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t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientadores: Felipe Maia Galvão França

Priscila Machado Vieira Lima

Rio de Janeiro

Dezembro de 2015



TIME-SERIES CLASSIFICATION WITH KERNELCANVAS AND WISARD

Diego Fonseca Pereira de Souza
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Dados envolvendo séries temporais estão largamente presentes em nosso cotid-

iano, seja na forma de ondas de áudio, em sensores de instrumentos médicos, no

movimento de pessoas e animais, ou em inúmeras outras. Considerando as diversas

aplicações que podem ser desenvolvidas por meio desses, a classificação de séries

temporais busca discriminar os padrões observados a partir de generalizações feitas

sobre um conjunto finito de exemplos de treinamento. Este conjunto pode ter sido

apresentado inteiramente durante uma fase prévia de desenvolvimento, ou obtido

iterativamente no ambiente de execução, incrementando o conhecimento já exis-

tente. Inúmeras abordagens estão dispońıveis na literatura para realizar esta tarefa

e muitas vezes conseguem alcançar satisfatórias taxas de reconhecimento. Infeliz-

mente, poucas conseguem se adequar a ambientes dinâmicos, onde novas amostras e

classes são apresentadas a todo momento, e ainda conseguem manter caracteŕısticas

importantes, como operações de treinamento e classificação em tempo real.

Neste trabalho é apresentada uma nova forma de classificação de séries tempo-

rais. A metodologia, baseada na rede neural sem peso WiSARD, alcança todos esses

objetivos por meio de uma abordagem que identifica aleatoriamente as principais

caracteŕısticas dos sinais apresentados, ao mesmo tempo que não prejudica as car-

acteŕısticas do modelo neural utilizado. Para avaliar a eficácia do modelo proposto,

cinco outros modelos e cinco bases de dados envolvendo três tipos diferentes de dados

foram utilizados. Ao final dos experimentos, os resultados do modelo proposto são

também comparados com os melhores resultados encontrados na literatura, na qual

o modelo proposto, além de apresentar todas as caracteŕısticas desejadas, também

apresenta muitos resultados equiparáveis.

vii



Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

TIME-SERIES CLASSIFICATION WITH KERNELCANVAS AND WISARD

Diego Fonseca Pereira de Souza

December/2015

Advisors: Felipe Maia Galvão França

Priscila Machado Vieira Lima

Department: Systems Engineering and Computer Science

Time series data is widely present in our world, whether in the form of audio

waves, in sensors of medical instruments, on the movement of people and animals, or

on numerous others. Among the diversity of applications that can be developed from

them, the classification of time series seeks to discriminate observed patterns through

generalizations made over a finite set of training examples. This set may have been

fully presented at a preliminary stage of development, or obtained iteratively in the

execution environment, increasing the existing knowledge. Countless approaches are

available in the literature for this task and they often achieve satisfactory recognition

rates. Unfortunately, few of them are able to adapt to dynamic environments,

where new samples and classes are continuously presented, while still maintaining

important features such as training and classification operations in real time.

This work presents a new form of time series classification. The methodology,

based on the weightless neural network WiSARD, achieves all these goals through

an approach that randomly identifies key features of the signals presented without

hurting the characteristics of the neural model used. To evaluate the effectiveness

of the proposed model, five other models and five data sets containing data from

three different sources were used. At the end of the experiments, the results of

the proposed model are also compared with the best results found in the literature,

were it is observed that the proposed model, in addition to contain all the desired

features, also presents many equivalent results.
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Chapter 1

Introduction

Time series has attracted interest of many scientists over the last decades. Thanks

to their advances, a lot has been achieved in this field and many challenging tasks

are now much more tractable. Despite this, many improvements are still feasible,

specially if characteristics from new and emerging areas such as weightless neural

networks are considered. This work wants to contribute in this continuous develop-

ment and proposes a new approach to deal with one of its subareas, the time series

classification.

As the name suggests, a time serie is any type of data relating temporal or

sequential data. Usually, these sequences are obtained by the measurement of a fixed

number of variables over a period of time or space. If the time serie is composed by

a single variable it is said to be univariate. If more than one variable is captured,

however, then it is said that it is multivariate.

Time series may be obtained or created in many different ways. Some of them

may be extracted from the stock market, handwritten characters, protein sequences,

medical instruments such as an electroencephalogram or an electrocardiogram, and

many others. Even raw images may be converted to time series data, e.g., by

detecting the border of an object and calculating the distance from the edges to its

center.

Depending on the desired application, different techniques may be used to ex-

tract different types of information from them. A few of these applications include

anomaly detection, prediction of future values, classification of sequences, indexing,

among others. In this work, however, we are particularly interested in time series

classification. Time series classification is the classification of sequences given a set

of classes and their corresponding samples. For instance, classification of an object’s

shape, drawn handwritten characters or the word represented on an audio sample.

Although the main objective of this work is to create a general model that could

be later applied to any type of time series classification, this work focus mostly on

three types of data. These are video gestures, handwritten characters and audio
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recognition.

1.1 Motivation

With the recent advances of computational power on mobile devices in this decade,

a lot of new applications involving time series computations have emerged and now

take part of people’s life. Some of these applications include practical voice to

text conversions, song identification, lyrics tracking, intelligent gesture keyboards

on touch screen devices, speaker identification, automatic musician evaluation based

on music score cards, gestures recognition, among many others.

Time series interpretation, however, is not an easy task. Differently from other

types of data, time series are composed by a discrete sequence of feature values

collected over a certain amount of time. Depending on the application, a long time

series may need to be split in multiple subsequences in a process called segmentation.

A segmentation process may be used, e.g., to represent words on a word recognition

application, or to represent musical notes on a music application, among others.

Naturally, depending on the speed and quality of the capture device and the emitter

of these signals, each sequence may contain distinct lengths and that way not lin-

early match each other. For this reason, it is said that to adequately compare two

sequences an elastic matching needs to be performed.

Despite these difficulties, literature has a vast range of models that correctly

address these issues. To name a few, among the most popular are the K-Nearest

Neighbors (KNN) [2] with Dynamic Time Warping (DTW) [3], Hidden Markov

Models (HMM) [4], Deep Learning [5], among others. Many of the models used,

however, present many disadvantages when used in practice, like excessive time

consumed during the training or classification phase, difficulties to increment the

model’s knowledge given new classes or samples, extremely complex architectures,

among others. As a result of this, this research field still has many improvement

opportunities and challenging characteristics, creating the following motivations for

this work:

1. Time series is a large area of research with many practical applications. In

particular, the field of artificial intelligence has demonstrated that much can

be can be achieved with its processing. Seeking these applications and oppor-

tunities is one of the highest motivational effects for entering into this field;

2. With the recent advances in the processing capacity of mobile devices, its

becoming increasingly easier to process this type of information on them. This

creates a new range of applications and possibilities as they are also much more

conveniently carried by users. Additionally, they are also entering unlikely
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areas for desktop computers or notebooks such as trips, camping, walking on

the street, and more recently even under the water;

3. Finally, it also provides the opportunity to study different approaches and

characteristics of artificial intelligence, while its wide range of applications

also creates many research opportunities. These can be explored in order to

provide more robust solutions for time series classification, particularly with

the use of emerging technologies such as weightless neural networks.

1.2 Contributions

In this work, a novel methodology for time series classification based on the weight-

less neural network named WiSARD is presented. The proposed methodology,

named KernelCanvas, was tested on three types of time series data and does not

contain many of the issues described on previous section. Alternative approaches,

like the K-Nearest Neighbors (KNN) with Dynamic Time Warping (DTW), the

Echo State Network (ESN), and basic resampling techniques are also applied under

similar conditions for comparison.

Furthermore, three main characteristics were required for the proposed model.

First, states that it should be able to achieve competitive results when compared to

the models selected. Second, as the model should be used in practical applications in

the future, it is important that it should still qualify for real time performance. Fi-

nally, some characteristics of the WiSARD model, like incremental, learning should

also be preserved.

In addition to this, the use of the WiSARD network in conjunction with other

basic approaches and as a replacement classifier on the output of the ESN was also

investigated. The investigation was performed in order to compare the use of simpler

techniques against the proposed methodology but also as a possible improvement of

the other approaches.

Seeking a fair comparative evaluation against other models, two main experi-

ments were made. The first was a direct comparison under similar preprocessing

conditions against the selected alternative models. Then, with the best model con-

figuration obtained on the first evaluation, a set of standard tasks proposed by the

authors of the data sets used were performed and the results obtained were compared

against the best results found in literature.

With all these concepts in mind, the main contributions of this work are:

1. A novel real time and incremental learning methodology for time series clas-

sification: The proposed methodology was built while still considering the

3



properties of the WiSARD network. The result was a fast and static encoding

technique that prepares the input pattern to be used by the neural network;

2. An investigation of the WiSARD network when applied in conjunction with

other techniques: In addition to the proposed model, experiments with the

WiSARD network were also performed in order to compare its performance in

traditional approaches. These traditional approaches included simple resam-

pling techniques and a hybrid ESN and WiSARD model;

3. A comparison of related models and the proposed methodology under similar

conditions: Related models such as KNN with DTW, ESN with linear regres-

sion/WiSARD and two resampling techniques with WiSARD were also used

and their results are presented for comparison. In particular, the two resam-

pling techniques were selected as they contain the simplest instructions and

were used as computational time benchmarks. Similarly, the KNN with DTW

has demonstrated its robustness in many other related works and was selected

for an accuracy benchmark.

A few works were published during the development of this research. The com-

plete list of published works is presented in Appendix A. In the most recent, a hybrid

model based on the Markov Localization Algorithm and the WiSARD network was

used on a music tracking task [6]. This approach was able to predict the position

of an original audio signal by listening to the recorded signal captured on a mo-

bile device. Next, almost the same methodology described in this work was also

published [7], although with a more restricted set of experiments. Third, a credit

analysis application using an algorithm named ClusWiSARD was also presented [8].

Thanks to the structure of the WiSARD network, this model extends its functionali-

ties by creating new discriminators when the pattern presented is not similar enough

to the knowledge previously stored, acting as a clustering model. This work was

developed by the LabIA team after the BRICS-CCI competition, were we obtained

the third place. And finally, an intelligent and adaptative agent that plays the game

rock-paper-scissors was also developed [9]. This is a highly dynamic game when

played consecutively by two bots as they constantly change their strategy based on

the feedback obtained from the other player. In addition to this, the same method-

ology could also be applied to any application requiring constant adaptation based

on the feedback received from the environment.

Finally, an Android application for demonstrating the functionality of the pro-

posed model was also developed. This application is described in Appendix B and

is available for download on the Android market with the name SketchReader. This

application allows the user to draw patterns on the screen and then teach the model

4



its corresponding class. When a similar pattern is presented later, the model is

capable of predicting its most similar class.

1.3 Structure of this Document

This remaining of the dissertation is organized as follows. Chapter 2 presents some

approaches for solving this type of task, along with the neural network used and a

few other related subjects. Some direct approaches were also chosen and described

in this chapter. These approaches were selected as they are considered of simple

implementation and therefore might be used as basic benchmarks to be surpassed.

Other approaches are also included as they contain one or more similarities with the

proposed model or simply because they are largely used in literature and usually

provide solid results.

Following this, Chapter 3 provides a solid description of the proposed model.

In this chapter, a basic description of the main idea is first provided and then a

more complete description of how the algorithm works is given. Additionally, a few

different algorithms for the creation of its inner structure and the way its output

integrates with the output classifier are also described. Finally, a description of the

preprocessing steps presented for each type of data used is also presented.

After the description of the proposed methodology, a series of experiments is

presented. These experiments are described in Chapter 4. This chapter also in-

cludes a description of the data sets used, a list of comparison models chosen and

the way some of the approaches described on the previous chapters are integrated.

Results include the traditional cross-validation technique, comparison with state of

the art results and a few other experiments to determine the best configuration of

the proposed methodology.

Finalizing this work, Chapter 5 presents a short summary of the work presented

in this dissertation, along with the results and objectives achieved. In addition to

this, a few more considerations for further investigation are also indicated for future

research.

5



Chapter 2

Models and Related Subjects

Although very few works have explored the characteristics of weightless neural net-

works in the context of time series classification, many approaches based on other

techniques were proposed in literature. Based on their popularity, simplicity and

similarity with the proposed model, three of these approaches were chosen for com-

parison with our model, these include two analogous resampling techniques, tempo-

ral and spatial; the echo state network (ESN) and the K-nearest neighbors (KNN).

These approaches are all briefly described on this chapter, in addition to related

models such as the WiSARD neural network and Dynamic Time Warping (DTW)

technique.

