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 Simulações computacionais de larga escala requerem processamento de alto 

desempenho, envolvem manipulação de muitos dados e são comumente modeladas como 

workflows científicos centrados em dados, gerenciados por um Sistema de Gerência de 

Workflows Científicos (SGWfC). Em uma execução paralela, um SGWfC escalona muitas 

tarefas para os recursos computacionais e Processamento de Muitas Tarefas (MTC, do 

inglês Many Task Computing) é o paradigma que contempla esse cenário. Para gerenciar 

os dados de execução necessários para a gerência do paralelismo em MTC, uma máquina 

de execução precisa de uma estrutura de dados escalável para acomodar tais tarefas. Além 

dos dados da execução, armazenar dados de proveniência e de domínio em tempo de 

execução permite várias vantagens, como monitoramento da execução, descoberta 

antecipada de resultados e execução interativa. Apesar de esses dados poderem ser 

gerenciados através de várias abordagens (e.g, arquivos de log, SGBD, ou abordagem 

híbrida), a utilização de um SGBD centralizado provê diversas capacidades analíticas, o 

que é bem valioso para os usuários finais. Entretanto, se por um lado o uso de um SGBD 

centralizado permite vantagens importantes, por outro, um ponto único de falha e de 

contenção é introduzido, o que prejudica o desempenho em ambientes de grande porte. 

Para tratar isso, propomos uma arquitetura que remove a responsabilidade de um nó central 

com o qual todos os outros nós precisam se comunicar para escalonamento das tarefas, o 

que gera um ponto de contenção; e transferimos tal responsabilidade para um SGBD 

distribuído. Dessa forma, mostramos que nossa solução frequentemente alcança eficiências 

de mais de 80% e ganhos de mais de 90% em relação à arquitetura baseada em um SGBD 

centralizado, em um cluster de 1000 cores. Mais importante, alcançamos esses resultados 

sem abdicar das vantagens de se usar um SGBD para gerenciar os dados de execução, 

proveniência e de domínio, conjuntamente, em tempo de execução. 
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Large-scale computer-based scientific simulations require high performance 

computing, involve big data manipulation, and are commonly modeled as data-centric 

scientific workflows managed by a Scientific Workflow Management System (SWfMS). In a 

parallel execution, a SWfMS schedules many tasks to the computing resources and Many 

Task Computing (MTC) is the paradigm that contemplates this scenario. In order to manage 

the execution data necessary for the parallel execution management and tasks’ scheduling in 

MTC, an execution engine needs a scalable data structure to accommodate those many tasks. 

In addition to managing execution data, it has been shown that storing provenance and 

domain data at runtime enables powerful advantages, such as execution monitoring, discovery 

of anticipated results, and user steering. Although all these data may be managed using 

different approaches (e.g., flat log files, DBMS, or a hybrid approach), using a centralized 

DBMS has shown to deliver enhanced analytical capabilities at runtime, which is very 

valuable for end-users. However, if on the one hand using a centralized DBMS enables 

important advantages, on the other hand, it introduces a single point of failure and of 

contention, which jeopardizes performance in a large scenario. To cope with this, in this work, 

we propose a novel SWfMS architecture that removes the responsibility of a central node to 

which all other nodes need to communicate for tasks’ scheduling, which generates a point of 

contention; and transfer such responsibility to a distributed DBMS. By doing this, we show 

that our solution frequently attains an efficiency of over 80% and more than 90% of gains in 

relation to an architecture that relies on a centralized DBMS, in a 1,000 cores cluster. More 

importantly, we achieve all these results without abdicating the advantages of using a DBMS 

to manage execution, provenance, and domain data, jointly, at runtime.  
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1 INTRODUCTION 

Large-scale computer-based scientific simulations are typically complex and require 

parallelism on a High Performance Computing (HPC) environment, e.g., cluster, grid or cloud. 

These simulations are usually composed of the chaining of different applications, in which 

data generated by an application are consumed by another, forming a complex dataflow. 

These applications may manipulate a large amount of non-trivial data, making their 

processing even more complex and time-consuming (i.e., weeks or even months of 

continuous execution). For this reason, many scientific scenarios rely on the paradigm of 

scientific workflows which have their executions orchestrated by a Scientific Workflow 

Management System (SWfMS). SWfMSs provide the management of those scientific 

applications, the data that flows between each application, and the parallel execution on the 

HPC environment. A scientific workflow is composed of a set of activities – which are often 

seen as scientific applications that represent solid algorithms or computational methods – and 

a dataflow between each of them (Deelman et al., 2009). In Sections 2.1 and 2.2, we further 

explain these concepts.  

 In addition to the aforementioned aspects, during the long run of such simulations, 

each activity in the workflow is repeatedly and extensively invoked in order to explore a large 

solution space just varying the parameters or computational methods. For instance, 

optimization problems, computational fluid dynamics, comparative genomics, and uncertainty 

quantification problems are examples in which scientific applications need to compute a result 

for each combination of parameters or input data (as cited in Dias, 2013). If the execution of 

the linked scientific applications is managed by a SWfMS, it may handle each application 

invocation that consumes a given combination of parameters and produces result (output data) 

associated to that given combination. Additionally, we may say that an application or activity 

is completely executed for a given workflow execution if, and only if, all those invocations 

are completely finished. Moreover, each of these many invocations may be executed in 

parallel on the HPC environment. The paradigm that contemplates this scenario is called 

Many Task Computing (MTC), where each activity invocation is treated as a task (Raicu et al., 

2008). Furthermore, Walker and Guiang (2007) call the specific type of parallelism that 

simultaneously executes each of those many tasks for a given combination of parameters as 

parameter sweep (as cited in Mattoso et al., 2010). In Section 2.3, these terms will be further 

elucidated. 
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 In this work, we focus on independent tasks within the parallel execution of a single 

activity consuming multiple data. In other words, despite the inherent data dependency 

between activities in a complex dataflow, each task of a single activity is independent of other 

tasks from this same activity execution for other data. This type of problem, in which tasks 

embarrassingly run in parallel, is dominant in many scientific scenarios (Benoit et al., 2010; 

Oprescu and Kielmann, 2010). Further, we are especially concerned about how the SWfMS 

manages the execution of those independent tasks for each activity of a workflow on the HPC 

environment. For this reason, we use a classic term that is widely adopted by literature when 

referring to independent tasks scheduling on HPC: Bag of Tasks (BoT) (Carriero and 

Gelernter, 1990). In Section 2.4, we present different BoT variations, their scheduling policy, 

and also how they relate to our approach that relies on scientific workflows. 

 Furthermore, a SWfMS must not only manage tasks scheduling in workflow 

executions, but also needs to collect provenance data to support the life cycle of a large-scale 

computer-based scientific simulation (Mattoso et al., 2010). Provenance data contemplates 

both information about workflows specification and information about how the data generated 

during the workflow execution were derived, and that provenance may be even more 

important than the resulting data.  Storing provenance data is essential to allow result 

reproducibility, sharing, and knowledge reuse in scientific communities (Davidson and Freire, 

2008). In addition to data about workflow execution (needed to manage the parallel execution) 

and data provenance, a SWfMS needs to manage domain-specific data. Enriching provenance 

databases with domain data enables richer analyses (Oliveira et al., 2014). Thence, these three 

types of data are expected to be managed by a SWfMS: (i) execution control data, (ii) 

provenance data, and (iii) domain data. As a matter of simplicity, we are going to use the term 

Provenance Database to refer to these three types of data, jointly, from now on. 

In short, (i) execution control data are related to information about scheduling tasks to 

computing resources, which computing resources are being used and how, and it is also 

possible to register data about the health of the system and hardware. (ii) Provenance data are 

related to how the data were derived, including computing methods or algorithms used in the 

process, data owner, workflow specification, simulation site, and other pieces of information. 

(iii) Domain data are mostly the main interest for the scientists and are specific for each 

problem, application or scientific domain and are closely related to both previous types of 

data. Further explanation will be given in Section 2.5  

Managing all these data may not be trivial in large-scale scenarios and at least two 

issues are discussed. First, most SWfMSs manage their execution data using a centralized 
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data repository, which may generate bottlenecks, jeopardizing the performance of the system. 

Second, a trade-off between performance and analytical capabilities needs to be addressed. 

On the one hand, a system may use a distributed data control by storing multiple flat log files 

during execution, which is in general easier and faster to store, but harder to analyze, 

especially when there are many big log files. On the other hand, a system may store data in a 

structured database management system (DBMS) during execution, which amplifies the 

analytical capabilities, but it is in general more complex and slower to store than simply 

appending into log files. Further, the more data a SWfMS gathers and stores in a DBMS, the 

more analytical features it provides to the end-user, but also the more complex it becomes to 

manage. To tackle this, a system may attempt to combine performance and analytical 

capabilities by storing only one of the three types of data (e.g., execution data) in a DBMS 

during execution, whereas provenance data are captured in log files and eventually stored in 

the DBMS usually in the end of the execution. In related work section (Section 2.9), we are 

going to mention SWfMSs that uses a distributed data control based on flat files and another 

one that stores execution data in a DBMS. Mostly, known SWfMSs do not store domain data 

in the DBMS. Hence, provenance data analyses at runtime are limited and, more importantly, 

joint analyses of the provenance database (i.e., including execution and domain data) are not 

enabled in such systems.  

However, it has been shown that storing all three types of data, jointly, in a 

provenance database during workflow execution delivers many powerful advantages. The 

advantages include discovery of anticipated results (Oliveira et al., 2014), workflow 

execution monitoring associating to domain data generated throughout the dataflow (Souza et 

al., 2015), and interactive execution, also known as user steering (Mattoso et al., 2015). 

Moreover, in such integrated database, a data model may be used to structure fine-grained 

information enabling even greater analyses. For example, it is possible to register which 

specific task (from all those many tasks) is related to a specific domain datum and where this 

task is running among all the computing resources on the HPC environment – all this may be 

associated to the domain data in the dataflow. Additionally, if a SWfMS uses a data model 

that contemplates provenance data following a recognized standard, such as the PROV-DM 

proposed by the World Wide Web Consortium (Moreau and Missier, 2013), interoperability 

between existing SWfMSs that also collect provenance data may be facilitated. 

Nevertheless, the trade-off between such fine-grained analytical capabilities and 

performance remains an open issue. SciCumulus/C² (SCC) is a SWfMS that stores fine-

grained data in a provenance database, managed by a DBMS during workflow execution 
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(Silva et al., 2014). As we are going to explain in details in Chapter 3, SCC is based on 

Chiron (Ogasawara et al., 2011) and on SciCumulus (Oliveira et al., 2010), which introduced 

this approach of storing the three types of data in a provenance database managed by a 

centralized DBMS (e.g., PostgreSQL
1
 or MySQL

2
). By doing this, SCC enables many 

important analytical capabilities, but its performance may be compromised in large-scale 

scenarios. Not only performance may be an issue, but also the utilization of a centralized 

DBMS may introduce other typical problems in HPC, such as single point of failure and 

contention. For this reason, the data gathering mechanism at runtime must be highly efficient 

and take these known HPC issues into account to attempt to provide both performance and 

analytical capabilities. 

Therefore, the problem we want to tackle in this dissertation can be enunciated as 

follows. To the best of our knowledge, SCC is the only SWfMS that uses a DBMS to manage 

the entire provenance database at runtime, which enables powerful analytical capabilities, but 

it relies on a centralized DBMS. By relying on a centralized DBMS, a single point of failure 

is introduced – that is, if a node that hosts the DBMS fails, the workflow execution is 

interrupted. Furthermore, when compared with a distributed DBMS, a centralized DBMS has 

less ability to handle a very large number of requests per unit of time. To cope with this, SCC 

implements a centralized architecture in which there is a single node that is the only one able 

to access the database and is responsible for scheduling tasks to other nodes and for storing 

gathered data in the provenance database, as we are going to explain in details in Section 3.4 

Nevertheless, such centralized architecture introduces a contention point in a single central 

node. This contention is more evident in a large scenario with multiple processing units 

requesting tasks to the node, which would also downgrade performance. 

As a solution, decades of theoretical and practical development and optimizations on 

Distributed Database Management Systems (DDBMS) motivate their usage on a distributed 

system such as a parallel SWfMS. It is known that, compared with a centralized DBMS, a 

DDBMS can handle larger datasets, take more advantage of the HPC environment, and 

consider important issues in distributed executions, e.g., fault tolerance, load balancing, and 

distributed data consistency (Özsu and Valduriez, 2011). Thus, using a DDBMS may be a 

potential alternative for supporting an efficient structured data gathering mechanism at 

runtime. For this reason, in our solution, we propose a novel architecture for scheduling MTC 

tasks in a parallel workflow execution relying on a DDBMS to manage the entire provenance 

                                                 
1
 www.postgresql.org 

2
 www.mysql.com 
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database. Our main goal is to provide a decentralized parallel execution management. To do 

so, we propose taking off the responsibility of a central node to receive requests from and 

send tasks to all other processing nodes. Instead, we want the distributed database system to 

serve as a decentralized data repository which all processing nodes are able to access. 

Furthermore, by using a DDBMS, we are able to enhance the data gathering mechanism at 

runtime; take more advantages of the HPC environment; and improve the system’s 

performance, load balance, fault tolerance, and availability. More importantly, we do not 

abdicate all the advantages of using a DBMS to manage the provenance database at runtime. 

We call the SWfMS that runs on top of such architecture as SciCumulus/C² on a 

Distributed Database System (d-SCC). We especially discuss important issues like 

synchronization, availability, load balancing, data partitioning, and task distribution among all 

available resources on the HPC environment.  

Particularly, by developing d-SCC we can enumerate the following contributions. (i) 

We proposed a novel design of a distributed architecture for a parallel SWfMS that relies on a 

DDBMS, describing tasks scheduling, load balancing, fault tolerance, distributed data design 

(i.e., fragmentation and allocation), and parallel data placement; (ii) We implement it based 

on a SWfMS that uses a centralized DBMS to manage the provenance database and discuss 

the main difficulties; (iii) We remove the single point of failure introduced by the centralized 

DBMS; (iv) We alleviate the contention introduced by the centralization on a single central 

node; (v) We take more advantages of the HPC environment by distributing the database on 

more computing resources; (vi) By using a DDBMS, we may handle larger datasets 

maintaining good efficiency; (vii) Since a DDBMS can handle a larger number of requests, 

we rely on it and make a lot of use of its synchronization mechanisms to keep our distributed 

provenance database consistent; (viii) Like SCC, d-SCC also manages the provenance 

database at runtime, maintaining all its inherited advantages previously mentioned.  

The remainder of this dissertation is organized as follows. In Chapter 2, we present the 

background needed for this dissertation. In Chapter 3, we show SciCumulus/C² (SCC), the 

SWfMS on which this work is based, explaining its architecture and workflow algebra. In 

Chapter 4, we introduce our novel distributed architecture that relies on a DDBMS. In 

Chapter 5, we present our parallel SWfMS solution called d-SCC, which runs on top of our 

proposed architecture. We especially discuss its implementation details and challenges faced 

during development. In Chapter 6, we show our experimental evaluation. Finally, we 

conclude this dissertation and foresee future work in Chapter 7.  
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2 BACKGROUND 

In this chapter, we introduce the theoretical principles that give foundation for this 

dissertation. This dissertation is inserted in the context of supporting large-scale computer-

based scientific experiments that require HPC (Section 2.1). These experiments are composed 

of the chaining of scientific applications with a dataflow in between. One acknowledged 

approach is to model these experiments as data-centric scientific workflows that are managed 

by a parallel SWfMS (Section 2.2). In addition, our previous works, on which this current 

dissertation is based, fit in the paradigm of MTC and, more specifically, Parameter Sweep 

parallelism (Section 2.3). We will explain that Parameter Sweep parallelism may be seen as a 

BoT application consisting of many tasks that consume and produce data; and we survey 

different implementations of BoT applications (Section 2.4). Furthermore, we argue that a 

SWfMS needs to store three types of data and that storing them in a provenance database 

enables powerful advantages (Section 2.5). We introduce principles of a DDBMS (Section 

2.6), which, if used to manage the Provenance Database, more advantages could be taken 

from an HPC environment that can be built according to at least three different basic parallel 

architectures (Section 2.7). In Section 2.8, we explain the performance metrics we used to 

evaluate our parallel system. Finally, we conclude this section with related work in Section 

2.9. 

 Large-scale Computer-Based Scientific Experiments and HPC 2.1

Mattoso et al. (2010) explain that traditional scientific experiments are usually classified as 

either in vivo or in vitro. However, in the last decades, scientists have used computer 

applications to simulate their experiments, which enabled two new classes of experiments: in 

virtuo and in silico (Travassos and Barros, 2003). Due to evolution of technology, a new 

challenge is being addressed in the computer science community, since these computer-based 

scientific simulations have been manipulating a huge amount of data which keeps increasing 

over the years. As a result, they demand continuous evolution of both hardware architecture 

and computational methods such as specialized programs or algorithms.  

Additionally, large-scale computer-based simulations require massive parallel 

execution on High Performance Computing (HPC) environments. According to Raicu, an 

HPC environment is a collection of computers connected together by some networking fabric 

and is composed of multiple processors, a network interconnection, and operating systems. 
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They are aimed at improving performance and availability compared with a single computer 

(2009). As examples of HPC environment, we have clusters, grids, virtual machines (VM) on 

clouds, and supercomputers like IBM Blue Gene (IBM100, 2015). Moreover, we say that an 

HPC environment is homogeneous if the computing units (e.g., individual computer or nodes, 

as usually called) that compose it are the same (Özsu and Valduriez, 2011). 

 Data-Centric Scientific Workflows, Dataflows, and SWfMS 2.2

One way to facilitate dealing with the complexity of a large-scale computer-based scientific 

experiment is by modeling it as a scientific workflow (Deelman et al., 2009). Scientific 

workflows extend the original concept of workflows. Traditional workflows, usually seen in 

business scenarios, systematically define the process of creation, storing, sharing, and 

reviewing information. Analogously, scientific workflows is a method of abstracting and 

systematizing the experimental process or part of it (as cited in Dias 2013). As previously 

mentioned, these computer-based experiments consist of one or many specialized scientific 

applications, which are represented by activities in the workflow. Moreover, a scientific 

workflow is usually formed by the chaining of activities; hence we say that there is data 

dependency between activities. That is, data produced by an application are consumed by 

another, forming a dataflow (as cited in Dias 2013). A scientific workflow with these 

characteristics are usually data-intensive and we claim that it is driven by data or, as 

Ogasawara et al. call, it is a data-centric scientific workflow (2011). Yet, Ogasawara et al. 

explain that such flow can be modeled as a Directed Acyclic Graph (DAG) on which vertices 

represent activities and edges represent the dataflow between them (2011).  

