
POPULATIONAL ANNOUNCEMENT LOGIC (PPAL)

Vitor Pereira Machado

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Mario Roberto Folhadela

Benevides

Rio de Janeiro

Julho de 2016

POPULATIONAL ANNOUNCEMENT LOGIC (PPAL)

Vitor Pereira Machado

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO

GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E

COMPUTAÇÃO.

Examinada por:

Prof. Mario Roberto Folhadela Benevides, Ph.D.

Prof. Valmir Carneiro Barbosa, Ph.D.

Prof. Carla Amor Divino Moreira Delgado, D.Sc.

Prof. Bruno Lopes Vieira, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JULHO DE 2016

Machado, Vitor Pereira

Populational Announcement Logic (PPAL)/Vitor Pereira

Machado. – Rio de Janeiro: UFRJ/COPPE, 2016.

X, 52 p.: il.; 29, 7cm.

Orientador: Mario Roberto Folhadela Benevides

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2016.

Referências bibliográficas: p. 39 – 42.

1. knowledge. 2. fuzzy. 3. logic. I. Benevides, Mario

Roberto Folhadela. II. Universidade Federal do Rio de

Janeiro, COPPE, Programa de Engenharia de Sistemas

e Computação. III. T́ıtulo.

iii

For my mother and father, whose

love and support made everything,

including this work, possible.

iv

Acknowledgments

I would like to express the deepest appreciation to my supervisor and friend Professor

Mario Roberto Folhadela Benevides, for his good spirits, guidance and enthusiasm

in regards to research. Without his support this work would not have been possible.

I also wish to thank Professor Hans van Ditmarsch for his inspirational work in

Dynamic Epistemic Logic. His research served as a solid foundation for this work.

A very special thank you goes out to my girlfriend Kalisia Autuori, for her

patience, support and encouragement. She gives me strength to keep going.

I must also extend my gratitude to my friends André Albuquerque, Gabriel

Almeida and Luan Garrido for their support and companionship along the way.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

LÓGICA DE ANÚNCIOS POPULACIONAIS (PPAL)

Vitor Pereira Machado

Julho/2016

Orientador: Mario Roberto Folhadela Benevides

Programa: Engenharia de Sistemas e Computação

Apresenta-se nesta dissertação a Lógica de Anúncios Populacionais (Populational

Announcement Logic - PPAL), uma variante da Lógica de Anúncios Públicos (Pub-

lic Announcement Logic - PAL) com semântica fuzzy, onde ao invés de agentes

espećıficos temos populações e grupos. A semântica da lógica de anúncios é definida

e exemplos são dados. Além disso, uma biblioteca e verificador de modelos em Java

implementando essa lógica são discutidos.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

POPULATIONAL ANNOUNCEMENT LOGIC (PPAL)

Vitor Pereira Machado

July/2016

Advisor: Mario Roberto Folhadela Benevides

Department: Systems Engineering and Computer Science

Populational Announcement Logic (PPAL), is a variant of the standard Public

Announcement Logic (PAL) with a fuzzy semantics, where instead of specific agents

we have populations and groups. The semantics and the announcement logic are

defined, and examples are provided. Also, a Java open-source library and a model

checker implementing this language are discussed.

vii

Contents

List of Figures x

1 Introduction 1

1.1 Previous developments . 1

1.2 Motivation and objectives . 2

1.3 Roadmap . 3

2 A background of logic 4

2.1 Classical propositional logic . 4

2.2 Fuzzy logic . 5

2.2.1 Language and semantics . 5

2.3 Modal logic . 6

2.3.1 Language and semantics . 6

2.3.2 S4 and S5 logics . 8

2.4 Multi-agent epistemic logic . 9

2.4.1 Language and semantics . 9

2.4.2 Example . 10

2.5 Public announcement logic (PAL) . 11

2.5.1 Language and semantics . 12

2.5.2 Example . 13

2.6 Epistemic actions . 14

2.6.1 Language and semantics . 14

2.7 Action models . 15

3 Populational announcement logic (PPAL) 18

3.1 Populations and groups . 19

3.2 Model . 19

3.3 Language . 20

3.4 Semantics . 20

3.5 Fuzzy negation . 21

3.6 Fuzzy conjunction . 22

viii

3.7 Fuzzy disjunction . 22

3.8 Fuzzy implication . 23

3.9 Fuzzy knowledge assertion . 23

3.10 Fuzzy belief assertion . 24

3.11 Proof of decidability . 25

4 Usage examples of PPAL 28

4.1 Basic example . 28

4.1.1 Initial model . 28

4.1.2 First announcement . 29

4.2 The corrupt politician . 30

4.2.1 Initial model . 30

4.2.2 First announcement . 31

4.2.3 Second announcement . 32

5 Model checker 34

5.1 Model format . 34

5.2 Sample run . 35

6 Final remarks and future works 37

6.1 Future works . 37

Bibliography 39

A Model checker’s source-code 43

B Card game (XML model) 50

ix

List of Figures

2.1 Values assumed by the expression F → O according to the Lukasiewicz

implication shown in equation 2.1, given x = 0.5 for all possible values

of y. 6

2.2 The transitive property. The relations are bidirectional. 8

2.3 The Euclidean property. The relations are bidirectional. 8

2.4 Epistemic Model Hexa1 . 11

2.5 Epistemic Model Hexa2 = Hexa1|¬1a 14

2.6 Before the epistemic action. State 1 is the real state. 15

2.7 After the epistemic action. There are now four states instead of two,

and the upper states represent the new possibility that agent a may

have learned the truth about fact p, although agent b cannot be sure

of that. 15

2.8 Initial epistemic model . 16

2.9 Action model for reading the letter 16

2.10 Cross-product of the epistemic model with the action model 16

2.11 Epistemic model after the epistemic action is executed 17

4.1 Initial model. 29

4.2 Model G (P 1’s to the left, P 2’s to the right). 30

4.3 Initial model. 30

4.4 Model G (P 1’s to the left, P 2’s to the right). 31

4.5 Model G′. G1’s model to the left, population above received both

announcements, below received only the first one; G2’s to the right,

population above received only the second announcement, below re-

ceived none. 33

6.1 Binary decision diagram for function f 38

x

Chapter 1

Introduction

1.1 Previous developments

Epistemic logics are formal logical systems that deal with the representation of

knowledge.

Sowa, inventor of conceptual graphs and an important figure in artificial intel-

ligence, gave us in [1] one possible definition for knowledge representation, which

is “the application of logic and ontology to the task of constructing computable

models for some domain”. And it goes beyond the realm of artificial intelligence and

computing, also posing some important questions in the area of philosophy [2]. In

fact, some view certain aspects of it as “applied philosophy” [3].

As noted in [4] however, knowledge representation serves little purpose without

ways to reason about said knowledge, and epistemic logics are attempts to do just

that.

While some of the basic ideas date back to ancient Greece times [5], C. I. Lewis

published back in 1918 the book “Survey of Symbolic Logic”, possibly the first

systematic approach to the matter [6].

Later in 1951, Von Wright’s “An Essay in Modal Logic” introduced a concept

called “modality” to better represent the semantics of knowledge [7], providing

operators such as “usually” and “always” to qualify propositional statements. It is

considered the first important work regarding modal logic.

A further development is Dynamic Logic, which aims to reason about actions and

their effects [8]. Dynamic Epistemic Logic (DEL) is conceived to reason about actions

that change agents or groups of agents’ knowledge and beliefs. It is not interested in

justifying whether something is knowledge or not, but in inferring something from

said knowledge.

The first Dynamic Epistemic Logic was proposed independently by [9] and [10],

and is called Public Announcement Logic (PAL), a logic which allows simple public

1

actions which alter the state of knowledge for its agents. Later Baltag et al. proposed

in [11, 12] the Action Model Logic approach, allowing for more complex reasoning.

1.2 Motivation and objectives

This work aims to specify a variation of PAL where knowledge is represented across

populations and groups of populations, instead of discrete agents as is usually done.

The motivation behind this is to provide a framework that is capable of dealing

with applications where one intends to reason about evolution of knowledge across

populations instead of individual agents. It is specially designed for model checking,

because it is not necessary to specify agents (or populations in this case) beforehand,

and instead these populations can be defined and evolved during the model checker’s

execution, using the announcement operator of the language.

To achieve this we have introduced and defined a “fuzzyfied” variant of PAL

that allows partial announcements to its agents (called “populations” and “groups”).

We formalize the model, language and semantics, and give an example where an

initial model is given and some announcements are made which modify it, in order to

illustrate its applicability in a scenario where knowledge evolves across populations

as announcements are made.

Consider this situation: a famous politician is under suspicion of money laundering

and bribery. Elections are coming up, and this politician expects to be re-elected, but

people are less willing to vote for him if they are aware of both charges against him.

Not everyone in the population is aware of the charges, however. We will expand this

example on chapter 4 to show how announcements to fractions of populations can

be modelled and how these models evolve, and also how announcements can result

in different knowledge for certain parts of groups.

We also show a proof that the satisfiability problem for any formula of the

language is decidable for finite models, which is an important result for model

checking, as it ensures that it is not possible to input a formula which could result

in a infinite loop in the program.

We then discuss the library and model checker implementation, and also provide

an input model and usage examples.

We finish with the conclusion that the main advantage of the Populational

Announcement Logic (PPAL) over Dynamic Epistemic Logic (DEL) and Public

Announcement Logic (PAL) is the flexibility to work with non-priorly defined agents.

It is possible to define an initial population and to evolve it in a more natural

way that does not require a formal initial definition of every agent on the system.

Therefore we believe it can be a more appropriate logic for practical use in situations

where we want to reason about the knowledge among populations, as it would be

2

much easier to control and evolve a knowledge model.

A paper [13] derived from this work was accepted for the Encontro Nacional de

Inteligência Artificial e Computacional (ENIAC), a conference held in Natal, RN -

Brazil. It is published in the Biblioteca Digital Brasileira de Computação (BDBComp)
1.

1.3 Roadmap

This work is organized as follows: In Chapter 2 we recall classical propositional logic

with a bit of history and a brief explanation aided by an example; We then talk

about fuzzy and modal logics, both extensions to classical propositional logic.

