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Abstract

The use of Dynamic Voltage and Frequency Scaling (DVFS) by Energy-
Efficient (EE) computer systems considerably increases the requirements
regarding the design of efficient system clocks. On the one hand, the
operation of a system clock must support the independent operating fre-
quencies of the processor core units, the dynamic migration of the running
processes between the processors core units, and the use of synchroniza-
tion and time interpolation techniques to maintain the accuracy of the
system clock. On the other hand, an efficient system clock has to mini-
mize the overhead of its own operation, aiming at energy efficiency of EE
computer systems.

In this paper, we present the design and evaluation of the RVEC virtual
system clock for the EE Wireless Raspberry Pi (RasPi) platform. In the
RasPi platform, the use of DVFS for reducing the energy consumption
hinders the direct use of the cycle count (CCNT) of the ARM11 processor
core for building an efficient system clock. Therefore, a distinct feature of
RVEC is to obviate this obstacle, such that it can make use of the CCNT
circuit for precise and accurate time measurements, concurrently with
the use of DVFS by the operating system of the ARM11 processor core.
Specifically, this paper presents the design and experimental evaluation of
an implementation of the RVEC virtual system clock in the Linux kernel
of the RasPi platform with DVFS. Our experimental results validate the
RVEC virtual system clock as an efficient system clock for the EE RasPi
platform that runs the Linux operating system.

1 Introduction

In computer systems, system clocks provide the time measurements that
are fundamental to the development and assessment of computer programs.
Similarly, distributed applications, including financial transactions, distributed
databases, and multiplayer games depend on accurate and reliable system clocks.
Conventionally, system clocks guarantee correct and precise time measurements
by using a standard technique based on a time-invariant cycle count, such as the
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Time Stamp Counter (TSC). Recently, Energy-Efficient (EE) computer systems
that use multicore processors with Dynamic Voltage and Frequency Scaling
(DVFS) [1] required some advances in the design of system clocks. Specifically,
a system clock now must support the independent operating frequencies of the
processor core units and the dynamic migration of the running processes between
the processor core units. However, such a design of a system clock also faces
the negative effects of DVFS on its efficiency, which can potentially reduce both
the precision and accuracy of its time measurements.

To counteract the negative effects of DVFS, a system clock frequently main-
tains its accuracy by using a synchronization mechanism, such as NTP [2], the
Flooding Time Synchronization Protocol (FTSP) [3] or the Timing-sync Pro-
tocol for Sensor Networks (TPSN) [4]. In addition, to increase the accuracy of
a system clock, it is also necessary to resort to some complementary technique
that implements a time interpolation method in the operating system. How-
ever, both types of techniques have not yet provided an efficient system clock
with the property of strictly increasing and precise (SIP) time counting 1 [5].
Moreover, the design of an efficient system aiming at energy efficiency of EE
computer systems clock must also minimize the cost of operation of the system
clock.

In this paper, we use the Raspberry Pi [6] (RasPi) computer as a repre-
sentative platform of EE computer systems[]. The RasPi platform is based on
the 32-bit ARM1176JZF-S [7] processor core and is used especially in embed-
ded computing systems [8] and Wireless Sensor Networks (WSNs) [9, 10, 11]
for remote sensing and monitoring applications [12, 13] because of the energy
efficiency of the ARM processors. The sources of the timing events of the RasPi
platform consist of periodic interrupt scheduling and the system time counter
(STC). STC is a free-running counter that operates at 1 MHz, which the Linux
operating system uses to implement a time interpolation technique. However,
the use of DVFS prevents the direct use of the CPU cycle count (CCNT) for
building an efficient system clock to perform the time measurements (Broom-
head et al. [14] report equivalent issue for the x86 architecture cycle counter
(TSC)).

This paper extends the material presented in our previous publication to
the RasPi platform [15] by extending the experimental results of the RVEC SIP
property [5] of both RVEC and the CCNT counter of the ARM11 processor
and presents an evaluation of the impacts of the NTP synchronization on the
system clocks of the RaspPi platform. The contributions of this paper are the
following:

• Development of an RVEC implementation in the Linux kernel of the RasPi
platform;

• Assessment of the SIP property of both RVEC and the ARM CCNT
counter;

1A system clock with the SIP property assures that two consecutive clock readings, T1 and
T2, will return time measurements T2 > T1 for any time interval between the two readings
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• Validation of the RVEC virtual system clock as an efficient system clock
for a computer system that runs Linux;

• Evaluation of the impacts of use of NTP on the system clocks of the RasPi
platform.