The first approach, based on resampling, was chosen due to its speed and sim-

plicity. Although it was not expected that it would achieve the best classification

performance, it is, however, considerably fast and may be considered as a base-

line for comparisons regarding training and classification times. The second model

(ESN), works very similarly to the proposed model when only the initial structure

is considered. In both models, a statically randomly generated reservoir is respon-

sible for encoding the input stream before classification. The third model (KNN),

uses DTW as similarity measure and was chosen due to extremely good results

in related works. These results, however, usually comes with the cost of higher

classification times that need to be overcome with other optimization procedures.

Finally, the WiSARD model is also described here since it is an essential part of the

proposed model, being responsible for the final classification after representing the

input stream through KernelCanvas.

2.1 Resampling

The main challenge when dealing with time series classification is to adequately

generalize the input sequence from previously presented sequences with different

lengths. These may not be input to most classification models, as they usually
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Figure 2.1: Two slightly different patterns to illustrate the same character being
represented with different lengths. Pattern shown in (a) has 76 points, whereas (b)
has only 53.

require samples with fixed input length. As an example, Figure 2.1 shows two

handwritten characters representing the uppercase letter R created on the Android

application created to demonstrated the proposed model in action and described

in Appendix B. Letter (a), however, was draw more slowly than Letter (b) and is

composed by 76 points, contrasting with only 53 points of letter (b). This happens

quite frequently since the program captures each point approximately with the same

time interval between each other, varying only depending on the amount of work on

the CPU at that moment. Seeking a solution to this issue, this technique converts

each sequence by interpolating their original points into a new sequence with fixed

input length. After the application of this transformation, the new sequence is

simply input to a traditional classification model.

Two methods were chosen for performing this transformation, these are the Tem-

poral Resampling and the Spatial Resampling. Since the purpose of these approaches

is to serve as a baseline for training and classification times, only the linear inter-

polation was used to generate the new points. Although simple, this approach is

frequently applied, e.g., Dias et al. has used Temporal resampling to classify gestures

performed on videos [1] and Alimoglu and Alpaydin have used Spatial Resampling

before using other models to classify handwritten characters [10].

2.1.1 Temporal Resampling

In this technique sequences are resampled considering only the time each point was

captured, i. e., its position on the list of points composing the sample. In order to

apply it, the total number of points is divided in N − 1 intervals of the same length,

where N is the new number of points on the sequence. Each margin separating
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these intervals then generates a new point on the resulting sequence.

The entire procedure is described in details in Algorithm 1 and works as follows.

For each point on the new sequence a linearly separated index is calculated and the

position of its two nearest points on the original sequence are selected (previous and

next). The new point is the linear interpolation of the points on these positions

considering a rate alpha. The closer alpha is to zero the closer the new point is to

the first point whereas the closer alpha is to one the closer it is to the second point.

This procedure is repeated for every new point until the new sequence is complete.

Algorithm 1: TemporalResampling

input : inputSequence, the sequence of points to be resized
input : newLength, the length the inputSequence must be resized for
output : outputSequence, the resized inputSequence with the desired

length

1 begin
2 outputSequence← [ ]
3 for i in 0 .. newLength− 1 do
4 index← (inputSequence.length()− 1)/(newLength− 1) ∗ i+ 1
5 previous← floor(index)
6 next← previous+ 1
7 alpha← index− previous
8 if next > inputSequence.length() then
9 outputSequence.append(inputSequence[previous])

10 else
11 p1← inputSequence[previous]
12 p2← inputSequence[next]
13 outputSequence.append(linInterp(p1, p2, alpha))

14 end

15 end

16 end

The main advantages of this method is that it is simple to implement and its exe-

cution time is considerably low. This method also keeps information about speed on

the points, e.g., slower regions are represented with consecutive points with smaller

distances and faster regions are represented with consecutive points with larger

distances. This might be useful or not depending on the type of data being dis-

criminated. When considering handwritten characters, a character that starts being

drawn slowly and ends faster would not be perfectly matched to the same character

being initially drawn rapidly and slower at the end. In this case, the first charac-

ter would have more points describing its initial part whereas the second character

would have more characters describing its end, so the middle of the sequences would

not correctly match each other.

Figure 2.2 shows an example of the character in Figure 2.1a resized to length
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20. As can be seen, the original density of points on each region of the character is

proportionally preserved. For instance, the beginning, the end and each corner of

the character are more densely populated than other regions.

Figure 2.2: A handwritten character representing the letter R after application of
Temporal Resampling.

2.1.2 Spatial Resampling

This procedure works very similarly to Temporal Resampling, but considers the

overall stroke length when generating the new sequence, instead of each point po-

sition on the original pattern. This is accomplished by summing all distances from

point to point, which corresponds to the total stroke length. After that, new points

are generated by dividing the obtained stroke length in N − 1 intervals with the

same length, where N is again the number of points on the new sequence. The rest

of the procedure works similarly to the prior approach, where each margin on these

intervals generates a point on the resulting sequence.

The entire procedure is described in Algorithm 2 and works as follows. For a

given sequence to be encoded, the algorithm first calculates the entire length of

the sequence (stored in the variable total) and then starts generating points by

interpolating the points closer to the desired positions on this path. During each

iteration the desired position is represented by the variable desired and corresponds

to a linearly separated position on the entire path. The algorithm consumes new

points until the walked distance is about to cross the desired position. When this

happens the algorithm performs a linear interpolation between the next point to

9



move and the current one. The variable alpha works very similarly to the previous

algorithm, approaching the next point when it is closer to one and the current one

when it is closer to zero. The only difference is that now it is calculated considering

the walked distances instead of the distance to the point position on the array.

Algorithm 2: SpatialResampling

input : inputSequence, the sequence of points to be resized
input : newLength, the length the inputSequence must be resized for
output : outputSequence, the resized inputSequence with the desired

length

1 begin
2 outputSequence← [ ]
3 total← 0.0
4 for i in 2 .. inputSequence.length() do
5 total← total + euclideanDistance(

inputSequence[i− 1], inputSequence[i])

6 end
7 nextPoint← 2
8 walked← 0.0
9 for i in 0 .. newLength− 1 do

10 desired← i/(newLength− 1) ∗ total
11 step← euclideanDistance(inputSequence[nextPoint],

inputSequence[nextPoint− 1])
12 while walked+ step < desired do
13 nextPoint← nextPoint+ 1
14 walked← walked+ step
15 step← euclideanDistance(inputSequence[nextPoint],

inputSequence[nextPoint− 1])

16 end
17 if step = 0 then
18 outputSequence.append(inputSequence[nextPoint])
19 else
20 p1← inputSequence[nextPoint− 1]
21 p2← inputSequence[nextPoint]
22 alpha← (desired− walked)/step
23 outputSequence.append(linInterp(p1, p2, alpha))

24 end

25 end

26 end

This implementation is equally simple when compared to the previous technique

and performs similarly fast. In contrast to the previous technique, however, samples

generated by this method do not tend to generate highly or little populated regions.

In fact, most of the points appear to be approximately equidistant to their previous

and next neighbors. Despite this, it has the disadvantage of giving more importance
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to longer distances between points, ignoring small details on the pattern. For in-

stance, small circles and sudden changes on the stroke direction are discarded if the

points distance is not big enough to represent these details.

Figure 2.3 shows an example of the character in Figure 2.1a resized to length

20 with this method. As expected, points are more homogeneously spaced between

each neighbors and regions are almost equally populated. Furthermore, note that

small details of the character on the main corners were lost.

Figure 2.3: A handwritten character representing the letter R after application of
Spatial Resampling.

2.2 Echo State Network

Echo State Network [11] is a special type of reservoir computing for dealing with

streaming data and other related time series problems. The basic idea of the model

consists in keeping an internal state x that represents the current context of the net-

work. This internal state represents all inputs previously presented and is updated

every time a new input u is received, while trying to preserve some of the existent

information. This update takes into consideration not only the current input to

the network, but also its current state and the last output o of the network. All

this operation is done with the use of weight matrices, analogously to traditional

feedforward neural networks. The main difference is that most of its connections

are randomly defined when the model is initially created, never changing after that.

Learning occurs only on the output layer. This layer receives as input the current
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internal state x(n + 1), the current input u(n + 1) plus the most recently output

y(n) and learns the next output y(n+ 1) in a supervised way.

The main architecture of this model is shown in Figure 2.4, and the complete

internal state’s update equation is defined in Equation 2.1. This equation extracts

information from all three sources: the input variable u, the current state x, and the

previous network output y. The output feedback connection, however, is optional

and sometimes omitted. In this case W back may be considered entirely equal to zero,

or simply omitted along with y(n).

x(t+ 1) = f(W inu(t+ 1) +Wx(t) +W backy(t)) (2.1)

The second function that must be defined in order to use this model is the output

function, which is defined in Equation 2.2. In summary, this function concatenates

all context variables (u, x‘and‘y), applies a linear transformation (given byW out) and

finally applies the transformation function f out. This is the only place were training

occurs, and consists of calculate the best values for matrix W out that closely match

y(n) to the desired output.

y(t+ 1) = f out(W out(u(t+ 1), x(t+ 1), y(t))) (2.2)

Building and training these networks, when not considering the output feedback

connection, can be accomplished in four steps [11]. These are: procure an echo-state

network, choose input connection weights, run the network with training inputs, and

compute the output weight minimizing the training error. The first step consists

in building a reservoir which is rich in dynamics. This rich reservoir is essential

to permit the internal state to navigate through a large portion of the state space,

without falling on regions with no exit, therefore not losing the echo ability of the

network. One simple method to prepare a rich reservoir consists in randomly setting

the weights to values 0, +0.4 and -0.4 with probabilities 0.95, 0.025, and 0.025,

respectively. This approach generates a sparse connectivity of 5% and encourages

the development of small individual dynamics, which is the desired effect. The

second step can be accomplished by randomly generating the input matrix without

much special care, e.g., by setting their values to +1, -1 with equal probability.

Next, starting with an arbitrary internal state, for instance x = 0, all input signals

are input to the network and their corresponding representation on the internal

state is saved. The initial internal state becomes irrelevant thanks to a property

of this model called state forgetting. This property states that after some time the

inputs presented to the system have effectively dissipated, therefore not interfering

so much. Since this property is not valid for the beginning of the signals, it is a

usual practice to discard the initial n states. The number n depends on the strength

12



of the echo property, which depends on the weight values on W . Finally, with the

list of internal states and their corresponding desired output it is possible to train

the output layer. If the mean squared error (MSE) is used, this is usually achieved

with the use of a linear regression algorithm.

Reservoir Output LayerInput

Figure 2.4: An example of an echo state network with three input variables, thirteen
hidden nodes and one output neuron (Source [7]).

This model is not restricted, though, to be used on regression tasks. For example,

training it to be used as a classifier can be accomplished by replacing the desired

output to the corresponding sequence class. Later, during classification, the model

outputs the class that appeared mostly during the processing of the signal received.

Naturally, this procedure requires that the beginning and end of the input signal are

known. However, it is a basic assumption that this information is previously known

in this work.

Finally, it is important to notice that this model is not restricted to use linear

regression on its output layer. In fact, any classifier or regression algorithm may

be used, including feedforward and weightless neural networks. Despite this, using

this basic algorithm has the benefit of achieving lower training times, specially when

compared to other gradient-descent methods. These methods require multiple itera-

tions to converge into a final model, therefore consuming much more computational

time. On top of this, additional care needs to be taken to avoid other common prob-

lems, such as overfitting. For these reason, the echo-state network is usually used in

conjunction with a linear regression algorithm. Still, even though its internal state

contains a small echo of older inputs, this model gives much more importance to

recent inputs instead of considering the entire sequence received. This characteristic

possibly makes it harder to solve problems that need to correlate information from

distant periods of time, for instance.
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2.3 K-Nearest Neighbors

This is the classic nearest neighbors classifier [2]. Although it may seem like a naive

approach at first, this is a popular choice applied in time series classification and

frequently achieves results hard to beat [12]. Additionally, this model also presents

some similarities to one of the mechanisms proposed, as discussed in more details in

Section 3.1.

KNN is an algorithm based on similarity distance between two patterns. The idea

consists in label unknown patterns by locating its K most similar patterns previously

learned and choose the class that appears most frequently. Locating the most similar

patterns is sometimes hard as it may require comparing the unknown sample to all

known patterns, which is usually an expensive operation depending on the distance

function used and the number of known patterns. If the euclidean distance is used,

however, more complex algorithms like Spatial trees, such as [13], might be used to

speed up the process. Despite this, this approach is relatively simple to implement

and applicable to a large range of problems, including dimensional problems like

recommendation systems. Naturally, euclidean distance is not a suited measure for

time series data since sequences usually have different lengths. In order to bypass

this issue, the Dynamic Time Warping technique is usually applied as solution. In

short, this method is able to compare two sequences, matching each similar region

between each other, and return the distance between both. More details about this

method are described in Section 2.4

This approach also has the benefit that it only requires the definition of one

parameter, the K. On the other hand, considering that the model needs to compare

each pattern being classified to all other known patterns, it is expected that it

consumes a reasonable large amount of time. This is particularly more evident in

cases where the distance function has a higher order of complexity, such as the

Dynamic Time Warping described in the next section.