After that, we present Multi-Agent Epistemic Logic, where we really start to

deal with the topic of knowledge. After that we continue into Public Announcement

Logic (PAL), showing a classical example to illustrate its use.

In Chapter 3, we introduce Populational Announcement Logic (PPAL), explain

its purpose and differences with respect to PAL and define its language, semantics

and model.

Chapter 4 provides two basic examples of PPAL, showing how the model evolves

after an announcement. We also prove it is decidable, an important result for model

checking as previously mentioned.

Chapter 5 is about the model checker, its implementation and usage examples.

Chapter 6 provides a conclusion, some final remarks and future works.

1http://www.lbd.dcc.ufmg.br/bdbcomp/servlet/Trabalho?id=23755

3

http://www.lbd.dcc.ufmg.br/bdbcomp/servlet/Trabalho?id=23755

Chapter 2

A background of logic

We begin this Chapter with a reminder of classical propositional logic and a brief

introduction to many-valued logic (fuzzy logic). Then we give a brief presentation of

a logic with modalities (modal logic). After that, we provide an overview of epistemic

logic, outlining its early development in different fields such as philosophy, artificial

intelligence and computer science. Finally, we give a brief introduction to Public

Announcement Logic (PAL) with an example to illustrate its usage.

2.1 Classical propositional logic

The development of propositional logic has first begun in Egypt, but has only been

turned into a formal logic by the Greek philosopher Chrysippus [14].

The language for Propositional Logic consists of a set of countably many proposi-

tional symbols, and the Boolean connectives ¬ (negation operator), ∧ (conjunction),

∨ (disjunction) and → (implication). Its semantics is defined by truth tables for

each of the connectives, which evaluates each possible input combination to a true

or false result.

The Boolean algebra introduced by George Boole in 1847 [15] is closely related

to propositional logic, and is commonly used today in mathematics and computer

science, and is very well known and developed.

Consider the implication truth table in table 2.1 for the following example. Take

the statement “If it is summer then it is hot”. If we call “summer” proposition S,

and “hot” proposition H, the statement is represented in propositional logic as the

expression S → H. If we know, for instance, that it is indeed summer which means

S = true, the expression can only be true if it is hot (H = true). If it were summer

and not hot, it would mean the statement itself is false. Note that, if it is not summer,

nothing can be said about whether it is hot or not as neither case would violate the

statement, and therefore the expression S → H remains true whether H is true or

false.

4

P Q P→ Q
true true true
true false false
false true true
false false true

Table 2.1: Implication truth table.

2.2 Fuzzy logic

The term “fuzzy logic” was first coined by [16], and is also known as infinite-valued

logic or many-valued logic. It is a kind of logic whose propositions can assume more

than two values, usually between 0 and 1 inclusive.

Fuzzy logic has been widely used in control systems for many practical appli-

cations, such as [17]. The advantages of these controllers as opposed to common

“PID controllers” (proportional-integral-derivative controllers) are the easy way of

translating expert knowledge into controller rules, even when an actual mathematical

model for the process does not exist, and scalability by adding new rules [18].

For instance, if proposition “water level” has value 0.5 you might consider it is

“somewhat full”. Linguistic values and hedges (“full” and “somewhat” respectively in

the previous example) can be used to discretize fuzzy variables into a human-readable

format.

There are many different formal systems of fuzzy logics, we will take Lukasiewicz

logic for the following definitions.

2.2.1 Language and semantics

Definition 1 The language for the Lukasiewicz logic consists of a set Φ of countably

many proposition symbols, the connectives ¬, ∧, ∨ and →, and “strong” variations

for the conjunction and disjunction operators, ⊗ and ⊕, respectively. The formulae

are defined as follows in BNF (Backus-Naur Form) notation:

ϕ ::= p |¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ϕ1 ⊗ ϕ2 | ϕ1 ⊕ ϕ2

where p ∈ Φ.

In this logic, for instance, the implication is defined as

f→(x, y) = min{1, 1− x+ y} (2.1)

Take the statement “If the tank is full then open the valve”. We will call the

proposition representing the tank being full as F and the valve being open as O,

5

therefore the statement becomes the expression F → O. Now, suppose we are

receiving data from a sensor in the tank saying that it is 0.5 full. From figure 2.1, we

can see that for the statement to be completely true, the valve must be at least 0.5

open.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5
0.6
0.7
0.8
0.9

1

O

F
→

O

Figure 2.1: Values assumed by the expression F → O according to the Lukasiewicz

implication shown in equation 2.1, given x = 0.5 for all possible values of y.

The other operators in the Lukasiewicz logic are defined as follows:

• Negation: f¬(x) = 1− x;

• Weak conjunction: f∧(x, y) = min{x, y};

• Weak disjunction: f∨(x, y) = max{x, y};

• Strong conjunction: f⊗(x, y) = max{0, x+ y − 1};

• Strong disjunction: f⊕(x, y) = min{1, x+ y}.

2.3 Modal logic

Modern formal modal logics date back to 1932 when Lewis introduced in [19] five

different logic systems named S1 through S5. Modal logics are a family of logics

consisting of extensions to the classical propositional logic that contains operators of

modality, that is operators that qualify a given statement.

Classical modal logic contains the operators “necessarily” and “possibly”, which

are usually written � and ♦ respectively. For instance, �p reads “Necessarily p”.

2.3.1 Language and semantics

This section presents the usual language and semantics of modal logic [20]. The

model is usually called a “frame”, which we will denote F .

Definition 2 A modal logic frame is a tuple F = (W,∼) where

6

• W is a non-empty set of states;

• ∼ is a binary relation over W ;

Definition 3 A modal logic model is a pair M = (F , V), where F is a frame, V

is a valuation function V : Φ → 2W and Φ is a set of countably many proposition

symbols.

The binary relation ∼ is called the “accessibility relation”. For example, w ∼ u

means that the state u is accessible from state w. That is to say, someone “living” in

state w would see u as a plausible state as well.

Then, we can define the truth of formulas in a state of a frame (we use “iff” as

shorthand for “if and only if”):

Definition 4 The language for modal logic consists of a set Φ of countably many

proposition symbols, the Boolean connectives ¬ and ∧, and modalities � and ♦. The

formulae are defined as follows in BNF notation:

ϕ ::= p |¬ϕ | ϕ1 ∧ ϕ2 | �ϕ | ♦ϕ

where p ∈ Φ.

Definition 5 Given a modal logic model M = (F , V), the notion of satisfaction

w |= ϕ is defined as follows:

1. w |= p iff w ∈ V (p)

2. w |= ¬ϕ iff w 6|= ϕ

3. w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

4. w |= ♦ϕ iff for some state u of W , it holds that w ∼ u and u |= ϕ

5. w |= �ϕ iff for every state u of W , if w ∼ u it holds that u |= ϕ

It is also possible to easily interchange the � and ♦ operators with the following

axioms:

♦ϕ↔ ¬�¬ϕ (2.2)

�ϕ↔ ¬♦¬ϕ (2.3)

7

2.3.2 S4 and S5 logics

The modal logic systems differ by the properties of their accessibility relations. From

the logic systems Lewis defined, S4 and S5 are usually the most studied ones.

Definition 6 The S4 logic is defined by the properties of

• Reflectivity: w ∼ w,∀w ∈ W ;

• Transitivity: w ∼ u ∧ u ∼ q → w ∼ q,∀w, u, q ∈ W ;

That is, the S4 logic is defined by the properties that any state is accessible from

itself (Reflectivity), and that if a state is accessible via an intermediate state, then

the former is also directly accessible (Transitivity. Figure 2.2).

a b c

Figure 2.2: The transitive property. The relations are bidirectional.

Definition 7 The S5 logic is defined by the properties of

• Reflectivity: w ∼ w,∀w ∈ W ;

• Euclidean relation: w ∼ u ∧ w ∼ q → u ∼ q,∀w, u, q ∈ W ;

In other words, S5 logic is defined by the property of reflectivity as in S4, and

by the Euclidean relation: all accessible states are also accessible from themselves

(figure 2.3). Note that the Euclidean relation implies transitivity as well.

a

b

c

Figure 2.3: The Euclidean property. The relations are bidirectional.

8

2.4 Multi-agent epistemic logic

The works of von Wright [21] and Hintikka [22] are widely regarded as the first formal

approaches to epistemic logics, that is, logics seeking to represent knowledge and

belief (the latter sometimes referred to as “doxastic” logic).

Philosophers are also interested in epistemic logic, as a part of the broader field

of epistemology [23]. One of the most studied themes in the field is that of “Closure”,

that is, whether or not an agent is always capable of deducing logical consequences

[24]. In other words, if p and p→ q, is an agent always capable of deducing q? This

problem also relates to the “problem of logical omniscience”, which states that if

an agent knows every formula in a set, and a statement follows from this set, then

the agent is always capable of deducing the statement [25]. Some other important

themes are: the “Moore sentence” [26], which consists of the paradoxical sentence

“p is true but I do not believe p”, a logically consistent sentence but an apparent

contradiction; and the “Fitch paradox” [27], a result that states that there must be

some truths which are not knowable [28].

Epistemic logic’s main characteristic is the operator K, the “knowledge operator”.

It is important to note that this “knowledge” refers not to one’s knowledge on how

to perform certain tasks, or simply being aware of someone or something. It is about

propositional knowledge, that is, knowing that something is true [29].

We will focus here on Multi-Agent Epistemic Logic, which has been investigated

in Computer Science [30] to represent and reason about agents or groups of agents’

knowledge and beliefs.

2.4.1 Language and semantics

This section presents the Multi-Agent Epistemic Logic S5′. It is inspired on the work

presented in [30].

Definition 8 The language for S5′ consists of a set Φ of countably many proposition

symbols, a finite set A of agents, the Boolean connectives ¬ and ∧, and a modality

Ka for each agent a. The formulas are defined as follows in BNF notation:

ϕ ::= p |¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | Kaϕ

where p ∈ Φ, a ∈ A.

The intended meaning of the modal operator Kaϕ is “agent a knows ϕ”.

