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O problema de coloração de grafos é um problema NP-Completo para o qual

muitos algoritmos foram desenvolvidos ao longo das últimas décadas. Por ser um

problema de natureza dif́ıcil, a ideia de seleção de algoritmos torna-se relevante

para que apenas o algoritmo de coloração mais apropriado seja executado. Este

trabalho apresenta uma análise sistemática da aplicação de métodos de aprendizado

de máquina no problema de seleção de algoritmos, utilizando coloração de grafos

como um caso de estudo. Muitos trabalhos foram realizados nesta área focando

em classificação de rótulo único e visualização do espaço do problema, preterindo

métodos como regressão e classificação multi-rótulo. Ademais, não houve um estudo

sistemático para testar alterações na lista de propriedades de grafos dispońıveis como

entrada do problema. Essas lacunas são endereçadas por experimentos utilizando

como ponto de partida as bases de dados e propriedades consideradas em trabalhos

relacionados. A comparação dos resultados mostra que os métodos utilizados neste

trabalho geram bons resultados em termos de acurácia ao selecionar os melhores

algoritmos de coloração. Ficou claro que a acurácia do algoritmo de aprendizado é

muito dependente do critério de desempenho e também pode ser impactada pelas

propriedades de grafos. A ideia de classificação multi-rótulo neste contexto traz

uma melhora relevante, pois quando há disponibilidade de tempo, alguns algoritmos

de coloração alcançam valores similares para o número cromático. Por fim, de um

portfólio de oito algoritmos, foi posśıvel recomendar na média apenas quatro destes,

com uma acurácia de 89%, ou apenas um, com uma acurácia de 79%.
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The graph coloring problem is a well-known NP-Complete problem for which

many algorithms have been developed along the last decades. Because of the difficult

nature of this problem, the idea of algorithm selection becomes relevant so that

one can run only the most appropriate coloring algorithm. This work presents a

systematic analysis of the application of machine learning methods to the algorithm

selection problem using graph coloring as a case study. Much work has been done

in this topic focusing on single label classification and instance space visualization,

leaving sideways other methods such as regression and multi-label classification.

Furthermore, no systematic approach has been adopted to test changes on the list

of graph features available as input. These gaps are addressed throughout a series

of experiments using as a starting point datasets and feature sets considered on

previous related works. The results show that the methods employed in this work can

provide good results in terms of accuracy when selecting the best coloring algorithms.

It was also clear that the accuracy of the learning algorithms is highly dependent

on the performance criteria and can be impacted by the graph features. The idea of

multi-label classification in this context brings great improvement as after some time,

some coloring algorithms seem to reach similar values for the chromatic number. In

the end, from a portfolio of eight algorithms, it was possible to recommend on

average just four of those with an accuracy of 89% or only one with an accuracy of

79%.
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Chapter 1

Introduction

In 1971, COOK [13] formalized the concept of NP-Complete: a problem is NP-

Complete if it is both NP and NP-hard. If a problem belongs to NP, it means that

its decision form can be verified in polynomial time by a non-deterministic Turing

machine. In other words, if a solution for this problem is given, it can be verified in

polynomial time. If a problem P is NP-hard then all problems in NP can be reduced

in polynomial time to P , which means that P is as hard as any other problem in NP.

Although it is possible to verify the correctness of a given solution quickly, the time

required to locate the exact optimal solution for a NP-Complete problem usually

grows exponentially as the size of the problem instance grows.

With an increasing number of algorithms being developed, RICE [51] proposed,

in 1975, the Algorithm Selection Problem as ”the problem of selecting an effective

or good or best algorithm”. His goal was to find a function S that identifies the

algorithm with the best performance to solve a specific instance x of a problem P ,

without knowing the real performance of all considered algorithms for that specific

instance x. Rice’s proposal was the first to consider a mathematical model for such

problem.

In the eighties researchers turned their focus on the development of new al-

gorithms with heuristics and approximate methods in search for better efficiency

and feasible solutions for NP-Complete problems. In 1986 the term meta-heuristic

was first adopted by GLOVER [22] in his explanation of Tabu Search and since

then it has been used to name strategies that guide and modify simple algorithms

to produce better quality solutions. In this period, important algorithms based on

meta-heuristics have been proposed such as Simulated Annealing[34] and Ant Colony

Optimization[12]. The development of these and other techniques contributed to in-

creasing even more the number of available algorithms to solve NP-Complete prob-

lems.

One decade later, the principles and motivation that led Rice to propose the

Algorithm Selection Problem were revisited. AHA [1] comes up with the idea of gen-
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eralizing algorithm performance from case studies. In other words, if an algorithm

presents good performance on a specific class of problems, it should also present good

performance on similar classes. The term Metalearning was first used in the context

of obtaining this knowledge to make it possible to identify which algorithms are

suitable to solve specific classes of problems. As described by SMITH-MILES [57],

although many definitions have been proposed for Metalearning, they all fall back

to the concept of acquiring knowledge about algorithm performance and exploring

it to improve or select algorithms.

The idea of acquiring knowledge about algorithm performance is usually tied to

the need of describing a specific problem instance. Rice proposed the extraction of

features from these which came to be known later as metafeatures. These properties

seem to be closely related to the accuracy of applied machine learning methods as

it is clear that, for some problems, phase transition properties have been known to

dictate the performance of specific algorithms. For example, considering the SAT

Problem, it is known that a phase transition property is related to the ratio of

clauses to variable and that nearly all algorithms exhibit poor performance when a

specific instance has this ratio near the phase transition area [65].

With a huge amount of algorithms and heuristics to solve NP-Complete prob-

lems, scientists are now relying on the use of machine learning methods to discover

knowledge and hidden relationships within huge databases of algorithm performance

data.

1.1 Motivation

Given the huge amount of algorithms and parameter options that can be used for

performance tuning, it is a difficult task to decide which algorithm is more appro-

priate and how it can be tuned to reach the best results. Probably due to the recent

increase in popularity of the term Big Data, many researchers have been applying

machine learning methods to assess algorithm performance data and build models

or portfolios that can solve the Algorithm Selection Problem. These ideas have been

applied on case studies of NP-Complete problems such as: the Traveling Salesman

Problem [28], SAT [28], Scheduling [43], the Graph Coloring Problem [46] and many

others. An online bibliography for these researches is maintained by KOTTHOFF

[36].

HUTTER et al. [28] introduced the term Empirical Performance Models to

characterize regression models created to predict algorithm performance metrics.

This expression is a generalization of the previously used term: Empirical Hardness

Model, which considered only the algorithm runtime as a performance metric. In

some cases, with the approximation predicted by these models, it is possible to select

2



the most appropriate algorithm to solve a particular instance of a problem by know-

ing how each algorithm is predicted to perform on that instance. HUTTER et al.

[28] evaluated this technique to predict the runtime of algorithms that can solve

instances of SAT, the Quadratic Assignment Problem and the Traveling Salesman

Problem.

When considering the Graph Coloring Problem, much effort has been given to

the application of classification methods to select the best algorithm and little infor-

mation has been collected on how other types of recommendation perform on this

problem. Even when considering only classification methods, a detailed analysis and

comparison of the different case studies is not available. Currently on the algorithm

selection for graph coloring problem literature there is little or no work improving

findings of previous researches. As a consequence, there is little insight of which

features are relevant for identifying the best algorithm or how the performance cri-

teria impacts the overall accuracy of the machine learning method used to select

the most appropriate algorithm. An evidence for this is the random selection of

features, sometimes more and other times less, for each research.

1.2 Objective

The general objective of this work is to analyze and compare how different machine

learning techniques perform when selecting algorithms to solve the graph coloring

problem given different features and performance criteria as parameters to build

various algorithm performance databases.

Many works have been done applying classification methods to identify the best

algorithm to solve instances of the graph coloring problem [53] [54] [55] [56]. By ex-

ploring how other forms of recommendation perform in this case study, it is possible

to confirm whether classification is indeed a good choice and if other techniques can

provide accurate or relevant information that can be used to support the selection

of the most appropriate algorithm.

After reviewing related works about algorithm selection for the graph coloring

problem some questions remain unanswered. The current work develops a line of

investigation on how changes to the algorithm selection problem spaces impact the

accuracy of the selection mapping function S modeled by a machine learning method:

3



Table 1.1: Main questions

Question Motivation

How does the set of features impact on
the accuracy of the algorithm selection
problem for the graph coloring prob-
lem?

The features evaluated in the re-
searches are always different. It is hard
to answer this question by just compar-
ing the published researches if the set
of features are not fixed.

Is it possible to accurately predict per-
formance metrics other than algorithm
runtime?

As the term Empirical Performance
Model is quite recent, there has been no
investigation on how such models can
predict other metrics than algorithm
runtime. Considering the graph col-
oring problem, the chromatic number
seems to be the most interesting met-
ric to predict.

Why are classification methods more
appropriate to select the best algo-
rithm?

Some researchers [7] [43] have already
stated, based on experimental studies,
that if the goal is to generate recom-
mendations other than that of esti-
mates of performance, then the prob-
lem should be addressed with classifi-
cation. Aggregating the results of indi-
vidual regression models does not yield
the same good performance achieved by
classification techniques when trying to
predict the best algorithm.
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1.3 Organization

In chapter 2 the fundamental concepts for this work are presented. On section 2.1 the

formalism of the algorithm selection problem is detailed as described by RICE [51].

Section 2.2 provides a quick overview of machine learning and the methods used in

this research. Section 2.3 introduces the concept of Empirical Performance Models

and the experiments that led HUTTER et al. [28] to this generalization. Section

2.4 summarizes the idea of Metalearning considering the definitions proposed by

BRAZDIL et al. [7].

Chapter 3 details the graph coloring problem. Section 3.1 describes a few graph

types and complex network models considered in this research. Sections 3.2 and 3.3

contains information about the available algorithms and heuristics that solve the

graph coloring problem. Some of these are considered in the case study explained

in the next chapter.

In chapter 4 the application of machine learning methods on the algorithm se-

lection for the graph coloring problem is presented. Related works are explained

in the first section. On sections 4.2, 4.3, 4.4 and 4.5 the algorithm selection spaces

considered in the experiments of this work are detailed.

At last in chapter 5, the experimental setup, results and comparison of the

different forms of recommendation are presented. Section 5.1 contains details about

the methodology used to run and compare the different machine learning methods

applied to the algorithm selection for the graph coloring problem. The experiments

results are presented and discussed on sections 5.2 to 5.4. The details that support

this evaluation and the conclusion in chapter 6 are presented on appendix A.

A small program and a few scripts were developed to facilitate the feature ex-

traction and algorithm performance data gathering. Python scripts were built for

feature extraction calling NetworkX[24] functions and algorithms. A small C# ap-

plication encapsulating graph coloring programs from LEWIS et al. [39] was used

for performance data gathering. WEKA[25], R[29] and MEKA[49] were used as the

source for Machine Learning algorithms that were evaluated. Detailed scripts and

programs are included in Appendix B.
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Chapter 2

Fundamental Concepts

This chapter introduces the main concepts that are referred to throughout this work.

It starts with the first mathematical approach to the algorithm selection problem

presented and then briefly describes the ideas of machine learning. Within section

2.2, the main machine learning algorithms that are used in the experiments are

further detailed. Section 2.3 presents the latest ideas on instance hardness and

empirical performance models, a specific view of how machine learning methods can

be applied to predict algorithm performance. Finally the concept of metalearning

is described in section 2.4. Although there are many interpretations to this term, it

is usually related to understanding the relationship among algorithm performance

and problem characteristics.

2.1 The Algorithm Selection Problem

The Algorithm Selection Problem, formalized by RICE [51] in 1975, has the main

objective of selecting the most adequate algorithm to solve a specified instance of a

problem.

RICE [51] proposed three models to this problem and present them in increasing

order of complexity. The model referenced in this work is similar to the second

model as can be seen on figure 2.1. The third and most complex model, with variable

performance criteria, is capable of changing this criteria according to the problem.