The remainder of this paper is organized as follows. Section 2 presents
related work. In Section 3, we describe the organization and integration of
RVEC to protect it from the time drifts that appear in the Linux kernel of the
RasPi computer. In Section 4, we present results of our experimental evaluation
of RVEC and the analysis of NTP synchronization on the RaspPi platform.
Finally, in Section 5, we present our conclusion.

2 Related work

Dutra et al. [5] introduced the original design and implementation of RVEC
in the Intel Xeon processor family with DVFS. The authors also showed that
the nodes of a cluster of computers can remain synchronized globally after each
of the cluster nodes initializes its local RVEC by using a remote synchronization
client-server algorithm.

Veitch et al. [16] developed the RADClock system clock, which is built
on existing system clocks or cycles of time counters such as the TSC. RAD-
Clock provides information on the global time and the absolute global time for
synchronization of computer network nodes. However, RADClock depends on
NTP for periodic resynchronization and also has limited applicability to multi-
core processors because of its implementation method.

Tian et al. [17] presented a global clock that uses the TSC as the base
clock circuit together with a remote clock synchronization algorithm, which is
similar to NTP. Because of the direct use of TSC, such a global clock cannot
work properly with processors that have multiple core units or use DVFS.

Souza et al. [18] proposed an auxiliary synchronization network that uses
a remote pulse generator to ensure that all nodes of a cluster of computers
simultaneously receive the remote clock pulse, which each node uses to update
its local clock without involving the operating system. Although the proposed
solution guarantees a SIP time count, it depends on dedicated hardware and is
not applicable to wireless networks.

With regard to the maintenance of the accuracy of the system clock, the
predominant solution is to run the NTP daemon that periodically resynchronizes
the system clock by using the remote NTP server [19]. However, under a heavy
workload, the execution of the NTP daemon is often delayed, which causes time
drifts in the system clock of up to tens of seconds [20]. Moreover, if consecutive
readings of the system clock are issued within time intervals shorter than tens
of milliseconds the system clock cannot guarantee the SIP property of the time
counting. Hong et al. [21] evaluated the accuracy of the system clock based on
NTP synchronization by using local GPS hardware that provides an absolute
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time reference. The authors reported results that indicate a median error of
2 ms to 5 ms in the system clock by using the standard NTP clients, whereas
the work [20] evaluated the NTP clients that cause over-utilization of the CPU.
By considering the results of both works, we can infer that the use of NTP
synchronization is still less efficient for WSNs in which the stability of wireless
links is not guaranteed and the WSN nodes have lower processing capacity; thus,
the NTP synchronization cannot ensure the SIP property of the time counting
for system clocks used in WSNs.

3 RVEC: A Strictly Increasing and Precise Vir-
tual Clock

Currently, the system clocks of a multicore processor that runs Linux will
receive periodic interrupts from the auxiliary circuits of multiple time-invariant
cycle count that operate at a lower frequency than that of the multicore pro-
cessor. As a result, the time measurements of the system clocks will have lower
precision and its accuracy will be determined by the degree of stability of the
time intervals between the hardware interrupts. In practice, the system clocks
are exposed to other interrupts that occur within variable time intervals, so,
the efficiency of system clocks will depend on the use of a clock synchronization
mechanism, such as NTP or TPSN.

Other complementary solutions for improving the accuracy of system clocks
implement a time interpolation technique in the operating system by using the
cycle count of the faster processor, without guaranteeing the SIP property for the
system clocks. Furthermore, the periodic execution of a synchronization mecha-
nism counteracts the energy efficiency of an EE computing system, whereas the
handling of interrupts increases the overheads of power consumption in battery-
powered embedded systems.

In past work [5], we introduced the RVEC virtual system clock, which we
briefly review next. Assume a running application in a multicore processor
with DVFS. Over the execution time of the application, the passage of time
will evolve accordingly to its execution time intervals, each of which depends
on the operating frequency of the core unit used in the specific time interval.
Therefore, the implementation method of RVEC focuses on tracking each of the
execution time intervals and the accumulated execution time intervals for the
running applications. To this end, RVEC implements a virtual system clock by
using a simple data structure stored in main memory composed of a core unit
cycle count and the elapsed time, as follows. Note that our choice of using the
cycle count of the core units has some significant advantages: the cycle count
operates at the same high frequency of the core unit and generates no interrupts;
moreover, the core unit cycle count is based on an oscillator that is highly stable
and accurate.