Definition 9 A multi-agent epistemic frame is a tuple F = (W,∼a) where

• W is a non-empty set of states;

9

• ∼a is a binary relation over W , for each agent a ∈ A;

Definition 10 A multi-agent epistemic model is a pair M = (F , V), where F is

a frame and V is a valuation function V : Φ → 2W . We call a rooted multi-agent

epistemic model (M, s) an epistemic state, where s ∈ W .

In most applications of multi-agent epistemic logic the relations ∼a are equivalence

relations. In this work we only deal with the case where ∼a are equivalence relations,

for each agent a.

Definition 11 Given a multi-agent epistemic model M = 〈S,∼a, V 〉, the notion of

satisfaction M, s |= ϕ is defined as follows:

1. M, s |= p iff s ∈ V (p)

2. M, s |= ¬φ iff M, s 6|= φ

3. M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

4. M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ

5. M, s |= φ→ ψ iff M, s 6|= φ or M, s |= ψ

6. M, s |= Kaφ iff ∀s′ ∈ S : s ∼a s
′ ⇒M, s′ |= φ

For an agent a, the modal operator Kaϕ has the intuitive meaning: “agent a

knows ϕ”. Kaϕ is true iff ϕ is true in every state agent a considers as possible.

2.4.2 Example

This example is from [29]. Suppose we have a card game with three cards: 0, 1 and

2, and three players a, b and c. Each player receives a card and does not know the

other players’ cards. We use propositional symbols 0x, 1x, 2x for x ∈ {a, b, c} meaning

“player x has card 0, 1 or 2”. We name each state by the cards that each player has in

that state, for instance 012 is the state where player a has card 0, player b has card

1 and player c has card 2. The following epistemic model represents the epistemic

state of each agent (Figure 2.4).

Hexa1 = 〈S,∼, V 〉:

• S = {012, 021, 102, 120, 201, 210}

•
∼a = {(012, 021), (102, 120), (201, 210)}

∼b = {(102, 201), (012, 210), (021, 120)}

∼c = {(102, 012), (201, 021), (210, 120)}

10

201

102

012 021

210

120

a

a

a

b b

bc

c c

Figure 2.4: Epistemic Model Hexa1

•
V (0a) = {012, 021}, V (1a) = {102, 120}, V (2a) = {201, 210},

V (0b) = {102, 201}, V (1b) = {012, 210}, V (2b) = {021, 120},

V (0c) = {120, 210}, V (1c) = {021, 201}, V (2c) = {012, 102}

We could, for instance, assert that agent a knows that agent b does not know

which card a has. That is:

Hexa1, 012 |= Ka¬Kb0a (2.4)

Because in every state that a conceives (012 and 021), agent b is not certain on

which card a has. In state 012 agent b conceives a state where agent a has card 0,

and one where he has card 2. And in state 021, b conceives a state where agent a

has card 0 and one where he has card 1. Which is of course expected, since agent b

(like the other agents) is only aware of his own card.

2.5 Public announcement logic (PAL)

The logics we have seen so far share a common trait: they are all static. The main

development that gave rise to dynamic logic as currently known was dynamic modal

logic, and it was conceived mainly to reason about the behavior of computer programs

[31]. We will focus here however on reasoning about knowledge. Plaza introduced a

public announcement logic in [9], which is the main inspiration for this work, and we

talk about it in detail in this section. Later some more complex actions were made

possible, such as “epistemic actions” [32] and “action models” [12], both of which we

briefly mention in sections 2.6 and 2.7, respectively.

Note that DEL is mostly concerned with information known by the agents of

the world, not the actual facts of the world itself. That is, it models changes in the

accessibility relations connecting the states, not changes to the states themselves.

Now, we will briefly introduce the Public Announcement Logic, which extends the

11

previous S5a logical system to the first actual Dynamic Epistemic Logic, developed

by Plaza in [9].

2.5.1 Language and semantics

The formulas are essentially the same as before, with the addition of the public

announcement operator:

ϕ ::= p |¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | Kaϕ | [φ]ϕ

where p ∈ Φ and a ∈ A.

The modal operator of public announcement [φ]ϕ has the intended meaning:

“after the announcement of φ, ϕ is holds”. The effect of announcing φ publicly is a

restriction in the model to contain only states where φ is true. The definitions of

frame and models remain the same as in the logic S5a. For the notion of satisfaction

we have to add the following item to definition 11:

7. M, s |= [φ]ϕ iff M, s |= φ⇒M|φ, s |= ϕ

where M|φ is a new model obtained by restricting M to have only states where

φ holds. It is defined as follows:

Definition 12 Givem as epistemic model M := 〈S,∼a, V 〉. The model M|φ :=

〈S ′,∼′a, V ′〉is defined as:

• S ′ := [[φ]]M = {s ∈ S|M, s |= φ}

• ∼′a:=∼a ∩([[φ]]M × [[φ]]M)

• V ′(p) := V (p) ∩ [[φ]]M

There is also an axiomatisation for PAL, that is, a set of tautologies (formulas

that are always true in the logic), called axioms, that can be used to derive all other

formulas in the language. It is also possible to show that this axiomatisation is sound

and complete.

Definition 13 An axiomatisation for PAL, according to [29], is:

• Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ) (distribution of Ka over →);

• Kaϕ→ ϕ (truth);

• Kaϕ→ KaKaϕ (positive introspection);

• ¬Kaϕ→ Ka¬Kaϕ (negative introspection);

12

• [ϕ]p↔ (ϕ→ p) (atomic permanence);

• [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ) (announcement and negation);

• [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ) (announcement and conjunction);

• [ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ) (announcement and knowledge);

• [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ (announcement composition);

• From ϕ and ϕ→ ψ, infer ψ (modus ponens);

• From ϕ, infer Kaϕ (necessitation of Ka).

2.5.2 Example

Continuing on the previous card game example, we are now going to make a public

announcement and check the knowledge of an agent given the announcement. Consider

an announcement that agent a does not have card 1 (which we represent as ¬1a),

and after that we want to check if agent c knows if agent a has the card 0 (Kc0a).

This can be expressed as:

Hexa1, 012 |= [¬1a]Kc0a (2.5)

The epistemic model Hexa2 = Hexa1|¬1a representing the epistemic state of

each agent after the announcement is (Figure 2.5):

Hexa2 = 〈S ′,∼′a, V ′〉:

• S ′ = {012, 021, 201, 210}

•
∼′a = {(012, 021), (201, 210)}

∼′b = {(012, 210)}

∼′c = {(201, 021)}

•
V ′(0a) = {012, 021}, V ′(1a) = {}, V ′(2a) = {201, 210},

V ′(0b) = {201}, V ′(1b) = {012, 210}, V ′(2b) = {021},

V ′(0c) = {210}, V ′(1c) = {021, 201}, V ′(2c) = {012}

We can check if Kc0a holds in the new model Hexa2:

Hexa2, 012 |= Kc0a (2.6)

Now, we have to check if 0a is true in every state connected to state 012 via the

relation ∼c. Since there are no other states other than 012 itself, we check only this

state:

13

201

012 021

210

a

a

bc

Figure 2.5: Epistemic Model Hexa2 = Hexa1|¬1a

Hexa2, 012 |= 0a (2.7)

Which is true because 012 ∈ V ′(0a), and therefore Hexa2, 012 |= Kc0a is also

true.

In the following sections we talk a bit about alternative, and more complex,

approaches to model knowledge updates.

2.6 Epistemic actions

It is possible to convey more complex changes to the model, which are called

collectively “epistemic actions”. Public announcements provide only a subset of what

is possible with epistemic actions, and would for instance be represented as:

[LA?ϕ]ψ (2.8)

Which should be read as “after agents A (all agents of the model) learn ϕ, it holds

that ψ.”

2.6.1 Language and semantics

The language L!(A,Φ) can be defined as the union of the “formulas” Lstat
! (A,Φ) and

the “actions” Lact
! (A,Φ) defined by, respectively:

ϕ ::= p |¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | Kaϕ | CBϕ | [α]ϕ

α ::=?ϕ | LBβ | (α ! α) | (α ¡ α) | (α ; β′) | (α ∪ α)

where p ∈ Φ, a ∈ A, B ⊆ A, ψ ∈ Lstat
! (gr(α),Φ), β ∈ Lact

! (B,Φ) and β′ ∈
Lact

! (gr(α),Φ). The group gr(α) of an action α is defined as: gr(?ϕ) = ∅, gr(LBα) = B,

14

gr(α ! α′) = gr(α), gr(α ¡ α′) = gr(α′), gr(α ; α′) = gr(α′) and gr(α ∪ α′) =

gr(α) ∩ gr(α′).
We will not go into details here, and the reader is referred to [29], probably the

most comprehensive material on this subject and the basis for this section and section

2.7. There the reader will find the semantics definitions and examples.

Now, suppose an initial model (figure 2.6) where 0 stands for “agent a does not

know whether p or ¬p” and 1 stands for “agent a knows whether p or ¬p”.

0 1a, b

Figure 2.6: Before the epistemic action. State 1 is the real state.

It is possible to write complex expressions such as Lab(La?p∪La?¬p ∪ !?>) which

stands for “agents a and b learn that a may learn the truth about fact p, although

actually nothing happens (expressed by the exclamation mark)”. This action increases

the number of states in the system, something standard public announcements can’t

do, as it introduces doubt for agent b of whether agent a learned about p or not

(figure 2.7).

0 1

0 1

b

b b

a, b

Figure 2.7: After the epistemic action. There are now four states instead of two, and

the upper states represent the new possibility that agent a may have learned the

truth about fact p, although agent b cannot be sure of that.

2.7 Action models

Action models are a different approach to describe epistemic actions. Their structure

resembles a Kripke model, which gives them their name. Again we refer the reader to

[29] for more details, and we go straight to an example also from the aforementioned

work. Suppose an initial model as in figure 2.8 where 0 represents the state where

¬p and 1 represents the state where p.