Due to its complexity, there is a necessity of a system to manage the execution of a 

scientific workflow. Mattoso et al. argue that not only does the execution need to be managed, 

but also such a system needs to enable composition and analyses of a computer-based 

experiment (2010). Additionally, given the large-scale requirements, this system needs to 

implement special directives to deal with an HPC environment. A system with these 

characteristics is known as a Scientific Workflow Management System (SWfMS) (Deelman et 

al., 2009).  Examples of SWfMS are Pegasus (Lee et al., 2008), Swift/T (Wozniak et al., 

2013), and SciCumulus  (Oliveira et al., 2010). 
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 Tasks, MTC and Parameter Sweep 2.3

In computer science, a concept called divide and conquer is widely used to solve a complex 

problem dividing it into smaller sub-problems. When all sub-problems are solved, that first 

complex problem is said to be solved (Cormen et al., 2009). Based on this concept, we define 

task as a smaller sub-problem of a greater complex problem. An application that runs tasks in 

parallel to solve a complex problem is known as a parallel application and they are broad and 

historically used in HPC (Raicu et al., 2008). Moreover, Raicu et al. (2008) qualify tasks as 

small or large (we also say light or heavy, short or long), uniprocessor or multiprocessor, 

compute-intensive or data-intensive, and dependent or independent of others. Yet, a set of 

tasks may be loosely or tightly coupled and homogeneous or heterogeneous. 

In large-scale computer-based scientific experiments, a paradigm of parallel tasks 

takes part in: Many Task Computing (MTC). Raicu et al. (2008) define MTC as a paradigm to 

deal with a large number of tasks. Each task has the following characteristics. It takes 

relatively short time to run (seconds or minutes long), it is data intensive (i.e., it manipulates 

tens of MB of I/O), it may be either dependent or independent of other tasks, it may be 

scheduled on any of the many available computing resources on the HPC environment, and 

the execution of all tasks achieves a larger goal.  

In this context, recall from the introduction (Chapter 1) that a typical scenario is that 

each application (or computational method or algorithm) is repeatedly and extensively 

invoked in order to explore a large solution space just varying the parameters or 

computational methods. As examples, there are optimization problems, computational fluid 

dynamics, comparative genomics, and uncertainty quantification (as cited in Dias 2013). Each 

invocation consumes a given combination of parameters (input data) and produces result 

(output data). A parallel system may manage all these invocations in parallel. This type of 

parallelism is called Parameter Sweep (Walker and Guiang, 2007) and it fits in the MTC 

paradigm where each invocation is treated as a task. For this reason, from now on, we are 

going to use the term task to refer to an application invocation. Merging this context with the 

context of data-centric scientific workflows, we claim that an activity is composed of many 

tasks and an activity is completely executed for a given workflow execution if, and only if, all 

those tasks are completely finished. 
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 Bag of Tasks 2.4

As previously stated, the MTC paradigm contemplates both dependent and independent tasks. 

However, for a given single application, each application invocation that sweeps a 

combination of parameters and produces output data is treated as independent of each other. 

That is, in Parameter Sweep parallelism, there is neither data nor communication exchange 

between different invocations of a single application. In other words, using the considerations 

enunciated in Section 2.3, we say that all tasks for a given single activity of the workflow are 

independent of each other. This is a very typical scenario in a broad variety of scientific 

applications (Benoit et al., 2010; Oprescu and Kielmann, 2010). The specific type of parallel 

application that is especially concerned about scheduling many independent tasks on the 

available resources of the HPC environment is called Bag of Tasks (BoT) parallelism.  In this 

dissertation, we propose a distributed architecture for BoT parallelism that relies on a 

DDBMS. We especially discuss its tasks scheduling mechanism and other related issues, such 

as load balancing. For this reason, we revisit BoT applications in order to study its 

singularities and apply them on the tasks scheduler that composes the core of our proposed 

architecture on top of which our SWfMS that manages data-centric workflows will run. 

The concept of a bag of tasks may be implemented within different approaches. Most 

of them differ in distinguishing the owner or manager of the bag of tasks that need to be 

executed to solve the determined problem.  In each of these approaches, task distribution 

design and scheduling over slaves are also different. In this section, we present these 

implementations and their specificities. 

Although these implementations have many differences, a common issue that is in 

question over all approaches is load balancing. Since tasks’ cost may be heterogeneous (i.e., 

some tasks are heavier than others) and slaves’ efficiency may be heterogeneous (i.e., some 

slaves execute tasks faster than others), load imbalance may occur. For this reason, load 

balancing is discussed in all approaches presented in this section.  

In order to cope with this load imbalance problem, work stealing is one of the 

techniques that frequently appear in most approaches. The idea is simple. If a fast slave 

executes the entire load that was under its responsibility, it will become idle. Then, the fast 

slave may choose a slower busy slave as victim so the fast slave can steal tasks from. There 

are different strategies to implement work stealing and to choose victim nodes (Mendes et al., 

2006), but this is out of the scope of this current work. However, how work stealing would 
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work may differ in each approach and the general idea of the strategy will be briefly discussed 

in following sections.  

In addition to load imbalance, communication overhead is also an important issue that 

is commonly addressed in BoT implementations. Since tasks may need to be transmitted over 

the network, this might become a bottleneck depending on the implementation and on the 

problem. Ergo, we discuss communication overhead in each of the presented approaches. 

Regarding nomenclature, even though tasks in a BoT are independent hence may be 

executed in an arbitrary order (Silva et al., 2003), many authors frequently use the term work 

queue (WQ) when referring to the data structure that holds the bag of tasks (Cario and 

Banicescu, 2003; Silva et al., 2003; Senger et al., 2006; Anglano et al., 2006; da Silva and 

Senger, 2010). However, we highlight that tasks do not need to be executed in a first-in-first-

out policy. 

Having all this considered, in next sections we show three known implementations of 

bag of tasks. How tasks are distributed and scheduled within each of these approaches is 

discussed. Their advantages and disadvantages regarding load balance and communication 

overhead are discussed as well. This survey on existing BoT designs is important because we 

propose a novel BoT design in Section 4.1, which inspired us to propose our architecture for a 

parallel workflow engine that relies on a distributed database management system. 

2.4.1 Centralized Work Queue  

Centralized Work Queue (CWQ) is the simplest design of a bag of tasks (Silva et al., 2003). 

In a master-slave fashion, the centralized master owns and manages the entire bag of tasks. It 

is the masters’ responsibility to schedule tasks over all slaves. Scheduling is also simple. As 

soon as a slave becomes available (i.e., it is ready to execute tasks), it requests the master for 

work. The master listens to the slave’s request and sends one or a chunk
3
 of runnable tasks, 

which are marked as “in execution”. Then, after the slave having received those sent tasks, it 

becomes busy while executing its load until completion. When a slave finishes and becomes 

available again, it both sends a feedback with execution results to the master, who marks the 

                                                 
3 

Determining an efficient chunk size, commonly referred to K, to provide load balance may be a 

complex problem depending on the application characteristics (Cariño and Banicescu, 2007). We also note that 

due to the provenance database, we could use it as a knowledge database to predict future tasks cost, which 

would lead to more accurate choice of K hence better load balancing. 
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tasks as “completed” accordingly, and requests more work. The procedure is repeated until all 

tasks from the queue are completed.  Figure 1 shows a diagram of this design. 

 

Figure 1 – Centralized Work Queue design 

In spite of the advantage of being easier to understand and to implement, this model 

has some disadvantages in a scenario with a large number of slaves. The main disadvantage is 

communication overhead due to centralization on master which may lead to a bottleneck if a 

large number of slaves is present. The scheduling work is totally concentrated in the single 

centralized point. In addition, tasks need to be sent multiple times between master and slaves, 

which may drive to network congestion. Hence, loss of performance may happen. 

Regarding work stealing for load balancing, it is not common in classic CWQ 

implementations since tasks are only transmitted between the master and slaves. When a fast 

slave finishes its work load, asks the master for more work, and the master replies that the bag 

of tasks is empty, this fast slave becomes idle until the end of the application execution even 

if there are other slower busy slaves. This is more evident if a larger chunk of tasks is 

transmitted at once, instead of only one task. For this reason, load imbalance may occur in a 

heterogeneous scenario within this approach. 

Furthermore, another disadvantage is that it introduces a single point of failure. That is, 

if the single centralized master fails while there are still runnable tasks in the bag, the whole 

parallel application stops since other idle slaves will not be able to get them. In addition, it is 

shown that the simplest CWQ implementation is the one that performs worst compared to 

other WQ models (Silva et al., 2003), which will be presented next.   

Therefore, the CWQ design would only be a good option in a more sophisticated 

implementation that considers enhanced strategies for load balancing and communication 

overhead. However, these are not common in most CWQ classic implementations. 
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2.4.2 Work Queue with Replication 

Silva et al. (2003) propose Work Queue with Replication (WQR), which basically adds task 

replication to the classic CWQ design. There is a master processor that is only responsible for 

coordinating scheduling, as shown in Figure 2. 

 

Figure 2 – Work Queue with Replication design 

In the beginning, scheduling is like simple CWQ. Slaves request tasks to the master, 

which assigns ready tasks to the requesting slaves. However, WQR takes better advantage of 

data locality than other WQ strategies with no replication. Since each slave owns a replica of 

the bag of tasks, the master just sends a short message so the slave can start executing a task, 

instead of sending the task itself (Silva et al., 2003). A message containing a task is usually 

larger than simple scheduling messages, which can be implemented using a convention of 

simple constants (e.g., an integer to signify the message “give me some work” or “execute 

such task”). In addition, whereas in a simple CWQ implementation slaves that finish their 

work become idle during the rest of the application execution, in WQR the master requests 

idle slaves to execute tasks that are still ready to run. This improves load balancing (Silva et 

al., 2003). Then, when a replica finishes, the master coordinates the abortion of all other 

replicas. 

It is important to mention that this architecture implies a similar scheduling behavior 

to work stealing. A valuable difference, though, is that there is no task transmission in WQR 

because the tasks that will be stolen are replicated. Since only short messages inherent to the 

scheduling algorithm are needed, there is an important reduction in data transmission in the 

network. 

More advantages of WQR are related to performance and availability. Replicating 

tasks increases the probability of running one of the replicas on a faster machine, which 

reduces overall execution time (Anglano et al., 2006). For this reason, the number of replicas 

also affects performance. That is, the greater the number of replicas, the greater this 
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probability is, which may imply in better performance, as shown in (Paranhos et al., 2003). 

Compared to a simple implementation of CWQ, WQR is shown to perform significantly 

better. In some cases, it performs better than other techniques that require a priori information 

about the tasks and the system, which may be unfeasible in complex scenarios. In addition to 

the performance advantage, WQR enables enhanced failure recovery strategies to provide 

high availability. However, like in simple CWQ, the master scheduler still remains a single 

point of failure (Silva et al., 2003).  

Despite the advantages, the utilization of replication in WQR introduces a concern 

related to problem size. Performance evaluations are provided, but the greatest number of 

tasks evaluated is 5,000 and no scalability or speedup tests are presented (Silva et al., 2003). 

Especially, full replication of the work queue (even two replicas only), as proposed by Silva et 

al. (2003), may not be viable if the bag of tasks is very large.  

To tackle this issue, Cariño and Banicescu describe a work queue with partial 

replication (2007). Instead of replicating the entire work queue on each slave node in the 

cluster, a smaller part of the queue is given to each slave. Scheduling initially occurs in a 

similar fashion to the full replicated WQR until one of the slaves consumes its whole share of 

the queue and becomes idle. Then, the idle slave requests the master for more work. The 

master selects a busy slave to be the victim. Then, the master calculates whether or not it is 

advantageous to move tasks from one slave to another. If it is, the master asks the idle slave to 

steal tasks from the victim slave. In this case, not only are scheduling messages transmitted, 

but tasks themselves are also sent from a slave to another. Therefore, although partial 

replication may involve tasks transmission, it is an alternative to the WQR proposed by Silva 

et al. (2003) to deal with a really large bag of tasks. 

2.4.3 Hierarchical Work Queue 

Both designs previously presented require a centralized master node to coordinate all slaves in 

the cluster. This may lead to congestion at the master in a scenario with a large number of 

slaves. To deal with this, we present a hierarchical architecture with many masters. The 

Hierarchical Work Queue (HWQ) design presented in this section is based on the 2-level 

hierarchical platform described by Senger et al. (2006) and Silva and Senger (2011). The 

architecture consists of one supervisor, which is responsible for scheduling tasks among M 

masters. Then, each master mi is responsible for scheduling tasks among Si slave processors in 

one cluster ci. Finally, each slave is only responsible for performing computation, i.e., 
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executing the tasks. Figure 3 illustrates this architecture. Each master has its own BoT that is 

populated by the supervisor’s BoT. 

 

Figure 3 – Hierarchical Work Queue design 

HWQ characteristics leads to less communication overhead in a centralized node 

compared to a simple CWQ. Since there are multiple masters, scheduling overhead is not 

fully concentrated in a single point (i.e., the single master in a CWQ model). Although this 

facilitates communication load balancing, if there are too many masters, there will be a 

bottleneck at the supervisor. As a consequence, this will eventually lead to load imbalance 

and loss of performance as well. 

For this reason, one sensitive issue in this hierarchical model is to find M and Si for 

each cluster ci so the architecture can be dynamically set up. Regarding M, one the one hand, 

if M is too small compared to the total of slaves, masters will suffer communication 

bottleneck; on the other hand, if M is too large, more contention will happen at the supervisor. 

Regarding Si, a simple solution is to even up the number of slaves, S, for each master (i.e., Si 

= S, for i = 1..M). In other words, all masters in the system are responsible for a same number, 

S, of slaves.  

To cope with this, Senger et al. (2006) propose a strategy for hierarchical scheduling 

which includes finding static M and Si. Their proposed strategy relies on estimating Seff, the 

maximum number of slaves a master can efficiently control. Since they assume a 

homogeneous and dedicated hardware, all masters have the same Seff. Under “some 
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assumptions” (Senger et al., 2006), this number is estimated utilizing the sum of the mean 

response time of the executions of the tasks and the mean time required to transmit input and 

output files from one machine to another, since this is common in the scenario they aimed 

their solution at. However, considering our motivating problem as described in previous 

sections, tasks do not necessarily share or transmit any data or file, limiting the utilization of 

this estimate on our problem. 

Although communication bottleneck is less likely to occur in a single point due to 

masters’ decentralization, there is an added up layer of bureaucracy between slaves and tasks 

which is inherent in a hierarchical model. That means that a task executed in a slave was 

originally owned by the supervisor, who is two levels upon the hierarchy. There will be more 

data transmission in the network caused by task transmission in two levels. Thus, this is a 

disadvantage in the hierarchical design.  

Moreover, in typical HWQ implementations there are no clear strategies to provide 

computation load balancing (Senger et al., 2006; Silva and Senger, 2011). For example, if a 

fast slave finishes much earlier than all others, it is not considered whether the slave should 

remain idle until the end of the execution or should steal work from others. Ergo, to provide 

computation load balance, it is necessary to investigate improvements in the original HWQ. 

Finally, regarding availability, it is noted that HWQ also contains a single point of 

failure, the supervisor node, just like CWQ and WQR. Therefore, it is important to deal with 

this and propose a more sophisticated model if one wants to eliminate a single point of failure. 

 Provenance Database: storing the three types of data 2.5

Up to this point, we were mostly essentially worried about parallel execution and tasks 

scheduling. However, in addition to execution data required by a distributed system, a parallel 

SWfMS is expected to also manage other two types of data: provenance and domain data. In 

this section, we explain each of the three types of data in further details and how we deal with 

them in our work. 

First, the underlying parallel engine needs a scalable data structure that accommodates 

the bag of tasks and is capable of storing execution status of each single task in order to 

manage the workflow parallel execution. Information such as which tasks should be 

scheduled to which processors, number of tasks, which input data a task should consume, etc. 

is necessary to be maintained by a SWfMS. We call this type of data as execution control data. 
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 Second, in addition to maintaining execution data, a SWfMS needs to collect 

provenance data in order to support a large-scale computer-based scientific simulation 

(Davidson and Freire, 2008; Mattoso et al., 2010). Provenance data may be defined as the 

information that helps to determine the history of produced data, starting with their origins 

(Simmhan et al., 2005). In other words, it is simply  “the information about the process used 

to derive the data” (Mattoso et al., 2010). Moreover, Goble et al. summarize that provenance 

data serve for (2003): providing data quality; tracking each process utilized to derive the data; 

keeping data authorship information; and providing powerful means for analytical queries for 

data discovery and interpretation (as cited in Oliveira, 2012). Additionally, according to 

Davidson and Freire, provenance data may be even more important than the resulting data and 

may be further categorized as prospective provenance – information about workflows 

specification – and retrospective provenance – information about how the data generated 

during the workflow execution were derived (2008). 

Third, domain data are of extreme interest for scientists and are specific for each 

application domain. They are closely related to execution data because the SWfMS needs to 

be aware of which domain data will be consumed by a task. They are also closely related to 

provenance data because since each task may generate output domain data, the SWfMS needs 

to keep track of how such domain data was generated. In a Bioinformatics application, an 

example could be the number of alignments of a phylogenetic tree; in a Seismic application, 

an example could be the speed of seismic waves; and in an Astronomy application, an 

example could be the coordinates (x,y) of a specific point of an image of the sky. 

All those data may be hard to manage and Dias (2013) claims that many approaches to  

store them have been proposed (Altintas et al., 2006; Bowers et al., 2008;  Gadelha et al., 

2012; Moreau and Missier, 2013). We argued that storing all those data, especially in fine 

granularity, in a structured database enable powerful data analytical capabilities. For instance, 

it enables execution monitoring associating to domain data generated throughout the dataflow 

(Souza et al, 2015), discovery of anticipated results (Oliveira et al, 2014), and interactive 

execution, also known as user steering (Mattoso et al., 2013). In this dissertation, we call such 

database, which jointly contemplates the three types of data, as Provenance Database. 

In addition to facilitating such analyses within a single experiment or scientific 

research group, a widely accepted standard model for data enables possible future data 

interchange, interoperability, and ease of communication among scientists from different 

communities. For these reasons, the World Wide Web Consortium, acknowledged for 

defining standards and recommendations on the web, recommends the Provenance Data 
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Model (PROV-DM) (Moreau and Missier, 2013). Moreover, for structuring provenance data 

for workflows, we need a provenance data model for workflows. This is called PROV-Wf 

(Figure 4), which is an extension of PROV-DM (Costa et al., 2013). PROV-Wf is the data 

model for our Provenance Database. Further explanation on PROV-Wf, as well as on most of 

the attributes within each entity and a real practical example of its utilization, can be found in 

(Costa et al., 2013). 

