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 A proteômica é uma ciência multidisciplinar que realiza o estudo em larga es-

cala de proteínas. Algumas de suas aplicações são identificação e sequenciamento de 

proteínas, quantificação, e identificação de interações proteína-proteína. Para realizar 

essas tarefas, a proteômica faz extenso uso de espectrometria de massas e de inteligên-

cia artificial. 

 Todavia, em média 75% dos espectros de massas analisados não são identifica-

dos pelas estratégias de busca consideradas estado-da-arte. Esse trabalho apresenta me-

todologia inovadora, capaz de listar espectros de alta qualidade que são discriminativos 

entre diferentes condições biológicas independentemente de serem identificados pelas 

ferramentas de busca existentes. Exemplificamos uma aplicação desta metodologia ao 

listar espectros discriminativos entre três espécies de fungos do gênero Aspergillus.  

Adicionalmente, nossa metodologia mostrou-se capaz de discriminar entre amostras de 

pacientes diagnosticados com as doenças renais nefropatia lúpica e nefropatia por IgA. 

 A metodologia foi implementada no software DiagnoProt, o qual está disponí-

vel para download no site http://www.patternlabforproteomics.org/diagnoprot/. 
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 Proteomics is a multidisciplinary science that performs large-scale study of pro-

teins. Some of its applications are identification and sequencing of proteins, quantifi-

cation, and identification of protein-protein interactions. To accomplish these goals, 

proteomics relies on intense use of mass spectrometry and artificial intelligence. 

 On average, 75% of all mass spectra are not identified by state-of-the-art search 

strategies. In this work, we introduce a methodology for listing high-quality spectra that 

are discriminative among different biological conditions, independently of being iden-

tified by existing search tools. We exemplify the usefulness of our methodology by 

shortlisting discriminative spectra among three types of fungi from the Aspergillus ge-

nus. Moreover, our methodology could discriminate between samples of patients with 

the kidney diseases lupus nephropathy versus IgA nephropathy. 

 The methodology was implemented in a software termed DiagnoProt that is 

available at http://www.patternlabforproteomics.org/diagnoprot/. 
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1 Introduction 

1.1 Proteomics 

Proteomics is a multidisciplinary science; its goal is to perform large-scale analysis 

of proteins in complex biological samples. Some of its applications are identification 

and sequencing of proteins, quantification, and identification of protein-protein inter-

actions. It revolutionized research in the fields of biology, biotechnology, and medicine. 

Today it is practically inconceivable to characterize organisms or study pathologies 

without considering proteomics. To achieve its goals, proteomics makes intense use of 

mass spectrometers and artificial intelligence (CARVALHO; BARBOSA, 2010). 

 

Figure 1 Example of a proteomics workflow.1 

Figure 1 shows an example of a proteomic workflow. A biological sample is pre-

pared in order to extract the proteins. Subsequently, proteins are digested into peptides 

using a protease (e.g. Trypsin) and further separated using liquid chromatography (LC) 

online with the tandem mass spectrometry. The peptides are ionized in a process called 

electrospray (FENN et al., 1989) as they are “injected” into the spectrometer and ulti-

mately analyzed to produce mass spectra. A mass spectrum is usually represented as a 

2-dimentional graph; the x-axis shows the mass to charge ratios (m/z) of the ions, and 

                                                 
1 Figure from (CARVALHO; BARBOSA, 2010) 
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the y-axis shows their respective intensities. A mass spectrum acquired from the mole-

cules eluting from the column is usually referred to as an MS1 spectra. The mass spec-

trometer can isolate and dissociate molecules within a very narrow m/z range (e.g., +-

1 m/z); hence, generating an MS2 spectrum of such precursor ions.  Thus, a MS2 spec-

trum is a spectrum originating from the analysis of fragment ions. A typical proteomic 

experiment generates hundreds of thousands of spectra. Therefore, it is unfeasible to 

attempt to analyze proteomic data without specialized software. 

 

Figure 2 Example of a MS2 mass spectrum. 

1.2 Peptide Spectrum Matching 

Peptide Spectrum Matching (PSM) is a strategy to identify peptides and proteins 

analyzed with a mass spectrometer. A general PSM workflow is illustrated in Figure 3.  

Experimental tandem mass spectra (MS2) (i.e., spectra of dissociated peptides) are gen-

erated by the mass spectrometry and stored in a computer file  (e.g. RAW). The soft-

ware scans a protein sequence database and may perform an in silico digestion to com-

pute a list of putative peptides. For each experimental spectrum, the PSM approach  

shortlists peptide sequences, within a mass tolerance compatible to the equipment at 

hand, and then computes scores, for each peptide assignment, that compare the similar-

ity between the theoretical versus the experimental mass spectrum. A widely adopted 

score is the cross-correlation (Xcorr) (ENG et al., 1994). The top highest ranking pep-

tides are reported for each experimental mass spectrum and saved in a result file (e.g. 

SQT file). The result file must be later analyzed by a PSM post-processing software 

(e.g. SEPro) that will single out unreliable assignments according to statistical tests 

(CARVALHO et al., 2012). 
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Figure 3 PSM workflow. 

PSM is considered the gold standard of proteomic search because it is more accu-

rate and sensitive than methods that assume no knowledge of sequenced proteins 

(LIMA, DIOGO BORGES et al., 2013). However, it has some limitations. It considers 

many putative candidates that probably will never be seen in actual data. An aggravat-

ing factor of a big peptide search space is the loss of sensitivity (BORGES et al., 2013). 

In general, post-translational modifications (PTMs) must be specified a priory. It only 

identifies proteins in the database or, in some cases, with one amino acid difference in 

some error tolerant searches implementations. 

