-scale computer-

based scientific experiments that require HPC (Section 2.1). These experiments are composed

of the chaining of scientific applications with a dataflow in between. One acknowledged

approach is to model these experiments as data-centric scientific workflows that are managed

by a parallel SWfMS (Section 2.2). In addition, our previous works, on which this current

dissertation is based, fit in the paradigm of MTC and, more specifically, Parameter Sweep

parallelism (Section 2.3). We will explain that Parameter Sweep parallelism may be seen as a

BoT application consisting of many tasks that consume and produce data; and we survey

different implementations of BoT applications (Section 2.4). Furthermore, we argue that a

SWfMS needs to store three types of data and that storing them in a provenance database

enables powerful advantages (Section 2.5). We introduce principles of a DDBMS (Section

2.6), which, if used to manage the Provenance Database, more advantages could be taken

from an HPC environment that can be built according to at least three different basic parallel

architectures (Section 2.7). In Section 2.8, we explain the performance metrics we used to

evaluate our parallel system. Finally, we conclude this section with related work in Section

2.9.

 Large-scale Computer-Based Scientific Experiments and HPC 2.1

Mattoso et al. (2010) explain that traditional scientific experiments are usually classified as

either in vivo or in vitro. However, in the last decades, scientists have used computer

applications to simulate their experiments, which enabled two new classes of experiments: in

virtuo and in silico (Travassos and Barros, 2003). Due to evolution of technology, a new

challenge is being addressed in the computer science community, since these computer-based

scientific simulations have been manipulating a huge amount of data which keeps increasing

over the years. As a result, they demand continuous evolution of both hardware architecture

and computational methods such as specialized programs or algorithms.

Additionally, large-scale computer-based simulations require massive parallel

execution on High Performance Computing (HPC) environments. According to Raicu, an

HPC environment is a collection of computers connected together by some networking fabric

and is composed of multiple processors, a network interconnection, and operating systems.

7

They are aimed at improving performance and availability compared with a single computer

(2009). As examples of HPC environment, we have clusters, grids, virtual machines (VM) on

clouds, and supercomputers like IBM Blue Gene (IBM100, 2015). Moreover, we say that an

HPC environment is homogeneous if the computing units (e.g., individual computer or nodes,

as usually called) that compose it are the same (Özsu and Valduriez, 2011).

 Data-Centric Scientific Workflows, Dataflows, and SWfMS 2.2

One way to facilitate dealing with the complexity of a large-scale computer-based scientific

experiment is by modeling it as a scientific workflow (Deelman et al., 2009). Scientific

workflows extend the original concept of workflows. Traditional workflows, usually seen in

business scenarios, systematically define the process of creation, storing, sharing, and

reviewing information. Analogously, scientific workflows is a method of abstracting and

systematizing the experimental process or part of it (as cited in Dias 2013). As previously

mentioned, these computer-based experiments consist of one or many specialized scientific

applications, which are represented by activities in the workflow. Moreover, a scientific

workflow is usually formed by the chaining of activities; hence we say that there is data

dependency between activities. That is, data produced by an application are consumed by

another, forming a dataflow (as cited in Dias 2013). A scientific workflow with these

characteristics are usually data-intensive and we claim that it is driven by data or, as

Ogasawara et al. call, it is a data-centric scientific workflow (2011). Yet, Ogasawara et al.

explain that such flow can be modeled as a Directed Acyclic Graph (DAG) on which vertices

represent activities and edges represent the dataflow between them (2011).

Due to its complexity, there is a necessity of a system to manage the execution of a

scientific workflow. Mattoso et al. argue that not only does the execution need to be managed,

but also such a system needs to enable composition and analyses of a computer-based

experiment (2010). Additionally, given the large-scale requirements, this system needs to

implement special directives to deal with an HPC environment. A system with these

characteristics is known as a Scientific Workflow Management System (SWfMS) (Deelman et

al., 2009). Examples of SWfMS are Pegasus (Lee et al., 2008), Swift/T (Wozniak et al.,

2013), and SciCumulus (Oliveira et al., 2010).

8

 Tasks, MTC and Parameter Sweep 2.3

In computer science, a concept called divide and conquer is widely used to solve a complex

problem dividing it into smaller sub-problems. When all sub-problems are solved, that first

complex problem is said to be solved (Cormen et al., 2009). Based on this concept, we define

task as a smaller sub-problem of a greater complex problem. An application that runs tasks in

parallel to solve a complex problem is known as a parallel application and they are broad and

historically used in HPC (Raicu et al., 2008). Moreover, Raicu et al. (2008) qualify tasks as

small or large (we also say light or heavy, short or long), uniprocessor or multiprocessor,

compute-intensive or data-intensive, and dependent or independent of others. Yet, a set of

tasks may be loosely or tightly coupled and homogeneous or heterogeneous.

In large-scale computer-based scientific experiments, a paradigm of parallel tasks

takes part in: Many Task Computing (MTC). Raicu et al. (2008) define MTC as a paradigm to

deal with a large number of tasks. Each task has the following characteristics. It takes

relatively short time to run (seconds or minutes long), it is data intensive (i.e., it manipulates

tens of MB of I/O), it may be either dependent or independent of other tasks, it may be

scheduled on any of the many available computing resources on the HPC environment, and

the execution of all tasks achieves a larger goal.

In this context, recall from the introduction (Chapter 1) that a typical scenario is that

each application (or computational method or algorithm) is repeatedly and extensively

invoked in order to explore a large solution space just varying the parameters or

computational methods. As examples, there are optimization problems, computational fluid

dynamics, comparative genomics, and uncertainty quantification (as cited in Dias 2013). Each

invocation consumes a given combination of parameters (input data) and produces result

(output data). A parallel system may manage all these invocations in parallel. This type of

parallelism is called Parameter Sweep (Walker and Guiang, 2007) and it fits in the MTC

paradigm where each invocation is treated as a task. For this reason, from now on, we are

going to use the term task to refer to an application invocation. Merging this context with the

context of data-centric scientific workflows, we claim that an activity is composed of many

tasks and an activity is completely executed for a given workflow execution if, and only if, all

those tasks are completely finished.

9

 Bag of Tasks 2.4

As previously stated, the MTC paradigm contemplates both dependent and independent tasks.

However, for a given single application, each application invocation that sweeps a

combination of parameters and produces output data is treated as independent of each other.

That is, in Parameter Sweep parallelism, there is neither data nor communication exchange

between different invocations of a single application. In other words, using the considerations

enunciated in Section 2.3, we say that all tasks for a given single activity of the workflow are

independent of each other. This is a very typical scenario in a broad variety of scientific

applications (Benoit et al., 2010; Oprescu and Kielmann, 2010). The specific type of parallel

application that is especially concerned about scheduling many independent tasks on the

available resources of the HPC environment is called Bag of Tasks (BoT) parallelism. In this

dissertation, we propose a distributed architecture for BoT parallelism that relies on a

DDBMS. We especially discuss its tasks scheduling mechanism and other related issues, such

as load balancing. For this reason, we revisit BoT applications in order to study its

singularities and apply them on the tasks scheduler that composes the core of our proposed

architecture on top of which our SWfMS that manages data-centric workflows will run.

The concept of a bag of tasks may be implemented within different approaches. Most

of them differ in distinguishing the owner or manager of the bag of tasks that need to be

executed to solve the determined problem. In each of these approaches, task distribution

design and scheduling over slaves are also different. In this section, we present these

implementations and their specificities.

Although these implementations have many differences, a common issue that is in

question over all approaches is load balancing. Since tasks’ cost may be heterogeneous (i.e.,

some tasks are heavier than others) and slaves’ efficiency may be heterogeneous (i.e., some

slaves execute tasks faster than others), load imbalance may occur. For this reason, load

balancing is discussed in all approaches presented in this section.

In order to cope with this load imbalance problem, work stealing is one of the

techniques that frequently appear in most approaches. The idea is simple. If a fast slave

executes the entire load that was under its responsibility, it will become idle. Then, the fast

slave may choose a slower busy slave as victim so the fast slave can steal tasks from. There

are different strategies to implement work stealing and to choose victim nodes (Mendes et al.,

2006), but this is out of the scope of this current work. However, how work stealing would

10

work may differ in each approach and the general idea of the strategy will be briefly discussed

in following sections.

In addition to load imbalance, communication overhead is also an important issue that

is commonly addressed in BoT implementations. Since tasks may need to be transmitted over

the network, this might become a bottleneck depending on the implementation and on the

problem. Ergo, we discuss communication overhead in each of the presented approaches.

Regarding nomenclature, even though tasks in a BoT are independent hence may be

executed in an arbitrary order (Silva et al., 2003), many authors frequently use the term work

queue (WQ) when referring to the data structure that holds the bag of tasks (Cario and

Banicescu, 2003; Silva et al., 2003; Senger et al., 2006; Anglano et al., 2006; da Silva and

Senger, 2010). However, we highlight that tasks do not need to be executed in a first-in-first-

out policy.

Having all this considered, in next sections we show three known implementations of

bag of tasks. How tasks are distributed and scheduled within each of these approaches is

discussed. Their advantages and disadvantages regarding load balance and communication

overhead are discussed as well. This survey on existing BoT designs is important because we

propose a novel BoT design in Section 4.1, which inspired us to propose our architecture for a

parallel workflow engine that relies on a distributed database management system.

2.4.1 Centralized Work Queue

Centralized Work Queue (CWQ) is the simplest design of a bag of tasks (Silva et al., 2003).

In a master-slave fashion, the centralized master owns and manages the entire bag of tasks. It

is the masters’ responsibility to schedule tasks over all slaves. Scheduling is also simple. As

soon as a slave becomes available (i.e., it is ready to execute tasks), it requests the master for

work. The master listens to the slave’s request and sends one or a chunk
3
 of runnable tasks,

which are marked as “in execution”. Then, after the slave having received those sent tasks, it

becomes busy while executing its load until completion. When a slave finishes and becomes

available again, it both sends a feedback with execution results to the master, who marks the

3

Determining an efficient chunk size, commonly referred to K, to provide load balance may be a

complex problem depending on the application characteristics (Cariño and Banicescu, 2007). We also note that

due to the provenance database, we could use it as a knowledge database to predict future tasks cost, which

would lead to more accurate choice of K hence better load balancing.

11

tasks as “completed” accordingly, and requests more work. The procedure is repeated until all

tasks from the queue are completed. Figure 1 shows a diagram of this design.

Figure 1 – Centralized Work Queue design

In spite of the advantage of being easier to understand and to implement, this model

has some disadvantages in a scenario with a large number of slaves. The main disadvantage is

communication overhead due to centralization on master which may lead to a bottleneck if a

large number of slaves is present. The scheduling work is totally concentrated in the single

centralized point. In addition, tasks need to be sent multiple times between master and slaves,

which may drive to network congestion. Hence, loss of performance may happen.

Regarding work stealing for load balancing, it is not common in classic CWQ

implementations since tasks are only transmitted between the master and slaves. When a fast

slave finishes its work load, asks the master for more work, and the master replies that the bag

of tasks is empty, this fast slave becomes idle until the end of the application execution even

if there are other slower busy slaves. This is more evident if a larger chunk of tasks is

transmitted at once, instead of only one task. For this reason, load imbalance may occur in a

heterogeneous scenario within this approach.

Furthermore, another disadvantage is that it introduces a single point of failure. That is,

if the single centralized master fails while there are still runnable tasks in the bag, the whole

parallel application stops since other idle slaves will not be able to get them. In addition, it is

shown that the simplest CWQ implementation is the one that performs worst compared to

other WQ models (Silva et al., 2003), which will be presented next.

Therefore, the CWQ design would only be a good option in a more sophisticated

implementation that considers enhanced strategies for load balancing and communication

overhead. However, these are not common in most CWQ classic implementations.

12

2.4.2 Work Queue with Replication

Silva et al. (2003) propose Work Queue with Replication (WQR), which basically adds task

replication to the classic CWQ design. There is a master processor that is only responsible for

coordinating scheduling, as shown in Figure 2.

Figure 2 – Work Queue with Replication design

In the beginning, scheduling is like simple CWQ. Slaves request tasks to the master,

which assigns ready tasks to the requesting slaves. However, WQR takes better advantage of

data locality than other WQ strategies with no replication. Since each slave owns a replica of

the bag of tasks, the master just sends a short message so the slave can start executing a task,

instead of sending the task itself (Silva et al., 2003). A message containing a task is usually

larger than simple scheduling messages, which can be implemented using a convention of

simple constants (e.g., an integer to signify the message “give me some work” or “execute

such task”). In addition, whereas in a simple CWQ implementation slaves that finish their

work become idle during the rest of the application execution, in WQR the master requests

idle slaves to execute tasks that are still ready to run. This improves load balancing (Silva et

al., 2003). Then, when a replica finishes, the master coordinates the abortion of all other

replicas.

It is important to mention that this architecture implies a similar scheduling behavior

to work stealing. A valuable difference, though, is that there is no task transmission in WQR

because the tasks that will be stolen are replicated. Since only short messages inherent to the

scheduling algorithm are needed, there is an important reduction in data transmission in the

network.

More advantages of WQR are related to performance and availability. Replicating

tasks increases the probability of running one of the replicas on a faster machine, which

reduces overall execution time (Anglano et al., 2006). For this reason, the number of replicas

also affects performance. That is, the greater the number of replicas, the greater this

13

probability is, which may imply in better performance, as shown in (Paranhos et al., 2003).

Compared to a simple implementation of CWQ, WQR is shown to perform significantly

better. In some cases, it performs better than other techniques that require a priori information

about the tasks and the system, which may be unfeasible in complex scenarios. In addition to

the performance advantage, WQR enables enhanced failure recovery strategies to provide

high availability. However, like in simple CWQ, the master scheduler still remains a single

point of failure (Silva et al., 2003).

Despite the advantages, the utilization of replication in WQR introduces a concern

related to problem size. Performance evaluations are provided, but the greatest number of

tasks evaluated is 5,000 and no scalability or speedup tests are presented (Silva et al., 2003).

Especially, full replication of the work queue (even two replicas only), as proposed by Silva et

al. (2003), may not be viable if the bag of tasks is very large.

To tackle this issue, Cariño and Banicescu describe a work queue with partial

replication (2007). Instead of replicating the entire work queue on each slave node in the

cluster, a smaller part of the queue is given to each slave. Scheduling initially occurs in a

similar fashion to the full replicated WQR until one of the slaves consumes its whole share of

the queue and becomes idle. Then, the idle slave requests the master for more work. The

master selects a busy slave to be the victim. Then, the master calculates whether or not it is

advantageous to move tasks from one slave to another. If it is, the master asks the idle slave to

steal tasks from the victim slave. In this case, not only are scheduling messages transmitted,

but tasks themselves are also sent from a slave to another. Therefore, although partial

replication may involve tasks transmission, it is an alternative to the WQR proposed by Silva

et al. (2003) to deal with a really large bag of tasks.

2.4.3 Hierarchical Work Queue

Both designs previously presented require a centralized master node to coordinate all slaves in

the cluster. This may lead to congestion at the master in a scenario with a large number of

slaves. To deal with this, we present a hierarchical architecture with many masters. The

Hierarchical Work Queue (HWQ) design presented in this section is based on the 2-level

hierarchical platform described by Senger et al. (2006) and Silva and Senger (2011). The

architecture consists of one supervisor, which is responsible for scheduling tasks among M

masters. Then, each master mi is responsible for scheduling tasks among Si slave processors in

one cluster ci. Finally, each slave is only responsible for performing computation, i.e.,

14

executing the tasks. Figure 3 illustrates this architecture. Each master has its own BoT that is

populated by the supervisor’s BoT.

Figure 3 – Hierarchical Work Queue design

HWQ characteristics leads to less communication overhead in a centralized node

compared to a simple CWQ. Since there are multiple masters, scheduling overhead is not

fully concentrated in a single point (i.e., the single master in a CWQ model). Although this

facilitates communication load balancing, if there are too many masters, there will be a

bottleneck at the supervisor. As a consequence, this will eventually lead to load imbalance

and loss of performance as well.

For this reason, one sensitive issue in this hierarchical model is to find M and Si for

each cluster ci so the architecture can be dynamically set up. Regarding M, one the one hand,

if M is too small compared to the total of slaves, masters will suffer communication

bottleneck; on the other hand, if M is too large, more contention will happen at the supervisor.

Regarding Si, a simple solution is to even up the number of slaves, S, for each master (i.e., Si

= S, for i = 1..M). In other words, all masters in the system are responsible for a same number,

S, of slaves.

To cope with this, Senger et al. (2006) propose a strategy for hierarchical scheduling

which includes finding static M and Si. Their proposed strategy relies on estimating Seff, the

maximum number of slaves a master can efficiently control. Since they assume a

homogeneous and dedicated hardware, all masters have the same Seff. Under “some

15

assumptions” (Senger et al., 2006), this number is estimated utilizing the sum of the mean

response time of the executions of the tasks and the mean time required to transmit input and

output files from one machine to another, since this is common in the scenario they aimed

their solution at. However, considering our motivating problem as described in previous

sections, tasks do not necessarily share or transmit any data or file, limiting the utilization of

this estimate on our problem.

Although communication bottleneck is less likely to occur in a single point due to

masters’ decentralization, there is an added up layer of bureaucracy between slaves and tasks

which is inherent in a hierarchical model. That means that a task executed in a slave was

originally owned by the supervisor, who is two levels upon the hierarchy. There will be more

data transmission in the network caused by task transmission in two levels. Thus, this is a

disadvantage in the hierarchical design.

Moreover, in typical HWQ implementations there are no clear strategies to provide

computation load balancing (Senger et al., 2006; Silva and Senger, 2011). For example, if a

fast slave finishes much earlier than all others, it is not considered whether the slave should

remain idle until the end of the execution or should steal work from others. Ergo, to provide

computation load balance, it is necessary to investigate improvements in the original HWQ.

Finally, regarding availability, it is noted that HWQ also contains a single point of

failure, the supervisor node, just like CWQ and WQR. Therefore, it is important to deal with

this and propose a more sophisticated model if one wants to eliminate a single point of failure.