2.4 Dynamic Time Warping

Dynamic time warping (DTW) [3] is a well known technique to compare time-

dependent sequences. The main advantage of this technique is that it can apply

nonlinear matchings between two patterns, called elastic matching. This character-

istic allows this model to compare samples not only with different lengths, but also

with internal variations.

DTW can be used to compare sequence features sampled at equidistant points

in time. The only decision that needs to be made is what distance function to use

when comparing the sequences. Usually, this function will return a low value for
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Figure 2.5: An example of DTW comparing two sequences. In 2.5a each cell rep-
resents the Manhattan distance from each point (i, j) whereas 2.5b represents the
best accumulated path up to them. Both images are showing the best path found
in white. (Source [3])

similar features and a high value for different ones, similar to the euclidean distance.

Once this function is chosen, the algorithm needs to build a cost matrix by

comparing feature by feature from the sequences. Supposing these signals are S1

and S2, with respective lengths equal to L1 and L2, the resulting cost matrix would

have a dimensionality of L1xL2. Figure 2.5a illustrates a cost matrix generated

by two signals using the Manhattan distance, darker regions correspond to similar

regions whereas whiter regions correspond to more different regions. The next step is

to find the best path P starting from coordinate (0, 0) up to (L1, L2) which minimizes

the sum of its values, i.e., the path cost. Intuitively, this corresponds to the best

matching found between the two signals and the distance between them is the sum

of the distances in the path. This sum is called the path cost and the accumulated

cost past found for each cell on the cost matrix is shown in Figure 2.5b.

As expected, calculating the entire cost matrix is an expensive operation, with

complexity O(L1 · L2). In order to speed up the algorithm, some alternatives to

this model have been proposed, avoiding the need to calculate the entire matrix.

The most commonly applied approaches are the Sakoe-Chiba [14] and the Itakura

parallelogram [15]. The former considers that the nonlinearity in the signals is

not so intense and therefore only the values around the main diagonal should be

considered. All values outside of the center region are considered equal to infinity

and ignored, without the need to calculate them. The second approach, on the other

hand, considers it is more unlikely that the beginning and end of the patterns will

differ and more likely that the middle of the patterns will. Only values inside their

corresponding regions are considered, and all others are ignored.
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2.5 WiSARD

The WiSARD model is a special type of weightless neural network used for pat-

tern classification [16]. Like most models, training is performed through supervised

learning, i.e., each example pattern is presented with its corresponding label to the

network during a training procedure. It’s main difference when compared to tradi-

tional approaches, however, lies in the way its knowledge is represented internally.

Instead of using weight matrices, like in feedforward neural networks, the model

uses a set of RAM units, each of them with a fixed number of input connections

connected to the input pattern currently presented. One of the main advantages of

this model is its fast training and classification times, making it ideal for real time

applications.

This section is subdivided into three others. Section 2.5.1 describes the structure

of this neural network and how its training and classification steps are performed,

along with some advantages and disadvantages of the model. Section 2.5.2 presents

a solution usually applied to solve the saturation problem of this network. Finally,

Section 2.5.3 presents some methods commonly used to convert the input values

into binary, a preprocessing step required to use this type of network.

2.5.1 Structure and Inner Workings

The structure of this model is quite modular, which makes it easy adapt and extend

the model to handle different problems. Each WiSARD network is composed by

units called discriminators, like in Figure 2.6, which corresponds to a class of the

problem that needs to be solved. During the training phase, the pattern is presented

only to the discriminator of its corresponding class. When a pattern is presented,

its knowledge is incremented to recognize patterns similar to the pattern presented.

If a similar pattern is presented later during classification, it is expected that this

discriminator will output a high value, representing that it has seen a pattern similar

to this before. Classification is done by simply presenting a pattern that needs to be

classified to all discriminators, the class of the discriminator with the highest output

is selected as the output of the model.

One useful measure of this model is the confidence C, which corresponds to the

distance from the highest discriminator output to the output of the second highest

discriminator, this confidence is defined by Equation 2.3. The more confident the

network is, the more this variable approaches one whereas the less confident it is

the more it approaches zero.

C =
best1 − best2

best1
(2.3)
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Figure 2.6: An example of a WiSARD neural network with D discriminators during
classification. The class of the second discriminator has the highest output and
therefore is chosen be the output of the network.

Selecting the discriminator with the highest output, however, doesn’t make this

model so different from traditional ones. What really differentiates it from others is

the inner content of its discriminators. Each of these entities is composed of a set of

RAM units, which store the knowledge acquired by the discriminator. Each of these

RAM units has a certain fixed number of input bits which are randomly connected

to the input pattern. The values received on these input bits, in turn, are used

to address its content. During training, the value one is stored on the addressed

position, whereas during classification the value stored is returned. If the position

has never been addressed, however, the position is assumed to store the value 0.

The output of the discriminator is the sum of all its RAMs, as seen in Figure 2.7.

As can be easily inferred, the more similar the pattern is to patterns previously

presented the higher the number of ones being summed, increasing the output of

the discriminator. Naturally, since the input pattern is connected directly to the

input bits on the RAM units, the input pattern must be properly converted to a

binary representation first. Some methods for to make this conversion are briefly

addressed in Section 2.5.3.

Thanks to the simple operations involved during training and classification, this

model works considerably fast in many cases and is of particularly interest on real

time applications. Additionally, as stated before, its structure is extremely mod-

ular making it easy to extend and integrate with other approaches. For instance,

thanks to its segregation of each class on discriminators, adding a new class to the

model is as simple as adding a new discriminator. Analogously, teaching a new style

of pattern requires only the presentation of the example to the corresponding dis-

criminator, this can even be performed between usage without the need to retrain

the model. On the other hand, this model has some issues that need to be taken

care. The first of them is the number of bits entering each RAM, the higher this
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Figure 2.7: An example o a WiSARD discriminator composed of R RAM units. The
output of the discriminator is the sum of all its RAM outputs.

number the higher the amount of memory required to represent the RAMs. Since

any combination of zeros and ones might be received from the input bits, the total

number of positions that might be addressed is 2B, where B is the number of bits

entering each RAM. This number grows exponentially but happily very few of these

positions are actually addressed in practice and, therefore, a simple solution to avoid

this issue is to use a hash structure, this way, only the relevant positions are used.

The second problem which may occur is the saturation of the RAMs, which is when

all, or almost all, of its positions are set to one. When this happens all discrimi-

nators output high values for every pattern presented. This is a common behavior

when dealing with many misclassified examples or noisily data A simple approach

for solving exists though, and is presented on the next section.

2.5.2 Bleaching

The bleaching technique was developed to surpass the saturation problem present

on the classic WiSARD model. As stated on the previous section, the saturation

problem happens when dealing with misclassified examples, noisy values, among

other sources. This generates patterns with different classes but very similar between

each other. The bleaching technique tries to solve this issue by considering not only

if a position was written or not, but also how many times it was addressed. In

the case of misclassified examples, it is expected that they would address a RAM

position only a few times during training, whereas correct examples will address that

same position several more times. To consider this scenario, the bleaching requires

an integer to be stored on each RAM position, instead of a single bit. This integer

is used to count how many times that position was accessed during training. Later,

a dynamic threshold is used to accept if the RAM output is considered one or zero.
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This procedure is illustrated in a classification being performed in Figure 2.8, where

the threshold has a value of four. This means that only RAMs whose addressed

position had a value higher or equals than four will output one, all others will

output zero. A common way to define this threshold is to variate its value linearly

from one up to the maximum value stored on a position. If the output confidence is

too small, the threshold is increased, trying to solve the disambiguation. When the

confidence is higher enough the model outputs the corresponding class.
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Figure 2.8: An example o a WiSARD discriminator applying a bleaching threshold
with value four. Only RAM units with output higher or equal to this value take
part on the sum.

2.5.3 Converting Real Values to Binary Representation

As stated before, the WiSARD network requires all inputs to be previously con-

verted into a binary representation. This step is necessary because these inputs

are used to address the RAM positions when presented to the discriminators, both

during training and during classification. A good way to identify if the used binary

representation is good is through Hamming Distance [17], which is represented as

h(X, Y ) in this work and expressed in Equation 2.4. In this case, a binary represen-

tation is considered good if the hamming distance between two consecutive numbers

is small and large between two distant numbers. This is a desired quality because

if the Hamming Distance is small it means that few RAMs will be affected during

addressing, generating similar addressed positions. The same is valid for more dis-

tant values with larger hamming distances. If the distance is large, it is expected

that different RAM positions will be addressed, consequently the patterns will differ

more.

h(X, Y ) =
l∑

i=1

abs(Xi − Yi) (2.4)
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The first binary representation usually considered is the representation of the

number in base 2, however, this representation is not adequate as in many cases it

exhibits big hamming distances between close numbers and small distances between

larger numbers. For instance, consider the number 7, represented as 0111, this

number has hamming distance 4 when compared to the number 8, represented as

1000. This is much larger than desired, specially when analyzing the distance from

number 8 to 0, represented as 0000, which is equal to 1. A representation commonly

used instead is the unary coding (sometimes called thermometer coding). This

representation starts with an array of zeros representing the lowest number and this

array with ones from right to left until the highest value. For instance, the number 0

could be represented by 00000, the number 4 by 00011 and the number 10 by 11111.

The number of ones T on the pattern for a given value x, considering the minimum

and maximum acceptable values, can be calculated trough Equation 2.5. As can be

seen, this method proportionally fills the array while preserving the desired hamming

distances, as desired. Although this representation has the desired qualities the

model requires, it also requires a larger number of bits to represent numbers with an

elevated precision. This characteristic, however, is usually not considered an issue

as WiSARD scales well even with large input patterns.

T (x) =
x−min

max−min
· n (2.5)

Another decision that needs to be taken into account is related to the interval

that must be mapped, therefore the constants max and min in Equation 2.5. On

the previous example, this representation could map any number in the range [0, 10],

however, real problems might have intervals much larger and values not uniformly

distributed. An approach for dealing with this is to normalize these values with

Z-Score and than applying the math function tanh. The first operation subtracts

the mean of each dimension on the input pattern and subsequently divides its value

by the corresponding standard deviation. The result of this transformation is that

each dimension has a mean equal to zero and standard deviation equal to one. Next,

the application of function tanh, reduces the numbers space from [−inf,+inf ] to

[−1, 1]. Thanks to the properties obtained after the application of the Z-Score,

these numbers will be approximately distributed over the new range. This approach,

however, assumes that the numbers on each dimension of the pattern follow a normal

distribution, otherwise another approach must be considered.

2.5.4 Implementation Considerations

The biggest problem with the direct implementation of the WiSARD network is the

amount of memory it requires to be executed. As stated before, the number of mem-
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ory positions inside each RAM is equal to 2B, where B is the number of bits entering

each RAM. If B is larger enough a single RAM unit may easily occupy the entire

computer memory, making this model completely unusable. In practice, however,

this is never the case because most of the RAM inner positions are never accessed,

therefore it is not necessary to allocate the complete memory array. Instead, a sim-

ple solution commonly used is to use a HashMap where for a given address position

its corresponding memory content is returned. Similarly, if the position was never

addressed before it is assumed that its content stores the value 0, i.e., a position

never written during the training phase.

Besides this, there is also the issue related to the size of B. If B is larger than the

basic type used (e.g. a long long), the key to the HashMap would be corrupted when

decoded. This is not the case of languages such as Python and Ruby because these

languages are able to automatically convert the number into a larger representation,

but languages such as C, C++, Java and many others require further processing.

In this case, the best solution is to define a custom object type with a customized

hash function and equality method to be used as key on the HashMap, keeping the

quality of the key used.

Finally, the traditional order of the WiSARD structure (WiSARD →
Discriminator → RAM → Position) is not the most optimal in terms of im-

plementation performance. In this case, for all D discriminators there are R rams

to be accessed, that is, there are D times R HashMap accesses. If this order is

reversed, that is, the RAM unit stores an array of length D (WiSARD → RAM →
Discriminator → Position) this becomes only R HashMap accesses. Even though

the amortized complexity is the same, this usually improves the model performance

by a constant factor. Furthermore, the HashMap inside the RAMs may also be used

with alternative representations for the list of discriminators. For instance, consider

a problem with thousands of classes (discriminators). In this scenario many RAM

position are accessed only by a few of them and it would be wiser to use a more

compact structure such as a TreeMap instead of an array. This approach usually

saves large amounts of memory, while also speeds up the classification time.

