
REDES ORIENTADAS À INFORMAÇÃO COM ESTRATÉGIAS

PROBABILÍSTICAS ACOPLADAS PARA BUSCA E REPLICAÇÃO

Guilherme de Melo Baptista Domingues

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia de

Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro,

como parte dos requisitos necessários à

obtenção do título de Doutor em Engenharia

de Sistemas e Computação.

Orientadores: Edmundo Alburquerque de

Souza e Silva

Rosa Maria Meri Leão

Daniel Sadoc Menasché

Rio de Janeiro

Outubro de 2015

REDES ORIENTADAS À INFORMAÇÃO COM ESTRATÉGIAS

PROBABILÍSTICAS ACOPLADAS PARA BUSCA E REPLICAÇÃO

Guilherme de Melo Baptista Domingues

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Edmundo Alburquerque de Souza e Silva, Ph.D.

Prof. Daniel Sadoc Menasché, Ph.D.

Prof. Artur Ziviani, Dr.

Prof. Felipe Maia Galvão França, Ph.D.

Prof. Pedro Braconnot Velloso, Dr.

RIO DE JANEIRO, RJ – BRASIL

OUTUBRO DE 2015

Domingues, Guilherme de Melo Baptista

Redes Orientadas à Informação com Estratégias

Probabilísticas Acopladas para Busca e

Replicação/Guilherme de Melo Baptista Domingues.

– Rio de Janeiro: UFRJ/COPPE, 2015.

XII, 64 p.: il.; 29, 7cm.
Orientadores: Edmundo Alburquerque de Souza e Silva

Rosa Maria Meri Leão

Daniel Sadoc Menasché

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2015.

Referências Bibliográficas: p. 58 – 64.

1. Information Centric Networks. 2. Computer

Networks. 3. Reliability Theory. I. Silva, Edmundo

Alburquerque de Souza e et al.. II. Universidade Federal

do Rio de Janeiro, COPPE, Programa de Engenharia de

Sistemas e Computação. III. Título.

iii

À minha família pelo dom da vida

e pelo amparo ao longo desses

anos.

Aos professores, alunos e equipe

do LAND.

iv

Agradecimentos

Agradeço à minha família, pelo apoio e consideração para comigo ao longo de toda

a tese, em especial a meu pai Carlos, à minha mãe Lina e à minha irmã Inês, sem os

quais essa tese não seria possível. Agradeço aos meus orientadores de tese, Professo-

res Edmundo Albuquerque de Souza e Silva, Rosa Maria Meri Leão e Daniel Sadoc

Menasché que contribuíram com uma grandeza difícil de mensurar em palavras, em

seus conhecimentos técnicos científicos e sobretudo em seu acolhimento afetivo, sem

os quais essa tese não teria sdo possível. Agradeço à Carolina por todos os momen-

tos de escuta durante a composição deste trabalho, portadora de um brilhantismo

singular ao prover palavras sábias e de muito conforto sem a qual essa tese não teria

sido possível. Agradeço a todos os professores e alunos do Land com os quais tive

a honra de conviver, bem como do PESC, cabendo um agradecimento especial ao

Gaspare, com quem pude compartilhar toda minha trajetória desde que começamos

nosso doutorado juntos, e que sempre esteve ao meu lado em toda minha jornada,

sem os quais essa tese não seria possível. Por fim, agradeço ao Conselho Nacional

de Desenvolvimento Científico e Tecnológico (CNPq) pelo suporte financeiro, sem o

qual essa tese não teria sido possível.

v

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

REDES ORIENTADAS À INFORMAÇÃO COM ESTRATÉGIAS

PROBABILÍSTICAS ACOPLADAS PARA BUSCA E REPLICAÇÃO

Guilherme de Melo Baptista Domingues

Outubro/2015

Orientadores: Edmundo Alburquerque de Souza e Silva

Rosa Maria Meri Leão

Daniel Sadoc Menasché

Programa: Engenharia de Sistemas e Computação

Redes orientadas à informação estão em evidência atualmente. Essas redes são

responsáveis pela replicação e alocação de conteúdos, que são produzidos em grande

quantidade pelos usuários. Em redes orientadas à informação, os conteúdos se tor-

nam a essência. Desafios de escalabilidade e confiabilidade em cenários de redes

orientadas à conteúdos motivaram o desenho de uma nova arquitetura, bem como

os modelos analíticos e a análise de métricas de desempenho nessa tese.

vi

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

INFORMATION CENTRIC NETWORKS WITH COUPLED PROBABILISTIC

SEARCH AND CACHING POLICIES

Guilherme de Melo Baptista Domingues

October/2015

Advisors: Edmundo Alburquerque de Souza e Silva

Rosa Maria Meri Leão

Daniel Sadoc Menasché

Department: Systems Engineering and Computer Science

Information centric networks are in evidence nowadays. These networks should

replicate and distribute efficiently the content produced by users. In ICNs, named

data is the focus of the network. Scalability and reliability issues in information

centric networks scenario motivated the new architecture design, the corresponding

analytical model and the analysis of performance metrics in this thesis.

vii

Sumário

Lista de Figuras x

Lista de Tabelas xii

1 Introduction 1

2 Information Centric Networks - ICNs 6

2.1 Dona Architecture . 9

2.2 DHT Architectures . 11

2.3 CCN architecture . 13

2.4 ICN Open Issues . 15

3 Proposed ICN Architecture 17

3.1 Random Walks . 19

3.2 ICN: Probabilistic Search and Cache 21

3.3 Thesis ICN Design . 22

4 Local Performance 26

4.1 Reinforced counter mechanism with a single threshold K 27

4.2 Reinforced counter with hysteresis . 31

5 Network Performance 35

5.1 Model 1: Stateless Search . 37

5.2 Model 2: Statefull search . 39

5.3 Networks with Multiple Tiers . 42

5.3.1 Average Delay . 42

5.4 Results . 43

viii

6 Statefull Model Optimization 51

6.1 Optimal Routing Given Placement 52

6.2 Special Case: Large γT . 53

6.3 Special Case: T = 0 . 53

6.4 Results . 54

7 Conclusions 56

Referências Bibliográficas 58

ix

Lista de Figuras

1.1 CDN - Content Distribution Networks 2

1.2 P2P - Peer to Peer Networks . 3

1.3 Content Retrieval - Native IP Network 4

1.4 Information Centric Network . 4

2.1 ICN Design Features . 7

2.2 Coupled ICN Approach . 8

2.3 Decoupled ICN Approach . 8

2.4 DONA Architecture . 10

2.5 Request / Content Flow - DONA . 11

2.6 DHT Proposals . 12

2.7 CCN Architecture . 13

2.8 Request / Content Flow - CCN . 14

3.1 ICN proposed architecture . 18

3.2 Ants . 20

3.3 Exploitation versus Exploration . 22

3.4 RC dynamics . 24

4.1 Request counter and notation. 27

4.2 πup = 0.9, α = β = 1 . 30

4.3 Reinforced counter with hysteresis. 31

4.4 Reinforced counter with hysteresis: state transition diagram. 32

4.5 Cumulative Distribution of the time the content takes to return to the cache 34

4.6 Cumulative Distribution of the time the content takes to remain in cache 34

5.1 (a) 1 Tier Architecture, and (b) 3 Tiers Architecture 44

x

5.2 Probability that a request reaches the publishing area x N 45

5.3 Probability that a request reaches the publishing area x T 45

5.4 Mean time to find a content: very low and low popularity contents . . 46

5.5 Mean time to find a content: medium and high popularity contents . 46

5.6 Probability of not finding a content in a domain: K=1 47

5.7 Probability of not finding a content in a domain: K=6 48

5.8 Mean time of a random walk in a domain: K=1 48

5.9 Mean time of a random walk in a domain: K=6 49

5.10 Fraction of time the content is in the cache 49

5.11 Probability of not finding a content in a domain 50

6.1 Minimum expected delay for each value of πc and Tc. 55

xi

Lista de Tabelas

5.1 Table of notation. 37

xii

Capítulo 1

Introduction

The Internet was initially conceived as an infrastructure for host-to-host communica-

tions, with packets being forwarded along network nodes solely based on destination

host addresses. File transfer, email exchange and remote access comprise examples

of key applications tailored for this infrastructure [1]. Nonetheless, in recent years,

the Internet focus has been changing towards content dissemination (Youtube [2],

Wikipedia [3], Netflix [4], VideoLectures RIO [5]).

As a first attempt to adapt the Internet to a content dissemination network,

overlay networks, such as content distribution networks (CDNs) and peer-to-peer

networks (P2P) have been proposed. A CDN ([6], [7]) is a distributed system

aiming to route content requests to hosts at ISPs close to users at the edge of the

network, in order to minimize the total delay cost experienced by requesters while

offloading custodians (origin servers) at publisher’s networks (see Figure 1.1). A P2P

network ([8], [9]) is a distributed system where peers act as clients and servers (see

Figure 1.2) simultaneously. Peers interested in the same content exchange content

chunks among themselves, in a coordinate fashion.

In CDNs, replicas of popular contents become stored at servers in different In-

ternet service providers (ISPs). Those servers operate as content caches, placed at

the edge of the network. Content distribution policy requires capacity planning by

CDN owners. Users send requests to the CDN, wherein algorithms, operating as

central controllers, redirect the ingress traffic to servers storing the requested con-

tents. Those algorithms need to be aware of all replica distribution across different

ISP servers. Therefore, all policies for traffic exchange between autonomous systems

1

in the Internet must be accounted by these central controllers.

In native P2P networks, the absence of incentive policies for peers to stay in the

swarm, after gathering all content requested, may impose scalability issues [10]. In

case a peer services others in a swarm and this peer leaves the swarm, the overall

service capacity for the content being served by the swarm is impacted. Also, when

a peer leaves a swarm, some content chunks may remain absent so that the content

itself cannot be retrieved entirely by the remaining peers. Hybrid P2P networks try

to enhance delivery performance by considering persistent hosts at the network.

According to [11], global IP traffic will reach a zettabyte era by 2017. Video

will correspond to approximately 80 to 90 percentage of global consumer traffic. In

CDNs and P2P networks, it is not easy to optimize content delivery performance

at large scale scenarios. For overlay networks, content distribution depend solely

on the information present at the overlay topology, regardless of information at the

underlying network. This has contributed to many inefficiencies [12].

Figura 1.1: CDN - Content Distribution Networks

2

Figura 1.2: P2P - Peer to Peer Networks

For instance, content replicas may be stored in caches at network level, enhancing

performance for content retrieval. In Figure 1.3, a requested content gets stored at

the publisher network, at an origin server. A connection is established between user

A (requester) and the origin server (destination) from where content is retrieved by

user A. Due to previous requests by users B and C to the same origin server, in case

A could get supplied by caches within network nodes close to B and C, the total

cost for A to receive the content would be expected to be reduced.

Therefore. a new network design for large scale scenarios, accounting for the

underlying network topology and information flow, towards the improvement of

content delivery efficiency and content availability has emerged [13], [14]. The re-

search community has addressed a paradigm shift, wherein content delivery becomes

a native network feature: a paradigm shift towards a information centric network

(ICN). The key idea behind ICNs comes from the evidence that large amounts of

content, once produced, become replicated many times without the network getting

involved in setting the distribution policies. In ICNs, each content is associated to

a name, what allows contents to be searched, cached and replicated according to

native network layer policies (see Figure 1.4).