 Provenance Database: storing the three types of data 2.5

Up to this point, we were mostly essentially worried about parallel execution and tasks

scheduling. However, in addition to execution data required by a distributed system, a parallel

SWfMS is expected to also manage other two types of data: provenance and domain data. In

this section, we explain each of the three types of data in further details and how we deal with

them in our work.

First, the underlying parallel engine needs a scalable data structure that accommodates

the bag of tasks and is capable of storing execution status of each single task in order to

manage the workflow parallel execution. Information such as which tasks should be

scheduled to which processors, number of tasks, which input data a task should consume, etc.

is necessary to be maintained by a SWfMS. We call this type of data as execution control data.

16

 Second, in addition to maintaining execution data, a SWfMS needs to collect

provenance data in order to support a large-scale computer-based scientific simulation

(Davidson and Freire, 2008; Mattoso et al., 2010). Provenance data may be defined as the

information that helps to determine the history of produced data, starting with their origins

(Simmhan et al., 2005). In other words, it is simply “the information about the process used

to derive the data” (Mattoso et al., 2010). Moreover, Goble et al. summarize that provenance

data serve for (2003): providing data quality; tracking each process utilized to derive the data;

keeping data authorship information; and providing powerful means for analytical queries for

data discovery and interpretation (as cited in Oliveira, 2012). Additionally, according to

Davidson and Freire, provenance data may be even more important than the resulting data and

may be further categorized as prospective provenance – information about workflows

specification – and retrospective provenance – information about how the data generated

during the workflow execution were derived (2008).

Third, domain data are of extreme interest for scientists and are specific for each

application domain. They are closely related to execution data because the SWfMS needs to

be aware of which domain data will be consumed by a task. They are also closely related to

provenance data because since each task may generate output domain data, the SWfMS needs

to keep track of how such domain data was generated. In a Bioinformatics application, an

example could be the number of alignments of a phylogenetic tree; in a Seismic application,

an example could be the speed of seismic waves; and in an Astronomy application, an

example could be the coordinates (x,y) of a specific point of an image of the sky.

All those data may be hard to manage and Dias (2013) claims that many approaches to

store them have been proposed (Altintas et al., 2006; Bowers et al., 2008; Gadelha et al.,

2012; Moreau and Missier, 2013). We argued that storing all those data, especially in fine

granularity, in a structured database enable powerful data analytical capabilities. For instance,

it enables execution monitoring associating to domain data generated throughout the dataflow

(Souza et al, 2015), discovery of anticipated results (Oliveira et al, 2014), and interactive

execution, also known as user steering (Mattoso et al., 2013). In this dissertation, we call such

database, which jointly contemplates the three types of data, as Provenance Database.

In addition to facilitating such analyses within a single experiment or scientific

research group, a widely accepted standard model for data enables possible future data

interchange, interoperability, and ease of communication among scientists from different

communities. For these reasons, the World Wide Web Consortium, acknowledged for

defining standards and recommendations on the web, recommends the Provenance Data

17

Model (PROV-DM) (Moreau and Missier, 2013). Moreover, for structuring provenance data

for workflows, we need a provenance data model for workflows. This is called PROV-Wf

(Figure 4), which is an extension of PROV-DM (Costa et al., 2013). PROV-Wf is the data

model for our Provenance Database. Further explanation on PROV-Wf, as well as on most of

the attributes within each entity and a real practical example of its utilization, can be found in

(Costa et al., 2013).

Figure 4 – The PROV-Wf data model (Costa et al., 2013)

 Principles of Distributed Databases 2.6

As briefly argued in introduction, although gathering provenance data in a fine level and

storing in a common centralized DBMS during execution enables rich advantages, it might

introduce contention points that would jeopardize execution time. Thus, the provenance

gathering mechanism must be highly efficient to accommodate both those advantages and

good performance. Moreover, decades of theoretical and practical development and

optimizations on Distributed Database Management Systems (DDBMS) motivate their usage

on a distributed system such as a parallel SWfMS. Additionally, many important concepts in

HPC problems are discussed in the same context of a DDBMS, e.g., fault tolerance and

synchronization. Since our proposed architecture relies on a DDBMS, in this section, we

review some principles that are important for this dissertation. Most of the concepts briefly

reviewed in this section are further explained in details by Özsu and Valduriez (2011).

18

2.6.1 Data Fragmentation and Replication

Data fragmentation is related to the division of a database table into disjoint smaller tables (or

fragments) (Özsu and Valduriez, 2011). The objective is to make distributed transactions

more efficient when they access different fragments in parallel (Lima, 2004). There are three

types of fragmentation: Horizontal, Vertical, and Hybrid (Özsu and Valduriez, 2011). In the

scope of this dissertation, we only explore Horizontal Fragmentation.

In Horizontal Fragmentation, a table is cut into fragments each of which having a

shorter number of rows (or smaller cardinality) but having the exact same schema. The

fragmentation happens following rules based on values of determined attribute on the table.

For example, suppose we have a table for storing data about employees of a multinational

company. One of the attributes of this table defines the country where each employee belongs

to. One possible horizontal fragmentation for this table is fragmenting it into smaller tables

where each table contains all employees of only one country. Horizontal Fragmentation has

many advantages such as speeding up parallel transactions that manipulate data from different

fragments and decreasing complexity of transactions that do not manipulate data from all

fragments.

Furthermore, to increase availability, reliability and query performance, all or some

fragments may be replicated (Özsu and Valduriez, 2011). Each fragment replica needs to be

allocated to the nodes that host the distributed database. There are total and partial

replications. Total replication means that each node owns a replica of the entire distributed

database while partial replication means that only some fragments are replicated. Total

replication is recognized for achieving the best availability requirements and flexibility for

query executions. However, in very large databases, total replication may not be possible if

the entire database size exceeds a host’s storage capacities (Lima, 2004). We highlight that

regarding availability, replication is highly important because if a node fails, a different

(living) node may host a replica that the failed node was hosting. Thus, the application is still

available even if a node fails.

2.6.2 OLTP, OLAP, Transaction Management, and Distributed Concurrency Control

In data management, there are two important classes that differ on how data is processed: On-

Line Transaction Processing (OLTP) and On-Line Analytical Processing (OLAP). OLAP

applications, e.g., trend analysis or forecasting, need to analyze historical and summarized

19

data and they utilize complex queries that may scan very large tables. OLAP applications are

also read-intensive and updates occur less frequently, usually in specific times. In contrast,

OLTP applications are high-throughput and transaction-oriented. Extensive data control and

availability are necessary, as well as high multiuser throughput and fast response times.

Moreover, queries tend to be simpler, manipulating a smaller amount of data, they are also

short, but they are many. Queries execution performance is usually greatly increased if indices

are used. Additionally, updates tend to occur more frequently in OLTP applications than in

OLAP ones (Özsu and Valduriez, 2011). Although an OLAP database would be desirable

since data analyses are very important in our scenario, the tasks distribution mechanism with

provenance gathering alludes to an OLTP access pattern. For this reason, since in this

dissertation we mainly focus on tasks distribution and parallel execution, we also focus on

typical characteristics in OLTP parallel applications. We note, however, that our solution does

not abdicate of analytical capabilities, even though it is not focused.

Because data updates are frequent in OLTP applications, transaction management

becomes crucial to keep the database consistent. For example, when two clients try to update

a same piece of data, the DBMS needs to manage synchronization to guarantee consistency. A

transaction is a basic unit of consistent and reliable computing in database systems. If the

database is in a consistent state and then a transaction is executed, the database must remain

consistent in the end of the execution. A DBMS that employs strong consistency transaction

management guarantees that all transactions are atomic, consistent, isolated, and durable

(ACID). In addition to managing synchronization of multiple client requests, strong

consistency is important for transaction and crash recovery. Furthermore, in distributed

databases, ensuring data consistency is more complex, since if a piece of data is modified in a

node, all nodes need to “see” this modification so the entire distributed database can be

consistent. If the DDBMS employs strong consistency distributed transaction management

mechanisms, it needs to guarantee that all transactions are ACID even being distributed. For

this, the DDBMS implements sophisticated distributed algorithms for distributed concurrency

control to ensure consistency and reliability (Özsu and Valduriez, 2011).

Years of significant research in both centralized DBMSs and DDBMSs regarding

transaction management and distributed concurrency control endorse a distributed architecture

for Many Task Computing parallelism that relies on a distributed database management

system. We highlight that the topics mentioned in this section are extremely relevant for an

application with intense data updates. If a database use is read-only, such complexities do not

occur and these sophisticated mechanisms are not required (Özsu and Valduriez, 2011).

20

2.6.3 Parallel Data Placement

In DDBMSs, parallel data placement is similar to data fragmentation (Section 2.6.1).

Nonetheless, one difference is that, in data placement, an important concern is about

minimizing the distance between the processing and the data for maximizing performance.

Full data partitioning is data placement solution that yields good performance. In this

solutions, each table is horizontally fragmented across all the DDBMS nodes; however, it is

highlighted that full partitioning is not adequate for small tables (Özsu and Valduriez, 2011).

There are three strategies for data partitioning: (i) round-robin – it is the simplest and ensures

uniform data distribution, although direct access to individual rows based on an attribute

requires accessing the entire table; (ii) hash – a hash function is applied to some attribute

based on which the partitioning will happen. This strategy allows efficient exact-match

queries (i.e., queries with where attribute = ‘value’); and (iii) range – rows are

distributed based on value intervals (ranges) of some attribute. This is a good alternative for

both exact-match and range queries (Özsu and Valduriez, 2011).

 Parallel Hardware Architectures 2.7

A parallel system (e.g., a parallel SWfMS or a DDBMS) needs to be aware of the parallel

hardware architecture on which the system will run in order to take more advantages of it.

There are three basic parallel hardware architectures that determine how the main hardware

pieces (processor, memory, and disk) are organized and interconnected in an HPC

environment: shared-memory (SM), shared-disk (SD), and shared-nothing (SN) (Özsu and

Valduriez, 2011). We highlight that although architectures may determine the hardware

organization within each single machine in an HPC environment, we only consider how nodes

(machines) are interconnected rather than how each of the pieces within each machine are

interconnected.

In SM architecture, all nodes can access any memory module or disk unit through a

fast interconnect network. In SD, all nodes can access a shared disk unit through the

interconnection network, but each processor has its own memory module (distributed

memory). In SN, each node has its own memory and disk space.

Regarding differences that are relevant for this work, comparing with SN and SD,

systems that run on SM generally provides better performance and developing tem are usually

simpler. However, SM is not as extensible as SD and SN. Indeed, adding or removing nodes

21

in SN architecture is simpler than in SD and SM because the architecture is more loosely

coupled. SN has lower costs, high extensibility, and availability. However, data management

is more complex and data redistribution is needed when nodes are added or removed.

Moreover, in SD, since data may be exchanged across all nodes through the disk, it is easier

to support ACID transactions and distributed concurrency controls. Thus, for OLTP

applications, SD is preferred. Conversely, since OLAP applications are usually larger and

mostly read-only, SN is preferred (Özsu and Valduriez, 2011).

In extremely large-scale computer-based scientific experiment scenarios, an HPC

environment may consist of hundreds of processors or even more. These are the ones called

supercomputers. Most of the Top 500 supercomputers in the world are built on top of SD

(TOP 500, 2015). We note that, in a SD, there are multiple disks (i.e., they are distributed),

but they are all interconnected through a very fast network interconnect (e.g., Infiniband) so

data in all disks can be kept synchronized; otherwise, bottlenecks may happen. Network-

Attached Storage (NAS) and Storage-Area Network (SAN) are technologies for implementing

SD architectures. SAN is acknowledged for providing high data throughput and for scaling up

to large number of nodes (Özsu and Valduriez, 2011). Thus, SAN is preferred when

performance is a requirement.

 Performance Metrics 2.8

To evaluate the performance of a parallel system, there are some known basic metrics that are

commonly used. In this work, we utilize at least three metrics in our performance evaluation:

speedup, efficiency, and scalability.

Speedup measures performance gain achieved by parallelizing a program compared

with a sequential version of such program. Sahni and Thanvantri explain that although the

basic idea to calculate the speedup of a parallel system is given by the ratio between

sequential execution time and parallel execution time, the definition of sequential and parallel

times may vary depending on what and how the system is being measured, which results in

many different definitions of speedup (1995). In this work, we use two definitions of speedup:

real speedup and an adapted version of relative speedup (Sahni and Thanvantri, 1995). The

real speedup to solve a problem using the program running on processors is

given by

 (1)

22

1

The time to solve using the best sequential program is also known as theoretical time. This

time may hide overheads and assumes a perfect case scenario, which may be utopic in most

situations, causing performance gains to be hidden. For this reason, instead of using this

theoretical time to calculate the real speedup, using a relative speedup seems fairer. The

relative speedup is given by (Sahni and Thanvantri, 1995):

 (2)

However, in large-scale simulations, running the program on only one processor may not

be possible because it is not rare to have an executing taking days or weeks to run on a single

processor. Taking all this time to run may not be viable, because it means more costs

(especially if the HPC environment is a cloud-based service), more energy consumption, and

more time spent on queues on clusters that are shared with many users. For this reason, we

adapt the (2 and define the RelativeSpeedup* as:

 (3)

where and is the smallest number of processors the program could run for the

evaluation. We use both and in our experimental

evaluation in Chapter 6.

 In addition to speedup, efficiency is another popular metric used to evaluate parallel

systems. It measures the fraction of time for which a processor was efficiently employed

(Sahni and Thanvantri, 1995). The efficiency of the system is calculated by dividing the

speedup by the number of processors used to run. Since we used two different definitions

for speedup, we also use two different definitions for the efficiency. The real efficiency

 is calculated based on the real speedup (1):

 (4)

Analogously, the relative efficiency can be calculated based on the

relative speedup as in Equation (2).

 Finally, to measure how the system behaves when we vary the problem size and the

number of processors, we use the metric. The ideal scalability is that the

execution time remains constant when we multiply the problem size by a factor of and

multiply the number of processors by .

23

 Related Work 2.9

In previous sections, we argued that to support large-scale computer-based simulations, a

SWfMS needs to manage three types of data: execution data, provenance data, and domain

data, and we have defined the term provenance database to signify a data repository that

contains all of them, jointly. In introduction, we explained that some SWfMSs use a

distributed data control based on flat files and some of them use a centralized DBMS at

runtime to store one of the three types of data. We also argued that managing a provenance

database at runtime enables powerful advantages (Section 2.5). In this section, we are going to

mention existing parallel SWFMs in respect to their data management capabilities.

 To the best of our knowledge, only Swift/T (Wozniak et al., 2013) and Pegasus

(Deelman et al., 2007) are acknowledged for running on large HPC environments. Swift/T is

a highly scalable parallel SWfMS that uses a distributed data management based on flat files

and stores provenance data in the end of the workflow execution. Thus, although it is good for

performance, its data analytical capabilities, including execution monitoring at runtime and

user steering, are limited. Pegasus stores execution data using a centralized DBMS and stores

provenance data in flat files, which are loaded into the database in the end of execution. Since

it uses a centralized DBMS, it suffers from a contention point. Moreover, since it does not

store the other two types of data at runtime, its analytical capabilities and interactive

execution are also limited.

For this reason, since SCC is the only existing SWfMS that manages a provenance

database (composed of the three types of data – Section 2.5) at runtime using a DBMS, it is

the only SWfMS that must be concerned about efficient mechanisms for capturing these data

at runtime to enable the mentioned advantages and to keep good efficiency. We highlight that

although SCC is directly related to this work, we do not mention it in this section. Instead, we

dedicate the next chapter for it (Chapter 3). Several previous works from our research group

have already surveyed with more details other existing SWfMS that enable provenance data

analyses (mostly in the end of workflow execution). Some of these works are reported by

Ogasawara (2011), Oliveira (2012), Dias (2013), and Silva (2014).

24

3 SCICUMULUS/C²

SciCumulus/C² (SCC) (Silva et al., 2014) is a parallel Scientific Workflow Management

System (SWfMS) developed by the High Performance Computing and Databases research

group
4

at COPPE/Federal University of Rio de Janeiro and at Fluminense Federal University.

It is based on a collection of works from many researchers, undergraduate students, and

masters’ and PhD’s theses. Essentially, SCC was developed to benefit from the results of two

main initiatives: SciCumulus (Oliveira et al., 2010) and Chiron (Ogasawara et al., 2011;

Ogasawara et al., 2013). Chiron is a parallel workflow execution engine that takes advantage

of clusters and grids. SciCumulus utilizes the main characteristics and algorithms of Chiron

and adds special techniques to take advantages of cloud properties, such as elasticity, at

runtime (Oliveira, 2012). SCC aims at integrating Chiron and SciCumulus in order to propose

a more flexible parallel SWfMS that takes advantages of a wider variety of HPC

environments (Silva et al., 2014). To the best of our knowledge, they are the only current

parallel SWfMS that stores the three types of data jointly on the same Provenance Database

(Section 2.5). We use most of the core concepts introduced in Chiron, we keep the special

algorithms that take advantage of cloud environments introduced in SciCumulus, and use the

most recent version of SCC, which integrates them all, to serve as a basis for our work. For

this reason, the most important concepts of these systems that are for particular interest for

this dissertation are explained in this chapter.

 SciWfA: a workflow algebra for scientific workflows 3.1

SCC manages a scientific workflow and the data that flows between each activity that

composes a workflow. We argue that scientific workflows in large-scale computer-based

experiments are data intensive, require HPC (as seen in Sections 2.1 and 2.2, and should not

miss relevant optimization opportunities, especially in parallel executions (Ogasawara et al.,

2011). To cope with this, Ogasawara et al. (2011) propose an algebraic approach that

facilitates complex dataflow definition, parallel data management of the data that flows

between activities, and enables optimizations of scientific workflow executions at runtime.

The Scientific Workflow Algebra (SciWfA) is an extension of the well-established relational

algebra, which is the basis for query processing and optimizations in relational database

systems (Özsu and Valduriez, 2011).

4
 hpcdb.wordpress.com

25

In SciWfA (Ogasawara et al., 2011), each activity 𝑌 {𝑌} is associated to an

algebraic operator . Where {𝑌} is a set containing all activities in a determined workflow

and { }. Moreover, 𝑌 consumes a

set (or relation, as it is traditionally called in relational algebra) of input tuples and

produces a set of output tuples. The operator may also need an additional operand .