1.3 Identifying microorganisms with commercial solutions 

A trend that recently emerged is to diagnose microorganisms with mass spectrom-

etry.  This approach relies on a completely different paradigm as compared to PSM.  In 

this approach, a single mass spectrum, referred to as a protein fingerprint, is compared 

to those previously obtained from known organisms and stored in a spectrum database. 

These approaches require growing the bacteria to be identified in a culture on a petri 

dish, enriching the sample for proteins (e.g., metal binding proteins), and obtaining a 

mass spectrum of the protein profile of this sample. A commercial example of this ap-
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plication is the MALDI Biotyper, from Bruker (https://www.bruker.com/prod-

ucts/mass-spectrometry-and-separations/maldi-biotyper/overview.html). A typical 

workflow is illustrated in Figure 4. 

 

Figure 4 Identification of microorganisms with MALDI-TOF. 

Although this approach has proven effective in the task of identification of many 

microorganisms, there are several limitations (WELKER, 2011). These limitation stem, 

in part, when trying to classify organisms that share vary similar proteomes.  As such, 

these organisms cannot be separated relying only within the information provided 

within a single mass spectrum. Some examples of when this strategy fails are seen when 

classifying between E. coli vs Shigella or bacteria that are resistant or not to an antibi-

otic. Moreover, it is incapable of classifying pathological states when taking, for exam-

ple biological fluid samples (e.g. urine). Another aggravating limitation of this ap-

proach is that it cannot identify the proteins with the single spectrum mass fingerprint. 

Therefore, the diagnosis relies only on mass spectral peaks; no biological information, 

that can help disclose mechanisms of the pathology at hand, at a molecular level, are 

provided by the method. 

 

  

https://www.bruker.com/products/mass-spectrometry-and-separations/maldi-biotyper/overview.html
https://www.bruker.com/products/mass-spectrometry-and-separations/maldi-biotyper/overview.html
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2 Motivation 
A recent study showed that, on average, 75% of mass spectra remain unidentified 

by state-of-the-art proteomic search engines (GRISS et al., 2016). Search strategies that 

rely on protein sequence databases are unable to identify proteins that have not been 

characterized before (i.e., included in the sequence database). In addition, they are lim-

ited in only identifying mutations and post-translational modifications (PTMs) that are 

known or have been specified a priori. On the other hand, de novo sequencing strate-

gies, that do not rely on sequence databases can, in some cases, overcome some of these 

shortcomings; yet, their sensitivity for this task is significantly lower than PSM as there 

are no bearings provided by previous knowledge, the increased set of possibilities re-

sults in a loss of sensitivity, finally, PTMs must be specified a priori (BORGES et al., 

2013). 

Ever since the “post-genomic age”, computing power are increasingly necessary 

for research in biological sciences (JAMES, 1997). To further develop a proteomic ap-

plication that can discriminate between biological conditions and even aid diagnosis of 

pathologies, a computational methodology must be able to efficiently handle these 

spectra that remained unidentified because these mutations and PTMs could be discrim-

inative evidence between different conditions.  Our approach introduces a new para-

digm on how microorganisms are classified or pathologies are diagnosed by consider-

ing a collection of tandem mass spectra.  This spectral library contains sequence infor-

mation and the depth necessary to discriminate between samples that are proteomically 

alike; yet, lifts the shortcomings of having to identify these molecules as a first step. 
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3 Objectives 
The development of a computational environment that can organize and explore 

mass spectra of different biological conditions. The methodology is to be implemented 

in a user-friendly software that can: 

 Efficiently handle millions of spectra and save them into an easily sharable 

data structure called the knowledge base; 

 Communicate with existing proteomic search engines (e.g. SEQUEST, 

Comet, ProLuCID, etc.); 

 Shortlist spectra that can discriminate among different biological condi-

tions and pinpoint high-quality unidentified spectra among these; 

 Graphically represent distances among existing biological conditions and 

biological samples of the knowledge base; 

 Classify unknown spectral profiles based of pair-wise spectral comparison 

between the conditions in the knowledge base.  



7 

 

4 Methodology 

4.1 Overview of the shortlisting discriminative molecules procedure 

Figure 5 shows the general overview of the shortlisting method. A collection of 

MS2 spectra originating from a biological condition is filtered by the quality control 

(QC), which is an artificial intelligence filter that removes noisy spectra and spectra 

that are not very likely to be representative of meaningful molecules (e.g. contaminants 

and spectra that did not fragment well). The selected spectra are clustered by a spectral 

similarity function in order to eliminate redundancy, and then are inserted into a data 

structure called knowledge base (KB). Every biological condition will have its own 

collection of spectral clusters in the KB. The discriminating analysis finds clusters that 

only occur in one single condition. A PSM search is performed in the discriminative 

clusters, and those who rank very poorly are shortlisted as the high-quality discriminat-

ing spectra that could not be identified. Since they passed QC and are discriminative, 

but are not identified, they are likely to be spectra related to discriminating PTMs and/or 

mutations indicative of that biological condition. In the following sections, we provide 

detailed explanation of how these modules work. 

 
Figure 5 Shortlisting high-quality unidentified molecules. 

4.2 Spectral Quality Control 

The QC is implemented as seven quality filters: precursor charge state filter, min-

imum number of peaks (Min. No. Peaks), minimum retention time (Min. Ret. Time), 
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minimum relativize intensity (Min. Rel. Intensity), minimum Xrea (Min. Xrea), maxi-

mum Balance (Max. Balance) and minimum spectral count (Min. Spec. Count). 

4.2.1 Precursor charge filter 

Most of spectra with precursor charge state 1+ are contaminants that are not pep-

tides and therefore are disregarded. 

4.2.2 Minimum number of peaks 

A low number of peaks might be an indicator that the precursor ion did not frag-

ment well, and in this case the spectrum would not contribute to discriminative infor-

mation and should be disregarded. If the number of peaks of the spectrum is less than 

Min. No. Peaks, then it is kept out of the KB. 