 

Figure 4 – The PROV-Wf data model (Costa et al., 2013) 

 Principles of Distributed Databases 2.6

As briefly argued in introduction, although gathering provenance data in a fine level and 

storing in a common centralized DBMS during execution enables rich advantages, it might 

introduce contention points that would jeopardize execution time. Thus, the provenance 

gathering mechanism must be highly efficient to accommodate both those advantages and 

good performance. Moreover, decades of theoretical and practical development and 

optimizations on Distributed Database Management Systems (DDBMS) motivate their usage 

on a distributed system such as a parallel SWfMS. Additionally, many important concepts in 

HPC problems are discussed in the same context of a DDBMS, e.g., fault tolerance and 

synchronization. Since our proposed architecture relies on a DDBMS, in this section, we 

review some principles that are important for this dissertation. Most of the concepts briefly 

reviewed in this section are further explained in details by Özsu and Valduriez (2011). 
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2.6.1 Data Fragmentation and Replication 

Data fragmentation is related to the division of a database table into disjoint smaller tables (or 

fragments) (Özsu and Valduriez, 2011). The objective is to make distributed transactions 

more efficient when they access different fragments in parallel (Lima, 2004). There are three 

types of fragmentation: Horizontal, Vertical, and Hybrid (Özsu and Valduriez, 2011). In the 

scope of this dissertation, we only explore Horizontal Fragmentation. 

In Horizontal Fragmentation, a table is cut into fragments each of which having a 

shorter number of rows (or smaller cardinality) but having the exact same schema. The 

fragmentation happens following rules based on values of determined attribute on the table. 

For example, suppose we have a table for storing data about employees of a multinational 

company. One of the attributes of this table defines the country where each employee belongs 

to. One possible horizontal fragmentation for this table is fragmenting it into smaller tables 

where each table contains all employees of only one country. Horizontal Fragmentation has 

many advantages such as speeding up parallel transactions that manipulate data from different 

fragments and decreasing complexity of transactions that do not manipulate data from all 

fragments.  

Furthermore, to increase availability, reliability and query performance, all or some 

fragments may be replicated (Özsu and Valduriez, 2011). Each fragment replica needs to be 

allocated to the nodes that host the distributed database. There are total and partial 

replications. Total replication means that each node owns a replica of the entire distributed 

database while partial replication means that only some fragments are replicated. Total 

replication is recognized for achieving the best availability requirements and flexibility for 

query executions. However, in very large databases, total replication may not be possible if 

the entire database size exceeds a host’s storage capacities (Lima, 2004). We highlight that 

regarding availability, replication is highly important because if a node fails, a different 

(living) node may host a replica that the failed node was hosting. Thus, the application is still 

available even if a node fails. 

2.6.2 OLTP, OLAP, Transaction Management, and Distributed Concurrency Control  

In data management, there are two important classes that differ on how data is processed: On-

Line Transaction Processing (OLTP) and On-Line Analytical Processing (OLAP). OLAP 

applications, e.g., trend analysis or forecasting, need to analyze historical and summarized 
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data and they utilize complex queries that may scan very large tables. OLAP applications are 

also read-intensive and updates occur less frequently, usually in specific times. In contrast, 

OLTP applications are high-throughput and transaction-oriented. Extensive data control and 

availability are necessary, as well as high multiuser throughput and fast response times. 

Moreover, queries tend to be simpler, manipulating a smaller amount of data, they are also 

short, but they are many. Queries execution performance is usually greatly increased if indices 

are used. Additionally, updates tend to occur more frequently in OLTP applications than in 

OLAP ones (Özsu and Valduriez, 2011). Although an OLAP database would be desirable 

since data analyses are very important in our scenario, the tasks distribution mechanism with 

provenance gathering alludes to an OLTP access pattern. For this reason, since in this 

dissertation we mainly focus on tasks distribution and parallel execution, we also focus on 

typical characteristics in OLTP parallel applications. We note, however, that our solution does 

not abdicate of analytical capabilities, even though it is not focused. 

Because data updates are frequent in OLTP applications, transaction management 

becomes crucial to keep the database consistent. For example, when two clients try to update 

a same piece of data, the DBMS needs to manage synchronization to guarantee consistency. A 

transaction is a basic unit of consistent and reliable computing in database systems. If the 

database is in a consistent state and then a transaction is executed, the database must remain 

consistent in the end of the execution. A DBMS that employs strong consistency transaction 

management guarantees that all transactions are atomic, consistent, isolated, and durable 

(ACID). In addition to managing synchronization of multiple client requests, strong 

consistency is important for transaction and crash recovery. Furthermore, in distributed 

databases, ensuring data consistency is more complex, since if a piece of data is modified in a 

node, all nodes need to “see” this modification so the entire distributed database can be 

consistent. If the DDBMS employs strong consistency distributed transaction management 

mechanisms, it needs to guarantee that all transactions are ACID even being distributed. For 

this, the DDBMS implements sophisticated distributed algorithms for distributed concurrency 

control to ensure consistency and reliability  (Özsu and Valduriez, 2011). 

Years of significant research in both centralized DBMSs and DDBMSs regarding 

transaction management and distributed concurrency control endorse a distributed architecture 

for Many Task Computing parallelism that relies on a distributed database management 

system. We highlight that the topics mentioned in this section are extremely relevant for an 

application with intense data updates. If a database use is read-only, such complexities do not 

occur and these sophisticated mechanisms are not required (Özsu and Valduriez, 2011). 
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2.6.3 Parallel Data Placement 

In DDBMSs, parallel data placement is similar to data fragmentation (Section 2.6.1). 

Nonetheless, one difference is that, in data placement, an important concern is about 

minimizing the distance between the processing and the data for maximizing performance. 

Full data partitioning is data placement solution that yields good performance. In this 

solutions, each table is horizontally fragmented across all the DDBMS nodes; however, it is 

highlighted that full partitioning is not adequate for small tables (Özsu and Valduriez, 2011). 

There are three strategies for data partitioning: (i) round-robin – it is the simplest and ensures 

uniform data distribution, although direct access to individual rows based on an attribute 

requires accessing the entire table; (ii) hash – a hash function is applied to some attribute 

based on which the partitioning will happen. This strategy allows efficient exact-match 

queries (i.e., queries with where attribute = ‘value’); and (iii) range – rows are 

distributed based on value intervals (ranges) of some attribute. This is a good alternative for 

both exact-match and range queries (Özsu and Valduriez, 2011).  

 Parallel Hardware Architectures 2.7

A parallel system (e.g., a parallel SWfMS or a DDBMS) needs to be aware of the parallel 

hardware architecture on which the system will run in order to take more advantages of it. 

There are three basic parallel hardware architectures that determine how the main hardware 

pieces (processor, memory, and disk) are organized and interconnected in an HPC 

environment: shared-memory (SM), shared-disk (SD), and shared-nothing (SN) (Özsu and 

Valduriez, 2011). We highlight that although architectures may determine the hardware 

organization within each single machine in an HPC environment, we only consider how nodes 

(machines) are interconnected rather than how each of the pieces within each machine are 

interconnected. 

In SM architecture, all nodes can access any memory module or disk unit through a 

fast interconnect network. In SD, all nodes can access a shared disk unit through the 

interconnection network, but each processor has its own memory module (distributed 

memory). In SN, each node has its own memory and disk space. 

Regarding differences that are relevant for this work, comparing with SN and SD, 

systems that run on SM generally provides better performance and developing tem are usually 

simpler. However, SM is not as extensible as SD and SN. Indeed, adding or removing nodes 
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in SN architecture is simpler than in SD and SM because the architecture is more loosely 

coupled. SN has lower costs, high extensibility, and availability. However, data management 

is more complex and data redistribution is needed when nodes are added or removed. 

Moreover, in SD, since data may be exchanged across all nodes through the disk, it is easier 

to support ACID transactions and distributed concurrency controls. Thus, for OLTP 

applications, SD is preferred. Conversely, since OLAP applications are usually larger and 

mostly read-only, SN is preferred (Özsu and Valduriez, 2011).  

In extremely large-scale computer-based scientific experiment scenarios, an HPC 

environment may consist of hundreds of processors or even more. These are the ones called 

supercomputers. Most of the Top 500 supercomputers in the world are built on top of SD 

(TOP 500, 2015). We note that, in a SD, there are multiple disks (i.e., they are distributed), 

but they are all interconnected through a very fast network interconnect (e.g., Infiniband) so 

data in all disks can be kept synchronized; otherwise, bottlenecks may happen. Network-

Attached Storage (NAS) and Storage-Area Network (SAN) are technologies for implementing 

SD architectures. SAN is acknowledged for providing high data throughput and for scaling up 

to large number of nodes (Özsu and Valduriez, 2011). Thus, SAN is preferred when 

performance is a requirement. 

 Performance Metrics 2.8

To evaluate the performance of a parallel system, there are some known basic metrics that are 

commonly used. In this work, we utilize at least three metrics in our performance evaluation: 

speedup, efficiency, and scalability. 

Speedup measures performance gain achieved by parallelizing a program compared 

with a sequential version of such program. Sahni and Thanvantri explain that although the 

basic idea to calculate the speedup of a parallel system is given by the ratio between 

sequential execution time and parallel execution time, the definition of sequential and parallel 

times may vary depending on what and how the system is being measured, which results in 

many different definitions of speedup (1995). In this work, we use two definitions of speedup: 

real speedup and an adapted version of relative speedup (Sahni and Thanvantri, 1995). The 

real speedup         to solve a problem   using the program   running on   processors is 

given by 

         
                                                                   

                                                  
 (1) 
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The time to solve using the best sequential program is also known as theoretical time. This 

time may hide overheads and assumes a perfect case scenario, which may be utopic in most 

situations, causing performance gains to be hidden. For this reason, instead of using this 

theoretical time to calculate the real speedup, using a relative speedup seems fairer. The  

relative speedup                 is given by  (Sahni and Thanvantri, 1995): 

                 
                                                 

                                                  
 (2) 

However, in large-scale simulations, running the program   on only one processor may not 

be possible because it is not rare to have an executing taking days or weeks to run on a single 

processor. Taking all this time to run may not be viable, because it means more costs 

(especially if the HPC environment is a cloud-based service), more energy consumption, and 

more time spent on queues on clusters that are shared with many users. For this reason, we 

adapt the (2 and define the RelativeSpeedup*  as: 

                  
                                                  

                                                  
 (3) 

where       and   is the smallest number of processors the program   could run for the 

evaluation. We use both             and                 in our experimental 

evaluation in Chapter 6. 

 In addition to speedup, efficiency is another popular metric used to evaluate parallel 

systems. It measures the fraction of time for which a processor was efficiently employed 

(Sahni and Thanvantri, 1995). The efficiency of the system is calculated by dividing the 

speedup by the number   of processors used to run. Since we used two different definitions 

for speedup, we also use two different definitions for the efficiency. The real efficiency 

           is calculated based on the real speedup (1): 

            
       

 
 (4) 

Analogously, the relative efficiency                    can be calculated based on the 

relative speedup as in Equation (2). 

 Finally, to measure how the system behaves when we vary the problem size and the 

number of processors, we use the             metric. The ideal scalability is that the 

execution time remains constant when we multiply the problem size by a factor of   and 

multiply the number of processors by  . 
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 Related Work 2.9

In previous sections, we argued that to support large-scale computer-based simulations, a 

SWfMS needs to manage three types of data: execution data, provenance data, and domain 

data, and we have defined the term provenance database to signify a data repository that 

contains all of them, jointly. In introduction, we explained that some SWfMSs use a 

distributed data control based on flat files and some of them use a centralized DBMS at 

runtime to store one of the three types of data.  We also argued that managing a provenance 

database at runtime enables powerful advantages (Section 2.5). In this section, we are going to 

mention existing parallel SWFMs in respect to their data management capabilities. 

 To the best of our knowledge, only Swift/T (Wozniak et al., 2013) and Pegasus 

(Deelman et al., 2007) are acknowledged for running on large HPC environments. Swift/T is 

a highly scalable parallel SWfMS that uses a distributed data management based on flat files 

and stores provenance data in the end of the workflow execution. Thus, although it is good for 

performance, its data analytical capabilities, including execution monitoring at runtime and 

user steering, are limited. Pegasus stores execution data using a centralized DBMS and stores 

provenance data in flat files, which are loaded into the database in the end of execution. Since 

it uses a centralized DBMS, it suffers from a contention point. Moreover, since it does not 

store the other two types of data at runtime, its analytical capabilities and interactive 

execution are also limited. 

For this reason, since SCC is the only existing SWfMS that manages a provenance 

database (composed of the three types of data – Section 2.5) at runtime using a DBMS, it is 

the only SWfMS that must be concerned about efficient mechanisms for capturing these data 

at runtime to enable the mentioned advantages and to keep good efficiency. We highlight that 

although SCC is directly related to this work, we do not mention it in this section. Instead, we 

dedicate the next chapter for it (Chapter 3). Several previous works from our research group 

have already surveyed with more details other existing SWfMS that enable provenance data 

analyses (mostly in the end of workflow execution). Some of these works are reported by 

Ogasawara (2011), Oliveira (2012), Dias (2013), and Silva (2014). 

 

  



24 

 

 

3 SCICUMULUS/C² 

SciCumulus/C² (SCC) (Silva et al., 2014) is a parallel Scientific Workflow Management 

System (SWfMS) developed by the High Performance Computing and Databases research 

group
4 

at COPPE/Federal University of Rio de Janeiro and at Fluminense Federal University. 

It is based on a collection of works from many researchers, undergraduate students, and 

masters’ and PhD’s theses. Essentially, SCC was developed to benefit from the results of two 

main initiatives: SciCumulus  (Oliveira et al., 2010) and Chiron (Ogasawara et al., 2011; 

Ogasawara et al., 2013). Chiron is a parallel workflow execution engine that takes advantage 

of clusters and grids. SciCumulus utilizes the main characteristics and algorithms of Chiron 

and adds special techniques to take advantages of cloud properties, such as elasticity, at 

runtime (Oliveira, 2012). SCC aims at integrating Chiron and SciCumulus in order to propose 

a more flexible parallel SWfMS that takes advantages of a wider variety of HPC 

environments (Silva et al., 2014). To the best of our knowledge, they are the only current 

parallel SWfMS that stores the three types of data jointly on the same Provenance Database 

(Section 2.5). We use most of the core concepts introduced in Chiron, we keep the special 

algorithms that take advantage of cloud environments introduced in SciCumulus, and use the 

most recent version of SCC, which integrates them all, to serve as a basis for our work. For 

this reason, the most important concepts of these systems that are for particular interest for 

this dissertation are explained in this chapter.  

 SciWfA: a workflow algebra for scientific workflows 3.1

SCC manages a scientific workflow and the data that flows between each activity that 

composes a workflow. We argue that scientific workflows in large-scale computer-based 

experiments are data intensive, require HPC (as seen in Sections 2.1 and 2.2, and should not 

miss relevant optimization opportunities, especially in parallel executions (Ogasawara et al., 

2011). To cope with this, Ogasawara et al. (2011) propose an algebraic approach that 

facilitates complex dataflow definition, parallel data management of the data that flows 

between activities, and enables optimizations of scientific workflow executions at runtime. 

The Scientific Workflow Algebra (SciWfA) is an extension of the well-established relational 

algebra, which is the basis for query processing and optimizations in relational database 

systems  (Özsu and Valduriez, 2011). 

                                                 
4
 hpcdb.wordpress.com 
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In SciWfA (Ogasawara et al., 2011), each activity 𝑌   {𝑌}  is associated to an 

algebraic operator  . Where {𝑌} is a set containing all activities in a determined workflow 

and    {                                          }. Moreover, 𝑌  consumes a 

set (or relation, as it is traditionally called in relational algebra)    of input tuples and 

produces a set    of output tuples. The operator   may also need an additional operand  . 

Hence, we may state that 

       𝑌        (5) 

Additionally, the algebraic operator   is defined depending on the ratio between the 

number of tuples consumed and produced for a determined activity invocation, as we can see 

in Table 1. 

Operator 
Type of Operated 

Activity 
Additional Operands 

Ratio between 

consumed and 

produced tuples 

Map Application Relation 1:1 

SplitMap Application File Reference or Relation 1:m 

Reduce Application Set of aggregating attributes or Relation n:1 

Filter Application Relation 1:(0-1) 

SRQuery 
Relational Algebra 

Expression 
Relation n:m 

MRQuery 
Relational Algebra 

Expression 
Set of Relations n:m 

Table 1 – SciWfA operations (adapted from Ogasawara et al., 2011) 

The ratio between consumed and produced tuples is calculated based on the cardinality 

(i.e., number of tuples) of the consumed input set and produced output set. This means that in 

a workflow execution, a same application is invoked multiple times each of which consuming 

a tuple (or set of tuples) and generating a tuple (or set of tuples) (recall from Section 2.3).  

However, these applications that are invoked and managed by SCC are usually made by third 

party companies or institutions that are not necessarily aware of SciWfA. As a consequence, 

each invocation may not produce the necessary output tuples, which are very important for the 

provenance gathering mechanism and to serve as input for the next linked activity. For this 

reason, the SciWfA relies on the definition of an important concept called activation.  

 Activation and Dataflow strategies 3.2

According to Özsu and Valduriez (2011), an activation is “the smallest unit of sequential 

processing that cannot be further partitioned”, i.e., cannot be further parallelized. In Chiron, 
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the core of SCC, an activation can be simplified as an activity invocation. Further, Ogasawara 

et al. (2011) explain that it is a “self-contained object that holds all information needed to 

execute a workflow activity at any core” on the HPC environment. That is, it contains which 

application to invoke, which data to consume and what the schema of the data that will be 

produced is.  

Moreover, due to the reasons mentioned in Section 3.1, the concept of activation in 

SCC is more than an activity invocation. It is necessary to define sub-concepts inside of it. 

These are instrumentation, invocation, and extraction that altogether form an activation 

(Ogasawara et al., 2011). Before the workflow execution, users define the data schema of the 

input and output relations of all activities in the workflow.  In instrumentation, input tuples 

are extracted and the application invocation is prepared according to the defined input schema. 