2.6 Consolidation of Approaches

The models presented so far have many advantages but also some issues as conse-

quence of their approaches. Most of these issues were considered when developing

the proposed model and avoiding them was one of the main objectives of the ap-

proach described in the next Chapter. As result of this, almost none of them are

present on the proposed methodology. A comparative table, with the characteristics

considered relevant while addressing this task, is presented in Table 2.1, the Kernel-
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Canvas approach is also shown as a reference to motivate the reading of Chapter 3.

Table 2.1: Comparison of model characteristics
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Temporal resampling low low yes no no

Spatial resampling low low yes no partial

KNN with DTW low high yes no yes

ESN low low no yes partial

KernelCanvas with

WiSARD
low low yes no partial

Table 2.1 contains five relevant characteristics identified in this work. These

are: Training and classification times, incremental learning, forgetting property,

elastic matching, and complex matchings. Training and classification times are

two important factors since most applications require real-time response. The only

model considered in this work with problems in this criterion was the KNN with

DTW. Although it essentially has a zero training time it needs to compare the

unknown sequence with all known training sequences, which is a slow operation and

not directly suitable for real-time applications. Next, incremental learning is the

ability to continuously learn new examples and classes as the model is being used.

Only the traditional ESN does not contain this property, requiring the model to be

retrained when a new sequence is added. The forgetting property states that every

time a new feature is presented the older ones are slowly being forgotten. The older

the observation was presented the more likely it is that it does not influence the

current internal state on the model. Since the beginning of the pattern may contain

key information to help classification, this is not a desired property in this task,

although it might be useful on regression tasks, as it helps the model focus on the

most recent context. Only the ESN model contain this property. Finally, elastic

matching considers the model capacity to deal with nonlinearities on the sequences,

such as slowly drawing parts of a character as opposed to continuously drawing the

entire stroke with the same speed. Direct matchings such as temporal resampling

may end up comparing different observations after resampling simply because it
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did not correctly aligned them, reducing the efficiency of the classifier used. This

property also takes into consideration complex sequences, such as how many times

a circular movement was performed. In this case, it is necessary that the model

keeps track of the entire movement, completely matching it with previous known

sequences.

Elastic pattern matching is the only characteristic not fully achieved by Kernel-

Canvas, although it is capable of dealing with small nonlinearities. Despite this, the

methodology still achieves very competitive accuracies on the data sets used even

when compared to KNN with DTW, but with much faster response times.
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Chapter 3

Methodology

As depicted previously, classification of time series data is a challenging task. This

chapter aims to describe the model developed in this work the preparation of input

sequences to be classified by a neural network, in this case the WiSARD. The initial

inspiration for this approach came from observing a single feature as a point in space

and the whole sequence as a unique stroke. Taking this perspective as a starting

point, the model quickly generalized from the gesture recognition domain to other

related time series tasks.

The objective of approaches like resampling and ESN is to find a relevant internal

representation with fixed length which still keeps the original signal information. In

many cases, this is accomplished by the application of a transformation procedure

which is able to convert an input signal, composed of a sequence of features in

Rn, into a single fixed point with dimensionality Rm, possibly in a much higher

dimensionality (m >> n). This process is illustrated in Figure 3.1 and, ideally, shall

preserve all its relevant properties. Relevant properties are characteristics that may

help during classification and some examples include the speed of the stroke, position

in space the observation occurred, direction of the movement, among others.

As expected, relevant properties depend on what needs to be classified, therefore

the complete methodology is divided in three main components. The first com-

ponent corresponds to the preparation of the input signal, including some basic

transformations that highlight the desired properties. The next component is the

KernelCanvas, which receives the prepared input signal and converts it into a fixed

point in space, which is called canvas in an analogy to a painted canvas. Finally,

the last component is the WiSARD model, which receives the prepared canvas and

performs a training or classification with the generated canvas.

All these are described on the next subsections. Section 3.1 describes the de-

tails of the KernelCanvas and how its output is used with the WiSARD network.

Section 3.2 describes three algorithms used to generate the kernels. Finally, Sec-

tion 3.3 describes all preprocessing steps used in this work when preparing the input
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Figure 3.1: An illustration of the approach taken in this work where an input stroke
is converted into a fixed and representative point in the new space.

patterns, which depend on the nature of the data.

3.1 KernelCanvas: Structure and Usage

After analysis of the models presented in Chapter 2, it was understood that they

approach this problem in two distinct ways. These are transforming the input

sequence into a fixed length input pattern, and dynamically matching the current

pattern against all its stored knowledge. The model described here resembles these

two characteristics through a simple, yet efficient, approach. Additionally, since

only few and simple operations are required, this method encodes input sequences

extremely fast, making it an excellent option for real time applications. Summing

up to these benefits, due to the nature of the algorithm, the output can easily

be expressed in binary format, i.e., zeros and ones. This is specially useful when

weightless neural networks are used, as they already expect the input to be in this

format, eliminating further preprocessing steps. Nevertheless, the model could also

be used with other types of network since binary numbers are just a special case of

numbers restricted to only two values.

Most insights for developing this methodology came from the idea of considering

any time series sequence as a stroke that could be drawn on a limited surface, like a

canvas. This is essentially how the method works, after generating a representation

of the strokes on a canvas it presents the generated pattern as input to the neural

network. First, the input sequence is prepared with the application of preprocessing

steps. Next, the input sequence is input to the KernelCanvas, which draws the stroke

received into an inner memory, called canvas. And, finally, the canvas is presented

as input to a neural network, in this case the WiSARD.
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3.1.1 Drawing Patterns Over a Grid Based Canvas

The initial idea for representing the canvas on the KernelCanvas was to slice the

input space into fixed regions with equal area on each of its dimensions. This

modeling generates a grid that could be represented internally as a matrix, and

painting would occur after presentation of each input feature to the canvas. If the

input feature passes over a region, or close enough to it, the region is painted in

black (0), otherwise it remains white (1). After all observations were presented, the

canvas has an internal representation of the sequence presented and may be input

into a neural network, as shown in Figure 3.2. This approach works not only with

two dimensional observations but also with much larger ones, requiring only the use

of multidimensional matrices.
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Figure 3.2: Representation of the painting process on the canvas which is later input
to the WiSARD. Each observation is presented individually and the nearest kernels
are selected and painted black (0).

The biggest drawback on this approach, as can be trivially perceived, is that the

number of cells in this matrix grows exponentially as a function of the dimensionality

of the feature space and the number of regions each dimension is divided. For

instance, suppose a two dimensional example were each dimension was divided into

10 slices, generating a matrix with 100 cells, as shown in Figure 3.3a and 3.3b. This

may seem like a reasonably approach at first, however, considering the case that

the preprocessing step has added two more dimensions representing the direction of

the movement and, additionally, concatenated the current feature with its previous

and next neighbors. This process increases the number of dimensions from 2 to 12,

requiring an amount of 1012 cells, which is a large amount of memory to be stored

and processed. The problem here is that the number of cells is directly linked to

the number of divisions and dimensionality of the feature space. A more efficient

approach that does not face this issue is presented next.
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3.1.2 Representing Kernels by Randomly Generated Points

In order to avoid the exponential growth of memory in the grid based canvas, a

slightly different approach was considered. Instead of defining squared regions as

a function of the space size, a fixed number of regions is defined and each one is

represented by a kernel located in its center. These kernels are randomly generated

during the creation of the canvas and do not change after that. Painting occur as

follows, the nearest kernels are first selected and painted the same way as before,

selected kernels are painted black (0) whereas unselected kernels remain white (1).

Only a certain number of kernels is painted during the presentation of a single

observation, and this number is equal to α ·K, where K is the number of kernels on

KernelCanvas and α is named the activation rate, which is the percentage of kernels

that are painted after each feature is presented. This procedure continues until all

features on the current sequence were presented. Figure 3.3c and Figure 3.3d show

an example of this approach over the stroke representing the letter C before and

after painting the kernel regions, respectively. As can be seen, each region becomes

defined by its nearest kernel, producing a picture similar to a Voronoi diagram [18].

Although there are many smarter approaches for generating the kernels, as described

in Section 3.2, assuming they are uniformly generated should suffice for now.

3.1.3 Training and Classification

Preparation for training and classification with the WiSARD network is quite

straightforward. As described before, at the end of the process the KernelCan-

vas has each Kernel marked as either black (0) or white (1), Preparation of the

output consists in attributing a fixed number of bits B to each kernel, and setting

its value to 0, if it was marked black, or 1, otherwise. The replication of the output

color in B bits is a useful technique to avoid only a single RAM receiving that kernel

information. If a different model was used, however, it would make sense to have

only a single value for each kernel, reducing dimensionality of the output canvas.

With the canvas properly built, it may then be input to WiSARD for either

training or classification. Alternatively, just as the ESN model, any other supervised

learning model could be used on its output. The only drawback is that the number

of binary bits on the canvas is between a few hundreds or thousands, which might

be an issue on the convergence of some models. Also, since the kernels construction

occur only once at the beginning and are always kept the same, the KernelCanvas

works by quickly encoding sequences on the same way. Thanks to this, all other

properties of the WiSARD model, like incremental learning and speed, are preserved.
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(a) Grid regions before painting (b) Grid regions after painting

(c) Kernel regions before painting (d) Kernel regions after painting

Figure 3.3: An example of a two dimensional canvas being painted after presentation
of a stroke representing letter C on grid based matrix ( 3.3a and 3.3b) and the kernel
approach ( 3.3c and 3.3d).

28



3.1.4 Related Characteristics and Limitations

A few similarities of this methodology when compared to other approaches like KNN

and ESN models were identified during the development of this work. In addition

to this, two issues related to the way this model works were also observed and are

described here.

First, a comparison with the KNN method becomes immediately apparent when

analyzing the way kernels are selected and painted. When a feature is presented to

KernelCanvas, its nearest kernels are selected and painted black. This is essentially

the same done in KNN, however, KernelCanvas works differently as each feature is

not compared against features from other samples, but to kernels that exist inside

its structure. Additionally, KNN directly compares the current sample against all

other samples presented before. On KernelCanvas, the current features are only

compared against the available kernels, which set is usually much smaller than the

number of samples available on the training set used by KNN. On top of that, the

comparison function used is simply the euclidean distance, which is much faster than

DTW. Comparatively, KNN with DTW can be seen as a model that compares the

complete list of input patterns whereas a ”mini-KNN”, present on KernelCanvas,

compares only smaller features of the pattern being presented. For instance, the

direction and position in space that the stroke is moving. In the end, the painted

regions on the canvas contain the main features that compose the stroke, in a way

similar to a small signature.

When compared to ESN, differences are much more representative. ESN works

in a similar fashion as it receives features one by one and updates its internal state.

This update, however, occurs in a different way as it considers the current input

and the current context, which is defined by all inputs received previously. This

approach might result in problems if, e.g., the beginning of the signal had some sort

of noise or distortion. A problem like this could disturb its current context, changing

it into an incorrect state which would converge into a completely different state in

the end of the sequence. This issue does not happens on KernelCanvas thanks

to the absence of a feedback connection to the canvas. When an invalid feature

appears, it paints a few regions closest to that feature but this does not affect the

remaining of the pattern, which will be painted on the correct regions. When the

canvas is presented to the neural model later, only a small fraction corresponding

to the percentage of noisy observations will be painted differently whereas all others

will be painted accordingly. This difference makes the KernelCanvas give similar

importance to every observation on the pattern, making it a more resilient model

for dealing with such problems.

Finally, there are currently two issues identified in this model. First, the model
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is not well suited for continuously data streams alone, such as a continuous audio

signal. In this case a previous step called segmentation must be performed in order

to identify the begin and the end of regions of interest. This is a necessary step

as the KernelCanvas needs to be cleaned before the features are presented to be

painted and the classification is only performed after the last feature is presented

at the end of the sample. This, however, is not the case in every type of data. For

instance, when dealing with handwritten characters this information is naturally

present as the pattern begins when the pen touches the capture surface and it ends

when the pen leaves the surface. The second issue that must be considered is related

to the way samples are compared. In this approach each kernel represents a random

characteristic in the feature space and the classes are discriminated based on this

information. If two or more classes, however, require the order they were performed

or a summation of the number of times a characteristic was seen it may not be

able to discriminate them adequately. This happens thanks to the nature of this

approach, which is not based on a moving belief. Nonetheless, this is also the desired

behavior because thanks to this characteristic the model gives equal importance to

characteristics presented at the begin and at the end of the sample. If a moving belief

was used, behaviors such as the forgetting property and errors from the beginning

largely propagating to the final belief would also be present, which was not desired.