4.2.3 Minimum retention time 

A minimum retention time may also be used to filter data. Spectra generated before 

the value set in this parameter are disregarded.  The appropriate setting for this param-

eter, depends on the equipment, laboratory conditions and samples being processed. 

Similarly, the acetonitrile-to-water gradient used in the mass spectrometer may also 

affect this parameter. For example, a setting of 10.00 minutes may be appropriate for a 

process going from 5% to 40% acetonitrile (ACN) over two hours. If the process applies 

a gradient of 5% to 40% ACN over one hour, a minimum retention time of 5.00 minutes 

may be more appropriate.  The motivation is that peptides will, in most cases, only elute 

from the chromatographic column after a certain percentage of ACN is achieved. 

4.2.4 Minimum relative intensity 

The minimum relative intensity removes noisy low intensity peaks from a spec-

trum. Let the relative intensity 𝜌, in relation to the most intense peak of a spectrum, be 

defined as follows. 

𝜌 =
peak intensity

highest intensity
 

All peaks that have 𝜌 < Min. Rel. Intensity are removed from the spectrum.  

4.2.5 Minimum Xrea 

Xrea is a signal-to-noise score proposed by (NA; PAEK, 2006). To calculate the 

Xrea of a spectrum, it is necessary sort all the peaks of the spectra in ascending order. 

This is called relative intensities curve. Let 𝑛 be the number of peaks in a spectrum. Let 
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𝑟𝑎𝑛𝑘(𝑖) be the rank of peak 𝑖 in the relative intensities curve, the rank of the least in-

tense peak be 1, and the rank of the most intense peak be 𝑛. Let 𝐼𝑟𝑎𝑤(𝑖) be the measured 

raw intensity of peak 𝑖. Let 𝑇𝐼𝐶 be the total ion current of the spectrum, that is, the sum 

of all raw intensities of its peaks. 

𝑇𝐼𝐶 = ∑ 𝐼𝑟𝑎𝑤(𝑖)

∀𝑖

 

From the curve of relative intensities, we compute a curve of cumulative normal-

ized intensities. Let 𝐶𝑁𝐼(𝑖) be the cumulative normalized intensity of peak 𝑖. 

𝐶𝑁𝐼(𝑖) = ∑
𝐼𝑟𝑎𝑤(𝑥)

𝑇𝐼𝐶
∀𝑥 | 𝑟𝑎𝑛𝑘(𝑥)≤𝑟𝑎𝑛𝑘(𝑖)

 

That is, 𝐶𝑁𝐼(𝑖) is the sum of all intensities of peaks whose intensities are less than 

or equal the intensity of peak 𝑖. Figure 6 shows examples of CNI curves for four spectra 

of different qualities. Xrea is defined as follows. 

Xrea =
area XX

triangle area + α
 

 

Figure 6 CNI curves for spectra of different qualities.2  

The area 𝑋𝑋 is the area between the CNI curve and the diagonal of the triangle. 

The spectra considered to be good for identification are those with few intense peaks 

distributed along the spectrum (see spectrum a in Figure 6). On the other hand, low 

quality spectra lots of peaks with close intensities, therefore making it very difficult to 

discriminate true fragment ion peaks than noise peaks (see spectrum d in Figure 6). By 

this definition, spectrum a will have an excellent Xrea, while d will have a very poor 

score, and spectrum d will be something in between. However, there are some spectra 

(possibly those that do not fragment well) that have one very intense peak much greater 

                                                 
2 Figure adapted from (NA; PAEK, 2006) 
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than any other peak (see spectrum c in Figure 6). These spectra will have a high area 

𝑋𝑋, but are bad for classification nonetheless. The penalty factor 𝛼 in the equation pre-

vents such spectra to have a high Xrea. The term 𝛼 is defined as the 𝐼𝑟𝑎𝑤(ℎ)/𝑇𝐼𝐶, 

where ℎ is the most intense peak of the spectrum. 

A minimum Xrea threshold can be set. All spectra with Xrea below the threshold 

will be disregarded during search. The authors have determined empirically that a use-

ful threshold could be 0.3 ≤ Min. Xrea ≤ 0.4 . DiagnoProt’s default value is 

Min. Xrea = 0.4, but the user can fine-tune it to their needs. 

4.2.6 Maximum Balance 

The Balance is quality score that is complementary to Xrea. It is important to have 

a complementary score, because Xrea alone does not guarantee a favorable distribution 

of peak intensities along the spectrum. While Xrea is a signal-to-noise score, the Bal-

ance measures how the peak intensity distribution of a spectrum diverges from a model 

distribution, and thus favors an overall intensity distribution along the spectrum. 

Here we describe how a model distribution is estimated from a set of high-quality 

spectra. First, we bin all the spectra in 13 bins using 100 Da bin size, 200 Da minimum 

bin m/z, 1500 Da maximum bin m/z and 0 bin offset.3 Let 𝑥⃗ ∈ ℝ13 be a vector of in-

tensities representing a binned spectrum with the given parameters, 𝑥⃗ = (𝑥1, ⋯ , 𝑥13). 

Let 𝑇𝐼𝐶(𝑥⃗) be the sum of all binned intensities of 𝑥⃗. 

𝑇𝐼𝐶(𝑥⃗) = ∑ 𝑥𝑖

13

𝑖=1

 

Thus, we estimate a model intensity distribution 𝐺̂ from a dataset of high quality 

spectra as follows. 

𝐺̂ = (𝑔1, ⋯ , 𝑔13) =
∑ 𝑥⃗∀𝑥⃗

∑ 𝑇𝐼𝐶(𝑥⃗)∀𝑥⃗
 

It is easy to show that 𝐺̂ is a vector that ∑ 𝑔𝑖
13
𝑖=1 = 1. 