An invocation launches an application on a processor in the HPC environment, consuming the 

input tuples defined in instrumentation and produces output tuples. Finally, in extraction, 

produced output tuples are collected. Provenance data are gathered since the beginning until 

conclusion of an activation. Typical gathered provenance data aids the scientists to answer, in 

a high level of details, questions like: Is an activation still running? Has any error occurred? If 

yes, which errors? How long did an activation take to completely execute? More importantly, 

since different values for domain-specific parameters (e.g., speed of wave – seismic – or point 

of the sky – astronomy) may impact of application performance or even may introduce 

application errors, all those provenance data can be associated to domain-specific input and 

output data. This enables rich analyses at runtime and execution monitoring (Oliveira et al., 

2014; Souza et al., 2015). The formal definition of an activation and its composing parts can 

be found in (Ogasawara et al., 2011). 

Regarding dataflow strategies, there are two in SCC: First Tuple First (FTF) and First 

Activity First (FAF) (Ogasawara et al., 2011). To explain this, we use a simple workflow 

example: two activities A1 and A2, being A2 dependent on A1. In FTF, an A2 activation only 

waits until its necessary input tuples are produced by an A1 activation. This is a typical 

pipeline dataflow. In contrast, in FAF, A2 only begins to execute when all A1 activations are 

completely executed. In other words, A2 remains blocked until A1 finishes. We only used the 

FAF strategy in our experiments as in almost all experiments executed in SCC (Chapter 6). 
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 Centralized DBMS 3.3

SCC relies on a centralized DBMS to manage its Provenance Database. Although this brings 

powerful advantages as mentioned in Section 2.5, this also leads to some drawbacks. We 

highlight five disadvantages, especially comparing with the utilization of a DDBMS.  

First, a centralized DBMS introduces a single point of failure in the parallel system. 

That means that if the node that hosts the DBMS fails, the entire system fails. Second, if 

compared with a DDBMS, it cannot handle a large dataset as efficiently as a DBMMS. Third, 

it does not have special algorithms or techniques to take advantages of parallel execution on 

multiple nodes in an HPC environment. Forth, a centralized DBMS is not as scalable as a 

DDBMS. Finally, a DDBMS can handle a higher number of requests from clients than a 

centralized DBMS. However, it is important to notice that despite the drawbacks, a 

centralized DBMS uses less computing resources than a DDBMS, since only one node is 

necessary whereas in a DDBMS, generally, the greater the data size, access rate, or 

availability requirements, the more nodes are required to keep latency low and the system 

available. 

 Architecture and Scheduling 3.4

SCC’s architecture is organized in a distributed fashion consisting of multiple nodes, which 

we especially call SciCumulus Nodes (SCN). The core of SCC is instantiated on each SCN, 

where the scientific workflow is effectively executed. The architecture is managed following 

a master-slave policy. The master node manages the distribution of activations among all SCN. 

Moreover, the master node is also an SCN node, which means that it also runs activations, but 

it will not need to send MPI messages to get tasks, since tasks are just one hop away from the 

database, and not two, like the other SCNs that are not masters. In addition to managing 

activations distribution among all SCN, the master node is also responsible for storing data in 

the Provenance Database. All slaves are connected to the master via a network interconnect 

and all SCN access a shared disk. We note that there may be bottlenecks at the master node due 

to a centralized management at a single site and due to the fact that the master node is the only 

SCN enabled to access the provenance database. Furthermore, a database server is utilized to 

host the DBMS that manages the Provenance Database. This architecture is illustrated in 

Figure 5. 
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Figure 5 – SCC architecture 

Regarding activations scheduling, SCC implements a CWQ BoT architecture and 

tasks scheduling (recall from Section 2.4.1). Basically, master node is the only one that can 

access the BoT (which is managed by a DBMS) to retrieve tasks and distribute them among 

slaves. More specifically, it works as follows. The master node waits for requests from slaves. 

A slave requests work and waits until the master sends an activation. Then, the master 

accesses the database to retrieve the next activation that is ready to be executed. Following, 

the master sends a massage containing the activation to the requesting node. The requesting 

node receives the activation, executes it, and sends the master a feedback message containing 

provenance data about the execution. Finally, the master receives the sent data, stores them in 

the database, and waits for new requests. The execution finishes when all activations from all 

activities are completely executed and provenance data of each individual execution is stored. 

SCC is implemented in Java and utilizes MPJ
5
 (MPI for Java) for message passing among all 

nodes in the cluster and Java built-in threads
6
 for concurrent programming in the shared-

memory architecture within each node. 

Concerning software architecture, SCC is organized in four modules (Silva et al., 

2014). (i) SciCumulus Starter (SCStarter) – which facilitates workflow execution submission 

on HPC environments. Common actions include automatic preparation of all machines that 

                                                 
5 
http://mpj-express.org 

6
 http://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html 
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will be used during execution (e.g., VM instantiation in a cloud environment), conceptual 

workflow insertion into the database, and instantiation of the workflow execution engine on 

each machine; (ii) SciCumulus Setup (SCSetup) – which is used to insert, update or delete 

conceptual workflows into or from the provenance database; (iii) SciCumulus Core (SCCore) 

– which is the main module. It concretizes the conceptual workflow. It contains the main SCC 

logic, including runtime optimizations based on the SciWfA (Ogasawara et al., 2011), fault 

tolerance (Costa et al., 2012), intra-node parallelism taking advantage of shared-memory 

architecture within each machine, adaptive execution (Oliveira et al., 2010), and so on. This is 

the module that is effectively instantiated on each SCN; and finally (iv) SciCumulus Query 

Processor (SCQP) – which aids users to submit SQL queries to the provenance database. 

Although users can connect to the DBMS via other means (such as the ones provided by the 

DBMS itself), this module simplifies the database connection so analytical queries can be 

conveniently submitted to the provenance database by users. Queries results are returned to 

users’ standard output, which can be redirected to semi-structured files (e.g., CSV) and 

consumed by services that plot graphs to facilitate data visualization. These are the main 

features, functionalities, and characteristics of the parallel WFMS we base this dissertation on. 
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4 BAG OF TASKS ARCHITECTURES SUPPORTED BY A DISTRIBUTED 

DATABASE SYSTEM 

In this chapter, we propose our main theoretical contribution. We propose two conceptual 

distributed architectures for a BoT that relies on a Distributed Database Management System 

(DDBMS). We define these architectures’ tasks scheduling, load balancing, fault tolerance, 

and other issues. In Section 4.1, we propose a novel design of a BoT application. It is a high 

level tasks distribution design and scheduling in a BoT application and does not depend on a 

DBMS. However, it serves as inspiration and basis for our architectures that rely on a 

DDBMS. In Section 4.2, we briefly introduce and explain the two architectures. In Section 

4.3, we discuss common characteristics between them. In Section 4.4, we define the first 

architecture and, in Section 4.5, the second. 

 Work Queue with Replication on multiple Masters 4.1

Before introducing our architectures proposal, we first propose a novel task distribution 

design and scheduling of a BoT application. Although this does not depend on a DBMS, we 

will show that it serves as an inspiration and basis for our actual architectures proposal. 

We begin this proposal by enumerating advantages and disadvantages of two designs 

studied in Section 2.4: Work Queue with Replication (Section 2.4.2) and Hierarchical Work 

Queue (Section 2.4.3). 

WQR advantages 

 i. It May achieve higher performance than the simple CWQ (Silva et al., 2003); 

 ii. Comparing with CWQ and HWQ, it has better use of data locality (Paranhos et 

al., 2003; Anglano et al., 2006). In WQR, the necessary data is likely to be 

locally stored, which does not occur in CWQ and HWQ; 

 iii. Higher availability than simple CWQ and HWQ because of the replicas; 

 iv. No task transmission between master and slaves; 

 v. Ability to accommodate large problems when partial replication is used. 

WQR disadvantages 

 i. Communication bottleneck may occur due to centralization at the master node; 

 ii. If partial replication is used, choosing the victim node for work stealing needs 

to be carefully evaluated because it may lead to communication overhead; 

 iii. If partial replication is used, there may exist tasks transmission (work stealing) 

among slaves; 

 iv. Single point of failure at the central node. 

HWQ advantages 
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 i. Multiple masters lead to less congestion at a centralized node; 

 ii. If M and S are wisely chosen, congestion at the central node is avoided; 

 iii. HWQ may accommodate larger problems (Silva and Senger, 2011). 

HWQ disadvantages 

 i. HWQ model does not take as much advantage of data locality as WQR; 

 ii. HWQ has single points of failure; 

 iii. There is task transmission in both levels of the hierarchy. That is, between 

supervisor and masters and between masters and slaves. 

 iv. There is an added layer of bureaucracy between the slaves and the main owner 

of the BoT. That is, compared with a one-level hierarchy (e.g., CWQ), more 

communication is needed so a slave can reach a task; 

 v. To the best of our knowledge, there is not an optimal general method to find M 

and S, even statically. As a result, the choice remains empirical; 

 vi. Computation load balancing is not clearly specified; 

 vii. Single point of failure at the central node. 

Table 2 – A summary of the advantages and disadvantages of both WQR and HWQ. 

Given these facts, we can combine characteristics of replication and hierarchy to 

propose the Work Queue with Replication on multiple Masters (WQRM). In WQRM (Figure 

6), there are M masters and σ slaves in the cluster. The number σ of slaves in the whole cluster 

is given by the sum of all slaves in all clusters ci. That is: 

σ   ∑   
 
    (2) 

 

Figure 6 – Work Queue with Replication on Masters design. 
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Like in WQR, the supervisor does not own the bag of tasks. Instead, the BoT is 

replicated in all masters. This increases availability because if a master fails, another master 

may own the failing portion of the BoT and the supervisor coordinates the failure recovery. 

Identically to WQR, between master nodes and the supervisor there are only scheduling 

messages, i.e., no task transmission. Each cluster ci works exactly like the CWQ, that is, there 

is task transmission between a master and slaves. Just like in WQR with partial replication, 

when one master node ends its portion of the work queue and becomes idle, the supervisor 

helps calculating whether or not it is advantageous to ask the idle master to steal tasks from a 

victim busy master.  

Regarding availability, failure recovery strategies may be applied in the slave nodes by 

taking advantage of replication (Anglano et al., 2006). In addition, to provide higher 

availability, the secondary supervisor’s role is just to eliminate a single point of failure. That 

is, if the main supervisor fails, the secondary supervisor takes its place. 

Regarding advantages and disadvantages in WQRM: 

a) From WQR, in respect to the advantages, WQRM inherits most of them. Only the 

advantage (iv) is not fully given because even though there is no task transmission 

between supervisor and masters, there is between masters and slaves. In respect to 

the disadvantages, all of them are inherited. However, since there are many 

masters, contention in a single centralized point is less likely to occur, like in the 

hierarchical model. 

b) From HWQ, the only inherited characteristic is having multiple masters, which is 

its greatest advantage. For his reason, in respect to the advantages, WQRM inherits 

all of them. In respect to the disadvantages, (i) still remains because WQRM only 

takes advantage of data locality between masters and the supervisor (just like 

slaves and master in WQR). This is useful for work stealing among masters, but 

not useful for scheduling tasks among slaves. Moreover, disadvantage (v) is still an 

open problem. All other disadvantages are canceled because of replication, 

addition of a second supervisor, and work stealing among masters. 

By proposing WQRM, we want to add an extra option to the existing BoT designs 

(Section 2.4) so that we can choose among them which we will use as inspiration and basis 

for our architecture that relies on a DDBMS, which will be responsible to hold the BoT. It is 

important to avoid communication bottleneck due to centralization, which motivates us to 

choose a design with multiple masters (managers of the BoT). Especially, a design based on 

replications has many advantages that we are very interested in. For this reason, we decide to 
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choose WQRM, which combines advantages of replication and hierarchy (specifically, 

multiple masters). Therefore, among the four tasks distribution designs previously presented 

(CWQ, HWQ, WQR, and WQRM), we choose WQRM so our architecture supported by a 

database system will be based on. In next section, we discuss two architecture alternatives and 

explain which one we choose to implement our solution. 

 Brief introduction to Architectures I and II 4.2

Most BoT implementations found in literature do not utilize a database system (Silva et al., 

2003; Anglano et al., 2006; Silva and Senger, 2011). For this reason, we need to highlight 

three important motivations for using a DBMS, a distributed DBMS in special, in a BoT 

problem. 

The primary motivation for using a DBMS in our architecture (in a SWfMS context) is 

that in a workflow execution, lots of data are continuously managed in a fine grained level as 

data are processed all over the dataflow. Thus, by using a DBMS, it is possible to query 

complex experiments’ execution logs, perform advanced data analyses, as well as enable 

humans to interact with the remaining tasks to be executed through updates on the database, 

everything during runtime, as we have argued in Section 2.5. We do not want to abdicate 

these powerful advantages.  

The secondary, but also very important, motivation for using a database system is that 

most DBMSs implement very efficient mechanisms that are essential in a HPC scenario. For 

example, any DBMS implements efficient concurrency control mechanisms. Especially, most 

relational DBMS (including the centralized ones) implement well-known algorithms and 

strategies to guarantee atomicity, consistency, isolation, and durability in transactions. 

Moreover, distributed database systems enable robust parallel access and storage of data, 

usually in larger sizes than regular centralized DBMS. Further, sharding, i.e., partitioning the 

database into multiple nodes is also well-studied and implemented in many distributed 

DBMSs. Besides, failure recovery is also an important functionality in a DDBMS. 

Furthermore, efficient utilization of cache memory is also a common feature in DBMSs, 

including centralized ones  (Özsu and Valduriez, 2011). Additionally, a DBMS (either 

centralized or distributed) may be implemented to run completely in-memory instead of 

performing I/O operations to disk, which would enhance performance. Therefore, having a 

DBMS – which already implement most of these mechanisms usually very efficiently – to 

take care of all these complex issues, will alleviate the effort on developing such complex 
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controls in a given parallel application. In this way, the developers would focus on specific 

concerns that are related to specific uses of the application, instead of having to worry about 

implementing tasks scheduling and dealing with complex concurrency issues. In our case, we 

want to focus on controlling the parallel execution of workflows and store important data in 

the provenance database. 

The tertiary motivation specifically relies on a distributed database system. In addition 

to the above arguments regarding the utilization of a distributed database system, there is still 

the fact that, by using one, we can take more advantage of the parallel hardware architecture, 

which is common in HPC environments. Furthermore, a centralized database system will 

likely suffer from congestion in a scenario with many processing nodes. For these reasons, a 

distributed database system is more convenient in an HPC scenario. 

In next sections, we describe two architectures, based on WQRM design, supported by 

a distributed database system: Architecture I, which uses WQRM by making an analogy 

between masters and data nodes; and Architecture II, which has many similarities with 

Architecture I, but has different number of partitions and data nodes. 

 Common Characteristics 4.3

Similarities and differences between Architectures I and II are in respect to the work queue. In 

common, the work queue is managed by a distributed database system and it is fully 

partitioned, that is, horizontally fragmented across all nodes in the cluster of database nodes. 

This significantly increases parallelism (Özsu and Valduriez, 2011). Moreover, regarding 

availability, both architectures share the same characteristics inherited from WQRM design. 

Yet, if a node hosting a work queue partition fails, there is still at least an extra replica that 

may be utilized.  

Although inspired by WQRM and many analogies will be made to explain both 

architectures, WQRM and the architectures are not exactly one-to-one analogous. The 

architectures do not explicitly have multiple master nodes functioning as schedulers.  We may, 

rather, establish the DDBMS (as a whole) as a great “centralized” scheduler, which implies a 

similar behavior to CWQ.  

Nonetheless, instead of having slaves requesting tasks to a master through regular 

message passing, like in common CWQ implementations, we have slaves sending structured 

queries to a distributed database system. Instead of having a master to receive the slave 
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request, get the next ready task and send it to the slave, we have the DDBMS to play the very 

same role. 

In spite of the fact that the message passing primitives (e.g. send and receive) are 

basically the same in either implementations (common CWQ implementation or DBMS 

supported implementation); and that data transfer happens in a similar way, the main 

advantage is that we rely the scheduling on a third party system.  That is, we apply the idea of 

outsourcing. More importantly, this third party system we rely on is known to be specialized 

in concurrency control mechanisms (Özsu and Valduriez, 2011). Furthermore, all benefits we 

pointed out in our secondary motivation in the beginning of this section are applicable. Thus, 

we count on a trusted and highly specialized third party system to alleviate our work so we 

can spend more efforts on the actual application. 

Despite noting a CWQ behavior resemblance, we emphasize that a DDBMS is utilized 

instead of a single central node, as it is in CWQ. In other words, there is not a centralized 

single master at all. A DDBMS is composed of many data nodes which diminishes the 

centralization problem that causes congestion in CWQ. We use the term data node (dn) to 

signify a node that hosts the process that manages partitions of the database. A data node also 

contains data of the DDBMS. In other words, a data node owns and manages part of the bag 

of tasks. This also resembles the fact that multiple master nodes hold BoTs in the WQRM 

design. 

It is important to highlight that since we are relying on a database solution, a new role 

takes place in the scenario: the database server, which we shorten as dbs. Database servers 

just listen to connections and applications commonly connect to the database through 

connection drivers (e.g., JDBC or ODBC
7
). Even though the dbs are usually just responsible 

for listening to connections, they may play an important role regarding communication load 

balance. Some distributed DBMSs implement mechanisms to improve communication load 

balance so contention at the database may be avoided, which is very valuable for us. However, 

the presence of a new role introduces a new problem that we need to deal with because of the 

database utilization. There is a need to determine a good number of dbs in the cluster, which 

may also be empirical. We denote this number by q. 

Furthermore, an initial connection distribution is needed. That is, each slave needs to 

know in advance which dbs it will connect to. A supervisor node needs to take care of this. 

Plus, it is important to even up communication load across the q dbs. Otherwise, there may be 

                                                 
7 http://en.wikipedia.org/wiki/Java_Database_Connectivity and 

   http://en.wikipedia.org/wiki/Open_Database_Connectivity 

http://en.wikipedia.org/wiki/Java_Database_Connectivity
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a dbs with a heavy load of slaves connecting to it while there are others lightly loaded. This 

communication load balance may be easily achieved by making use of a circular distribution 

policy, as we show in the algorithm proposed in Section 4.4.4. Next, we describe both 

architectures in details. 

 Architecture I: Analogy between masters and data nodes 4.4

Just like there are M masters in WQRM, there are M data nodes in Architecture I (Figure 7). 

In next sections we will explain the scheduling process, which consists of slaves querying the 

data nodes in order to retrieve tasks (analogous to slaves asking masters for work).  

 

Figure 7 – Architecture I: Master nodes are data nodes 

Furthermore, to increase availability in the system, each slave Sij may connect and 

query the database cluster via two different dbs nodes: the main dbs node connection, 

represented by dashed lines in Figure 7 and the secondary dbs node connection, represented 

by dotted lines. If one dbs fails, all slaves that were connected to it just need to connect to 

their secondary dbs. 