Despite the fact that different performance criteria are analysed in this work, these

are not considered input to the algorithm selection problem. The analysis conducted

here consider fixed spaces of performance criteria as will be described later in chapter

4.

The concepts presented next are part of the Algorithm Selection Problem defi-

nition:

• Problem Space (P ): contains all instances of a specified Problem.
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• Feature Space (F ): contains all instances properties that are considered rele-

vant to the selection of the best algorithm.

• Algorithm Space (A): contains all available algorithms to solve the problem

defined in the Problem Space P . Rice considers the parameter variation of an

algorithm does not qualify it as a new algorithm, although this idea could be

applied in practice.

• Performance (Metrics) Space (Rn): contains the performance metrics consid-

ering the Problem and Algorithm Spaces have been defined. It can be CPU

runtime or accuracy for example.

Therefore, given:

• x ∈ P an instance of the problem defined by P ,

• f(x) a function P → F that relates an instance x from the problem space P

to properties (features) defined on the feature space F ,

• a ∈ A an algorithm to solve the problem defined by P ,

• p a function A × P → Rn that determines the performance metrics of the

algorithm,

• g a function that has as a result a real number y ∈ R that can be used to

evaluate the performance of the algorithm.

What is the mapping function S : F → A that determines the most appropriate

algorithm from A to be applied on an instance of P?

Figure 2.1 presents the schema for the Algorithm Selection Problem as originally

presented by RICE [51].

7



Figure 2.1: Original Schematic from Rice’s Algorithm Selection Problem - RICE
[51]

2.2 Machine Learning

Machine learning grew out as a sub-field in Artificial Intelligence in which the main

goal is to have machines learn from data. The first ideas dates back from 1950 when

TURING [60] describes the concept of ”learning machines”, although at that time

no model was proposed on how to build such entities. The general idea was that

these machines would have some basic rules of operation that would tell how they

would react to specific situations. This is somewhat similar to what exists today

regarding trained models built with current machine learning algorithms.

The algorithms that are known today in the machine learning community had

their origin in the seventies and eighties with the rise of expert systems and the return

of the back-propagation algorithm. These algorithms can be grouped according to

their learning method: supervised, unsupervised, semi-supervised and reinforcement

learning [52].

In supervised learning, the machine is presented with some examples of what

should be learned that basically consists of input-output pairs. It then learns a

function y = h(x) that maps values from the input x to output y. If the function

h(x) is discrete, then the supervised learning task is called classification, otherwise,

if it is continuous, then the learning task is called regression. A specific situation

occurs when there are multiple discrete values y for the same input x. The default

8



classification algorithm could be applied considering the union of these discrete

values as a single label or a more advanced technique could be applied to allow for

these multiple output values to independently related to the same input. This last

method, called multi-label classification, will be further detailed on section 2.2.1.

In unsupervised learning, no labeled examples are provided from the beginning

and the machine must figure out patterns within the dataset provided, grouping

them accordingly. The most common algorithm for unsupervised learning is clus-

tering, where input data is grouped by similarity of a given property.

Semi-supervised learning stays in a region between supervised and unsupervised

learning. A few labeled examples are provided but the machine must figure out by

itself when new labels should be created considering the similarity of some proper-

ties. This type of learning is useful when the list of labels for the instances is not

exhaustive or is not known completely.

Reinforcement learning is the type of learning where a machine is either rewarded

or punished for the decisions it took during the learning process.

For around 40 years many machine learning algorithms have been proposed and

improved, leading us to literally hundreds of methods to choose from. Trying to

understand the usability of all these algorithms in the real-world, FERNÁNDEZ-

DELGADO et al. [18] conducted an experiment over almost all datasets from the

UCI repository, evaluating 179 classifiers from 17 different families such as neu-

ral networks, support vector machines, decision trees, boosting, bagging, random

forests and many others. The classifiers found with best average accuracy were

Random Forest - accessed via caret package from R - and Support Vector Machine

- implemented in C using LibSVM. Although FERNÁNDEZ-DELGADO et al. [18]

acknowledge the No-Free-Lunch [64] theorem, they state that these implementations

were very near to the maximum attainable accuracy for almost all the datasets eval-

uated. They consider the maximum attainable accuracy as the maximum accuracy

achieved among the 179 classifiers. The Random Forest and Support Vector Machine

algorithms are further detailed in sections 2.2.2 and 2.2.3.

2.2.1 Multi-label Classification

Multi-label classification [58] deals with the problem of classification in a dataset

that contains samples belonging to more than one class y, in other words, a single

instance can have simultaneously multiple labels. This concept is often confused with

multi-class classification which categorizes an instance into one class of more than

two available. In the multi-class classification, all instances in the dataset still have

a single label. Some methods to deal with this were proposed in the literature and

can be basically categorized in two classes: problem transformation and algorithm
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adaptation. The first approach transforms the problem into one or more problems

of single-label classification and then standard machine learning algorithms could

be applied. The second approach deals with making adjustments to known machine

learning algorithms so they can also deal with multi-label classification.

Multi-label classification has been successfully used before in the context of met-

alearning by [32]. In their research, they considered three very simple multi-label

classification methods based on the idea of problem transformation and applied these

to the travelling salesman problem.

The most common problem transformation technique employed to solve multi-

label classification problems is called binary relevance. In this simple method the

idea is to create separate binary classification datasets to generate the predictive

models, one for each label. This can be done by checking if a single label appears in

the instance label. If it does, a positive symbol is assigned to that instance, otherwise

the instance will be assigned to a negative symbol. The result for an unseen instance

can be obtained by concatenating the results of all predictive models as one single

label. Figures 2.2 shows an overview of this problem transformation method.

(a) Training (b) Prediction

Figure 2.2: Binary Relevance Multi-label Classification

The main disadvantage of the binary relevance method is that it fails to model

label correlations which possibly exist in some problems. To deal with this other

methods have been proposed such as Classifier Chains [50] and Random k-Labelsets

(also known as RAkEL) [59].

The Classifier Chains technique also involves problem transformation exactly the

same as in the binary relevance method, but instead of running a base classifier just

once, the idea is to chain together a series of classifiers extending the feature space

with the predictions of previously generated models. READ et al. [50] understand

that by chaining classifiers together, it is possible to predict strong label correlations

if they exist. Algorithm 2.1 shows an overview of this method.

10



READ et al. [50] further enhance this method by applying the ensemble concept

that basically trains m classifier chains h1...hm trained on a random selection of N

training instances sampled with replacement. As with other ensembles, a voting

scheme is used for the class prediction of an unseen instance.

Following a different path, TSOUMAKAS et al. [59] proposed the Random k-

Labelsets method based on the label powerset technique of problem transformation.

The idea of label powerset is to consider every possible label combination as a single

label, hence the name contains the term powerset. Although this method can better

model label relationships, it can only learn labels that exist on the training dataset.

It is also challenged by datasets with large number of labels as there are many

available combinations associated with very few training examples. The Random k-

Labelsets was proposed as a solution for this problem with the approach of randomly

separating the original labelsets into smaller labelsets with size k and from there

apply the traditional label powerset method.

2.2.2 Random Forests

In 1995 HO [27] proposed a new classifier algorithm, named Random Decision Trees,

that consists of building a collection of decision trees over a randomly selected sub-

set of features. The combined classification results of all trees is proved to improve

accuracy for both training and unseen data (test and validation). The idea of cre-

ating an ensemble of trees was the origin of the Random Forest algorithm proposed

by BREIMAN [8] in 2001. The current implementation of Random Forest in R

was done by LIAW and WIENER [41] which is actually a port of the original code

developed in Fortran by BREIMAN [8]. Below the steps from the R implementation:
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Algorithm 2.1 - Random Forest

Train

1. Create ntree bootstrap trees from the training data

2. For each tree:

Grow an unpruned classification or regression tree randomly sam-

pling mtry of all features and choosing the best split among those at each

step.

Test and Validate

1. Predict the values for unseen data by aggregating the predictions of ntree

trees according to the following methods:

Classification: majority of values

Regression: average

The number ntree of trees necessary to achieve good performance usually grows

with the number of features available. The whole idea behind Random Forests is

that the result of the aggregation function converges to a single value the larger

the number of trees considered. FERNÁNDEZ-DELGADO et al. [18] used 500

trees in their experiment, while LIAW and WIENER [41] mention that an empirical

comparison can be done in order to find the number of trees enough to provide good

results.

Regarding the random sample of features mtry to be considered when growing

each tree, it is known that a reasonable value is
√

#features. This is the default

value in R implementation when considering the Random Forest algorithm for clas-

sification. When the task is regression, the default value for mtry is #features/3.

LIAW and WIENER [41] also suggest to test half and twice the default value in

practice, picking the best among the three possible values for mtry.

2.2.3 Support Vector Machines

The original idea for Support Vector Machines came from the Generalized Portrait

method proposed by VAPNIK [62] in 1963. The current standard is based on the

optimization problem formulated by BOSER et al. [6], CORTES and VAPNIK [14]

that enhanced the algorithm to create non-linear classifiers by applying the kernel

trick.
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The intuition behind Support Vector Machines is to find the maximum margin

hyperplane that separates samples from the training vectors xi ∈ Rn, i = 1, . . . , l

according to their classes y ∈ Rl, yi ∈ {−1, 1}. In the end, this is formulated as a

constrained optimization problem.

CHANG and LIN [10] included this algorithm on their LibSVM software which

is actually the classifier implementation that showed results with no significant

statistical difference from the Random Forest implementation in R according to

FERNÁNDEZ-DELGADO et al. [18].

2.3 Instance Hardness and Empirical Perfor-

mance Models

The idea to use regression methods to predict the runtime of an algorithm had its

origin in the nineties with the utilization of linear regression models in the areas of

Parallel Processing and Artificial Intelligence [28].

LEYTON-BROWN et al. [40] introduced the term Empirical Hardness Models

in 2002 performing a case study for the combinatorial auction problem, applying

regression methods to predict algorithm runtime. From there, other case studies

have been done leading to the development of the famous algorithm portfolio for

the resolution of the SAT Problem: SATzilla [47] [66] [67].

The idea of LEYTON-BROWN et al. [40] is that the Empirical Hardness Model

can be used as a foundation for the construction of an algorithm portfolio that solves

the Algorithm Selection Problem automatically. The construction of this portfolio,

as described in [67], has the following steps:

1. Select a representative set of instances for the problem that needs to be solved.

2. Select algorithms that have a varying performance for the chosen set of in-

stances. If a single algorithm has superior performance when compared to

all others, there is no need to build an algorithm portfolio or to treat the

resolution of the problem applying the Algorithm Selection framework.

3. Identify features that characterize the chosen set of instances. Usually a spe-

cialist is required to determine these properties. For an effective result, the

selected features must have a correlation with the difficulty to solve an instance

while being simple to calculate.

4. Perform the feature calculation and run the algorithms to determine algorithm

runtime that will be used as the training set.
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5. Identify algorithms as pre-solvers when they can be used before the feature

calculation. The idea here is to use these algorithms to dispose of instances

considered easy to solve and focus the computational resources and the usage

of the algorithm portfolio on the most difficult ones.

6. Build an Empirical Hardness Model, for each algorithm from the portfolio, to

predict the algorithm runtime based on the instances features.

7. Select the best subset of algorithms to use in the final portfolio using the

validation set.

Once the portfolio has been built, it can be applied to the resolution of a new

problem instance with the following steps:

1. Run the pre-solvers algorithms to a predefined time limit.

2. Perform the features calculation.

3. Predict runtime for each algorithm using the Empirical Hardness Models built

previously.

4. Run the algorithm with the smallest runtime. In case it fails, try the one with

the second smallest runtime and so on.

Recently HUTTER et al. [28] generalized the term Empirical Hardness Model to

Empirical Performance Model. The idea of this generalization is that the regression

models can be used to predict any performance metric and not just the algorithm

runtime. This model is also extended to tune algorithm parameters. Casting this

to Rice’s notation, it can be said that a new space is proposed to the Algorithm

Selection Problem: the Configuration Space.