Once the model distribution is chosen, the Balance score is calculated as the Kull-

back-Leibler divergence (KL-divergence) between the intensities of the spectrum and 

the model distribution. Let 𝑚  be a mass spectrum and 𝐵(𝑚) = (𝑏1, ⋯ , 𝑏13) =

𝐵𝑖𝑛(𝑚)/𝑇𝐼𝐶(𝐵𝑖𝑛(𝑚)) be the intensities vector of binned and normalized spectrum. It 

                                                 
3 Please, see Binning in section 4.3 for more details. 



11 

 

is also easy to show that ∑ 𝑏𝑖
13
𝑖=1 = 1. Let 𝑧 be the charge state of 𝑚’s precursor ion. 

Then, Balance(𝑚), the Balance score of 𝑚, is defined as follows. 

Balance(𝑚) = 𝐷𝐾𝐿(𝐵(𝑚)||𝐺̂) 

𝐷𝐾𝐿(𝑃||𝑄) is the KL-divergence between distributions 𝑃 and 𝑄. 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑖) ln
𝑃(𝑖)

𝑄(𝑖)
𝑖

 

The higher the KL-divergence, the more the two distributions diverge from each 

other. Thus, Balance is a measure of how a spectrum diverges from a model distribution 

of high-quality spectra. The default Max. Balance is set to 1, but users can set a thresh-

old more appropriate to their needs. 

4.2.7 Minimum Spectral Count 

A spectral cluster, as defined before, is a spectrum that is elected to be representa-

tive of a set of similar spectra. If this set has less spectra than Min. Spec. Count, then it 

is disregarded during the search. The intuition behind this is that spectra that have rare 

occurrence have dubious discriminative power, and therefore should be kept out of the 

analysis. For example, suppose a condition has a spectral cluster with only one spectra, 

a singleton set, and this spectrum has only been observed in that condition. It is obvi-

ously uncertain whether this spectrum could be regarded as discriminative or is just 

there by chance, because it was not consistently observed in other replicates. 

4.3 Binning 

Binning is a spectral transformation that is performed after QC and before cluster-

ing. Four parameters control the transformation: Min. Bin m/z, Max. Bin m/z, Bin Size 

and Bin Offset. 

Peak intensities measured at an m/z that is less than the Min. Bin m/z, or greater 

than the Max. Bin m/z setting, may be disregarded or set to 0. Under standard lab set-

tings, using ordinary lab equipment, the Min Bin m/z setting may be set to 200.00, and 

the Max Bin m/z setting may be set to 1700.00.  These data filter values are chosen 

because 95 % of intensity measurements fall within these m/z ranges.  However, prac-

titioners using different equipment or lab settings, or analyzing samples or using en-

zymes that are expected to generate intensities at greater than 1700.00 m/z or less than 

200.00 m/z may change Min & Max Bin m/z parameters to values that better conform 

to the data they are analyzing. 
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A bin is defined as a m/z interval [𝑙, 𝑢[, where 𝑙 is the m/z lower bound and 𝑢 is 

the m/z upper bound. Let 𝑚𝑧(𝑖) be the m/z of peak 𝑖. The bin intensity 𝐼𝑏𝑖𝑛(𝑙, 𝑢) is de-

fined as the sum of all peak intensities whose m/z fall into the bin m/z interval, that is, 

𝐼𝑏𝑖𝑛(𝑙, 𝑢) = ∑ 𝐼𝑟𝑎𝑤(𝑖)

𝑙≤𝑚𝑧(𝑖)<𝑢

 

The binning procedure also have Bin Size (𝑠) and Bin Offset (𝑜) parameters. For 

all 𝑢 and 𝑙, Bin Size is 𝑢 − 𝑙.  A Bin Size of 1.0005 may be used. This size is selected 

based on standard lab and equipment settings and depends on the resolution on the mass 

spectrometer. 

Bin Offset is defined as the lower bound of the first bin. Therefore, the first bin 

will be [𝑜, 𝑜 + 𝑠[ , the second bin will be [𝑜 + 𝑠, 𝑜 + 2𝑠[ , and the 𝑖 th bin will be 

[𝑜 + (𝑖 − 1)𝑠, 𝑜 + 𝑖𝑠[. This offset may be applied to help distinguish between amino 

acid combinations. It is preferably set to 0.40, because no combination of sums of amino 

acid masses will coincide with the sum of the offset plus a multiple of Bin Size. As 

discussed above, the ideal data parameters used will vary depending on the equipment 

used.  When using state-of-the-art high resolution equipment, no offset may be neces-

sary. 

Thus, a binned spectrum is a transformation performed in a mass spectrum such 

that, the m/z of the 𝑖th peak is 𝑜 + (𝑖 − 1)𝑠 and its intensity is 𝐼𝑏𝑖𝑛(𝑜 + (𝑖 − 1)𝑠, 𝑜 +

𝑖𝑠). All bins with zero intensity can be discarded to same memory. For simplicity of 

notation, we write the intensity of the 𝑖th bin as 𝐼𝑏𝑖𝑛(𝑖) = 𝐼𝑏𝑖𝑛(𝑜 + (𝑖 − 1)𝑠, 𝑜 + 𝑖𝑠). 

Once all bin intensities and m/z are calculated, the bin intensities are divided by 

√∑ 𝐼𝑏𝑖𝑛(𝑖)2
𝑖  so that the vector of intensities becomes a normalized vector with norm 1. 

4.4 Clustering 

A spectral cluster is a spectrum elected to be representative of a set of similar spec-

tra. The objective of this procedure is to reduce redundancy in the KB. For example, 

Figure 7 shows two very similar spectra that clearly represent the same fragmentation 

pattern. Three KB creation parameters control the clustering: Similarity Threshold, Pre-

cursor Tolerance, and Ret. Time Tolerance. 
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Figure 7 Example of two very similar spectra. 