15

0 1a, b

Figure 2.8: Initial epistemic model

Now consider a letter that contains information about whether p or ¬p and both

agents a and b are aware of it, however only agent a is going to read it. We give

these two possibilities two so-called “action points”: p with precondition pre(p) = p

and np with precondition pre(np) = ¬p. These preconditions are not enough to fully

specify these actions, we need the relation between p and np as well. This can be

seen in figure 2.9.

np pb

Figure 2.9: Action model for reading the letter

We can now define the computation of the cross-product between an epistemic

state and an epistemic action. The resulting “factual states” of this cross-product

are given by pairs resulting of the combinations of the states in the epistemic model

and the action points from the action model, respecting the preconditions. In this

case, the only possible pairs are (0, np) and (1, p), as the pairs (0, p) and (1, np) are

excluded due to preconditions pre(p) = p and pre(np) = ¬p, respectively.

Regarding the relations between the factual states, they are given by

(s1, p1) ∼a (s2, p2) iff s1 ∼a s2 and p1 ∼a p2, (2.9)

where a is an arbitrary agent, s1 and s2 are states from the epistemic model and p1

and p2 are action points from action model.

We can then compute the cross-product of the epistemic model with the action

model, which results in figure 2.10.

(0, np) (1, p)b

Figure 2.10: Cross-product of the epistemic model with the action model

The resulting epistemic model can be extracted from the cross-product, resulting

16

in figure 2.11. Now everything is distinguishable for agent a (who read the letter),

and agent b is still unaware of whether p or ¬p. Note however, that agent b does

know that agent a knows this. That is, it is true that Kb(Kap ∨Ka¬p).

0 1b

Figure 2.11: Epistemic model after the epistemic action is executed

17

Chapter 3

Populational announcement logic

(PPAL)

Now we introduce PPAL, where we have populations and groups instead of agents.

It works like a “fuzzyfied” version of PAL, where announcements act upon fractions

of populations, so it does not make sense to talk explicitly of private or public

announcements. It should be noticed that in the limit case where announcements are

made to the whole population, the model will evolve equivalently to a PAL model

with public announcements.

This allows us much more flexibility, as we do not have to define every agent in

a system beforehand. Also, it allows expressing partial knowledge in a much more

natural way.

As a motivation, consider the following example: A famous politician is under

suspicion of money laundering and bribery. Elections are coming up, and this politician

expects to be re-elected, but people are less willing to vote for him if they are aware

of both charges against him. Not everyone in the population is aware of the charges,

however. With PPAL we can model announcements made by a TV program which

only a certain amount of the population watches, and then we can assert the overall

knowledge of the population in regards to the politician. For instance, the formula

[l]0.3G KG(l ∧ b) (3.1)

represents an announcement made to a fraction of 0.3 of a group G, that the politician

is in fact guilty of money laundering (l), and a subsequent knowledge assertion of

whether G knows that the politician is corrupt or not (guilty of money laundering

and bribery).

We will return to this example in section 4.2.

18

3.1 Populations and groups

Definition 14 A population represents a collection of individuals. A population P

has size |P | ∈ Q>0.

It is defined as a rational number because announcements split populations into a

group with two populations, and their sizes will be then fractions of the population’s

size.

Note that while a population represents many individuals, actual individuals are

never directly expressed or referenced (as in DEL). Individuals are represented solely

by the size of the population. The motivation for this comes down to the fact that we

are mostly interested in representing and working with the knowledge of populations

or fractions of populations, thus there is no purpose in modelling actual individuals.

Next we will define the notion of groups.

Definition 15 A group G can be empty, a population or a disjoint set of groups:

G := ∅ | P | {G0, G1, . . . , Gn} (3.2)

The size of a group G is defined as:

|G| =


0 if G = ∅,
|P | if G = P ,∑

Gi∈G|Gi| if G = {G0, G1, . . . , Gn}.

The reason for having two definitions for “groups” and “populations” is the fact

that announcements operate splitting groups into populations, as will be seen in

section 3.4 and in chapter 4. Having groups and populations allows for a clearer

definition of announcements, because if we only had populations there would be

no easy way to reference, as a whole, the same individuals that we could reference

before the announcement was made and they were a single population.

3.2 Model

Since the announcements apply to fractions of a population, they work similarly

to private announcements. Due to this, the many worlds approach is used. Each

population has its own model, representing its current knowledge of the world:

Definition 16 A model for a population P , MP = 〈T,MP ,G∼ , V 〉 is composed of a set

of states T , a valuation function that maps propositional symbols in Φ into subsets

of T , V : Φ→ 2T , and a family of binary relations over T ,
MP ,G∼ , for each group G

known (represented) by this population.

19

For example, an edge representing the doubts of population P in regards to group

G would be in the relation
MP ,G∼ .

Definition 17 A model MG, for a group G = {G0, G1, . . . , Gn} is defined as the set

of models of each of its groups. That is, MG = {MG0 ,MG1 , . . . ,MGn}.

Since announcements split groups into populations, groups appearing on a branch

after a split are not known to groups on other branches. That is, they will not appear

on these groups’ models.

3.3 Language

This sections presents the language of PPAL.

The language is as follows in BNF notation:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 |KGϕ | BGϕ | [ϕ1]
r
Gϕ2

where r ∈ U = [0, 1], G denotes a group and p ∈ Φ.

The modal operators have the following intended meaning:

• KGϕ and BGϕ: “the group G knows/believes that ϕ is true”;

• [ϕ1]
r
Gϕ2: “ϕ2 is true on group G’s model after the announcement of ϕ1 to fraction

r of the individuals in G”, where G = {P1, P2} and |P1| = |G|r. This expression

describes a partial announcement which defines two new populations, one of

them with additional knowledge announced and other that did not received

the new information announced.

3.4 Semantics

This section presents the semantics of PPAL. We start by redefining (fuzzifying) the

valuation functions V as definitions 16 and 17. In order to achieve that, we define an

evaluation function e : p× (MG, s)→ U where p ∈ Φ, MG is a model for G, s is a

state and U is the unit interval [0, 1]. We can define the semantics as follows:

EMG,s(p) = e(p, (MG, s)) (3.3)

EMG,s(¬ϕ) = NOT (EMG,s(ϕ)) (3.4)

EMG,s(ϕ ∧ ψ) = AND(EMG,s(ϕ), EMG,s(ψ)) (3.5)

EMG,s(ϕ ∨ ψ) = OR(EMG,s(ϕ), EMG,s(ψ)) (3.6)

20

EMG,s(ϕ→ ψ) = IMP(EMG,s(ϕ), EMG,s(ψ)) (3.7)

EMG,s(KG′ϕ) = K (ϕ, (MG, s), G
′) (3.8)

EMG,s(BG′ϕ) = B(ϕ, (MG, s), G
′) (3.9)

EMG,s([ϕ]rGnew
ψ) = EMGnew ,s(ψ) (3.10)

where ∃G1, G2 such that Gnew = {G1, G2}, and MGnew = {MG1 ,MG2} such that

MG1 = MG|rϕ and MG2 = MG|1−r> . > is a symbol for true.

MG|rϕ is defined as a recursive call for every G′ ∈ G (that is, MG′ |rϕ), and MP |rϕ
as in definition 12, but substituting agent a for P , and multiplying the size of P

by r. Intuitively, MG|rϕ is the new model obtained from MG by removing all states

where ¬ϕ holds, and multiplying the sizes of every group contained in G by r.

Depending on the choice of the evaluation function we can have different semantics.

One possible evaluation function is the crisp evaluation. Suppose MG = 〈T,MG,S′
∼ , V 〉

e(p, (MG, s)) = 1 if p ∈ V (p) , and 0 otherwise (3.11)

Below, we give some properties about the fuzzy functions that are used in the

definition of satisfaction. At this point we choose not to define a particular fuzzy

semantics and instead define classes for each operation. One can choose any semantics

which satisfies the following properties, and we provide an example for each of the

classes.

It is also important to note that this work is concerned with model checking and

for that the notion of satisfaction is enough. For this reason we did not define the

consequence relation.

3.5 Fuzzy negation

A unary operation NOT : U → U is a fuzzy negation if

• NOT (0) = 1;

• NOT (1) = 0;

• x ≤ y → NOT (y) ≤ NOT (x).

For instance, a possible negation function is NOT (x) = 1− x.

Examples:

• NOT (0.2) = 0.8;

• NOT (0.5) = 0.5;

21

3.6 Fuzzy conjunction

A binary operation AND : U × U → U is a fuzzy conjunction if

• AND(x, y) = AND(y, x) (Symmetry);

• AND(x,AND(y, z)) = AND(AND(x, y), z) (Associativity);

• y ≤ z → AND(x, y) ≤ AND(x, z) (Right monotonicity);

• AND(x, 1) = x (1-Identity).

These also define precisely the class of t-norm functions, which are widely used in

fuzzy logics as they are considered “well-behaved” functions [33]. For instance, a

possible conjunction function is AND(x, y) = min{x, y}.
Examples:

• AND(1, 0) = 0;

• AND(0.2, 0.8) = 0.2;

3.7 Fuzzy disjunction

A binary operation OR : U × U → U is a fuzzy disjunction if

• OR(x, y) = OR(y, x) (Symmetry);

• OR(x,OR(y, z)) = OR(OR(x, y), z) (Associativity);

• y ≤ z → OR(x, y) ≤ OR(x, z) (Right monotonicity);

• OR(x, 0) = x (0-Identity).

These also define precisely the class of t-conorm functions, analogous to the t-norm

class. For instance, a possible disjunction function is OR(x, y) = max{x, y}.
Examples:

• OR(1, 0) = 1;

• OR(0.2, 0.8) = 0.8;

22

3.8 Fuzzy implication

A binary operation IMP : U × U → U is a fuzzy implication if

• x ≤ y → IMP(x, z) ≥ IMP(y, z);

• y ≥ z → IMP(x, y) ≥ IMP(x, z);

• IMP(0, x) = 1;

• IMP(x, 1) = 1;

• IMP(1, 0) = 0.

For instance, a possible implication function is IMP(x, y) = min{1, 1− x+ y}, also

known as the Lukasiewicz implication.