The RVEC implementation uses a data structure composed of two fields:
base count and the age time. The base count field stores the last value read
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from the core unit register, which indicates the current number of cycles. The
age time ns field stores the elapsed time between the time of the RVEC creation
up to the time indicated by the base count field, which is the last value read from
the core unit register. This way, the data structure must be updated whenever
the core unit frequency changes. Figure 1 shows the update procedure used by
the implementation of RVEC.

Figure 1: RVEC update procedure when DVFS is used

Figure 2 illustrates the steps of the RVEC update procedure used for an EE
computer system that support DVFS. In the figure, we note that just before the
core unit operating frequency changes, the value of the core unit cycle count
is stored in the base count field, after which the age time ns field is updated.
Specifically, the figure shows the change of the operating frequency of a processor
core from 800 MHz to 400 MHz when the cycle count reaches the value 4. By
using the procedure shown in Figure 1, the RVEC base count and age time ns
fields will be updated to 4 ns and 5 ns, respectively.

Figure 2: The time calculation performed when the operating frequency of a
processor core changes

Figure 3 presents the RVEC read procedure, which is applied to the previous
example of Figure 2. Specifically, at the instant when the core unit cycle count
reaches the value 8, the reading of RVEC will return the value 15 ns. The com-
bination of RVEC data structure with the maintenance and reading procedures
creates a virtual timekeeping mechanism that supports a time count with the
SIP property.

3.1 Implementation of the RVEC in the RasPi platform

The RasPi platform has been used in various sensing projects [12, 13], as
the computing platform for building Wireless Sensor Networks (WSN) [9]. In
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Figure 3: The RVEC reading procedure

fact, the energy efficiency of a computing platform is an important issue for
WSN applications, increasing the attractiveness of using of an embedded device
that can use DVFS to reduce its energy consumption during periods of low
utilization, although the use of DVFS can affect some of the circuits used by
the system clock. In this regard, our Linux implementation of RVEC in the
RasPi platform introduces an efficient solution that enables the use of both the
ARM processor cycle count- namely, the Cycle Count Register (CCNT) [22]-
and DVFS for energy-efficient WSN applications.

To work properly, we integrated RVEC into the Linux kernel boot process.
For instance, in the x86 platform, the core unit running the boot process is
the same one that starts the operating system kernel and performs the initial
configuration of RVEC [5]. In contrast, in the RasPi platform, the GPU starts
and executes most of the boot process, rather than the core unit.

The initialization process of the RasPi platform consists of four stages, as
follows. First, the VideoCore GPU starts the execution of the first-stage boot-
loader that is stored in the ROM of the BCM2835 SoC. After, the first-stage
bootloader reads the SD card and transfers the second-stage bootloader (boot-
code.bin) from the SD card to its L2 cache. Next, the execution of the second-
stage bootloader enables the SoC DRAM and loads start.elf- i.e., the third-stage
bootloader- from the SD card into the DRAM, where start.elf is also the GPU
firmware. start.elf then splits the DRAM space between the GPU and the ARM
core through the the use of the VideoCore GPU MMU (Memory Management
Unit). After that, start.elf loads kernel.img, which is the binary file that con-
tains the Linux kernel, into the Raspi platform and sends a reset signal to the
ARM processor core. Finally, the ARM1176JZF-S processor core executes the
kernel.img thereby loading the operating system and starting the RVEC initial-
ization procedure.

The ARM1176JZF-S processor core includes the CP15 system control copro-
cessor that supplies the Cycle Count Register (CCNT), which is a CPU cycle
count equivalent to the TSC in the x86 architecture. However, unlike the TSC,
access to the CCNT register by RVEC is enabled during the initialization pro-
cedure of the kernel. Figure 4 shows how the processor core reaches the CCNT.
The access to the CCNT count is performed by reading the c15 register of the
CP15 coprocessor. The CCNT is always available within the operating system
kernel whereas the MCR instruction is used to read the CCNT, in which the
instruction fields must have the following data.

• Opcode 1 defined as 0;

6



Figure 4: ARM1176JZF-S processor and its Coprocessor CP15

• CRn defined as c15;

• CRm defined as c12;

• Opcode 2 defined as 1.