The Precursor Tolerance is the maximum allowed absolute difference between the 

precursors m/z of the spectra. All spectra with higher precursor m/z difference will not 

be clustered. 

The Ret. Time Tolerance is the maximum allowed absolute difference between 

chromatography retention time of the spectra. All spectra with higher retention time 

difference will not be clustered. This parameter is optional. If a user does not want to 

use this parameter, the retention time will not be considered during clustering. 

The Similarity Threshold is the minimum similarity score allowed for two spectra 

to be considered similar. The similarity score used in this methodology is the dot prod-

uct of normalized binned intensities. Let 𝑥⃗ = (𝑥1, ⋯ , 𝑥𝑛) and 𝑦⃗ = (𝑦1, ⋯ , 𝑦𝑛) be the 

normalized binned intensities vectors of two spectra, and let 𝑥⃗. 𝑦⃗ = ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1  be the 

intensities dot product of intensities. All spectra that have 𝑥⃗. 𝑦⃗ < Similarity Threshold 

will not be clustered. 

Since 𝑥⃗. 𝑦⃗ demands many float-point number computations, DiagnoProt performs 

Ret. Time Tolerance and Precursor Tolerance before computing the dot product. If a 

pair of spectrum does not pass the first tests, then computation time is saved. Another 

important test that is performed before 𝑥⃗. 𝑦⃗ is the binned base peak test. The base peak 

of a spectrum is its most intense peak. Since the spectra are binned, all the peaks have 
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the same corresponding m/z values. If the m/z of the base peak of the two spectra are 

different, then the two spectra will not be clustered. 

Two spectra are similar if, and only if, they pass all the clustering tests. When two 

spectra are clustered together, the spectrum with the highest Xrea is chosen to be the 

representative of the cluster and the other is discarded. Given a collection of binned 

spectra, the clustering procedure finds all the spectral clusters and stops when there are 

no more spectra that can be clustered. All cluster collections are saved into their respec-

tive biological condition in the KB. 

4.5 Knowledge Base 

The knowledge base is a data structure that stores information about the experi-

ment, the values of the parameters (e.g., QC parameters, thresholds, etc.), and the bio-

logical conditions with their respective spectral clusters. 

4.6 Discriminating Analysis 

When the KB is created, it is possible to search for spectral clusters that are dis-

criminative among biological condition. There must be with at least two biological con-

ditions in the KB. The discriminating analysis works by comparing each pair of biolog-

ical conditions, and searching similar spectral clusters that occurs in both conditions, 

and the ones that are found not to be similar in the other condition. 

A cluster 𝑚 belonging to biological condition 𝐴 occurs in biological condition 𝐵 

if, and only if, 𝑚 is similar to a cluster belonging to 𝐵. A cluster 𝑚 is exclusive of a 

biological condition 𝐴 if, and only if, it occurs only in 𝐴. Thus, the discriminating anal-

ysis is a search for the exclusive of each biological condition using the same similarity 

relation defined for comparing spectra for clustering. 

4.7 Shortlisting of new molecules 

As show by (GRISS et al., 2016), the majority of spectra in a proteomic experiment 

remain unidentified by proteomic search engines. All the steps previously described for 

creating the KB and performing a discriminating analysis do not demand that a spec-

trum is identified, it only demands that the spectrum pass the QC filters. However, a 

user my attempt to identify the spectral clusters in the KB, specially the discriminative 

clusters. The shortlisting of new molecules works by finding those clusters that could 

not be identified by Comet (ENG et al., 2013, 2015). A very low Xcorr threshold must 
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be given (e.g. < 1.5) so that a peptide (or protein) assignment is regarded as an unreli-

able match. A Comet search is then performed in these discriminative spectra, and those 

bellow the Xcorr threshold are shortlisted as new molecules with discriminating power. 

These high-quality spectra that could not be identified could be related to mutations or 

PTMs that are representative of their respective biological conditions. 

4.8 Spectral Profile Classifier 

The spectral profile classifier performs identification of samples of unknown bio-

logical conditions by pair-wise comparisons of spectral cluster collections. Figure 8 

illustrates the general workflow of the classifier. A set of spectra belonging to an un-

known biological condition is filtered using QC and clustered using the same procedure 

and parameters values set for KB creation. Let 𝑈 be the collection of spectral clusters 

from this unknown sample, and 𝐶𝑖 the collection of spectral clusters in the 𝑖th condition 

in the KB. Then, a similarity score between 𝑈 and 𝐶𝑖 is computed as the Jaccard index 

𝐽(𝑈, 𝐶𝑖). The Jaccard index between two collections of spectral clusters 𝐴 and 𝐵 is de-

fined as 𝐽(𝐴, 𝐵) = |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵|. In the context of this application, |𝐴 ∩ 𝐵| is de-

fined as the number of spectra in 𝐴 that occurs4 in 𝐵, and |𝐴 ∪ 𝐵| is defined as |𝐴| +

|𝐵| − |𝐴 ∩ 𝐵|.  The classifier assigns to 𝑈 the condition that maximizes 𝐽(𝑈, 𝐶𝑖). 

Condition(𝑈) =
argmax

𝑖
 𝐽(𝑈, 𝐶𝑖) 

 

Figure 8 Spectral profile classifier. 

A k-fold cross-validation can be performed to give an estimate of the out-of-sample 

error (ABU-MOSTAFA et al., 2012). This method uses a leave one out cross-validation 

(LOOCV) procedure. A LOOCV estimates classification error by creating multiple 

                                                 
4 See section 4.6 for the definition of spectral cluster occurrence.  
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KBs, one for each biological sample in the dataset. A KB is created leaving the valida-

tion sample out of the KB. The spectral profile classifier then analyzes this left-out 

sample. Since we know to which biological condition the sample belongs to, but the 

classifier does not, we compute if the condition assigned by the classifier corresponds 

to the true condition of the sample. In this way, the classification error is estimated by 

computing all LOOCV condition assignments and calculating the overall success rate. 