The Empirical Performance Model is formalized below:

Given:

• An algorithm a with configuration space θ,

• A distribution of instances with feature space F ,

An Empirical Performance Model is a function f : θ× F → ∆(R) that defines a

probability distribution over performance metrics for each combination of parameter

configuration θ ∈ Θ from A and instance with feature z ∈ F .

In practice, the parameters can be interpreted as features and they will be con-

sidered the same way when building the regression models.

An important aspect that must be considered depending on the data used for

the experiment is the transformation necessary to better visualize the information
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plotted on a graph. In the work of HUTTER et al. [28], logarithmic transformation is

used to adjust the algorithm runtime curves as this variable can increase considerably

for difficult combinatorial problems.

2.4 Metalearning

In the nineties the idea of generalizing algorithm performance from case studies is

developed [1] [44]. In other words, if an algorithm presents good performance on a

specific problem class, it may also show good performance on similar classes. AHA

[1] was the first to propose a systematic empirical method to generalize case studies.

His idea was to list under what conditions an algorithm is better than other. The

rule proposed by AHA [1] using Rice’s notation is cited below:

An algorithm a ∈ A is better than other algorithm b ∈ A for instances x ∈ P with

features f(x) ∈ F considering the metric y ∈ R.

The case study from AHA [1] is focused on machine learning algorithms, but the

idea could be applied to any other algorithm. The term metalearning was first used

in this context. The steps to this generalization are:

1. Gather details about the case study: algorithms, algorithm performance and

problem characteristics,

2. Model the problem with artificial data,

3. Select parameters to feed the problem generator such that the algorithm per-

formance differences observed on the artificial data is similar to the information

gathered from the real data,

4. Evaluate the algorithms on the artificial data several times for each parameter

configuration of the problem generator,

5. Derive a rule summarizing when the performance differences occurs.

Recently most researches related to metalearning have been using machine learn-

ing methods to generate models that can establish a relation between algorithm

performance and instances features. BRAZDIL et al. [7] formalized some concepts

that are fundamental to understand the practice of metalearning :

• Metaknowledge: any type of knowledge derived from the application of a Ma-

chine Learning algorithm.

15



• Metafeatures : problem properties that have correlation with algorithm perfor-

mance. Three classes are proposed:

– Statistical and Information Theory Features: calculated by applying

statistic functions over properties of the problem instance. Sample func-

tions are: median, standard deviation, variance and entropy.

– Features based on the learned model: obtained by analyzing the model

generated by the machine learning algorithm. If the machine learning

algorithm is a decision tree, for example, the tree height and number of

leaves could be relevant features.

– Landmarkers : consisting of performance data from simple or fast algo-

rithms. These algorithms can be executed to try and measure the instance

hardness. For most problems there is always a greedy algorithm that can

provide a solution even though it is not optimal. The runtime or mem-

ory consumption of such algorithm could provide hints on the instance

hardness.

According to BRAZDIL et al. [7], “Metalearning is the study of principled meth-

ods that exploit metaknowledge to obtain efficient models and solutions adapting

machine learning and data mining processes.”

As explained by SMITH-MILES [57], although many definitions have been pro-

posed for this term, all aim to explore the knowledge acquired about algorithm

performance in order to improve a specific algorithm or to allow the selection of the

best one.
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Chapter 3

The Graph Coloring Problem

The Graph Coloring Problem, also known as Graph K-Coloring, is defined as the

problem of finding a coloring with K colors for the graph G in a way that the vertices

sharing a link do not have the same color. Formally the problem is stated as the

following:

Given:

• An undirected graph G = (V,E), and

• K ∈ N+, K < |V |

It is desired to know if exists a function f : V → {1,2,...,K} in a way that

f(u) 6= f(v) always that (u, v) ∈ E.

The statement above is related to the decision problem form of the graph K-

coloring. The optimization problem associated is known as chromatic number prob-

lem, where the goal is to find the smallest value for K while still following the

constraints of the Graph Coloring Problem.

This problem had its origin with the Four-Color Theorem proved in 1976 [2],

despite being proposed almost a century earlier by Francies Guthrie. This theorem

states that for any given separation of a plane in contiguous regions, no more than

four colors are required to color all regions in a way that adjacent regions do not

have the same color. A plane here can be seen as a map or planar graph. In fact,

the graph coloring problem is easy to solve for specific types of graphs such as:

complete graphs, cycle, wheel or planar graphs and bipartite graphs. There are

known theorems and efficient algorithms to find the chromatic number for these

types of graphs in polynomial time. Unfortunately, for more complex graphs, there

are no strong theorems that can precisely determine the number of colors required

to paint all vertices.

In 1972 KARP [33] publishes a work where it is proved that the Graph K-Coloring

belongs to the NP-complete class. Later, GAREY and JOHNSON [20] gather many
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results obtained until 1979 that are useful to understand the complexity of the graph

coloring problem. For instance, specific graph types such as chordal graphs or graphs

that do not have vertices with degree greater than three can be colored exactly in

polynomial time. It is not in scope of this work to provide a detailed description of

all graph types and coloring algorithms, but the next sections give a brief overview of

common graph types and complex network models as well as state-of-the-art graph

coloring algorithms.

3.1 Graph Types and Complex Networks

There are many different ways to classify a graph. For the objectives of this work

they can be basically divided into artificially generated graphs and real-world graphs:

The first are built artificially following mathematical models to simulate graphs

properties that can be relevant for specific applications or domains. The second

class is a mathematical representation of a real-world environment where vertices

represent real-world entities and edges show relationships among them. In this work

the focus is on the evaluation of artificially generated graphs, although some of these

can represent, with good accuracy, properties of real-world networks.

3.1.1 Uniform Graphs

Denoted by Gnp and proposed by GILBERT [21], ERDŐS and RÉNYI [17] in 1959.

This is the simplest type of random graph where the number of vertices is predefined

|N | and each possible edge e ∈ E occurs independently with probability p. The

number of edges of a complete graph is |E| = (n(n − 1))/2 and since each edge

has probability p to exist in the generated graph, the expected value for M is

E[M ] = (n(n − 1)p)/2 - M being the random variable representing the number of

edges of Gnp.

What is interesting about uniform graphs is that at the same time some of them

area easy to color, but hard to color optimally. BOLLOBÁS [5], GRIMMETT and

MCDIARMID [23] studied the chromatic number on random graphs and found the

result that for a fixed probability p, the lower bound of χ(Gp) for almost all of them

is:

χ(Gp) =
(1

2
+ o(1)

)
log 1/(1− p) n

log n
(3.1)

3.1.2 Geometric Graphs

Introduced by JOHNSON et al. [31], the Geometric Graph model, also known as

Random Geometric Graph (RGG), is a model in which each vertex is assigned
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a coordinate in a two-dimensional space and an edge is associated with a pair of

vertices (u, v) if their Euclidean distance d(u, v) is smaller or equal than a parameter

value r.

RGGs are useful to model adhoc networks which are composed of mobile wireless

devices. In a dynamic environment, every device can move independently and the

links among them also change frequently. RGGs can model this behaviour quite

well with the r parameter.

MCDIARMID and MÜLLER [42] also conducted some theoretical work about

the chromatic number for random geometric graphs. The results are still of little

practical application.

3.1.3 Weight-biased Graphs

These graphs are among the hardest to color as this model is designed to restrict the

development of larger cliques while allowing smaller ones. The parameter p is used

to terminate the selection of edges when the number exceeds the expected value

E[M ] = (n(n− 1)p)/2. They are built by assigning each vertex pair a fixed weight

W and then selecting a pair of vertices with probability p = W (x, y)/
∑

(W ). The

weights are also dynamically adjusted by two other parameters as the graph is built.

When a new edge is selected γ is used to change the weight of every pair of vertices

incident to this new edge. α is only applied to pairs which would form a triangle

with the new edge and a previously selected edge. The adjustments done by α and

γ can be done either by multiplication or addition. The graph development process

terminates when the total weight becomes zero or when the expected value for M is

reached.

3.1.4 Barabási-Albert Model

This model is based on the concepts of preferential attachment and growth: two

ideas that are key to define the structural properties observed in real world networks.

This simple idea was proposed by BARABÁSI and ALBERT [3] in 1999 when they

showed that the scale-free property of many complex networks - of varied size and

nature - are related to these two concepts.

The scale-free property indicates that the degree distribution of the network

follows a power law. This means that the probability P (k) of a vertex have a degree

k follows an expression like P (k) ∼ k−y.

The proposed model is built by growing the network one vertex at a time and

following the preferential attachment rule in which every vertex added to the graph

is more likely to be connected to the vertex with highest degree.
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Since the Seventies, many algorithms have been proposed to solve the graph

coloring problem. The next sections will present these different approaches and

state-of-the-art algorithms that can solve both the optimization and decision forms

of this problem.

3.2 Constructive Algorithms

Constructive algorithms are based on techniques that build a solution in an iterative

way. In the case of graph coloring, assigning one color to each vertex on each

iteration. The advantage of these algorithms is that they are really fast and can

give good results, if not exact, for basic graph structures. In the special cases of

cycle and wheel graphs, for example, DSatur and RLF algorithms can find the exact

result for the chromatic number. These algorithms are detailed in the next sections.

3.2.1 Greedy

The most simple constructive algorithm proposed to solve the graph coloring prob-

lem is the greedy algorithm, or first-fit, that determines that each vertex is assigned

to an available color within a set of colors S ={1,2,...,K}, in a way that adjacent

vertices do not share the same color. If this procedure is not possible, a new color is

added to the set of colors |K| = |K|+ 1 and the algorithm continues. The number

of colors of the final solution will depend on the order that the vertices are evaluated

and the order that the colors are tested for each vertex. Based on that, there can

be many variations of this greedy algorithm.

3.2.2 DSatur - Degree Saturation

An algorithm a little bit more sophisticated and probably the most known among the

graph coloring algorithms is DSatur or Degree Saturation [9]. This algorithm uses

the definition of vertex degree saturation to determine dynamically during runtime

the order in which vertices must be evaluated, different from the greedy algorithm

previously presented where this order must be established before the algorithm starts

running. The degree saturation of a vertex v is defined as the number of distinct

colors of its adjacent vertices. Vertices without colors are not considered in this

summation. The algorithm steps are presented below:

1. Sort the list of vertices in decreasing order of degree,

2. Assign color 1 to the vertex with greatest degree,
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3. Select the vertex with the greatest saturation degree. If there is more than

one option, choose any vertex with the greatest degree in the non-colored

subgraph,

4. Assign the smallest color number to the chosen vertex,

5. If all vertices were colored, stop. Otherwise return to step 3.

BRÉLAZ [9] proved that this algorithm is exact for bipartite graphs.

3.2.3 RLF - Recursive Largest First

Proposed by LEIGHTON [37] in 1979, the main idea of the Recursive Largest First

algorithm is to color the graph one color at a time instead of one vertex at each

iteration. This algorithm leverage the concept of independent sets as it tries to

identify them in the graph in order to assign the same color to all vertices within

the same set. An independent set is a set of vertices such that there is no edge

between any of the vertices.

After coloring an independent set, its vertices are removed from the graph and

the procedure continues with the remaining sub-graph until all vertices have been

colored. In order to decide which vertex to color at each step, RLF always selects

the vertex with the highest degree on the remaining sub-graph that can be colored

without causing a conflict.

As a greedy constructive method, RLF is a polynomial bounded algorithm with

O(n3) and will always generate the same feasible solution. Even though it is not

able to find the optimal solution for many types of graphs, it is known to be exact

for bipartite, cycle and wheel graphs.

3.3 Heuristics and Advanced Techniques

Methods based on heuristics, also known as based on optimization, are methods that

navigate within a space of candidate solutions trying to optimize an objective func-

tion defined in that space. Some algorithms may have the flexibility of navigating

to the space of improper solutions, in which some of the problem constraints are not

met, while others are limited to navigate only within the space of proper solutions.