Afterwards, we addressed the problem of the count limitation of the CCNT’s
32-bit count. Clearly, given a core unit that operates at a 1 GHz frequency,
CCNT overflow occurs every 4.295 s. Thus, the use of CCNT for measuring
time intervals greater than 4.3 s will violate the SIP property of the time count-
ing. Therefore, we expanded the 32-bit CCNT cycle count to a 63-bit CCNT
cycle count by using the macro cnt32 to 63 available in the Linux kernel 2; this
expansion is performed during the Linux task scheduling.

The data structure struct tb shown in Figure 5 corresponds to an imple-
mentation of the conceptual data structure of RVEC by using the base count
and age time ns fields described above. For the correct operation of RVEC, we
must include one instance of the struct tb data structure in both the data
structures that support the processing queue of the core unit (struct rq) and
a task in the operating system (struct task struct).

The data structure struct tb shown in Figure 5 is the implementation of
the conceptual data structure of RVEC described earlier in this section, with
the fields base counter and age time ns. For its correct operation of RVEC, we
must include one instance of the struct tb data structure in the data struc-
ture representing the core processing queue (struct rq) and, also, in the data
structure that represents a task in the operating system (struct task struct).

The final implementation of the RVEC for Linux running in the ARM plat-
form is shown in Figure 6. To simplify the display of RVEC implementation,
the figure shows a hypothetical multiprocessor with two core units. In the fig-
ure, we can see both subsystems of Linux that have been adapted to guarantee

2include/linux/cnt32 to 63.h
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Figure 5: RVEC data structure

the correct operation of RVEC. The double adaptation of the Linux kernel is
necessary to ensure that the changes to the processor frequency will not cause
the effect in cascade of RVEC updates on all running applications tasks in the
processor core. Of note, this implementation of the RVEC technique allows dif-
ferent running applications tasks in the RasPi platform, each of which can check
its associated RVECs through the system call clock gettime() [23] by requiring
only that each of the applications tasks use the clock identifier CLOCK RVEC
as the input parameter.

Figure 6: Overview of the RVECs core unit and RVECs application task

To enable the proper operation of RVEC, the necessary adaptations to
the Linux DVFS drive are shown in Figure 7. The changes were performed
in the bcm2835-cpufreq device driver 3 developed for the ARM11 family of
processors, which includes the ARM1176JZF-S processor of the RasPi plat-
form. The original function bcm2835 cpufreq set clock()used to change the
operating frequency of the processor core was extended to include two new
functions- namely, rvec cpu freq change pre() and rvec cpu freq change pos().
The rvec cpu freq change pre() function for RVEC works on the previous change
(change pre) configuration of the operating frequency, which occurs in the man-
agement subsystem of the core unit running the update RVEC procedure. After
changing the operating frequency of the processor core, the function rve cpu freq change pos()
adds to the current sum of elapsed times the time spent using the current fre-
quency, since the beginning of the execution of the rvec cpu freq change pre()
function, after which the current value of core unit CCNT register is stored in
base count.

3./drivers/cpufreq/bcm2835-cpufreq.c
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Figure 7: Modifications of the bcm2835-cpufreq driver used by RVEC

4 Experimental Evaluation

In this section, we present an experimental evaluation of the RVEC virtual
system clock for the RasPi platform. First, we assess the impact of using NTP
on the time synchronization of a WSN node based on the Wi-Fi RasPi platform,
followed by an evaluation of the efficiency of the RVEC-based timekeeping tech-
nique. Table 1 summarizes the characteristics of our experimental platform. All
results have a confidence interval of 99.9% for the sample mean.

Table 1: The RasPi Platform - Components

Component Description
Raspberry Pi Model B+

Processor ARM1176JZF-S
Default ClockSource STC (1 MHz)

Linux 3.2.27+

4.1 On using the NTP synchronization of the WiFi RasPi
platform

In computer systems, the system clock usually maintains its accuracy through
periodic synchronization with an absolute time reference, such as the NTP. How-
ever, in heavily loaded computer systems, NTP-based synchronization cannot
run frequently enough to compensate for the time drifts of the system clocks,
which in turn reduces the accuracy of the time counting. In practice, even
for a lightly loaded computer system, time adjustments based on the NTP can
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advance the local system clock far enough that the deadline of a running appli-
cation becomes compromised, as we will show next.