Examples:

• IMP(0.2, 0.8) = 1;

• IMP(0.8, 0.2) = 0.4;

3.9 Fuzzy knowledge assertion

A ternary operation K : φ× (MS, s)×G→ U is a fuzzy knowledge assertion if

• if G = P then ∀s′ ∈ T | s MS ,P∼ s′[EMS ,s′(ϕ) = 1→ K (ϕ, (MS, s), P) = 1];

Which means that for a population P , if ϕ is true on every state connected

to the current state via
MS ,P∼ edges, then the population knows ϕ (result is 1).

• if G = P then ∀s′ ∈ T | s MS ,P∼ s′[EMS ,s′(¬ϕ) = 1→ K (ϕ, (MS, s), P) = 0];

Which means that for a population P , if ϕ is not true on every state

connected to the current state via
MS ,P∼ edges, then the population does not

know ϕ (result is 0).

• K (ϕ, (MS, s), G) ≤ maxG′∈G{K (ϕ, (MS, s), G
′)};

Which means that for a group G, the knowledge about ϕ should be less

than or equal to the knowledge about ϕ in its contained group with the highest

knowledge about it.

• K (ϕ, (MS, s), G) ≥ minG′∈G{K (ϕ, (MS, s), G
′)}.

Which means that for a group G, the knowledge about ϕ should be greater

than or equal to the knowledge about ϕ in its contained group with the lowest

knowledge about it.

23

For instance, a possible knowledge assertion function is

K (ϕ, (MS, s), G) =



∑
G′∈G

|G′|
|G|K (ϕ, (MS, s), G

′) if G 6= P ,

1 if ∀s′ ∈ T | s MS ,P∼ s′ →
EMS ,s′(ϕ),

0 otherwise.

Note here that we slightly abuse notation for binary relations when they appear

referring to models of groups, such as the expression
MG,P∼ , which represents the

binary relation for the model of population P contained inside MG.

Intuitively, it means that the knowledge of a group is equal to the weighted

average knowledge of its contained groups. If the group is a single population, it is

equal to 1 when ϕ is true in every state connected to state s via
MS ,G∼ , and 0 otherwise.

A single population knows something only when it is true in every conceivable world

this population contemplates.

3.10 Fuzzy belief assertion

A ternary operation B : φ× (MS, s)×G→ U is a fuzzy belief assertion if

• if G = P then ∃s′ ∈ T | s MS ,P∼ s′[EMS ,s′(ϕ) = 1→ B(ϕ, (MS, s), P) > 0];

Which means that for a population P , if ϕ is true on a state connected to

the current state via
MS ,P∼ edges, then the population’s belief about ϕ is greater

than zero.

• if G = P then ∃s′ ∈ T | s MS ,P∼ s′[EMS ,s′(¬ϕ) = 1→ B(ϕ, (MS, s), P) < 1];

Which means that for a population P , if ϕ is not true on a state connected

to the current state via
MS ,P∼ edges, then the population’s belief about ϕ is less

than one.

• if G = P then ∀s′ ∈ T | s MS ,P∼ s′[EMS ,s′(ϕ) = 1→
B(ϕ, (MS, s), P) = K(ϕ, (MS, s), P)];

Which means that for a population P , if ϕ is true on every state connected

to the current state via
MS ,P∼ edges, then the population’s belief about ϕ is

equal it its knowledge about ϕ.

• B(ϕ, (MS, s), G) ≤ maxG′∈G{B(ϕ, (MS, s), G
′)};

Which means that for a group G, the belief about ϕ should be less than or

equal to the belief about ϕ in its contained group with the highest belief about

it.

24

• B(ϕ, (MS, s), G) ≥ minG′∈G{B(ϕ, (MS, s), G
′)}.

Which means that for a group G, the belief about ϕ should be greater than

or equal to the belief about ϕ in its contained group with the lowest belief

about it.

For instance, a possible population belief assertion function is

B(ϕ, (MS, s), G) =


∑

G′∈G
|G′|
|G| B(ϕ, (MS, s), G

′) if G 6= P ,∑
s′∈Ns

EMS,s′ (ϕ)

|Ns| if G 6= ∅,
0 otherwise,

where Ns =
⋃

s′∈T |s
MS,G
∼ s′

s′ are the neighbours of s via relation
MS ,G∼ .

Which is functionally similar to K, but allowing any number in the interval [0, 1].

For example, if in half of the states connected to state s via
MS ,P∼ , ϕ evaluates to 1

and in the other half to 0, then B(ϕ, (MS, s), P) = 0, 5. And also similarly to K, the

belief of a group is equal to the weighted average beliefs of its contained groups.

3.11 Proof of decidability

An important aspect of model checking a logical system is that of decidability, which

relates to the halting problem, that is, whether or not there exists some formula in

the language that could potentially cause the model checker to get stuck in a loop.

Some multi-agent logics are undecidable, and some of their public announcement

extensions are as well [34]. In this section we show that, when using the specified

operator functions, any valid finite formula of the PPAL language over a finite model

is in fact decidable. We use induction over the size s of the formula for this proof.

Definition 18 The size s for each expression of the language is defined as follows:

• s(p) = 1;

• s(ϕ1 ∧ ϕ2) = s(ϕ1) + s(ϕ2) + 1;

• s(ϕ1 ∨ ϕ2) = s(ϕ1) + s(ϕ2) + 1;

• s(ϕ1 → ϕ2) = s(ϕ1) + s(ϕ2) + 1;

• s(KGϕ) = s(ϕ) + 1 + |G|;

• s(BGϕ) = s(ϕ) + 1 + |G|;

• s([ϕ1]
r
Gϕ2) = s(ϕ1) + s(ϕ2) + 1 + |G|.

25

Next, we can proceed to the induction basis step where n = 1, that is, the case

of a formula consisting of a single propositional symbol. EMG,s(p) = e(p, (MG, s))

evaluates to 1 or 0 in a finite model, and therefore is decidable.

We then consider the induction hypothesis to be that any formula with size s

is decidable. Now it remains necessary to take the inductive step, assuming the

induction hypothesis and proving that formulas with size s+ δ are also decidable,

where δ ∈ R>0. Note that δ is in the real interval because the size |G| of a group G

can be a real value.

Inductive step:

1. EMG,s(¬ϕ) = NOT (EMG,s(ϕ)): NOT is a simple mathematical function which

evaluates to a value in U for any input in U . Since EMG,s(ϕ) is decidable

by hypothesis, this formula is decidable. EMG,s(ϕ ∧ ψ), EMG,s(ϕ ∨ ψ) and

EMG,s(ϕ→ ψ) are all decidable due to the same arguments;

2. EMG,s(KG′ϕ) = K (ϕ, (MG, s), G
′):

(a) It is trivially decidable when G′ = ∅, because its evaluation will always

be equal to 0;

(b) It is decidable when G′ = P , as the formula is resolved via calculations of

EMG,s′(ϕ) which is decidable by hypothesis;

(c) In the case where G′ = {G′0, G′1, . . . , G′n}, the sum will range recursively

over every G′i ∈ G′. The sizes |G′i| are strictly smaller than |G| because

by definition the group G′ is composed of a disjoint set of groups. Due to

this, s(KG′
i
ϕ) < s(KG′ϕ) and KG′

i
ϕ is decidable by hypothesis. KG′ϕ is

resolved via calculations of KG′
i
ϕ, therefore, the formula is decidable.

3. EMG,s(BG′ϕ) = B(ϕ, (MG, s), G
′):

(a) It is trivially decidable when G′ = ∅, because its evaluation will always

be equal to 0;

(b) When G′ = P , the sum ranges over all neighbours s′ of state s, but

since the model is finite and EMG,s′(ϕ) is decidable by hypothesis, it is

decidable;

(c) In the case where G′ = {G′0, G′1, . . . , G′n}, the same argument used in 2b

shows this formula is decidable.

4. EMG,s([ϕ]rG′ψ) = EMG′ ,s(ψ): MG is finite and therefore MG′ is also finite as

it contains exactly twice the number of elements in MG. To define MG′ we

need to calculate EMG,s(ϕ) for every s ∈ T , which are decidable by hypothesis.

EMG′ ,s(ψ) is also decidable by hypothesis. Also note that it is not possible to

26

write a formula that divides the group indefinitely, as that would require us

to write down an infinite number of announcements. Therefore, the formula is

decidable.

Hence we have covered every possible case and shown that they are all decidable,

therefore successfully showing that any valid finite formula of the PPAL language

over a finite model is decidable using the specified operator functions.

Notice however, that recursive formulas such as ϕ := [ϕ]rG′ψ or ϕ := [ψ]rG′ϕ are

not included in the language definition, and they would break the language’s property

of being decidable.

27

Chapter 4

Usage examples of PPAL

In this section two examples are provided, where simple models are established and

some assertions are made to probe the knowledge represented by the models. For

the sake of clarity, we name the states with the set of propositional symbols, or their

negation, that hold in it. For instance, state {a,¬b} is the state where a and ¬b are

true.

4.1 Basic example

We begin with a simple example where we are able to easily demonstrate how the

model evolves, and give step-by-step resolutions of the evaluations. Later we provide

a more complex example with an actual motivation.

4.1.1 Initial model

We suppose an initial model composed of a single population P , two propositions a

and b, and a real state {a, b}. The evaluation function is the same as defined before.

Initially the population is entirely unaware of its real state, which means there are

edges between every state of this model (it is a complete graph. Figure 4.1).

The following assertions hold:

• EMP ,{a,b}(a) = e(a, (MP , {a, b})) = 1.0, because the state {a, b} has proposition

a;

• EMP ,{a,b}(KPa) = 0.0, because states {¬a, b} and {¬a,¬b} are connected to

{a, b} via
MS ,P∼ edges, but do not have proposition a.

28

¬a,¬b

¬a, b a,¬b

a, b

P P
P

P

P P

Figure 4.1: Initial model.

