
A REFORMULATION OF THE QUANTUM QUERY MODEL

Sebastian Alberto Grillo

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia de Sistemas e

Computação, COPPE, da Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Doutor em

Engenharia de Sistemas e Computação.

Orientador: Franklin de Lima Marquezino

Rio de Janeiro

Março de 2017

A REFORMULATION OF THE QUANTUM QUERY MODEL

Sebastian Alberto Grillo

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Franklin de Lima Marquezino, D.Sc.

Prof. Jayme Luiz Szwarcfiter, Ph.D.

Prof. Severino Collier Coutinho, Ph.D.

Prof. Ernesto Fagundes Galvão, Ph.D.

Prof. Renato Portugal, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2017

Grillo, Sebastian Alberto

A reformulation of the quantum query model/Sebastian

Alberto Grillo. – Rio de Janeiro: UFRJ/COPPE, 2017.

X, 56 p.: il.; 29, 7cm.

Orientador: Franklin de Lima Marquezino

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2017.

Referências Bibliográficas: p. 49 – 52.

1. Quantum Computing. 2. Algorithm Analysis. 3.

Computational Complexity. I. Marquezino, Franklin de

Lima. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III.

T́ıtulo.

iii

Dedicado a mi familia, por su

apoyo a mis metas.

iv

Agradecimentos

Agradeço ao LAC-PESC e ao grupo de computação quântica do LNCC pela ajuda

e discussões úteis. Também agradeço ao meu orientador, a COPPE, a CAPES e o

Brasil por tornar isto posśıvel.

v

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

UMA REFORMULAÇÃO DO MODELO DE CONSULTA QUÂNTICA

Sebastian Alberto Grillo

Março/2017

Orientador: Franklin de Lima Marquezino

Programa: Engenharia de Sistemas e Computação

O modelo de Quantum Query (QQM) é uma ferramenta importante para a

análise e desenvolvimento de algoritmos quânticos. Este modelo generaliza árvores

de decisão, com a complexidade sendo definida pelo número mı́nimo de consultas a

um oráculo a fim de calcular uma função definida para toda cadeia binária de seu

domı́nio. Neste modelo são definidas medidas de complexidade para algoritmos de

erro limitado e exatos. Desse modo, usam-se tais medidas para estudar a relação

entre algoritmos de erros limitados e algoritmos exatos na computação clássica e

quântica. Há várias questões abertas em relação a essas medidas, estimadas princi-

palmente usando métodos de limite inferior.

A falta de abordagens para a construção de algoritmos quânticos é especialmente

percept́ıvel para o caso exato. Em contraste, vários resultados ótimos foram encon-

trados para algoritmos de erro limitado. Alguns resultados importantes são obtidos

por reformulações do QQM usando modelos equivalentes, tais como span programs.

Nesse sentido, o caso exato é menos compreendido do que os algoritmos de erro

limitado. Neste trabalho propomos uma nova formulação para o QQM, chamada

Formulação de Block Set (BSF), dando uma perspectiva alternativa para a análise

de algoritmos quânticos exatos. Com esta formulação provamos um novo teorema

de limite inferior para algoritmos quânticos exatos.

Usando algumas ideias da BSF, definimos uma simulação de algoritmos quânticos

exatos por meios clássicos. A análise desta simulação nos dá uma condição necessária

para acelerar a consulta quântica para algoritmos de erro limitado. Esta condição

implica altos valores para uma norma-L1 definida sobre a probabilidade de sáıda do

algoritmo. A partir desta condição, obtemos outras condições necessárias adaptadas

dentro da BSF.

vi

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

A REFORMULATION OF THE QUANTUM QUERY MODEL

Sebastian Alberto Grillo

March/2017

Advisor: Franklin de Lima Marquezino

Department: Systems Engineering and Computer Science

The Quantum Query Model (QQM) is an important tool in the analysis and

design of quantum algorithms. This model generalizes decision trees, where the

complexity is defined as the minimum number of oracle queries required for calcu-

lating a given function f , for any input x ∈ {0, 1}n.

This model defines complexity measures for both bounded-error and exact al-

gorithms. Thereby the QQM uses such measures for studying the relation between

classical and quantum computing within bounded and exact settings. There are

several open questions in relation to such measures, that are mainly estimated using

lower bound methods.

A lack of frameworks for constructing quantum algorithms is specially noticeable

for the exact case. In contrast, several optimal results were found for bounded error

algorithms. Some important results where obtained by reformulations of the QQM

using equivalent models, such as span programs. In this sense, the exact case is

less understood than bounded-error algorithms. In this work, we propose a new

formulation for the QQM called Block Set Formulation (BSF), giving an alternative

perspective to the analysis of exact quantum algorithms. From this formulation we

prove a new lower bound theorem for exact quantum algorithms.