We collected the experimental results from the corrections performed by
the NTP daemon on the system clock for three distinct computing platforms: a
wired desktop computer, a wired RasPi platform, and a wireless RasPi platform
using the WPi dongle. For each of the three computing platforms, we evaluated
three distinct time intervals between the NTP queries. In the first experiment,
we executed the NTP queries continuously with no time interval between the
queries. In the next two experiments, we inserted intervals of 10 s and 600 s
between the NTP queries. We performed each of the experiments 200 times,
each of which sent 20 queries to the NTP server. The computing platform
was lightly loaded by using minimal system services, one NTP client and a
monitoring application. We also discarded the execution of the experiment in
which the time interval between two successive NTP queries did not obey the
limit set to the NTP query rate because of some network failure. Note that
a loaded computer system can further degrade the accuracy of a local system
clock because the hardware of a cycle counter issues interruptions that can be
missed.

Table 2: ∆ Statistics of the NTP updates to a Local System Clock
Platform Time Interval (s) µ (ms) σ (ms)

Intel i7-870 Ethernet 0 s 0.503 0.112
Intel i7-870 Ethernet 10 s 0.660 0.235
Intel i7-870 Ethernet 600 s 10.169 0.651

Raspberry Pi Ethernet 0 s 0.640 0.415
Raspberry Pi Ethernet 10 s 0.708 0.625
Raspberry Pi Ethernet 600 s 20.348 4.232

Raspberry Pi WiFi 0 s 1.486 1.019
Raspberry Pi WiFi 10 s 2.042 3.995
Raspberry Pi WiFi 600 s 29.174 25.137

Table 2 shows the results of the nine experiments. The first column identifies
the computing platform, the second column shows the time interval between
the NTP queries, and the third column presents the average time adjustment
that the NTP required of the local clock. The last column shows the standard
deviation of the time measurements.

The first experiment creates an ideal case for the NTP service, which runs
continuously in a lightly loaded computer system. In this ideal case, the table
reveals that a running application will be unable to respond to the alerts that
occur within time intervals shorter than 1 ms because the NTP service requires
1 ms to perform only two consecutive updates to the system clock of a wired
desktop computer.

The results of Table 2 contrast with the execution of the NTP service whether
performed by a desktop computer or the RasPi platform. Although both com-
puting platforms can reach the NTP server over the Ethernet connection, the
RasPi platform compared with the desktop computer, performed updates of
greater time length to its local clock within the same time interval between
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NTP queries.
Furthermore, the use of a Wi-Fi connection between the RasPi platform and

the NTP server requires a higher synchronization rate of NTP updates to the
local system clock. The Wi-Fi communication of the RasPi platform increased
the average update time from 0.708 ms to 2.042 ms for the time interval of
10 s between queries with a standard deviation 6.4 times greater. Moreover, in
the case of a time interval of 600 s between queries, the average update time of
29.174 ms is 43.38% bigger, and the standard deviation is 5.94 times larger.

Considering the above results, which confirm the observations we found in
previous work [24], we expect that a conventional approach to the design of
a WSN composed of nodes based on the RasPi platform that uses NTP for
the synchronization of the system clocks will significantly limit the accuracy of
the time measurements used by the distributed applications. In fact, Corbett et
al. [25] presents Spanner, a globally-distributed database based on an implemen-
tation of TrueTime API that keeps clock uncertainty small at less than 10 ms
by using GPS and atomic clocks. The authors showed that Spanner supports
transaction semantics with reduced overheads by enforcing tighter bounds on
the clock uncertainty.

4.2 Evaluation of the SIP property of RVEC

An evaluation of the RVEC SIP property must first experimentally confirm
the adherence of CCNT to the SIP property. To this end, we built a microbench-
mark composed of a block of 12 operations within a loop of 400 iterations, where
each of the operations performed an arithmetic sum. The experiment consisted
of running the microbenchmark up to 100 times and using the MCR instruction
to read the value of the cycle count stored in the CCNT register that was used
to infer the microbenchmark runtime.

4.2.1 Assessing the SIP property of the CCNT cycle count

As we previously discussed, CCNT is a 32-bit cycle count register that op-
erates at the same frequency as the processor core and provides time measure-
ments with greater accuracy than those of conventional system clocks. However,
CCNT can be used as a time base for the RVEC solution only if CCNT is ad-
herent to the SIP property, as described in Section 1.