Hence, we may state that

 𝑌 (5)

Additionally, the algebraic operator is defined depending on the ratio between the

number of tuples consumed and produced for a determined activity invocation, as we can see

in Table 1.

Operator
Type of Operated

Activity
Additional Operands

Ratio between

consumed and

produced tuples

Map Application Relation 1:1

SplitMap Application File Reference or Relation 1:m

Reduce Application Set of aggregating attributes or Relation n:1

Filter Application Relation 1:(0-1)

SRQuery
Relational Algebra

Expression
Relation n:m

MRQuery
Relational Algebra

Expression
Set of Relations n:m

Table 1 – SciWfA operations (adapted from Ogasawara et al., 2011)

The ratio between consumed and produced tuples is calculated based on the cardinality

(i.e., number of tuples) of the consumed input set and produced output set. This means that in

a workflow execution, a same application is invoked multiple times each of which consuming

a tuple (or set of tuples) and generating a tuple (or set of tuples) (recall from Section 2.3).

However, these applications that are invoked and managed by SCC are usually made by third

party companies or institutions that are not necessarily aware of SciWfA. As a consequence,

each invocation may not produce the necessary output tuples, which are very important for the

provenance gathering mechanism and to serve as input for the next linked activity. For this

reason, the SciWfA relies on the definition of an important concept called activation.

 Activation and Dataflow strategies 3.2

According to Özsu and Valduriez (2011), an activation is “the smallest unit of sequential

processing that cannot be further partitioned”, i.e., cannot be further parallelized. In Chiron,

26

the core of SCC, an activation can be simplified as an activity invocation. Further, Ogasawara

et al. (2011) explain that it is a “self-contained object that holds all information needed to

execute a workflow activity at any core” on the HPC environment. That is, it contains which

application to invoke, which data to consume and what the schema of the data that will be

produced is.

Moreover, due to the reasons mentioned in Section 3.1, the concept of activation in

SCC is more than an activity invocation. It is necessary to define sub-concepts inside of it.

These are instrumentation, invocation, and extraction that altogether form an activation

(Ogasawara et al., 2011). Before the workflow execution, users define the data schema of the

input and output relations of all activities in the workflow. In instrumentation, input tuples

are extracted and the application invocation is prepared according to the defined input schema.

An invocation launches an application on a processor in the HPC environment, consuming the

input tuples defined in instrumentation and produces output tuples. Finally, in extraction,

produced output tuples are collected. Provenance data are gathered since the beginning until

conclusion of an activation. Typical gathered provenance data aids the scientists to answer, in

a high level of details, questions like: Is an activation still running? Has any error occurred? If

yes, which errors? How long did an activation take to completely execute? More importantly,

since different values for domain-specific parameters (e.g., speed of wave – seismic – or point

of the sky – astronomy) may impact of application performance or even may introduce

application errors, all those provenance data can be associated to domain-specific input and

output data. This enables rich analyses at runtime and execution monitoring (Oliveira et al.,

2014; Souza et al., 2015). The formal definition of an activation and its composing parts can

be found in (Ogasawara et al., 2011).

Regarding dataflow strategies, there are two in SCC: First Tuple First (FTF) and First

Activity First (FAF) (Ogasawara et al., 2011). To explain this, we use a simple workflow

example: two activities A1 and A2, being A2 dependent on A1. In FTF, an A2 activation only

waits until its necessary input tuples are produced by an A1 activation. This is a typical

pipeline dataflow. In contrast, in FAF, A2 only begins to execute when all A1 activations are

completely executed. In other words, A2 remains blocked until A1 finishes. We only used the

FAF strategy in our experiments as in almost all experiments executed in SCC (Chapter 6).

27

 Centralized DBMS 3.3

SCC relies on a centralized DBMS to manage its Provenance Database. Although this brings

powerful advantages as mentioned in Section 2.5, this also leads to some drawbacks. We

highlight five disadvantages, especially comparing with the utilization of a DDBMS.

First, a centralized DBMS introduces a single point of failure in the parallel system.

That means that if the node that hosts the DBMS fails, the entire system fails. Second, if

compared with a DDBMS, it cannot handle a large dataset as efficiently as a DBMMS. Third,

it does not have special algorithms or techniques to take advantages of parallel execution on

multiple nodes in an HPC environment. Forth, a centralized DBMS is not as scalable as a

DDBMS. Finally, a DDBMS can handle a higher number of requests from clients than a

centralized DBMS. However, it is important to notice that despite the drawbacks, a

centralized DBMS uses less computing resources than a DDBMS, since only one node is

necessary whereas in a DDBMS, generally, the greater the data size, access rate, or

availability requirements, the more nodes are required to keep latency low and the system

available.

 Architecture and Scheduling 3.4

SCC’s architecture is organized in a distributed fashion consisting of multiple nodes, which

we especially call SciCumulus Nodes (SCN). The core of SCC is instantiated on each SCN,

where the scientific workflow is effectively executed. The architecture is managed following

a master-slave policy. The master node manages the distribution of activations among all SCN.

Moreover, the master node is also an SCN node, which means that it also runs activations, but

it will not need to send MPI messages to get tasks, since tasks are just one hop away from the

database, and not two, like the other SCNs that are not masters. In addition to managing

activations distribution among all SCN, the master node is also responsible for storing data in

the Provenance Database. All slaves are connected to the master via a network interconnect

and all SCN access a shared disk. We note that there may be bottlenecks at the master node due

to a centralized management at a single site and due to the fact that the master node is the only

SCN enabled to access the provenance database. Furthermore, a database server is utilized to

host the DBMS that manages the Provenance Database. This architecture is illustrated in

Figure 5.

28

Figure 5 – SCC architecture

Regarding activations scheduling, SCC implements a CWQ BoT architecture and

tasks scheduling (recall from Section 2.4.1). Basically, master node is the only one that can

access the BoT (which is managed by a DBMS) to retrieve tasks and distribute them among

slaves. More specifically, it works as follows. The master node waits for requests from slaves.

A slave requests work and waits until the master sends an activation. Then, the master

accesses the database to retrieve the next activation that is ready to be executed. Following,

the master sends a massage containing the activation to the requesting node. The requesting

node receives the activation, executes it, and sends the master a feedback message containing

provenance data about the execution. Finally, the master receives the sent data, stores them in

the database, and waits for new requests. The execution finishes when all activations from all

activities are completely executed and provenance data of each individual execution is stored.

SCC is implemented in Java and utilizes MPJ
5
 (MPI for Java) for message passing among all

nodes in the cluster and Java built-in threads
6
 for concurrent programming in the shared-

memory architecture within each node.

Concerning software architecture, SCC is organized in four modules (Silva et al.,

2014). (i) SciCumulus Starter (SCStarter) – which facilitates workflow execution submission

on HPC environments. Common actions include automatic preparation of all machines that

5
http://mpj-express.org

6
 http://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html

29

will be used during execution (e.g., VM instantiation in a cloud environment), conceptual

workflow insertion into the database, and instantiation of the workflow execution engine on

each machine; (ii) SciCumulus Setup (SCSetup) – which is used to insert, update or delete

conceptual workflows into or from the provenance database; (iii) SciCumulus Core (SCCore)

– which is the main module. It concretizes the conceptual workflow. It contains the main SCC

logic, including runtime optimizations based on the SciWfA (Ogasawara et al., 2011), fault

tolerance (Costa et al., 2012), intra-node parallelism taking advantage of shared-memory

architecture within each machine, adaptive execution (Oliveira et al., 2010), and so on. This is

the module that is effectively instantiated on each SCN; and finally (iv) SciCumulus Query

Processor (SCQP) – which aids users to submit SQL queries to the provenance database.

Although users can connect to the DBMS via other means (such as the ones provided by the

DBMS itself), this module simplifies the database connection so analytical queries can be

conveniently submitted to the provenance database by users. Queries results are returned to

users’ standard output, which can be redirected to semi-structured files (e.g., CSV) and

consumed by services that plot graphs to facilitate data visualization. These are the main

features, functionalities, and characteristics of the parallel WFMS we base this dissertation on.

30

4 BAG OF TASKS ARCHITECTURES SUPPORTED BY A DISTRIBUTED

DATABASE SYSTEM

In this chapter, we propose our main theoretical contribution. We propose two conceptual

distributed architectures for a BoT that relies on a Distributed Database Management System

(DDBMS). We define these architectures’ tasks scheduling, load balancing, fault tolerance,

and other issues. In Section 4.1, we propose a novel design of a BoT application. It is a high

level tasks distribution design and scheduling in a BoT application and does not depend on a

DBMS. However, it serves as inspiration and basis for our architectures that rely on a

DDBMS. In Section 4.2, we briefly introduce and explain the two architectures. In Section

4.3, we discuss common characteristics between them. In Section 4.4, we define the first

architecture and, in Section 4.5, the second.

 Work Queue with Replication on multiple Masters 4.1

Before introducing our architectures proposal, we first propose a novel task distribution

design and scheduling of a BoT application. Although this does not depend on a DBMS, we

will show that it serves as an inspiration and basis for our actual architectures proposal.

We begin this proposal by enumerating advantages and disadvantages of two designs

studied in Section 2.4: Work Queue with Replication (Section 2.4.2) and Hierarchical Work

Queue (Section 2.4.3).

WQR advantages

 i. It May achieve higher performance than the simple CWQ (Silva et al., 2003);

 ii. Comparing with CWQ and HWQ, it has better use of data locality (Paranhos et

al., 2003; Anglano et al., 2006). In WQR, the necessary data is likely to be

locally stored, which does not occur in CWQ and HWQ;

 iii. Higher availability than simple CWQ and HWQ because of the replicas;

 iv. No task transmission between master and slaves;

 v. Ability to accommodate large problems when partial replication is used.

WQR disadvantages

 i. Communication bottleneck may occur due to centralization at the master node;

 ii. If partial replication is used, choosing the victim node for work stealing needs

to be carefully evaluated because it may lead to communication overhead;

 iii. If partial replication is used, there may exist tasks transmission (work stealing)

among slaves;

 iv. Single point of failure at the central node.

HWQ advantages

31

 i. Multiple masters lead to less congestion at a centralized node;

 ii. If M and S are wisely chosen, congestion at the central node is avoided;

 iii. HWQ may accommodate larger problems (Silva and Senger, 2011).

HWQ disadvantages

 i. HWQ model does not take as much advantage of data locality as WQR;

 ii. HWQ has single points of failure;

 iii. There is task transmission in both levels of the hierarchy. That is, between

supervisor and masters and between masters and slaves.

 iv. There is an added layer of bureaucracy between the slaves and the main owner

of the BoT. That is, compared with a one-level hierarchy (e.g., CWQ), more

communication is needed so a slave can reach a task;

 v. To the best of our knowledge, there is not an optimal general method to find M

and S, even statically. As a result, the choice remains empirical;

 vi. Computation load balancing is not clearly specified;

 vii. Single point of failure at the central node.

Table 2 – A summary of the advantages and disadvantages of both WQR and HWQ.

Given these facts, we can combine characteristics of replication and hierarchy to

propose the Work Queue with Replication on multiple Masters (WQRM). In WQRM (Figure

6), there are M masters and σ slaves in the cluster. The number σ of slaves in the whole cluster

is given by the sum of all slaves in all clusters ci. That is:

σ ∑

 (2)

Figure 6 – Work Queue with Replication on Masters design.

32

Like in WQR, the supervisor does not own the bag of tasks. Instead, the BoT is

replicated in all masters. This increases availability because if a master fails, another master

may own the failing portion of the BoT and the supervisor coordinates the failure recovery.

Identically to WQR, between master nodes and the supervisor there are only scheduling

messages, i.e., no task transmission. Each cluster ci works exactly like the CWQ, that is, there

is task transmission between a master and slaves. Just like in WQR with partial replication,

when one master node ends its portion of the work queue and becomes idle, the supervisor

helps calculating whether or not it is advantageous to ask the idle master to steal tasks from a

victim busy master.

Regarding availability, failure recovery strategies may be applied in the slave nodes by

taking advantage of replication (Anglano et al., 2006). In addition, to provide higher

availability, the secondary supervisor’s role is just to eliminate a single point of failure. That

is, if the main supervisor fails, the secondary supervisor takes its place.

Regarding advantages and disadvantages in WQRM:

a) From WQR, in respect to the advantages, WQRM inherits most of them. Only the

advantage (iv) is not fully given because even though there is no task transmission

between supervisor and masters, there is between masters and slaves. In respect to

the disadvantages, all of them are inherited. However, since there are many

masters, contention in a single centralized point is less likely to occur, like in the

hierarchical model.

b) From HWQ, the only inherited characteristic is having multiple masters, which is

its greatest advantage. For his reason, in respect to the advantages, WQRM inherits

all of them. In respect to the disadvantages, (i) still remains because WQRM only

takes advantage of data locality between masters and the supervisor (just like

slaves and master in WQR). This is useful for work stealing among masters, but

not useful for scheduling tasks among slaves. Moreover, disadvantage (v) is still an

open problem. All other disadvantages are canceled because of replication,

addition of a second supervisor, and work stealing among masters.

By proposing WQRM, we want to add an extra option to the existing BoT designs

(Section 2.4) so that we can choose among them which we will use as inspiration and basis

for our architecture that relies on a DDBMS, which will be responsible to hold the BoT. It is

important to avoid communication bottleneck due to centralization, which motivates us to

choose a design with multiple masters (managers of the BoT). Especially, a design based on

replications has many advantages that we are very interested in. For this reason, we decide to

33

choose WQRM, which combines advantages of replication and hierarchy (specifically,

multiple masters). Therefore, among the four tasks distribution designs previously presented

(CWQ, HWQ, WQR, and WQRM), we choose WQRM so our architecture supported by a

database system will be based on. In next section, we discuss two architecture alternatives and

explain which one we choose to implement our solution.

 Brief introduction to Architectures I and II 4.2

Most BoT implementations found in literature do not utilize a database system (Silva et al.,

2003; Anglano et al., 2006; Silva and Senger, 2011). For this reason, we need to highlight

three important motivations for using a DBMS, a distributed DBMS in special, in a BoT

problem.

The primary motivation for using a DBMS in our architecture (in a SWfMS context) is

that in a workflow execution, lots of data are continuously managed in a fine grained level as

data are processed all over the dataflow. Thus, by using a DBMS, it is possible to query

complex experiments’ execution logs, perform advanced data analyses, as well as enable

humans to interact with the remaining tasks to be executed through updates on the database,

everything during runtime, as we have argued in Section 2.5. We do not want to abdicate

these powerful advantages.

The secondary, but also very important, motivation for using a database system is that

most DBMSs implement very efficient mechanisms that are essential in a HPC scenario. For

example, any DBMS implements efficient concurrency control mechanisms. Especially, most

relational DBMS (including the centralized ones) implement well-known algorithms and

strategies to guarantee atomicity, consistency, isolation, and durability in transactions.

Moreover, distributed database systems enable robust parallel access and storage of data,

usually in larger sizes than regular centralized DBMS. Further, sharding, i.e., partitioning the

database into multiple nodes is also well-studied and implemented in many distributed

DBMSs. Besides, failure recovery is also an important functionality in a DDBMS.

Furthermore, efficient utilization of cache memory is also a common feature in DBMSs,

including centralized ones (Özsu and Valduriez, 2011). Additionally, a DBMS (either

centralized or distributed) may be implemented to run completely in-memory instead of

performing I/O operations to disk, which would enhance performance. Therefore, having a

DBMS – which already implement most of these mechanisms usually very efficiently – to

take care of all these complex issues, will alleviate the effort on developing such complex

34

controls in a given parallel application. In this way, the developers would focus on specific

concerns that are related to specific uses of the application, instead of having to worry about

implementing tasks scheduling and dealing with complex concurrency issues. In our case, we

want to focus on controlling the parallel execution of workflows and store important data in

the provenance database.

The tertiary motivation specifically relies on a distributed database system. In addition

to the above arguments regarding the utilization of a distributed database system, there is still

the fact that, by using one, we can take more advantage of the parallel hardware architecture,

which is common in HPC environments. Furthermore, a centralized database system will

likely suffer from congestion in a scenario with many processing nodes. For these reasons, a

distributed database system is more convenient in an HPC scenario.

In next sections, we describe two architectures, based on WQRM design, supported by

a distributed database system: Architecture I, which uses WQRM by making an analogy

between masters and data nodes; and Architecture II, which has many similarities with

Architecture I, but has different number of partitions and data nodes.

 Common Characteristics 4.3

Similarities and differences between Architectures I and II are in respect to the work queue. In

common, the work queue is managed by a distributed database system and it is fully

partitioned, that is, horizontally fragmented across all nodes in the cluster of database nodes.

This significantly increases parallelism (Özsu and Valduriez, 2011). Moreover, regarding

availability, both architectures share the same characteristics inherited from WQRM design.

Yet, if a node hosting a work queue partition fails, there is still at least an extra replica that

may be utilized.

Although inspired by WQRM and many analogies will be made to explain both

architectures, WQRM and the architectures are not exactly one-to-one analogous. The

architectures do not explicitly have multiple master nodes functioning as schedulers. We may,

rather, establish the DDBMS (as a whole) as a great “centralized” scheduler, which implies a

similar behavior to CWQ.

Nonetheless, instead of having slaves requesting tasks to a master through regular

message passing, like in common CWQ implementations, we have slaves sending structured

queries to a distributed database system. Instead of having a master to receive the slave

35

request, get the next ready task and send it to the slave, we have the DDBMS to play the very

same role.

In spite of the fact that the message passing primitives (e.g. send and receive) are

basically the same in either implementations (common CWQ implementation or DBMS

supported implementation); and that data transfer happens in a similar way, the main

advantage is that we rely the scheduling on a third party system. That is, we apply the idea of

outsourcing. More importantly, this third party system we rely on is known to be specialized

in concurrency control mechanisms (Özsu and Valduriez, 2011). Furthermore, all benefits we

pointed out in our secondary motivation in the beginning of this section are applicable. Thus,

we count on a trusted and highly specialized third party system to alleviate our work so we

can spend more efforts on the actual application.