The algorithms presented in the next sections uses at least one of the following

methods for navigating through the solution space: backtracking, hill-climbing or

local search.
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3.3.1 Backtracking DSatur

KORMAN [35] proposed an improved DSatur algorithm in 1979 by adding back-

tracking capabilities using a search tree. The idea of the backtracking procedure

is to sort the vertices of a graph according to a criteria and then perform forward

and backward steps according to this ordering. Forward steps would assign colors

until a certain criteria is met. Then backward steps would be taken to remove colors

from vertices in order to evaluate alternative feasible paths in search for an optimal

solution.

3.3.2 TabuCol

TabuCol was originally developed by HERTZ and DE WERRA [26] in 1987. It

is a local search based algorithm that works with improper k-colorings since when

navigating the search space, it provides solutions that do not meet the constraints

requirements for the graph coloring problem. In other words, when searching for a

solution, this algorithm allows adjacent vertices to have the same color.

In order to find a proper solution, TabuCol needs to reduce the number of coloring

clashes to zero. The objective function below counts the number of clashes, hence

it is used as the objective function to be optimized by TabuCol:

f(S) =
∑

∀u,v ∈ E

g(u, v) (3.2)

where

g(u, v) =

1, if c(u) = c(v)

0, otherwise

Many variants have been proposed for the TabuCol algorithm. The version

implemented by LEWIS [38] and used in this work is based on the variant proposed

by GALINIER and HAO [19]. In this version, the initial solution is built by a

modified version of the greedy algorithm that allows clashes by limiting the number

of colors that can be used. Starting from this candidate solution, movements in the

search space are done by selecting vertices whose color assignment is in conflict and

then assigning it to a new color. Moving a vertex back to the same color is disallowed

for a specific number of iterations stored in the tabu list: a matrix Tn,k. For every

movement of a vertex v from color i to color j, the tabu list value Tv,i is updated with

the value l + t, in which l represents the current iteration number and t is the tabu

tenure parameter that controls the search behaviour of the algorithm. GALINIER

and HAO [19] suggest the value t = 0.6f(S) + r where r is an integer uniformly

selected from the range 0 to 9 inclusive. This expression makes the parameter

t proportional to the solution quality f(S) which forces the algorithm to explore
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different regions of the solution space when the number of color clashes is high by

disallowing previously assigned colors of each vertex for long periods.

3.3.3 PartialCol

PartialCol was proposed by BLÖCHLIGER and ZUFFEREY [4] 20 years after the

original idea of TabuCol, yet it has a similar search strategy. Instead of working

with improper solutions, PartialCol deals with incomplete solutions by separating

vertices that cannot be colored without causing a conflict into a set of uncolored

vertices U . The objective function for this algorithm is very simple as it consists of

the size of set U which needs to be reduced to zero:

f(S) = |U | (3.3)

The initial solution for PartialCol is developed the same way as in TabuCol with

the difference that when a clash of color occurs, the conflicting vertex is included in

set U instead of randomly being assigned to a color. Movements in the search space

of this algorithm are performed by selecting a vertex v ∈ U and assigning it to a

color Sj ∈ S. After that, all vertices u ∈ Sj adjacent to v are transferred to U , in

other words, all vertices adjacent to v that have the same color Sj are discolored.

PartialCol also uses a tabu tenure to manage the search behaviour. BLÖCHLIGER

and ZUFFEREY [4] proposed a mechanism that changes the parameter t based on

the search progress. This was implemented in the variant known as FOO-PartialCol,

in which FOO stands for Fluctuation Of the Objective function.

3.3.4 HEA - Hybrid Evolutionary Algorithm

The Hybrid Evolutionary Algorithm was proposed by GALINIER and HAO [19]

in 1999 using ideas of evolutionary algorithms to evolve a population of candidate

solutions with a specific recombination operator and local search methods.

The initial solution for HEA is provided by a modified version of DSatur with

fixed number k of colors to induce conflicts. Evolution occurs by randomly selecting

two parent solutions S1 and S2 to generate a child solution S ′ using the recombi-

nation operator. S ′ is mutated with a local search method, in this case TabuCol

and inserted back into the population replacing the weaker of its two parents. The

recombination operator proposed by GALINIER and HAO [19] is called Greedy

Partition Crossover (GPX) as it selects the largest color classes from the parents to

generate the new child candidate solution. The procedure is done by selecting the

vertices with the largest color class from the parent solution S1 and include them in

the child solution S ′. Then remove the vertices already selected from both parents
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and select the ones from S2 with the largest color class. This process is repeated

until k color classes are formed.

3.3.5 AntCol

AntCol is another graph coloring metaheuristic-based method. It was proposed by

DOWSLAND and THOMPSON [16] in 2008. As other ant colony optimization

algorithms, AntCol leverage the capability that ants have to find the shortest path

between food sources and their colonies. In this case, the pheromone trail that

indicates the nearest food source guides the ants to solutions that present lower

number of colors.

Each ant produce a candidate solution based on the RLF algorithm, but with

some modifications to incorporate the pheromone trail parameter. At each step,

the ants try to build a solution with a limited number of k colors. The first vertex

to be colored is chosen randomly from the set of uncolored vertices X. After that,

the ant is guided by the pheromone trail and pick the next vertex according to the

probability below:

Pvi =


ταvi×η

β
vi∑

u∈X(ταui×η
β
ui)
, if v ∈ X

0, otherwise
(3.4)

where τvi is:

τvi =

∑
u∈Si tuv

|Si|
(3.5)

Vertices that can’t be colored without causing a clash are included in a separated

set Y . t is the pheromone trail matrix. α and β are parameters that control the

influence of τ and η in equation 3.4. η is the known as the heuristic rule on ant

colony optimization algorithms. In the case of AntCol, η is the degree of vertex v in

the graph formed by the current set of uncolored vertices X ∪ Y . When all vertices

have been evaluated, the ant comes up with a proper, possibly partial, solution. If

there are still vertices remaining to be colored, they are assigned randomly to one

of the k colors and then TabuCol is applied to form a complete feasible solution.
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Chapter 4

Algorithm Selection for The

Graph Coloring Problem

In this chapter the domain spaces that compose the algorithm selection framework

used within this work are further detailed from sections 4.2 to 4.5. Section 4.1

presents the related works since when the focus was just on performance data gather-

ing and analysis until the most recent researches where machine learning techniques

have been applied in the context of the algorithm selection problem.

4.1 Related Works

It is common practice in academic research when proposing a novel or enhanced

algorithm to compare it with state-of-the-art algorithms. It is not different with

the graph coloring problem. As new algorithms were proposed, many empirical and

theoretical analysis have been made comparing such algorithms and special cases

where it was known that the they would perform well [61]. CULBERSON et al.

[15] were the first to consider the comparison of many algorithms trying to relate

properties of graph instances with the idea of instance hardness. Although not

mentioning the suggestion made by AHA [1], CULBERSON et al. [15] followed the

same idea by developing a random generator to create graph instances so they could

be used to identify regions of the problem space where algorithms perform better.

CHIARANDINI and STÜTZLE [11] conducted another significant empirical

analysis comparing many graph coloring algorithms and trying to relate algorithm

performance with graph instances features such as graph size, density and type. In

their research they analyze 3 constructive algorithms and 9 stochastic local search

algorithms running over 1260 artificial graph instances, leveraging the same random

generator developed by CULBERSON et al. [15]. Their findings indicate that RLF

is the best constructive algorithm when it comes to solution quality, while DSatur is
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nice and fast but sometimes it does not generate good solutions. Their implementa-

tion of TabuCol performed well for Uniform and Weight-biased graphs of density 0.5

while it did not dominate those of density 0.1 and 0.9. Guided Local Search (GLS)

was found to be the best for Geometric graphs and since this type has a clique size

close to the chromatic number, they suggested GLS works best for graphs with this

property.

SMITH-MILES et al. [55] were the first to apply data mining and machine learn-

ing algorithms to predict performance of graph coloring algorithms. In their work,

they compared two graph coloring algorithms with very different approaches: DSatur

and TabuCol. Table 4.1 below summarizes the conducted experiment casting the

terminology of the algorithm selection framework.

Table 4.1: Algorithm Selection domain spaces from SMITH-MILES et al. [55]

P F A S Y
5000 graphs 16 features DSatur Self-organising Minimum

TabuCol Feature Maps number of
and colors

Decision Tree

Self-organising Feature Maps were used to produce a visual representation of the

instance space so that later the information about algorithm performance (minimum

number of colors) could be superimposed. As expected, DSatur was superior to

TabuCol only in a few number of instances. By viewing the generated content as a

dataset having the label as a tag identifying if TabuCol outperforms DSatur, they

split the generated dataset randomly extracting 80% of the data to use as a training

set with the remaining 20% to be used for testing. Using the decision tree algorithm

from IBM SPSS software, they claim that with 93.7% accuracy the generated model

can predict whether TabuCol will be better than DSatur.

SMITH-MILES and BAATAR [54] continued the work by investigating if graph

spectra features could improve the predictions of graph coloring algorithm perfor-

mance. By graph spectra, they consider a series of features extracted from the

adjacency and laplacian matrix representations of a graph. The table 4.2 summa-

rizes the domain spaces considered in the research.

Following the same approach as in the previous work, SMITH-MILES and

BAATAR [54] first build a visual representation from the instance space - but this

time using Principal Component Analysis (PCA) - and then they apply a machine

learning method to predict which graph coloring algorithm would be best for an

unseen graph. In this experiment, they formulated a novel performance metric com-

bining the CPU runtime (β) with the gap in the number of colors found and the best
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Table 4.2: Algorithm Selection domain spaces from SMITH-MILES and BAATAR
[54]

P F A S Y
800 graphs 21 features Branch & Bound Principal β + 1800α

DSatur Component
LPround Analysis

and
Naive Bayes

known lower bound (α). The class label used this time is the actual name of the

graph coloring algorithm, while the features are the two-dimensional coordinates of

the instance space projection. The training set was obtained by randomly extract-

ing 70% of the instances with stratified sampling and the remaining 30% was used

for out-of-sample testing to get the classification accuracy. The machine learning

method considered was a Naive Bayes classifier from MATLAB, which achieved a

test set accuracy of 72%. SMITH-MILES and BAATAR [54] attribute the lower

accuracy obtained in this work to the difficulty that the machine learning method

would have in “separating instances based on class labels”.

The last work by SMITH-MILES et al. [56] involved lots of different instances

and algorithms. They kept using the PCA tactic to generate a R2 visualization of

the instance space and then superimposing the information about algorithm perfor-

mance to understand regions where coloring algorithms are better than others. The

main novelty of this paper is related to the performance metric and how the label

is generated for the dataset so a machine learning method can be applied to predict

whether a graph coloring algorithm is recommended for an unseen instance. The

new metric considered the possibility of graph coloring algorithms finding solutions

with the equal or approximately the same quality. In other words, an algorithm

is now “ε-good” if it finds a number of color K within ε% of the minimum color

found. The percentages considered are 0% - a tie - and 5%. Table 4.3 summarizes

the information about this work.

SMITH-MILES et al. [56] first tried Naive Bayes (as they did in the previous

work) to predict the regions where each algorithm would be “ε-good”. This initial try

was a failure as it predicted that HEA would be the best across the whole instance

space. Then they turned to Support Vector Machine, using a 50-50 split for training

and out-of-sample testing and generating eight models to predict the boundaries for

each graph coloring algorithm. The accuracies on the testing set ranged from 90%

for DSatur and Backtracking DSatur down to 73% for AntCol.

Around the same period, SCHWENGERER and MUSLIU [53] conducted an
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Table 4.3: Algorithm Selection domain spaces from SMITH-MILES et al. [56]

P F A S Y
6712 18 features DSatur Principal Time cap of

graphs Backtracking DSatur Component 5× 1010

HillClimb Analysis Constraint Checks
HEA and and

TabuCol Naive Bayes / concept of
PartialCol Support “ε-good”

AntCol Vector
Random Greedy Machine

extensive research focusing on the algorithm selection problem applied to graph

coloring.