Figure 8 shows one of the samples of the CCNT’s experimental evaluation
described in Section 4.2 and is used to validate the CCNT SIP property. As
seen in the figure, the execution of the microbenchmark did not violate the SIP
property. The experimental evaluation of the CCNT revealed an average run
time of 361.91 ms with a standard deviation of 18.33 ms and the processor
frequency set at 800 MHz. The coefficient of variation for the experiments was
0.051, which provides a preliminary indication of the stability of the CCNT.
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Figure 8: Assessing the SIP property of CCNT

Therefore, based on these results, we concluded that the CCNT is adherent to
the SIP property over the time length of all experiments that were performed.

Figure 9: Assessing the overflow of CCNT count

However, we note that the CCNT is SIP adherent under the limited condition
provided by the short duration of each of the experiments. Specifically, the
CCNT is a 32-bit register, so an overflow will occur when it is used for measuring
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intervals greater than 5 s, as shown in Figure 9. In this figure, the average
duration of each of the iterations was 255.372 ms, thus causing an overflow of
the CCNT count after the execution of every 20 iterations. In other words, these
results confirm the limitation of directly using the 32-bit CCNT for the time
measurements of running applications in the RasPi platform. As we reported in
Section 3.1, the Linux OS provides a C macro to expand the CCNT count from
32-bit to 63-bit, which we used in building the RVEC virtual system clock.

4.2.2 Assessing the SIP property of the RVEC

We collected the following results during the experimental evaluation of the
RVEC virtual system clock. Figure 10 shows an execution sample of the exper-
iments we performed to evaluate the RVEC SIP property. For this evaluation,
we repeated the same experiments used for the evaluation of the CCNT. Specifi-
cally, we ran the same microbenchmark 100 times. The evaluation of the RVEC
SIP property produced an average run time of 372.88 µs with a standard devi-
ation 20.02 µs for the processor frequency fixed at 800 MHz. The coefficient of
variation for the experiments was 0.054, which gives us a preliminary indication
of the stability of the RVEC implementation; therefore, RVEC is adherent to
the SIP property. Moreover, it is important to note that the increase in the
number of instructions required to gain access to RVEC is responsible for the
increased coefficient of variation compared with CCNT.

Figure 10: Assessing the SIP property of RVEC

To evaluate the use of RVEC for measuring long periods of time, we submit-
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ted RVEC to a loop of 100 iterations, each of which has an average runtime of
1.108 s. The results are shown in Figure 11. Clearly, the use of RVEC solved
the existing overflow problem that occurs in the 32-bit CCNT hardware, as this
figure shows.

Figure 11: Assessing the RVEC on using CCNT for long periods of time

Figure 12 presents the evaluation of RVEC SIP property when using DVFS
for changing the processor frequency. We used a microbenchmark composed of a
testing task and a frequency change task. The microbenchmark starts with the
execution of the frequency change task that releases the execution of the testing
task by calling sem post(&OkExec) and then waits for a call to sem wait(&frqS),
which will change the core operating frequency. Next, the microbenchmark (post
fork) testing tasks continues to wait in a call to sem wait(&OkExec) to ensure
that the creation of the frequency change task occurs before the execution of the
testing task. The microbenchmark performed an evaluation of a loop with 5, 000
arithmetic instructions, which was divided into two blocks of 2, 500 instructions;
at the end of the first block, the testing task calls sem post(&frqS) and releases
the frequency change task. As a result, the operating frequency decreases from
800 MHz to 400 MHz when executing the second loop concurrently. In the
figure, the blue colour represents the RVEC time measurements, whereas the red
colour represents those of the CCNT. The figure shows, as we could expect, that
the RVEC curve indicates an increase in the average execution time, whereas
the associated curve of CCNT remains unchanged.

Moreover, in the figure, the red curve (CCNT) has three different stages of
progression: the first stage is the iteration interval (0..2500), the second stage
is in the interval range [2500..2650), and the third stage is in the interval range
[2650..5000). The rates of the first and third stages of progression are equal,
whereas the rate of progression of the second stage is influenced by the interfer-
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Figure 12: Assessing the SIP property of both RVEC and CCNT by changing
both the operating frequency and the concurrent task for execution

ence (concurrent execution) of the frequency change task with the testing task
running the second part of the microbenchmark. This hypothesis is based on
the method by which we implemented the support to RVEC in the DVFS device
driver, which is shown in Figure 7 of Section 3.1. Furthermore, in Figure 7, it is
still possible to observe that RVEC (blue curve) shows only two distinct stages
of progression with two distinctive rates, despite the reduced time measurements
during the [2500..2650) interval.