4.4.1 Parallel data placement 

Regarding parallel data placement in the database system (recall from Section 2.6.3), the 

whole work queue is horizontally fragmented into M (number of data nodes in the cluster) 
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partitions. Each partition ρi is responsibility of and physically stored in dni and replicated 

elsewhere. Each partition ρi initially contains T = ceiling(Ttotal/M) tasks, where Ttotal is the 

total number of tasks in the BoT. To place T tasks in each partition, a hash function on the 

data node id may be applied.  

4.4.2 Task distribution and scheduling 

This is how initial task distribution happens in this architecture. Initially, given that there are 

M data nodes, the supervisor is responsible for assigning each task to a data node in a circular 

fashion. This is done inserting tasks in the work queue relation in the database assigning the 

data node id to the task and the hash function mentioned previously (Section 4.4.2) will take 

care of placing the task in the right data node. Similarly, the supervisor also assigns a data 

node to each slave node so that each slave will know which data node will be queried. 

It is worth noting that only in close-to-homogeneous problems (that is, all tasks cost 

approximately the same), the static initial distribution will provide near to optimal load 

balance. In heterogeneous problems, though, this initial distribution needs to be dynamically 

“corrected” during runtime. However, even in homogeneous problems, load imbalance may 

still occur in very long running executions. Thus, work stealing and more sophisticated load 

balancing may still be needed. 

After all initial task distribution and data placement, the actual scheduling begins and 

it works similarly to what we described for the CWQ (recall from Section 2.4.1). A slave 

sends a query to retrieve tasks from its partition which is physically stored in dni and 

replicated elsewhere. The DDBMS is responsible for an efficient concurrent management 

from the multiple requests and then it delivers the right tasks to the requesting slave. The 

requesting slave becomes busy while executing its tasks. When a slave finishes its work load, 

it stores the results in the provenance database. Then, it becomes idle and ready to retrieve 

more tasks from the database. This is done until all tasks in the bag of tasks are completed. 

4.4.3 Load balancing 

Load balancing happens analogously as specified in WQRM. When all tasks in a data node 

are completed, a slave notifies the supervisor of the situation. Then, the supervisor calculates 

whether or not work stealing is advantageous. If it is, a victim data node must be selected. If 

we use the heuristic of choosing the most loaded data node, we just need to query the database 
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to easily get this information. Finally, after selecting the victim, say dnj, the supervisor needs 

to move data from the partition ρj to partition ρi. 

4.4.4 Algorithm for distributing dbs to achieve better communication load balance 

In our architectures, slaves access the distributed database via connection to the dbs nodes. In 

other words, the dbs are the only nodes that the slaves are aware of to get access to data in the 

distributed database. A common scenario is when the number of slaves is much greater than 

dbs nodes and communication load imbalance may occur. If, for example, there are 20 slaves 

and only 2 dbs nodes, (say dbs1 and dbs2) there would be communication load imbalance if 

19 slaves connect to dbs1 e only one slave connects to dbs2. For this reason, we need extra 

functionalities to improve communication load balance. To tackle this, we also propose our 

own algorithm for distributing dbs nodes to all slaves in a balanced way. In our previous 

example, one balanced way to distribute dbs nodes would be 10 slaves connecting to the 

DDBMS via dbs1 and the other 10 connecting via dbs2. Moreover, we also need to assign a 

secondary dbs 2 for each slave to increase availability in case the primary dbs fails. In other 

words, each slave has a primary dbs through which it connects to the DDBMS and a 

secondary dbs that is used if the primary dbs fails.   

The algorithm is divided into three parts. In part (i), if a physical machine is both slave 

and database server, then, this slave machine connects to the distributed database through the 

database server that is hosted on this machine. In other words, if a machine is both slave and 

dbs, it assigns itself as the dbs. In part (ii), each slave assigns a dbs to it in a circular fashion. 

Each dbs can serve at most W/q, where W is the number of remaining slaves to be assigned 

and q is the number of dbs nodes. In part (iii), each of the W remaining slaves is assigned to a 

dbs, also in a circular fashion. This algorithm is formalized as shown in Figure 8. In addition 

to this algorithm, we discuss in Section 5.3 that in our implementation, we may also make use 

of features provided by the DDBMS to improve communication load balance. 
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Figure 8  - Algorithm for dbs distribution to slaves 

 

Algorithm 1: Distributing database servers to slaves 

Input: 

Ldbs: List of database server machines 

Lw: List of slave machines 

Output: 

- 

1. 

2. 
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function distributeDatabaseServers(Ldbs, Lw) 

   int circular   0 

   int i   0 

   int quotient   0 

   int primDBindex   0 

   int secDBindex   0 
 

   // Part (i) 

   for each machine in Ldbs do 

      if exists machine in Lw then 

         machine.mainDBS   machine 

         circular   circular + 1 
         remove(machine, Lw) 

      end if      

   end do 

 

   quotient   |Lw| div |Ldbs| 
    

   // Part (ii) 

   while i < |Lw| do 

      primDBindex   circular mod |Ldbs| 

      Lw[i].mainDBS   Ldbs[primDBindex] 
      if |Ldbs| >= 2 then 

         secDBindex   abs ( ( |Ldbs|   1   circular ) mod |Ldbs| ) 

         Lw[i].secondaryDBS   Ldbs[secDBindex] 
      end if 

      i   i + 1 
      if quotient = 0 then 

         circular   circular + 1 
         exit while 

      end if 

      if i mod quotient = 0 then 

         circular   circular + 1 
      end if 

   end do 

 

   // Part (iii) 

   while i < |Lcn| do 

      primDBindex   circular mod |Ldbs| 

      Lw[i].mainDBS   Ldbs[primDBindex] 
      if |Ldbs| >= 2 then 

         secDBindex   abs ( ( |Ldbs|   1   circular ) mod |Ldbs| ) 

         Lw[i].secondaryDBS   Ldbs[secDBindex] 
      end if 

      i   i + 1 

      circular   circular + 1 
   end do 

end function 
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4.4.5 Advantages and disadvantages 

Advantages of using Architecture I are: (i) Assuming that M is wisely chosen (recall from 

Section 4.1) as well as q is good enough, there will be less congestion at the database and 

parallel query execution may be well explored; (ii) due to utilization of secondary nodes (for 

master node and for db server nodes) and due to reasons inherited by basing on WQRM, this 

architecture is able to provide high availability; and (iii) this architecture provides great 

flexibility for adding slaves, even dynamically during runtime. Everything a slave needs to do 

to join the executing team is to connect to the DBMS through any dbs. Despite being likely 

unnecessary, a more sophisticated strategy to choose the least loaded dbs may be 

accommodated to preserve communication load balancing. Then, after connecting, the 

recently joined slave can start executing by following the scheduling policy described 

previously. Removing slaves is similar to the slave failure recovery process as discussed in 

the beginning of this section. 

The disadvantages of Architecture I are related to scalability problems, which are 

likely to occur in a scenario with a large M because it will be harder for the DBMS to manage 

a large number of data nodes. A large number of data nodes means that data will be spread 

throughout many actual machines. Many distributed DBMSs do not scale data nodes up to a 

really big number, say hundreds of nodes. In addition, the more partitions, the more it will be 

taken advantage of parallel executions. However, requiring that each partition needs to be 

physically stored in each data node implies that many data nodes will be needed in order to 

achieve greater parallelism. This, as mentioned, may also lead to a scalability problem. Since 

we want our architecture to be adaptable to a large environment, this is a critical limitation. 

 Architecture II: Different number of partitions and data nodes 4.5

Architecture II (Figure 9) functions mostly like Architecture I. The main difference is that in 

Architecture II, we do not force each partition ρi to be physically stored in dni. This implies 

that the number of partitions does not need to be equal to the number of data nodes. Rather, 

the cluster of database nodes is composed of d data nodes and the work queue is partitioned 

into M partitions. 
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Figure 9 – Architecture II: Analogy between masters and partitions of the work queue 

This introduces much more flexibility than in Architecture I, since we may have a 

greater number of partitions than of physical data nodes. As said previously, more partitions 

lead to better parallelism. Multiple data nodes are more costly than multiple partitions.  

Although more flexibility and generality are given to Architecture II, it introduces one 

new problem: choosing d. Table 3 summarizes which parameters need to be adjusted in order 

to achieve good performance. 

Parameter Meaning 

d Number of data nodes in the database cluster 

q Number of dbs nodes 

M Number of partitions of the work queue 

S 

Number of slaves that connect to a dbs node. If q is known, this 

may be simplified as S   σ / q. Recall from Section 4.1 that σ is 

the total number of slaves on the HPC environment. 

Table 3 – Parameters that need to be adjusted 

In spite of seeming very complex to define all these parameters, a simplification of the 

problem is presented in Section 5.5. 
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4.5.1 Parallel data placement 

Regarding parallel data placement in the database, the work queue is fully partitioned (Özsu 

and Valduriez, 2011) into M horizontal fragments, or partitions, across all data nodes. Each 

partition ρi initially contains T = ceiling(Ttotal/M) tasks, where Ttotal is the total number of 

tasks in the BoT. To place T tasks in each partition, a hash function on the partition id may be 

applied, as in Architecture I. 

It is important to highlight that M may be very large in a large-scale scenario. 

Although it is harder to manage by the DDBMS, this will significantly improve parallelism. 

Especially, this may cause so much improvement in parallelism that congestion at the DBMS 

might be highly alleviated. However, it needs to be carefully evaluated (e.g., testing speedup 

and scalability) to investigate if no overhead will occur. 

4.5.2 Task distribution and scheduling 

Initial task distribution happens in an analogous way to Architecture I. Initially, given that the 

work queue is partitioned into M partitions, the supervisor is responsible for assigning each 

task to partition in a circular fashion. This is done inserting tasks in the work queue relation in 

the database assigning a partition id to the task and the hash function mentioned above will 

take care of placing the task in the right partition. Similarly, the supervisor also assigns a 

partition id to each slave node so that each slave will know which partition will be queried. 

Load balancing also works similarly to Architecture I. The algorithm proposed for 

improving communication load balance (Section 4.4.4) is also applied in Architecture II. 

4.5.3 Advantages and disadvantages 

Finally, the advantages of using Architecture II are the same of Architecture I. In addition, 

Architecture II is more flexible since it does not require a large number of data nodes (e.g. 

hundreds) to achieve enhanced parallelism. Moreover, Architecture II does not require that 

the number of data nodes to be equal to the number of slave nodes, removing the main 

disadvantage of Architecture I. However, Architecture II introduces more complexity since a 

new parameter needs to be adjusted. This is explored in our experimental evaluation (Chapter 

6).  
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In this section, we proposed two architectures supported by a distributed database 

system. We described their main ideas, how they would work and discussed the benefits and 

losses of using each of them. We chose to use Architecture II to implement because it has all 

advantages of Architecture I and is more flexible. In the next section, we describe how we 

implemented Architecture II. 
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5 SCICUMULUS/C² ON A DISTRIBUTED DATABASE SYSTEM 

In this chapter, we explain details of the implementation of SciCumulus/C² on a Distributed 

Database System (d-SCC). In Section 5.1, we explain how we chose the DDBMS technology 

we used. In Section 5.2, we present MySQL Cluster. In Section 5.3, we present the 

architecture of d-SCC, which is the Architecture II, presented in the previous section, fitting 

MySQL Cluster’s architecture. In Section 5.4, we show an extra module we developed to 

manage DDBMS issues. In Section 5.5, we describe parallel data placement and 

fragmentation in our solution. In Section 5.6, we explain how we implemented tasks 

scheduling and why we removed MPI for this. Finally, In Section 5.7, we discuss fault 

tolerance and load balancing. 

 Technology choice 5.1

In order to accommodate either Architecture I or II, presented in the previous section, we need 

a DDBMS technology. For this reason, we list necessary and desirable requirements. 

First, the necessary requirements are: (i) It needs to provide efficient parallel and 

distributed strategies (parallel query optimization and distributed concurrency control 

mechanisms); (ii) It needs to be highly scalable – both (i) and (ii) are required because of the 

distributed DBMS features that Architecture II relies on; and (iii) It has to be optimized for 

OLTP queries – because multiple short and simple queries based on indexes are very 

frequently performed in order to retrieve next runnable tasks and to update their status and 

execution time when they finish. 

Second, the desired requirements are: (i) It would be better if it were free licensed – 

because we do not want to close our solution to a very specific DBMS technology; (ii) 

SQL/relational model – SQL queries on a relational database with good indexes are known to 

be efficient for quick and simple lookups, which are very frequent because of the scheduling 

we described in Chapter 4, hence SQL queries would be desirable; (iii) it should implement 

strong consistency – because besides retrieving tasks, slaves need to store back results of their 

executions in the database. Thus, many updates occur at runtime and taking advantage of 

strong consistency provided by the DBMS is desirable to facilitate our work; and (iv) it 

should be able to be executed in shared disk architecture – because our motivating problem is 

mainly focused on complex scientific applications, which are usually executed in very large 

clusters operating on shared disk architecture Section 2.7) 
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Given these facts, we build up the following table. 

Technology Relational/SQL Architecture License 
Main 

Disadvantage 

NuoDB NewSQL SN 
Very limited free 

version 
License 

VoltDB NewSQL SN Proprietary License 

MemSQL NewSQL SN Free trial License 

SparkSQL SQL SN Proprietary 
Little support 

for OLTP 

MySQL Cluster SQL SN Open 
No support 

for SD 

Oracle TimesTen SQL Both Proprietary License 

Oracle Coherence KeyValue Both Proprietary 
License and 

NoSQL 

MongoDB Document SN Open NoSQL 

Impala SQL-like SN Open 

SN and 

OLAP 

optimized 

HBase Column SN Open 

SN and little 

support for 

OLTP 

Presto SQL-like SN Open 

SN and little 

support for 

OLTP 

MonetDB Column SN Open 

SN and 

OLAP 

optimized 

Table 4 – DBMS technologies comparison 

In Table 4, we mainly compare the technologies according to our needs previously 

listed. All of them are said to be scalable and work on a distributed environment, with 

distribution features. We first eliminate all options that provide little support for OLTP or are 

mainly optimized for OLAP (online analytical processing), since we are mainly interested in 

fast transactions rather than heavy analyses during execution. Proprietary technologies are 

highly discouraged because of the reasons we stated; hence we cross out all DBMS 

technology with a proprietary disadvantage.  This leaves us to choose between MySQL 

Cluster and MongoDB.  

MongoDB is a NoSQL database, document-oriented. In addition to the desired 

requirement (ii) previously mentioned, the SWfMS we are basing our implementation on 

utilizes a data model that is essentially relational: PROV-Wf  (Costa et al., 2013), as 

presented in Section 2.5. Because of this, there are many relational queries that are executed 
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at runtime needed by the execution engine, which is totally based on the provenance database. 

These queries generally involve both reads and writes, and joins among different relations. 

NoSQL DBMS are not as concerned about ACID transactions as relational databases are, 

which commonly implement strong consistent models. We need to keep all those writes 

consistent, and these kinds of relational queries, involving joins, are better performed by 

relational DBMS. Finally, one other important aspect is regarding development. Since SCC 

already relies on a relational DBMS and the entire execution is driven by SQL queries, using 

a different query language would require much more effort. By using a different DBMS, but 

still a relational one, we could save lots of effort by just adjusting small differences in 

specificities of the SQL dialect of this different relational DBMS. 

MySQL Cluster is a relational DBMS, OLTP optimized, efficient for fast lookups, 

provides efficient concurrency control mechanisms, and claims to provide high availability
8
 

(Oracle, 2015a). Just like most conventional DBMS, it is also possible to execute OLAP 

queries on MySQL Cluster. Additionally, its fault tolerance mechanisms make it a good 

choice for removing a single point of failure introduced by using a centralized DBMS. 

Besides, it is an in-memory database cluster and it tends to be faster than regular on-disk 

DBMS. However, MySQL Cluster has a limitation for our needs. It does not support shared 

disk architecture
9
. Anyhow, especially because of our limited choices, we gave it a try. 

 MySQL Cluster  5.2

MySQL Cluster requires three types of database nodes (or roles, as we call): ndbd, mysqld 

and ndb_mgmd, which is a necessary manager node for MySQL cluster’s architecture. The 

documentation recommends that each of these roles is placed on different physical machines 

for higher availability purposes (Oracle 2015a). In Figure 10, it is shown MySQL Cluster 

architecture and how its main components (i.e., the roles) communicate to each other. The 

main role is the ndbd which is responsible for distributing queries, transaction management, 

and data management. That is, most of the database processing is responsibility of the ndbd 

role. Mysqld role basically works as a port through which clients or APIs may connect using 

connection drivers (e.g., JDBC or ODBC) and issue SQL queries. Ndb_mgmd manages the 

                                                 
8
 www.mysql.com/products/cluster 

9
 http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-overview.html 
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other roles, manage backups, and stores necessary configuration metadata. 

 

Figure 10 – MySQL Cluster architecture
10 

Database tables in MySQL Cluster need to run using NDB engine so they can be 

distributed and replicated over all data nodes’ memory. As far as we know, full replication is 

utilized. Even though MySQL Cluster is an in-memory database cluster, it continuously 

executes check points on disk for failure recovery, even though this feature may be turned off 

by the user, making it completely diskless. If this feature is turned on, however, even if all 

database processes are finished or even if the entire cluster shuts down (assuming that the disk 

will not be damaged), the database will be safely stored on disk. Moreover, we usually save a 

backup of the database in the end of the workflow execution, enabling a posteriori analyses in 

addition to runtime analyses. 

 d-SCC Architecture 5.3

To accommodate our Architecture II in MySQL Cluster architecture, we have the data node 

(dn) role and the database server (dbs) role in Architecture II analogous to ndbd and mysqld 

nodes, respectively. Moreover, MySQL Cluster architecture requires an extra database node, 

the database manager node (ndb_mgmd).  We note that a ndb_mgmd node in MySQL Cluster 

architecture is not to be confused with a supervisor node in Architecture II, because the 

                                                 
10

 Figure extracted from http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-overview.html 
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supervisor node is responsible for tasks distribution and other functions related to the 

management of the actual workflow execution; the ndb_mgmd, on the other hand, is a 

requirement for the MySQL Cluster architecture and is responsible for functions related to the 

management of the distributed database. Furthermore, we highlight that ndb_mgmd is not a 

requirement for our Architecture II. That is, if a different DDBMS is utilized in the future to 

implement Architecture II, this role does not need to exist. Thus, these are the three roles that 

compose the distributed database in our current implementation of d-SCC, which relies on 

MySQL Cluster: dn, dbs, and ndb_mgmd. 