3.2 Kernel Sampling Algorithms

The task of kernel generation is an important step when using the KernelCanvas

model. In fact, a good set of kernels might result in much better accuracy and

less computation time. On of the possible issues with the purely random algorithm

is that it may create many overlapping kernels, or large regions in space being

represented by a single kernel. In the first case, the overlapping kernels may become

irrelevant and are basically competing against each other to represent the same

feature in space. On the second case, a large region being represented by a single

kernel means that this region is being poorly represented, and perhaps should be

divided and contain more kernels in it. In addition to this, the structure used to

store these kernels has a relevant impact on the model performance. To compare all

observations against all kernels is not an exhaustive procedure but might become an

issue depending on the amount of kernels chosen. Assuming the euclidean distance

is used when comparing their similarity, however, a space-partitioning tree could be

used in order to reduce the search time for the nearest kernels. Such structures are

constructed in a tree like graph where similar points (kernels) are stored together

in organized regions of space, which are represented by leafs on the tree. Search is

accomplished by accessing the tree and search starts on regions closest to the query
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point to more distant ones. One example of such structure is the k-d tree [13], which

can query exactly or approximate nearest neighbors.

Alternatively, kernels could be generated taking into consideration the observa-

tions from the training set. Although promising, this approach was not investigated

as one of the desired properties was to keep the incremental learning ability of the

WiSARD network. Generating kernels considering only observations from the train-

ing set could generate large regions in space represented by a single distant kernel,

considered of low importance. Therefore, the process of adding new classes would be

handicapped as these regions could contain critical information that would help dis-

criminating the classes. Despite this, generating the kernels considering the training

set could also reduce the number of required kernels, speeding up the model and,

perhaps, achieving higher accuracies. This approach, however, was not considered

in this work but might be investigated in future researches.

The matter regarding completely randomly generated points is that there is ab-

solutely no correlation between the kernels generated. The consequence of this is

that there is no guarantee that the kernels are well distributed over space, in fact, it

is quite common that many of them will be very close to each other whereas other

areas will be completely unrepresented. Seeking an alternative to prevent this, the

poison disk sampling algorithm was proposed to mitigate the issue. A set of poi-

son disk points is a set of points with a minimum distance between each other but

also tightly packed in space, resulting in a more organized distribution of points.

This is also called a blue noise property, and it also states that its Fourier spectrum

contains more high frequencies than lowers. Algorithms to generate Poisson disk

sampling have been largely investigated and used to generate better anti-aliased im-

ages in computer graphics [19] [20] [21] [22] [23] [24] and [25]. Figure 3.4 compares

three two dimensional kernel sets generated by the three algorithms described in

this section. The Random Sampling algorithm, which is the random approach de-

scribed in Section 3.2.1. The approximate grid algorithm, described in Section 3.2.2

which tries to map the given number of kernels into a multidimensional matrix,

avoiding the exponential growth problem. And the Mitchell’s best candidate algo-

rithm, which generates approximate Poisson disk sampling kernels and is described

in Section 3.2.3. As can be observed, random sampling generates much lower qual-

ity kernels whereas the other two algorithms generate much more well structured

kernels.

3.2.1 Random Sampling

This is the simplest approach were each kernel is generated independently and uni-

formly random. Its algorithm is shown in Algorithm 3 which basically creates a
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(a) Random sampling (b) Approximate grid

(c) Mitchell’s best candidate

Figure 3.4: Three images with 256 kernels each comparing the quality of the kernels
generated by each algorithm on a two dimensional space.

list of kernels to be returned as output. The function createRandomKernel(dims)

creates a kernel with dims dimensions where each dimension is randomly set with

a value in the range [−1,+1]. This algorithm represents the original idea and due

to its simplicity is used as a benchmark against other methods.

A kernel set generated by this algorithm is shown in Figure 3.4a. As expected,

the kernels are not well distributed over space, containing regions more densely

populated and regions without any kernel. This is not the desired situation since it

is possible that those regions badly represented contain key features that would help

classification. Similarly, densely populated regions would probably just prejudice

classification as multiple meaningless kernels would represent the same region.

3.2.2 Approximate Grid

Although it is not practical to take the grid based matrix described in Section 3.1.1,

it is possible to build an approximated grid given a certain number of kernels. This

may be accomplished by estimating the number of cuts on each dimension that will

result in the approximate number of kernels desired. The algorithm used to generate

grid based kernels is divided in two parts, these are Algorithm 4 and Algorithm 5.

Algorithm 4 is the main algorithm but contains a recursive step which is represented
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Algorithm 3: RandomSampling

input : numKernels, number of kernels to be generated
input : dims, dimensionality of the kernels
output : kernels, the list of kernels generated

1 begin
2 kernels← [ ]
3 for i in 1 .. numKernels do
4 kernel← createRandomKernel(dims)
5 kernels.append(kernel)

6 end

7 end

by Algorithm 5. The first thing this algorithm does is estimate the number of cuts to

be performed on each dimension. This step in done from lines 2 to 7 and the result

is stored in list variable coeffs. Later, the recursive algorithm builds all possible

kernels on the array currentKernel using the calculated cuts, recursively iterating

from the first dimension to the last one. When a kernel is complete it is copied and

inserted inside the list variable kernels.

As expected, the grid based approach works well with low dimensionality prob-

lems like the two dimensional example in Figure 3.4b. In this case, the input values

numKernels = 256 and dims = 2 resulted in coeffs = [16, 16], which generated

the representative grid observed. If the input values were numKernels = 256 and

dims = 12, however, it would obtain coeffs = [2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2], which as

can be seen does not representatively splits space over the dimensions.

Algorithm 4: ApproximateGrid

input : numKernels, number of kernels to be generated
input : dims, dimensionality of the kernels
output : kernels, the list of generated kernels

1 begin
2 coeffs← [ ]
3 for i in 0 .. dims− 1 do
4 k ← round(pow(numKernels, 1.0/(dims− i)))
5 coeffs.append(k)
6 numKernels← numKernels/k

7 end
8 kernels← [ ]
9 currentKernel ← newdouble[dims]

10 CreateNGKernels(dims, coeffs, 1, currentKernel, kernels)

11 end
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Algorithm 5: CreateNGKernels

input : dims, dimensionality of the kernels
input : coeffs, array of length dims containing the number of

divisions on each dimension
input : index, the current dimension being divided, must start at 1
input : currentKernel, a base kernel that will be used as temporary

memory to build the kernels
in/out : kernels, the list that will receive the kernels

1 begin
2 if index = dims+ 1 then
3 kernels.append(currentKernel.clone())
4 else
5 for i in 1 .. coeffs[index] do
6 currentKernel[index]← i/(coeff [index] + 2) ∗ 2.0− 1.0
7 CreateNGKernels(dims, coeffs, index+ 1,

currentKernel, kernels)

8 end

9 end

10 end

3.2.3 Mitchell’s best-candidate

Mitchell’s best candidate [22] is an adaptation of the classic Dart-throwing [20]

method that limits the number of tries the algorithm can perform. The classic

algorithm starts with a single randomly generated point and keeps generating new

candidates until the desired number of points is reached. If, however, a new point

is closer than a distance d to any other point already inserted it is discarded and a

new candidate is randomly generated. This process may take a lot of time to reach

an end or even never stop. To overcome this issue, Mitchell’s algorithm limits the

number of tries before inserting a new point. This is accomplished by generating a

fixed number of candidates C during every insertion. Among these candidates, their

minimum distance to any other inserted point is calculated and only the candidate

with the maximum distance is inserted. Naturally, this process generates a nearly

optimal poison set as it may still generate points too close to each other or regions

low populated, although with a much smaller probability when compared to random

sampling. A more complete description of the algorithm is shown in Algorithm 6.

Many alternative algorithms were proposed to address the task of generating

Poisson disk sampling, as referenced in the beginning of this Section. Despite this,

the basic algorithm [22] was used because only a small number of kernels are required

to be generated, consuming at most a second to be generated, and those algorithms

are useful when dealing with hundreds of thousands points. Additionally, this pro-

cess occurs only once during the creation of the canvas, does not impacting the other
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operations and not justifying the extra work to implement more complex algorithms.

Algorithm 6: MitchellsBestCandidate

input : numKernels, number of kernels to be generated
input : dims, dimensionality of the kernels
input : numCandidates, number of candidate kernels
output : kernels, the list of generated kernels

1 begin
2 kernels← [ ]
3 for i in 1 .. numKernels do
4 candidates← [ ]
5 for j in 1 .. numCandidates do
6 kernel← createRandomKernel(dims)
7 candidates.append(kernel)

8 end
9 bestDistance← −1

10 bestCandidate← −1
11 for j in 1 .. numCandidates do
12 for kernel in kernels do
13 distance← euclideanDistance(kernel, candidates[j])
14 if bestDistance = −1 or distance < bestDistance then
15 bestDistance← distance
16 bestCandidate← j

17 end

18 end

19 end
20 kernels.append(candidate[bestCandidate])

21 end

22 end

3.3 Signal Processing and Feature Extraction

As described in Section 3.2 all Kernels are randomly generated by sorting their at-

tribute values within the range [−1,+1]. As expected, most samples come from

different data sets, containing values much larger or smaller than these and, there-

fore, a normalization must be performed to fit their sequence values within this

range. In addition to this, a few more preprocessing steps were applied depending

on the type of data being encoded. After some experimentation, it was found that

data sets with similar type of data did not required much specialized preparation.

For instance, gesture recognition and handwritten characters basically shared the

same preprocessing chain, which is described in Section 3.3.1. Other two data sets,

containing audio samples, presented similar behavior and also shared a common

chain, which is described in Section 3.3.2.
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3.3.1 Handwritten Characters and Video Gestures

Video Gestures and Handwritten characters contain much similar data in the sense

that in both cases their sequences may be represented in only two dimensional

feature space. The former containing the X and Y variables corresponding to the

hand of a person, for instance, on a video frame, and the later corresponding to the

position of the pen on the capture surface. Additionally, in both cases the size of

the movement as well the position it was performed were not considered relevant

whereas the direction of their movement was.

The preprocessing chain used to prepare these types of data contain six trans-

formations and is shown in Figure 3.5. The transformations represented in rounded

rectangles were applied to all samples before splitting the data set in train and test

set whereas normal rectangles were transformations applied after these sets were

created in order to do avoid contamination of the train set with test samples. For

instance, the operation “Add Rotations” creates two more samples, one slightly

rotated clockwise and on counterclockwise. If this operation was applied before cre-

ating the train and test sets slightly similar test sequences could be present in the

train set, which did not happen. The remaining of this section describes in more

details each of these transformations.

Smooth
Stroke

Append
Direction

Sequence
Z-Score

Add
Rotations

Tanh
Replicate
Features

Figure 3.5: Preprocessing chain applied on gesture and handwritten character data
sets.

Smooth Stroke: A lot of noise and irrelevant details come from these two types

of data. For instance, handwritten characters may stop in a given point and

prejudice the calculation of the movement direction on the next preprocessing

step. As we are not interested in discriminate classes based on small stops

performed on characters, this first step tries to remove these small details

from the original sequence.

To remove these characteristics, a simple procedure based on the distance from

current sequence feature to the last valid feature is described in Algorithm 7.

As different data sets may contain samples with different sizes, each dimension

36



is also divided by the largest standard deviation of each attribute, allowing the

same distance value to be used in all data sets. The largest standard deviation

is calculated in line 3 of the algorithm and line 8 checks if the current feature

has a squared distance to the last valid feature larger than the minimum re-

quired distance. In this case, the minimum distance was estimated empirically

and the value 0.01 was set.

Algorithm 7: SmoothStroke

input : inputSequence, the sequence of points to be cleaned
input : minDistance, accepts features at least this distant from the

last accepted feature
output : outputSequence, the smoother inputSequence

1 begin
2 outputSequence← [ ]
3 maxStd← max(std(inputSequence))
4 lastFeature← inputSequence[1]/maxStd
5 outputSequence.append(lastFeature)
6 for feature in inputSequence do
7 feature← feature/maxStd
8 if sdistance(lastFeature, feature) >= minDistance then
9 outputSequence.append(feature)

10 lastFeature← feature

11 end

12 end

13 end

Append Direction: Next, the direction of movement is calculated and concate-

nated to the current feature point. In the gesture scenario this is the direction

of the part of the body being tracked, while for handwritten characters this is

simply the direction of the stroke. This is composed of two attributes, which

are the sine and cosine of the vector from the current feature and the next

feature.

Sequence Z-Score: As each attribute may still present different distributions in

the feature space, a Z-Score normalization is applied individually on each se-

quence to generate a zero mean and one standard deviation on every attribute.

This helps the values to paint the entire canvas region, specially when used in

conjunction with the function Tanh, as explained later.

Add Rotations: Handwritten characters and gestures frequently suffer small ro-

tations when created by humans. This effect may happen because of many

reasons, for instance, due to misalignment between the user and the capture
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device or simple, due to the indifference from the user when creating the sam-

ple, among others. The objective of this preprocessing step is to help the

model discriminate these samples by replicating and adding a small rotation

to each sample from the training set. In this case, each sequence was used to

generate three samples, the first slightly rotated by -5 degrees, the second is

the original sample and the last one is rotated by +5 degrees. The sequences

were rotated by multiplying each of their sequence values to the rotation ma-

trix, expressed in Equation 3.1. In this case θ is the desired angle to apply on

the rotation.