4.9 Kidney diseases dataset 

Urine samples of patients diagnosed by renal biopsy with Lupus Nephritis (LN) 

and Immunoglobulin-A-Nephropathy (IgAN) were collected from spontaneously 

voided midstream of the second morning urination and stored at 4⁰C until preparation. 

Consent was obtained from all apparently healthy individuals and patients. Low mo-

lecular weight (LMW) fractions were digested with trypsin in solution after reduction 

and alkylation of cysteines. Subsequently, LMW fractions were desalted using OMIX 

RP micro-columns and loaded onto a nanoLC system (EASY-nLC 1000, Thermo 

Fischer Scientific). Eluted molecules were detected in an LTQ Velos instrument 

(Thermo Fischer Scientific) using a data-dependent acquisition (DDA) mode with a 

dynamic exclusion list. This dataset has 2 biological conditions, 12 biological samples 

from LN patients and 11 from IgAN patients, resulting in 23 RAW files. The analysis 

and data generation was performed at the Analytical Biochemistry and Proteomics Unit 

at Institute Pasteur Montevideo. 

4.10 Fungi dataset 

A fungi dataset was obtained from three species of fungi of the Aspergillus genus: 

Aspergillus flavus, Aspergillus oryzae and Aspergillus parasiticus. The samples were 

prepared according to protocols described in (AQUINO et al., 2012). Tryptic peptides 

were loaded into a nanochromatography system (Easy-nLC II, Proxeon), and eluted 

directly into an LTQ Orbitrap Velos (Thermo Fischer Scientific). Spectra acquisition 

was performed using DDA, automatically alternating between full scan MS and 

MS/MS. The top 10 most intense ions, with charge ≥ 2 + were isolated and fragmented 

by collision-induced dissociation (CID) using normalized collision energy 35. This da-

taset has 4 conditions: one for each fungi species and one control condition. Each con-

dition has 2 biological replicate, and each biological replicate has 3 technical replicates, 

resulting in 24 RAW files. The analysis was done at the Proteomics Unit and Biochem-

istry Department at Federal University of Rio de Janeiro. 
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5 Results 

5.1 Implementation 

All the methodology was implemented in a software, DiagnoProt, that is available 

at http://patternlabforproteomics.org/diagnoprot/. DiagnoProt was implemented in C#, 

using .NET framework 4.5. It references PatternLab (CARVALHO et al., 2015) mod-

ules for MS files parsers and spectral view controls; Comet for PSM search; Google 

Protocol Buffers for serialization; DotNetZip for handling ZIP files; Accord.net for 

PCA; and OxyPlot for charts. 

5.2 Knowledge Base Manager 

The Knowledge Base Manager makes it easy to configure, create and manage KBs. 

Figure 9 shows the DiagnoProt’s KB Manager interface. During KB creation, it is pos-

sible to define parameters that affect QC, binning, and clustering. A user can either 

create an empty KB or create a KB from a dataset of MS files. 

 
Figure 9 The KB Manager interface. 

If the user has all the MS files (RAW, MS2, etc.) organized in a certain directory 

structure, the KB and all its biological conditions and clusters can be created with a 

http://patternlabforproteomics.org/diagnoprot/
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single click. Figure 10 shows an example of a valid directory structure. All the biolog-

ical conditions must have their own directory under the dataset root directory. Under 

each condition directory there must be a directory for each biological sample belonging 

to that condition. Finally, all MS files (including technical replicates) must under their 

respective biological sample directory.  

 
Figure 10 Directory structure for automatic KB creation. 

Once a KB is created, the user can easily add new biological conditions to the KB 

and/or append new spectra to the conditions as soon as new data becomes available, as 

shown in Figure 11. 

 

Figure 11 Appending new data to the KB. 

5.3 The PKB file format 

The KBs are stored in a PKB file, which is a compressed ZIP file containing seri-

alized objects. Object serialization is a procedure that saves object-oriented data struc-

tures from computer memory into persistent media (e.g. hard-disk, etc.). The serializa-

tion is performed with Google Protocol Buffers, which is a very efficient serialization 

mechanism. This technology allows fast storage and retrieval of spectral clusters. In 

addition, since the KB is just a single compressed file, it can be easily shared with 

collaborators and end-users of the KB. 
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Figure 12 Example of a PKB file. 

Figure 12 shows an example of a PKB file opened with the software 7-Zip. Inside 

the file, you can see all the serialized objects. The numbered objects are the collections 

of spectral clusters, one for each biological condition in the KB. Since each condition 

has its own file, it is not necessary to load the entire KB into memory during computa-

tion, so this file format allows efficient use of computer memory. The properties object 

stores the parameters that are set during KB creation, the similarities object stores pre-

computed similarities between biological conditions and the validation object stores 

information about the cross-validation procedure for classification. 

5.4 Balance Score Distributions 

Figure 13 shows the intensities distributions for estimated from spectra with dif-

ferent qualities and different precursor charge states from a Mus musculus dataset. The 

set of good spectra consist of spectra that were identified by Comet with very high 

Xcorr, while the bad spectra are the ones with the lowest Xcorr values. It is clear that 

2+ intensities distributions vary greatly with the quality of the spectra, while 3+ distri-

butions vary slightly. DiagnoProt uses these two default Balance distributions estimated 

from the two sets of good spectra, one for spectra with 2+ precursors and one for 3+ or 

more. Although this default distribution should be sufficient for typical applications, 

the user can easily provide other model distributions more suitable to their application. 
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Figure 13 Intensities distributions for 2+ and 3+ spectra. 