In addition to the databases roles, we also have SciCumulus Core Nodes (SCN). In a 

distributed execution, a SCCore module is instantiated on each machine that will play SCN 

role, i.e., that will run the actual execution (recall from Section 3.4). SCNs are analogous to 

slave nodes in Architecture II. Moreover, one SCN is chosen to work as the supervisor node. 

Thus, using the notation introduced in Section 4.1, in an execution, there will be σ SCNs in the 

cluster and one of them will act both as a supervisor and as a slave in our current 

implementation of d-SCC. The characteristic of having a node to function both as a slave and 

as a supervisor is inherited from SCC architecture, as explained in Section 3.4. The 

architecture is illustrated in Figure 11.  

 

Figure 11 – Current d-SCC architecture: Architecture II accommodating MySQL Cluster roles 
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Furthermore, in d-SCC, the BoT is completely placed in a distributed table and we 

make use of MySQL Cluster features to improve communication load balancing
11

, in addition 

to the algorithm presented in Section 4.4.4. We give more details on how we distribute it 

across all data nodes in Section 5.5  

 SciCumulus Database Manager module 5.4

As introduced in Section 3.4, SCC software architecture is built upon four modules:  

SCStarter, SCSetup, SCCore, and SCQP. To conveniently manage the distributed database in 

our solution, we developed an extra module: SciCumulus Database Manager (SCDBM). In 

this section, we explain in details our added SCDBM module and modifications we needed to 

adapt. 

5.4.1 Pre-installation Configuration 

In d-SCC, just like its predecessors, a list of machines on the HPC environment that will be 

used in the workflow execution needs to be provided. The list is historically saved on a file 

called machines.conf (Figure 12). These machines will compose the architecture and each 

of them will play one or more roles (SCN, dn, dbs, ndb_mgmd) defined in Section 5.3. 

 

                                                 
11

 http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-basics.html 

# Number of processes 

10 

# Protocol switch limit 

131072 

# Entry in the form of hostname@port@rank 

node1@20919@0 

node2@20919@1 

node3@20919@2 

node4@20919@3 

node5@20919@4 

node6@20919@5 

node7@20919@6 

node8@20919@7 

node9@20919@8 

node10@20919@9 

Figure 12 – machines.conf file example containing 10 machines 
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Configuring which role each machine will play may impact on performance, as we 

explain and show in our experimental evaluation in Chapter 6. For this reason, in d-SCC, one 

important configuration file, which we call installation.properties, is needed so users 

can vary the architecture according to their needs. For example, a tradeoff between 

performance and available resources needs to be analyzed, since the best performance may 

demand a lot of computing resources. In installation.properties, users define values for 

the parameters described in Table 3 from Section 4.5.1. More specifically, users need to 

define three parameters: d (= number of dn), q (= number of dbs), and the number of 

management nodes (ndb_mgmd).  

After defining these three values, next step is to define which roles the machines may 

accumulate. That is, to save resources, one may want each machine to play more than one role. 

We divide this role accumulation concept into two types of accumulation: SCN and database 

nodes.  

For SCN accumulation, users define which database roles (i.e., dn, dbs, and ndb_mgmd) 

a SCCore instance will play together with. For example, suppose we have 10 machines 

available and we want all of them to play SCN role (i.e., to actually execute the workflow). 

However, we need at least 3 roles for the database (dn, dbs, and ndb_mgmd). In this scenario 

(10 SCN, 1 dn, 1 dbs, and 1 ndb_mgmd), we need to indicate that we want machines that will 

play SCN role will also play dn, dbs, and ndb_mgmd. This means that three machines will play 

two roles concurrently. On the one hand, this saves resources and more SCCore instances can 

run hence more parallel execution; on the other hand, in three machines at least two processes 

will compete for resources (especially memory and processor), which may interfere in  

performance, as we discuss in our experimental evaluation (Chapter 6). Obviously, users are 

able to indicate that each SCCore instance will run dedicatedly, i.e., machines that play SCN 

role are not going to play database role. 

For database nodes accumulation, users may want to indicate that a machine that plays 

one of the database roles (dn, dbs, and ndb_mgmd) may accumulate more database roles. In 

our exemplary scenario (10 SCN, 1 dn, 1 dbs, and 1 ndb_mgmd), we may want dbs and 

ndb_mgmd roles to be played by the same machine, consequently the dn role will be played 

dedicatedly by a different machine. We may combine both accumulation types to indicate 

which of the four roles will be dedicated or will be concurrently played within a machine. 

This brings flexibility to build the architecture according to the users’ interest. We vary the 
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architecture configuration and measure performance impact using these concepts in our 

experimental evaluation in Chapter 6. 

Currently, it is only possible to define the parameters d (= number of dn), q (= number 

of dbs), the number of management nodes (ndb_mgmd), and which roles will be accumulated 

or dedicated. Although it may easily be changed, it is not possible to define the parameter σ 

for the number of SCNs. Instead, this number is derived from all previous definitions. For 

example, if, in a scenario of 10 available machines, we define 1 dn, 1 dbs, and 1 ndb_mgmd 

and we define that all database roles and all SCN will be dedicated, 3 machines will play one 

database role each. Consequently, there will be 7 SCNs. 

In addition to roles played in the architecture, users may also indicate which parallel 

hardware architecture (either shared disk or shared nothing) the distributed database will be 

installed on. We have claimed in Section 5.1 that MySQL Cluster does not support shared 

disk. However, due to reasons we argued in Section 2.7, we want our solution to be able to 

run on shared disk hardware architecture. For this, we needed a workaround: each database 

role (dn, dbs, and ndb_mgmd) runs a process that only accesses a separate and independent 

directory on the shared disk. The consequences of this workaround may be neglected if users 

utilize the distributed database in totally in-memory mode. Otherwise, MySQL Cluster 

continuously writes logs on disk for failure recovery. Even in this scenario, performance 

should not be significantly impacted since the most important database processing (i.e., 

queries execution and distributed transaction management) occurs in-memory. If dedicated 

specialized shared disk hardware (e.g., SAN) is used, this workaround impact can be 

neglected. We highlight that this discussion is only a concern if the hardware architecture 

requires shared disk. If, otherwise, shared-nothing clusters or clouds’ VMs are used, this 

discussion may be completely neglected. In this case, user simply needs to set the parameter 

is_shared_disk_installation to false in installation.properties file. In Figure 13, a 

typical shared disk installation is shown. In this example, each dni saves data in 

/root/mysql/nodes/datanode/<i>, where i = [0..d] 
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Figure 13 – Example of a directory tree in a shared disk installation 

One other important file that users need to be concerned about is MySQL Cluster’s 

initial configuration file (config.ini), which is used to define many important configuration 

parameters
12

. Currently, we specifically determine values for the following parameters (Table 

5). 

  

                                                 
12

 https://dev.mysql.com/doc/refman/5.0/en/mysql-cluster-ndbd-definition.html 
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Parameter Meaning 

DataMemory 

It defines the amount of space (in bytes) available for 

storing database records. The entire amount specified by 

this value is allocated in memory. 

IndexMemory 

This parameter controls the amount of storage used for 

hash indexes in MySQL Cluster. Hash indexes are always 

used for primary key indexes, unique indexes, and unique 

constraints. 

Diskless 

When set to true, this causes the entire distributed database 

to operate in diskless mode; hence there will be no disk 

checkpoints and no logging. Such tables exist only in main 

memory. As a consequence, the shared disk discussion 

above may be neglected, but tables would not survive a 

catastrophic crash and data would be lost after execution if 

a backup is not saved on disk for a posteriori analyses. 

NoOfReplicas 

It defines how many replicas the database will have. 

Replicas reside in memory. A common value is 2, but if 1 

is used, a data node failure causes the entire distributed 

database to fail. Thus, value 1 is not recommended. 

MaxNoOfExecutionThreads 

Each data node process may handle parallel transactions. 

This parameter controls the number of threads used by the 

data node process, up to a maximum of 8 threads. 

Although this may manually be set by the user, this 

parameter is automatically set by default to the number of 

cores defined in d-SCC’s XML configuration file.  
Table 5 – Important MySQL parameters defined 

If these parameters are not set by the user, SCDBM will set default values. Two 

parameters are important to be mentioned. First, NoOfReplicas may only assume values 

from 1 to 4 and it must divide evenly into the number of data nodes in the cluster of data 

nodes. For example, if there are two data nodes, then NoOfReplicas must be equal to either 1 

or 2, since 2/3 and 2/4 both yield fractional values; if there are four data nodes, then 

NoOfReplicas must be equal to 1, 2, or 4
13

. Second, MaxNoOfExecutionThreads is limited 

by 8. We commonly set this value to be equal to the number of cores in each machine that 

host a data node, but if a machine has more than 8 cores, we can only set 

MaxNoOfExecutionThreads to at most 8. 

Finally, the file main-template.sql contains the main DDL script that will be used to 

create the database. What is important to mention in this file is the number of partitions of the 

table that hosts the BoT (EActivation). If this parameter is not set by the user, SCDBM 

automatically tries to set it to the number of slaves (σ, as defined in Section 4.1). However, 

MySQL Cluster limits the number of partitions to 

                                                 
13

 https://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-

noofreplicas 
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                           /               
14

, which is the upper bound limit SCDBM 

defines for the number of partitions. 

5.4.2 Initialization Process 

After defining all these previous parameters, the distributed database may be initialized. It is 

known that initiating each role on each machine may be a complex task for humans, 

especially in a scenario with a huge number of nodes. Yet, depending on the HPC security 

constraints, it may not be trivial to access each composing machine individually to install the 

required programs. For this reason, we developed an automatized process that reads all 

parameters predefined by the user and initialize each role on each machine by running only 

one Java program (SCDBM.jar – The SC Database Manager module) from only one of the 

machines that is able to access the other composing machines. It is necessary to specify the 

XML configuration file that contains main properties of the workflow execution and 

conceptual specification: 

java –jar SCDBM.jar SC.xml --start 

This program begins by generating four files. (i) One file is generated based on a 

template script for creating the main database and its tables. Tables that need to be partitioned 

based on parameters are resolved at this time. For example, in our current solution, the table 

that hosts the BoT (EActivation) is horizontally partitioned into σ (=number of SCCore 

Nodes) fragments. For this, the number of partitions is explicitly defined in MySQL’s DDL 

scripts. However, in our implementation, σ is derived as explained in Section 5.4.1). Thus, 

SCDBM reads the template script file and correctly writes the number of partitions that will be 

used in that specific workflow execution; (ii) The second file is based on a template for the 

config.ini file (Section 5.4.1). Currently, two parameters are set at this time by SCDBM: 

NoOfReplicas and MaxNoOfExecutionThreads, which are set, respectively, to the number 

of data nodes and to the number of cores that the machines that will host the database nodes 

have. We note, however, that these values will only be automatically set if the user does not 

specify them. Otherwise, the effective values will be what the user specified; (iii) The third 

file lists σ machines which will play SCN role, i.e., will effectively run the workflow. This file 

is generated based on the machines.conf file and on discussion on roles accumulation we 

presented in Section 5.4.1; and finally, (iv) the forth file lists q (number of dbs nodes) 

                                                 
14

 https://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-nodes-groups.html#mysql-cluster-nodes-

groups-user-partitioning 
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machines through which the SWfMS will connect to the database cluster. This file is also 

generated based on the on discussion on roles accumulation we presented in Section 5.4.1. 

After generating and correctly placing all these files, SCDBM begins the distributed 

database initialization. It first starts mgm_ndbd nodes, then the data nodes, and finally the dbs 

nodes. Following, the database is created using the generated DDL script and a verification is 

done to check if all database nodes were correctly initialized. If not, users need to check logs 

which are continuously appended during initialization to look for errors. Finally, when 

everything is set up, the workflow execution may begin. 

The database cluster initialization process takes at least one minute to conclude, for 

small configurations. This time is going to be greater if a large number of database nodes is 

used. However, we note that is process should occur only once and many workflow 

executions may use the initialized distributed database. There is also a convenient shutdown 

command which safely shuts down all processes that compose the distributed database on all 

machines hosting it. A common sequence of steps for running a workflow on a cluster 

environment is: 

SCDBM --start 

SCSetup --create database 

SCStarter --start 

SCDBM --shutdown 

In addition, we highlight that during execution, users may interact to the distributed 

database through one of the dbs. By doing this, custom analyses (including merging with 

domain-specific data), monitoring, and steering may be performed. 

 Parallel Data Placement, BoT Fragmentation, and Tasks Scheduling 5.5

Recall from the parameters in Table 3, seen in Section 4.5.1, that some parameters need to be 

adjusted in order to build Architecture II.  In our current implementation of such architecture, 

we fixed some parameters. We highlight that although this makes the concrete architecture 

implementation simpler, our theoretical Architecture II is supposed to be flexible so these 

parameters do not need to be fixed or predefined by users. Currently, in our implementation, 

the parameters are adjusted as shown in Table 6. 
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Parameter Brief description Value 

d #data nodes Fixed, defined by user (see Section 5.4.1). 

q #dbs nodes Fixed, defined by user (see Section 5.4.1). 

M 
#partitions Fixed σ (#SCN nodes) and σ is derived as 

explained in Section 5.4.1. 

S #slaves per dbs node Fixed σ/q 
Table 6 – Simplified configuration of Architecture II, as utilized in our current concrete implementation 

Mainly as a matter of simplicity, we implemented Architecture II fixing that the 

number of partitions is equal to the number of SCN nodes. By doing this, we reduced the 

complexity of our solution because choosing an optimal value for M is another problem by 

itself. We highlight that this may be easily changed by explicitly specifying the number of 

partitions. If not specified, the SCDBM module will set this number to σ. However, although 

the larger σ, the more we can benefit from parallelism, MySQL Cluster limits the number of 

partitions
15

 by                                  /              . The parameters 

MaxNoOfExecutionThreads and NoOfReplicas are explained in Table 5. 

 Moreover, if σ is large (e.g., in order of hundreds), our solution will take a lot of 

advantage of parallelism. 

To tackle fragmentation, data placement, and initial tasks distribution, as described in 

Sections 4.5.1 and 4.5.2, MySQL Cluster enables total horizontal fragmentation (partitioning) 

only based on the primary key
16

. Regarding data placement, MySQL Cluster applies a hash 

function based on the primary key that places each task on the right partition
17

. For this reason, 

we changed the schema of the table that hosts the BoT (EActivation) by adding the 

identification of the SCN (Section 5.3) to which a task is assigned during initial tasks 

distribution to compose the primary key. We note that an alternative for this would be 

defining partitions based on the SCN id. By doing this, we could keep all tasks that are 

assigned to a same SCN on a same partition, which could enhance performance. However, 

since the SCN id by itself is not a key in our solution and MySQL Cluster only partitions by 

key, this alternative is currently not possible.  

Initial tasks distribution works in a circular fashion, as described in Section 4.5.2. 

Nonetheless, for each task in the work queue, the supervisor circularly assigns the id of the 

SCN which is supposed to execute the task because we fixed that there will be σ partitions 

                                                 
15

 https://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-nodes-groups.html#mysql-cluster-nodes-

groups-user-partitioning 
16

 https://dev.mysql.com/doc/refman/5.5/en/partitioning-limitations-storage-engines.html 
17

 https://dev.mysql.com/doc/refman/5.6/en/partitioning-key.html 

https://dev.mysql.com/doc/refman/5.6/en/partitioning-key.html
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(limited by a value previously explained). After all initial tasks distribution and placement, the 

actual scheduling begins and it works exactly as described in Section 4.4.2.  

 Tasks Scheduling relying on the DBMS, MPI removal, and Barrier 5.6

As already explained in Section 3.4, historically, SCC implements its CWQ BoT scheduling 

based on message passing, utilizing MPI. However, we have argued that one important 

motivation for a BoT tasks scheduling relying on a DBMS is that it is a specialized system in 

parallel and concurrency issues; hence, it would be a good idea to outsource our scheduling 

implementation and take further advantage of the DBMS’s features. By doing this, we would 

alleviate our work to solve these parallel and concurrency issues, which are usually complex, 

and focus on issues that are inherent to our application (recall from Sections 4.2 and 4.3). For 

this reason, since MPI in SCC was essentially used to implement tasks scheduling, we were 

able to completely remove it. As described in details in those mentioned sections, instead of 

having a master that is the only node that may access the BoT (which was managed by a 

DBMS in traditional SCC), now, in our solution, all nodes in the cluster may directly retrieve 

next runnable tasks by directly accessing it. Concurrency issues are resolved by the DBMS. 

However, as described in Section 0, one of the dataflow strategies supported by SCC 

is what is called FAF. Recall that, in FAF, the next activity may only start execution if the 

previous activity (on which the next activity depends) is completely executed. This is a 

blocking strategy since, if a node finishes executing activations for an activity, it needs to wait 

for all other nodes to finish their work so it may continue on the flow. This logic is inherent to 

our problem, which is essentially centered on dataflows. As we have been arguing, since it is 

not related to tasks scheduling but, rather, related to our own application logic, we cannot 

outsource this to the DBMS. Thence, we needed to implement this logic ourselves. 

In order to do this, we utilized the classic concept of barrier in parallel programming 

(Arenstorf and Jordan, 1989). We implemented it in our application as follows. The first node 

that begins execution of an activity becomes the barrier manager. Within each activity, when 

a node (including the manager) finishes all activations assigned to it, it notifies the manager 

that its work has finished and waits. When the manager receives a number of notifications that 

is equal to the number of slaves, it notifies all waiting nodes so they can keep on working and 

get activations of the next activity. This is done until all activities finish.  

Regarding technology, we need a tool that enables nodes communication. One way to 

do to this is by making use of a dedicate attribute of a table managed by the DBMS, which is 
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used as common mean of communication among all nodes. Since it would be only small 

notification messages, queries would not be complex and the amount of data transmitted 

would be small. However, nodes would only know that they were notified if they kept 

querying the database looking for a data change. For example, a false value would mean that 

there is still some node working, so all nodes should wait, and when this value is set to true, 

all nodes may continue. Nodes would only acknowledge this value change if they keep 

continuously querying the database, which could cause network congestion and downgrade 

performance. 

Alternatively, a message passing library could be used, like MPI. Nevertheless, MPI is 

a robust library and is common in scenarios of data transmission of complex data types and 

various data sizes. In our problem, as we argued, we only need to pass notification messages, 

which are simple and small. In addition, since SCC is written in Java and uses MPJ
18

 (known 

as MPI for Java), its MPI implementation is more limited and does not support fault tolerance 

if a slave node fails, limiting future work for this. Because we were able to completely 

remove MPI to implement our tasks scheduling relying on the DDBMS, it is not necessary to 

use it just for notification message passing. For this reason, we decided to implement the 

barrier as described before using native Java Remote Method Invocation (RMI)
19

 together 

with Java native synchronization directives (wait and notify 20 ) in our current 

implementation. Java RMI is known for being simple and easy to use and lightweight, which 

fits our barrier needs. 