Despite noting a CWQ behavior resemblance, we emphasize that a DDBMS is utilized

instead of a single central node, as it is in CWQ. In other words, there is not a centralized

single master at all. A DDBMS is composed of many data nodes which diminishes the

centralization problem that causes congestion in CWQ. We use the term data node (dn) to

signify a node that hosts the process that manages partitions of the database. A data node also

contains data of the DDBMS. In other words, a data node owns and manages part of the bag

of tasks. This also resembles the fact that multiple master nodes hold BoTs in the WQRM

design.

It is important to highlight that since we are relying on a database solution, a new role

takes place in the scenario: the database server, which we shorten as dbs. Database servers

just listen to connections and applications commonly connect to the database through

connection drivers (e.g., JDBC or ODBC
7
). Even though the dbs are usually just responsible

for listening to connections, they may play an important role regarding communication load

balance. Some distributed DBMSs implement mechanisms to improve communication load

balance so contention at the database may be avoided, which is very valuable for us. However,

the presence of a new role introduces a new problem that we need to deal with because of the

database utilization. There is a need to determine a good number of dbs in the cluster, which

may also be empirical. We denote this number by q.

Furthermore, an initial connection distribution is needed. That is, each slave needs to

know in advance which dbs it will connect to. A supervisor node needs to take care of this.

Plus, it is important to even up communication load across the q dbs. Otherwise, there may be

7 http://en.wikipedia.org/wiki/Java_Database_Connectivity and

 http://en.wikipedia.org/wiki/Open_Database_Connectivity

http://en.wikipedia.org/wiki/Java_Database_Connectivity

36

a dbs with a heavy load of slaves connecting to it while there are others lightly loaded. This

communication load balance may be easily achieved by making use of a circular distribution

policy, as we show in the algorithm proposed in Section 4.4.4. Next, we describe both

architectures in details.

 Architecture I: Analogy between masters and data nodes 4.4

Just like there are M masters in WQRM, there are M data nodes in Architecture I (Figure 7).

In next sections we will explain the scheduling process, which consists of slaves querying the

data nodes in order to retrieve tasks (analogous to slaves asking masters for work).

Figure 7 – Architecture I: Master nodes are data nodes

Furthermore, to increase availability in the system, each slave Sij may connect and

query the database cluster via two different dbs nodes: the main dbs node connection,

represented by dashed lines in Figure 7 and the secondary dbs node connection, represented

by dotted lines. If one dbs fails, all slaves that were connected to it just need to connect to

their secondary dbs.

4.4.1 Parallel data placement

Regarding parallel data placement in the database system (recall from Section 2.6.3), the

whole work queue is horizontally fragmented into M (number of data nodes in the cluster)

37

partitions. Each partition ρi is responsibility of and physically stored in dni and replicated

elsewhere. Each partition ρi initially contains T = ceiling(Ttotal/M) tasks, where Ttotal is the

total number of tasks in the BoT. To place T tasks in each partition, a hash function on the

data node id may be applied.

4.4.2 Task distribution and scheduling

This is how initial task distribution happens in this architecture. Initially, given that there are

M data nodes, the supervisor is responsible for assigning each task to a data node in a circular

fashion. This is done inserting tasks in the work queue relation in the database assigning the

data node id to the task and the hash function mentioned previously (Section 4.4.2) will take

care of placing the task in the right data node. Similarly, the supervisor also assigns a data

node to each slave node so that each slave will know which data node will be queried.

It is worth noting that only in close-to-homogeneous problems (that is, all tasks cost

approximately the same), the static initial distribution will provide near to optimal load

balance. In heterogeneous problems, though, this initial distribution needs to be dynamically

“corrected” during runtime. However, even in homogeneous problems, load imbalance may

still occur in very long running executions. Thus, work stealing and more sophisticated load

balancing may still be needed.

After all initial task distribution and data placement, the actual scheduling begins and

it works similarly to what we described for the CWQ (recall from Section 2.4.1). A slave

sends a query to retrieve tasks from its partition which is physically stored in dni and

replicated elsewhere. The DDBMS is responsible for an efficient concurrent management

from the multiple requests and then it delivers the right tasks to the requesting slave. The

requesting slave becomes busy while executing its tasks. When a slave finishes its work load,

it stores the results in the provenance database. Then, it becomes idle and ready to retrieve

more tasks from the database. This is done until all tasks in the bag of tasks are completed.

4.4.3 Load balancing

Load balancing happens analogously as specified in WQRM. When all tasks in a data node

are completed, a slave notifies the supervisor of the situation. Then, the supervisor calculates

whether or not work stealing is advantageous. If it is, a victim data node must be selected. If

we use the heuristic of choosing the most loaded data node, we just need to query the database

38

to easily get this information. Finally, after selecting the victim, say dnj, the supervisor needs

to move data from the partition ρj to partition ρi.

4.4.4 Algorithm for distributing dbs to achieve better communication load balance

In our architectures, slaves access the distributed database via connection to the dbs nodes. In

other words, the dbs are the only nodes that the slaves are aware of to get access to data in the

distributed database. A common scenario is when the number of slaves is much greater than

dbs nodes and communication load imbalance may occur. If, for example, there are 20 slaves

and only 2 dbs nodes, (say dbs1 and dbs2) there would be communication load imbalance if

19 slaves connect to dbs1 e only one slave connects to dbs2. For this reason, we need extra

functionalities to improve communication load balance. To tackle this, we also propose our

own algorithm for distributing dbs nodes to all slaves in a balanced way. In our previous

example, one balanced way to distribute dbs nodes would be 10 slaves connecting to the

DDBMS via dbs1 and the other 10 connecting via dbs2. Moreover, we also need to assign a

secondary dbs 2 for each slave to increase availability in case the primary dbs fails. In other

words, each slave has a primary dbs through which it connects to the DDBMS and a

secondary dbs that is used if the primary dbs fails.

The algorithm is divided into three parts. In part (i), if a physical machine is both slave

and database server, then, this slave machine connects to the distributed database through the

database server that is hosted on this machine. In other words, if a machine is both slave and

dbs, it assigns itself as the dbs. In part (ii), each slave assigns a dbs to it in a circular fashion.

Each dbs can serve at most W/q, where W is the number of remaining slaves to be assigned

and q is the number of dbs nodes. In part (iii), each of the W remaining slaves is assigned to a

dbs, also in a circular fashion. This algorithm is formalized as shown in Figure 8. In addition

to this algorithm, we discuss in Section 5.3 that in our implementation, we may also make use

of features provided by the DDBMS to improve communication load balance.

39

Figure 8 - Algorithm for dbs distribution to slaves

Algorithm 1: Distributing database servers to slaves

Input:

Ldbs: List of database server machines

Lw: List of slave machines

Output:

-

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

function distributeDatabaseServers(Ldbs, Lw)

 int circular 0

 int i 0

 int quotient 0

 int primDBindex 0

 int secDBindex 0

 // Part (i)

 for each machine in Ldbs do

 if exists machine in Lw then

 machine.mainDBS machine

 circular circular + 1
 remove(machine, Lw)

 end if

 end do

 quotient |Lw| div |Ldbs|

 // Part (ii)

 while i < |Lw| do

 primDBindex circular mod |Ldbs|

 Lw[i].mainDBS Ldbs[primDBindex]
 if |Ldbs| >= 2 then

 secDBindex abs ((|Ldbs| 1 circular) mod |Ldbs|)

 Lw[i].secondaryDBS Ldbs[secDBindex]
 end if

 i i + 1
 if quotient = 0 then

 circular circular + 1
 exit while

 end if

 if i mod quotient = 0 then

 circular circular + 1
 end if

 end do

 // Part (iii)

 while i < |Lcn| do

 primDBindex circular mod |Ldbs|

 Lw[i].mainDBS Ldbs[primDBindex]
 if |Ldbs| >= 2 then

 secDBindex abs ((|Ldbs| 1 circular) mod |Ldbs|)

 Lw[i].secondaryDBS Ldbs[secDBindex]
 end if

 i i + 1

 circular circular + 1
 end do

end function

40

4.4.5 Advantages and disadvantages

Advantages of using Architecture I are: (i) Assuming that M is wisely chosen (recall from

Section 4.1) as well as q is good enough, there will be less congestion at the database and

parallel query execution may be well explored; (ii) due to utilization of secondary nodes (for

master node and for db server nodes) and due to reasons inherited by basing on WQRM, this

architecture is able to provide high availability; and (iii) this architecture provides great

flexibility for adding slaves, even dynamically during runtime. Everything a slave needs to do

to join the executing team is to connect to the DBMS through any dbs. Despite being likely

unnecessary, a more sophisticated strategy to choose the least loaded dbs may be

accommodated to preserve communication load balancing. Then, after connecting, the

recently joined slave can start executing by following the scheduling policy described

previously. Removing slaves is similar to the slave failure recovery process as discussed in

the beginning of this section.

The disadvantages of Architecture I are related to scalability problems, which are

likely to occur in a scenario with a large M because it will be harder for the DBMS to manage

a large number of data nodes. A large number of data nodes means that data will be spread

throughout many actual machines. Many distributed DBMSs do not scale data nodes up to a

really big number, say hundreds of nodes. In addition, the more partitions, the more it will be

taken advantage of parallel executions. However, requiring that each partition needs to be

physically stored in each data node implies that many data nodes will be needed in order to

achieve greater parallelism. This, as mentioned, may also lead to a scalability problem. Since

we want our architecture to be adaptable to a large environment, this is a critical limitation.

 Architecture II: Different number of partitions and data nodes 4.5

Architecture II (Figure 9) functions mostly like Architecture I. The main difference is that in

Architecture II, we do not force each partition ρi to be physically stored in dni. This implies

that the number of partitions does not need to be equal to the number of data nodes. Rather,

the cluster of database nodes is composed of d data nodes and the work queue is partitioned

into M partitions.

41

Figure 9 – Architecture II: Analogy between masters and partitions of the work queue

This introduces much more flexibility than in Architecture I, since we may have a

greater number of partitions than of physical data nodes. As said previously, more partitions

lead to better parallelism. Multiple data nodes are more costly than multiple partitions.

Although more flexibility and generality are given to Architecture II, it introduces one

new problem: choosing d. Table 3 summarizes which parameters need to be adjusted in order

to achieve good performance.

Parameter Meaning

d Number of data nodes in the database cluster

q Number of dbs nodes

M Number of partitions of the work queue

S

Number of slaves that connect to a dbs node. If q is known, this

may be simplified as S σ / q. Recall from Section 4.1 that σ is

the total number of slaves on the HPC environment.

Table 3 – Parameters that need to be adjusted

In spite of seeming very complex to define all these parameters, a simplification of the

problem is presented in Section 5.5.

42

4.5.1 Parallel data placement

Regarding parallel data placement in the database, the work queue is fully partitioned (Özsu

and Valduriez, 2011) into M horizontal fragments, or partitions, across all data nodes. Each

partition ρi initially contains T = ceiling(Ttotal/M) tasks, where Ttotal is the total number of

tasks in the BoT. To place T tasks in each partition, a hash function on the partition id may be

applied, as in Architecture I.

It is important to highlight that M may be very large in a large-scale scenario.

Although it is harder to manage by the DDBMS, this will significantly improve parallelism.

Especially, this may cause so much improvement in parallelism that congestion at the DBMS

might be highly alleviated. However, it needs to be carefully evaluated (e.g., testing speedup

and scalability) to investigate if no overhead will occur.

4.5.2 Task distribution and scheduling

Initial task distribution happens in an analogous way to Architecture I. Initially, given that the

work queue is partitioned into M partitions, the supervisor is responsible for assigning each

task to partition in a circular fashion. This is done inserting tasks in the work queue relation in

the database assigning a partition id to the task and the hash function mentioned above will

take care of placing the task in the right partition. Similarly, the supervisor also assigns a

partition id to each slave node so that each slave will know which partition will be queried.

Load balancing also works similarly to Architecture I. The algorithm proposed for

improving communication load balance (Section 4.4.4) is also applied in Architecture II.

4.5.3 Advantages and disadvantages

Finally, the advantages of using Architecture II are the same of Architecture I. In addition,

Architecture II is more flexible since it does not require a large number of data nodes (e.g.

hundreds) to achieve enhanced parallelism. Moreover, Architecture II does not require that

the number of data nodes to be equal to the number of slave nodes, removing the main

disadvantage of Architecture I. However, Architecture II introduces more complexity since a

new parameter needs to be adjusted. This is explored in our experimental evaluation (Chapter

6).

43

In this section, we proposed two architectures supported by a distributed database

system. We described their main ideas, how they would work and discussed the benefits and

losses of using each of them. We chose to use Architecture II to implement because it has all

advantages of Architecture I and is more flexible. In the next section, we describe how we

implemented Architecture II.

44

5 SCICUMULUS/C² ON A DISTRIBUTED DATABASE SYSTEM

In this chapter, we explain details of the implementation of SciCumulus/C² on a Distributed

Database System (d-SCC). In Section 5.1, we explain how we chose the DDBMS technology

we used. In Section 5.2, we present MySQL Cluster. In Section 5.3, we present the

architecture of d-SCC, which is the Architecture II, presented in the previous section, fitting

MySQL Cluster’s architecture. In Section 5.4, we show an extra module we developed to

manage DDBMS issues. In Section 5.5, we describe parallel data placement and

fragmentation in our solution. In Section 5.6, we explain how we implemented tasks

scheduling and why we removed MPI for this. Finally, In Section 5.7, we discuss fault

tolerance and load balancing.

 Technology choice 5.1

In order to accommodate either Architecture I or II, presented in the previous section, we need

a DDBMS technology. For this reason, we list necessary and desirable requirements.

First, the necessary requirements are: (i) It needs to provide efficient parallel and

distributed strategies (parallel query optimization and distributed concurrency control

mechanisms); (ii) It needs to be highly scalable – both (i) and (ii) are required because of the

distributed DBMS features that Architecture II relies on; and (iii) It has to be optimized for

OLTP queries – because multiple short and simple queries based on indexes are very

frequently performed in order to retrieve next runnable tasks and to update their status and

execution time when they finish.

Second, the desired requirements are: (i) It would be better if it were free licensed –

because we do not want to close our solution to a very specific DBMS technology; (ii)

SQL/relational model – SQL queries on a relational database with good indexes are known to

be efficient for quick and simple lookups, which are very frequent because of the scheduling

we described in Chapter 4, hence SQL queries would be desirable; (iii) it should implement

strong consistency – because besides retrieving tasks, slaves need to store back results of their

executions in the database. Thus, many updates occur at runtime and taking advantage of

strong consistency provided by the DBMS is desirable to facilitate our work; and (iv) it

should be able to be executed in shared disk architecture – because our motivating problem is

mainly focused on complex scientific applications, which are usually executed in very large

clusters operating on shared disk architecture Section 2.7)

45

Given these facts, we build up the following table.

Technology Relational/SQL Architecture License
Main

Disadvantage

NuoDB NewSQL SN
Very limited free

version
License

VoltDB NewSQL SN Proprietary License

MemSQL NewSQL SN Free trial License

SparkSQL SQL SN Proprietary
Little support

for OLTP

MySQL Cluster SQL SN Open
No support

for SD

Oracle TimesTen SQL Both Proprietary License

Oracle Coherence KeyValue Both Proprietary
License and

NoSQL

MongoDB Document SN Open NoSQL

Impala SQL-like SN Open

SN and

OLAP

optimized

HBase Column SN Open

SN and little

support for

OLTP

Presto SQL-like SN Open

SN and little

support for

OLTP

MonetDB Column SN Open

SN and

OLAP

optimized

Table 4 – DBMS technologies comparison

In Table 4, we mainly compare the technologies according to our needs previously

listed. All of them are said to be scalable and work on a distributed environment, with

distribution features. We first eliminate all options that provide little support for OLTP or are

mainly optimized for OLAP (online analytical processing), since we are mainly interested in

fast transactions rather than heavy analyses during execution. Proprietary technologies are

highly discouraged because of the reasons we stated; hence we cross out all DBMS

technology with a proprietary disadvantage. This leaves us to choose between MySQL

Cluster and MongoDB.

MongoDB is a NoSQL database, document-oriented. In addition to the desired

requirement (ii) previously mentioned, the SWfMS we are basing our implementation on

utilizes a data model that is essentially relational: PROV-Wf (Costa et al., 2013), as

presented in Section 2.5. Because of this, there are many relational queries that are executed

46

at runtime needed by the execution engine, which is totally based on the provenance database.

These queries generally involve both reads and writes, and joins among different relations.

NoSQL DBMS are not as concerned about ACID transactions as relational databases are,

which commonly implement strong consistent models. We need to keep all those writes

consistent, and these kinds of relational queries, involving joins, are better performed by

relational DBMS. Finally, one other important aspect is regarding development. Since SCC

already relies on a relational DBMS and the entire execution is driven by SQL queries, using

a different query language would require much more effort. By using a different DBMS, but

still a relational one, we could save lots of effort by just adjusting small differences in

specificities of the SQL dialect of this different relational DBMS.

MySQL Cluster is a relational DBMS, OLTP optimized, efficient for fast lookups,

provides efficient concurrency control mechanisms, and claims to provide high availability
8

(Oracle, 2015a). Just like most conventional DBMS, it is also possible to execute OLAP

queries on MySQL Cluster. Additionally, its fault tolerance mechanisms make it a good

choice for removing a single point of failure introduced by using a centralized DBMS.

Besides, it is an in-memory database cluster and it tends to be faster than regular on-disk

DBMS. However, MySQL Cluster has a limitation for our needs. It does not support shared

disk architecture
9
. Anyhow, especially because of our limited choices, we gave it a try.

 MySQL Cluster 5.2

MySQL Cluster requires three types of database nodes (or roles, as we call): ndbd, mysqld

and ndb_mgmd, which is a necessary manager node for MySQL cluster’s architecture. The

documentation recommends that each of these roles is placed on different physical machines

for higher availability purposes (Oracle 2015a). In Figure 10, it is shown MySQL Cluster

architecture and how its main components (i.e., the roles) communicate to each other. The

main role is the ndbd which is responsible for distributing queries, transaction management,

and data management. That is, most of the database processing is responsibility of the ndbd

role. Mysqld role basically works as a port through which clients or APIs may connect using

connection drivers (e.g., JDBC or ODBC) and issue SQL queries. Ndb_mgmd manages the

8
 www.mysql.com/products/cluster

9
 http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-overview.html

47

other roles, manage backups, and stores necessary configuration metadata.