Using some ideas from BSF, we define a simulation of exact quantum algorithms

by classical means. The analysis of this simulation give us a necessary condition for

quantum query speed-up of bounded-error algorithms. This condition implies high

values for a L1-norm defined over the output probability of the algorithm. From

this condition we obtain other necessary conditions formulated within the BSF.

vii

Contents

List of Figures x

1 Introduction 1

2 The Quantum Query Model revisited 5

2.1 The quantum query model . 5

2.2 Decision trees . 8

2.3 Quantum Complexity . 9

2.4 Complexity measures and methods 10

2.4.1 The Hybrid method . 11

2.4.2 Polynomial method . 11

2.4.3 Adversary methods . 12

2.5 Exact quantum algorithms . 13

2.5.1 Deutsch-Jozsa algorithm and parity trees 14

2.5.2 Semi-definite programming . 14

2.5.3 Delayed measurement . 15

2.5.4 P-computing . 15

3 Alternatives to the Quantum Query Model 17

3.1 Characterizing quantum query with multiple CSOP 18

3.1.1 Block set formulation . 18

3.1.2 Gram matrices and Block Sets 26

3.2 Towards a framework for constructing quantum exact query algorithms 31

3.2.1 A generalization of the Deutsch-Jozsa algorithm 35

3.3 A lower bound for exact quantum algorithms 36

4 Quantum speed-up and quantum query 40

4.1 A simulation defined over decompositions 40

4.2 Upper bounds for quantum speed-up 43

5 Conclusion 46

5.1 Results and potential extensions of the Block Set approach 46

viii

5.2 Results and potential extensions of the L1-norm approach 47

Bibliography 49

A Preliminary notions 53

A.1 Postulates of quantum mechanics . 53

A.1.1 State postulate . 53

A.1.2 Evolution postulate . 53

A.1.3 Composition of systems postulate 54

A.1.4 Measurement postulate . 54

A.2 Complete set of orthogonal projectors 54

A.3 State guessing bound . 55

A.4 Important Boolean functions . 55

ix

List of Figures

2.1 Deterministic decision tree that queries variables xi and xj. Notice

that taking i = 1 and j = 2, it solves the Deutsch problem (see

Subsection 2.5.1 on page 14). 8

3.1 Schematic representation of P̃ 1
x P̃

0
x |Ψ〉 using Eq.(3.7), where x = 1001.

Grey boxes represent vectors with inverted sign respect to the decom-

position of |Ψ〉. 21

3.2 The figure shows that the relation between both models is not bijec-

tive. The red line means that all BSF or QQM algorithm inside it

have the same Gram matrix. 24

3.3 Every black layer represents the influence of some formula over each

x. From top to bottom, these are x1 ⊕ x2, x1 ⊕ x3, x0 and x3. If we

give weight 1
4

to these formulas, then any x with exactly two layers

over it is orthogonal to 000. In this case 001, 100 and 101. 35

x

Chapter 1

Introduction

From the invention of valve technology through to the development of microelec-

tronics, computing power has been growing continuously. This growth was based

on the miniaturization of electronic components, a trend that approximates to the

famous predictions of Gordon Moore, who stated that the number of transistors in

a dense integrated circuit doubles nearly every two years [1]. However, the current

technology is restricted to a scale reaching nanometres and it is close to reaching its

limits [2].

In 1982, Richard Feynman introduced the idea of quantum computing, as he

observed that the simulation of certain physical systems require an exponential

number of variables. He argued then that such simulation could be impossible to

be executed efficiently by classical computers. Feynman also described a quantum

computer and observed that such device could simulate those physical systems effi-

ciently [3]. Thereby, he stated that a quantum computer has the same computability

power that a classical computer has, although possibly an improved efficiency. In

1994, Peter Shor formulated a quantum algorithm that factorizes integers with ex-

ponential gain over the best classical known algorithm [4]. Another great discovery

occurred in 1996, when Grover presented a search algorithm with quadratic gain over

the best possible classical algorithm, this algorithm being asymptotically optimal

on the number of queries [5]. These two algorithms have very important potential

applications and helped increase the interest in quantum computing.