In ICNs, once a request for a content is generated it flows towards the custodian

through the content (or cache) routers. Each (content) router has a cache that

3

 Connection
User A

User B

User C

 Origin
 Server

Figura 1.3: Content Retrieval - Native IP Network

Figura 1.4: Information Centric Network

can store the contents in addition to the custodians. Therefore, a request that

finds the content stored in a router does not have to access the custodian. This

potentially alleviates the load at the custodians, reduces the delay to retrieve the

content and the overall traffic in the network. The efficient management of the

distributed storage resources in the network coupled with the routing of requests for

information retrieval are issues of fundamental importance [15] in ICNs. However,

there is an urge to study search and placement problems under a holistic perspective.

4

Our contributions in this work rely on a new architecture to circumvent ICN

open challenges [16] for architecture design, regarding request forwarding and con-

tent placement in network nodes, under a self-adaptive architecture to cope with

environment changes. These architecture design contributions are depicted at the

end of Chapter 2. We provide analytical models for the entire architecture. Our

quantitative analysis contributes to the evaluation of the interplay of (i) random

walks (RW) as the basis for our content search policy, exploring the vicinity of

caches the requests cross while being delivered to custodians, and (ii) reinforced

counters (RC), as a set of independent time counters as the basis for our content

placement policy. Through our analytical models, performance metrics trade-offs

can be evaluated. Optimal values for the performance metrics can be obtained

when constraints such as maximum cache size and maximum cache writing rates are

considered.

In Chapter 2 of this thesis, we provide more details about information centric

networks (ICNs). We describe key architectures in the literature and open issues

regarding ICNs. In Chapter 3 we describe the ICN architecture proposed in this

thesis. In Chapter 4 we analyze local cache performance. Chapters 5 and 6 pre-

sent mathematical models for the architecture with respective analysis. Finally, in

Chapter 7, we present our conclusions.

5

Capítulo 2

Information Centric Networks -

ICNs

The introduction of scalable content distribution applications over the internet pac-

ket switched architecture has driven a research effort to investigate a clean-slate

architectural approach for the Internet. Information centric networks (ICNs) have

been proposed as a new approach for the Future Internet [15], [17], [18]. The

named data scheme adopted impacts the routing policy. Each content has a unique

name. Nonetheless, names can be aggregated by common prefixes, related to the

publisher that issued the content to the network.

A set of network entities routes the content requests up to a replica of the desired

content stored at the network. This replica can be stored either in custodians or at

caches distributed along the network. The request routing policy guides a request

within the network, such that a request ends up finding a replica of the searched

content. In case the replica reaches a custodian, cache misses should have occurred.

Otherwise, we say that a cache hit takes place, offloading the custodians.

The content routing policy guides a content within the network. In case of a

cache miss, content is send from custodians to users. In case of a cache hit, content

is send directly from caches to users. Request routing is related to content routing

in the sense that request routing aims to balance the load for a given content, among

several repositories this content is stored at [19], [20]. Figure 2.1 shows some of

the most important ICN features.

6

Figura 2.1: ICN Design Features

Request Matching: Users issue requests to the network. Those requests are

routed until a matching between a request and a corresponding stored content takes

place within the network;

Content Publishing: Each content is published into the network without any

explicit destination address, but structured according to a name criteria;

Caching and Replication: Caching can be potentially implemented by all rou-

ters, which turns caching pervasive along the entire network. Caching is done on

the network level.

Transport Path: Content can be send to users following a reverse path left as a

trail by requests forwarded to contents or throughout an IP network.

In coupled ICNs (see Figure 2.2), the nodes in charge for content routing and

request routing are the same. If separate networks are used instead, request routing

gets decoupled from content routing (see Figure 2.3). In ICNs, content is able to

be directly forwarded to requesters from the network itself. ICNs design targets

keeping up content delivery performance in light of future scalability, robustness

7

and reliability issues.

Figura 2.2: Coupled ICN Approach

Figura 2.3: Decoupled ICN Approach

8

In ICNs, the network acquires full potential for registering all requests and con-

tent flows. This allows the design of optimal strategies for massive content distri-

bution. A match between requests and content itself takes place at network level.

Transparent caching acts on behalf of requesters and content caching policies do not

require centralized algorithms, such as in CDNs. Local policies can enforce caching

within network nodes.

Both content requesters and publishers become unaware of cached content, as

this knowledge remains within the network. Therefore, transparent caching policy

is adopted. Users can retrieve content from storage locations geographically nearby.

Declining costs for memory opens the door for all routers being deployed with caches,

capable of directly forwarding contents to users. A pervasive storage strategy aims to

decrease transmission traffic cost, increasing the speed of response. Named contents

allow cached content to be easily retrieved, compared to costly techniques like deep

packet inspection [21], [22], in case named content is not considered.

2.1 Dona Architecture

Data Oriented Network Architecture (DONA [23]) architecture was one of the first

complete ICN architectures attempts. Instead of URLs binding content names to

specific locations through DNS, persistent flat names were considered instead. With

persistent names, contents were able to be cached and replicated at network level,

being requested by names from users, increasing information availability.

Names in DONA are associated with the corresponding publisher, with unique

identification across the entire network. A name resolution system operates on top of

an IP network. DONA architecture comprises a set of interconnected nodes named

resolution handlers (RH), with at least one RH per autonomous system (AS) (see

Figure 2.4). A RH in a AS gets responsible for registering published contents at

this AS. The set of interconnected RHs composes a name resolution system (NRS),

wherein a mechanism maps flat names to IP locators.

After a content has been published in a AS, the corresponding RH receiving

the publishing registration at the AS propagates this registration to the RHs in its

9

parent and peering AS. Those RHs store a pointer to the origin RH, for a registered

published content. Content registrations get replicated across the network, up to the

RH at tier-1 AS. Henceforth, the RH at tier-1 AS becomes aware of all published

contents registrations. Content requesters are assumed to learn a content name

through some trusted external mechanism (e.g., a search engine). Requests are

send to local RHs and forwarded by the NRS towards a content storage location,

according to the pointers stored at the NRS.

RH

RH

RH

RH

RH

RH

AS 1 AS 2

AS 4
AS 3

AS 5

Figura 2.4: DONA Architecture

Content may be send to a requester throughout the underlying IP network,

under a decoupled policy, or following the path of a request since the origin to the

destination, in a reverse order. Caching may be supported by the RHs. Each RH

is allowed to decide if a content should be cached at the AS the RH belongs to. To

this aim, an RH is able to replace the IP source address of a request. In this case,

this RH will be considered the origin of a request from the destination perspective.

Content will be first delivered to the origin RH, before being send to a requester.

The new content location is announced to RHs at parent and peering AS.

Figure 2.5 shows a searched content published at AS4, being cached at AS2

10

and delivered to AS1. Content request flow through RHs, reaching AS4 from AS1.

DONA requires name resolution state at RHs increase, as the tier level increases.

Therefore, the top-level resolution servers must store huge amounts of data, where

information about all published content is replicated entirely at the top level RHs.

RH

RH

RH

RH

RH

RH

AS 1 AS 2

AS 4
AS 3

AS 5

Figura 2.5: Request / Content Flow - DONA

2.2 DHT Architectures

The Publish Subscribe Internet Routing Paradigm architecture (PSIRP [24]/ PUR-

SUIT project [25] architecture and Netinf [26]/ SAIL project [27] are proposals that

handle name resolution by a set of routing nodes (RNs), disposed along a network

implemented as an hierarchical DHT [28].

When a publisher issues a request to a local RN, this request is routed by the

DHT to a destination RN, responsible for the corresponding DHT scope of the re-

quest. All requests for the same content end up being sent to the same destination

RN. A match between a request and a published content takes place at the des-

tination RN, through locators. In PSIRP, after the match, a topology manager

11

(TM) node gets instructed to establish a connection between the publisher and the

subscriber for content delivery.

Content is sent across a set of forwarding nodes (FNs) using the bloom filter

technique. In Netinf, contents are routed to subscribers through FN’s belonging

to an IP network. In both PSIRP and NetInf, caching is supported by FNs, with

FNs being able to advertise cached information to RNs, in order to enhance search

efficiency. In Netinf, local NRS can be deployed along the hierarchy. In this case,

at the top level, a global NRS (GRS) [29], [30] is responsible for interconnecting

the local NRS.

Figure 2.6 illustrates the baselines of DHT proposals. In hierarchical DHTs, a

flexible approach able to capture the dynamic routing relationships between AS’s,

is still missing with routing efficiency for this strategy presenting several drawbacks

[31]. Also, bloom filters do not scale to Internet sizes and presents higher number

of false positives for content delivery, as more links are added to the network [32].

 DHT Structure

Plubished
Content

User

Locators

Foward Paths

Request

Figura 2.6: DHT Proposals

12

2.3 CCN architecture

CCN [33] architecture handles name resolution through content routing tables across

routers. Names in CCN are hierarchical and may be similar to URLs, able to be

aggregated under prefixes. Requests flows across content routers (CR), each CR

maintaining three data structures: the Forwarding Information Base (FIB), the

Pending Interest Table (PIT) and the Content Store (CS). Figure 2.7 illustrates this

proposal with names aggregated according to second level DNS names.

ucla.edu

ufrj.br

Core

umass.edu

Figura 2.7: CCN Architecture

The FIB comprises name routing table mapping requests to an output inter-

face(s). Requests are know as interests. The PIT stores pending interests and the

CS operates as a cache for contents that have traversed the CR when sent to users.

When an interest reaches a CR, the CR checks whether the prefix of the interest

matches a content in its cache. In case a match is verified, content is sent to the

requester. Otherwise, the CR checks if the interest is already stored in the PIT.

If not, the interest is routed to a neighbor CR according to the routing table at

the FIB. The check in the PIT before routing an interest avoids a CR to resend an

interest already sent, but not yet served.

13

CCN is a coupled ICN approach: content requests and content data are routed

by CRs. The CRs in a domain exchange prefixes through OSPF. A CR may end up

with multiple interfaces in its FIB for the same prefix. BGP is proposed to announce

prefixes across different domains. While requests are routed towards content storage

locations they leave a trail along the CRs they have crossed to reach a content.

Content follows the entire trail left by a request, when forwarded to a requester. In

CCN, as content follows a trail, this trail is removed from the network. To enhance

the discovery of cached contents, Rosensweig et al. [34] allows trails for previously

downloaded contents to be preserved for some extra time, when content traverses

the network.

Figure 2.8 shows contents being delivered from a custodian in ucla.edu to a host

in ufrj.br, following the trail left by a request path, despite the same content being

retrieved is stored in a closer AS. This is a result of forwarding request tables being

composed by aggregated prefixes instead of full content names.

ucla.edu

cs.ucla.edu

ufrj.br
Content

Bread
Crumb

umass.edu

Core

uff.br
Searched
Content

Request

Figura 2.8: Request / Content Flow - CCN

14

2.4 ICN Open Issues

A set of open issues remains unsolved for ICNs [16]. In this work, we focus the chal-

lenges related to name resolution and content placement policies. Name resolution

is responsible for translating content names to content storage locations. Content

placement is responsible for establish how content is cached within network nodes so

that the mean time to retrieve a searched content and the total load reaching custo-

dians at publisher’s networks is minimized. Our architectural proposal is described

in chapter 3 and mathematical models in chapters 4 and 5.

A first strategy for name resolution considered so far in literature comprises a

Pointer Resolution System (PRS). Whenever a PRS is deployed, requests are forwar-

ded across a resolution network, upwards nodes storing pointer locators. At those

nodes, a mapping between content names and content storage nodes is handled. Af-

ter this mapping, requests are then forwarded to the content storage nodes. DONA

and DHT architectures adopt PRS. In case PRS is adopted, how to set fast lookup

policies for mapping names of data objects to content locations remains as an open

challenge. In DONA, the top-level resolution servers are requested to retain the

knowledge for all stored copies at the entire network. In DHT, this knowledge is

distributed. Those architectures rely on topologies, structured according to a given

geometry to route requests. The malfunctioning of a node may disrupt the entire

structure behavior. In our proposal we do not rely on global knowledge at resolution

servers for all stored copies at the entire network, neither geometry topologies to

route requests.