4.1.2 First announcement

Now we announce a for fraction r of the initial population P , obtaining group G,

and we want to know if G knows a. That is:

EMP ,{a,b}([a]rGKGa) (4.1)

The announcement is processed over model MG = {P 1, P 2} (Figure 4.2), where

P 1’s model is the same as P ’s, but without the edges connecting to states where

a does not hold, and size r|P |. P 2’s model is just like P ’s, but has size (1− r)|P |.
Notice that P 2 did not receive the announcement, and is unaware that P 1 did. In

this case we’re effectively assessing:

EMG,{a,b}(KGa) (4.2)

This equation is the same as K (a,MG, {a, b}, G) according to the rules in the previous

section. Expanding:

K (a,MG, {a, b}, G) =

|P 1|K (a,MP 1 , {a, b}, P 1) + |P 2|K (a,MP 2 , {a, b}, P 2)

|P 1|+ |P 2|
=

|P 1| · 1 + |P 2| · 0
|P 1|+ |P 2|

=
|P 1|

|P 1|+ |P 2|
=
r|P |
|P |

= r

(4.3)

Which of course makes sense, as the announcement was made for fraction r of the

population.

29

¬a,¬b

¬a, b a,¬b

a, b

P 2
P 2

P 2

P 2

P 2
P 1, P 2

¬a,¬b

¬a, b a,¬b

a, b

P 1, P 2 P 1, P 2

P 1, P 2

P 1, P 2

P 1, P 2 P 1, P 2

Figure 4.2: Model G (P 1’s to the left, P 2’s to the right).

4.2 The corrupt politician

In this section we attempt to provide a more motivational example, with a scenario

that is closer to real life. Consider a famous politician who is under suspicion of

money laundering and bribery. Elections are coming up, and this politician expects

to be re-elected, but people are less willing to vote for him if they are aware of both

charges against him. Not everyone in the population is aware of the charges, however.

4.2.1 Initial model

Again we suppose an initial model composed of a single population P , two propositions

l (money laundering) and b (bribery), and a real state {l, b}, which means the

politician in fact is guilty of the charges against him. The evaluation function is the

same as defined before. This model is as shown in figure 4.3.

¬l,¬b

¬l, b l,¬b

l, b

P P
P

P

P P

Figure 4.3: Initial model.

As expected if we assert how much of the population would not vote on the

30

politician, that is, if we ask:

EMP ,{l,b}(KP (l ∧ b)) (4.4)

It will evaluate to 0, as there are P edges connecting the state {l, b} to other

states.

4.2.2 First announcement

A TV program aired revealing the politician in fact did money laundering, but

given that only 30% of the population watched the program, only a fraction of the

population is now aware of this fact. This is equivalent to the announcement [l]0.3G ,

where G = {P 1, P 2} is a group containing the two populations resulting from the

announcement: P 1 who received the announcement, and P 2 who did not. Figure 4.4

shows the resultant model G.

¬l,¬b

¬l, b l,¬b

l, b

P 2
P 2

P 2

P 2

P 2
P 1, P 2

¬l,¬b

¬l, b l,¬b

l, b

P 1, P 2 P 1, P 2

P 1, P 2

P 1, P 2

P 1, P 2 P 1, P 2

Figure 4.4: Model G (P 1’s to the left, P 2’s to the right).

If we were now to assert how much of the population would not vote on the

politician, we would be asking:

EMP ,{l,b}([l]
0.3
G KG(l ∧ b)) (4.5)

At this moment, this would still evaluate to 0, as there are still p1 and p2 edges

connecting the state {l, b} to other states. That is, both populations remain in doubt

about whether {l, b} is the real state or not.

We could also make an assertion in regards to the belief of the population, that

is:

EMP ,{l,b}([l]
0.3
G BG(l ∧ b)) (4.6)

31

To evaluate the belief we must evaluate EMG,r(BG(ϕ)), which expands into

B(ϕ, (MG, r), G) =
∑
G′∈G

|G′|
|G|

B(ϕ, (MG, r), G
′)

= 0.3
∑
r′∈Nr

EMP1 ,r(ϕ)

|Nr|
+ 0.7

∑
r′∈Nr

EMP2 ,r(ϕ)

|Nr|

= 0.3 · 1/2 + 0.7 · 1/4 = 0.325

(4.7)

The first sum evaluates to 1/2 because out of two neighbour states to r ({l, b}
itself and {l,¬b}), ϕ is only true in r. The second has all four states as neighbours,

but ϕ is only true in r again. The result 0.325 demonstrates a small belief at this

moment that the politician is in fact corrupt.

4.2.3 Second announcement

Now, let us consider another TV program aired, and this time covering 40% of the

same original population, and it was told that the politician is in fact guilty of

bribery. This corresponds to the announcement [b]0.4G′ , where G′ = {G1, G2} is a group

containing the two groups resulting from the announcement: G1 who received the

announcement, and G2 who did not. The model resulting from both announcements

is shown in figure 4.5.

If we were now to assert how much of the population would not vote on the

politician, we would be asking:

EMP ,{l,b}([l]
0.3
G [b]0.4G′KG′(l ∧ b)) (4.8)

32

¬l,¬b

¬l, b l,¬b

l, b

P 12
P 12

P 12

P 12

P 12
P 12

¬l,¬b

¬l, b l,¬b

l, b

P 22 P 22

P 22

P 22

P 21, P 22 P 22

¬l,¬b

¬l, b l,¬b

l, b

P 12
P 12

P 12

P 12

P 12
P 11, P 12

¬l,¬b

¬l, b l,¬b

l, b

P 21, P 22 P 21, P 22

P 21, P 22

P 21, P 22

P 21, P 22 P 21, P 22

Figure 4.5: Model G′. G1’s model to the left, population above received both an-

nouncements, below received only the first one; G2’s to the right, population above

received only the second announcement, below received none.

We omit the complete math here, but at this moment the assertion would evaluate

to 0.12 (0.3× 0.4, intuitively in this case), since there are no more edges connecting

the state {l, b} to anything else for population P 11 in G1.

It is a simple but interesting example, in that it shows how “partial” knowledge

can build up to create useful information for certain fractions of the populations,

due to them having being exposed enough to these partial knowledge pieces in the

past, and how it might not be intuitive to find out how much exactly of a population

knows a certain fact.

33

Chapter 5

Model checker

A general-purpose Java library implementing the PPAL language and semantics, and

a CLI (Command Line Interface) model checker have been developed. Both programs

are extensively covered by unit and integration testing to ensure consistency with

the PPAL language and semantics, and the source-code of both library and model

checker are available on GitHub1 under the BSD license. Important parts of the

model checker’s source-code are shown in Appendix A.

The main current implementations of model checkers available for epistemic

logics are MCK [35]2, MCMAS [36]3 and DEMO [37]4. A recent development called

SMCDEL [38]5 formalizes a new structure to represent DEL models which allows

for symbolic model checking, a model which uses binary decision diagrams [39] to

represent models instead of having every state directly represented in the system. Due

to this, SMCDEL also provides better performance over the other model checkers.

Note that in this work we do not yet attempt symbolic model checking, and this is

left as a future work.

There are also model checkers for other types of logic, such as Propositional

Dynamic Logic (PDL) [40], whose main objective is to model the execution of

programs, by representing them as binary relations connecting states, similarly to

the relations in the modal logics shown here. One such tool is mcpdl6.

5.1 Model format

One of the recurring problems of these model checkers is the difficulty in specifying

input models to be worked on. Difficulty arises not only because one usually has

1https://github.com/vittau/PPAL
2http://cgi.cse.unsw.edu.au/~mck/pmck/
3http://vas.doc.ic.ac.uk/software/mcmas/
4http://homepages.cwi.nl/~jve/#Software
5https://github.com/jrclogic/SMCDEL
6http://www2.tcs.ifi.lmu.de/~axelsson/veri_non_reg/pdlig_mc.html

34

https://github.com/vittau/PPAL
http://cgi.cse.unsw.edu.au/~mck/pmck/
http://vas.doc.ic.ac.uk/software/mcmas/
http://homepages.cwi.nl/~jve/#Software
https://github.com/jrclogic/SMCDEL
http://www2.tcs.ifi.lmu.de/~axelsson/veri_non_reg/pdlig_mc.html

to define every state and every edge of the model, but because these specifications

use to be somewhat unintuitive and hard to read as well. We define an XML-based

format, which aims to make the process of declaring models easier than what the

currently available software permits, and that is also scalable for larger models.

In this model specification format we provide tags to generate states based on

combinatorics where one can, for example, group propositions by population and

then define that every state must contain at least one proposition from a set for each

population. There are restrictions for mutual exclusion that can be applied as well,

which can be thought of as “trimming” the combinatorics-generated states. It is also

possible to define states manually by declaring all its propositions.

Appendix B for example models a populational version of the card game shown

in section 2.4. Its first section declares the populations using the tag <societies>,

with their names and sizes. The second section declares propositions with the tags

<propositions> and <propdef>, with their names and the populations aware of them.

A population is aware of a proposition if it can distinguish between states containing

and not containing the proposition. The third section declares the states using

the tag <states>, via combinations (<comb>) and restrictions (<restrictions>).

Restrictions of type <atleast> mean that at least one of the declared propositions

must appear in every state generated by this combination, and restrictions of type

<mutex> (mutually exclusive) mean that at most one of the declared propositions

can appear in these states.

States can also be declared in full by means of specifying every proposition in the

state using the tag <state>. Restrictions of states can be declared the same way.

5.2 Sample run

After the model (the model shown in appendix B is used for these examples) is

loaded into the model checker, we can now give some commands to it. For instance,

we can print the simulation state (print all):

ppalmc > print a

Real state: {ah0 , ch2 , bh1}

Populations:

a (size = 3.0)

b (size = 5.0)

c (size = 7.0)

We can then, for instance, announce ch2 to population a in its own model and

in the real state:

ppalmc > announce a 0.7 a ch2

35

"ch2" announced to "a" with ratio 0.7 successfully.

And then if we ask if a knows ch2, it returns the expected result:

ppalmc > knows a ah0&bh1&ch2 a ch2

0,7

Not as intuitively perhaps, if we ask if a knows bh1, it returns the same result:

ppalmc > knows a ah0&bh1&ch2 a bh1

0,7

Which is true given our model’s restrictions, because a knows ah0 since it is its

own card, and the fraction of a that now knows ch2 because it was announced, now

knows the only remaining possibility is bh1 because b can’t have any other card

other than 1.