Figure 10 – MySQL Cluster architecture
10

Database tables in MySQL Cluster need to run using NDB engine so they can be

distributed and replicated over all data nodes’ memory. As far as we know, full replication is

utilized. Even though MySQL Cluster is an in-memory database cluster, it continuously

executes check points on disk for failure recovery, even though this feature may be turned off

by the user, making it completely diskless. If this feature is turned on, however, even if all

database processes are finished or even if the entire cluster shuts down (assuming that the disk

will not be damaged), the database will be safely stored on disk. Moreover, we usually save a

backup of the database in the end of the workflow execution, enabling a posteriori analyses in

addition to runtime analyses.

 d-SCC Architecture 5.3

To accommodate our Architecture II in MySQL Cluster architecture, we have the data node

(dn) role and the database server (dbs) role in Architecture II analogous to ndbd and mysqld

nodes, respectively. Moreover, MySQL Cluster architecture requires an extra database node,

the database manager node (ndb_mgmd). We note that a ndb_mgmd node in MySQL Cluster

architecture is not to be confused with a supervisor node in Architecture II, because the

10

 Figure extracted from http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-overview.html

48

supervisor node is responsible for tasks distribution and other functions related to the

management of the actual workflow execution; the ndb_mgmd, on the other hand, is a

requirement for the MySQL Cluster architecture and is responsible for functions related to the

management of the distributed database. Furthermore, we highlight that ndb_mgmd is not a

requirement for our Architecture II. That is, if a different DDBMS is utilized in the future to

implement Architecture II, this role does not need to exist. Thus, these are the three roles that

compose the distributed database in our current implementation of d-SCC, which relies on

MySQL Cluster: dn, dbs, and ndb_mgmd.

In addition to the databases roles, we also have SciCumulus Core Nodes (SCN). In a

distributed execution, a SCCore module is instantiated on each machine that will play SCN

role, i.e., that will run the actual execution (recall from Section 3.4). SCNs are analogous to

slave nodes in Architecture II. Moreover, one SCN is chosen to work as the supervisor node.

Thus, using the notation introduced in Section 4.1, in an execution, there will be σ SCNs in the

cluster and one of them will act both as a supervisor and as a slave in our current

implementation of d-SCC. The characteristic of having a node to function both as a slave and

as a supervisor is inherited from SCC architecture, as explained in Section 3.4. The

architecture is illustrated in Figure 11.

Figure 11 – Current d-SCC architecture: Architecture II accommodating MySQL Cluster roles

49

Furthermore, in d-SCC, the BoT is completely placed in a distributed table and we

make use of MySQL Cluster features to improve communication load balancing
11

, in addition

to the algorithm presented in Section 4.4.4. We give more details on how we distribute it

across all data nodes in Section 5.5

 SciCumulus Database Manager module 5.4

As introduced in Section 3.4, SCC software architecture is built upon four modules:

SCStarter, SCSetup, SCCore, and SCQP. To conveniently manage the distributed database in

our solution, we developed an extra module: SciCumulus Database Manager (SCDBM). In

this section, we explain in details our added SCDBM module and modifications we needed to

adapt.

5.4.1 Pre-installation Configuration

In d-SCC, just like its predecessors, a list of machines on the HPC environment that will be

used in the workflow execution needs to be provided. The list is historically saved on a file

called machines.conf (Figure 12). These machines will compose the architecture and each

of them will play one or more roles (SCN, dn, dbs, ndb_mgmd) defined in Section 5.3.

11

 http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-basics.html

Number of processes

10

Protocol switch limit

131072

Entry in the form of hostname@port@rank

node1@20919@0

node2@20919@1

node3@20919@2

node4@20919@3

node5@20919@4

node6@20919@5

node7@20919@6

node8@20919@7

node9@20919@8

node10@20919@9

Figure 12 – machines.conf file example containing 10 machines

50

Configuring which role each machine will play may impact on performance, as we

explain and show in our experimental evaluation in Chapter 6. For this reason, in d-SCC, one

important configuration file, which we call installation.properties, is needed so users

can vary the architecture according to their needs. For example, a tradeoff between

performance and available resources needs to be analyzed, since the best performance may

demand a lot of computing resources. In installation.properties, users define values for

the parameters described in Table 3 from Section 4.5.1. More specifically, users need to

define three parameters: d (= number of dn), q (= number of dbs), and the number of

management nodes (ndb_mgmd).

After defining these three values, next step is to define which roles the machines may

accumulate. That is, to save resources, one may want each machine to play more than one role.

We divide this role accumulation concept into two types of accumulation: SCN and database

nodes.

For SCN accumulation, users define which database roles (i.e., dn, dbs, and ndb_mgmd)

a SCCore instance will play together with. For example, suppose we have 10 machines

available and we want all of them to play SCN role (i.e., to actually execute the workflow).

However, we need at least 3 roles for the database (dn, dbs, and ndb_mgmd). In this scenario

(10 SCN, 1 dn, 1 dbs, and 1 ndb_mgmd), we need to indicate that we want machines that will

play SCN role will also play dn, dbs, and ndb_mgmd. This means that three machines will play

two roles concurrently. On the one hand, this saves resources and more SCCore instances can

run hence more parallel execution; on the other hand, in three machines at least two processes

will compete for resources (especially memory and processor), which may interfere in

performance, as we discuss in our experimental evaluation (Chapter 6). Obviously, users are

able to indicate that each SCCore instance will run dedicatedly, i.e., machines that play SCN

role are not going to play database role.

For database nodes accumulation, users may want to indicate that a machine that plays

one of the database roles (dn, dbs, and ndb_mgmd) may accumulate more database roles. In

our exemplary scenario (10 SCN, 1 dn, 1 dbs, and 1 ndb_mgmd), we may want dbs and

ndb_mgmd roles to be played by the same machine, consequently the dn role will be played

dedicatedly by a different machine. We may combine both accumulation types to indicate

which of the four roles will be dedicated or will be concurrently played within a machine.

This brings flexibility to build the architecture according to the users’ interest. We vary the

51

architecture configuration and measure performance impact using these concepts in our

experimental evaluation in Chapter 6.

Currently, it is only possible to define the parameters d (= number of dn), q (= number

of dbs), the number of management nodes (ndb_mgmd), and which roles will be accumulated

or dedicated. Although it may easily be changed, it is not possible to define the parameter σ

for the number of SCNs. Instead, this number is derived from all previous definitions. For

example, if, in a scenario of 10 available machines, we define 1 dn, 1 dbs, and 1 ndb_mgmd

and we define that all database roles and all SCN will be dedicated, 3 machines will play one

database role each. Consequently, there will be 7 SCNs.

In addition to roles played in the architecture, users may also indicate which parallel

hardware architecture (either shared disk or shared nothing) the distributed database will be

installed on. We have claimed in Section 5.1 that MySQL Cluster does not support shared

disk. However, due to reasons we argued in Section 2.7, we want our solution to be able to

run on shared disk hardware architecture. For this, we needed a workaround: each database

role (dn, dbs, and ndb_mgmd) runs a process that only accesses a separate and independent

directory on the shared disk. The consequences of this workaround may be neglected if users

utilize the distributed database in totally in-memory mode. Otherwise, MySQL Cluster

continuously writes logs on disk for failure recovery. Even in this scenario, performance

should not be significantly impacted since the most important database processing (i.e.,

queries execution and distributed transaction management) occurs in-memory. If dedicated

specialized shared disk hardware (e.g., SAN) is used, this workaround impact can be

neglected. We highlight that this discussion is only a concern if the hardware architecture

requires shared disk. If, otherwise, shared-nothing clusters or clouds’ VMs are used, this

discussion may be completely neglected. In this case, user simply needs to set the parameter

is_shared_disk_installation to false in installation.properties file. In Figure 13, a

typical shared disk installation is shown. In this example, each dni saves data in

/root/mysql/nodes/datanode/<i>, where i = [0..d]

52

Figure 13 – Example of a directory tree in a shared disk installation

One other important file that users need to be concerned about is MySQL Cluster’s

initial configuration file (config.ini), which is used to define many important configuration

parameters
12

. Currently, we specifically determine values for the following parameters (Table

5).

12

 https://dev.mysql.com/doc/refman/5.0/en/mysql-cluster-ndbd-definition.html

53

Parameter Meaning

DataMemory

It defines the amount of space (in bytes) available for

storing database records. The entire amount specified by

this value is allocated in memory.

IndexMemory

This parameter controls the amount of storage used for

hash indexes in MySQL Cluster. Hash indexes are always

used for primary key indexes, unique indexes, and unique

constraints.

Diskless

When set to true, this causes the entire distributed database

to operate in diskless mode; hence there will be no disk

checkpoints and no logging. Such tables exist only in main

memory. As a consequence, the shared disk discussion

above may be neglected, but tables would not survive a

catastrophic crash and data would be lost after execution if

a backup is not saved on disk for a posteriori analyses.

NoOfReplicas

It defines how many replicas the database will have.

Replicas reside in memory. A common value is 2, but if 1

is used, a data node failure causes the entire distributed

database to fail. Thus, value 1 is not recommended.

MaxNoOfExecutionThreads

Each data node process may handle parallel transactions.

This parameter controls the number of threads used by the

data node process, up to a maximum of 8 threads.

Although this may manually be set by the user, this

parameter is automatically set by default to the number of

cores defined in d-SCC’s XML configuration file.
Table 5 – Important MySQL parameters defined

If these parameters are not set by the user, SCDBM will set default values. Two

parameters are important to be mentioned. First, NoOfReplicas may only assume values

from 1 to 4 and it must divide evenly into the number of data nodes in the cluster of data

nodes. For example, if there are two data nodes, then NoOfReplicas must be equal to either 1

or 2, since 2/3 and 2/4 both yield fractional values; if there are four data nodes, then

NoOfReplicas must be equal to 1, 2, or 4
13

. Second, MaxNoOfExecutionThreads is limited

by 8. We commonly set this value to be equal to the number of cores in each machine that

host a data node, but if a machine has more than 8 cores, we can only set

MaxNoOfExecutionThreads to at most 8.

Finally, the file main-template.sql contains the main DDL script that will be used to

create the database. What is important to mention in this file is the number of partitions of the

table that hosts the BoT (EActivation). If this parameter is not set by the user, SCDBM

automatically tries to set it to the number of slaves (σ, as defined in Section 4.1). However,

MySQL Cluster limits the number of partitions to

13

 https://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-

noofreplicas

54

 /
14

, which is the upper bound limit SCDBM

defines for the number of partitions.

5.4.2 Initialization Process

After defining all these previous parameters, the distributed database may be initialized. It is

known that initiating each role on each machine may be a complex task for humans,

especially in a scenario with a huge number of nodes. Yet, depending on the HPC security

constraints, it may not be trivial to access each composing machine individually to install the

required programs. For this reason, we developed an automatized process that reads all

parameters predefined by the user and initialize each role on each machine by running only

one Java program (SCDBM.jar – The SC Database Manager module) from only one of the

machines that is able to access the other composing machines. It is necessary to specify the

XML configuration file that contains main properties of the workflow execution and

conceptual specification:

java –jar SCDBM.jar SC.xml --start

This program begins by generating four files. (i) One file is generated based on a

template script for creating the main database and its tables. Tables that need to be partitioned

based on parameters are resolved at this time. For example, in our current solution, the table

that hosts the BoT (EActivation) is horizontally partitioned into σ (=number of SCCore

Nodes) fragments. For this, the number of partitions is explicitly defined in MySQL’s DDL

scripts. However, in our implementation, σ is derived as explained in Section 5.4.1). Thus,

SCDBM reads the template script file and correctly writes the number of partitions that will be

used in that specific workflow execution; (ii) The second file is based on a template for the

config.ini file (Section 5.4.1). Currently, two parameters are set at this time by SCDBM:

NoOfReplicas and MaxNoOfExecutionThreads, which are set, respectively, to the number

of data nodes and to the number of cores that the machines that will host the database nodes

have. We note, however, that these values will only be automatically set if the user does not

specify them. Otherwise, the effective values will be what the user specified; (iii) The third

file lists σ machines which will play SCN role, i.e., will effectively run the workflow. This file

is generated based on the machines.conf file and on discussion on roles accumulation we

presented in Section 5.4.1; and finally, (iv) the forth file lists q (number of dbs nodes)

14

 https://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-nodes-groups.html#mysql-cluster-nodes-

groups-user-partitioning

55

machines through which the SWfMS will connect to the database cluster. This file is also

generated based on the on discussion on roles accumulation we presented in Section 5.4.1.

After generating and correctly placing all these files, SCDBM begins the distributed

database initialization. It first starts mgm_ndbd nodes, then the data nodes, and finally the dbs

nodes. Following, the database is created using the generated DDL script and a verification is

done to check if all database nodes were correctly initialized. If not, users need to check logs

which are continuously appended during initialization to look for errors. Finally, when

everything is set up, the workflow execution may begin.

The database cluster initialization process takes at least one minute to conclude, for

small configurations. This time is going to be greater if a large number of database nodes is

used. However, we note that is process should occur only once and many workflow

executions may use the initialized distributed database. There is also a convenient shutdown

command which safely shuts down all processes that compose the distributed database on all

machines hosting it. A common sequence of steps for running a workflow on a cluster

environment is:

SCDBM --start

SCSetup --create database

SCStarter --start

SCDBM --shutdown

In addition, we highlight that during execution, users may interact to the distributed

database through one of the dbs. By doing this, custom analyses (including merging with

domain-specific data), monitoring, and steering may be performed.

 Parallel Data Placement, BoT Fragmentation, and Tasks Scheduling 5.5

Recall from the parameters in Table 3, seen in Section 4.5.1, that some parameters need to be

adjusted in order to build Architecture II. In our current implementation of such architecture,

we fixed some parameters. We highlight that although this makes the concrete architecture

implementation simpler, our theoretical Architecture II is supposed to be flexible so these

parameters do not need to be fixed or predefined by users. Currently, in our implementation,

the parameters are adjusted as shown in Table 6.

56

Parameter Brief description Value

d #data nodes Fixed, defined by user (see Section 5.4.1).

q #dbs nodes Fixed, defined by user (see Section 5.4.1).

M
#partitions Fixed σ (#SCN nodes) and σ is derived as

explained in Section 5.4.1.

S #slaves per dbs node Fixed σ/q
Table 6 – Simplified configuration of Architecture II, as utilized in our current concrete implementation

Mainly as a matter of simplicity, we implemented Architecture II fixing that the

number of partitions is equal to the number of SCN nodes. By doing this, we reduced the

complexity of our solution because choosing an optimal value for M is another problem by

itself. We highlight that this may be easily changed by explicitly specifying the number of

partitions. If not specified, the SCDBM module will set this number to σ. However, although

the larger σ, the more we can benefit from parallelism, MySQL Cluster limits the number of

partitions
15

 by / . The parameters

MaxNoOfExecutionThreads and NoOfReplicas are explained in Table 5.

 Moreover, if σ is large (e.g., in order of hundreds), our solution will take a lot of

advantage of parallelism.

To tackle fragmentation, data placement, and initial tasks distribution, as described in

Sections 4.5.1 and 4.5.2, MySQL Cluster enables total horizontal fragmentation (partitioning)

only based on the primary key
16

. Regarding data placement, MySQL Cluster applies a hash

function based on the primary key that places each task on the right partition
17

. For this reason,

we changed the schema of the table that hosts the BoT (EActivation) by adding the

identification of the SCN (Section 5.3) to which a task is assigned during initial tasks

distribution to compose the primary key. We note that an alternative for this would be

defining partitions based on the SCN id. By doing this, we could keep all tasks that are

assigned to a same SCN on a same partition, which could enhance performance. However,

since the SCN id by itself is not a key in our solution and MySQL Cluster only partitions by

key, this alternative is currently not possible.

Initial tasks distribution works in a circular fashion, as described in Section 4.5.2.

Nonetheless, for each task in the work queue, the supervisor circularly assigns the id of the

SCN which is supposed to execute the task because we fixed that there will be σ partitions

15

 https://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-nodes-groups.html#mysql-cluster-nodes-

groups-user-partitioning
16

 https://dev.mysql.com/doc/refman/5.5/en/partitioning-limitations-storage-engines.html
17

 https://dev.mysql.com/doc/refman/5.6/en/partitioning-key.html

https://dev.mysql.com/doc/refman/5.6/en/partitioning-key.html

57

(limited by a value previously explained). After all initial tasks distribution and placement, the

actual scheduling begins and it works exactly as described in Section 4.4.2.

 Tasks Scheduling relying on the DBMS, MPI removal, and Barrier 5.6

As already explained in Section 3.4, historically, SCC implements its CWQ BoT scheduling

based on message passing, utilizing MPI. However, we have argued that one important

motivation for a BoT tasks scheduling relying on a DBMS is that it is a specialized system in

parallel and concurrency issues; hence, it would be a good idea to outsource our scheduling

implementation and take further advantage of the DBMS’s features. By doing this, we would

alleviate our work to solve these parallel and concurrency issues, which are usually complex,

and focus on issues that are inherent to our application (recall from Sections 4.2 and 4.3). For

this reason, since MPI in SCC was essentially used to implement tasks scheduling, we were

able to completely remove it. As described in details in those mentioned sections, instead of

having a master that is the only node that may access the BoT (which was managed by a

DBMS in traditional SCC), now, in our solution, all nodes in the cluster may directly retrieve

next runnable tasks by directly accessing it. Concurrency issues are resolved by the DBMS.

However, as described in Section 0, one of the dataflow strategies supported by SCC

is what is called FAF. Recall that, in FAF, the next activity may only start execution if the

previous activity (on which the next activity depends) is completely executed. This is a

blocking strategy since, if a node finishes executing activations for an activity, it needs to wait

for all other nodes to finish their work so it may continue on the flow. This logic is inherent to

our problem, which is essentially centered on dataflows. As we have been arguing, since it is

not related to tasks scheduling but, rather, related to our own application logic, we cannot

outsource this to the DBMS. Thence, we needed to implement this logic ourselves.