5.5 Discriminating Analysis 

 

Figure 14 KB Manager analysis interface. 

Figure 14 shows DiagnoProt’s KB Manager / Analysis interface. When the search 

for discriminative clusters is completed, the Clusters tab shows a table with the numbers 

of clusters that are shared with each pair of biological condition, and the number of 

clusters that are exclusive of each condition. 

It is interesting to note that the number of clusters of A. flavus condition shared 

with A. oryzae is 108, but the number of clusters shared between A. oryzae and A. flavus 

is 106. This happens because the previously defined relation “is similar to” is not tran-

sitive. Figure 15 shows an example of two cluster collections for conditions 𝐴 and 𝐵. 

The numbered nodes are clusters, and an edge between two nodes means that the nodes 
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are similar. Note that 3 is similar to 1, 1 is similar to 4, but 3 is not similar to 4. There-

fore, when we count the number of clusters in 𝐴 that occur in 𝐵 we find 2, but when we 

count count the number of clusters in 𝐵 that occur in 𝐴 we find 3. 

 

Figure 15 Non-transitivity in cluster counting. 

If the user double-clicks a cell in the Clusters table shown in Figure 14, it will open 

the spectrum viewer in Figure 17. The viewer shows a plot of the binned spectra, and 

shows other relevant information for each spectrum: the MS file where it came from, 

the scan number of the original spectrum in its original file, the m/z of the precursor 

ion (CargedPrecursor), the charge state of the precursor ion, the Xrea and the Balance 

of the spectrum. 

5.6 Shortlisting of new molecules 

 

 

Figure 16 Find Gold Spectra interface. 

The Find Gold Spectra tool shown in Figure 16 shortlists the high-quality discrim-

inative spectra that could not be identified by PSM search. To find gold, the user must 

first save the original spectra using the spectrum viewer interface shown in Figure 17, 

and run Comet. Then, the Find Gold interface will ask for the file with the original 
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spectra, the KB file, and the score thresholds: Min. Xrea, Max. Balance and Max. Xcorr. 

The Xrea and Balance thresholds are the same QC filters previously described, and the 

Max. Xcorr is the maximum allowed cross-correlation score for a spectrum to be con-

sidered unidentified. The default Max. Xcorr is 1.5, which is considered a very low 

Xcorr. Peptide assignments to spectra with such Xcorr score are considered unreliable, 

and are disregarded by post-processing tools (e.g. SEPro) for identification of reliable 

peptide assignments. 

When Find Gold Spectra tool finishes the search, it shows all the high-quality un-

identified spectra in the spectrum viewer (Figure 17), where the user can explore and 

save the spectra, and save all the original spectra (without binning transformation) in 

the viewer into the MS2 file for further analysis. 

 

Figure 17 Spectrum viewer. 

5.7 Principal Component Analysis 

The KB Manager Analysis tab has a tool that graphically represents biological 

samples that are closely related in a two-dimensional plot. When the Compare Biolog-

ical Conditions button is clicked, in addition the previously described search for dis-

criminative clusters, it also compares how biological samples are related to each other 

by computing the Jaccard index. The Similarities tab (Figure 18) shows the Jaccard 

indexes between all pairs of biological samples. 
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Figure 18 Similarities between biological samples. 

The distance between two biological samples with spectral cluster collections 𝐴 

and 𝐵 is defined as 1 − 𝐽(𝐴, 𝐵). The Distances tab in Figure 1 shows the distances be-

tween all biological samples in the KB. Let 𝑑𝑖𝑗 be the distance between sample 𝑖 and 𝑗. 

Using this matrix of distances, we can represent the relation of a biological condition 

with all others as a vector of distances 𝑑𝑖
⃗⃗⃗⃗ = (𝑑𝑖1, 𝑑𝑖2, ⋯ , 𝑑𝑖𝑗 ⋯ , 𝑑𝑖𝑛), where 𝑛 is the 

number of biological samples in the KB. Then a Principal Component Analysis (PCA) 

is performed in this set of vectors 𝑑1
⃗⃗⃗⃗⃗, ⋯ , 𝑑𝑛

⃗⃗ ⃗⃗⃗ to reduce its dimension from 𝑛 to 2 by 

making a projection into the directions of highest variance in the data. The projected 

vectors are then plotted in two-dimensional chart shown in Figure 19. 

With this procedure, it is possible to graphically represent distances between bio-

logical samples in the KB. It is expected that biological samples belonging to the same 

biological condition will share much biological material, and therefore they may be 

graphically closer in the PCA plot. 
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Figure 19 PCA plot. 

5.8 Cross-validation 

 

Figure 20 Cross-validation interface. 
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Figure 20 shows DiagnoProt’s cross-validation interface. The KB creation and the 

QC search parameters must be set. Also, all MS files must be organized in the directory 

structure for automatic KB creation defined in section 5.2. The user can stop it at any 

time, and the LOOCV will continue from where it left when the user starts the valida-

tion again. When LOOCV is over, the validation error is shown as well as the individual 

classifier assignments for all biological samples. 

5.9 Classification of unknown profiles 

 

Figure 21 Diagnostics interface. 

If after validation the user is confident that the classifier and the KB will generalize 

well out-of-sample, then he can use the spectrum profile classifier in the Diagnostics 

tab (Figure 21) for unknown samples. The interface asks for a KB, a directory with MS 

files from the unknown samples, and QC filter thresholds. Then, the classifier shows a 

table with the Jaccard indexes between the unknown sample and the KB conditions as 

well as the number of unknown spectra that occur in each condition. 