Table 4.4: Algorithm Selection domain spaces from SCHWENGERER and MUSLIU
[53]

P F A S Y
1265 79 GLS Bayesian Network Minimum number

graphs features PartialCol Decision Tree of colors
HEA k-Nearest Neighbor Risk
ILS Muti-layer Perceptron Median time

MACOL Random Forest
MAFS Support Vector
MMT Machine

TabuCol

SCHWENGERER and MUSLIU [53] propose a novel performance metric named

risk which is how often the same coloring has been found. They consider such metric

in their performance metric space Y by comparing the minimum number of colors

found with a risk above 50% over 10 executions for the same graph coloring algorithm

starting with different randomization seeds. In other words, in this experiment an

algorithm must find the same minimum number of colors at least 5 times. They

break ties by considering the median time needed to find that number of colors.

They also test other techniques to manipulate the feature set by using discretiza-

tion and basis function expansion. When dealing with classification problems, dis-

cretization techniques can improve the overall accuracy of the machine learning

algorithm, while basis function expansion is more commonly used on regression

problems to generate new features. The results showed that such techniques could

improve the final accuracy of the selection mapping function slightly.
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Finally they conclude that the idea of using a portfolio of graph coloring algo-

rithms to build a predictive model to select the best one can solve more instances

than every single coloring algorithm used in the portfolio. The best result achieved

on the test set was obtained using Random Forest as the machine learning algorithm

which led to 70.39% classification accuracy.

In the next sections the domain spaces of algorithm selection are detailed for the

set of experiments conducted in this work.

4.2 Problem Space

In this work a straightforward methodology was adopted that could be used on

future comparisons with the results presented here. All datasets are either public

available or can be generated by random graph generators. We emphasize that

such methodology, although simple, is relevant to be followed as it truly shows the

impacts of changing variables for this problem and allows a fair comparison among

the many methods proposed to select the best graph coloring algorithm.

For all the experiments conducted in this work, the datasets used in the machine

learning tasks were built by extracting features and running the selected graph

coloring algorithms to gather performance data on the following sets of instances:

• CHI500: 520 graphs of size 500 randomly generated with Culberson’s ran-

dom generator with variable density and types used on the original work of

CHIARANDINI and STÜTZLE [11].

• CHI1000: 740 graphs of size 1000 randomly generated with Culberson’s ran-

dom generator with variable density and types used on the original work of

CHIARANDINI and STÜTZLE [11].

• DIMACS Graph Coloring: 29 graphs of different size and density from the

Graph Coloring Benchmark collection of the DIMACS Challenge.

• BA500: 200 graphs of size 500 randomly based on Barabási-Albert model for

complex networks.

• BA1000: 200 graphs of size 1000 randomly based on Barabási-Albert model

for complex networks.

CHI500 and CHI1000 datasets were used on a research that had the same objec-

tive of generalizing from case studies[11]. It could be considered the first metalearn-

ing analysis for the graph coloring problem, in which the authors evaluated algo-

rithm performance to determine which algorithm performs best for specific classes
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of graphs. The graph types within these datasets were explained earlier in chapter

3 and consists on: uniform, geometric and weight-biased graphs.

DIMACS graph coloring instances were obtained from the second DIMACS chal-

lenge [30] that occurred in 1992 and 1993. Named after the Center for Discrete

Mathematics and Theoretical Computer Science, this challenge aims to promote the

search for effective algorithm implementations to solve complex problems.

BA500 and BA1000 were generated using NetworkX random generator for

Barabási-Albert model. After generating 1000 instances, many were eliminated by

selecting those with approximate graph density belonging to CHI500 and CHI1000

datasets in an effort to keep the final dataset balanced. Listing B.1 on appendix B

contains the script used for this procedure.

4.3 Algorithm Space

The graph coloring algorithms considered in this work were implemented by Rhyd

Lewis [38]. There are eight algorithms available: Random Greedy, Recursive Largest

First (RLF), DSatur, Backtracking DSatur, TabuCol, PartialCol, Hybrid Evolution-

ary Algorithm (HEA) and AntCol.

A nice feature from these implementations is that all algorithms are limited by

a number of constraint checks. As defined by Lewis: ”a constraint check occurs

whenever an algorithm requests some information about a graph”. The following

tasks increase the number of constraint checks when running the graph coloring

algorithms:

• Accessing an element Auv from the adjacency matrix of a graph adds one unit

to the number of checks.

• When the graph is represented as an adjacency list, accessing all vertices ad-

jacent to a vertex Adjv adds |Adjv| units to the number of checks.

A specific case of this situation occurs when the algorithm needs to know

the degree of a vertex.

• Accessing an element Cvi from an additional matrix to count the number of

vertices that belong to color class Si ∈ S and are adjacent to v. Such access

also counts as one unit.

No parameter tuning was done for the graph coloring algorithms listed here. The

default values defined in the implementation of LEWIS [38] are maintained. These

are based on suggested values from each original publication about the coloring

algorithm.
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4.4 Feature Space

The feature space varies in the experiments conducted in this work in order to

identify the impact of adding or removing features from the space when it comes to

measuring the accuracy of the selection mapping function S or, in other words, the

model built by the machine learning algorithm. What was interesting on related

works is that there was no correlation on why some features were added and others

were removed and the feature set not always increase.

Considering this, four different feature sets from related works on algorithm se-

lection for the graph coloring problem were evaluated. A fifth feature set combining

previously used features plus adding novel ones is also analysed. FS1 and FS5 have

some sets of features that are based on statistical aggregate functions and these are

presented in the table 4.5.

Table 4.5: Aggregate functions for features

Name Description
minimum minimum value of the population
maximum maximum value of the population

mean arithmetic mean of a population
standard deviation measure of dispersion of a population
variation coefficient a normalized measure of dispersion population

first quartile value that splits lowest 25% of the population
median value that splits lowest 50% of the population

third quartile value that splits lowest 75% of the population

The list of features for each feature set are presented next from table 4.6 to table

4.10.
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Table 4.6: Feature Set 1 - 79 features from SCHWENGERER and MUSLIU [53]

1. Number of vertices

2. Number of edges

3. Density

4. Ratio between number of vertices and number of edges and its inverse

5. Node degree: 8 aggregate functions

6. Maximal clique size: 10 aggregate functions

7. Clustering coefficient: 10 aggregate functions

8. Weighted clustering coefficient: 8 aggregate functions

9. Landmarking

Local search: 9 features

Greedy coloring: 23 features

10. Tree decomposition: 2 features

11. Lower and upper bound: 4 features
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Table 4.7: Feature Set 2 - 16 features from SMITH-MILES et al. [55]

1. Number of vertices

2. Number of edges

3. Diameter: the greatest distance between any pair of vertices. Can also be
interpreted as the maximum eccentricity of a graph.

4. Density

5. Average path length: average number of steps along the shortest paths for all
possible pair of vertices.

6. Girth: length of the shortest cycle in the graph

7. Mean vertex degree

8. Standard deviation of vertex degree

9. Clustering coefficient: a measure of degree to which nodes in a graph tend to
cluster together. This is a ratio of the closed triplets to the total number of
triplets in a graph. A closed triplet is a triangle, while an open triplet is a
triangle without one side.

10. Mean eigenvector centrality

11. Standard deviation of eigenvector centrality

12. Mean betweenness centrality

13. Standard deviation of betweenness centrality

14. Mean spectrum: mean of the set of eigenvalues of adjacency matrix

15. Standard deviation of set of eigenvalues of adjacency matrix

16. Algebraic connectivity: second smallest eigenvalue of laplacian matrix
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Table 4.8: Feature Set 3 - 21 features from SMITH-MILES and BAATAR [54]

1. Number of vertices

2. Number of edges

3. Diameter: The greatest distance between any pair of vertices. Can also be
interpreted as the maximum eccentricity of a graph.

4. Density

5. Average path length: average number of steps along the shortest paths for all
possible pair of vertices.

6. Mean vertex degree

7. Standard deviation of vertex degree

8. Clustering coefficient: a measure of degree to which nodes in a graph tend to
cluster together. This is a ratio of the closed triplets to the total number of
triplets in a graph. A closed triplet is a triangle, while an open triplet is a
triangle without one side.

9. Energy: sum of absolute values of eigenvalues of adjacency matrix

10. Standard deviation of the set of eigenvalues of the adjacency matrix

11. Algebraic connectivity: second smallest eigenvalue of laplacian matrix

12. Smallest non-zero eigenvalue of the Laplacian matrix

13. Second smallest non-zero eigenvalue of the Laplacian matrix

14. Largest eigenvalue of the Laplacian matrix

15. Second largest eigenvalue of the Laplacian matrix

16. Smallest eigenvalue of the adjacency matrix

17. Second smallest eigenvalue of the adjacency matrix

18. Largest eigenvalue of the adjacency matrix

19. Second largest eigenvalue of the adjacency matrix

20. Gap between the largest and second largest eigenvalues of the adjacency matrix

21. Gap between the largest and smallest non-zero eigenvalues of the Laplacian
matrix

34



Table 4.9: Feature Set 4 - 18 features from SMITH-MILES et al. [56]

1. Number of vertices

2. Number of edges

3. Density

4. Mean vertex degree

5. Standard deviation of vertex degree

6. Average path length: average number of steps along the shortest paths for all
possible pair of vertices.

7. Diameter: the greatest distance between any pair of vertices. Can also be
interpreted as the maximum eccentricity of a graph.

8. Girth: length of the shortest cycle in the graph

9. Mean betweenness centrality

10. Standard deviation of betweenness centrality

11. Clustering coefficient: a measure of degree to which nodes in a graph tend to
cluster together. This is a ratio of the closed triplets to the total number of
triplets in a graph. A closed triplet is a triangle, while an open triplet is a
triangle without one side.

12. Szeged index:

13. Beta:

14. Energy: sum of absolute values of eigenvalues of adjacency matrix

15. Standard deviation of set of eigenvalues of adjacency matrix

16. Algebraic connectivity: second smallest eigenvalue of laplacian matrix

17. Mean eigenvector centrality

18. Standard deviation of eigenvector centrality
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Table 4.10: Feature Set 5 - 102 features

1. Number of nodes

2. Number of edges

3. Ratio between number of nodes and number of edges and its inverse

4. Density

5. Node degree: 8 aggregate functions

6. Betweenness centrality: 8 aggregate functions

7. Closeness centrality: 8 aggregate functions

8. Eigenvector centrality: 8 aggregate functions

9. Eccentricity: 8 aggregate functions

10. Clustering coefficient: 8 aggregate functions

11. Global clustering coefficient

12. Weighted clustering coefficient: 8 aggregate functions

13. Graph spectra: 16 features

14. Wiener index

15. Szeged index

16. Beta

17. Girth: length of shortest cycle in a graph

18. Average path length

19. Degeneracy

20. Connected components

21. Rank: number of vertices minus the number of connected components

22. Corank: number of edges minus the graph rank

23. Maximal clique size normalized by the number of vertices: 8 aggregate func-
tions

24. Maximum maximal clique size and time to generate it

25. Tree decomposition: 2 features

26. Lower and upper bound: 4 features
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4.5 Performance Criteria

Related works have mentioned that the results published are strongly tied to the

performance criteria chosen, but no emphasis is given on such metric. The per-

formance criteria discussed here determines how to evaluate when a graph coloring

algorithm a is better than another algorithm b.

Different researches considered distinct time caps to run the graph coloring al-

gorithms in order to gather performance metrics such as minimum number of colors

achieved and CPU runtime. In this work the impact of different criteria when com-

paring graph coloring algorithms is evaluated. The upper bound for the time cap

considered in this work is not directly related to CPU runtime, instead the concept

of constraint checks is used - which seems to be fair when comparing algorithms.