In order to do this, we utilized the classic concept of barrier in parallel programming

(Arenstorf and Jordan, 1989). We implemented it in our application as follows. The first node

that begins execution of an activity becomes the barrier manager. Within each activity, when

a node (including the manager) finishes all activations assigned to it, it notifies the manager

that its work has finished and waits. When the manager receives a number of notifications that

is equal to the number of slaves, it notifies all waiting nodes so they can keep on working and

get activations of the next activity. This is done until all activities finish.

Regarding technology, we need a tool that enables nodes communication. One way to

do to this is by making use of a dedicate attribute of a table managed by the DBMS, which is

58

used as common mean of communication among all nodes. Since it would be only small

notification messages, queries would not be complex and the amount of data transmitted

would be small. However, nodes would only know that they were notified if they kept

querying the database looking for a data change. For example, a false value would mean that

there is still some node working, so all nodes should wait, and when this value is set to true,

all nodes may continue. Nodes would only acknowledge this value change if they keep

continuously querying the database, which could cause network congestion and downgrade

performance.

Alternatively, a message passing library could be used, like MPI. Nevertheless, MPI is

a robust library and is common in scenarios of data transmission of complex data types and

various data sizes. In our problem, as we argued, we only need to pass notification messages,

which are simple and small. In addition, since SCC is written in Java and uses MPJ
18

 (known

as MPI for Java), its MPI implementation is more limited and does not support fault tolerance

if a slave node fails, limiting future work for this. Because we were able to completely

remove MPI to implement our tasks scheduling relying on the DDBMS, it is not necessary to

use it just for notification message passing. For this reason, we decided to implement the

barrier as described before using native Java Remote Method Invocation (RMI)
19

 together

with Java native synchronization directives (wait and notify 20) in our current

implementation. Java RMI is known for being simple and easy to use and lightweight, which

fits our barrier needs.

 Fault tolerance and load balance 5.7

By using an architecture inspired in WQRM (Section 4.1) and using a DDBMS that allows

replication of the BoT, we increase the availability of the system. If a machine that hosts a

replica of the BoT fails, the entire system does not fail and execution does not stop because

we make of use of the replication feature. We highlight that this failure recovery mechanism

is outsourced and implemented by the DDBMS – which is acknowledged for being efficient

in handling failures (Özsu and Valduriez, 2011) –, and not by our parallel application, which

simplifies our solution.

In addition to the distributed database availability, we also mention fault tolerance for

nodes that do not compose the distributed database in our theoretical architectures (Chapter 4).

18

http://mpj-express.org/

19
 http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/

20
 http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notify()

59

Regarding fault tolerance of the supervisor node, we added a secondary supervisor node to

remove a single point of failure. Regarding fault tolerance of the slave nodes, we explained

that it may be achieved by implementing strategies such as proposed by Anglano et al. (2006).

However, we did not further explain in details how these strategies would apply hence we did

not implement in our current solution. Nevertheless, this is being currently tacked and a more

formal description to incorporate fault tolerance on slaves and on supervisors will be provided

in future work. Furthermore, we described that it is possible to enhance load balance by

verifying whether or not work stealing is advantageous. However, we did not implement it in

our current solution and this is also being provided for future work.

60

6 EXPERIMENTAL EVALUATION

In this chapter, we present the experimental evaluation of our implementation of Architecture

II as described in Section 4.5 and in Chapter 5, where we introduced SciCumulus/C² on a

Distributed Database System (d-SCC).

Regarding hardware, we ran several simulations using Grid5000
21

, which is composed

of many different clusters distributed in regions in France. In Grid5000, for each region, all

clusters share a file system. The hardware specification of each cluster we used is described in

Table 7. Regarding software, we implemented our solution using MySQL Cluster version

7.4.6. Specifically, we used a compressed TAR file with binaries for generic Linux 64-bit

distribution. We ran most experiments three times and used the average value to present the

results.

Cluster /

Region
Processors #Nodes

22

#Cores

per node

Total

cores

Memory

per node
Network Storage

Parapide

/ Rennes

Intel Xeon X5570

2.93GHz/6MB
21 8 168 24 GB InfiniBand

SATA II 7200

RPM (RAID-1

and RAID-5)

Graphene
/ Nancy

Intel Xeon X3440

2.53 GHz
138 4 552 16 GB InfiniBand SATA AHCI

Stremi
/ Reims

AMD Opteron

6164 HE

1.7 GHz/12MB

42 24 1008 48 GB
Gigabit

Ethernet

SATA AHCI &

RAID-5

Table 7 – Hardware specification of clusters in Grid5000

The remainder of this chapter is organized as follows. In Section 6.1, we describe the

workflows we experimented. In Section 6.2, we evaluate architecture variations in order to

analyze the impact of the many different possibilities to configure our architecture. In Section

6.3, we analyze speedup, scalability, and efficiency for different workflow complexities. In

Section 6.4, we show that d-SCC works for a workflow that contains all existing SciWfA

operators (Section 3.1) and we also show the efficiency on running a real bioinformatics

workflow. Finally, we compare d-SCC with the most recent version of SCC in Section 6.5.

 Workflows case studies 6.1

We utilized different workflows to evaluate d-SCC; both synthetic and real workflows were

experimented. More specifically, we used the Scientific Workflow Benchmark (SWB)

21

 www.grid5000.fr
22

 The number of available nodes in these clusters may vary mainly depending on hardware health. Our

experiments were conducted in May 2015 and those are the available nodes we could use in that time.

61

(Chirigati et al., 2012), a synthetic deep water oil exploration workflow (adapted from

(Ogasawara et al., 2011), and SciPhy, a real bioinformatics workflow (Ocaña et al., 2011).

Most of our tests were run using SWB. In SWB, we can generate synthetic data-

centric workflows with a specified number of activities; specify how each activity consumes

and generates data; and control the manipulated data. For example, it is possible to specify a

2-activities Map-Reduce workflow: the first activity consumes and produces one tuple at each

invocation (i.e., it has a Map behavior) and the second activity, dependent on the first activity,

consumes many tuples and produces one at each invocation (i.e., it has a Reduce behavior).

Moreover, we can determine the problem size (i.e., the number of tuples that will be

consumed) as well as the complexity of each computation (i.e., the average elapsed time for

each task).

In this work, we generated two SWB workflows and we are going to call them 1-map

(a simple workflow with one Map activity only) and 3-map (three Map activities, with data

dependency in between). Figure 14 Figure 1shows an activity diagram for each of them. For

each experiment, we varied both problem size and complexity. Since we only utilized SWB

Map activities and each input tuple corresponds to a task that needs to be scheduled and

outputs another tuple, we use the term “number of tasks” instead of “number of tuples” when

we refer to the problem size of either 1-map or 3-map workflows, for readability of this text.

Figure 14 – 1-map and 3-map SWB workflows experimented

In addition to the SWB, we experimented a more complex workflow in order to

investigate whether or not our solution works for all current SciWfA operators (Section 3.1).

The workflow experimented is a synthetic adaptation of a deep water oil exploration

workflow specified by Ogasawara et al. (2011) and is illustrated in the activity diagram in

Figure 15.

In this workflow, some data files are processed and it has 7 activities, including two

that may run in parallel. It is inspired in SWB in the sense that we can control both the

problem size and complexity of tasks.

62

Figure 15 – Deep water oil exploration synthetic workflow (adapted from Ogasawara et al., 2011)

Finally, the last workflow we experimented is SciPhy, a bioinformatics workflow for

phylogenetic analysis of drug targets in protozoan genomes (Ocaña et al., 2011). It also has

many big files manipulated and is illustrated in the activity diagram in Figure 16.

 Architecture variations 6.2

Our current implementation of d-SCC is composed of four different roles: dn, dbs ndb_mgmd,

and SCN, as we explained in details in Section 5.3. Moreover, we have argued in Section 5.4.1

that configuring which role each machine will play may directly impact performance. For this

reason, in this section, we want to vary the architecture configuration, measure performance

impact for each configuration, and try to find the most suitable configuration for a given

problem.

63

Figure 16 – SciPhy workflow (extracted from Ocaña et al., 2011).

Experiment 1. In our first experiment, we want to investigate whether or not we

should run, for example, dn nodes or SCN nodes dedicatedly; or if running them altogether on

the same machine has a significant impact. For this, we used the 1-map workflow setting the

problem size to 10 k tasks and average cost to 1 millisecond for tasks. This means that tasks

are extremely light and no much computation is needed for each of them. By doing this, we

stress the database, since there are many very frequent accesses to it, including reads (get next

ready task) and writes (update a completed task status). We only used one node of each role,

i.e., we used at most 4 machines at the same time. We ran on Parapide cluster, which has 8

cores per machine. However, since we wanted to analyze the behavior when all roles were

concurrently running on a same machine, we set the maximum number of threads used both

by SCN and by dne data node) to 4. We ran five variations of the architecture, as described in

Table 8 and the results are shown in Figure 17.

64

 Description

Number of

used

machines

I Each machine dedicatedly runs only one process, for each d-SCC role. 4

II
SCN runs dedicatedly on a machine; DN also runs dedicatedly on another

machine; and dbs and ndb_mgmd run together on a third machine.
3

III
SCN and DN processes run concurrently on a same machine; and dbs and

ndb_mgmd run on another machine.
2

IV
SCN dedicatedly on one machine; and all other database nodes (dn, dbs, and

ndb_mgmd) run together on another machine.
2

V All four roles run together, concurrently, on a single machine. 1
Table 8 – Description of each run of Experiment 1.

Figure 17 – Results of Experiment 1. Varying architecture: shared or dedicated nodes?

From the results, we can see that the variation V showed the best execution time, even

though the difference is small. This means that despite having more concurrency in V than in

any other variation, the concurrency overhead is lower than the communication overhead. A

good conclusion from this result is that the variation with the best execution time required the

least number of resources (i.e., only one machine); as a consequence, it points out that we will

be able to use more machines to host SCN processes without significantly impacting

performance, which is the ideal for us. Another important conclusion is related to the idea of

data locality. We could expect that having SCN and dn together on a same machine would

improve performance since less communication would be required to access the database.

However, the result from variation III contradicts this expectation. Comparing variation III, in

which SCN and dn are located on the same machine, with variations II and IV, in which SCN

and dn are in different machines, we see that III has the worst execution time. However,

comparing III with V, in which SCN and DN are also in the same machine, we see that V has a

better performance, suggesting that the communication cost between SCN and dbs also adds a

444 442
518

422 415

0
100
200
300
400
500
600

I.

All dedicated

II.

SCN & DN

dedicated;

dbs & ndb_mgmd

shared

III.

SCN & DN shared;

dbs & ndb_mgmd

dedicated

IV.

SCN dedicated;

dn, dbs, ndb_mgmd

shared

V.

All shared

Execution Time (s)

65

non-negligible overhead. Thence, we may conclude that keeping all roles together has the best

performance especially due to the lowest communication overhead, even though it has the

greatest concurrency overhead. Nevertheless, we need to emphasize that while the machines

have 8 cores, we only used at most 4 cores and forced both SCN and dn to instantiate at most

four threads each process, meaning that concurrency overhead is reduced in all these results

and we are not using all possible cores for SCN. For this reason, we still need more

experiments to have better conclusions.

Experiment 2. This experiment aims to analyze the behavior of our solution in a more

concurrent scenario. To do this, we ran the same workflow with the same configuration as in

Experiment 1 and we used the variation V of our architecture, that is, only one Parapide (8

cores) machine with all roles sharing this same machine. However, instead of using only four

threads at most, we ran two more variations: one with 2 threads (both for the SCN and for the

dn) and another one with eight threads. We reused the result obtained in variation V in Figure

17 for four threads. Ideally, when we double the number of threads, the execution time should

be divided by two. The results are shown in Figure 18, in which the blue line represents d-

SCC’s execution time and the red line represents the ideal execution time. The green bars

represent how far from the ideal d-SCC achieved, in seconds.

Figure 18 – Results of Experiment 2: increasing concurrency

If d-SCC had taken 736 seconds with two threads, the ideal would be if it took 368

seconds (736 * 0.50) with four threads. However, it took 415 seconds (736 * 0.5633), which

represents 47 seconds (or 11.2%) of difference from the ideal execution time. With eight

threads, the ideal time would be 184 seconds (368 * 0.5), but it took 234 seconds (415 *

0.5643), which represents 50 seconds (or 11.4%) from the ideal time. This difference from

47 50

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

2 threads 4 threads 8 threads

Ti
m

e
 (

s)

Difference from ideal d-SCC Ideal

66

ideal is caused due to parallel management overheads. From these results, we mainly want to

show that the overhead caused by concurrency remains close to constant comparing running

on four threads with running on eight threads. This means that difference between the

overheads with four threads and with eight threads is so small (0.2%) that it can be neglected.

In other words, we conclude that we can set the maximum number of threads to be used both

by the SCN and by the dn to be equal to the number of cores in the machine. By doing this, the

efficiency should not be significantly impacted, at least for one single machine. Although it

cannot be generalized for a greater number of machines, this result is meaningful because we

are first mainly interested in finding a good configuration for our architecture rather than

running massive experiments to measure speedup and scalability in larger clusters. Moreover,

we are going to present a similar experiment running on a 960 cores cluster to measure

speedup in next section.

Experiment 3. In this third experiment, we want to analyze the impact of having more

database nodes (dn, dbs, and ndb_mgmd) on the system. For this, we ran our tests on Parapide

cluster, with 21 nodes and 8 cores each (168 cores total). Each of the 21 nodes hosts a SCN

process and the database processes are shared. For example, if we configure 2 dn, 2 dbs, and

2 mgm_ndbd (this is the default configuration recommended to remove single points of failure),

3 machines would run 1 dn, 1 dbs, 1 mgm_ndbd, and 1 SCN concurrently each; the other 18

machines would only run SCN processes, dedicatedly (recall from Section 5.4.1). Regarding

the workflow, we used the 1-map workflow, around 20K tasks with 16 s average task cost.

To present the results, we used the real speedup (Speedup) metric, as defined in Section 2.8.

To calculate the time to execute the workflow with the best (theoretical) sequential program

using one processor, we multiplied the approximate number of tasks by the average task cost.

The workflow execution takes approximately 3.8 days. We also calculated the difference that

each variation has from the best result. The results are shown in Figure 19.

67

Figure 19 – Results of Experiment 3. Varying architecture: changing the number of database nodes.

From the results, comparing the variation I with V, VI, and VII, we can see that

varying either the number of mgm_ndbd or the number of dbs nodes, no much impact is

caused on the system’s performance. Thus, at least for an experiment with similar

characteristics to this Experiment 3, changing the number of mgm_ndbd or dbs has no impact

on performance. Since it has no impact on performance, this result enforces the idea that we

should use at least two nodes for each of these roles so improve availability and remove single

points of failure.

Nevertheless, comparing I with II, II, and IV, we can verify that the number of dn

interferes on the system’s performance. These results lead us to believe that increasing the

number of dn decreases performance. However, we note that the difference on performance

between variations I, II, III is at most 2.1%, which may be considered small; even the

difference in relation to variation IV, which is about 5%, is not very critical. Anyhow, since

we were not expecting the performance to decrease when data nodes were added, we further

investigate the impact of the number of data nodes on a larger cluster.

Experiment 4. In this experiment, we want to evaluate the impact on varying the

number of data nodes (dn) using a larger configuration. For this, we used 138 machines in

Graphene cluster, each with 4 cores, summing 552 cores. We ran the 1-map workflow with

around 20K tasks with 1 s tasks cost average. We note that the tasks cost in this experiment is

considerably lighter than in Experiment 3. By doing this, we want to stress the DDBMS with

many frequent short queries, with both read and write behavior. Similarly to Experiment 3,

0.10%

2.10%

4.10%

6.10%

8.10%

10.10%

12.10%

14.10%

16.10%

18.10%

120

125

130

135

140

145

150

155

160

165

I.
1mgm
1dbs
1dn

II.
1ndb_mgmd

1dbs
2dn

III.
1ndb_mgmd

1dbs
3dn

IV.
1ndb_mgmd

1dbs
4dn

V.
1ndb_mgmd

2dbs
1dn

VI.
1ndb_mgmd

3dbs
1dn

VII.
2ndb_mgmd

1dbs
1dn

Speedup Difference (%)

68

we also used the real speedup metric and the best (theoretical) sequential program using one

processor would take about 6 hours to run. The results are shown in Figure 20. The blue line

represents the speedup varying the number of data nodes when 2 dbs, 2 mgm_ndbd, and 132

SCN were used in a shared way (similarly to Experiment 3); the red square shows the speedup

when 2 dn, 2 mgm_ndbd, 132 SCN, and 8 dbs nodes were used in a shared way; and the

difference between each variation and the best result for this experiment is represented in gray

bars.

Figure 20 – Results of Experiment 4. Varying architecture: increasing number of data nodes.

Conversely, the results of Experiment 4 show that there is not a clear pattern in

relation to adding data nodes as Experiment 3 suggested. Using two data nodes instead of

one resulted in a worse performance, but the difference between these two variations is close

to 2%, similarly to Experiment 3. However, using 4 data nodes had a better performance than

using two and, more surprisingly, using eight data nodes resulted in the best performance.

Using 16 data nodes downgraded performance, but the speedup was not very different than

when using 1 or 4 data nodes. From these results, we can conclude that when there are

multiple short queries (both read and write), using multiple data nodes may alleviate

congestion at the DDBMS, leading to better performance than using a low number of data

nodes, especially in a large cluster with many machines (e.g., 130 machines). We also

highlight that the difference of the performance impact comparing these variations is not very

high: about 5% at most. In addition to analyzing the number of data nodes, we also ran a

single variation on the number of dbs nodes, although it is not presented in Figure 20. We

evaluated the utilization of 8 dbs instead of 2. We could see that using 8 dbs instead of 2 led

to a better performance, even though the difference is small (about 1% in relation to using 2

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%76

77

78

79

80

81

82

83

84

1 2 4 8 16

Number of dn

Difference (%) Speedup 2 dbs

69

dbs). This happened most likely because congestion is alleviated when using more ports to

which the 132 SCNs connect.