 Fault tolerance and load balance 5.7

By using an architecture inspired in WQRM (Section 4.1) and using a DDBMS that allows 

replication of the BoT, we increase the availability of the system. If a machine that hosts a 

replica of the BoT fails, the entire system does not fail and execution does not stop because 

we make of use of the replication feature. We highlight that this failure recovery mechanism 

is outsourced and implemented by the DDBMS – which is acknowledged for being efficient 

in handling failures (Özsu and Valduriez, 2011) –, and not by our parallel application, which 

simplifies our solution. 

In addition to the distributed database availability, we also mention fault tolerance for 

nodes that do not compose the distributed database in our theoretical architectures (Chapter 4). 

                                                 
18
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Regarding fault tolerance of the supervisor node, we added a secondary supervisor node to 

remove a single point of failure. Regarding fault tolerance of the slave nodes, we explained 

that it may be achieved by implementing strategies such as proposed by Anglano et al. (2006). 

However, we did not further explain in details how these strategies would apply hence we did 

not implement in our current solution. Nevertheless, this is being currently tacked and a more 

formal description to incorporate fault tolerance on slaves and on supervisors will be provided 

in future work. Furthermore, we described that it is possible to enhance load balance by 

verifying whether or not work stealing is advantageous. However, we did not implement it in 

our current solution and this is also being provided for future work.  
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6 EXPERIMENTAL EVALUATION 

In this chapter, we present the experimental evaluation of our implementation of Architecture 

II as described in Section 4.5 and in Chapter 5, where we introduced SciCumulus/C² on a 

Distributed Database System (d-SCC).  

Regarding hardware, we ran several simulations using Grid5000
21

, which is composed 

of many different clusters distributed in regions in France. In Grid5000, for each region, all 

clusters share a file system. The hardware specification of each cluster we used is described in 

Table 7. Regarding software, we implemented our solution using MySQL Cluster version 

7.4.6. Specifically, we used a compressed TAR file with binaries for generic Linux 64-bit 

distribution. We ran most experiments three times and used the average value to present the 

results.  

Cluster / 

Region 
Processors #Nodes

22
 

#Cores 

per node 

Total 

cores 

Memory 

per node 
Network Storage 

Parapide 

/ Rennes 

Intel Xeon X5570 

2.93GHz/6MB 
21 8 168 24 GB InfiniBand 

SATA II 7200 

RPM (RAID-1 

and RAID-5) 

Graphene 
/ Nancy 

Intel Xeon X3440 

2.53 GHz 
138 4 552 16 GB InfiniBand SATA AHCI 

Stremi  
/ Reims 

AMD Opteron 

6164 HE 

1.7 GHz/12MB 

42 24 1008 48 GB 
Gigabit 

Ethernet 

SATA AHCI & 

RAID-5 

Table 7 – Hardware specification of clusters in Grid5000 

The remainder of this chapter is organized as follows. In Section 6.1, we describe the 

workflows we experimented. In Section 6.2, we evaluate architecture variations in order to 

analyze the impact of the many different possibilities to configure our architecture. In Section 

6.3, we analyze speedup, scalability, and efficiency for different workflow complexities. In 

Section 6.4, we show that d-SCC works for a workflow that contains all existing SciWfA 

operators (Section 3.1) and we also show the efficiency on running a real bioinformatics 

workflow. Finally, we compare d-SCC with the most recent version of SCC in Section 6.5. 

 Workflows case studies 6.1

We utilized different workflows to evaluate d-SCC; both synthetic and real workflows were 

experimented. More specifically, we used the Scientific Workflow Benchmark (SWB) 

                                                 
21

 www.grid5000.fr 
22

 The number of available nodes in these clusters may vary mainly depending on hardware health. Our 

experiments were conducted in May 2015 and those are the available nodes we could use in that time. 
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(Chirigati et al., 2012), a synthetic deep water oil exploration workflow (adapted from 

(Ogasawara et al., 2011), and SciPhy, a real bioinformatics workflow (Ocaña et al., 2011). 

Most of our tests were run using SWB. In SWB, we can generate synthetic data-

centric workflows with a specified number of activities; specify how each activity consumes 

and generates data; and control the manipulated data. For example, it is possible to specify a 

2-activities Map-Reduce workflow: the first activity consumes and produces one tuple at each 

invocation (i.e., it has a Map behavior) and the second activity, dependent on the first activity, 

consumes many tuples and produces one at each invocation (i.e., it has a Reduce behavior). 

Moreover, we can determine the problem size (i.e., the number of tuples that will be 

consumed) as well as the complexity of each computation (i.e., the average elapsed time for 

each task). 

In this work, we generated two SWB workflows and we are going to call them 1-map 

(a simple workflow with one Map activity only) and 3-map (three Map activities, with data 

dependency in between). Figure 14 Figure 1shows an activity diagram for each of them. For 

each experiment, we varied both problem size and complexity. Since we only utilized SWB 

Map activities and each input tuple corresponds to a task that needs to be scheduled and 

outputs another tuple, we use the term “number of tasks” instead of “number of tuples” when 

we refer to the problem size of either 1-map or 3-map workflows, for readability of this text. 

 

Figure 14 – 1-map and 3-map SWB workflows experimented 

In addition to the SWB, we experimented a more complex workflow in order to 

investigate whether or not our solution works for all current SciWfA operators (Section 3.1). 

The workflow experimented is a synthetic adaptation of a deep water oil exploration 

workflow specified by Ogasawara et al. (2011) and is illustrated in the activity diagram in 

Figure 15. 

In this workflow, some data files are processed and it has 7 activities, including two 

that may run in parallel. It is inspired in SWB in the sense that we can control both the 

problem size and complexity of tasks.  
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Figure 15 – Deep water oil exploration synthetic workflow (adapted from Ogasawara et al., 2011) 

Finally, the last workflow we experimented is SciPhy, a bioinformatics workflow for 

phylogenetic analysis of drug targets in protozoan genomes (Ocaña et al., 2011). It also has 

many big files manipulated and is illustrated in the activity diagram in Figure 16. 

 Architecture variations 6.2

Our current implementation of d-SCC is composed of four different roles: dn, dbs ndb_mgmd, 

and SCN, as we explained in details in Section 5.3. Moreover, we have argued in Section 5.4.1 

that configuring which role each machine will play may directly impact performance. For this 

reason, in this section, we want to vary the architecture configuration, measure performance 

impact for each configuration, and try to find the most suitable configuration for a given 

problem. 
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Figure 16 – SciPhy workflow (extracted from Ocaña et al., 2011). 

Experiment 1. In our first experiment, we want to investigate whether or not we 

should run, for example, dn nodes or SCN nodes dedicatedly; or if running them altogether on 

the same machine has a significant impact. For this, we used the 1-map workflow setting the 

problem size to 10 k tasks and average cost to 1 millisecond for tasks. This means that tasks 

are extremely light and no much computation is needed for each of them. By doing this, we 

stress the database, since there are many very frequent accesses to it, including reads (get next 

ready task) and writes (update a completed task status). We only used one node of each role, 

i.e., we used at most 4 machines at the same time. We ran on Parapide cluster, which has 8 

cores per machine. However, since we wanted to analyze the behavior when all roles were 

concurrently running on a same machine, we set the maximum number of threads used both 

by SCN and by dne data node) to 4. We ran five variations of the architecture, as described in 

Table 8 and the results are shown in Figure 17. 
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 Description 

Number of 

used 

machines 

I Each machine dedicatedly runs only one process, for each d-SCC role. 4 

II 
SCN runs dedicatedly on a machine; DN also runs dedicatedly on another 

machine; and dbs and ndb_mgmd run together on a third machine. 
3 

III 
SCN and DN processes run concurrently on a same machine; and dbs and 

ndb_mgmd run on another machine. 
2 

IV 
SCN dedicatedly on one machine; and all other database nodes (dn, dbs, and 

ndb_mgmd) run together on another machine. 
2 

V All four roles run together, concurrently, on a single machine. 1 
Table 8 – Description of each run of Experiment 1. 

 

Figure 17 – Results of Experiment 1. Varying architecture: shared or dedicated nodes? 

From the results, we can see that the variation V showed the best execution time, even 

though the difference is small. This means that despite having more concurrency in V than in 

any other variation, the concurrency overhead is lower than the communication overhead. A 

good conclusion from this result is that the variation with the best execution time required the 

least number of resources (i.e., only one machine); as a consequence, it points out that we will 

be able to use more machines to host SCN processes without significantly impacting 

performance, which is the ideal for us. Another important conclusion is related to the idea of 

data locality. We could expect that having SCN and dn together on a same machine would 

improve performance since less communication would be required to access the database. 

However, the result from variation III contradicts this expectation. Comparing variation III, in 

which SCN and dn are located on the same machine, with variations II and IV, in which SCN 

and dn are in different machines, we see that III has the worst execution time. However, 

comparing III with V, in which SCN and DN are also in the same machine, we see that V has a 

better performance, suggesting that the communication cost between SCN and dbs also adds a 
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non-negligible overhead. Thence, we may conclude that keeping all roles together has the best 

performance especially due to the lowest communication overhead, even though it has the 

greatest concurrency overhead. Nevertheless, we need to emphasize that while the machines 

have 8 cores, we only used at most 4 cores and forced both SCN and dn to instantiate at most 

four threads each process, meaning that concurrency overhead is reduced in all these results 

and we are not using all possible cores for SCN. For this reason, we still need more 

experiments to have better conclusions. 

Experiment 2. This experiment aims to analyze the behavior of our solution in a more 

concurrent scenario. To do this, we ran the same workflow with the same configuration as in 

Experiment 1 and we used the variation V of our architecture, that is, only one Parapide (8 

cores) machine with all roles sharing this same machine. However, instead of using only four 

threads at most, we ran two more variations: one with 2 threads (both for the SCN and for the 

dn) and another one with eight threads. We reused the result obtained in variation V in Figure 

17 for four threads. Ideally, when we double the number of threads, the execution time should 

be divided by two. The results are shown in Figure 18, in which the blue line represents d-

SCC’s execution time and the red line represents the ideal execution time. The green bars 

represent how far from the ideal d-SCC achieved, in seconds. 

 

Figure 18 – Results of Experiment 2: increasing concurrency 

If d-SCC had taken 736 seconds with two threads, the ideal would be if it took 368 

seconds (736 * 0.50) with four threads. However, it took 415 seconds (736 * 0.5633), which 

represents 47 seconds (or 11.2%) of difference from the ideal execution time. With eight 

threads, the ideal time would be 184 seconds (368 * 0.5), but it took 234 seconds (415 * 

0.5643), which represents 50 seconds (or 11.4%) from the ideal time. This difference from 
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ideal is caused due to parallel management overheads. From these results, we mainly want to 

show that the overhead caused by concurrency remains close to constant comparing running 

on four threads with running on eight threads. This means that difference between the 

overheads with four threads and with eight threads is so small (0.2%) that it can be neglected. 

In other words, we conclude that we can set the maximum number of threads to be used both 

by the SCN and by the dn to be equal to the number of cores in the machine. By doing this, the 

efficiency should not be significantly impacted, at least for one single machine.  Although it 

cannot be generalized for a greater number of machines, this result is meaningful because we 

are first mainly interested in finding a good configuration for our architecture rather than 

running massive experiments to measure speedup and scalability in larger clusters. Moreover, 

we are going to present a similar experiment running on a 960 cores cluster to measure 

speedup in next section. 

Experiment 3. In this third experiment, we want to analyze the impact of having more 

database nodes (dn, dbs, and ndb_mgmd) on the system. For this, we ran our tests on Parapide 

cluster, with 21 nodes and 8 cores each (168 cores total). Each of the 21 nodes hosts a SCN 

process and the database processes are shared. For example, if we configure 2 dn, 2 dbs, and 

2 mgm_ndbd (this is the default configuration recommended to remove single points of failure), 

3 machines would run 1 dn, 1 dbs, 1 mgm_ndbd, and 1 SCN concurrently each; the other 18 

machines would only run SCN processes, dedicatedly (recall from Section 5.4.1). Regarding 

the workflow, we used the 1-map workflow, around 20K tasks with 16 s average task cost. 

To present the results, we used the real speedup (Speedup) metric, as defined in Section 2.8. 

To calculate the time to execute the workflow with the best (theoretical) sequential program 

using one processor, we multiplied the approximate number of tasks by the average task cost. 

The workflow execution takes approximately 3.8 days. We also calculated the difference that 

each variation has from the best result. The results are shown in Figure 19. 
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Figure 19 – Results of Experiment 3. Varying architecture: changing the number of database nodes. 

From the results, comparing the variation I with V, VI, and VII, we can see that 

varying either the number of mgm_ndbd or the number of dbs nodes, no much impact is 

caused on the system’s performance. Thus, at least for an experiment with similar 

characteristics to this Experiment 3, changing the number of mgm_ndbd or dbs has no impact 

on performance. Since it has no impact on performance, this result enforces the idea that we 

should use at least two nodes for each of these roles so improve availability and remove single 

points of failure.  

Nevertheless, comparing I with II, II, and IV, we can verify that the number of dn 

interferes on the system’s performance. These results lead us to believe that increasing the 

number of dn decreases performance. However, we note that the difference on performance 

between variations I, II, III is at most 2.1%, which may be considered small; even the 

difference in relation to variation IV, which is about 5%, is not very critical. Anyhow, since 

we were not expecting the performance to decrease when data nodes were added, we further 

investigate the impact of the number of data nodes on a larger cluster. 

Experiment 4. In this experiment, we want to evaluate the impact on varying the 

number of data nodes (dn) using a larger configuration. For this, we used 138 machines in 

Graphene cluster, each with 4 cores, summing 552 cores. We ran the 1-map workflow with 

around 20K tasks with 1 s tasks cost average. We note that the tasks cost in this experiment is 

considerably lighter than in Experiment 3. By doing this, we want to stress the DDBMS with 

many frequent short queries, with both read and write behavior. Similarly to Experiment 3, 
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we also used the real speedup metric and the best (theoretical) sequential program using one 

processor would take about 6 hours to run. The results are shown in Figure 20. The blue line 

represents the speedup varying the number of data nodes when 2 dbs, 2 mgm_ndbd, and 132 

SCN were used in a shared way (similarly to Experiment 3); the red square shows the speedup 

when 2 dn, 2 mgm_ndbd, 132 SCN, and 8 dbs nodes were used in a shared way; and the 

difference between each variation and the best result for this experiment is represented in gray 

bars. 

 

Figure 20 – Results of Experiment 4. Varying architecture: increasing number of data nodes. 

Conversely, the results of Experiment 4 show that there is not a clear pattern in 

relation to adding data nodes as Experiment 3 suggested. Using two data nodes instead of 
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dbs). This happened most likely because congestion is alleviated when using more ports to 

which the 132 SCNs connect. 

Experiment 5. In this last experiment for our architecture variation, we want to 

analyze differences in relation to the DDBMS configuration. In MySQL Cluster, it is possible 

to configure the amount of memory will be used to store data. Moreover, another important 

discussion is related to the fact that we can run MySQL Cluster completely in-memory (recall 

from the discussion in Section 5.2). Because of these differences, we want to investigate how 

d-SCC behaves when the DDBMS configuration varies. 

We ran two tests, each to analyze different features of the DDBMS. In the first test (I), 

we analyzed data memory capacities using the 1-map workflow with approximately 10 k 

tasks, 1 millisecond average task cost, 3 SCN, 1 dn, 1 dbs, 1 mgm_ndbd, and each of them 

running dedicatedly (total of 6 machines) on Parapide cluster. In the second test (II), we 

compared the performance when running in diskless (in-memory) mode with running using 

on-disk checkpoints. We ran the 1-map workflow with approximately 50 k tasks, 2 s average 

task cost, 21 SCN, 1 dn, 1 dbs, 1 mgm_ndbd, in a shared way, on Parapide cluster. We highlight 

that this was the first time that this amount of tasks was successfully executed in any version 

of SCC so far. The results are shown in Figure 21. 

  
I. Varying data memory II. In-memory vs. on-disk 

Figure 21 – Results of Experiment 5: varying configuration of the DDBMS. 

From the results of Figure 21(I), we can see that varying the data memory capacity has 

no significant impact on performance. The results of Figure 21 (II) show that even though 

running in diskless mode has 10 s of advantage comparing with on-disk checkpoints mode, 
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persistence, meaning that if a catastrophic disaster happens or if the energy of the entire 

cluster fails, the data will remain as long the disk is not damaged. Diskless mode is indeed 

faster and we usually save a backup of the database when the workflow execution finishes for 

a posteriori data analyses, but if all data nodes fail (i.e., a catastrophic disaster), there will be 

data loss even if the disk remains intact. 

Therefore, from the five experiments we conducted for the architecture variations, we 

can summarize the following conclusions. Using the all-shared mode has shown to deliver the 

best performance for the experiments conducted (Experiment 1); setting the maximum 

number of threads as equal to the number of cores in the machine delivers a good 

performance in a small cluster and more experiments are needed in a larger cluster 

(Experiment 2); the number of dbs and ndb_mgmd has no significant impact on performance, 

hence we should use at least two of each to improve availability and remove single points of 

failure (Experiment 3); many data nodes may either downgrade or improve performance, 

depending on the number of SCN and problem complexity (tasks cost) – however, the 

difference between a lower number and a greater number of dn is not very high, hence it is 

advantageous to use at least two data nodes to remove single points of failure (Experiment 4); 

and data memory variation has no big impact and diskless mode has a slightly better 

performance than on-disk checkpoints mode (Experiment 5). For these reasons, all of our 

next experiments, unless we specifically state differently, were ran using all-shared mode, 

number of threads equals to number of cores, at least two database nodes (i.e., 2 dn, 2 dbs, 

and 2 ndb_mgmd),  and diskless mode. 

 Scalability, speedup, and efficiency 6.3

In this section, we use known performance metrics to evaluate our system. First, we 

evaluate scalability; then, the speedup varying the number of SCN, including different threads 

per node; and, finally, we measure the efficiency of d-SCC for different problem complexities. 

Experiment 6. In this experiment, we measure scalability using 1-map, 32 s tasks 

cost average, on Stremi cluster (24 cores per node). We varied from 5 nodes (120 cores) – 2,5 

k tasks to 40 nodes (960 cores) – 20 k tasks. The results are shown in Figures Figure 22 and 

Figure 23. 
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Figure 22 – Results of Experiment 6:  scalability analyzing execution time. 