A second strategy considered so far in literature comprises content routing tables

(CRT). Whenever CRT are deployed, a direct path is established by routing tables

towards content storage locations. CCN adopts CRT. Under CRT, the routing

algorithm used for this approach heavily depends on the properties of the namespace.

In case CRT is adopted, the main size of the content routing tables tends to get very

huge. This size becomes a main concern. Name aggregation is a natural solution

to be deployed, so that routing table sizes become feasible. Nevertheless, due to

name aggregation, only name prefixes are maintained at the routing tables. If name

aggregation is deployed, routing tables become unaware of cached replica identified

by its full name.

15

For both PRS and CRT strategies, the main challenges remaining are: (i) How

to fast update location of data objects expecting to change frequently, (ii) How in-

formation about replicas cached and evicted is broadcasted to the entire network,

without imposing considerable communication costs. We do not rely on content

routing tables to forward requests and contents, neither on pointer locators stored

within the network to map requests issued to the network to content storage loca-

tions. Our proposal seeks to explore the vicinity of cache routers (exploration), the

requests issued to the network reaches, as they flow to custodian networks wherein

a copy of the desired content can be encountered (exploitation). Exploration versus

exploitation trade-offs for ICN designs are discussed in [35]. Flooding is used as

the exploratiom approach in [36]. In our proposal, we use random walks instead.

The caching approach used in the vast majority of existing ICN proposals is the

Transparent En-Route Caching (TERC) [1] by which all ICN routers in the network

participate in the process of content caching in conjunction with their primitive

function of relaying the information objects downstream. This naive method of

caching, however, has been subject of many controversies and criticisms [37], [38],

[39]. To reduce caching redundancy, more complex varieties of this paradigm, such as

probabilistic in network caching (ProbCache) [40]. We target opportunistic caching

using reinforced counters, with a distinct time counter, for eviction purposes, for

each cached content. Those counters and their dynamics are described in the next

chapter.

Keeping track of up to date cached content at network level, is an open challenge

as it heavily impacts scalability. Our strategy does not cope with broadcasting

cache states to update a name resolution system. As caching takes place inside the

network, different traffic compete for the same caching space. Our proposal presents

more flexibility to adjust parameters for caching purposes, compared to others in

the literature. We consider hysteresis, also described in the next chapter, for each

reinforced counter. Hysteresis has not yet been considered in proposals dealing with

a distinct time counter, for eviction purposes, for each cached content.

16

Capítulo 3

Proposed ICN Architecture

Our ICN architecture comprises a logical hierarchy consisting of tiers. Each router

belongs to only one tier. Copies of popular contents may be cached into routers.

We consider M logical hierarchical tiers, in which tier 1 is the top level tier, and

tier M constitutes the bottom level. The top level tier of the hierarchy is the

publishing area, which knows how to forward requests to at least one copy of the

searched content. Each tiers is divided into a set of non-overlapping partitions called

domains.

When a request arrives at a router in a tier, and the searched content is not found

imediatly at this router, a search strategy, based on random walks (RW), is started

within the tier domains the router that received the request belongs to. Random

walks allow opportunistic encounters between requests and replicas in a best-effort

manner and last for at most T time units in a domain. Requests, when flowing to

the publishing area, leave a trail. Content flows along this trail in reverse direction,

as it traverses the network towards users. This path is erased while the content is

delivered.

We consider a special class of content placement mechanisms, named reinforced

counters (RC). To each content we associate a RC in each router. The RC for a

content is increased by one every time a request for this content reaches a router. The

RC for a counter is decreased by one whenever a given timer ticks. Figure 3.1 displays

routers forwarding requests towards a publishing area (green arrows). Opportunistic

encounters prevent many requests to reach the publishing area. In case a searched

content is not found after T elapsed, the request is randomly send to router in a

17

domain at the next higher tier of the hierarchy.

Figura 3.1: ICN proposed architecture

Our design is based on randomized algorithms for content search and caching

along network nodes and was inspired by biological networks. Self-organized biologi-

cal systems, where simple rules are performed by agents at individual level, through

cooperation tasks, allow the emergence of complex pattern guiding complex tasks

being performed [41], [42]. Biological systems present those properties as a result

of an evolutionary process tailored for changing environment adaptive purposes.

We adopt randomized algorithms providing adaptive strategies, scalability and

reliability [43], [44]. Network scalability imply capacity for adding resources

without compromising network performance. The guidelines for network scalability

comprise features such as: absence of global aware devices and global clock, decisions

solely based upon local information exchange and failures of devices not disrupting

the entire network. Uncentralized control mechanisms emerge as a consequence of

local decisions based on information exchange under asynchronous communication

fashion. Content replication with local caching offer extra support for uncentralized

control mechanisms.

18

3.1 Random Walks

At the beginning of the twentieth century, random walks were described in the li-

terature, under a discussion between Pearson and Rayleigh [45]. The first random

walk models targeted movement description. In those walks, the actual direction of

movement becomes completely independent of the movements in the past. This in-

dependence characterizes unbiased movements, described according to a Markovian

process.

Unbiased walks stands for absence of preferred direction. At each step is, the

direction taken by the walker is said to be completely random. Whenever the present

movement takes place in any direction, this process describes a Brownian motion

[46] producing standard diffusion. The unbiased random walk model is the basis of

diffusive processes. Despite the simple rules guiding a walker in each step, random

walk processes are relevant to understand many natural phenomena.

Many analitycal solutions to random walk processes requires the use of complex

mathematical techniques [47]. Given a graph and a starting node, the random walk

can be studied as if at each step a neighbor node is selected at random and the

walker moves to this selected node. The random sequence of nodes a walk traverses

establishes a path on the graph [48]. For random walks on graphs, there is not much

difference between the theory of random walks and the theory of finite Markov

chains. Quantitative aspects of the walk can be studied, similar to quantitative

aspects across a one dimensional line:

• What is the distribution for the time a walker spends to hit a given node?

•What is the distribution for the time a walker spends to cross a given boundary?

•What is the distribution for the time a walker spends to cover the entire graph?

Walks with a consistent bias according to a preferred direction, towards a gi-

ven target are named biased random walks. An example of biased random walks

targeting enhancing searching performance on an unexplored area can be found in

[49], while biased walks towards load balancing in [50]. Another example of bia-

sed random walks comprise ants randomly seeking to find food leaving pheromone

trails as they wander around a colony (see Figure 3.2). An ant swarm represents

19

an example of self-organized biological system. In case food is discovered in a spot

around the colony, the amount of pheromone between the colony and this spot is

increased such that a direct path is build connecting both emerges as a new pattern.

The pheromone left along trails connecting the nest and food is an example of biased

random walks. Despite this direct path, some ants still continue exploration around

the neighborhood of a colony, seeking for new food spots.

Figure 3.2 illustrates the direct path, with ants still exploring the neighborhood

of the path to find new food spots. Ant colony optimization comprises a technique

for solving several engineering problems [51], [52], [53], [54]. In our proposal,

we deploy a biased walk, inspired by ACO. The requests flow according to a biased

path towards a publishing area, but requests explore the vicinity of this path in tier

domains, through random walks, in order to enhance the probability of opportunistic

encounters aout of the biased path.

COLONYFOOD SPOT

RANDOM EXPLORATION

Figura 3.2: Ants

20

3.2 ICN: Probabilistic Search and Cache

Considering the number of content flowing in the Internet nowadays, ca-

ching/eviction policies at network level impose relevant challenges in terms of scala-

ble and resilient strategies. Pre-defined knowledge at name resolution systems about

the replicas at caches in ICNs has been considered through the adoption either of

pointer locators mapping names to storage locations or routing tables establishing

direct paths to storage locations. If content routing tables are considered, searched

content can reach caches within the path between the requester and a custodian for

the content. In this case, nearby replicas stored at the vicinity of the path may not

be reached.

The debate in [35] has opened the door to ICN designs to enhance cache hits

considering sending part of the requests over direct paths, to known stored copies

(exploitation), while part of the requests are forwarded through random walks to

seek for opportunistic encounters (exploration). While exploitation is guaranteed to

route a request to a known copy, exploration does not solely guarantees a searching

success. Also, the rate of success of exploration depends on how long the random

walk may last and the replica density placement at storage areas being explored by

the walker.

The debate in [40] has opened the doors for probabilistic algorithms targeting

content placement across network nodes. Caching capacity spread along the network

nodes is small compared to the total number of different contents flowing in ICNs.

Avoiding cache redundancy becomes a key policy design. With probabilistic stra-

tegies favoring a better content utilization of storage resources, in many scenarios,

more space left was achieved for different flows sharing same storage resources.

Figure 3.3 shows a direct path to a content being exploited, while some explora-

tion around the vicinity of cache C2 is issued. The direct path traverses a set of cache

routers in a cloud. Therefore, a trade-off is established. For popular contents, the

highest the exploration time, the highest the number of opportunistic encounters.

Nonetheless, the mean time to find a content gets incremented. The direct path

presents a much higher cost for requests to reach the searched content, compared

to requests reaching content in cache C3. The exploration is held in unknown areas

to the routing tables, what may lead to a unsuccess. When content is delivered to

21

users, probabilistic decisions may take place to decide whether this content should

be stored in a cache traversed by the contents.

 Exploitationt

Exploration

C1

C2

C4

C3

CLOUD

Figura 3.3: Exploitation versus Exploration

3.3 Thesis ICN Design

Our search strategy deploys random walks (RW) across a single domain in a tier.

When a request arrives in a domain and does not find imediatly the searched content,

the router that has received the request holds the request and issue a random walk,

traversing only routers in the same domain. Routers within a domain are assumed

to be logically connected. The walk lasts for at most T units of time in a domain. In

case a walk fails in a domain, the request is send randomly to a cache in a domain at

the next level of the hierarchy. The last tier is the publishing area. (see Figure 3.1).

The goal is to opportunistically explore the presence of content replicas in a

given domain. If a copy is found in the domain within a reasonable time interval,

the content is served. Otherwise, requests are routed, from one tier domain to

another tier domain following the hierarchy of the architecture. At the top level of

22

the hierarchy a publishing area knows how to forward a request, not able to get a

cache hit, to at least one copy of the desired searched content.

When the requests are routed to the publishing area, they leave a trail. The

first router at each different domain a request reach will compose such trail, named

bread crumbs. When content is located in the network, it is delivered back to the

users following the reverse path of the bread crumbs. As the content follows the

path of bread crumbs, the trail is erased.

In the network, each cache-router has a given service capacity. The service

capacity of a cache is related to the time it takes to 1) find content in the cache, 2)

return that content to the user, through the data plane, in case of a cache hit and

3) route the request to another cache, through the control plane, in case of a cache

miss.

Network of caches with LRU, FIFO and RND policies are very difficult to

analyze. A new class of caches named time to live caches (TTL-caches) have been

proposed to this aim [55]. It has been shown that decoupling the dynamics of mul-

tiple contents can lead to reasonable approximations to the content hit probabilities.

For TTL-caches, an eviction timer is associated to each content. After a content has

been stored, this content is evicted as soon as this timer has elapsed. They are also

of interest in the context of DNS caches and the novel Amazon ElastiCache system

(http://aws.amazon.com/elasticache/).

To efficiently and distributedly place content in the cache network, we consider

a flexible content placement mechanism inspired by TTL-caches. At each cache, to

each content there is an associated counter, which we call reinforced counter (RC).