Experiment 5. In this last experiment for our architecture variation, we want to

analyze differences in relation to the DDBMS configuration. In MySQL Cluster, it is possible

to configure the amount of memory will be used to store data. Moreover, another important

discussion is related to the fact that we can run MySQL Cluster completely in-memory (recall

from the discussion in Section 5.2). Because of these differences, we want to investigate how

d-SCC behaves when the DDBMS configuration varies.

We ran two tests, each to analyze different features of the DDBMS. In the first test (I),

we analyzed data memory capacities using the 1-map workflow with approximately 10 k

tasks, 1 millisecond average task cost, 3 SCN, 1 dn, 1 dbs, 1 mgm_ndbd, and each of them

running dedicatedly (total of 6 machines) on Parapide cluster. In the second test (II), we

compared the performance when running in diskless (in-memory) mode with running using

on-disk checkpoints. We ran the 1-map workflow with approximately 50 k tasks, 2 s average

task cost, 21 SCN, 1 dn, 1 dbs, 1 mgm_ndbd, in a shared way, on Parapide cluster. We highlight

that this was the first time that this amount of tasks was successfully executed in any version

of SCC so far. The results are shown in Figure 21.

I. Varying data memory II. In-memory vs. on-disk

Figure 21 – Results of Experiment 5: varying configuration of the DDBMS.

From the results of Figure 21(I), we can see that varying the data memory capacity has

no significant impact on performance. The results of Figure 21 (II) show that even though

running in diskless mode has 10 s of advantage comparing with on-disk checkpoints mode,

the difference is not critical (1.5%). On-disk checkpoints mode has the advantage of

520
524
528
532
536
540
544
548
552
556
560
564
568

550M 950M 1950M

Data memory

Execution time (s)

0.00%
0.50%
1.00%
1.50%
2.00%
2.50%
3.00%
3.50%
4.00%
4.50%
5.00%
5.50%
6.00%
6.50%

700
705
710
715
720
725
730
735
740
745
750
755
760

Diskless On-disk

Execution time (s) Difference (%)

70

persistence, meaning that if a catastrophic disaster happens or if the energy of the entire

cluster fails, the data will remain as long the disk is not damaged. Diskless mode is indeed

faster and we usually save a backup of the database when the workflow execution finishes for

a posteriori data analyses, but if all data nodes fail (i.e., a catastrophic disaster), there will be

data loss even if the disk remains intact.

Therefore, from the five experiments we conducted for the architecture variations, we

can summarize the following conclusions. Using the all-shared mode has shown to deliver the

best performance for the experiments conducted (Experiment 1); setting the maximum

number of threads as equal to the number of cores in the machine delivers a good

performance in a small cluster and more experiments are needed in a larger cluster

(Experiment 2); the number of dbs and ndb_mgmd has no significant impact on performance,

hence we should use at least two of each to improve availability and remove single points of

failure (Experiment 3); many data nodes may either downgrade or improve performance,

depending on the number of SCN and problem complexity (tasks cost) – however, the

difference between a lower number and a greater number of dn is not very high, hence it is

advantageous to use at least two data nodes to remove single points of failure (Experiment 4);

and data memory variation has no big impact and diskless mode has a slightly better

performance than on-disk checkpoints mode (Experiment 5). For these reasons, all of our

next experiments, unless we specifically state differently, were ran using all-shared mode,

number of threads equals to number of cores, at least two database nodes (i.e., 2 dn, 2 dbs,

and 2 ndb_mgmd), and diskless mode.

 Scalability, speedup, and efficiency 6.3

In this section, we use known performance metrics to evaluate our system. First, we

evaluate scalability; then, the speedup varying the number of SCN, including different threads

per node; and, finally, we measure the efficiency of d-SCC for different problem complexities.

Experiment 6. In this experiment, we measure scalability using 1-map, 32 s tasks

cost average, on Stremi cluster (24 cores per node). We varied from 5 nodes (120 cores) – 2,5

k tasks to 40 nodes (960 cores) – 20 k tasks. The results are shown in Figures Figure 22 and

Figure 23.

71

Figure 22 – Results of Experiment 6: scalability analyzing execution time.

Figure 23 – Results of Experiment 6: scalability analyzing efficiency.

The ideal is calculated using the concepts about scalability introduced in Section 2.8.

From the figures, we can observe a close-to-constant execution time when we double both

number of nodes and the problem size. Even though the results were farther from the ideal for

960 cores, the efficiency of the system remained over 80% in all executions. Since the number

of cores is relatively large, we consider this a good result.

Experiment 7. To evaluate efficiency when varying complexity (i.e., tasks cost), we

used 3-maps workflow for the first time, with 10 k tasks per map (i.e., 30 k tasks in total). By

doing this, we can also investigate a different known inherent overhead of SCC: caused by the

FAF dataflow execution strategy (recall from Section 0). Regarding hardware, we used all

0

3

6

9

12

15

18

21

24

120 cores
2,5 k tasks

240 cores
5 k tasks

440 cores
10 k tasks

960 cores
20 k tasks

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

)

Scalability (execution time)

Time (min) Ideal

97% 91%

81%

0%

20%

40%

60%

80%

100%

120 cores
2,5 k tasks

240 cores
5 k tasks

440 cores
10 k tasks

960 cores
20 k tasks

Scalability (efficiency)

Efficiency Ideal

72

available machines in Stremi cluster, summing 1,008 cores. We also highlight that this was

the first time that this amount of cores was successfully used to run any version of SCC so far.

The results are shown in Figure 24, where the blue line represents our actual execution

including a contention overhead, which we will explain next; and the red line represents the

efficiency if we removed such overhead.

To measure efficiency, we used the efficiency metric, which is based on the real

speedup metric, as we defined in Section 2.8. To calculate the time to run the workflow

running the best (theoretical) sequential program using one processor, we multiplied the

approximate number of tasks by the tasks cost average, resulting in approximately 9 hours, 35

hours, 69 hours, 138 hours, and 551 hours for tasks cost average 1 s, 8 s, 16 s, and 65 s,

respectively. We highlight that this theoretical sequential time is even farther from reality than

in the previous experiments we ran, because it does not include any overhead, which is

unrealistic in most large parallel systems, and we have a specific significant overhead are we

are going to discuss.

Figure 24 – Results of Experiment 7: varying complexity (tasks cost).

The first conclusion we can get from the results analyzing any of the two lines is that

the greater the complexity of the problem, the better efficiency d-SCC achieves. This is an

expected result and is common in most parallel systems. Indeed, the calculus of efficiency is

directly proportional to the sequential execution time, which is directly proportional to the

tasks cost average; thus, it is expected to achieve such conclusion. Moreover, Raicu et al.

mention that tasks in MTC are short, but in the order of seconds or minutes to run (2008).

Even though our solution suffers due to overheads when computing many very light tasks,

9%

44%

61%

86%

18%

68%

81%

94%

0.00%
7.00%

14.00%
21.00%
28.00%
35.00%
42.00%
49.00%
56.00%
63.00%
70.00%
77.00%
84.00%
91.00%
98.00%

1 s 8 s 16 s 65 s

Ef
fi

ci
e

n
cy

Tasks Cost Average

Efficiency with contention overhead

Efficiency without contention overhead

73

such as less than 8 seconds in average, in tasks weighting in the order of minutes, we attain

excellent efficiencies (frequently over 80% in a 1,000 cores cluster).

In addition, comparing the red line with the blue line in Figure 24, we can see that our

system suffers considerably due to the contention overhead caused by the FAF strategy.

Specifically, when all nodes finish their tasks for an activity, all nodes remain blocked until

the supervisor generates new tasks for the next runnable activity and schedules to all SCN,

which will only start their execution when all tasks are generated and scheduled. Thence,

generating tasks per activity causes a contention in current implementation of our solution,

which is more critical for a great number of tasks per activity. This is an inherent overhead in

all implementations of SCC for the FAF strategy.

We can measure this overhead because when all nodes finish their tasks for a certain

activity, the supervisor marks this activity as “finished” and registers in the provenance

database how long this activity took to execute. The SCNs will only start executing tasks for

the next runnable activity when all tasks for this new runnable activity are generated and

scheduled. Thus, the overhead mainly caused by generating and scheduling tasks is given by

the difference between the total workflow execution time and the summation of the execution

time of all activities, as registered in the provenance database.

The red line in Figure 24 shows the efficiency if this overhead did not exist. This

overhead is directly related to the number of tasks rather than the problem complexity; hence,

it remains constant even if the problem complexity varies. For greater complexities, the

execution time is much greater than the overhead, reducing its impact. For this reason, the

difference between the red and blue lines tends to decrease when the complexity increases,

meaning that for computationally complex problems, this overhead may be neglected.

Anyhow, this conclusion is important because it indicates directions for future improvements

in our system. Finally, this overhead may be reduced if tasks were generated in parallel, while

other tasks are still running.

Experiment 8. In the last experiment of this section, we measure speedup when the

number of cores varies. We used the 1-map workflow with 30 k tasks and 32 s tasks cost

average running on Stremi machines (each machine has 24 cores), varying from 120 cores to

960 cores. In addition, we also want to investigate the impact caused by increasing the

concurrency in a larger cluster (recall from the discussion introduced by the results of

Experiment 2). The metric we used was the RelativeSpeedup*, i.e., the Equation (3)

presented in Section 2.8, where = 120 cores. The results are presented in Figure 25.

74

Figure 25 – Results of Experiment 8: speedup varying number of cores.

From the results, we can see that speedup attains almost linear until 240 cores. For 480

cores, the speedup was almost linear for 12 and 24 threads and not far from linear for 48

threads. For 960 cores, the speedup attained close to linear using 12 threads per node and 20%

away from linear using 24 threads per node. We note that setting the maximum number of

threads to be equal to the number of cores gave us a satisfying result (80% of efficiency) in

960 cores.

We can also see that for 48 threads per node, the speedup attained 2.6 points away

from the linear speedup, which represents 34% away from the ideal. However, even though

with 48 threads per node (i.e., 1920 threads in 960 cores) attained the worst speedup, the

execution time is still lower than with 24 threads per node. In fact, the system with 1920

threads ran 1.62 times faster than with 960 threads – the ideal would be 2 times faster.

Analyzing the graph, we can also expect that even with a number of cores greater than

960, the execution time still tends to decrease even with the number of threads twice the

number of cores in the cluster. In these experiments, we did not find a limit for which there

are no more gains if we add more cores or threads to the system. In other words, apparently,

even though the speedup tends to decrease, we will still have gains if we add more cores and

0

1

2

3

4

5

6

7

8

9

5 nodes
(120 cores)

10 nodes
(240 cores)

20 nodes
(480 cores)

40 nodes
(960 cores)

Sp
e

e
d

u
p

12 threads/node 24 threads/node

48 threads/node Linear

75

increase the concurrency in each machine by increasing the number of threads. Thus, if we

want to find this limit, larger experiments in larger clusters are still needed.

 Oil & Gas and Bioinformatics workflow 6.4

So far, we have only experimented SWB workflows, which are mainly used to analyze

performance. However, we also need to investigate how d-SCC behaves in more complex

dataflows with added semantics in more relevant domains. For this reason, we use two

workflows. The first is related to oil and gas domain. The main purpose of running this first

workflow is to validate our solution for all current SciWfA operators (Section 3.1). The

second workflow is a real bioinformatics workflow and the main purpose of running it is to

validate our solution in a real scientific scenario.

Experiment 9. We ran a synthetic workflow from oil and gas domain, inspired in deep

water oil exploration scientific applications. Since it is a synthetic workflow, we can predefine

the problem complexity by setting tasks cost weight, which is similar to what we can do in

relation to setting the average tasks cost in SWB workflows. We ran it on 21 Parapide

machines (168 cores in total). Since our main purpose was only to validate d-SCC in a more

complex dataflow containing all SciWfA operators, activities that may run in parallel, and file

manipulations, we did not evaluate performance of the execution. The execution times for

weights 2, 8, and 16 (which just represents complexity; the greater, the more complex) are

shown in Figure 26.

Figure 26 – Execution of Experiment 9: Deep water oil exploration synthetic workflow results

13

41

82

0

15

30

45

60

75

90

2 8 16

Ti
m

e
 (

m
in

)

Weight

Deep Water Oil Exploration Synthetic Workflow
Results

Execution Time (min)

76

Experiment 10. For this experiment, we ran a real bioinformatics workflow, known as

SciPhy (recall from Section 6.1). This workflow has 8 activities and some of them are

computationally very complex. We ran on 552 cores Graphene cluster. Through queries to the

database, we were able to find that tasks of the Model Generator activity take more than 30

minutes average each to run. We also found that tasks are considerably balanced. This

scenario is suitable for our solution that works better for complex tasks and also for a more

balanced workload. Moreover, there are many big files manipulated. The workflow

successfully executed in 128 minutes. Through queries to the database, we can estimate a

tasks cost average per activity and come up with an estimate sequential time by multiplying

the tasks cost average by the total number of tasks. The result is 43.6 days and then, given all

this information, we can estimate the real efficiency (efficiency as defined in Section 2.8)

of d-SCC for running SciPhy on 552 cores: 89%.

Finally, we noted a peculiar occurrence when running SciPhy that did not happen

when running any of our previous workflows. When we tried to run using 2 data nodes, as we

have been doing in all experiments in sections Section 6.3 and in the previous experiment of

this current section (Experiment 9), we got an error caused by memory leak. We repeated the

same experiment, with same number of cores, and same dataset, but with 4 data nodes instead,

and it worked successfully. This most likely has happened because d-SCC stores domain data

and SciPhy has data fields with data of significant size. More specifically, phylogenetic trees

are stored in the database and they are big. This result motivates us to look for solutions that

would recognize that a specific big datum is being stored and an extra data node may be

required. Since DDBMSs may implement elastic solutions, such as auto-sharding, which is

the case of MySQL Cluster (Oracle, 2015b), we could add or remove data nodes at runtime

according to the problem needs. This obviously would impact performance, but the workflow

execution would not be interrupted, as happened in our experiment. This, we believe this

could be investigated for future work.

 Comparing d-SCC with SCC 6.5

In our last experiments, we are going to compare our implementation of d-SCC with

the most recent version of SCC so far, which uses an architecture with a centralization point at

the master node, as presented in 3 For this, we ran 2 experiments. We ran the exact same

experiment – i.e., same workflow with same input data on same hardware – using both

solutions (d-SCC and SCC) to compare the results.

77

Experiment 11. This is a 1-map workflow on 168 Parapide cores. The results are

shown in Figure 27.

Figure 27 – Results of Experiment 11: comparing d-SCC with SCC on 168 cores.

From the results, we can see that, like d-SCC, SCC also has a better efficiency

(efficiency as defined in Section 2.8) for more complex tasks than for short tasks. Moreover,

analyzing the 2 s results (very frequent short queries), we can see that the centralized

architecture suffers considerably more than our distributed architecture that relies on a

DDBMS. d-SCC showed a gain of 71% over SCC. However, for more complex tasks (16 s

average), the SCNs spend more time with local processing and congestion at centralized points

(e.g., master node and database) is alleviated. In this second scenario, d-SCC almost achieved

a perfect efficiency – we highlight that we used the theoretical real efficiency rather than the

relative efficiency, which would give us an even greater result. The gain over SCC was 15%,

which is considerably lower than those 71% for short tasks. This means that at least for 168

cores and for more complex problems, SCC is still a good solution.

Experiment 12. This is our last experiment. We ran the 3-map workflow, 10 k tasks

per map, on 1008 Stremi cores. By using the 3-map workflow, we can see performance loss

caused by the contention due to the need of waiting for the tasks to be generated and

scheduled.

Efficiency is calculated using the efficiency metric, which is based on a sequential

theoretical time, as defined in Section 2.8. As we discussed in Experiment 7, this efficiency

tends to be farther from reality because it does not include any overhead, which is unrealistic

84%

98%

13%

83%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

20 k tasks
2 s average task cost

10 k tasks
16 s average task cost

Ef
fi

ci
e

n
cy

d-SCC SCC

78

in large parallel systems, and it tends to be unfair due to inherent overheads caused by

contentions due to FAF usage. We could not use the RelativeEfficiency* in this experiment

because running on a smaller number of cores was taking too long and, more importantly, our

main purpose in this experiment was just to see how different the performance between SCC

and d-SCC is. The results are shown in Figure 28.

Figure 28 – Results of Experiment 12: comparing d-SCC with SCC on 1008 cores.

For 1,008 cores, for only 1 s tasks cost average, we can see that both solutions do not

show a good performance. The tasks are so short that generating and scheduling 10 k tasks for

each activity, for all cores, take longer than actually running them. We note that SCC

performs very poorly, considerably worse than d-SCC. For the 16 s experiment, d-SCC

achieves a better performance (more than 51% of gains over SCC), whereas SCC attains at

most 10% of efficiency. Therefore, in all experiments we ran comparing d-SCC with the most

recent version of SCC, we could see significant gains.

12%

1%

10%

0%

10%

20%

30%

40%

50%

60%

1 s 16 s

Ef
fi

ci
e

n
cy

Average Task Cost

Efficiency Comparison

d-SCC SCC

79

7 CONCLUSIONS

This work is inserted in the context of systems that support large-scale computer-based

scientific simulations. Such simulations may be modeled as data-centric scientific workflows,

require HPC, and manipulate a lot of data that need to be carefully managed. We argued that

the control of this data management should not be centralized so performance can be

improved and the HPC environment can be utilized more efficiently. This is an open problem

because current solutions either use a centralized DBMS or use a distributed data control

based on files. The limitations of file-based solutions are mainly due to lack of provenance

storing at runtime, restrictions in analyzing the control information distributed in flat files and

also limitations on provenance generation in the end of execution. To show our points, we

developed a system that not only manages a large volume of data using a distributed database

system, but also relies on such database system to take advantage of its distributed

concurrency control and fault tolerance mechanisms to aid parallel execution of scientific

workflows and remove single points of failure and contention.