The maximum number of constraint checks allowed is 5× 1010, in other words, each

algorithm is given the chance to access data from the graph coloring problem in-

stance 5× 1010 times. By changing the performance criteria also requires to change

the machine learning method employed as when allowing ties, the class for a specific

instance could be multi-label instead of having a single label. This is detailed in the

list below:

• Classification and Regression:

Performance criteria 1: Minimum color achieved. Ties are resolved by

selecting the algorithm that spent less CPU runtime.

Performance criteria 2: Minimum color achieved. Ties are resolved by

selecting the average best algorithm.

Performance criteria 3: Minimum color achieved. Ties are resolved by

selecting the algorithm that had the minimum number of constraint checks.

• Multi-label classification:

Performance criteria 4: Minimum color achieved allowing ties.

Performance criteria 5: Minimum color achieved allowing ties with a tol-

erance of 5%. In other words, algorithms that reach a coloring within 5% of

the minimum color achieved are added to the final class label.

Performance criteria 6: Minimum color achieved allowing ties with a tol-

erance of 10%. In other words, algorithms that reach a coloring within 10% of

the minimum color achieved are added to the final class label.
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Chapter 5

Experimental Setup and Results

This chapter discuss the results from the experiments configured according to the

details presented on section 5.1. Section 5.2 shows the impact of changing some

of the algorithm selection framework parameters on the selection mapping function

accuracy. The regression results are presented on section 5.3 where it is possible

to see that the concept of empirical performance models is feasible for the graph

coloring problem, although it cannot be used as a mean to select the best algorithm.

Another quick lookup on the graph coloring performance database revealed that

some algorithms were reaching the same value for the chromatic number and that

by ignoring the CPU runtime, the classification dataset could be turned into a

multi-label classification dataset. The results of applying this method are detailed

in section 5.4.

5.1 Methods and Materials

As previously mentioned, the first step in the algorithm selection process is to extract

features from the instances of the problem space. In related works, many sets of

features have been proposed but no comparison has been made among them. The

idea here is to compare these feature sets and propose new features to try improve

the selection mapping function accuracy to predict which is the best algorithm for

an unseen instance. After comparing the accuracy obtained by using each of these

feature sets, the best set was selected to be used on the experiments to support the

investigation of other questions from this work.

These feature sets were evaluated without any type of preprocessing or calcula-

tion. Neither discretization, nor basis function expansion have been applied to these

sets as the goal was to evaluate the original impact that each feature had on the

accuracy of the learned model. Listing A.2 on appendix A contains a small part of

the source code used for feature extraction. A summary of these sets is given below:
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• 79 features from SCHWENGERER and MUSLIU [53] denoted from now on

by FS1.

• 16 features from SMITH-MILES et al. [55] denoted from now on by FS2.

• 21 features from SMITH-MILES and BAATAR [54] denoted from now on by

FS3.

• 18 features from SMITH-MILES et al. [56] denoted from now on by FS4.

• 102 features as a novel set introduced by this work denoted from now on by

FS5.

The next step in the algorithm selection process is to gather performance data

about the algorithms being evaluated. To automate this process, a small C# pro-

gram 1 was developed to run the graph coloring algorithms from the algorithm space

and populate a database with the number of constraint checks and cpu runtime nec-

essary to reach a specific coloring. These performance metrics were gathered running

the algorithms on a Intel(R) Core(TM) i7-3612QM CPU @ 2.10GHz.

Finally, the last step is to build the dataset to be used by machine learning

algorithms. Attribute-Relation File Format (ARFF) [48] is a simple format that

can be used by many machine learning software including WEKA, MEKA, R and

Azure ML[45]. Using this standard the following datasets were generated:

• 15 datasets for classification experiments: with a fixed problem and algorithm

space, 5 different feature spaces were used as well as 3 different performance

criteria: breaking ties comparing CPU runtime, number of constraint checks

or selecting the average best coloring algorithm.

• 16 datasets for the regression experiment: by using the best feature set as a

result of the comparison done in the classification experiment, 16 regression

models were built, one for each graph coloring algorithm in order to predict

the minimum number of colors and runtime to achieve that result.

• 3 datasets for the multi-label classification experiment: using the best feature

set available and performing the comparison by changing the multi-label per-

formance criteria: allowing ties and including a tolerance margin of 5% and

10%.

Following the recommendation of FERNÁNDEZ-DELGADO et al. [18], Ran-

dom Forest and Support Vector Machine were used to build the predictive models.

WEKA toolkit was used to simplify the experimentation process since no significant

1available at: https://github.com/ldandrade/gcol-alg-selection
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differences have been observed on its results and the ones obtained when running

the experiments on R. The default parameters from WEKA were used for the Sup-

port Vector Machine algorithm, while for Random Forest, the number of trees used

was 500, the same value used in the experiments of [18]. For the multi-label clas-

sification experiment three algorithms were compared: binary relevance, ensemble

of classifier chains and random k-labelsets. All of those are implemented in MEKA:

a multi-label classification toolkit extended from WEKA. The base learner for all

multi-label classification algorithms is J48 - WEKA’s implementation of the C4.5

decision tree algorithm - with default parameter values from MEKA. The statistical

analysis of the model accuracy was performed using WEKA’s t-test function after 10

runs of 10-fold cross-validation. Tables 5.1, 5.2 and 5.3 summarizes the experiments

conducted.

In order to compare the application of regression methods with classification,

sixteen models were built to estimate the chromatic number and algorithm runtime

for each graph coloring algorithm. By having the results of this prediction the

algorithms were ranked according to a unified performance metric and then the best

one is selected for each instance. With this approach it is possible to check if the

selected algorithm is indeed the best one and also have an accuracy metric which

can be compared with the results from the classification method.

Table 5.1: Algorithm selection domains used in this work for classification experi-
ment

P F A S Y

1687 graphs

FS1 or Random Greedy Minimum color
FS2 or DSatur and break ties
FS3 or Backtracking DSatur Random comparing:
FS4 or RLF Forest 1 - CPU Runtime

FS5 PartialCol and 2 - Constraint
TabuCol SVM Checks or

HEA 3 - Selecting
AntCol average best

The unified performance metric has an important role on the final results of this

ranking. The most logical combination of algorithm runtime and chromatic number

was used. Even though the regression models predict real values for the chromatic

numbers, these were rounded to integers. This way the predicted chromatic number

is compared first - choosing the minimum - and in case of ties, the algorithm with

smallest predicted runtime is selected.

After running the graph coloring algorithm performance evaluation for all eight

algorithms, the final database ended up with more than 100000 records of per-
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Table 5.2: Algorithm selection domains used in this work for multi-label classifica-
tion experiment

P F A S Y

1687 graphs

Random Greedy
DSatur Allow

Best Backtracking DSatur Binary Relevance, ties
Feature RLF Ensemble of with

Set PartialCol Classifier Chains 0%, 5%
TabuCol and Random and 10% of

HEA and AntCol k-Labelsets tolerance

Table 5.3: Algorithm selection domains used in this work for regression experiment

P F A S Y

1687 graphs

Random Greedy
DSatur

Best Backtracking DSatur Random Forest Minimum
Feature RLF and color

Set PartialCol SVM in
TabuCol less time

HEA and AntCol

formance data as whenever an algorithm found a feasible solution, the number of

constraint checks and the time needed to reach that specific number of colors were

stored. The database model can be seen in figure A.1 on appendix A. As expected,

no single algorithm is best to solve all instances, regardless of the performance cri-

teria.

Figure 5.1 shows the class distribution considering the performance criteria 1 in

which the best algorithm is the one that reached the minimum color in less time. The

algorithm with best average performance on the dataset was Backtracking DSatur,

being able to solve 37% of the instances in less time than other algorithms. An in-

teresting result is that all graphs from Barabási-Albert model (BA500 and BA1000)

were best solved by the Backtracking DSatur algorithm. This may have happened

because graphs of this type are built incrementally following a rule that generates a

scale-free network. Since Backtracking DSatur is also a constructive method tuned

with backtracking capabilities, it was able to reach a minimum coloring much faster

than other heuristics could. TabuCol and HEA, the best known graph coloring

heuristics, were practically tied with 20% and 23% of the instances solved respec-

tively.

Random Greedy and RLF solved a minimal percentage of the dataset in less time
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Figure 5.1: Class Distribution for Performance Criteria 1 - Minimum color reached
in less time

than other algorithms. As they are very simple constructive algorithms and always

generate a feasible solution, they seem to be appropriate to solve either very simple

or very hard instances that no other algorithm is able to solve within the same

time. For this dataset, RLF would be selected as best algorithm for just 5 instances,

all of them being Uniform graphs with high density. Random Greedy solved 7

instances from the DIMACS benchmark challenge that were also optimally solved

by all other 7 algorithms despite requiring more time. DSatur did not appear as best

algorithm for this dataset as it did not reach the performance criteria considered for

any instance, even though for some graphs it was able to reach a minimum coloring

equally to other algorithms.

For the second experiment, the performance criteria is modified to select the av-

erage best algorithm if more than one algorithm reaches the same minimum coloring

for a graph instance. Figure 5.2 shows the class distribution for this dataset.

In this new configuration, HEA is by far the best algorithm, being able to solve

77% of the instances. Random Greedy has disappeared in this case as it was only

able to solve very few instances and therefore could not be selected as best on

average for any dispute. TabuCol, AntCol and BacktrackingDSatur obtained similar

performance being selected for solving 138, 137 and 94 instances respectively.

Finally figure 5.3 shows the class distribution when breaking ties by selecting

the algorithm that obtained the minimum coloring with the smallest number of

constraint checks. It can be seen that the overall distribution is changed again.

Still HEA seems to be the best on average algorithm considering this performance

criteria, being able to solve 38% of the instances and reaching similar performance
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Figure 5.2: Class Distribution for Performance Criteria 2 - Minimum color and
Average Best Algorithm

to Backtracking DSatur as on the first experiment. Backtracking DSatur stepped

down the ranking as it requires many more constraint checks when compared to other

algorithms. AntCol increased a little bit its participation on the number of instances

solved. Indeed it was possible to observe during the experiments that AntCol was one

of the slowest algorithms to reach the constraint checks limit number. Therefore we

can assume that it spends much time processing the same information it requested

about the problem instance.

Figure 5.3: Class Distribution for Performance Criteria 3 - Minimum color reached
with less constraint checks

By analysing the performance database it was possible to notice that some algo-
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rithms were reaching the same number of colors for some graph instances, confirming

what SMITH-MILES et al. [56] observed in their experiment. This led to the as-

sumption that multi-label classification could perform well if ties were allowed when

defining the label class for each instance. The idea of including a tolerance margin if

other algorithms were close enough to the minimum number of colors achieved was

also tested. On the next sections the details and analysis of these experiments are

presented.

5.2 Features and Performance Criteria Impact on

Classification Accuracy

Tables 5.4, 5.5 and 5.6 shows the average accuracy of 10 runs of 10-fold cross-

validation for the 15 classification experiments. ZeroR and OneR accuracies are

also included in order to have a baseline comparison of the improvement obtained

when using more sophisticated algorithms [63]. ZeroR always predicts the majority

if the class is nominal and if it is numeric, the average is calculated. OneR is another

very simple algorithm that generates a one-level decision tree by selecting the feature

that can split the dataset providing the highest accuracy. The best combination of

feature set, performance metric and selection mapping function (machine learning

algorithm) are highlighted in the table. When there is more than one accuracy

highlighted for the same machine learning algorithm, it means there is no significant

statistical difference among those. T-test was executed with a two tailed confidence

level of 0.05 analysing the percent correct metric of the experiments conducted.