R =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
(3.1)

Tanh: This is the mathematical function tanh applied on each attribute value to

limit their range from the range [− inf,+ inf] to the range [−1,+1], which is

where the kernels were generated. As these values had already being normal-

ized with Z-Score, these values will be approximately well distributed over the

new range. As explained in Section 2.5.3 this is a useful technique to prepare

the data to be converted to binary format. In this case, however, it behaves

pretty similarly but helps the sequence use the entire canvas when presenting

the stroke.

Replicate Features: Finally, each feature ft on the sequence is concatenated with

the features ft−1 and ft−2. This is a short operation that enhances the amount

of information each kernel represents, allowing more longer and complex char-

acteristics to be represented.

3.3.2 Audio Signals

Similarly to handwritten characters and video gestures, a set of preprocessing steps

were also applied on all sequences coming from the audio data sets. These steps

made them adequately fit their signals on the same size of the canvas and addi-

tionally enhanced their characteristics, contributing to a better discrimination. The

preprocessing chain applied is summarized in Figure 3.6 and, as can be observed, con-

tains many similar steps from the previously described chain. Furthermore, it also

follows the same representation rules, i.e., transformations represented in rounded

rectangles were applied to all samples before splitting the data set in train and test

set whereas normal rectangles were transformations applied after these sets were

created.

Framing and Windowing: The LPCC, FFT and MFCC only applies to a small

38



Framing and 
Windowing

Append
Sum 

Database
Z-Score

Tanh
Replicate
Features

LPCC

FFT and
MFCC

Figure 3.6: Preprocessing chain applied on audio data sets.

subsequence of fixed length N, representing the sound of only a small captured

slice. Therefore, a previous technique called Framing and Windowing are also

required. The former consists in sampling the audio signal at specific time

interval and with fixed length, e.g., samples of 25ms captured every 10ms.

The latter, multiplies each value on the frame in order to keep the continuity

of the values inside the frame. A typical window applied is the Hamming

window, defined by Equation 3.2. The parameter a defines the strength of the

Hamming window, the closer it is to 1 the stronger it is.

w(n, a) = (1− a)− a cos
(

2πn

N − 1

)
, n = 0, 1, ..., N − 1 (3.2)

FFT and MFCC: Raw audio signals are usually represented by a sequence of real

values containing the amplitude of the captured audio over time. This rep-

resentation, however, is not well suited for direct work as an audio stream

may contain distinct information separated on multiple frequencies. To sepa-

rate this information, the Fourier Transform [26] is usually applied to convert

this representation into the frequency domain. Sound, however, is captured in

discrete intervals and as the Fourier Transform is defined on continuous do-

main, the Discrete Fourier Transform is used instead, which is represented by

Equation 3.3. To calculate the Fourier Transform through Equation 3.3, how-

ever, is a slow operation with complexity O(N2). In practice, a Fast Fourier

Transform algorithm, like the Cooley-Tukey algorithm [27] is usually applied.

Xj =
N−1∑
k=0

xke
−i2πj k

N , j = 0, 1, ..., N − 1 (3.3)

The frequency domain, however, contains issues when representing audio sig-

39



nals. First, the size of the frame is usually large, typically around thousands

of values, and, second, the human auditory system does not give equal impor-

tance to higher frequencies as it does lowers. To address this, Mel-Frequency

Cepstrum Coefficients (MFCC) [28] [29] are used to reduce the number of at-

tributes on the frames and, additionally, apply a non-linear transformation to

better simulate the human ears. This is accomplished with the application of

two equations. The first, expressed in Equation 3.4 creates a relation between

Mel frequency values fmel and the normal frequencies f . This equation uses

the log function to apply a non-linear transformation on the frequency domain,

mapping more larger frequencies to the same Mel frequency banks. Also based

on this equation, Q triangular filter banks are created linearly spaced in the

Mel frequency domain and their corresponding energy banks Ek is calculated.

Each energy bank is calculated by multiplying the corresponding triangular

filter value to the corresponding frequency value. A typical number of filter

banks used is 20.

fmel = 25951 log10

(
1 +

f

700

)
(3.4)

Finally, a Discrete Cosine Transform (DCT) is applied to calculate each cep-

strum coefficient Ci. The DCT is calculated by Equation 3.5 using the calcu-

lated energy bank values from the previous step. Usually, only 13 cepstrum

coefficients are generated, therefore M = 13.

Ci =

Q∑
k=1

Ek cos

(
i

(
k − 1

2

)
π

Q

)
, i = 1, 2, ...,M (3.5)

LPCC: The Linear Predictive Cepstrum Coefficient (LPCC) [30] [31] is another

type of spectral envelop used to represent evolving signals. In this represen-

tation, cepstral coefficients are calculated from Linear Predictive coefficients

which can be calculated through much simpler operations. In this approach,

each framed signal s is assumed to be adequate to be expressed as a linear

combination of its past values. The equation that correlates the LP coefficients

and the framed signal is expressed in Equation 3.6, where ŝ is the approxima-

tion of the framed sequence s represented as a linear combination of its past

p values and ak are the LP coefficients.

ŝ(n) =

p∑
k=1

ak · s(n− k) (3.6)

Naturally, the coefficients must be bound to some restriction. In this case,
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they are bound to minimize the difference between ŝ and s, i.e., minimize

Equation 3.7

E =
∞∑
−∞

[s(n)− ŝ(n)]2 (3.7)

One common approach to estimate these values is by differentiating Equa-

tion 3.7 for each ak, k = 1, 2, ..., p and equating it to 0. This results in p linear

equations and p unknown coefficients. With some further manipulation, it is

possible to represent these equations as the autocorrelation sequence expressed

in Equation 3.8, where N is the length of the frame.

R(i) =
N−1∑
n=i

s(n)s(n− i) (3.8)

This representation is useful as it may be used to represent this problem in

the matrix form shown in Equation 3.9.


R(0) R(1) R(2) ... R(p− 1)

R(1) R(0) R(1) ... R(p− 2)

R(2) R(1) R(0) ... R(p− 3)

... ... ... ... ...

R(p− 1) R(p− 2) R(p− 3) ... R(0)




a1

a2

a3

...

ap

 =


R(1)

R(2)

R(3)

...

R(p)

 (3.9)

This is a linear system of the form AX = B which solution is given by x =

A−1B. In addition to this, matrix A is also a Toeplitz matrix, i.e., it is

symmetric and all its diagonals are identical. This means that its inverse

can be efficiently obtained with the Levinson-Durbin algorithm, providing the

solution in O(p2).

After the acquisition of the LP coefficients, they may finally be converted to

cepstrum coefficients through Equation 3.10.

cm =


R(0), m = 0

am +
∑m−1

k=1

(
k
m

)
ckam−k, 0 < m <= p∑m−1

k=m−p
(
k
m

)
ckam−k, m >= p

(3.10)

Append Sum: After the original audio signal is finally converted into cepstrum

coefficients, each of these attributes is summed, starting from the origin, and

concatenated to the corresponding coefficients. This process is similar to an
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integration and, at this moment, the signal is convert into a stroke analogous

to those present on the previous subsection with their corresponding direction

movement, but in a much higher dimensional space.

Database Z-Score: Next, the signal is transformed with the application of Z-

Score, i.e., each attribute has its mean subtracted and is later divided by

its standard deviation. This time, however, the entire training set is used to

estimate the and standard deviation, as opposed to the previous section, which

used just the current sample to estimate these values.

Tanh: Keeping the same goal in mind, the mathematical function tanh is applied

individually on each attribute to limit their values inside the range [−1,+1],

making each sample completely fit on the canvas size. This time, however,

the resulting values also presented a much smaller variation as the Z-Score

normalization considered the entire training set.

Replicate Features: Each feature was also replicated and concatenated on the

same procedure performed before, feature ft was concatenated with features

ft−1 and ft−2 to give kernels more context information.
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Chapter 4

Experiments and Analysis

In order to discover how well the proposed methodology performs when compared

to other related models, a series of experiments was performed and described in

this Chapter. Naturally, time series classification is a large area with many specific

applications and different levels of complexity on each of them. Therefore, it seems

like a fair condition that the proposed methodology should be evaluated in at least

three task scenarios. For this reason, three types of tasks and five public available

data sets were chosen. Furthermore, additional investigation was performed to de-

termine how well the model performs as the number of kernels is reduced and which

of the three kernel sampling algorithms, described in Section 3.2, was the most well

suited for the majority of tasks experimented.

The remainder of this chapter is divided as follows, Section 4.1 describes the

data sets, models, software and hardware used to develop or run the models. Next,

Section 4.2 compares the three proposed kernel sampling algorithms and Section 4.3

compares the effects of different numbers of kernels on the average performance.

Following this, Section 4.4 compares this model against the chosen models on all

five data sets and also obtains the corresponding results of the proposed methodology

on standard tasks. These are later compared to state of the art results from other

works. Finally, Section 4.5 provides a partial conclusion of these results obtained in

the chapter.

4.1 Experimental Base

This section detail the main characteristics on the simulation environment used to

evaluate the models. It starts by describing the chosen data sets and their corre-

sponding preprocessing chains applied, as well as any transformation applied before

they were made public. Next, the models defined in Chapter 2 and the Proposed

methodology, described in Chapter 3, are listed and a more detailed parameter con-

figuration for each data set is provided. Finally, the hardware configuration used
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Table 4.1: Summary of data sets characteristics

Libras Pendigits UJIPenchars2
Japanese

Vowels

Arabic

Digit

Number of

Samples
360 7494 7440 640 8800

Number of

Classes
15 10 35 9 10

Length

(std)

45

(0.0)

40.59

(12.18)

60.86

(25.89)

15.56

(3.62)

39.81

(8.55)

Recognition

Task

Hand

Movement

Handwritten

Characters

Handwritten

Characters
Speaker Speech

to develop and run the experiments is also described, as it may impact experiment

results regarding training and classification times.

4.1.1 Data Sets

As described previously, three types of time series data and five data sets were used

in this work. The data sets were all chosen from the public available website UCI

Machine Learning Repository1 and the three tasks are related to video gestures,

handwritten characters and audio recognition. The chosen sets that present these

characteristics are: Libras [1], Pendigits [10], UJIPenchars2 [32], Japanese Vow-

els [33] and Arabic Digits [34]. A summary of the details of these sets is also shown

in Table 4.1. The first three data sets, Libras, Pendigits and UJIPenchars2, were

preprocessed according to the preprocessing chain described in Section 3.3.1, and the

data sets Japanese Vowels and Arabic Digits with the preprocessing chain described

in Section 3.3.2. The Japanese Vowels, however, used LPCC after application of

the Hamming technique whereas Arabic Digits applied FFT and MFCC. The audio

task is also divided in two more sub tasks, which are speaker and speech recogni-

tion. These two tasks are related to audio classification, however, the first sub task

tries to identify the person speaking to the system whereas the second sub task is

concerned about the content being said. A few more details about each of these sets

is described below.

Libras: In this set, 15 of the most common types of movements from the Libras

(Brazilian sign language) universe were chosen to be classified. Four people

were filmed performing the different types of movements during two days, the

result was a total of 360 videos which later were processed to extract their

1Available at: https://archive.ics.uci.edu/ml/datasets.html
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hands coordinates. After locating the hand on each video frame, its centroid

was calculated and the resulting coordinate stored. Only 45 frames of the com-

plete video length were linearly selected to be processed, generating sequences

with constant lengths. This restriction worked similarly to the application the

Temporal Resampling technique, described in Section 2.1.1. Additionally, this

set is divided in 10 subsets to facilitate comparison with other works.

Pendigits: This set contains a total of 7494 sequences created by 44 people repre-

senting numerical digits. All samples were created using a pressure sensitive

tablet with an LCD and a cordless stylus pen. Despite the capability to cap-

ture pressure information, only the stroke coordinates were made available as

the objective was to make the model compatible with devices without pressure

information. This set is also divided in two other sets, to allow better com-

parison between different works, the train subset contains sequences created

by the first 30 writers and the test subset contains the samples created by the

remaining 14 writers.

UJIPenchars2: This publicly available data set is composed by a total of 11640

samples divided in 97 classes and created by 60 writers in total. All these

samples were also captured on a cordless stylus with a tablet PC. This set,

however, includes digits, letters and non-ASCII characters such as ”¿” and

”¡”. A subset of this big set, however, is also provided for comparison and is

composed by 7440 samples and 35 classes. These classes contain all 26 letters,

lowercase and uppercase included on the same class, and 9 digits, from 0 to 9.

The digit zero is included in the same class as o’s. Only the smaller subset,

with 35 classes, was used in this work as this was the preferred option used in

other works [32] [35].