The value of a counter indicates if the related content should be stored into cache

provided that enough storage is available. The reinforced counters are increased by

one every time the content is requested, and is decreased by one as a timer ticks. The

timer ticks every 1/µ seconds. Henceforth, we assume that the time between ticks is

exponentially distributed. When cache capacity is finite, one can take advantage of

statistical multiplexing either by evicting items from the cache when (a) an overflow

occurs or (b) when the item expire.

Each published content in the network is identified by a unique hash key inf . All

cache routers have a set of RCs, each RC for a different content. The RCs have two

23

thresholds: an upper Kmax and a lower Kmin. Whenever a request for the content inf

reaches a router, either (i) an already pre-allocated counter for inf is incremented

in this router by one or (ii) a free counter is allocated for inf in this router and

incremented by one. Whenever the RC for inf reaches Kmax, if the content for inf

is not cached at this router, this content gets cached when delivered to users. In

contrast, whenever the RC for inf reaches Kmin, if the content for inf is cached at

this router, this content gets immediately removed and the correspondent counter

is deallocated. Figure 3.4 depicts the dynamics of the RC counter.

RC(t)

t

1

2

3

Request Arrival

Decrement by Time

Figura 3.4: RC dynamics

We decouple the dynamics for different contents. RCs dynamics are independent

of each other. Therefore, the mathematical analysis for a single content inf turns

to be the same for all contents. Instead of considering that the cache has a fixed

capacity, it is assumed that there are constraints on the expected number of items

in the cache. Note that under this approximation the cache capacity design problem

can be compared to the problem of calculating the capacity of communication lines

in a telephone network. Roughly, when capacity is finite, one can take advantage

of statistical multiplexing either by evicting items from the cache when an overflow

occurs or when the item expire.

We aim to show the advantages of having a content placement mechanism with

24

control knobs entangled by the RC thresholds and the decreasing RC rate (RC

parameters), allowing a fine tune for both the fraction of time in which the content

is in the cache and the the rate at which content is evicted or brought back into

cache, so as to avoid that content is replaced too fast and content starvation (that is,

content is never included into cache or removed from it during a finite but large time

interval). Also we target to minimize both the cost for content to be transferred

from custodians to caches and the cost for a user to retrieve a searched content from

within the network and maximize the hitting rate at the caches so to decrease the

total load entering the publishing area.

Given such architecture, we pose the following questions:

1. while routing requests for content from users to custodians, how to determine

for how long a request should search for a content inside a domain in order to

optimize the performance metrics?

2. while placing contents at a cache-router, how to tune the reinforced coun-

ters parameter values to optimize the delay to retrieve content under storage

constraints and possibly other performance metrics of interest?

3. what are the parameters that have the greatest impact on performance metrics

of the ICN architecture considered?

To answer these questions, we propose an analytical model which yields: a) the

expected delay to find a content (average search time) and; b) the rate at which

requests have to be satisfied by the custodians. While the first metric is directly

related to users quality of experience, the latter is associated to publishing costs

by custodians. The model yields simple closed-form expressions for the metrics of

interest. In addition, we address the content eviction rate from cache which may have

an adverse impact on performance. Using the model, we study different tradeoffs

involved in the choice of parameters values. In particular, we study the tradeoff

between spending more or less time in exploring opportunistically around the user

vicinity in order to find content replicas. Optimal values for the performance metrics

can be obtained whenever constraints such as maximum buffer size and maximum

cache writing rates are set, as depicted in the following chapters.

25

Capítulo 4

Local Performance

In this chapter we study placement and eviction policies for a single cache under the

assumption that the dynamics of each content is decoupled from the others. Decou-

pled content dynamics yields tractable analysis and can be used to approximate the

performance of systems with fixed capacity. We consider two polices: one where the

reinforced counter has the same threshold to insert and remove content from cache,

and other where the reinforced counter has two thresholds, one to insert and other

to remove content from cache which we call reinforced counter with hysteresis.

Using the model defined for the dynamics of the reinforced counter, we show

the advantages of having a content placement mechanism with control knobs to fine

tune both the fraction of time in which the content is in the cache while at the

same time controlling the mean time between content insertions so as to avoid that

content is replaced too fast and content starvation. The control knobs can be tuned

so as to adjust the long term fraction of time in which the content is stored in the

cache and to guarantee that the mean time between content eviction and content

reinsertion into the cache is bounded.

The reinforced counter (RC) dynamics of different contents can be assumed un-

coupled. In addition, arrival requests for a content at different routers are assumed

independent arrival processes and the search for a content does not interfere with the

dynamics of the corresponding RC counter. Consequently, the caches in a domain

can be treated independently.

Cache hit ratio is a key metric to performance. However, another metric that

affects performance is the rate at which content is brought into cache from the

26

server (cache insertion rate). A smaller insertion rate, for the same hit ratio, has

several advantages: (a) first, increasing the number of cache writes slows down

servicing the requests for other contents, that is, cache churn increases which reduces

throughput [56], [57]; (b) if flash memory is used for the cache, write operations are

much slower than reads and; (c) writes wear-out the flash memory; (d) additional

writes mean increasing power consumption. Another advantage may also occur if

content delivery to user and cache insertion are done in parallel, using different

paths, since this will increase the network load.

4.1 Reinforced counter mechanism with a single

threshold K

For a given content, we model the dynamics of the reinforced counter as a birth-

death process at each cache. The birth rate is set by the arrival rate λ of requests

to the cache and the death rate by an exponential random variable with rate µ, a

parameter that can be set by the system tailored for best performance.

Figure 4.1 is useful to illustrate the different intervals of the cache content re-

placement and the notation we use. The blue (red) intervals in the figure indicate

that the content is stored (or not) in cache. If content is not in cache it is brought

into cache when a new request for it arrives and the reinforced counter is at the

threshold K. On the other hand, if the value of the reinforced counter is at K + 1

and the counter ticks, the content is removed from cache. Note that we adopt the

same assumption as in [55]: the insertion and eviction of a content is not influenced

by other contents in the same cache.

Figura 4.1: Request counter and notation.

It should be clear that the reinforced counter mechanism can be modeled as an

27

M/M/1 queueing system, with state equal to the value of the reinforced counter. We

define πup(K) as the fraction of time the content is in the cache given a threshold

K. Then,

πup(K) =
∞∑

i=K+1
(1− ρ)ρi = ρK+1 (4.1)

where ρ = λ/µ.

Each content alternates from periods of inclusion and exclusion from the cache

according to the value of the threshold K of the reinforced counter (see Figure 4.1).

πup(K) corresponds to the fraction of time in which a content is in the cache. Then

πup(K) can be computed from (renewal theory):

πup(K) = E[B]
E[R] + E[B] (4.2)

where E[R] is the mean time that a content takes to return to the cache once it

is evicted and E[B] is the mean time that the content remains in the cache after

insertion. Let η(K,µ) be the rate at which content enters the cache. Due to flow

balance, in steady state, η(K,µ) equals the rate at which content leaves the cache,

η(K,µ) = µρK+1(1− ρ) = λρK(1− ρ) = 1
E[B] + E[R] (4.3)

where the last equality can be easily inferred from Figure 4.1 (renewal arguments).

E[B] can be calculated from first passage time arguments, that is the time it

takes from the system to return to state K (eviction) once it is brought into sys-

tem (state (K + 1)). From the M/M/1 model, it can also be calculated by the busy

period of an M/G/1 queue, which equals

E[B] = 1/(µ− λ). (4.4)

Then, from (4.4) and (4.2)

πup(K) = 1/(µ− λ)
1/(µ− λ) + E[R] . (4.5)

Once the content is evicted the mean time for it to return to the cache is given by

E[R] = (1− πup(K))/(πup(K)(µ− λ)) (4.6)

28

Given a fixed πup(K), it is possible to write ρ, µ, E[R] and η as a function of K,

ρ = πup(K)1/(K+1) (4.7)

µ = λπup(K)−1/(K+1) (4.8)

E[R] = (1− πup(K))/(πup(K)(λ(πup(K))−1/(K+1) − λ)) (4.9)

η = λπup(K)((πup(K))−1/(K+1) − 1) (4.10)

Note that there is a tradeoff in the choice of K, as increasing the value of K

reduces the rate at which content is inserted into the cache (see equation (4.3)),

which in turn reduces the steady state costs to download the content from external

sources. The larger the value of K, the smaller the steady state rate at which the

content enters and leaves the cache. But increasing the value of K, also increases

the mean time for the content to be reinserted into the cache once the content is

evicted. The larger the value of K, the longer the requesters for a given content will

have to wait in order to be able to download the content from the cache after it is

evicted (see equation (4.9)).

LetKmax be the maximum value allowed forK. Motivated by the tradeoff above,

given a fixed value of πup(K) we consider the following optimization problem,

min
K

ψ(K) = αη + βE[R] (4.11)

such that (4.12)

K ≤ Kmax (4.13)

πup(K) = ρK+1 (4.14)

ρ = λ/(λπup(K)−1/(K+1)) (4.15)

α and β are used to control the relevance of long term and short term dynamics. The

long term dynamics reflect the behavior of the system after a long period of time,

during which the rate at which content enters the cache is given by µρK+1(1 − ρ).

The short term dynamics reflect the behavior of the system during a shorter period

of time, during which one wants to guarantee that the mean time it takes for the

content to return to the cache is not too large. We should keep in mind that we

choose πup(K) to satisfy cache capacity limitations and system performance.

The value of E[R] must be bounded so as to avoid starvation, as formalized in

the proposition below.

29

Proposition 4.1. If β = 0, the optimal strategy consists of setting K = Kmax. If

Kmax = ∞, it will take infinite time for the content to be reinserted in the cache

once it is evicted for the first time.

Proof: The objective function is given by

ψ(K) = αλπup(K)((πup(K))−1/(K+1) − 1) (4.16)

The derivative of the expression above with respect to K is

dψ(K)
dK

= α
λ log(πup(K))πup(K)

(K + 1)2(πup(K))1/(K+1) (4.17)

which is readily verified to be always negative. Therefore, the minimum is reached

when K = Kmax. When K = ∞ it follows from (4.8) that µ tends to 0. The

mean time for reinsertion of the content in the cache is given by (4.9) which grows

unboundedly as µ tends to 0.

We consider an illustrative example to show the tradeoff in the choice of K

between the rate at which the counter reaches the upper threshold and the mean

time a content is cached again after evicted. Let πup = 0.9 and α = β = 1. Figure 4.2

shows how cost first decreases and then increases, as K increases. The optimal is

reached for K = 10. At that point, we have E[R] = 0.31 and γ = 0.32.

Figura 4.2: πup = 0.9, α = β = 1

30

4.2 Reinforced counter with hysteresis

In this section we generalize the reinforced counter to allow for a third control knob

Kh as follows. The counter is incremented at each arrival request for a content and

is decremented at rate 1/µ. In addition, the content is included into cache when

the value of the reinforced counter is incremented to K + 1, as in previous section.

However, content is not removed from cache when the counter value is decremented

from K + 1 to K. Instead, content remains in cache until the counter reaches

the (new) threshold Kh. Figure 4.3 illustrates the behavior of the new reinforced

counter.

Figura 4.3: Reinforced counter with hysteresis.

From the figure, we observe that the purple intervals correspond to the values of

the reinforced counter between K and Kh and the content is in cache. The bottom

of Figure 4.3 shows a trajectory of the reinforced counter that motivates the name

hysteresis. The displayed trajectory is i → Kh → Kh + 1 → K → K + 1 → j →

Kh + 1→ l etc.