Table 5.4: Accuracy for Color and CPU Runtime Performance Criteria Datasets

Dataset FS5 FS1 FS2 FS3 FS4
ZeroR 37.82± 0.21 37.82±0.21 37.82± 0.21 37.82± 0.21 37.82± 0.21
OneR 70.40±3.01 50.48±3.50 68.08± 3.12 71.45±3.00 71.45±3.00
SVM 37.82± 0.21 45.88±2.46 50.32±2.95 39.41± 0.85 37.82± 0.21
Random Forest 78.73±2.29 61.17±2.95 74.69± 2.53 76.82± 2.41 75.89± 2.44

Table 5.5: Accuracy Average Best Performance Criteria Datasets

Dataset FS5 FS1 FS2 FS3 FS4
ZeroR 77.36± 0.27 77.36± 0.27 77.36± 0.27 77.36± 0.27 77.36±0.27
OneR 83.09±1.86 81.09± 2.20 81.07± 2.65 83.17±2.06 81.57±1.89
LibSVM 77.36± 0.27 78.74±1.36 78.22±0.67 77.35± 0.49 77.36±0.27
Random Forest 85.98±2.08 85.89±1.88 82.82± 2.16 83.34± 2.05 83.06±2.14

It is interesting to see that a simple machine learning algorithm like OneR is

capable of increasing the algorithm selection accuracy by a lot when comparing to

the baseline ZeroR for the first performance criteria. Whenever available in the
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Table 5.6: Accuracy Color and Constraint Check Performance Criteria Datasets

Dataset FS5 FS1 FS2 FS3 FS4
ZeroR 38.89± 0.27 38.89± 0.27 38.89± 0.28 38.89± 0.28 38.89± 0.28
OneR 55.49±3.33 50.48± 3.50 49.54± 3.10 54.62±3.25 54.68±3.21
SVM 38.89± 0.27 45.88±2.46 45.15±2.45 40.47± 1.35 38.89± 0.28
Random Forest 60.08±3.14 61.17±2.95 56.41± 3.36 57.97±3.04 56.40± 2.99

feature set, the energy property was always selected as the root node, leading to

the highest accuracies among the OneR set of experiments: above 70%. Indeed,

this feature has been selected among others by the PCA technique used in [56] and

[54]. A more complex algorithm like Random Forest could still improve the accuracy

beyond that as it develops the tree starting from the same root node but having

other features to further enhance the predictive model. Surprisingly, SVM does not

perform well on these datasets, achieving results equal to or worse than OneR.

Because of the unbalanced characteristic of the dataset generated with the aver-

age best performance criteria, the percentage of correct predictions is much higher.

One can notice that by checking the accuracies obtained by the ZeroR algorithm

that always select the class with most instances on the dataset, in this case, the

HEA class representing 77% of the total number of instances.

The last performance metric verified was to break ties using the number of con-

straint checks instead of CPU Runtime. It is by comparing this metric with the

first one that we can see the big impact that this parameter has on the prediction

accuracy of the model. ZeroR showed very similar accuracies for both performance

metrics meaning that these datasets are equally balanced. OneR had just a slight

improvement, but below the level reached using the first criteria. Then Random

Forest showed a difference of almost 20% when comparing to the accuracies reached

by using the first performance criteria. It must be emphasized that the only differ-

ence between these datasets is the performance metric used to populate the class

attribute.

Another takeaway from this set of experiments is that the datasets with the

most number of features are the ones with the highest accuracies when applying the

Random Forest algorithm. This behaviour is expected as the more information this

algorithm has about an instance, easier it should be to differentiate one instance from

others. This capability of an embedded feature selection process is characteristic

of the Random Forest algorithm since it tests only a subset of features randomly

extracted from the whole feature set at each node for each random tree. As the

number of trees in the forest increases, the features that aggregate the most value

are often selected. On the other hand it can be seen that SVM does not yield good

results when increasing the number of features. Table 5.7 presents the statistical

significance tests comparing the different machine learning algorithms and showing
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that Random Forest is the most appropriate to be used to build the predictive model.

Table 5.7: Accuracy Comparison for all Machine Learning Algorithms

Dataset Random Forest ZeroR OneR SVM
graphcoloring-avgbest-fs1 85.89±1.88 77.36±0.27 81.09± 2.20 78.74±1.36
graphcoloring-avgbest-fs2 82.82±2.16 77.36±0.27 81.07±2.65 78.22±0.67
graphcoloring-avgbest-fs3 83.34±2.05 77.36±0.27 83.17±2.06 77.35±0.49
graphcoloring-avgbest-fs4 83.06±2.14 77.36±0.27 81.57±1.89 77.36±0.27
graphcoloring-avgbest-fs5 85.98±2.08 77.36±0.27 83.09± 1.86 77.36±0.27
graphcoloring-colorchecks-fs1 61.17±2.95 38.89±0.27 50.48± 3.50 45.88±2.46
graphcoloring-colorchecks-fs2 56.41±3.36 38.89±0.28 49.54± 3.10 45.15±2.45
graphcoloring-colorchecks-fs3 57.97±3.04 38.89±0.28 54.62± 3.25 40.47±1.35
graphcoloring-colorchecks-fs4 56.40±2.99 38.89±0.28 54.68±3.21 38.89±0.28
graphcoloring-colorchecks-fs5 60.08±3.14 38.89±0.27 55.49± 3.33 38.89±0.27
graphcoloring-colortime-fs1 61.17±2.95 37.82±0.21 50.48± 3.50 45.88±2.46
graphcoloring-colortime-fs2 74.69±2.53 37.82±0.21 68.08± 3.12 50.32±2.95
graphcoloring-colortime-fs3 76.82±2.41 37.82±0.21 71.45± 3.00 39.41±0.85
graphcoloring-colortime-fs4 75.89±2.44 37.82±0.21 71.45± 3.00 37.82±0.21
graphcoloring-colortime-fs5 78.73±2.29 37.82±0.21 70.40± 3.01 37.82±0.21

In order to obtain some insight on what features were contributing most to the

predictive model, we counted the number of times each feature appeared on every

tree of a single run of 10-fold cross-validation using FS5 as the feature set. If one

feature is always selected, its count should be 5000 as the experiment generates 500

trees for each run of the 10-fold cross-validation. This analysis also indicated that

some features did not appear in any of the trees. These were: beta, number of

connected components, girth, mean spectrum and smallest eigenvalue of laplacian

matrix. With the exception of beta, these features did not present variations in their

values for this dataset, hence they were not selected for the predictive model. They

could, however, prove useful for other datasets with other types of graphs. Table 5.8

shows the top 10 selected features with their corresponding count and percentage

considering the total of 5000 trees.

Table 5.8: Number of times each feature was used on the Random Forest using
10-fold cross-validation and FS5 dataset - top 10 features

Feature Count Percentage
Number of edges 4926 99%

Density 4520 90%
Standard deviation of degree 4416 88%

Ratio between number of edges and nodes 4384 88%
Ratio between number of nodes and edges 4164 83%

Minimum degree 4000 80%
Variation coefficient of degree 4000 80%

Mean degree 3690 74%
Maximum betweenness centrality 3460 69%

Variation coefficient of betweenness centrality 3392 68%
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5.3 Multi-label Classification

For the multi-label classification experiments only the novel feature set FS5 was

used to compare the prediction performance of three selection mapping functions:

binary relevance, ensemble of classifier chains and random k-labelsets. Table 5.9

shows the average accuracy of 10 runs of 10-fold cross-validation obtained by each

of the algorithms when evaluated using three different performance criteria with

tolerance margins of 0%, 5% and 10%:

Table 5.9: Classification accuracy for different performance criteria using multi-label
classification methods as selection mapping functions

Selection Mapping 0% Tol. 5% Tol. 10% Tol.
Binary Relevance 76% 87% 93%

Random k-Labelsets 76% 89% 94%
Ensemble of Classifier Chains 79% 89% 94%

It is possible to see that just allowing ties with a 0% tolerance margin for the

number of colors does not yield better results than Random Forest on a single label

multi-class classification scenario. However, increasing the tolerance margin to 5%

improved the average accuracy by 10%. As this tolerance margin increases, the

average accuracy is also improved reaching up to 94% in this set of experiments.

Another relevant metric for multi-label classification is the average label cardinal-

ity predicted by the selection mapping algorithm. This indicates the average number

of graph coloring algorithms within the same recommendation. Table 5.10 shows

that out of 8 algorithms, 3 graph coloring algorithms are usually recommended as

they reach the exact same number of colors. When adding a 5% tolerance, almost 5

algorithms are often recommended and with 10% tolerance more than 5 algorithms

can actually be selected. This metric shows how the chromatic number found by an

algorithm is close to one found by another algorithm, thus confirming the hardness

of estimating graph coloring algorithm performance in order to select the best one.

Table 5.10: Label cardinality for different performance criteria using multi-label
classification methods as selection mapping functions

Selection Mapping 0% Tol. 5% Tol. 10% Tol.
Binary Relevance 3.171 4.821 5.511

Random k-Labelsets 3.373 5.015 5.568
Ensemble of Classifier Chains 3.236 4.865 5.484

Since multi-label classification work with individual predictions for each class and
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then concatenate all results to have a unified label as a result, it is possible that the

predictions for each individual algorithm have a negative outcome and therefore the

final result is an empty label vector. For example, suppose the predictive model has

already been trained - the same way it has been generated in this work - and a new

instance will be evaluated to check what would be most recommended graph coloring

algorithm to find its chromatic number. When using the multi-label classification,

eight predictive models, one for each graph coloring algorithm will be evaluated

based on this instance’s features. Since this is a prediction, there may be the case

where each model predicts that the graph coloring algorithm being tested is not

recommended, hence the final result will be an empty label vector.

Fortunately, empty label vectors hardly ever occur, but still it is an impor-

tant measure of the quality of the predictive model. Table 5.11 below shows the

percentage of empty label vectors for each multi-label classification algorithm and

performance criteria. Note that only when the average number of recommended al-

gorithms is close to 3 according to table 5.10, that some empty label vectors appear

in the results of table 5.11.

Table 5.11: Empty label vectors percentage for different performance criteria using
multi-label classification methods as selection mapping functions

Selection Mapping 0% Tol. 5% Tol. 10% Tol.
Binary Relevance 0.01% 0% 0%

Random k-Labelsets 0.01% 0% 0%
Ensemble of Classifier Chains 0.003% 0% 0%

5.4 Prediction of Graph Coloring Algorithm Per-

formance

Based on the results of the classification experiment, feature set 5 was selected as

the feature set for the graph coloring algorithm performance prediction. The idea

is to use the regression form of Random Forest to predict the chromatic number

of each coloring algorithm as well as the CPU runtime. The chromatic number is

the key metric to define which coloring algorithm is the best one, but CPU runtime

is also a relevant metric to be considered in the regression experiments since it has

been originally used by other researches in the area[28]. It is expected that with this

information it would be possible to rank the algorithms according to the chromatic

number and then transform the regression problem into a classification problem by

selecting the best algorithm. Depending on the performance criteria used for the
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ranking, the dataset could assume different formats: if a criteria is used to break

ties between algorithms that are predicted to have the same chromatic number,

the problem is a single label classification task, otherwise if ties are allowed, the

problem is then a multi-label classification task. There are also multiple criteria

that can be used to break the ties explained previously: CPU runtime would be the

most logical choice, but other options are available such as the error metrics for each

regression model like mean squared error (MSE), root mean squared error (RMSE)

or correlation coefficient.

Table 5.12 below shows the correlation coefficient calculated using 10-fold cross-

validation in WEKA for all sixteen predictive models: eight models to predict the

chromatic number for each coloring algorithm and eight models to predict their

respective CPU runtime. The correlation coefficient evaluation measure ranges from

1 to -1 representing perfectly positive or negative correlated results respectively and

0 when there is no correlation.

Table 5.12: Correlation coefficient for the sixteen graph coloring algorithm perfor-
mance predictive models generated with Random Forest

Graph Coloring Algorithm Chromatic Number CPU Runtime
DSatur 0.9901 0.9882

Backtracking DSatur 0.9902 0.4576
Random Greedy 0.9934 0.9341

RLF 0.9904 0.9894
HEA 0.9935 0.9395

PartialCol 0.9931 0.8687
TabuCol 0.9924 0.7969
AntCol 0.9932 0.6832

It is possible to notice that for the chromatic number performance metric all

models achieved a correlation coefficient above 0.99. On the other hand, the CPU

runtime predictive models did not reach such a high level of correlation. This might

be explained with the fact that the range of CPU runtime for some algorithms to

complete is much higher than others. Backtracking DSatur, for example, required

up to 30 minutes to complete processing some graph instances, while for others it

did not register a significant amount of CPU runtime: zero milliseconds. The same

characteristic can be observed with TabuCol and AntCol ranges of CPU Runtime:

the first having a maximum of 15 minutes and the last requiring up to 529 minutes.