To confirm the hypothesis we used to explain the behaviour of the previous
experiment, we developed a new experiment in which the change in the operating
frequency occurs within the same task that will subsequently perform the second
loop, instead of using another task. Figure 13 shows the RVEC behaviour when
using the same 5, 000 instructions from the previous experiment; it is possible
to note the presence of only two progression rates of execution by using CCNT
(red colour) and RVEC (blue colour). Therefore, based on the results shown
in Figure 13 the presence of three different stages of progression for CCNT in
Figure 12 effectively demonstrates the result of the concurrent execution of both
the testing task and frequency change task of the microbenchmark.

Figure 12 and Figure 13 show the RVEC and CCNT curves, respectively.
We note that the curves exhibit a small divergence that increases progressively
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Figure 13: The SIP property of RVEC and CCNT when only the operating
frequency changes

along the experiments, which can be explained by the different access costs of
RVEC and CCNT.

4.3 The Access Cost of the RVEC virtual system clock

We evaluated the access cost of RVEC by using the CCNT cycle count, which
provides the best available accuracy for a cycle count within the RasPi platform.
In this way, we could also assess CCNT’s own access cost and the access costs
of the MONOTONIC and REALTIME system clocks of Linux running in the
RasPi platform. We used a microbenchmark that consists of a block of 2, 400
arithmetic instructions within a loop, in which access to the system clock being
evaluated will occur after the execution of the first 1, 200 arithmetic instructions
in the loop. This evaluation loop was executed 1, 000 times, in which one of the
four system clocks- namely, CCNT, RVEC, MONOTONIC, and REALTIME –
in turn, was evaluated for each of the loop iterations by using the system call
clock gettime() for the last three system clocks.

Figure 14 presents the five experimental configurations used by the mi-
crobenchmark described above. In Scenario 1, no query is performed to any
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Figure 14: Evaluation of the Configuration Overhead

of the system clocks that served as the reference of the least access cost for
comparison purposes. Configurations 2, 3, 4, and 5 evaluate the cost of access
to CCNT, RVEC, MONOTONIC, and REALTIME, respectively, where each of
the configurations was evaluated 100 times.

Table 3: Execution Time x System Clock (800 MHz)

System Mean Std. Dev. Overhead Overhead
Clock (µs) (µs) (µs) (%)
CCNT 171.687 6.729 1.333 0.78
RVEC 174.502 7.419 4.148 2.43

MONOTONIC 173.107 6.918 2.753 1.62
REALTIME 173.013 6.891 2.659 1.56

Table 3 shows the results of our experimental evaluation of the RasPi plat-
form running at 800 MHz. For the reference configuration, the average access
time was 170.354 µs, with standard deviation of 6.507 µs. CCNT, RVEC,
MONOTONIC and REALTIME had an average overhead of 1.333 µs (0.78%),
4.148 µs (2.43%), 2.753 µs (1.62%), and 2.659 µs (1.56%), respectively. Com-
pared with MONOTONIC, the small difference that is favourable to REAL-
TIME is explained by the additional validations performed by the MONO-
TONIC system clock.

We repeated the same experiments by using the RasPi platform but changing
its operating frequency to 400 MHz. In this case, as Table 4 shows, the average
access time was 341.679 µs for the reference configuration, whereas CCNT,
RVEC, MONOTONIC, and REALTIME obtained average execution overhead
of 2.702 µs (0.79%), 8.002 µs (2.34%), 5.188 µs (1.52%) and 5.125 µs (1.50%),
respectively.

Overall, the foregoing results demonstrate that the overheads of the RVECs
access costs are compatible with those of current system clocks (MONOTONIC
and REALTIME) for the RasPi platform. In addition, these current system
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Table 4: Execution Time x System Clock (400 MHz)

System Mean Std. Dev. Overhead Overhead
Clock (µs) (µs) (µs) (%)
CCNT 344.381 19.831 2.702 0.79
RVEC 349.680 20.448 8.002 2.34

MONOTONIC 346.867 19.187 5.188 1.52
REALTIME 346.804 19.720 5.125 1.50

clocks of the RasPi platform neither guarantee the SIP property nor support
the use of DVFS whereas RVEC does.