At first glance, it seems that only the intervals where the content is in cache

are affected by this new mechanism (the blue intervals) but not the intervals where

content is absent (the red intervals). However, this is not true and both intervals are

affected. In what follows, we show how to calculate the expected values of E[B] and

E[R] and how the measures of interest are affected by this new mechanism. We also

show the advantages of the reinforced counter with hysteresis. For that, we refer to

Figure 4.4 that shows the Markov chain for the hysteresis counter.

Let ν(i + 1) = E[B] and ξ(i + 1) = E[R] both when K − Kh = i. Note that

31

Figura 4.4: Reinforced counter with hysteresis: state transition diagram.

ν(1) and ξ(1) are the values of E[B] and E[R] for a cache with no hysteresis. ν(1)

is obtained from equations (4.2), (4.1) and (4.9). ξ(1) =
(∑K

j=0 1/ρj
)
/ (λ/(λ+ µ)).

Proposition 4.2. ν(i+ 1) and ξ(i+ 1) can be obtained by the following recursions:

ν(i) = 1
µ

+ ν(i− 1) + ρν(1) i ≥ 2 (4.18)

ξ(i) = 1
λ

+ ξ(i− 1) + 1
ρ
ξ(1) 2 ≤ i ≤ K −Kh + 1 (4.19)

Proof: The proof follows from renewal arguments.

It is important to note that explicit expressions for ν(i) and ξ(i) can be obtained

as a function of λ, µ and K but details are omitted since the recursion above suffices

to explain our comments.

Suppose λ and πup(K) are given and we obtain K and µ, for instance from the

optimization problem in the previous section. We allow Kh to vary from Kh = K

(that is reinforced counter without hysteresis) to Kh = 0.

Proposition 4.3. As Kh decreases, the rate η(K,µ) at which content enters the

cache also decreases.

Proof: From Proposition 4.2, it is not difficult to see that both E[B] and E[R]

increase with Kh. Since η(K,µ) = 1/(E[B] + E[R]) (equation (4.3)) the result

follows.

Proposition 4.3 shows that, from an initial value of πup(K), if we fix the parame-

ters λ and K, the rate at which content is replaced (both included and removed from

cache) decreases by using the hysteresis mechanism, which is good to lower costs as

32

explained in the previous section. However, πup(K) also varies. As a consequence

of Proposition 4.2 we can show that and πup(K) can be reduced. This is not obvi-

ous since E[B] increases. But, by adjusting the knob µ, πup(K) can be maintained

constant while η is reduced when the hysteresis schema is used. The proof of this

last result is omitted but it follows from Proposition 4.2.

There are additional advantages of the hysteresis mechanism. First note that, in

the previous sections, we assumed that file download times are negligible. However,

when a user requests for a content it is important that the whole file remains stored at

the cache not only until this user finishes downloading but also while other users are

downloading the same content from that cache. Hysteresis is helpful to prevent the

file from being removed before its download is concluded by all requesters. Hysteresis

increases the probability that a content remains in cache for at least some time t

after it is cached. Note that this is an additional (transient) performance measure

and it differs from the η metric (steady state rate). As our numerical results show,

by adjusting Kh we can improve both steady state and transient metrics.

Next, we show some numerical results obtained for the following scenarios: (a)

the reinforced counter has a single threshold K = 11, (b) the reinforced counter

has two thresholds K = 11 and Kh = 7, and (c) the reinforced counter has two

thresholds K = 11 and Kh = 2. For each scenario, we consider the same value of

πup, λ, and K. The value of γ for scenario (a) is 0.24, for (b) is 0.07 and for (c) is

0.04. We note that the rate at which content enters or leaves the cache decreases

as the value of Kh decreases. This is one of the advantages of introducing a third

control knob Kh.

Figures 4.5 and 4.6 show the cumulative distribution of R and B. We note that

the reinforced counter with hysteresis allow to control the probability distribution

of R and B. In Figure 4.5, consider for example t = 4. If we set Kh = 2, we have

P [R < 4] = 0.35 and if Kh = 7, then P [R < 4] = 0.65. As the value of Kh increases,

the probability of R be less than a certain value of t increases. This behavior can

also be observed for the distribution of B. On the other hand, if we consider the

model with a single threshold we can not control the distribution of R and B. In

Figure 4.5, P [R < 4] = 0.9.

Another advantage of the reinforced counter with hysteresis, is that the coefficient

33

of variation of R and B, decreases with the value of Kh, which means that the

dispersion of the distribution of R and B also decreases. The values obtained for

the coefficient of variation of B for each scenario are: (a) 1.6, (b) 1.3 and (c) 1.1.

Figura 4.5: Cumulative Distribution of the time the content takes to return to the

cache

Figura 4.6: Cumulative Distribution of the time the content takes to remain in cache

34

Capítulo 5

Network Performance

We propose analytical models that take into account both the performance impact

of the delay introduced when content is searched using random walks and the ca-

ching mechanism based on the reinforced counters. We seek to obtain the following

performance goals: (i) to reduce the total load reaching the publishing area, (ii) to

enhance the mean time to find popular content, and (iii) to reduce the rate at which

content enters and leaves the cache, which in turn reduces the cost to download

content from the publishing area.

We develop analytical models which yield closed form expressions for perfor-

mance metrics across the entire network. The analytical models are inspired by

reliability theory concepts [58]. Metrics such as the mean time to find a content

and the probability of not finding a content in a domain can be computed from the

models. The models allow to show the benefits of a logical hierarchy of tiers and

study the tradeoff between the storage requirements of a cache-router and the total

load that reaches the storage area.

When a request reaches a cache-router, the local cache is searched and the content

is immediately retrieved and sent to the user if it is locally stored. If the content is

not found, a random walk search starts in the domain. We assume that the random

search takes V time units per each cache-router visited where V is a random variable

exponentially distributed with rate γ. (Clearly, the smaller is the probability of

finding a content in a cache-router, the longer is the duration of the search in order

to find the content.)

Since longer search times have an adverse effect on performance, when the ran-

35

dom walk begins, a timer is set to limit the search time. At most the search can

last for T time units. The search finishes when the timer expires or the content is

found, whichever occurs first. When the timer expires, the user request is sent to

the next cache-router in the tier hierarchy and the process starts over.

Consider a given tagged cache-router. We assume that requests to content c

arrive to the cache-router according to a Poisson process with rate λc. λc is also

referred to as the content popularity. The Poisson assumption is not unrealistic for

our purposes. This assumption has been used in several modeling works.

In addition, recent work in [59] using three months of data from the largest

VoD provider in Brazil, indicates that, during peak hours, the Poisson distribution

models fits quite well the request rate for all the movies (one minute beams were

considered). We use the Poisson assumption coupled with a proper popularity model

for individual content, such as the Zipf distribution.

Below we adopt the same assumption as in [55]: the insertion and eviction of

a content is not influenced by other contents in the same cache. Fixed storage in

cache is modeled by considering the expected number of contents into the cache.

We consider a domain wherein N cache-routers are logically fully connected,

i.e., any cache-router can exchange messages with any other router in the same

domain. Our goal is to compute the probability R(t) that a random walk does not

find the requested content by time t, which causes the request to be forwarded to

the custodian.

We consider slightly different models. The models assume that a request for

a content arrives according to a Poisson process. In what follows we describe the

assumptions used for each individual model, and comment on their usefulness.

Table 5.1 summarizes the notation used in the remainder of this paper.

Parameter Description

1/γ average time for the random search to check for a content at a cache

C(Λ̂c) cost function incurred by custodian to serve a request (measured in delay expe-

rienced by users)

C number of contents

M number of tiers

N number of caches in domain under consideration

36

λc,i arrival rate of exogenous and interdomain requests for content c at typical cache

of domain i, λ =
∑M

i=1
∑C

c=1 λc,i

Λc exogenous arrival rate of requests for c at the network (except otherwise noted,

exogenous requests are issued at tier M)

Variable Description

L number of replicas of given content in tagged tier

πc,i probability that content c is stored at typical cache at domain i

αc,i = 1/µc,i

Control variable Description

µc,i reinforced counter decrement rate for content c at domain i

Tc,i maximum time to perform a random search for content c at domain i

Metric Description

Rc,i(t) probability of not finding content c at tier i by time t

Dc,i delay incurred for finding content c at tier i

Dc delay incurred for finding content c

D delay incurred for finding typical content

Λ̂c rate of requests for content c at the publisher

Tabela 5.1: Table of notation.

5.1 Model 1: Stateless Search

We call stateless search the content search that doe not carry any information on

previous visited cache-routers. In other words, when a router is visited, the only

information that is known is the content of the cache current being visited. All

information on the contents of the cache routers previously visited is not stored.

The first model considers this case.

We assume that the search that starts at router i is sufficiently fast so that the

probability that there is a content c change in any cache-router of that domain is

negligible. This assumption is reasonable if the elapse time (1/γ) it takes for the

random walker to move from a cache-router to another and to check for c is very

small compared to the time interval it takes between: (a) two requests for c (1/λc)

and; (b) decrements of the reinforced counter for c (1/µc).

A request for content c that arrives at cache-router i (for any cache-router i

37

in the domain) sees the system in equilibrium (PASTA property) because of our

previous assumption that the request arrival process is Poisson. We further assume

that the rate of requests for a given content at different routers in a domain are

approximately identical. When a request for a given content c arrives at a cache-

router and a miss occurs, a random stateless search for c starts, looking for c in the

remaining N − 1 routers in the domain. At each router visited the searcher selects

at random one of the remaining N−1 routers to visit. Note that, because the search

is stateless, nodes can be revisited during the random search.

In what follows we drop the dependence of all variables to c to simplify notation.

Let π be the probability that a given cache router stores the content of interest. In

Chapter 4 we argue that the reinforced counter (RC) dynamics of different contents

can be assumed uncoupled and so the π’s for each content are independent. In

addition, arrival requests for a content at different routers are assumed independent

arrival processes and the search for a content does not interfere with the dynamics of

the corresponding RC counter. Consequently, the caches in a domain can be treated

independently.

Let L be random variable equal to the number of replicas of the content c in the

domain, excluding the router being visited. We have:

P (L = l) =
(
N − 1
l

)
πl(1− π)N−1−l. (5.1)

Let J be the number of hops traversed by the stateless searcher by time t. Since

the time between visits is assumed to be exponential distributed,

R(t|J = j, L = l) = (1− π)(1− wl)j (5.2)

where wl is the conditional probability that the random walker selects one router

with content from the remaining N − 1 routers in the domain, given that there are

l replicas in the domain and the visited router does not have the content. Then,

wl = l/(N − 1). (Note that π depends on the placement policy and its parameter

values.)

Proposition 5.1. The probability R(t|L = l) is given by:

R(t|L = l) = (1− π)e−γωlt (5.3)

38

Proof: From (5.2) we obtain:

R(t|L = l) = (1− π)
∞∑
n=0

(γt)n
n! (1− ωl)ne−γt

= 1− π
eγtωl

∞∑
n=0

(γt(1− ωl))n
n! e−γt(1−ωl)

= (1− π)e−γωlt (5.4)

�

Proposition 5.2 (Stateless search). The probability R(t) a walker does not find a

requested tagged content in a domain by time t is given by:

R(t) =
(
e−γt/(N−1)π + (1− π)

)(N−1)
(1− π) (5.5)

Proof: Unconditioning (5.3) on L, we obtain:

R(t) =
N−1∑
l=0

R(t|L = l)
(
N − 1
l

)
πl(1− π)(N−1−l)

= (1− π)
N−1∑
l=0

e−γωlt

(
N − 1
l

)
πl(1− π)(N−1−l)

= (1− π)
N−1∑
l=0

(
N − 1
l

)(
e−γt/(N−1)π

)l
(1− π)N−1−l

= (1− π)
(
πe−γt/(N−1) + (1− π)

)(N−1)
(5.6)

�

According to (5.5), R(∞) = (1 − π)N . As the random walk time increases,

the probability that the walker does not find the searched content approaches the

probability that all N caches within the domain do not hold the searched content.