Japanese Vowels: Japanese Vowels contains samples from 9 male subjects utter-

ing the vowels /ae/. The objective of this task is to correctly identify which

of the subjects has spoken the vowels, i.e., a 9 class problem. This task is

also divided in a standard train and set sets with 270 and 370, respectively.

Samples have also being previously transformed by the application of LPCC,

described in Section 3.3.2.

Arabic Digits: Arabic Digits is another digits only data set but with samples

generated from audio recordings. It was generated by 88 individuals, 44 males

and 44 females between the ages 18 and 40, each of them repeating the same

digit 10 times. Each sample corresponds to a time serie with 13 Mel Frequency

Cepstrum Coefficients, as FFT and MFCC were used in this set.
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4.1.2 Comparison Models

In addition to the proposed model, five other approaches were selected to be com-

pared with the proposed methodology and are described in this section. These

models are the same models described in Chapter 2. Some of them, however, were

combined in order to explore further ideas, e.g., to investigate the use of weightless

neural networks with the ESN model. Each of these combinations are described

bellow, along with the corresponding parameters used. Additionally, all approaches

shared the same preprocessing chain, except by small adaptations when said oth-

erwise, and all parameters were defined empirically during the cross-validation de-

scribed in Section 4.4.

KernelCanvas and WiSARD: The first model is the proposed methodology.

The KernelCanvas is used to encode the input sequence into an input pat-

tern which is then presented to the WiSARD network for either training or

classification. Regarding its parameters, the activation rate was set to 0.075

on all data sets, the number of output bits per kernel was set to 32 on Japanese

Vowels and 16 on all others, and the number of kernels was set to 1024 on Li-

bras and 2048 on all others. The kernel sampling algorithm applied was always

the Random Sampling. In respect to the WiSARD network, the number of

input bits on each RAM was set to 8 on Japanese Vowels, 32 on Pendigits and

16 on all others. Further details about the choice of the kernel sampling algo-

rithm and the number of kernels are described in Section 4.2 and Section 4.3,

respectively.

KNN and DTW: This is exactly the same model as described in Section 2.3 and

Section2.4. We fixed k = 1 on all data sets as this was the optimum value

obtained during cross validation. Additionally, the use of the Sakoe-Chiba

band is a useful technique not only to improve performance but also to improve

accuracy [36]. Therefore, the current implementation also contains a limit for

the warping window which is equal to 10. Furthermore, the only preprocessing

difference applied on the preprocessing chain was to remove the step that

applies the function tanh, as it is a required step only for the KernelCanvas.

Echo State Network and Linear Regression: This is the default ESN model

described in Section 2.2. All networks were created with the use of the Oger

toolbox2, containing 300 neurons on the hidden reservoir. Additionally, all

input and inner weights were randomly set within the range [−0.05,+0.05] and

the leaking rate was set to 0.2. All reservoir neurons use the function tanh

2Available at: http://reservoir-computing.org/organic/engine
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to propagate signals and the output layer uses linear regression as training

algorithm.

Echo State Network and WiSARD: This is the same ESN implementation as

above but using a WiSARD network replacing the linear regression algorithm

on the output layer. The network parameters were also modified, the number

of neurons on the reservoir was set to 200, the input weights were randomly

set within the range [−0.1,+0.1], the inner weight matrix was randomly set

within [−0.005,+0.005], and the leaking rate was kept at 0.2. The WiSARD

implementation is the same used on all other models but wrapped on a python

module through Cython language3. The connection between ESN and WiS-

ARD is made by presented the entire input sequence to the ESN network

and the corresponding inner state values are saved and transformed through

Z-Score, tanh and unary coding with 16 bits, respectively. The prepared se-

quence is then presented to WiSARD. The number of input bits on the RAM

units was set to 8 on Libras and Japanese Vowels, 16 on Arabic Digits, and

32 on Pendigits and UJIPenchars2.

Temporal Resampling and WiSARD: The default algorithm described in Sec-

tion 2.1.1 with a WiSARD network as classifier. The sequences were resized

to length 32 on UJIPenchars2 and 16 on all others. The number of input bits

of WiSARD’s RAM units were 8 on Libras and Japanese Vowels, and 16 on

all others.

Spatial Resampling and WiSARD: Similar to the previous algorithm but fol-

lowing the algorithm described in Section 2.1.2. Sequences were also resized

to length 32 on UJIPenchars2 and 16 on all others. The number of input bits

on each RAM was set to 8 on Libras and Japanese Vowels, 16 on Pendigits

and Arabic Digits, and 32 on UJIPenchars2.

4.1.3 Hardware Platform

As training and classification times are measured in milliseconds, it is also impor-

tant to describe the hardware and software environment used to obtain the results

presented. In fact, all experiments were performed on the same hardware architec-

ture under similar CPU workloads. The computer used was a Dell VOSTRO 3360

with Intel R© CoreTM i5-3337U CPU and two dual-channel 4GB Corsair Vengeance

memories at 1600MHz (CMSX8GX3M2B1600C9). Additionally, the operating sys-

tem used was the Fedora 21 Desktop Edition installed on a Samsung EVO 120 GB

SSD. Finally, in respect to the models used, with exception of ESN, which we used

3Available at: http://cython.org/

47



the implementation available on Oger toolbox4, all other models were implemented

using c++ as programming language and compiled with clang++ 3.5.0.

4.2 Comparison of Kernel Sampling Algorithm

As described in Section 3.2, the way kernels are created might influence the quality

of the KernelCanvas and, therefore, three kernel sampling algorithms were pro-

posed. One purely random approach, a Neareast Grid algorithm, and a Poisson

Disk Sampling algorithm. The first algorithm creates kernels at random, without

concern about previously created kernels or kernels on the same position. The sec-

ond algorithm was created as a benchmark for the other two when compared to a

multidimensional grid with equivalent number of kernels. Finally, the third algo-

rithm is an extension of the first approach but creates more structured kernels and

tries to avoid creation of similar kernels and low populated regions.

The three algorithms were used on all five data set and the average accuracy

obtained is shown in Figure 4.1. This accuracy was obtained through stratified

cross-validation on the same way as described in Section 4.4. As observed, except

by the approximate grid algorithm the difference between the three algorithms is

not much significative. As a conclusion, despite the extra care of the Poisson Disk

Sampling algorithm, the random sampling algorithm seems to perform equally well

or slightly better, not justifying the extra work.

4.3 Selection of the number of Kernels on Ker-

nelCanvas

Another relevant parameter that needs to be set for each data set is the number of

kernels used. Therefore, this section provides a comparison experiment to justify

the number of kernels used on cross-validation experiment and, additionally, sup-

plementary information like training and classification times on each configuration

were also calculated and summarized.

The experiment in this section was performed by applying a the same cross-

validation technique described in Section 4.4 but exponentially ranging the number

of kernels from 1 to 4096, doubling the number of kernels after each iteration. During

this process, the average accuracy, standard deviation and computational times were

calculated and all results were summarized in Figure 4.2, where the log2 of the

number of kernels is represented on the X axis of all charts. As expected, the higher

the number of kernels, the higher is the obtained accuracy. This behavior, however,

4Available at: http://organic.elis.ugent.be/organic/engine
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Figure 4.1: Average KernelCanvas accuracy with different kernel sampling algo-
rithms.

does not endure indefinitely and for most data sets it stops close to x = 10, i.e., close

to 1024 kernels. The inverse behavior is also observed on the standard deviation,

the higher the number of kernels, the lower the deviation, i.e., the more confident

we are with the obtained model accuracy. Finally, the two charts summarizing the

training and classification times presented very similar behavior, demonstrating that

the model complexity grows approximately linear as the number of kernels grow. As

a result of all this, it was decided that 1024 kernels were enough for the Libras data

set, and 2048 were enough for all others as the accuracy is approximately constant,

the standard deviation is smaller and the training and classification times still qualify

for real-time applications.

4.4 Comparison of the Models

The six selected models were compared in two distinct experiments. These were

the average performance on a user-dependent cross-validation and distinct user-

independent experiments, the latter using the standard tasks provided within each

data set. User-dependent tests are tests were the training and testing sets contain

samples generated from the same user base whereas user-independent tests contain

their sets generated from distinct user bases. User-independent tests are interesting
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Figure 4.2: Results obtained by KernelCanvas in function of the number of kernels
(normalized In log2): (a) Average accuracy, (b) Standard deviation of the accuracy,
(c) Log2 of the average time needed to train each sample, (d) Log2 of the average
time needed to test each sample.

because they better simulate real life scenario as final users do not participate on the

development process. The first experiment, however, was also important to compare

the proposed methodology to other models using similar preprocessing chains. The

second experiment, is composed by standard tasks proposed by the authors of the

respective data sets used and is useful to compare against the state of the art results.

Some results presented here contrast from those present on our previous work [7].

We justify this discrepancy to multiple modifications performed on our implementa-

tions and the newly created preprocessing chain. Among these modifications there

have been the implementation of the Sakoe-Chiba [14] optimization, reducing the

processing time of DTW, and additional configurations during the creation of the

ESN. Such modifications were performed to obtain more competitive models and

provide a fairer comparison.

4.4.1 User-dependent Comparison

This experiment was performed with the use of the well-established stratified 10-

fold cross-validation. In this experiment, 10 subsets are randomly created from
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Table 4.2: Accuracy and Standard Deviation on Cross-Validation (%)

Libras Pendigits
UJI

Penchars2

Japanese

Vowels

Arabic

Digits

KernelCanvas

+ WiSARD

97.78

(2.28)

99.72

(0.20)

92.69

(1.23)

96.22

(2.38)

98.22

(0.49)

KNN

+ DTW

93.00

(5.21)

99.87

(0.14)

95.24

(0.76)

95.63

(2.26)

99.83

(0.13)

ESN

+ Linear Regression

93.89

(3.32)

96.86

(0.56)

75.65

(1.98)

95.94

(1.31)

91.98

(1.24)

ESN

+ WiSARD

93.00

(3.81)

99.44

(0.22)

91.13

(0.86)

95.47

(2.10)

99.61

(0.25)

Time Resample

+ WiSARD

88.33

(5.03)

95.05

(0.64)

82.07

(1.71)

94.96

(3.23)

98.83

(0.46)

Length Resample

+ WiSARD

88.78

(6.01)

94.81

(0.85)

80.52

(1.48)

95.27

(3.04)

98.35

(0.35)

the original data set and 10 evaluation procedures are performed. During each

evaluation, one of the subsets is used as test set and the remaining is used as the

entire training set. Training and classification are performed 10 times and at the end

of the process average information such as accuracy and computational times are

calculated and summarized. Additionally, these subsets were created in a stratified

way, i.e., retaining statistic properties such as the percentage of samples per class

of the original data set.

The accuracy results obtained for each model on each data set are all shown in

Table 4.2, along with their corresponding standard deviation. As can be observed,

the best results were basically divided between the models KernelCanvas + WiSARD

and KNN + DTW. The former obtained the best results on Libras and Japanese

Vowels, and the latter obtained the best results on Pendigits, UJIPenchars2 and

Arabic Digits. Regarding the two ESN approaches, the WiSARD model obtained

consistently better results when compared to the traditional ESN model using Linear

Regression on the output layer. This was mostly observed on UJIPenchars2 data

set where the accuracy improved by 15.48 units. In addition to this, this model

also provided very competitive results on Pendigits and Arabic Digits. Finally, the

two simple resampling techniques obtained the lowest results, winning only when

compared to ESN + Linear Regression on UJIPenchars2 data set.

Similarly, the training and classification times were also measured and the ob-

tained values were summarized in Table 4.3. As clearly observable, the two simple

resampling approaches obtained the best training and classification times in the two
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categories. This is the expected behavior as they share equally simple algorithms

and also use a WiSARD network on the output, which operates equally simply.

Further, despite the best results of KNN on some data sets, it also presented consid-

erably higher classification times, specially on the larger data sets, such as Pendigits,

UJIPenchars2 and Arabic Digits. Additionally, most of its measured classification

times became above one tenth of a second and would most likely be perceived by

a final user. The worst case was for Arabic Digits, were the average classification

time reached beyond a second. Likewise, it can also be seen that despite the im-

proved results achieved by the WiSARD network as the ESN output layer when

compared to the traditional approach, it also incremented the computational time.

Further investigation should be considered, however, to explain this discrepancy.

Finally, it can be seen that the proposed methodology presented really competitive

computational times when compared to all other approaches.

4.4.2 Standard Tasks

As previously stated, the data sets used in this work provide subsets in order to

allow easy comparison with other works. In this section, our results are compared

with the best results we could find at the present time on these sets, i.e., the state

of the art results. Most of these tests also differ from the previous experiment in

the sense that they are directed towards user-independent scenarios. An stated

previously, user-independent test is a type of test were all samples used during the

training phase comes from one set of people and the set of samples used for testing

comes from another. This way, it is expected that this type of test will simulate

more accurately the results that would be found when the recognition system would

finally be used by final users. The only exception to this rule is the Japanese Vowels

data set, which is a speaker identification problem and therefore may not be tested

on different sets of users.