5.10 Performance in datasets 

The methodology was applied to a dataset of three species of fungi of the Asper-

gillus genus. Using the default parameters form KB creation previously described, a 
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KB was created and a search for high-quality exclusive spectra for each condition was 

performed. The exclusive spectra were then analyzed by the Comet search engine. Fi-

nally, using the Comet results, a search for gold spectra was performed. The results are 

summarized in Table 1. DiagnoProt found all these high-quality spectra that are exclu-

sive occurring in their respective conditions. Most of them could not be identified by 

Comet, nonetheless DiagnoProt could shortlist them as potential new molecules with 

discriminative power among those fungi species. 

Biological Condition Exclusive Clusters Gold Clusters 

A. flavus 1861 1457 

A. oryzae 2272 1289 

A. parasiticus 1908 1620 

Table 1 Discriminative spectra of Aspergillus dataset. 

Table 2 shows the cross-validation results. All the biological replicates were clas-

sified correctly by the spectral profile classifier. Even the control samples were classi-

fied correctly. 

  Scores  

Sample Condition A. flavus A. oryzae A. parasiticus Control Assignment 

Aflavus1 A. flavus 0.074 0.016 0.019 0.006 A. flavus 

Aflavus2 A. flavus 0.074 0.023 0.016 0.006 A. flavus 

Aoryzae1 A. oryzae 0.018 0.034 0.011 0.003 A. oryzae 
Aoryzae2 A. oryzae 0.023 0.034 0.006 0.004 A. oryzae 

Aparasiticus1 A. parasiticus 0.012 0.006 0.073 0.002 A. parasiticus 

Aparasiticus2 A. parasiticus 0.024 0.011 0.074 0.003 A. parasiticus 

Control1 Control 0.003 0.004 0.003 0.012 Control 
Control2 Control 0.008 0.006 0.003 0.012 Control 

Table 2 LOOCV results of Aspergillus dataset. 

A PCA plot of the distances between the biological replicates was obtained and is 

show in Figure 22. Note that the samples belonging to the same condition are naturally 

clustered together in the chart. 
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Figure 22 PCA plot of Aspergillus dataset. 

DiagnoProt was also applied to a dataset of chronical kidney diseases with data 

from 12 patients diagnosed with lupus nephropathy (LN) and 11 patients with IgA 

nephropathy (IgAN). 

The PCA plot in Figure 23 shows that LN and IgAN samples are naturally clustered 

together, and Table 3 shows that all samples were correctly classified according to 

LOOCV. 

 

Figure 23 PCA plot of kidney diseases dataset. 
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  Scores  

Sample Condition IgAN score LN score Assignment 

O.27 IgAN 0.046 0.024 IgAN 

O.29 IgAN 0.037 0.024 IgAN 

O.44 IgAN 0.036 0.017 IgAN 

O.53 IgAN 0.050 0.020 IgAN 

O.54 IgAN 0.037 0.020 IgAN 

O.60 IgAN 0.056 0.024 IgAN 

O.61 IgAN 0.060 0.025 IgAN 

O.64 IgAN 0.051 0.023 IgAN 

O.78 IgAN 0.065 0.030 IgAN 

O.81 IgAN 0.061 0.029 IgAN 

O.97 IgAN 0.063 0.027 IgAN 

O.15 LN 0.004 0.030 LN 

O.18 LN 0.004 0.038 LN 

O.25 LN 0.004 0.039 LN 

O.28 LN 0.003 0.022 LN 

O.30 LN 0.004 0.040 LN 

O.36 LN 0.006 0.016 LN 

O.41 LN 0.003 0.025 LN 

O.42 LN 0.005 0.043 LN 

O.49 LN 0.006 0.025 LN 

O.51 LN 0.004 0.030 LN 

O.56 LN 0.004 0.033 LN 

O.8_6 LN 0.003 0.017 LN 

Table 3 LOOCV results of kidney diseases dataset. 
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6 Discussion 
We have successfully developed a methodology and a software that can discover 

new unidentified molecules that have discriminative power among biological condi-

tions, and therefore, the knowledge of these new molecules can lead to better under-

standing of biological systems as well as the construction of better diagnosis methods 

and tools. We foresee that this new information will be very useful for creation of new 

diagnosis methods that will be able to discriminate among disease states based on tan-

dem spectral profiling of less invasive samples, such as urine or saliva. The develop-

ment of diagnosis systems based on this methodology has a huge potential to revolu-

tionize medical technology. Furthermore, it is important to emphasize that our method-

ology is based on spectral profiling, not just based on a single protein fingerprint as 

existing commercial approaches (e.g., Biotyper). Thus, any biological sample that 

could be analyzed by mass spectrometry (e.g., lipids, peptides, proteins, etc.) can also 

be analyzed by discriminating spectral cluster analysis. Since our method works by 

pair-wise comparisons of spectral similarity and pattern matching, it is indeed a general 

tool for discovery of discriminative biological factors and classification of spectral pro-

files by mass spectrometry.  We are convinced that this approach is a step forward in 

terms of personalized diagnosis as the protein profile from a patient will be considered; 

this test could ultimately even be deployed as a public health service assisting in diag-

nosis of special cases when existing approaches are elusive. 
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7 Conclusion 
We have successfully developed and implemented a methodology for shortlisting 

discriminative spectra among biological conditions that PSM search could not identify. 

For that, DiagnoProt communicate with Comet search engine. The knowledge base data 

structure allows fast access and efficient storage of spectra. DiagnoProt can also graph-

ically represent distances among biological conditions and biological samples base on 

spectral profiling comparisons. Spectral profile classification could classify different 

fungi samples, and showed promising results in the kidney disease dataset. 

This work resulted in a patent filed in the USA (Anexo I) and an application note 

submitted to Bioinformatics (Anexo II). 

DiagnoProt is available at http://patternlabforproteomics.org/diagnoprot/. 

  

  

http://patternlabforproteomics.org/diagnoprot/
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