Our main contribution is the development of SciCumulus on a Distributed Database

System (d-SCC) built upon Architecture II. Architecture II is a high level architecture in the

sense that it is technology independent – as long as there is a reliable distributed database

system and a parallel workflow management system. It also considers many important aspects

of a large-scale parallel execution of workflows, such as dynamic load balancing and fault

tolerance, taking advantage of a distributed database system.

We concluded that most of the effort spent on developing the tasks scheduling based

on a master-slave architecture was relieved due to using the DDBMS; thence, we could

remove message passing communications that were only being used for tasks’ scheduling and

this facilitated removing a centralized scheduler master. However, we note that a supervisor

node is still necessary for special responsibilities, such as initial tasks distribution, load

balancing, and fault tolerance. Since communication between nodes is needed for this, we still

need to investigate whether it is advantageous not to use other communication strategy rather

than relying on the DDBMS, as we found that using Java RMI would be faster than using the

DDBMS to implement FAF (i.e., a blocking or non-pipeline, recall from Section 0) strategy.

We conducted several experiments to evaluate our implementation of d-SCC. First, we

tried different variations of our architecture to choose the best one to use in most of our latter

experiments. Then, we analyzed scalability and we found that the execution time remains

close to constant when we double the number of cores and the problem size, even running on

80

over 960 cores. We measured speedup and found that by using the number of threads equal to

half of the number of cores, we obtained a speedup very close to linear. Using the number of

threads equal to double of the number of cores, we found that the execution time still tends to

decrease when we increase number of cores, even though speedup was farther from linear.

We did not find a limit for which the execution time stops decreasing when we increase the

number of cores, at least until 960 cores. We also found that the efficiency of our system is

high especially when the problem is complex (i.e., average task cost is high), by frequently

obtaining efficiencies over 80% even on a 1 k cores cluster. We highlight that this was the

first time a system based on SCC ran on such scale of cores and for such problem size (over

50 k tasks). Before that, the centralized solution presented severe limitations to go beyond 500

cores. Moreover, we also experimented our solution in more complex workflows and in a real

bioinformatics workflow. In the end, our last experiments compared d-SCC with SCC and we

found that our solution significantly outperforms the most recent version of SCC, especially

in a 1,000 cores cluster.

This work introduces a first prototype of a distributed architecture to control the

parallel execution of data-centric workflows relying on a DDBMS. We implemented it using

open software (MySQL Cluster), yet scaling up to a considerably large number of cores.

Based on the many good results obtained, we see a lot of opportunities for potential

improvements, in addition to some services that are not currently fully operational. In the

following paragraphs, we point out directions on how our system may be improved and

extended.

We have been claiming that although the underlying d-SCC’s architecture (i.e.,

Architecture II) was theoretically proposed considering many relevant aspects of parallel

execution of large-scale workflows, we did not implement a few parts of this architecture. The

specific parts we proposed and we did not implement are related to dynamic load balancing

through task stealing or any other more sophisticated strategy and failure recovery

mechanisms when either a slave node or the supervisor node faces a hardware failure.

Therefore, this should be implemented in future work. Moreover, the impact on performance

of the solutions for both problems needs to be analyzed.

Furthermore, we argued that the database recovery in case of failure of a database

node is responsibility of the DDBMS. Although we tested our executions forcing a data node

to fail and we found that the execution is indeed not interrupted, this failure recovery

mechanism has impacted the performance of the workflow execution. Thus, we verified that

the single point of failure introduced by a centralized DBMS is removed when a DDBMS is

81

used, but we did not evaluate the impact on performance when a database node fails. This is

an ongoing work jointly with an undergrad student.

In addition to database node failure recovery, one other important aspect to consider is

real time adaptive sharding. This means that when the system acknowledges that too much

data is being stored, an extra data node could be automatically added to the DDBMS so the

execution would not stop. We perceived this necessity when we ran SciPhy, which requires a

lot of domain data to be stored in the database, and the execution of d-SCC was interrupted by

an error and we had to add extra node nodes so it could work (Section 6.4). Thus,

implementing automatic adaptive sharding on d-SCC and analyzing its impact on

performance would be appreciated.

Moreover, we found that the way FAF (Section 3.2) is currently implemented

introduces a significant overhead, especially when dealing with a large MTC problem. The

fact that all processing nodes remain blocked until the supervisor generates tasks and

schedules them so the execution can continue to the next activity (when there is more than

one activity) downgraded performance severely, mainly when the problem’s complexity is

small. Also, FTF (i.e., pipelining) needs to be implemented in d-SCC, which would not

introduce such blocking barrier overhead. The implementation of FTF and improvements on

FAF need to be tackled in future work and this is essential if we want to be able to handle

even larger problems (e.g., millions of tasks), which is currently not viable due to very long

waiting time. Additionally, in Section 2.4.1, we mentioned that determining a good number

value of the chunk size in a BoT may be complex, but may lead to performance improvements

and we could take advantages of the provenance database since we store a lot of relevant

execution data in it. This could be analyzed more deeply in future work. Furthermore,

workflows executed in d-SCC commonly manipulate many big files and we still need

significant improvements on dealing with large domain data files in order to enhance

performance. This is actually being tackled in current work and, for future work, these

efficient domain data management techniques need to be merged into d-SCC.

Finally, d-SCC mainly uses its database with OLTP usage characteristics. Currently,

the DDBMS we chose to implement our architecture is an in-memory database, which

delivered good advantages related to performance. We also showed that using it completely

in-memory, with no checkpoints to the disk, performs considerably well. However, its storage

is limited to the memory of the nodes that compose the DDBMS, which is not a problem

when executing and analyzing one workflow run. Since we want to enable joint rich analyses

of historical big data combining with data of many workflows or workflow executions, we

82

need to load the data from the in-memory database into an on-disk data warehouse. This

should also be tackled in future work.

83

REFERENCES

Altintas, I., Barney, O., Jaeger-Frank, E., (2006), "Provenance Collection Support in the Kepler

Scientific Workflow System", Provenance and Annotation of Data, , chapter 4145, Springer

Berlin, p. 118–132.

Anglano, C., Brevik, J., Canonico, M., Nurmi, D., Wolski, R., (2006), "Fault-aware scheduling for

Bag-of-Tasks applications on Desktop Grids". In: 7th IEEE/ACM International Conference on

Grid Computing, p. 56–63

Arenstorf, N. S., Jordan, H. F., (1989), "Comparing barrier algorithms", Parallel Computing, v. 12, n.

2 (Nov.), p. 157–170.

Benoit, A., Marchal, L., Pineau, J.-F., Robert, Y., Vivien, F., (2010), "Scheduling Concurrent Bag-of-

Tasks Applications on Heterogeneous Platforms", IEEE Transactions on Computers, v. 59, n.

2 (Feb.), p. 202–217.

Bowers, S., McPhillips, T. M., Ludescher, B., (2008), "Provenance in collection-oriented scientific

workflows", Concurrency and Computation: Practice and Experience, v. 20, n. 5, p. 519–529.

Cariño, R. L., Banicescu, I., (2007), "Dynamic load balancing with adaptive factoring methods in

scientific applications", The Journal of Supercomputing, v. 44, n. 1 (Oct.), p. 41–63.

Cario, R. L., Banicescu, I., (2003), "A load balancing tool for distributed parallel loops". In:

Proceedings of the International Workshop on Challenges of Large Applications in

Distributed Environments, 2003Proceedings of the International Workshop on Challenges of

Large Applications in Distributed Environments, 2003, p. 39–46

Carriero, N., Gelernter, D., (1990), How to Write Parallel Programs: A First Course. 1st edition ed.

Cambridge, Mass, The MIT Press.

Chirigati, F., Silva, V., Ogasawara, E., Oliveira, D., Dias, J., Porto, F., Valduriez, P., Mattoso, M.,

(2012), "Evaluating Parameter Sweep Workflows in High Performance Computing". In: 1st

International Workshop on Scalable Workflow Enactment Engines and Technologies

(SWEET’12)SIGMOD/PODS 2012, p. 10, Scottsdale, AZ, EUA.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., (2009), Introduction to Algorithms. Third

Edition ed. The MIT Press.

Costa, F., Oliveira, D. de, Ocaña, K., Ogasawara, E., Dias, J., Mattoso, M., (2012), "Handling Failures

in Parallel Scientific Workflows Using Clouds". In: High Performance Computing,

Networking Storage and Analysis, SC Companion, p. 129–139, Los Alamitos, CA, USA.

Costa, F., Silva, V., de Oliveira, D., Ocaña, K., Ogasawara, E., Dias, J., Mattoso, M., (2013),

"Capturing and Querying Workflow Runtime Provenance with PROV: A Practical Approach".

In: Proceedings of the Joint EDBT/ICDT 2013 Workshops, p. 282–289, New York, NY, USA.

Davidson, S. B., Freire, J., (2008), "Provenance and Scientific Workflows: Challenges and

Opportunities". In: ACM SIGMOD International Conference on Management of Data, p.

1345–1350, New York, NY, USA.

Deelman, E., Gannon, D., Shields, M., Taylor, I., (2009), "Workflows and e-Science: An overview of

workflow system features and capabilities", Future Generation Computer Systems, v. 25, n. 5,

p. 528–540.

Dias, J., (2013), Execução Interativa de Experimentos Científicos Computacionais em Larga Escala,

Universidade Federal do Rio de Janeiro, Tese de Doutorado, PESC/COPPE.

Gadelha, L. M. R., Wilde, M., Mattoso, M., Foster, I., (2012), "MTCProv: a practical provenance

query framework for many-task scientific computing", Distributed and Parallel Databases, v.

30, n. 5-6, p. 351–370.

84

Goble, C., Wroe, C., Stevens, R., (2003), "The myGrid project: services, architecture and

demonstrator". In: Proc. of the UK e-Science All Hands Meeting, p. 595–602, Nottingham,

UK.

Guerra, G. M., Rochinha, F. A., (2009), "Uncertainty quantification in fluid-structure interaction via

sparse grid stochastic collocation method". In: 30th Iberian-Latin-American Congress on

Computational Methods in Engineering, 2009, Buzios

IBM100 - Blue Gene. Disponível em: http://www-

03.ibm.com/ibm/history/ibm100/us/en/icons/bluegene/. Acesso em: 3 Jul 2015.

Lee, K., Paton, N. W., Sakellariou, R., Deelman, E., Fernandes, A. A. A., Mehta, G., (2008),

"Adaptive Workflow Processing and Execution in Pegasus". In: Proceedings of the 3rd

International Conference on Grid and Pervasive Computing, p. 99–106, Kunming, China.

Lima, A. de A. B., (2004), Paralelismo Intra-consulta em Clusters de Bancos de Dados. Tese,

Universidade Federal do Rio de Janeiro, COPPE, Programa de Pós-graduação de Engenharia

de Sistemas e Computação

Mattoso, M., Dias, J., Ocaña, K. A. C. S., Ogasawara, E., Costa, F., Horta, F., Silva, V., de Oliveira,

D., (2015), "Dynamic steering of HPC scientific workflows: A survey", Future Generation

Computer Systems, v. 46 (May.), p. 100–113.

Mattoso, M., Ocaña, K., Horta, F., Dias, J., Ogasawara, E., Silva, V., de Oliveira, D., Costa, F.,

Araújo, I., (2013), "User-steering of HPC workflows: state-of-the-art and future directions".

In: Proceedings of the 2nd ACM SIGMOD Workshop on Scalable Workflow Execution

Engines and Technologies (SWEET), p. 1–6, New York, NY, USA.

Mattoso, M., Werner, C., Travassos, G. H., Braganholo, V., Murta, L., Ogasawara, E., Oliveira, D.,

Cruz, S. M. S. da, Martinho, W., (2010), "Towards Supporting the Life Cycle of Large-scale

Scientific Experiments", International Journal of Business Process Integration and

Management, v. 5, n. 1, p. 79–92.

Mendes, R., Whately, L., de Castro, M. C., Bentes, C., Amorim, C. L., (2006), "Runtime System

Support for Running Applications with Dynamic and Asynchronous Task Parallelism in

Software DSM Systems". In: 18TH International Symposium on Computer Architecture and

High Performance Computing, 2006. SBAC-PAD ’0618TH International Symposium on

Computer Architecture and High Performance Computing, 2006. SBAC-PAD ’06, p. 159–166

Moreau, L., Missier, P., (2013). PROV-DM: The PROV Data Model. Disponível em:

http://www.w3.org/TR/2013/REC-prov-dm-20130430/. Acesso em: 17 Feb 2014.

Ocaña, K. A. C. S., Oliveira, D. de, Ogasawara, E., Dávila, A. M. R., Lima, A. A. B., Mattoso, M.,

(2011), "SciPhy: A Cloud-Based Workflow for Phylogenetic Analysis of Drug Targets in

Protozoan Genomes", In: Souza, O. N. de, Telles, G. P., Palakal, M. [eds.] (eds), Advances in

Bioinformatics and Computational Biology, Springer Berlin Heidelberg, p. 66–70.

Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M., (2011), "An Algebraic

Approach for Data-Centric Scientific Workflows", Proceedings of the 37th International

Conference on Very Large Data Bases (PVLDB), v. 4, n. 12, p. 1328–1339.

Ogasawara, E., Dias, J., Silva, V., Chirigati, F., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.,

(2013), "Chiron: A Parallel Engine for Algebraic Scientific Workflows", Concurrency and

Computation, v. 25, n. 16, p. 2327–2341.

Oliveira, D., (2012), Uma Abordagem de Apoio à Execução Paralela de Workflows Científicos em

Nuvens de Computadores. Tese (doutorado) – UFRJ/ COPPE/ Programa de Engenharia de

Sistemas e Computação, 2012., UFRJ/COPPE

Oliveira, D., Costa, F., Silva, V., Ocaña, K., Mattoso, M., (2014), "Debugging Scientific Workflows

with Provenance: Achievements and Lessons Learned". In: Proceedings of the XXIX Brazilian

Symposium on Databases, Curitiba, Paraná.

85

Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M., (2010), "SciCumulus: A Lightweight Cloud

Middleware to Explore Many Task Computing Paradigm in Scientific Workflows". In:

Proceedings of the 3rd International Conference on Cloud Computing, p. 378–385,

Washington, DC, USA.

Oprescu, A., Kielmann, T., (2010), "Bag-of-Tasks Scheduling under Budget Constraints". In: 2010

IEEE Second International Conference on Cloud Computing Technology and Science

(CloudCom)2010 IEEE Second International Conference on Cloud Computing Technology

and Science (CloudCom), p. 351–359

Oracle, (2015a), MySQL Cluster Evaluation Guide, White Paper, Oracle.

Oracle, (2015b), Guide to Scaling Web Databases with MySQL Cluster, White Paper, Oracle.

Özsu, M. T., Valduriez, P., (2011), Principles of Distributed Database Systems. 3 ed. New York,

Springer.

Paranhos, D., Cirne, W., Brasileiro, F., (2003), "Trading Information for Cycles: Using Replication to

Schedule Bag of Tasks Applications on Computational Grids". In: Proceedings of the Euro-

Par

Raicu, I., (2009), Many-Task Computing: Bridging the Gap Between High-Throughput Computing

and High-Performance Computing. Ph.D. dissertation, The University of Chicago

Raicu, I., Foster, I. T., Zhao, Y., (2008), "Many-task computing for grids and supercomputers". In:

MTAGS 2008MTAGS 2008, p. 1–11

Sahni, S., Thanvantri, V., (1995), Parallel Computing: Performance Metrics and Models

Senger, H., Silva, F. A. B., Nascimento, W. M., (2006), "Hierarchical scheduling of independent tasks

with shared files". In: Sixth IEEE International Symposium on Cluster Computing and the

Grid, 2006. CCGRID 06Sixth IEEE International Symposium on Cluster Computing and the

Grid, 2006. CCGRID 06, p. 8 pp.–51

Silva, D. P. da, Cirne, W., Brasileiro, F. V., (2003), "Trading Cycles for Information: Using

Replication to Schedule Bag-of-Tasks Applications on Computational Grids", In: Kosch, H.,

Böszörményi, L., Hellwagner, H. [eds.] (eds), Euro-Par 2003 Parallel Processing, Springer

Berlin Heidelberg, p. 169–180.

Da Silva, F. A. B., Senger, H., (2010), "Scalability analysis of embarassingly parallel applications on

large clusters". EEE International Symposium on Parallel & Distributed Processing,

Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA.

Da Silva, F. A. B., Senger, H., (2011), "Scalability Limits of Bag-of-Tasks Applications Running on

Hierarchical Platforms", J. Parallel Distrib. Comput., v. 71, n. 6 (Jun.), p. 788–801.

Silva, V., (2014), Uma Estratégia de Execução Paralela Adaptável de Workflows Científicos. Master

Dissertation, Federal University of Rio de Janeiro

Silva, V., Oliveira, D., Mattoso, M., (2014), "SciCumulus 2.0: Um Sistema de Gerência de Workflows

Científicos para Nuvens Orientado a Fluxo de Dados". In: Sessão de Demos do XXIX

Simpósio Brasileiro de Banco de Dados, Curitiba, Paraná.

Simmhan, Y. L., Plale, B., Gannon, D., (2005), A Survey of Data Provenance Techniques, Technical

report, Computer Science Department, Indiana University.

Souza, R., Silva, V., Neves, L., Oliveira, D., Mattoso, M., (2015), "Monitoramento de Desempenho

usando Dados de Proveniência e de Domínio durante a Execução de Aplicações Científicas".

In: Anais do XIV Workshop em Desempenho de Sistemas Computacionais e de Comunicação

(WPerformance), Recife, PE.

TOP 500, (2010), TOP500 Supercomputing Sites, http://www.top500.org/.

86

Walker, E., Guiang, C., (2007), "Challenges in executing large parameter sweep studies across widely

distributed computing environments". In: Workshop on Challenges of large applications in

distributed environments, p. 11–18, Monterey, California, USA.

Wozniak, J. M., Armstrong, T. G., Wilde, M., Katz, D. S., Lusk, E., Foster, I. T., (2013), "Swift/T:

Large-Scale Application Composition via Distributed-Memory Dataflow Processing". In:

Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), p. 95–102