These comparison results are summarized in Figure 4.3 and the best results

found were published at [35], [35], [37] and [38], respectively from left to right. As

can be observed, although it has not surpassed any of them, the model performed

considerably well on all data sets. It is important to notice, additionally, that

the proposed methodology has many other relevant properties such as scalability,

computational time, incremental learning and simplicity.

Regarding Libras, the authors of this data set did not provide a single stan-

dard pair of training and classification sets. Instead, they proposed nine different

tasks based on multiple samples collected along two days of experimentation. The

test results obtained by the proposed methodology on such tasks are summarized

in Table 4.4, the notation used works as follows. Four participants engaged on this
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Table 4.3: Average Training (T) and Classification (C) Times Obtained During
Cross-Validation (ms)

Type Libras Pendigits
UJI

Penchars2

Japanese

Vowels

Arabic

Digits

KernelCanvas

+ WiSARD
T 3.55 3.28 3.01 4.55 10.60

KNN

+ DTW
T 0.00 0.00 0.00 0.00 0.00

ESN

+ Linear Regression
T 4.63 4.53 5.27 2.85 6.04

ESN

+ WiSARD
T 50.29 52.24 62.87 25.23 66.49

Time Resample

+ WiSARD
T 0.17 0.03 0.15 0.68 0.83

Length Resample

+ WiSARD
T 0.82 0.08 0.28 0.53 1.12

KernelCanvas

+ WiSARD
C 3.35 3.24 2.81 4.26 10.08

KNN

+ DTW
C 128.41 117.95 245.45 27.81 1322.48

ESN

+ Linear Regression
C 3.57 3.38 4.24 1.90 4.31

ESN

+ WiSARD
C 55.40 54.52 59.71 28.44 65.12

Time Resample

+ WiSARD
C 0.31 0.04 0.17 0.61 0.76

Length Resample

+ WiSARD
C 0.83 0.09 0.30 0.47 0.95

experiment (A,B,C,D) and the samples for participant X on day Y are represented

as XY . Participant A was the only one with two sets of samples on day 1, these

are differentiated as A1
1 and A2

1. Following the evaluation procedure described in

the authors paper [1], instances 1, 4 and 6 were randomly split 25 times in train-

ing and testing sets. For each pair, training and testing occurred and their results

calculated (mean recognition rate, standard deviation, median recognition rate and

max recognition rate). The remaining instance sets, (2, 3), (5) and (7, 8, 9), were

used to further evaluate the best models found over all 25 iterations of, respectively,

instances 1, 4 and 6. The original article selects only the best model to be evalu-

ated and therefore did not provide average and median information. In this work,

however, all trained models were used and these values calculated.

To facilitate comparison, the authors best results on this data set are replicated
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Figure 4.3: Results of the proposed method on standard tasks compared against to
the best results found in literature.

Table 4.4: KernelCanvas results for Libras standard tasks (%)

instance

id

people

id.

mean

recognition

rate

standard

deviation

median

recognition

rate

max

recognition

rate

1 A1
1, A2 0.98 0.02 0.96 1.00

2 A2 0.99 0.01 0.98 1.00

3 A1
1 0.99 0.01 1.00 1.00

4 A2 0.98 0.03 1.00 1.00

5 A1
1 0.83 0.01 0.82 0.84

6 A2, B2, D2 0.98 0.01 0.99 1.00

7 A2 0.99 0.01 0.99 1.00

8 A1
1 0.82 0.03 0.87 0.87

9 A2
1, B1, C1 0.81 0.03 0.78 0.87

in Table 4.5. The column ”max recognition rate” from his table, however, was

moved to ”mean recognition rate” on instances (2,3,5,7,8,9). As stated before, in

order to discard invalid models and avoid overfitting the author only evaluated the

best network created over the 25 iterations. As these characteristics are not present
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Table 4.5: Results of the best model on the paper of the data set author - Unsuper-
vised Fuzzy-LVQ [1] (%)

instance

id

people

id.

mean

recognition

rate

standard

deviation

median

recognition

rate

max

recognition

rate

1 A1
1, A2 0.94 0.19 0.94 0.96

2 A2 0.96 - - -

3 A1
1 0.98 - - -

4 A2 0.95 0.18 0.94 0.99

5 A1
1 0.49 - - -

6 A2, B2, D2 0.88 0.21 0.89 0.92

7 A2 0.89 - - -

8 A1
1 0.56 - - -

9 A2
1, B1, C1 0.58 - - -

on WiSARD, all trained models were used on these instances and the average and

standard deviation were collected. Comparatively, our results performed better than

all the results presented by the author.

4.5 Partial Conclusion

This chapter presented a series of experiments regarding the proposed methodology

in addition to experiments involving the WiSARD neural network and the ESN

model. Furthermore, an empirical evaluation of the best kernel sampling algorithm

along with an estimation of the number of kernels on the considered data sets were

also provided.

As observed, the configuration required for the proposed model does not differ

much from each data set, making it easy to configure and use the model. When

compared to simple approaches, such as time and length resampling, this model

obtained considerable improved results at the additional cost of nearly 10 ms. The

only equiparable model observed was the KNN with DTW which despite the slightly

improved results also required considerably much more processing time. Thus, the

overall result of the proposed methodology was considered satisfactory as it was

able to surpass most comparison models on almost all data sets considered. When

compared towards the state of the art results, it was seen that this model achieved

nearly the same results on some tasks and competitive results on others. In addition

to this, is was also observed that the WiSARD network provides a good alternative
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for the Linear Regression algorithm usually used as output layer of the ESN. The

only issue that must be dealt, however, is that it also increased the training and

classification times.

On top of this, the three kernel sampling algorithms were compared and the

obtained results indicated that the best option on all data sets was the Random

Sampling algorithm, which was also the simplest of the three algorithms. Finally, is

was estimated that 1024 and 2048 kernels are usually enough for the tasks considered.

Despite this, even when fewer kernels were used the model could provide average

results and linearly decrease the computational time, possibly presenting a good

alternative for low end devices.
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Chapter 5

Conclusion

In this work a new architecture for time series classification in conjunction with the

WiSARD network was proposed. The proposed architecture, named KernelCanvas,

is able to convert a stroke of points from the observed space into a fixed point in a

much higher binary dimensional space. This representation, in turn, fits remarkably

well when combined with weightless neural networks as these neural networks are

capable of easily processing large input patterns and additionally requires them to

be in binary format.

At the essence of this new architecture, kernels had to be randomly sampled in

order to represent different possible characteristics of the input patterns and three

sampling algorithm were considered. Despite the extra care to reduce the number of

kernel collisions and to better distribute them in space with the use of Poisson Disk

samples, it was empirically observed that the simplest and purely random approach

also obtained the best results.

When the methodology was compared to related approaches, such as ESN, KNN

and basic resamplings, it presented superior results to most of them and at worst

competitive results when compared to KNN with DTW. When compared to KNN,

however, the proposed methodology represented a considerably reduction on the

computational power required and easily qualifies for real-time applications.

When compared to state of the art results, the proposed model obtained nearly

the same results on Pendigits data set, and competitive results on all others. When

considering the nine tasks proposed by the authors of the Libras data set, though,

it obtained improved results on all tasks if compared to the results presented on the

authors paper.

Furthermore, all the initial proposals were completely achieved. The proposed

methodology kept all the main characteristics of the WiSARD neural network, in-

cluding incremental learning, simplicity on its operations and low training and clas-

sification times. The only consideration observed when this model was used is that

it requires a little of knowledge about the type of data being used. This is a required
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information as there is still in order to correctly choose the preprocessing chain used

and resize the input signal to fit the size of the canvas.

5.1 Future Works

In addition to all that has been proposed and evaluated, many other connections

are still open for further investigation in the future. One of them, for instance, is

the generation of kernels based on samples from the training set. Each kernel, in

essence, represents a characteristic of the signal to be classified. Thus, an algorithm

to identify this type of information during the training phase could possibly increase

the model confidence or reduce the number of kernels and speed up classification

time. This approach, however, would create kernels specific to the samples and

classes present on the training set, losing the incremental learning property.

Additionally, auxiliary structures to query approximate nearest neighbors, could

also be used to speed up the nearest kernels search. These could present a significant

gain in speed but the impact of this approximation would need to be measured on

the final accuracy.

In respect to the integration between ESN and WiSARD, it was observed that the

WiSARD network successfully improved classification results of the ESN with the

traditional Linear Regression algorithm. This improvement, however, also increased

the training and classification times of the model but also brought incremental learn-

ing capability to the model. Following this observation, it is conjectured that similar

gains could be achieved on analogous models, such as Extreme Learning Machines.

Another characteristic still not investigated in this work is the integration of

the proposed model with the Hidden Markov Model (HMM) [4]. Recently, we have

successfully obtained a real time music tracker by mixing the WiSARD network

and the Markov Localization Algorithm [6]. Although this work involved slightly

different objectives, it is possible that many of the techniques used could also be

applied to improve the model proposed in this work. If successful, a comparison

of the proposed technique, HMM, and a hybrid Markov-WiSARD model would

certainly produce interesting characteristics.

Finally, with the recent advances in artificial intelligence and improved compu-

tational power on portable devices, we have seen many applications changing the

way we interact with machines and the type of data they can collect. Some of the

applications involving time series include gesture keyboards on touch screen devices,

practical voice recognition, music identification, wearable devices that keep track of

the user fitness activities and health status, among others. With all this in mind,

it would be really interesting to see a few practical applications of the methodology

here described.
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Appendix B

SketchReader

In order to easily demonstrate the functionality of the proposed methodology, a small

Android application was also developed and released. This application contains

some of the main characteristics of the model such as fast training and classification

times and creation of new classes during its execution. Part of this implementation,

however, is not syncronized with the most recent implementation version of the

methodology. As a result of this, it is not possible to change the kernel sampling

algorithm, for instance.

The application interface is organized as follows. The initial screen, shown in

Figure B.1a, contains the list of all models already created, in this case only one

model named ”Números”. If the user wants to create a new model it must click

the button with caption ”NEW MODEL” and set or confirm the model parameters,

shown in Figure B.1b. The first parameter, the model’s name, is used just to repre-

sent the model on the list. The next three, ”Kernels”, ”Activation” and ”Bits per

Kernel”, are the three parameters of the KernelCanvas, as described in Chapter 3.

The last parameter, called ”Bits per Ram”, correponds to the number of bits enter-

ing each RAM unit on the WiSARD network. The number of input bits entering the

RAM does not need to be set as it is equal to the numbers of ”Kernels” multiplied

by ”Bits per Kernel”. It is also not necessary to define the number of classes as

the application dynamically creates new discriminators when required. When the

model is created its name appears inside the list on the initial screen. Clicking on

the name of a model shows the main interface, where patterns may be entered for

either training or classification.

Initially the model does contain any knowledge and in order to make classifica-

tions it needs to be trained. To train a new pattern, such as the number 4 drawed

in Figure B.2a, its stroke needs to be drawed over the drawing surface and later

the button ”Train” pressed. When this button is pressed, the dialog shown in Fig-

ure B.2b is opened and a new class may be added. In order to create a new class,

the new class name must be typed on the text field and the plus sign clicked. To
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(a) (b)

Figure B.1: Initial interfaces showing (a) the list of models created and (b) the
create new model screen.

train a class that already exists it is only necessary to click on the corresponding

class name.

Classification is achieved similarly, the user draws the input pattern over the

drawing surface but then it must press the button ”Guess”, on bottom of the Main

interface. This will make the application display a dialog similar to that in Fig-

ure B.2c. This dialog shows the class of the corresponding prediction and the confi-

dence of the WiSARD model in parenthesis. If the model guessed correctly, the user

may press the button ”Yes” and the drawing surface will be cleared ant this pattern

will be used to reinforce the model knowledge. If the button ”No” is pressed, the

main interface is shown again and the user may press the button ”Train” and select

the correct class.

These are the main usage instructions of the application. Pressing the Android

back button, however, will also prompt the user if the application should persist the

changes made to the model. If the program receives a positive answer the changes

are persisted, otherwise all modifications are lost. This is usefull an usefull option

if, e.g., the user has trained the model with a wrong pattern and would want to

restore to the previous state.

The application is named SketchReader and is available for free at the Google

Play Store1. It is extremelly probable that this application will remain the same

as currently described, however, plans to release this approach as a library are not

eliminated. Therefore, further improvements and modifications might also appear

in the future.

1Available at: https://play.google.com/store/apps/details?id=com.github.diegofps.sketchreader
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(a) (b) (c)

Figure B.2: Main interfaces containing (a) the canvas where the user may input the
pattern, (b) the dialog to tell the model which class the current pattern belongs and
(c) the model answer to a given pattern.
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