36

Chapter 6

Final remarks and future works

In this work we introduced and defined a “fuzzyfied” variant of PAL that allows

partial announcements to its agents (called “populations” and “groups”).

The main advantage of PPAL over DEL and PAL is the flexibility to work with

non-priorly defined agents. It is possible to define an initial population and have

it evolving in a more natural way that doesn’t require a formal initial definition of

every agent on the system, which is particularly useful for model checking. Therefore

we believe it can be a more appropriate logic for practical use, as it would be much

easier to control and evolve a knowledge model.

We also believe this work expands horizons for the definition of a “dynamic”

logic, in that not only accessibility relations are dynamic, but the agents of the world

themselves are changing and evolving. Therefore it is a worthwhile topic of theoretical

discussion as well, and not only of interest for model checking applications.

6.1 Future works

There is room for further development on a few directions still, and in the following

sections we present some of these directions we believe are worth pursuing.

• Axiomatisation: One important formalism for logics is that of axiomatisation,

a set of tautologies (formulas that are always true in the logic), called axioms,

that can be used to derive all other formulas in the language.

• Symbolic model checking: We did not attempt symbolic model checking. A

model checker is considered “symbolic” if it does not represent all reachable

states individually, and instead relies on representations of states sets and

formulas for transition relations, which can greatly improve performance. One

such approach is based on an structure known as “binary decision diagram”

(BDD) [39]. These structures provide a compact way to represent and check

37

x y z f
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Table 6.1: Truth table of the function f(x, y, z) = ¬x¬y¬z ∨ xy ∨ yz.

x

y

0

y

1

z

0

z

1

1

1

0

0

01 10

Figure 6.1: Binary decision diagram for function f .

valuations in Boolean functions, and equivalent Boolean sub-expressions are

uniquely represented (see table 6.1 and figure 6.1 for an example). This property

can provide an exponentially more compact representation compared to a naive

truth table one, which in turn can provide better model checking performance

for larger models.

38

Bibliography

[1] SOWA, J. F. Knowledge Representation: Logical, Philosophical and Computational

Foundations. Pacific Grove, CA, USA, Brooks/Cole Publishing Co., 2000.

ISBN: 0-534-94965-7.

[2] WAY, E. C. Knowledge Representation and Metaphor, v. 7, Studies in Cognitive

Systems. Dordrecht, Boston, Kluwer, 1991. ISBN: 0-7923-1005-5.

[3] SHOHAM, Y. “Why Knowledge Representation Matters”, Communications of the

ACM, v. 59, n. 1, pp. 47–49, 2015. ISSN: 0001-0782. doi: 10.1145/2803170.

[4] SHAPIRO, S. C. “Knowledge Representation”, Encyclopedia of Cognitive Science,

v. 2, pp. 671–680, 2003.

[5] KNEALE, W., KNEALE, M. “The Development of Logic”, 1962.

[6] LEWIS, C. I. “A Survey of Symbolic Logic”, 1918.

[7] VON WRIGHT, G. H. “An Essay in Modal Logic”, 1951. doi: 10.1017/

S0031819100026176.

[8] HAREL, D. “Dynamic Logic”, v. 165, 1984. doi: 10.1007/978-94-009-6259-0 10.

[9] PLAZA, J. A. “Logics of public communications”, Synthese, v. 158, n. 2,

pp. 165–179, 1989. doi: 10.1007/s11229-007-9168-7.

[10] GERBRANDY, J., GROENEVELD, P. W. “Reasoning about Information

Change”, Journal of Logic, Language and Information, , n. 6, pp. 147–169,

1997.

[11] BALTAG, A., MOSS, L. S. “Logics for Epistemic Programs”, Synthese, v. 139,

n. 2, pp. 165–224, 2004. doi: 10.1023/B:SYNT.0000024912.56773.5e.

[12] BALTAG, A., MOSS, L. S., SOLECKI, S. “The Logic of Public Announcements,

Common Knowledge and Private Suspicions”, Proceedings of TARK’98,

pp. 43–56, 1998. doi: 10.1007/s11229-007-9168-7.

39

[13] MACHADO, V. P., BENEVIDES, M. R. F. “Populational Dynamic Epistemic

Logic (PPDEL)”, 2015.

[14] BOBZIEN, S. “Ancient Logic”. In: Zalta, E. N. (Ed.), The Stanford Encyclopedia

of Philosophy, spring 2014 ed., 2014.

[15] BOOLE, G. The Mathematical Analysis of Logic. Contemporary philosophy.

Philosophical Library, 1847.

[16] ZADEH, L. A. “Fuzzy Sets”, Information and Control, v. 8, pp. 338–353, 1965.

doi: 10.1016/S0019-9958(65)90241-X.

[17] MAMDANI, E. H. “Application of fuzzy algorithms for control of simple

dynamic plant”, Proceedings of the Institution of Electrical Engineers,

v. 121, pp. 1585–1588, 1974. doi: 10.1049/piee.1974.0328.

[18] GODJEVAC, J. “Comparison between PID and fuzzy control”, 1993.

[19] LEWIS, C. I., LANGFORD, C. H. Symbolic Logic. Dover Publications Inc.,

1959.

[20] FITTING, M., MENDELSOHN, R. L. First-Order Modal Logic. Synthese

Library Studies in Epistemology Logic, Methodology, and Philosophy of

Science Volume 277. Springer, 1998. ISBN: 9780792353355.

[21] VON WRIGHT, G. H. “Deontic Logic”, Mind, v. 60, n. 237, pp. 1–15, 1951.

ISSN: 00264423, 14602113.

[22] HINTIKKA, J. Knowledge and belief: an introduction to the logic of the two

notions. Contemporary philosophy. Cornell University Press, 1962.

[23] STEUP, M. “Epistemology”. In: Zalta, E. N. (Ed.), The Stanford Encyclopedia

of Philosophy, spring 2014 ed., 2014.

[24] KVANVIG, J. L. “Closure Principles”, Philosophy Compass, v. 1, n. 3, pp. 256–

267, 2006. ISSN: 1747-9991. doi: 10.1111/j.1747-9991.2006.00027.x.

[25] HENDRICKS, V. F., SYMONS, J. “Where’s the Bridge? Epistemology and

Epistemic Logic”, Philosophical Studies: An International Journal for

Philosophy in the Analytic Tradition, v. 128, n. 1, pp. 137–167, 2006. ISSN:

00318116, 15730883.

[26] MOORE, G. E. “A Reply to My Critics”. In: Schilpp, P. A. (Ed.), The Philosophy

of G. E. Moore, Open Court, 1942.

40

[27] FITCH, F. B. “A logical analysis of some value concepts”, The Journal of

Symbolic Logic, v. 28, pp. 135–142, 6 1963. ISSN: 1943-5886. doi: 10.2307/

2271594.

[28] BROGAARD, B., SALERNO, J. “Fitch’s Paradox of Knowability”. In: Zalta,

E. N. (Ed.), The Stanford Encyclopedia of Philosophy, winter 2013 ed.,

2013.

[29] VAN DITMARSCH, H., VAN DER HOEK, W., KOOI, B. “Dynamic Epistemic

Logic”, Synthese Library, v. 337, 2007. doi: 10.1007/978-1-4020-5839-4.

[30] FAGIN, R., HALPERN, J. Y., MOSES, Y., et al. “Reasoning about Knowledge”,

1995.

[31] HAREL, D., KOZEN, D., TIURYN, J. Dynamic Logic. Foundations of Com-

puting. MIT Press, 2000. ISBN: 9780262263023.

[32] BALTAG, A., COECKE, B., SADRZADEH, M. “Epistemic actions as resources”,

2006.

[33] ESTEVA, F., GODO, L., NOGUERA, C. “First-order t-norm based fuzzy

logics with truth-constants: distinguished semantics and completeness

properties”, Annals of Pure and Applied Logic, v. 161, pp. 185–202, 2009.

[34] FRENCH, T., VAN DITMARSCH, H. “Undecidability for Arbitrary Public

Announcement Logic”, Advances in Modal Logic, v. 7, pp. 23–42, 2008.

[35] GAMMIE, P., VAN DER MEYDEN, R. “MCK: Model Checking the Logic of

Knowledge”, Computer Aided Verification, v. 3114, pp. 479–483, 2004. doi:

10.1007/978-3-540-27813-9 41.

[36] LOMUSCIO, A., RAIMONDI, F. “mcmas: A Model Checker for Multi-agent

Systems”, Tools and Algorithms for the Construction and Analysis of

Systems, v. 3920, pp. 450–454, 2006. doi: 10.1007/11691372 31.

[37] VAN DITMARSCH, H., VAN EIJCK, J., HERNÁNDEZ-ANTÓN, I., et

al. “Modelling Cryptographic Keys in Dynamic Epistemic Logic with

DEMO”, 10th International Conference on Practical Applications of

Agents and Multi-Agent Systems, v. 156, pp. 155–162, 2012. doi:

10.1007/978-3-642-28762-6 19.

[38] VAN BENTHEM, J., VAN EIJCK, J., GATTINGER, M., et al. “Symbolic Model

Checking for Dynamic Epistemic Logic”. In: van der Hoek, W., Holliday,

W. H., Wang, W.-f. (Eds.), Logic, Rationality, and Interaction, v. 9394,

41

Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 366–

378, 2015. ISBN: 978-3-662-48560-6. doi: 10.1007/978-3-662-48561-3 30.

[39] AKERS, S. B. “Binary Decision Diagrams”, IEEE Trans. Comput., v. 27, n. 6,

pp. 509–516, 1978. ISSN: 0018-9340. doi: 10.1109/TC.1978.1675141.

[40] LANGE, M. “Model Checking Propositional Dynamic Logic with All Extras”,

Journal of Applied Logic, v. 4, n. 1, pp. 39–49, 2006. ISSN: 1570-8683. doi:

10.1016/j.jal.2005.08.002.

42

Appendix A

Model checker’s source-code

This appendix contains excerpts from the key points of the model checker’s source-

code, to facilitate the reader in asserting the internal functioning of the checker. The

complete source-code is available on GitHub1.