5.2 Model 2: Statefull search

We call statefull search that in which the random searcher knows routers that are

visited. In other words, no re-visiting is allowed, since we know that previous routers

visited where found with no content in them. Two possible ways to implement such

statefull search are: (a) when a request arrives at a router and finds that a request

cannot be satisfied, a search is initiated and the searcher pre-selects j out of the

remaining N − 1 routers to conduct the search and; (b) after the search is initiated,

39

the searcher chooses the next router to visit at random, from those that have not

yet been visited before.

We first consider the case in which routers are pre-selected at the beginning of

the search. Let J be the number of routers that can possibly be visited by time t,

and L as before. Conditioning on J pre-selected routers and l contents in the N − 1

possible caches to visit,

R(t|J = j, L = l) = (1− π)

(
N−1−l

j

)
(
N−1
j

) (5.7)

Assuming, like before, that the search is sufficiently fast compared to the rate of

changes in the RC counters and using (5.1),

R(t|J = j) =
N−1∑
l=0

R(t|J = j, L = l)
(
N − 1
l

)
πl(1− π)N−1−l

= (1− π)
N−1∑
l=0

(
N − 1− j

l

)
πl(1− π)N−1−l

= (1− π)
N−1−j∑
l=0

(
N − 1− j

l

)
πl(1− π)N−1−l

= (1− π)j+1 (5.8)

Note that, if we select J > N − 1− l routers, necessarily one of them will have the

content. Therefore the third equality is true since, when l > N − 1 − j, R(t|J =

j) = 0.

It remains to uncondition on J , but we defer this step to later in this section.

First we address the other possible model of the statefull search. As in the first

stateless model, that no cache-router is revisited by a random walk search. However,

we do not assume that the rate γ is very large compared to the rate of changes in

the RC counters.

As before, a request for content c that arrives at cache-router i triggers a random

search if the content is not found at i. In other words, a search for c at i is initiated

according to the state of the RC counter for c at i, that is when the RC counter

value is below the threshold established for c. As in previous models, the number of

requests for content c that arrive at a router is assumed to be a Poisson distributed

random variable. Therefore, the number of random searches for c that are initiated

at router i is a Poisson process modulated by the RC counter values. (Recall that

40

the RC counter is a markovian process.) Since the RC counters for c at different

routers are not affected by the random search, they are independent processes. As

a consequence, from the results in [60], a search that arrives at a router j 6= i sees

the corresponding RC counter in equilibrium. Then we can immediately write,

R̃(t|j) = (1− π)j+1 (5.9)

It is interesting to observe that equations (5.8) and (5.9) are identical, although

reached from different assumptions. It remains to uncondition on J , the number of

steps taken by the searcher by t.

We first assume, as in model 1, that the search takes an exponentially distributed

random delay at each hop, independently on the system state. Second, we assume

that the number of cache-routers that can be visited by the random walker after a

cache miss occurs is large compared to the expected number of cache-routers that

are checked by t.

Proposition 5.3 (Statefull search). The probability R̃(t) that the content is not

found by a request for a tagged content by time t if we use statefull search is given

by:

R̃(t) = (1− π)e−γπt (5.10)

Proof: The proof is similar to that of Proposition 5.1. From equations (5.8) and

(5.9) and since each search from cache to cache takes on the average 1/γ (exponen-

tially distributed intervals), the number of visits by time t is Poisson distributed.

Recall we do not revisit a cache, and let N be the maximum number of caches that

can be visited.

R̃(t) = (1− π)
N∑
n=0

(γt)n
n! e−γt(1− π)n +

∞∑
n=N+1

(γt)n
n! e−γt

= (1− π)
∞∑
n=0

[(1− π)γt]n e
−γ(1−π)t

eγπt
+ ε(N)

= (1− π)e−γπt + ε(N) (5.11)

where ε(N) = ∑∞
n=N+1

(γt)n

n! e
−γt[1− (1− π)n]. If the tail of the Poisson distribution

is negligible, or if π is very small, ε(N) ≈ 0. �

The validity of the large N assumption used in Proposition 5.3 can be checked

by using the Normal distribution approximation for the Poisson distribution. For

instance, the Poisson tail is very good for values of N > γπt+ 4
√
λt.

41

According to (5.10), R̃(∞) = 0. As the random walk time increases, the pro-

bability that the walker does not find the searched content approaches zero when

contents are dynamically inserted and evicted from the caches while the walker

traverses the network.

One advantage of the statefull models is that the expression obtained simplifies

the solution of the optimization problem we formulate in Chapter 6 and, as such,

facilitates the study of the existing performance tradeoffs.

5.3 Networks with Multiple Tiers

In previous sections we consider single tier networks. In what follows we extend these

results to the multiple tier case. Then, in Section 5.4, we discuss the performance

tradeoffs between these two cases.

Refer to Figure 3.1 and letM be the number of tiers. Let Λ̂c be the publisher load

accounting for the requests filtered at the M tiers. Let Rc,i(Tc,i) be the probability

that a search that reaches domain i fails to find content c at that domain. The load

for content c that arrives at the publishing area is given by:

Λ̂c = Λc

M∏
i=1

Rc,i(Tc,i) (5.12)

where ∏M
i=1 Rc,i(Tc,i) is the probability that a request arrives at the publishing area

and Λc is the load generated by the users for content c which are all placed at tier

M . Note that replacing Rc,i(Tc,i) by R̃c,i(Tc,i) corresponds to using model 2 instead

of model 1 from previous section.

5.3.1 Average Delay

Let Dc,i be a random variable that characterizes the delay experienced by requests

for content c at domain i. Recall that Tc,i is the maximum time a walker spends

for content c in domain i. In what follows, we make the dependence of Dc,i on Tc,i
explicit.

Recall that Rc,i(t) depends on t, since the search for content c in domain i is

limited to t time units. Then, we have (see, for instance, [61]):

E[Dc,i(Tc,i)] =
∫ Tc,i

0
Rc,i(t)dt (5.13)

42

When model 1 is used, E[Dc,i(Tc,i)] does not admit a simple closed form solution

and must be obtained through numerical integration of (5.5). Instead, when model

2 is employed, we obtain

E[Dc,i(Tc,i)] = (1− πc,i)
1− e−πc,iTc,i

πc,iγ
(5.14)

Considering M tiers, let Dc be the delay to find content c, including the time

required for the publishing area to serve the request if needed. Then, E[Dc] is given

by:

E[Dc] =
 M∑
i=1

E[Dc,i(Tc,i)]
M∏

j=i+1
Rc,j(Tc,j)

+ C(Λ̂c)
M∏
j=1

Rc,j(Tc,j), (5.15)

where C(Λ̂c) is the mean cost (measured in time units) to retrieve a content at the

publishing area as a function of the load Λ̂c. Recall that tier 1 (resp., tier M) is the

closest to the custodians (resp., users). Therefore, ∏M
j=i+1 Rc,j(Tc,j) corresponds to

the fraction of requests to content c that reach tier i.

5.4 Results

Next, we show some results from model 1. Results from model 2 are presented in

the next chapter.

We consider a single tier network with 3850 cache routers and a three tiered

architecture with the same number of cache routers distributed across the tiers: 2800

in tier three, 700 in the second tier and 350 in the first tier. The tiers are divided into

domains, so that the load aggregation effects can be evaluated. Both architectures

are illustrated in Figure 5.1. All routers within the same tier are logically fully

connected among themselves. The input load from users is modeled as a Poisson

process. Random walks spend a maximum time T in each tier. The mean time to

access the custodians from the publishing area, whenever a request does not find the

searched content in the cache-routers, is assumed to be an exponential increasing

function of the amount of requests hitting the publishing area.

We first evaluate the load that arrives at the publishing area as a function of

N and T for the single-tiered scenario conditioned that the random walk is started.

Figure 5.2 shows the probability that a request reaches the publishing area as a

43

(a) (b)

Figura 5.1: (a) 1 Tier Architecture, and (b) 3 Tiers Architecture

function of the number of routers in the domain. We consider a large value of T and

we vary the number of cache-routers and ρ. The picture illustrates the following

behavior: for small values of ρ it is necessary a large number of routers to obtain a

small probability that a request arrives at the publishing area. This occurs because

this probability can be approximated by (1− ρk)N as t→∞. Figure 5.3 shows the

probability that a request reaches the publishing area as a function of T , the time a

request spends in the tier, for N = 3850 (topology of Figure 5.1(a)). We note that

for small values of ρ, this probability is very high and decreases very slowly with T .

On the other hand, for medium and high values of ρ, this probability reaches a very

low value for a small value of T .

In Figures 5.4 and 5.5 we plot the mean time to find the content for the one

tiered architecture (Figure 5.1(a)) and the three tiered architecture (Figure 5.1(b))

considering four types of content popularity: very low, low, medium and high. The

value of the request arrival rate for each type of content was obtained from real data

collected from a major Brazilian broadband service provider.

From these plots we can observe the benefits of the load aggregation that occurs

in the three tiered architecture: the requests that are not satisfied in tier three

because the probability to store the content is low are aggregated in the second and

third tiers and then this is increases the probability to find the content in these

tiers. Recall that the mean time to retrieve the content from the publishing area is

assumed to be an exponential increasing function of the amount of requests hitting

44

Figura 5.2: Probability that a request reaches the publishing area x N

Figura 5.3: Probability that a request reaches the publishing area x T

the publishing area, then the time to retrieve the content from this area is much

higher than the time to retrieve the content from one of the tiers.

We observe that the best results are achieved for low and medium popularity

contents. Note that for low popularity contents the time to find content decreases

by several orders of magnitude when we consider a three tiered architecture as a

result of load aggregation. For very low and high popularity contents, a significant

reduction is not observed. For high popularity contents, the probability to store

45

the content in a tier is high (for the one tiered and three tiered architectures), then

only a small part of the requests are served by the publishing area. For very low

popularity contents, the opposite occurs: the majority of requests are served by the

publishing area because the request rate is very low and then the probability to find

the content in a tier is very low (for both architectures).

In general, we can say that the three tiered architecture provides a shorter time

to find the content than the one tiered architecture for all content polarities. For low

and medium popularity contents, the probability to find the content in one of the

tiers is high due to the load aggregation effects. For very low popularity contents,

the best choice is to select T = 0 because the majority of requests are served by the

publishing area. On the other hand, for low popularity contents, the results show

that the smallest value for the mean time to find the content is achieved for T > 0.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5

very low popularity content

3 Tiers 1 Tier

low popularity

content

1 Tier

3 Tiers

T

m
e
a
n
 t
im

e
 t
o
 f
in

d
 c

o
n
te

n
t

Figura 5.4: Mean time to find a content: very low and low popularity contents

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 0 0.1 0.2 0.3 0.4 0.5

 high popularity content

1 tier 3 tiers

 medium popularity content

3 tiers 1 tier

T

m
e
a
n
 t
im

e
 t
o
 f
in

d
 c

o
n
te

n
t

Figura 5.5: Mean time to find a content: medium and high popularity contents

46

We consider the one tiered topology of Figure 5.1(a). Figure 5.6 shows the

probability of not finding a content in a domain for K = 1 and Figure 5.7 for

K = 6. We note that the probability of not finding a content in a domain for K = 1

is very high for small values of T and ρ < 0.3, but as the value of T increases, this

probability is close to zero for all values of ρ. On the other hand, for K = 6, even for

a large value o T , the probability of not finding a content is close to one for ρ < 0.4.