Thus, identifying the complexity gaps between classical and quantum computing

became an important theoretical problem. The quantum computational complexity

field has two main models: the quantum Turing machine [6] and the quantum query

model [7] or black box model. The quantum Turing machine is a generalization

of the Turing machine, while the quantum query model is a generalization of the

decision tree model [8]. Another analogy is that, if the decision tree model simplifies

many aspects about Turing machines, we can say that the quantum query model

simplifies the study of quantum algorithms in comparison with quantum Turing

1

machines. Thus, while classical and quantum Turing machines measure complexity

using the number of steps or time, the decision tree and quantum query models

measure complexity using the number of queries to a given array as input [8]. For

the purposes of this work, decision tree and quantum query frameworks are limited

to algorithms that calculate the output of some Boolean function. We can classify

the Boolean functions that are calculated. If the domain of some function includes

all possible arrays of fixed length we say that it is a total function and otherwise it

is a partial function.

The quantum query model allows us to describe exact and bounded error quan-

tum algorithms. An exact algorithm always gives the correct output for any input,

while bounded error algorithms give the correct output with at least 2/3 proba-

bility for any input [7]. Most known quantum algorithms are bounded error [9],

which is an evidence that obtaining a complexity gain over classical algorithms and

avoiding error has been a challenge [10]. Some famous examples of exact quantum

algorithms are Deutsch’s algorithm and its generalization, the Deutch-Jozsa algo-

rithm [11]. Deutsch’s algorithm is easily combined with classical algorithmic steps,

in such a way that we can define a family of quantum algorithms obtained by this

strategy [12]. Semi-definite programming emerged as a powerful numerical tool for

constructing quantum query algorithms, even exact algorithms [13], but the implicit

logic behind approximated solutions is difficult to find [12]. In a research paper by

Montanaro et al. [12], semi-definite programming is used for discovering some new

exact quantum algorithms, where those algorithms cannot be obtained just using

Deutsch’s algorithm as subroutine. Lately, the algorithms described by Ambainis

in [14] introduce new ideas for designing exact quantum algorithms. Finally, we

remark an another recent paper by Ambainis [10], which presents a new powerful

result, describing the first quantum exact algorithm with a super-linear advantage

over exact classical algorithms for total functions. Even with these results, the tool-

box for constructing exact quantum algorithms is still limited and developing new

design methods is an interesting field [10].

Two important measures in quantum complexity are Q2 (f) and QE (f), the min-

imal number of queries for calculating f using a bounded error and exact quantum

algorithms, respectively. Their classical analogues are R2 (f) and D (f), the minimal

number of queries required for calculating f using a bounded error and deterministic

classical algorithms, respectively. An important theoretical problem is finding tight

inequalities relating these measures or other complexity measures like polynomial

degree [15], sensitivity [16] or certificate complexity [8].

Recently, some reformulations of the quantum query model were developed [17].

These formulations use the concept of span programs and they had great success as

a tool for obtaining efficient bounded error algorithms [18, 19]. In this work, we have

2

two main contributions. In our first contribution, we develop another formulation

of the Quantum Query Model that could facilitate new tools for analysing quan-

tum exact algorithms, analogously to span programs in relation to bounded error

algorithms. In our second contribution, we identify necessary conditions for quan-

tum speed-up in the QQM. These conditions are formulated by upper bounds that

involves a L1-norm measure and other measures defined over our new formulation.

In our first contribution, we prove that the application of any quantum query

algorithm is equivalent to decomposing an unit vector in a sum of real vectors,

where the final state of the quantum algorithm is equal to the same sum, although

inverting the sign of some of those vectors. Each input determines which signs must

be inverted, however such decomposition is the same for every input. We identify

a set of properties fulfilled by the vectors of the decomposition. We call this set of

properties the Block Set Property and any set with such property is a Block Set. We

define the output state of a given Block Set as an analogy to the output state of a

given quantum query algorithm. We prove that for any quantum query algorithm

there is a Block Set and for any Block Set there is a quantum query algorithm,

where the Gram matrix of their output states are equal. This result implies that the

Block Set formulation characterizes the evolution of states in the Quantum Query

Model. Thus, the Block Set formulation considers the same measurement step as

the quantum query model. We prove that the Block Set formulation acts as a

parametrization of the Gram matrix of output states, where each pair of elements in

the Block Set controls a matrix and the sum of all those matrices is the Gram matrix.

We use such parametrization for obtaining a linear system of equations, where a

semi-definite solution is a necessary and sufficient condition for the existence of an

exact quantum algorithm, with fixed complexity and calculated function. We study

a special case of Block Sets, called Orthogonal Block Sets, which depends on a much

simpler system of equations. We develop strategies for solving the simpler system

of equations that produces Orthogonal Block Sets, including an iterative procedure

that constructs the desired function gradually. As an example of the application of

this approach, we obtain a family of algorithms that generalizes the Deutsch-Jozsa

algorithm. Finally, we prove a theorem that lower-bounds the number of queries

that a exact quantum query algorithm needs for computing a Boolean function, this

new method offers an alternative for traditional methods. The method applies a

basis of orthogonal functions for the Boolean cube.