Listing A.1: Method responsible for splitting a population in an announcement

/**

* Splits a population into a group with two

populations , to be used by the announcement

operator.

* @param pop Population to be split.

* @param pre Pre -condition of the announcement. Used

to trim the model.

* @param ratio Ratio of the population which will

receive the announcement.

* @return Group containing two populations , one that

received the announcement , and one that did not.

* @throws IllegalArgumentException If the ratio is

not between 0.0 and 1.0 (both inclusive).

*/

public static Group announce(Population pop , Evaluable

pre , double ratio) throws IllegalArgumentException {

if(ratio < 0D || ratio > 1D) {

throw new IllegalArgumentException("Ratio must be

between 0.0 and 1.0 (both inclusive).");

}

1https://github.com/vittau/PPAL

43

https://github.com/vittau/PPAL

SocietyModel clonedSmOld =

pop.getSocietyModel ().clone ();

Population p_old = new

BasicPopulation(pop.getName (), pop.getId() +

"_o", clonedSmOld , pop.getSize () * (1D - ratio));

clonedSmOld.replaceSociety(pop , p_old);

SocietyModel clonedSmNew =

pop.getSocietyModel ().clone ();

Population p_new = new

BasicPopulation(pop.getName (), pop.getId() +

"_n", clonedSmNew , pop.getSize () * ratio);

clonedSmNew.replaceSociety(pop , p_new);

clonedSmNew.trimEdges(p_new , pre);

return new BasicGroup(pop.getName (), pop.getId (),

p_old , p_new);

}

Listing A.2: Evaluation function as defined in section 3.4

/**

* Evaluates a proposition in a model given a state.

* @param p Proposition to evaluate.

* @param societyModel Model to evaluate onto.

* @param state State where the proposition is to be

evaluated.

* @return 1.0 if the proposition is in the state , 0.0

otherwise.

* @throws IllegalArgumentException

*/

@Override public double eval(Proposition p,

SocietyModel societyModel , State state) throws

IllegalArgumentException {

if(! societyModel.getStates ().contains(state)) {

throw new IllegalArgumentException("State not

present in the given model.");

}

if(state.getPropositions ().contains(p)) {

return 1.0;

44

}

else {

return 0.0;

}

}

Listing A.3: Interface “Evaluable” and binary operators implementing its subclasses,

as defined in section 3.4

public interface Evaluable {

/**

* Evaluates the structure.

* @param soc Society to evaluate on.

* @param s State to evaluate on.

* @return Evaluation. A real value ranging from 0.0

to 1.0.

*/

double eval(Society soc , State s);

}

/**

* This class implements a fuzzy negation unary operator

of the PPAL logic.

*/

public class BasicNegationOperator implements

UnaryOperator {

@Override public double eval(Society soc , State s) {

return (1D - ev.eval(soc , s));

}

}

/**

* This class implements a fuzzy conjunction binary

operator of the PPAL logic.

*/

public class BasicConjunctionOperator implements

BinaryOperator {

@Override public double eval(Society soc , State s) {

double evD = ev.eval(soc , s);

double ev2D = ev2.eval(soc , s);

45

return Math.min(evD , ev2D);

}

}

/**

* This class implements a fuzzy disjunction binary

operator of the PPAL logic.

*/

public class BasicDisjunctionOperator implements

BinaryOperator {

@Override public double eval(Society soc , State s) {

double evD = ev.eval(soc , s);

double ev2D = ev2.eval(soc , s);

return Math.max(evD , ev2D);

}

}

Listing A.4: Knowledge operator evaluation methods: evalKG for groups, evalKP for

populations

/**

* Evaluation for a group.

* @param soc Society being evaluated.

* @param s State to evaluate on.

* @return Evaluation. A real value ranging from 0.0

to 1.0.

*/

private double evalKG(Society soc , State s) {

double result = 0.0;

for(Society sc : soc.getSocieties ()) {

BasicKnowledgeOperator bko = new

BasicKnowledgeOperator(sm , ev);

result += sc.getSize () * bko.eval(sc, s);

}

return result / soc.getSize ();

}

/**

* Evaluation for a population.

* @param soc Society being evaluated.

46

* @param s State to evaluate on.

* @return Evaluation. A real value ranging from 0.0

to 1.0.

*/

private double evalKP(Society soc , State s) {

Set <State > neighbourStates =

sm.getNeighbourStates(soc , s);

for(State state : neighbourStates) {

if(ev.eval(soc , state) < 1.0)

return 0.0;

}

return ev.eval(soc , s);

}

Listing A.5: Belief operator evaluation methods: evalBG for groups, evalBP for

populations

/**

* Evaluation for a group.

* @param soc Society being evaluated.

* @param s State to evaluate on.

* @return Evaluation. A real value ranging from 0.0 to

1.0.

*/

private double evalBG(Society soc , State s) {

double result = 0.0;

for(Society sc : soc.getSocieties ()) {

BasicBeliefOperator bbo = new

BasicBeliefOperator(sm , ev);

result += sc.getSize () * bbo.eval(sc, s);

}

return result / soc.getSize ();

}

/**

* Evaluation for a population.

* @param soc Society being evaluated.

* @param s State to evaluate on.

* @return Evaluation. A real value ranging from 0.0 to

1.0.

47

*/

private double evalBP(Society soc , State s) {

Set <State > neighbourStates =

sm.getNeighbourStates(soc , s);

double result = 0.0;

int count = 1;

for(State state : neighbourStates) {

count ++;

// System.out.println(soc.getName () + ": " +

ev.eval(soc , state));

result += ev.eval(soc , state);

}

result += ev.eval(soc , s);

return result/count;

}

Listing A.6: Document Type Definition (DTD) defining a valid XML input

<!ELEMENT model (societies , propositions , states ,

realstate ?)>

<!ATTLIST model

version CDATA #REQUIRED

name CDATA #IMPLIED >

<!ELEMENT societies (socdef)+>

<!ELEMENT socdef (# PCDATA)>

<!ATTLIST socdef

id CDATA #REQUIRED

name CDATA #IMPLIED

size CDATA #REQUIRED >

<!ELEMENT propositions (propdef)+>

<!ELEMENT propdef (soc)*>

<!ATTLIST propdef

id CDATA #REQUIRED

name CDATA #IMPLIED >

<!ELEMENT soc (# PCDATA)>

<!ATTLIST soc

id CDATA #REQUIRED >

<!ELEMENT states (comb|state)+>

<!ELEMENT comb (restrictions *)>

<!ELEMENT prop (# PCDATA)>

48

<!ATTLIST prop

id CDATA #REQUIRED

always CDATA #IMPLIED

mutex CDATA #IMPLIED >

<!ELEMENT state (prop+)>

<!ELEMENT restrictions (atleast|mutex|state)+>

<!ELEMENT atleast (prop)+>

<!ELEMENT mutex (prop)+>

<!ELEMENT realstate (prop)+>

49

Appendix B

Card game (XML model)

This appendix contains a model specification of a version of the Card Game modified

for the PPAL logic.

Listing B.1: The Card Game

<!-- Cards game example using the PPDEL DTD. -->

<model version = "0.1" name = "Cards game">

<populations >

<popdef id = "a" name = "Alderaaneans" size="3"/>

<popdef id = "b" name = "Bespians" size="5"/>

<popdef id = "c" name = "Coruscanti" size="7"/>

</populations >

<propositions >

<propdef id = "ah0" name = "a has 0">

<pop id = "a"/>

</propdef >

...

<propdef id = "ch2" name = "c has 2">

<pop id = "c"/>

</propdef >

</propositions >

<states >

<comb>

<restrictions >

50

<!-- Populations must have at least one card -->

<atleast >

<prop id = "ah0"/>

<prop id = "bh0"/>

<prop id = "ch0"/>

</atleast >

<atleast >

<prop id = "ah1"/>

<prop id = "bh1"/>

<prop id = "ch1"/>

</atleast >

<atleast >

<prop id = "ah2"/>

<prop id = "bh2"/>

<prop id = "ch2"/>

</atleast >

<!-- Different populations can ’t have the same card -->

<mutex>

<prop id = "ah0"/>

<prop id = "bh0"/>

<prop id = "ch0"/>

</mutex>

<mutex>

<prop id = "ah1"/>

<prop id = "bh1"/>

<prop id = "ch1"/>

</mutex>

<mutex>

<prop id = "ah2"/>

<prop id = "bh2"/>

<prop id = "ch2"/>

</mutex>

<!-- Populations must have at most one card -->

<mutex>

<prop id = "ah0"/>

<prop id = "ah1"/>

<prop id = "ah2"/>

</mutex>

<mutex>

51

<prop id = "bh0"/>

<prop id = "bh1"/>

<prop id = "bh2"/>

</mutex>

<mutex>

<prop id = "ch0"/>

<prop id = "ch1"/>

<prop id = "ch2"/>

</mutex>

</restrictions >

</comb>

</states >

<realstate >

<prop id = "ah0"/>

<prop id = "bh1"/>

<prop id = "ch2"/>

</realstate >

</model>

52

	List of Figures
	Introduction
	Previous developments
	Motivation and objectives
	Roadmap

	A background of logic
	Classical propositional logic
	Fuzzy logic
	Language and semantics

	Modal logic
	Language and semantics
	S4 and S5 logics

	Multi-agent epistemic logic
	Language and semantics
	Example

	Public announcement logic (PAL)
	Language and semantics
	Example

	Epistemic actions
	Language and semantics

	Action models

	Populational announcement logic (PPAL)
	Populations and groups
	Model
	Language
	Semantics
	Fuzzy negation
	Fuzzy conjunction
	Fuzzy disjunction
	Fuzzy implication
	Fuzzy knowledge assertion
	Fuzzy belief assertion
	Proof of decidability

	Usage examples of PPAL
	Basic example
	Initial model
	First announcement

	The corrupt politician
	Initial model
	First announcement
	Second announcement

	Model checker
	Model format
	Sample run

	Final remarks and future works
	Future works

	Bibliography
	Model checker's source-code
	Card game (XML model)