This means that if we set K = 6, the time to find the content can be large for low

popularity contents as shown in Figure 5.9. Figure 5.8 presents the mean time of a

random walk in a domain for K = 1 and Figure 5.9 for K = 6. From the figures we

observe that for K = 6, the mean random walk time increases linearly with T for

ρ < 0.4.

Figura 5.6: Probability of not finding a content in a domain: K=1

The analysis above shows that a small value of K provides a better performance

with respect to the probability and time to find a content, which in turn will give

a better performance to the user. Another important performance measure of the

system are the storage requirements. The storage requirements are proportional to

the fraction of time the content is in the cache. Equation 4.1 shows that the fraction

of time the content is in the cache is equal to πup(K) = ρK+1, then as the value of

47

Figura 5.7: Probability of not finding a content in a domain: K=6

Figura 5.8: Mean time of a random walk in a domain: K=1

K increases the storage requirements decreases. So there is a tradeoff in the choice

of K, we should set a small value of K to improve user performance but this will

increase the storage requirements. Figure 5.10 shows the value of πup(K) for several

values of ρ. We observe that for ρ < 0.4, the fraction of time the content is in the

48

Figura 5.9: Mean time of a random walk in a domain: K=6

cache is less than 10−2 for K ≥ 2. One good strategy is to set a small value for

K for unpopular contents to give a better performance to the users, since this will

not significantly increase storage requirements. On the other hand, if we set a small

value of K for popular contents, this will greatly increase storage requirements.

Figures 5.10 and 5.11 can be used to set the value of K. Figure 5.11 shows the

probability of not finding the content for several values of ρ and K. From this

figure one can define the value of K for a given probability and a certain content

popularity. Then, using Figure 5.10 the storage requirements can be obtained.

Figura 5.10: Fraction of time the content is in the cache

49

Figura 5.11: Probability of not finding a content in a domain

50

Capítulo 6

Statefull Model Optimization

In this chapter we consider the problem of minimizing average delay under average

storage constraints. To this aim, we use model 2 that was introduced in the previous

chapter. While in previous chapter the analysis targeted a single tagged content, in

this chapter we account for the limiting space available in the caches, that is, when

contents compete for memory space.

To simplify presentation, we consider a single tier (M = 1). We assume that the

delay experienced by a request towards the custodian is given and fixed, equal to C.

(Additional cost functions may be used.)

Let Dc be the delay experienced by requesters of content c. E[Dc] is given by

(5.15) and (5.10).

E[Dc] = (1− πc)
(

1− e−γπcTc

πcγ
+ Ce−γπcTc

)
(6.1)

and

E[D] =
C∑
c=1

λc
λ
E[Dc] (6.2)

Let αc = 1/µc, α = (α1, α2, . . . , αC) and T = (T1, T2, . . . , TC). In the remainder

of this section, we further assume K = 0. In light of (4.1) and (6.1)-(6.2), we pose

the following joint placement and routing optimization problem:

min
(α,T)

E[D] =
C∑
c=1

λc
λ

(1− λcαc)
(

1− e−γλcαcTc

λcαcγ
+ Ce−γλcαcTc

)
(6.3)

s.t.
C∑
c=1

λcαc = B (6.4)

The reinforced counter vector of control variables α impacts content placement,

since we assume that the limited buffer size B in cache is modeled by considering

51

the expected number of contents in the cache (∑C
c=1 λcαc), while the random walk

vector T impacts content search. By jointly optimizing for placement and search pa-

rameters, under storage constraints, we obtain insights about the interplay between

these two fundamental mechanisms.

In what follows, we do not solve this joint optimization problem. Instead, to

simplify the solution, we solve for two independent problems: the optimal routing

and then the optimal placement.

6.1 Optimal Routing Given Placement

To illustrate the insights that can be obtained with the formulated optimization

problem, we consider the special case where αc = α, for all c = 1, . . . , C.

α = B/
C∑
c=1

λc (6.5)

and

µ =
C∑
c=1

λc/B (6.6)

πc = λcα = λcB/λ (6.7)

Then, the problem reduces to

min
T

C∑
c=1

λc
λ

(1− πc)
(

1− e−γπcTc

γπc
+ Ce−γπcTc

)
(6.8)

s.t. Tc ≥ 0, c = 1, . . . , C (6.9)

For each content c the function to be minimized is f(T),

f(T) = 1
γπc

(
1− e−γπcT

)
+ Ce−πcγT (6.10)

and
df(T)
dT

= e−γπcT − γπcCe−γπcT (6.11)

Then, for a given content c, a random walk search should be issued with T =∞

if df(T)/dT < 0, i.e., if 1 − γπcC < 0. Otherwise, the request for content c should

be sent directly to the publishing area.

Tc =

 ∞, πc >
1
Cγ

0, otherwise
(6.12)

52

6.2 Special Case: Large γT

In the remainder of this section, we assume that γT is large. Recall that the opti-

mization problem is given by

min
π

E[D] =
C∑
c=1

λc
λ

(1− πc)
(

1− e−γπcT

πcγ
+ e−γπcTC

)
(6.13)

s.t.
C∑
c=1

πc = B (6.14)

Let β be a Lagrange multiplier. Then, the Lagrange function is given by,

L(π, β) =
C∑
c=1

λc
λ

(1− πc)
πcγ

+ β

(
C∑
c=1

πc −B
)

(6.15)

Setting the derivative of the Lagrangian with respect to πc equal to zero and

using (6.14) we obtain,

β =

(∑C
c=1
√
λc
)2

γλB2 (6.16)

Therefore,

πc = B

√
λc(∑C

c=1
√
λc
) , c = 1, . . . , C (6.17)

When B = 1, the optimal policy (6.17) is the square-root allocation proposed by

Cohen and Shenker [62].

6.3 Special Case: T = 0

For T = 0, the optimization problem reduces to

min
π

E[D] =
C∑
c=1

λc
λ

(1− πc)C (6.18)

s.t.
C∑
c=1

πc = B (6.19)

In this case, the optimal solution consists of ordering contents based on λc and

storing the B most popular in the cache, i.e., πc = 1 for c = 1, . . . , B and πc = 0

otherwise. Note that this intuitive rule was shown to be optimal by Liu, Nain,

Niclausse and Towsley [63].

53

6.4 Results

In this section we report numerical results obtained using model 2. Our goal is

to obtain the values of πc and Tc, c = 1, 2, 3, for which the total expected delay

is minimized, and compare to those obtained from the optimization solution. We

consider three contents with high, medium and low popularity sharing a memory

with capacity to store, on average, one replica of the content, B = 1. The publisher

cost C is equal to 10s, the random search rate is γ = 10 cache-routers/s, λ1 = 11.57,

λ2 = 1.57 and λ3 = 0.12. From equation 6.2, we compute the total expected delay

considering all possible values of πc and Tc for πc varying from 0.01 to 1 and Tc

varying from 0 to 5, i = 1, 2, 3.

Figure 6.1(a) shows the minimum delay obtained for π1, π2 and π3 and Fi-

gure 6.1(b) shows the minimum delay obtained for T1, T2 and T3, considering all

possible values of the other parameters.

In Section 6.3, we obtain equation (6.17) to compute the optimal values of πc.

If we compute the values of πc using equation (6.17) with the parameters of this

scenario, we obtain π1 = 0.68, π2 = 0.25 and π3 = 0.07. We note that these values

are very similar to that of Figure 6.1(a).

54

 0.01

 0.1

 1

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

π

D
e
la

y

Content 1 Content 2

Content 3

(a) Minimum expected delay is obtained for π1 = 0.67, π2 = 0.25 and π3 = 0.08

 0.01

 0.1

 1

 0 1 2 3 4 5

Content 1

Content 2

Content 3

T

D
e
la

y

(b) Minimum expected delay is obtained for T1 ≥ 2.5, T2 ≥ 5 and T3 ≥ 5

Figura 6.1: Minimum expected delay for each value of πc and Tc.

55

Capítulo 7

Conclusions

Information centric networks are gaining considerable attention from researchers and

practitioners due to their scalability and robustness properties. Today’s focus relies

on increasing demand for multimedia files. Content Distribution Networks (CDNs)

and Peer to Peer Networks (P2P) were first attempts of overlay networks to cope

with content centric network issues. Nonetheless, those overlay solutions still present

problems and a shift in paradigm has become necessary. Therefore, Information

Centric Networks have emerged as an area of research, with important challenges in

design, modeling and analysis, coupled with the deployment of a universal caching

strategy. From the design perspective, one of the challenges is to determine how to

provide scalability and reliability. From the modeling and analysis perspective, the

challenges are associated to the large number of routers envisioned in ICNs.

In this thesis, we propose a novel design for ICNs that is built on top of random

walks and hierarchical tiers (domains) to cope with ICNs open issues in general. In

particular, our design addresses the exploration versus exploitation tradeoff invol-

ved in content search. Our model computes metrics such as mean time to find a

content and evaluate existing tradeoffs to tune the parameteres of the architecture

we propose.

We present mathematical models to study the tradeoffs between the delay spent

on searching for content and the total load reaching the publishing area. We pro-

pose a novel mechanism for content placement and evaluate its performance. Our

analytical model yields closed form expressions for the entire network.

Our proposal comprises a coupled policy between search and placement and we

56

bring light for optimization aspects considering parameters tunning. This work also

opens additional avenues for future research. One such problem is to determine the

impact of parallel random walks across tiers at the same level of the hierarchy as

well as across different levels.

57

Referências Bibliográficas

[1] KUROSE, J., “Information-centric networking: The evolution from circuits to

packets to content”, Computer Networks, v. 66, pp. 112–120, 2014.

[2] “Youtube”, 2015, http://www.youtube.com.

[3] “Wikipedia”, 2015, http://www.wikipedia.org.

[4] “Netflix”, 2014, http://www.netflix.com.

[5] DE SOUZA E SILVA, E., LEÃO, R. M. M., SANTOS, A. D., et al., “Multimedia

Supporting Tools for the CEDERJ Distance Learning Initiative applied

to the Computer Systems Course”, , pp. 1–112006.

[6] “Akamai”, 2015, http://www.akamai.com.

[7] “Limelight”, 2015, http://www.limelightnetworks.com.

[8] “Bittorrent Project”, 2015, http://www.bittorrent.com.

[9] “Emule Project”, 2015, http://www.emule-project.net/.

[10] DE SOUZA E SILVA, E., LEÃO, R. M. M., MENASCHÉ, D. S., et al., “On the

Interplay between Content Popularity and Performance in P2P Systems”,

QEST , pp. 27–30, 2013.

[11] CISCO, “Cisco Visual Networking Index, Forecast and Methodology, 2012 -

2017”, White Paper , 2013.

[12] CAROFIGLIO, G., MORABITO, G., MUSCARIELLO, L., et al., “From

content delivery today to information centric networking”, Computer

Networks, 2013.

58

[13] DE BRITO, G. M., VELLOSO, P. B., MORAES, I. M., Information Centric

Networks: A New Paradigm for the Internet. 1st ed. Wiley, 2013.

[14] AHLGREN, B., DANNEWITZ, C., IMBRENDA, C., et al., “A survey

of information-centric networking”, Communications Magazine, IEEE ,

v. 50, n. 7, pp. 26–36, July 2012.

[15] XYLOMENOS, G., VERVERIDIS, C., SIRIS, V., et al., “A Survey of

Information-Centric Networking Research”, Communications Surveys Tu-

torials, IEEE , v. 16, n. 2, pp. 1024–1049, Second 2014.

[16] “ICN Research Challenges - ICNRG/IRTF”, 2015,

https://tools.ietf.org/pdf/draft-irtf-icnrg-challenges-02.pdf.