 

 

Figure 23 – Results of Experiment 6: scalability analyzing efficiency. 

The ideal is calculated using the concepts about scalability introduced in Section 2.8. 

From the figures, we can observe a close-to-constant execution time when we double both 

number of nodes and the problem size. Even though the results were farther from the ideal for 

960 cores, the efficiency of the system remained over 80% in all executions. Since the number 

of cores is relatively large, we consider this a good result. 

Experiment 7. To evaluate efficiency when varying complexity (i.e., tasks cost), we 

used 3-maps workflow for the first time, with 10 k tasks per map (i.e., 30 k tasks in total). By 

doing this, we can also investigate a different known inherent overhead of SCC: caused by the 

FAF dataflow execution strategy (recall from Section 0). Regarding hardware, we used all 
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available machines in Stremi cluster, summing 1,008 cores. We also highlight that this was 

the first time that this amount of cores was successfully used to run any version of SCC so far. 

The results are shown in Figure 24, where the blue line represents our actual execution 

including a contention overhead, which we will explain next; and the red line represents the 

efficiency if we removed such overhead. 

To measure efficiency, we used the efficiency metric, which is based on the real 

speedup metric, as we defined in Section 2.8. To calculate the time to run the workflow 

running the best (theoretical) sequential program using one processor, we multiplied the 

approximate number of tasks by the tasks cost average, resulting in approximately 9 hours, 35 

hours, 69 hours, 138 hours, and 551 hours for tasks cost average 1 s, 8 s, 16 s, and 65 s, 

respectively. We highlight that this theoretical sequential time is even farther from reality than 

in the previous experiments we ran, because it does not include any overhead, which is 

unrealistic in most large parallel systems, and we have a specific significant overhead are we 

are going to discuss. 

 

Figure 24 – Results of Experiment 7: varying complexity (tasks cost). 

The first conclusion we can get from the results analyzing any of the two lines is that 

the greater the complexity of the problem, the better efficiency d-SCC achieves. This is an 

expected result and is common in most parallel systems. Indeed, the calculus of efficiency is 

directly proportional to the sequential execution time, which is directly proportional to the 

tasks cost average; thus, it is expected to achieve such conclusion. Moreover, Raicu et al. 

mention that tasks in MTC are short, but in the order of seconds or minutes to run (2008). 

Even though our solution suffers due to overheads when computing many very light tasks, 
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such as less than 8 seconds in average, in tasks weighting in the order of minutes, we attain 

excellent efficiencies (frequently over 80% in a 1,000 cores cluster).  

In addition, comparing the red line with the blue line in Figure 24, we can see that our 

system suffers considerably due to the contention overhead caused by the FAF strategy. 

Specifically, when all nodes finish their tasks for an activity, all nodes remain blocked until 

the supervisor generates new tasks for the next runnable activity and schedules to all SCN, 

which will only start their execution when all tasks are generated and scheduled. Thence, 

generating tasks per activity causes a contention in current implementation of our solution, 

which is more critical for a great number of tasks per activity. This is an inherent overhead in 

all implementations of SCC for the FAF strategy. 

We can measure this overhead because when all nodes finish their tasks for a certain 

activity, the supervisor marks this activity as “finished” and registers in the provenance 

database how long this activity took to execute. The SCNs will only start executing tasks for 

the next runnable activity when all tasks for this new runnable activity are generated and 

scheduled. Thus, the overhead mainly caused by generating and scheduling tasks is given by 

the difference between the total workflow execution time and the summation of the execution 

time of all activities, as registered in the provenance database.  

The red line in Figure 24 shows the efficiency if this overhead did not exist. This 

overhead is directly related to the number of tasks rather than the problem complexity; hence, 

it remains constant even if the problem complexity varies. For greater complexities, the 

execution time is much greater than the overhead, reducing its impact. For this reason, the 

difference between the red and blue lines tends to decrease when the complexity increases, 

meaning that for computationally complex problems, this overhead may be neglected. 

Anyhow, this conclusion is important because it indicates directions for future improvements 

in our system. Finally, this overhead may be reduced if tasks were generated in parallel, while 

other tasks are still running. 

Experiment 8. In the last experiment of this section, we measure speedup when the 

number of cores varies. We used the 1-map workflow with 30 k tasks and 32 s tasks cost 

average running on Stremi machines (each machine has 24 cores), varying from 120 cores to 

960 cores. In addition, we also want to investigate the impact caused by increasing the 

concurrency in a larger cluster (recall from the discussion introduced by the results of 

Experiment 2). The metric we used was the RelativeSpeedup*, i.e., the Equation (3) 

presented in Section 2.8, where   = 120 cores. The results are presented in Figure 25.  
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Figure 25 – Results of Experiment 8: speedup varying number of cores. 

From the results, we can see that speedup attains almost linear until 240 cores. For 480 

cores, the speedup was almost linear for 12 and 24 threads and not far from linear for 48 

threads. For 960 cores, the speedup attained close to linear using 12 threads per node and 20% 

away from linear using 24 threads per node. We note that setting the maximum number of 

threads to be equal to the number of cores gave us a satisfying result (80% of efficiency) in 

960 cores.  

We can also see that for 48 threads per node, the speedup attained 2.6 points away 

from the linear speedup, which represents 34% away from the ideal. However, even though 

with 48 threads per node (i.e., 1920 threads in 960 cores) attained the worst speedup, the 

execution time is still lower than with 24 threads per node. In fact, the system with 1920 

threads ran 1.62 times faster than with 960 threads – the ideal would be 2 times faster.  

Analyzing the graph, we can also expect that even with a number of cores greater than 

960, the execution time still tends to decrease even with the number of threads twice the 

number of cores in the cluster. In these experiments, we did not find a limit for which there 

are no more gains if we add more cores or threads to the system. In other words, apparently, 

even though the speedup tends to decrease, we will still have gains if we add more cores and 
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increase the concurrency in each machine by increasing the number of threads. Thus, if we 

want to find this limit, larger experiments in larger clusters are still needed. 

 Oil & Gas and Bioinformatics workflow 6.4

So far, we have only experimented SWB workflows, which are mainly used to analyze 

performance. However, we also need to investigate how d-SCC behaves in more complex 

dataflows with added semantics in more relevant domains. For this reason, we use two 

workflows. The first is related to oil and gas domain. The main purpose of running this first 

workflow is to validate our solution for all current SciWfA operators (Section 3.1). The 

second workflow is a real bioinformatics workflow and the main purpose of running it is to 

validate our solution in a real scientific scenario. 

Experiment 9. We ran a synthetic workflow from oil and gas domain, inspired in deep 

water oil exploration scientific applications. Since it is a synthetic workflow, we can predefine 

the problem complexity by setting tasks cost weight, which is similar to what we can do in 

relation to setting the average tasks cost in SWB workflows. We ran it on 21 Parapide 

machines (168 cores in total). Since our main purpose was only to validate d-SCC in a more 

complex dataflow containing all SciWfA operators, activities that may run in parallel, and file 

manipulations, we did not evaluate performance of the execution. The execution times for 

weights 2, 8, and 16 (which just represents complexity; the greater, the more complex) are 

shown in Figure 26. 

 

Figure 26 – Execution of Experiment 9: Deep water oil exploration synthetic workflow results 
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Experiment 10. For this experiment, we ran a real bioinformatics workflow, known as 

SciPhy (recall from Section 6.1). This workflow has 8 activities and some of them are 

computationally very complex. We ran on 552 cores Graphene cluster. Through queries to the 

database, we were able to find that tasks of the Model Generator activity take more than 30 

minutes average each to run. We also found that tasks are considerably balanced. This 

scenario is suitable for our solution that works better for complex tasks and also for a more 

balanced workload. Moreover, there are many big files manipulated. The workflow 

successfully executed in 128 minutes. Through queries to the database, we can estimate a 

tasks cost average per activity and come up with an estimate sequential time by multiplying 

the tasks cost average by the total number of tasks. The result is 43.6 days and then, given all 

this information, we can estimate the real efficiency (efficiency as defined in Section 2.8) 

of d-SCC for running SciPhy on 552 cores: 89%.  

Finally, we noted a peculiar occurrence when running SciPhy that did not happen 

when running any of our previous workflows. When we tried to run using 2 data nodes, as we 

have been doing in all experiments in sections Section 6.3 and in the previous experiment of 

this current section (Experiment 9), we got an error caused by memory leak. We repeated the 

same experiment, with same number of cores, and same dataset, but with 4 data nodes instead, 

and it worked successfully. This most likely has happened because d-SCC stores domain data 

and SciPhy has data fields with data of significant size. More specifically, phylogenetic trees 

are stored in the database and they are big. This result motivates us to look for solutions that 

would recognize that a specific big datum is being stored and an extra data node may be 

required. Since DDBMSs may implement elastic solutions, such as auto-sharding, which is 

the case of MySQL Cluster (Oracle, 2015b), we could add or remove data nodes at runtime 

according to the problem needs. This obviously would impact performance, but the workflow 

execution would not be interrupted, as happened in our experiment. This, we believe this 

could be investigated for future work. 

 Comparing d-SCC with SCC 6.5

In our last experiments, we are going to compare our implementation of d-SCC with 

the most recent version of SCC so far, which uses an architecture with a centralization point at 

the master node, as presented in 3 For this, we ran 2 experiments. We ran the exact same 

experiment – i.e., same workflow with same input data on same hardware – using both 

solutions (d-SCC and SCC) to compare the results. 
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Experiment 11. This is a 1-map workflow on 168 Parapide cores. The results are 

shown in Figure 27. 

 

Figure 27 – Results of Experiment 11: comparing d-SCC with SCC on 168 cores. 

From the results, we can see that, like d-SCC, SCC also has a better efficiency 

(efficiency as defined in Section 2.8) for more complex tasks than for short tasks. Moreover, 

analyzing the 2 s results (very frequent short queries), we can see that the centralized 

architecture suffers considerably more than our distributed architecture that relies on a 

DDBMS. d-SCC showed a gain of 71% over SCC. However, for more complex tasks (16 s 

average), the SCNs spend more time with local processing and congestion at centralized points 

(e.g., master node and database) is alleviated. In this second scenario, d-SCC almost achieved 

a perfect efficiency – we highlight that we used the theoretical real efficiency rather than the 

relative efficiency, which would give us an even greater result. The gain over SCC was 15%, 

which is considerably lower than those 71% for short tasks. This means that at least for 168 

cores and for more complex problems, SCC is still a good solution. 

Experiment 12. This is our last experiment. We ran the 3-map workflow, 10 k tasks 

per map, on 1008 Stremi cores. By using the 3-map workflow, we can see performance loss 

caused by the contention due to the need of waiting for the tasks to be generated and 

scheduled.  

Efficiency is calculated using the efficiency metric, which is based on a sequential 

theoretical time, as defined in Section 2.8. As we discussed in Experiment 7, this efficiency 

tends to be farther from reality because it does not include any overhead, which is unrealistic 
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in large parallel systems, and it tends to be unfair due to inherent overheads caused by 

contentions due to FAF usage. We could not use the RelativeEfficiency* in this experiment 

because running on a smaller number of cores was taking too long and, more importantly, our 

main purpose in this experiment was just to see how different the performance between SCC 

and d-SCC is. The results are shown in Figure 28. 

 

Figure 28 – Results of Experiment 12: comparing d-SCC with SCC on 1008 cores. 

For 1,008 cores, for only 1 s tasks cost average, we can see that both solutions do not 

show a good performance. The tasks are so short that generating and scheduling 10 k tasks for 

each activity, for all cores, take longer than actually running them. We note that SCC 

performs very poorly, considerably worse than d-SCC. For the 16 s experiment, d-SCC 

achieves a better performance (more than 51% of gains over SCC), whereas SCC attains at 

most 10% of efficiency. Therefore, in all experiments we ran comparing d-SCC with the most 

recent version of SCC, we could see significant gains. 
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7 CONCLUSIONS 

This work is inserted in the context of systems that support large-scale computer-based 

scientific simulations. Such simulations may be modeled as data-centric scientific workflows, 

require HPC, and manipulate a lot of data that need to be carefully managed. We argued that 

the control of this data management should not be centralized so performance can be 

improved and the HPC environment can be utilized more efficiently. This is an open problem 

because current solutions either use a centralized DBMS or use a distributed data control 

based on files. The limitations of file-based solutions are mainly due to lack of provenance 

storing at runtime, restrictions in analyzing the control information distributed in flat files and 

also limitations on provenance generation in the end of execution. To show our points, we 

developed a system that not only manages a large volume of data using a distributed database 

system, but also relies on such database system to take advantage of its distributed 

concurrency control and fault tolerance mechanisms to aid parallel execution of scientific 

workflows and remove single points of failure and contention.  

Our main contribution is the development of SciCumulus on a Distributed Database 

System (d-SCC) built upon Architecture II. Architecture II is a high level architecture in the 

sense that it is technology independent – as long as there is a reliable distributed database 

system and a parallel workflow management system. It also considers many important aspects 

of a large-scale parallel execution of workflows, such as dynamic load balancing and fault 

tolerance, taking advantage of a distributed database system. 

We concluded that most of the effort spent on developing the tasks scheduling based 

on a master-slave architecture was relieved due to using the DDBMS; thence, we could 

remove message passing communications that were only being used for tasks’ scheduling and 

this facilitated removing a centralized scheduler master. However, we note that a supervisor 

node is still necessary for special responsibilities, such as initial tasks distribution, load 

balancing, and fault tolerance. Since communication between nodes is needed for this, we still 

need to investigate whether it is advantageous not to use other communication strategy rather 

than relying on the DDBMS, as we found that using Java RMI would be faster than using the 

DDBMS to implement FAF (i.e., a blocking or non-pipeline, recall from Section 0) strategy. 

We conducted several experiments to evaluate our implementation of d-SCC. First, we 

tried different variations of our architecture to choose the best one to use in most of our latter 

experiments. Then, we analyzed scalability and we found that the execution time remains 

close to constant when we double the number of cores and the problem size, even running on 
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over 960 cores. We measured speedup and found that by using the number of threads equal to 

half of the number of cores, we obtained a speedup very close to linear. Using the number of 

threads equal to double of the number of cores, we found that the execution time still tends to 

decrease when we increase number of cores, even though speedup was farther from linear. 

We did not find a limit for which the execution time stops decreasing when we increase the 

number of cores, at least until 960 cores. We also found that the efficiency of our system is 

high especially when the problem is complex (i.e., average task cost is high), by frequently 

obtaining efficiencies over 80% even on a 1 k cores cluster. We highlight that this was the 

first time a system based on SCC ran on such scale of cores and for such problem size (over 

50 k tasks). Before that, the centralized solution presented severe limitations to go beyond 500 

cores. Moreover, we also experimented our solution in more complex workflows and in a real 

bioinformatics workflow. In the end, our last experiments compared d-SCC with SCC and we 

found that our solution significantly outperforms the most recent version of SCC, especially 

in a 1,000 cores cluster. 

This work introduces a first prototype of a distributed architecture to control the 

parallel execution of data-centric workflows relying on a DDBMS. We implemented it using 

open software (MySQL Cluster), yet scaling up to a considerably large number of cores. 

Based on the many good results obtained, we see a lot of opportunities for potential 

improvements, in addition to some services that are not currently fully operational. In the 

following paragraphs, we point out directions on how our system may be improved and 

extended. 

We have been claiming that although the underlying d-SCC’s architecture (i.e., 

Architecture II) was theoretically proposed considering many relevant aspects of parallel 

execution of large-scale workflows, we did not implement a few parts of this architecture. The 

specific parts we proposed and we did not implement are related to dynamic load balancing 

through task stealing or any other more sophisticated strategy and failure recovery 

mechanisms when either a slave node or the supervisor node faces a hardware failure. 

Therefore, this should be implemented in future work. Moreover, the impact on performance 

of the solutions for both problems needs to be analyzed. 

Furthermore, we argued that the database recovery in case of failure of a database 

node is responsibility of the DDBMS. Although we tested our executions forcing a data node 

to fail and we found that the execution is indeed not interrupted, this failure recovery 

mechanism has impacted the performance of the workflow execution. Thus, we verified that 

the single point of failure introduced by a centralized DBMS is removed when a DDBMS is 



81 

 

 

used, but we did not evaluate the impact on performance when a database node fails. This is 

an ongoing work jointly with an undergrad student. 

In addition to database node failure recovery, one other important aspect to consider is 

real time adaptive sharding. This means that when the system acknowledges that too much 

data is being stored, an extra data node could be automatically added to the DDBMS so the 

execution would not stop. We perceived this necessity when we ran SciPhy, which requires a 

lot of domain data to be stored in the database, and the execution of d-SCC was interrupted by 

an error and we had to add extra node nodes so it could work (Section 6.4). Thus, 

implementing automatic adaptive sharding on d-SCC and analyzing its impact on 

performance would be appreciated. 

Moreover, we found that the way FAF (Section 3.2) is currently implemented 

introduces a significant overhead, especially when dealing with a large MTC problem. The 

fact that all processing nodes remain blocked  until the supervisor generates tasks and 

schedules them so the execution can continue to the next activity (when there is more than 

one activity) downgraded performance severely, mainly when the problem’s complexity is 

small. Also, FTF (i.e., pipelining) needs to be implemented in d-SCC, which would not 

introduce such blocking barrier overhead. The implementation of FTF and improvements on 

FAF need to be tackled in future work and this is essential if we want to be able to handle 

even larger problems (e.g., millions of tasks), which is currently not viable due to very long 

waiting time. Additionally, in Section 2.4.1, we mentioned that determining a good number 

value of the chunk size in a BoT may be complex, but may lead to performance improvements 

and we could take advantages of the provenance database since we store a lot of relevant 

execution data in it. This could be analyzed more deeply in future work. Furthermore, 

workflows executed in d-SCC commonly manipulate many big files and we still need 

significant improvements on dealing with large domain data files in order to enhance 

performance. This is actually being tackled in current work and, for future work, these 

efficient domain data management techniques need to be merged into d-SCC. 

Finally, d-SCC mainly uses its database with OLTP usage characteristics. Currently, 

the DDBMS we chose to implement our architecture is an in-memory database, which 

delivered good advantages related to performance. We also showed that using it completely 

in-memory, with no checkpoints to the disk, performs considerably well. However, its storage 

is limited to the memory of the nodes that compose the DDBMS, which is not a problem 

when executing and analyzing one workflow run. Since we want to enable joint rich analyses 

of historical big data combining with data of many workflows or workflow executions, we 
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need to load the data from the in-memory database into an on-disk data warehouse. This 

should also be tackled in future work. 
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