4.4 Evaluation of the Time Count Precision of RVEC

In this section, we perform an evaluation of the precision of the Linux system
clocks for the RasPi platform by using the microbenchmark with configuration 1,
as described in Section 4.3. Now, however, the block of 2, 400 arithmetic instruc-
tions is measured by using the CCNT, the Linux system clocks (MONOTONIC
and REALTIME), and the RVEC implementation for the RasPi platform. Our
experimental evaluation consisted of repeating the experiment of the previous
section 100 times.

Table 5: Time Precision x System Clock (800 MHz)

System Mean Std. Dev.
Clock (µs) (µs)
CCNT 170.439 6.554
RVEC 172.820 7.248

MONOTONIC 172.047 7.086
REALTIME 171.459 7.140

Table 5 shows the results of the time precision of the different system clocks.
The results were collected for the RasPi platform operating at a frequency
of 800 MHz. For the CCNT, the average execution time of the block was
170.439 µs with a standard deviation of 6.554 µs, which represents a coeffi-
cient of variation of 0.038. In the case of RVEC, the average execution time
was 172.820 µs with standard deviation of 7.248 µs with coefficient of variation
of 0.042, whereas the MONOTONIC and REALTIME system clocks measured
172.047 µs and 171.459 µs with coefficients of variation of 0.041 and 0.042,
respectively.

18



4.5 Discussion of results

The results of the experimental evaluation presented above confirmed the sta-
bility of the CCNT cycle counter of the ARM1176JZF-S processor. The results
also provide preliminary evidence, although significant, of the stability of the
RVEC implementation in the RasPi platform. The results presented in Sec-
tion 4.1 demonstrate that the NTP synchronization, which is predominantly
used by computer systems in wired networks, reduces the efficiency of system
clocks by reducing their accuracy and precision; ultimately, the current system
clocks of the RasPi platform cannot guarantee the property of strictly increasing
and precise (SIP) time counting.

In the case of wireless networks, NTP synchronization further reduces the
efficiency of system clocks, especially for wireless sensor networks that use the
RasPi platform as the WSN node. In fact, the experiments presented in Sec-
tion 4.4 show that both CCNT (0.038) and RVEC (0.042) have coefficients of
variation less than 0.05. Furthermore, in Section 4.2, the results also show that
the RVEC virtual system clock is the only system clock that adheres to the SIP
property independently of the length of the time interval that is measured.

5 Conclusion

In this work, we used the ARM1176JZF-S processor cycle counter (CCNT) to
implement and evaluate the efficiency of the RVEC virtual system clock for the
RasPi platform. In contrast to the current system clocks (MONOTONIC and
REALTIME) of the RasPi platform, the RVEC virtual system clock guarantees
the property of strictly increasing and precise (SIP) time counting independently
of the length of time interval being measured.

Our experimental results show that the implementation of RVEC presents
an access cost slightly higher than that of the current system clocks of the RasPi
platform. However, the results also demonstrate that RVEC preserves the SIP
property of time counting even if it is exposed to changes in the operating
frequency of the processor core. Therefore, the RVEC can afford for the RasPi
platform to increase its energy efficiency by making use of DVFS, in contrast to
the current system clocks of the RasPi platform that restrict its use.

Furthermore, our results also indicate that the current system clocks suffer
high overhead by using the NTP synchronization in a WSN node that uses
the RasPi platform, in contrast with the RVEC virtual system clock which
maintains its adherence to the SIP property even if RVEC uses the 32-bit CCNT
register. Future research work will address the limit of stability of RVEC over
larger time intervals and its effects on the energy efficiency of EE computer
platforms considering that RVEC is based on a hardware counter that generates
no interrupts.

Overall, our results confirm that RVEC provides an alternative system clock
with nanosecond resolution for the RasPi platform while maintaining its ac-
cess cost equivalent to that of the other system clocks of the RasPi platform.
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Most importantly, the idea behind RVEC of using a virtual system clock as an
efficient system clock for energy-efficient computer systems fosters the develop-
ment of new techniques for wireless sensor networks, such as an efficient global
synchronization time protocol that uses RVEC as the basic system clock.
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