[17] CHOI, J., HAN, J., CHO, E., et al., “A Survey on content-oriented networking

for efficient content delivery”, Communications Magazine, IEEE , v. 49,

n. 3, pp. 121–127, March 2011.

[18] PASSARELLA, A., “Review: A Survey on Content-centric Technologies for the

Current Internet: CDN and P2P Solutions”, Comput. Commun., v. 35,

n. 1, pp. 1–32, Jan. 2012.

[19] ARIANFAR, S., NIKANDER, P., OTT, J., “On Content-centric Router Design

and Implications”. In: Proceedings of the Re-Architecting the Internet

Workshop, ReARCH ’10 , pp. 5:1–5:6, ACM: New York, NY, USA, 2010.

[20] DIALLO, M., FDIDA, S., SOURLAS, V., et al., “Leveraging Caching for

Internet-Scale Content-Based Publish/Subscribe Networks”. In: Commu-

nications (ICC), 2011 IEEE International Conference on, pp. 1–5, June

2011.

[21] ANAND, A., GUPTA, A., AKELLA, A., et al., “Packet Caches on Rou-

ters: The Implications of Universal Redundant Traffic Elimination”, SIG-

COMM Comput. Commun. Rev., v. 38, n. 4, pp. 219–230, Aug. 2008.

[22] ANAND, A., SEKAR, V., AKELLA, A., “SmartRE: An Architecture for Co-

ordinated Network-wide Redundancy Elimination”, SIGCOMM Comput.

Commun. Rev., v. 39, n. 4, pp. 87–98, Aug. 2009.

59

[23] KOPONEN, T., CHAWLA, M., CHUN, B.-G., et al., “A Data-oriented (and

Beyond) Network Architecture”, SIGCOMM Comput. Commun. Rev.,

v. 37, n. 4, pp. 181–192, Aug. 2007.

[24] LAGUTIN, D., VISALA, K., TARKOMA, S., “Publish/Subscribe for Inter-

net: PSIRP Perspective”. In: Emerging Trends from European Research,

(Valencia FIA book 2010), 2010.

[25] “FP7 PURSUIT project”, http://www.fp7-pursuit.eu/PursuitWeb/.

[26] “NETINF”, 2010, http://www.4ward-project.eu/.

[27] “FP7 SAIL project”, http://www.sail-project.eu/.

[28] GANESAN, P., GUMMADI, K., GARCIA-MOLINA, H., “Canon in G major:

designing DHTs with hierarchical structure”. In: Distributed Computing

Systems, 2004. Proceedings. 24th International Conference on, pp. 263–

272, 2004.

[29] D’AMBROSIO, M., DANNEWITZ, C., KARL, H., et al., “MDHT: A Hierar-

chical Name Resolution Service for Information-centric Networks”. In:

Proceedings of the ACM SIGCOMM Workshop on Information-centric

Networking, ICN ’11 , pp. 7–12, ACM: New York, NY, USA, 2011.

[30] DANNEWITZ, C., D’AMBROSIO, M., VERCELLONE, V., “Hierarchical

DHT-based Name Resolution for Information-centric Networks”, Com-

put. Commun., v. 36, n. 7, pp. 736–749, April 2013.

[31] KATSAROS, K. V., FOTIOU, N., VASILAKOS, X., et al., “On Inter-domain

Name Resolution for Information-centric Networks”. In: Proceedings of

the 11th International IFIP TC 6 Conference on Networking - Volume

Part I , IFIP’12 , pp. 13–26, Springer-Verlag: Berlin, Heidelberg, 2012.

[32] JOKELA, P., ZAHEMSZKY, A., ESTEVE ROTHENBERG, C., et al., “LIP-

SIN: Line Speed Publish/Subscribe Inter-networking”, SIGCOMM Com-

put. Commun. Rev., v. 39, n. 4, pp. 195–206, Aug. 2009.

60

[33] JACOBSON, V., SMETTERS, D. K., THORNTON, J. D., et al., “Networking

Named Content”. In: Proceedings of the 5th International Conference on

Emerging Networking Experiments and Technologies, CoNEXT ’09 , pp.

1–12, ACM: New York, NY, USA, 2009.

[34] ROSENSWEIG, E., KUROSE, J., TOWSLEY, D., “Approximate Models for

General Cache Networks”. In: INFOCOM, 2010 Proceedings IEEE , pp.

1–9, March 2010.

[35] CHIOCCHETTI, R., ROSSI, D., ROSSINI, G., et al., “Exploit the Known or

Explore the Unknown?: Hamlet-like Doubts in ICN”. In: Proceedings of

the Second Edition of the ICN Workshop on Information-centric Networ-

king, ICN ’12 , pp. 7–12, ACM: New York, NY, USA, 2012.

[36] WANG, L., BAYHAN, S., OTT, J., et al., “Pro-Diluvian: Understan-

ding Scoped-Flooding for Content Discovery in Information-Centric

Networking”. In: Proceedings of the 2Nd International Conference on

Information-Centric Networking, ICN ’15 , pp. 9–18, ACM, 2015.

[37] CHAI, W. K., HE, D., PSARAS, I., et al., “Cache “less for more” in

information-centric networks (extended version)”, Comput. Commun.,

v. 36, n. 7, pp. 758 – 770, April 2013.

[38] FAYAZBAKHSH, S. K., LIN, Y., TOOTOONCHIAN, A., et al., “Less Pain,

Most of the Gain: Incrementally Deployable ICN”, SIGCOMM Comput.

Commun. Rev., v. 43, n. 4, pp. 147–158, Aug. 2013.

[39] WANG, Y., LI, Z., TYSON, G., et al., “Optimal cache allocation for Content-

Centric Networking”. In: Network Protocols (ICNP), 2013 21st IEEE

International Conference on, pp. 1–10, Oct 2013.

[40] PSARAS, I., CHAI, W. K., PAVLOU, G., “Probabilistic In-network Caching

for Information-centric Networks”. In: Proceedings of the Second Edition

of the ICN Workshop on Information-centric Networking, ICN ’12 , pp.

55–60, ACM: New York, NY, USA, 2012.

61

[41] DRESSLER, F., AKAN, O. B., “A Survey on Bio-inspired Networking”, Com-

put. Netw., v. 54, n. 6, pp. 881–900, April 2010.

[42] DRESSLER, F., Self Organizatio in Sensor and Actor Networks. Wiley, 2007.

[43] MITZENMACHER, M., UPFAL, E., Probability and Computing. 3rd ed. Cam-

bridge Press, 2007.

[44] MOTWANI, R., RAGHAVAN, P., Randomized Algorithms. 1st ed. Cambridge

Press, 1995.

[45] CODLING, E. A., PLANK, M. J., BENHAMOU, S., “Random walk models in

biology”. In: Journal of Royal Society, 2008.

[46] MORTERS, P., PERES, Y., Brownian Motion. 1st ed. Cambridge Press, 2010.

[47] RUDNICK, J., GASPARE, G., Elements of the Random Walk: An introduction

for Advanced Students and Researchers. 1st ed. Cambridge Press, 2004.

[48] LOVÁSZ, L., “Random Walks on Graphs: A Survey”, 1993.

[49] BERENBRINK, P., COOPER, C., ELSÄSSER, R., et al., “Speeding Up

Random Walks with Neighborhood Exploration”. In: Proceedings of

the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’10 , pp. 1422–1435, Society for Industrial and Applied Mathema-

tics: Philadelphia, PA, USA, 2010.

[50] RANDLES, M., ABU-RAHMEH, O., JOHNSON, P., et al., “Biased random

walks on resource network graphs for load balancing”. In: Journal of

Supercomputing, 2010.

[51] DORIGO, M., STUTZLE, T., Ant Colony Optimization. MIT Press, 2004.

[52] PICARD, D., REVEL, A., CORD, M., “An Application of Swarm Intelligence

to Distributed Image Retrieval”, Inf. Sci., v. 192, pp. 71–81, June 2012.

[53] CHEN, W.-N., ZHANG, J., “An Ant Colony Optimization Approach to a Grid

Workflow Scheduling Problem With Various QoS Requirements”, Sys-

tems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, v. 39, n. 1, pp. 29–43, Jan 2009.

62

[54] ZHANG, J., CHUNG, H.-H., LO, A.-L., et al., “Extended Ant Colony Optimi-

zation Algorithm for Power Electronic Circuit Design”, Power Electronics,

IEEE Transactions on, v. 24, n. 1, pp. 147–162, Jan 2009.

[55] FOFACK, N. C., NAIN, P., NEGLIA, G., et al., “Performance evaluation of hi-

erarchical TTL-based cache networks”, Computer Networks, v. 65, pp. 212

– 231, 2014.

[56] BADAM, A., PARK, K., PAI, V. S., et al., “HashCache: Cache Storage for the

Next Billion.” In: NSDI , v. 9, pp. 123–136, 2009.

[57] PERINO, D., VARVELLO, M., “A reality check for content centric networking”.

In: Proceedings of the ACM SIGCOMM workshop on Information-centric

networking, pp. 44–49, 2011.

[58] DE SOUZA E SILVA, E., MUNTZ, R. R., Métodos Computacionais de Solução

de Cadeias de Markov: Aplicações a Sistemas de Computação e Comuni-

cação. SBC - Escola de Computação, 1992.

[59] MENDONÇA, G., Residential nano cashe systems for video distribution (in

Portuguese), Master’s Thesis, COPPE/UFRJ, 2015.

[60] ROSENKRANTZ, W., SIMBA, R., “Some theorems on conditional PASTA: a

stochastic integral approach”, Operations Research Letter , v. 11, pp. 173–

177, 1992.

[61] DE SOUZA E SILVA, E., GAIL, H. R., “Transient Solutions for Markov

Chains”, In: Computational Probability, pp. 44–79, Kluwer, 2000.

[62] COHEN, E., SHENKER, S., “Replication strategies in unstructured peer-to-

peer networks”. In: ACM SIGCOMM Computer Communication Review,

v. 32, n. 4, pp. 177–190, 2002.

[63] LIU, Z., NAIN, P., NICLAUSSE, N., et al., “Static caching of Web servers”. In:

Photonics West’98 Electronic Imaging, pp. 179–190, 1997.

[64] REXFORD, J., DOVROLIS, C., “Future Internet Architecture: Clean-slate

Versus Evolutionary Research”, Commun. ACM , v. 53, n. 9, pp. 36–40,

Sept. 2010.

63

[65] PAN, J., PAUL, S., JAIN, R., “A survey of the research on future internet

architectures”, Communications Magazine, IEEE , v. 49, n. 7, pp. 26–36,

July 2011.

[66] WENDELL, P., FREEDMAN, M. J., “Going Viral: Flash Crowds in an Open

CDN”. In: Proceedings of the 2011 ACM SIGCOMM Conference on In-

ternet Measurement Conference, IMC ’11 , pp. 549–558, ACM: New York,

NY, USA, 2011.

[67] DE SOUZA E SILVA, E., GAIL, H. R., “The Uniformization Method in Perfor-

mability Analysis”, In: Performability Modelling: Techniques and Tools,

chap. 3, pp. 31–58, Wiley, 2001.

[68] DABIRMOGHADDAM, A., BARIJOUGH, M. M., GARCIA-LUNA-ACEVES,

J., “Understanding Optimal Caching and Opportunistic Caching at "the

Edge"of Information-centric Networks”. In: Proceedings of the 1st In-

ternational Conference on Information-centric Networking, ICN ’14 , pp.

47–56, ACM: New York, NY, USA, 2014.

[69] DOS SANTOS MENDONÇA, G. G. B., “Sistema de Nano Caches Residenciais

para Distribuição de Vídeo”, 2015.

64