The CPU runtime predictive models with highest correlation coefficient had a much

lower maximum CPU runtime: DSatur with 1390 milliseconds and RLF with 3

minutes.

The predictions on test data from the cross-validation experiments were gath-
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ered and used to check if it was possible to rank the algorithms according to their

performance criteria in order to select the best algorithm. In the first experiment,

the coloring algorithms were ranked according to the actual chromatic number and

the rounded predicted chromatic number. Thus the dataset class is converted from

a numeric type to a multi-label type (just like the multi-label classification experi-

ment dataset). In this case, only 33% of the predicted values match the actual best

coloring algorithms. Table 5.13 shows examples of two instances with the actual

chromatic number and their predictions.

Table 5.13: Actual and Predicted Values for Chromatic Number from instances 1
and 4 from fold 1

Inst. DSatur BkDSatur Greedy RLF HEA PartCol TabuCol AntCol
Actual Chromatic Number

#1 26 24 31 24 21 20 20 21
#4 149 149 188 152 149 149 149 151

Predicted Chromatic Number
#1 24 23 30 24 21 21 21 22
#4 152 152 188 154 152 151 152 158

After browsing the results of the whole ranking, it can be seen that most pre-

dictions are similar to the ones presented in table 5.13. The best algorithms often

reach close values for the chromatic number, sometimes with the difference of a

single unit. In the case of instance #1, the actual best algorithms are PartialCol

and TabuCol that reached a chromatic number value of 20. However, the chromatic

number predicted by the regression models indicate that HEA could also be one of

the best algorithms, besides PartialCol and TabuCol. Since the interest is on the

exact match of actual and predicted values, instance #1 count as an incorrectly

classified instance. The same thing occurs with instance #4 but with a different

order of magnitude for the chromatic number values.

This is a challenge for the regression methods because they need to be extremely

precise to be able to maintain this relative performance difference between the al-

gorithms. One could also argue that since the regression models generated are

independent, they are not appropriate to generate this ranking.

On the second experiment, the usage of the predicted CPU runtime values to

break ties and select only the best of all 8 coloring algorithms improved the accuracy

a little bit - 38% - despite still being very low when compared to the results obtained

by employing the original single label classification algorithm.

Table 5.14 summarizes the accuracy of these two experiments conducted.
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Table 5.14: Accuracy obtained by ranking the results of regression models and
selecting the best algorithms

Performance Criteria Dataset Type Accuracy
Ranking chromatic number allowing ties multi-label 33%
Ranking chromatic number and breaking ties
with CPU Runtime

single label 38%

5.5 Results Comparison

Even though it is not fair to directly compare the results obtained by this work to

others from related works because of the different objectives and experiments con-

figurations, it is possible to see some improvement in the accuracy obtained by the

application of machine learning algorithms in this case study. Using Random Forest

as the single label classification algorithm, it was possible to obtain an average accu-

racy of 79% using 10 runs of 10-fold cross-validation. Applying more sophisticated

methods of multi-label classification resulted in a 10-fold cross-validation average

accuracy of 79% when not adding a tolerance margin to build the label vector for

each instance. By adding a reasonable tolerance of 5% margin to the chromatic

number, the accuracy goes up to 89%.

SCHWENGERER and MUSLIU [53] obtained an average accuracy of 73% using

10-fold cross-validation and performing the experiments on a single label classifica-

tion dataset comparing 8 coloring algorithms. SMITH-MILES and BAATAR [54]

reached an accuracy of 74% using out-of-sample testing on a single label classifica-

tion dataset comparing the performance of 3 coloring algorithms. At last, SMITH-

MILES et al. [56] used a different approach by predicting the boundaries of a coloring

algorithm’s footprint. In their comparison of 8 coloring algorithms using one SVM

model for each one of them, the out-of-sample test accuracies ranged from 90% for

DSatur down to 73% for AntCol. The approach adopted by SMITH-MILES et al.

[56] is somewhat similar to a multi-label classification since more than one algorithm

can be recommended for the same graph instance. However, a final accuracy for the

aggregated result is not provided neither the detailed results for each individual

SVM model is available.
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Chapter 6

Conclusion

The application of machine learning methods to the algorithm selection problem

have been further explored in this work considering the specific domain of graph

coloring. Related works have not followed a systematic approach to study the impact

of different parameters, methods and options that can be used to select the best

graph coloring algorithm from a portfolio: graph features have been added and

removed without too much explanation and performance criteria have been selected

empirically[53] [54] [55] [56].

Much emphasis is given on the importance of domain knowledge when trying

to select the best algorithm to solve a specific problem. Even though this is still

essential to the algorithm selection problem, it can be seen that machine learn-

ing algorithms can model quite well the relationship among problem features and

algorithm performance given a specific criteria. While the classification methods

can capture a direct relation of features and classes, the regression algorithms can

provide complementary information by predicting relevant metrics.

During the experiments conducted it was possible to see that the Random Forest

machine learning algorithm can benefit from the increased number of features as it

has embedded a feature selection function in its training procedure. The highest

classification accuracies have been reached by this algorithm when applied to the

datasets that contained most information about graphs. The best result was ob-

tained by the specific case of Random Forest applied to the novel feature set of 102

graph properties.

Another important result from this work and one that can be further explored is

the impact of performance criteria on the dataset construction and learning process.

There are many different ways to evaluate how one graph coloring algorithm is better

than another and depending on the criteria selected, the dataset will assume a shape

that can make the learning task easier or more difficult. It is amazing how the simple

change of breaking ties can significantly impact the learning task: when considering

the CPU runtime it is much easier for the learning algorithm to find association rules
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between the features and classes than when considering the number of constraint

checks.

Still regarding the performance criteria, the impact of different time limits when

running the graph coloring algorithms can be further explored. Related works have

considered different time limits along years in which the computational resources

have changed significantly. By having a single work analysing different time limit

options running the experiments with the same computer configuration it would be

possible to see if there are differences in the chromatic numbers found by coloring

algorithms as more time is allowed for them to run.

In the situation where ties are allowed according to the performance criteria, the

dataset to be used for the machine learning task has a multi-label class. There are

many multi-label classification algorithms available in the literature and within this

work some of the most known have been tested to generate the recommendations

for the algorithm selection problem. When allowing ties with no tolerance margin

on the chromatic number, the classification accuracy obtained was similar to the

one reached by the single label classification experiment. Because of the similar

performance for some of the coloring algorithms, it seems that there is not enough

data yet to model these small differences of the chromatic number found by the best

heuristics. Although, when adding a tolerance margin of 5% and 10% in order to

accept these small differences, the accuracy obtained by the multi-label classification

algorithms increased by 10% and 15% respectively. Out of a portfolio with 8 algo-

rithms, it was possible to recommend on average just 4 of those with an accuracy

of 89%.

Another possibility explored within this work did not generate good results when

it comes to the accuracy metric: the prediction of graph coloring algorithm perfor-

mance using regression methods. The initial expectation was that by ranking the

algorithms according to the predicted chromatic number it would be possible to se-

lect the best algorithm. Despite the disappointment of the accuracy obtained using

this approach - only 33% and 38% - it was possible to see that the regression meth-

ods are able to estimate the chromatic number that would be found by a coloring

algorithm.

The results comparison show that the methodology employed in this work, spe-

cially the experiments related to multi-label classification, can provide good results

in terms of accuracy when selecting the best algorithms from a portfolio of graph

coloring algorithms - up to 89%. The systematic approach proposed here can be

reused to continue the experimentation process of adding new performance metrics,

features and even coloring algorithms. The programs and scripts used can be easily

extended and provide a common foundation for comparison of different approaches

and configurations of algorithm selection for the graph coloring problem.
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Appendix A

Programs and Scripts

Listing A.1: Script to generate and convert Barabási-Albert models to DIMACs

format

import networkx as nx

f o r count in range (1 ,101) :

G=nx . b a r a b a s i a l b e r t g r a p h (500 ,1 )

G=nx . c o n v e r t n o d e l a b e l s t o i n t e g e r s (G, 1 )

f = open (” b a r a b a s i a l b e r t 5 0 0 1−”+s t r ( count ) +”. c o l ” , ’w’ )

f . wr i t e (”p edge ”+s t r ( nx . number of nodes (G) )+” ”+s t r ( nx .

number of edges (G) )+”\n”)

f o r l i n e in nx . g e n e r a t e e d g e l i s t (G, data=False ) :

f . wr i t e (” e ”+ l i n e +”\n”)

f . c l o s e ( )

Listing A.2: Partial source code to extract features from a graph

import networkx as nx

import numpy as np

from decimal import ∗

c l a s s Features ( ob j e c t ) :

de f i n i t ( s e l f , graphFi lePath ) :

s e l f . graphFilePathDimacs = graphFi lePath

s e l f . graphFi lePath = graphFi lePath + ’. edl ’

s e l f .G=nx . r e a d e d g e l i s t ( graphFi lePath + ’. edl ’ ,

nodetype=i n t )

s e l f .MAXDECIMAL = f l o a t
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( ’99999999999999999.9999999999 ’)

## Nodes and Edges Features ###

def NumberOfNodes ( s e l f ) :

r e turn nx . number of nodes ( s e l f .G)

de f NumberOfEdges ( s e l f ) :

r e turn nx . number of edges ( s e l f .G)

de f RatioNodesEdges ( s e l f ) :

r e turn f l o a t ( nx . number of nodes ( s e l f .G) ) /nx .

number of edges ( s e l f .G)

de f RatioEdgesNodes ( s e l f ) :

r e turn f l o a t ( nx . number of edges ( s e l f .G) ) /nx .

number of nodes ( s e l f .G)

de f Density ( s e l f ) :

r e turn nx . dens i ty ( s e l f .G)

### Degree Features ###

def ComputeDegree ( s e l f ) :

s e l f . d e g r e e L i s t = np . array ( nx . degree ( s e l f .G) .

va lue s ( ) )

de f MinDegree ( s e l f ) :

r e turn min ( s e l f . d eg r e eL i s t )

de f MaxDegree ( s e l f ) :

r e turn max( s e l f . d e g r e e L i s t )

de f MeanDegree ( s e l f ) :

r e turn np . mean( s e l f . d e g r e e L i s t )

de f StdDegree ( s e l f ) :

r e turn np . std ( s e l f . d e g r e e L i s t )
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Figure A.1: Graph Coloring Algorithm Performance Database Model

62


	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective
	Organization

	Fundamental Concepts
	The Algorithm Selection Problem
	Machine Learning
	Multi-label Classification
	Random Forests
	Support Vector Machines

	Instance Hardness and Empirical Performance Models
	Metalearning

	The Graph Coloring Problem
	Graph Types and Complex Networks
	Uniform Graphs
	Geometric Graphs
	Weight-biased Graphs
	Barabási-Albert Model

	Constructive Algorithms
	Greedy
	DSatur - Degree Saturation
	RLF - Recursive Largest First

	Heuristics and Advanced Techniques
	Backtracking DSatur
	TabuCol
	PartialCol
	HEA - Hybrid Evolutionary Algorithm
	AntCol


	Algorithm Selection for The Graph Coloring Problem
	Related Works
	Problem Space
	Algorithm Space
	Feature Space
	Performance Criteria

	Experimental Setup and Results
	Methods and Materials
	Features and Performance Criteria Impact on Classification Accuracy
	Multi-label Classification
	Prediction of Graph Coloring Algorithm Performance
	Results Comparison

	Conclusion
	Bibliography
	Programs and Scripts