From our first contribution, some other problems followed. One of those problems

is identifying necessary conditions in a Block Set for a quantum speed-up in relation

to classical algorithms. This problem leads to our second contribution. We start

by considering that the probability for a given output is a linear combination of

orthogonal functions, and those functions are the same basis applied for the lower-

3

bound method. We define a classical simulation for a Block Set, which depends on

the linear combination that represents the output probability. Then, we analyse how

expensive the classical simulation of some Block Set is in relation to a given measure.

The measure applied here is the L1-norm obtained from the basis for the Boolean

cube. Particularly, we relate such L1-norm with the error of the simulated algorithm.

Thereby, a large L1-norm is a necessary property for a hard classical simulation.

We obtain an upper bound for the quotient between the queries for an optimal

classical algorithm and the queries of the quantum algorithm, which formalizes our

necessary condition. Notice that an optimal quantum query algorithm maximizes

such quotient. From Block Sets we define measures that upper-bound L1-norm, and

this formulates alternative necessary conditions for quantum speed-up. In the Block

Set, each pair of vectors controls a computation in the algorithm, which formalizes

the notion of quantum parallelism.

The present document is organized as follows. In Chapter 2, we present an intro-

duction to the QQM, quantum query complexity and brief descriptions of approaches

for exact quantum algorithms. In Chapter 3, we present the first contribution of

our work, which consists in a reformulation of the QQM. In Chapter 4, we show

necessary conditions for quantum speed-up on the BSF, which is the second original

contribution of this work. Finally, in Chapter 5, we discuss our results and the next

steps of our research.

4

Chapter 2

The Quantum Query Model

revisited

In this chapter we present an introduction of quantum and classical models, basic

complexity methods and important related works in the last years. Section A.1 (on

page 53) gives a complementary introduction to basic concepts.

2.1 The quantum query model

The Quantum Query Model (QQM), or Black Box Model, is a formulation that

simplifies quantum algorithms in relation to other models, in the sense that we just

compute a function given an input x, where we are specially interested in the queries

on such input [8]. The query operator is the only operation with access to the input

or black box, and we count the number of its occurrences. The other operations are

represented by unitary operators and they are invisible to our complexity measure.

This model is a very important tool for the study of search algorithms, because such

algorithms also make queries to a search space, that we formulate as an input in

the QQM. But QQM algorithms are also interesting, because we could replace our

input or black box by a white box or circuit that actually implements the black box;

that is the case of Shor’s algorithm and this allow us to obtain algorithms for more

complex models [7].

We consider a formulation of the QQM that consists of two registers: (i) the

query register, with enough size for representing an integer i ∈ {0, .., n}; and (ii) the

working memory.

The query register and the working memory are called the accessible memory.

The accessible space HA has as basis: |i, w〉 where i ∈ {0, .., n} and w is an allowed

configuration for the working memory. Thus, we define the corresponding spaces for

each register (see Subsection A.1.1 on page 53):

5

• The query space HQ which has as basis the vectors {|i〉 : 0 ≤ i ≤ n}. This

space should not be confused it with a space of possible inputs, that would

have dimension 2n.

• The work space HW which has as basis the vectors |w〉, where w belongs to

the possible set of values in the working memory.

Thus HA = HQ ⊗HW (see Subsection A.1.3 on page 54). So, if |Ψ〉 ∈ HA then

|Ψ〉 =
n∑
i=0

|i〉 |Ψi〉 , (2.1)

where |Ψi〉 ∈ HW . The oracle operator Ox for an input x ∈ {0, 1}n is defined as

Ox |i〉 |Ψi〉 = (−1)xi |i〉 |Ψi〉 , (2.2)

where x0 = 0. For this reason, x0 is not considered part of the input and the query

space has dimension n+ 1. For our formulation of the QQM, x0 is very important,

otherwise we cannot calculate a wide range of functions. There is an equivalent

alternative formulation where x0 does not exist in x and the query operator is

defined as Ox |i〉 |b〉 = |i〉 |b⊕ i〉, where b ∈ {0, 1} [7]. This equivalent formulation

implies the same minimal number of queries for any function.

A QQM algorithm with output domain T is determined by

• A number of qubits in the working memory.

• A sequence of unitary operators {Ui : 0 ≤ i ≤ t}, that are defined over HA.

The operators are unitary because quantum isolated systems evolve by these

type of linear operators (see Subsection A.1.2 on page 53), due to quantum

mechanics postulates [20].

• A complete set of projectors (CSOP) (see Section A.2 and Subsection A.1.4 on

page 54) over HA, where the elements of the CSOP are indexed by elements

of T. We access the information of the qubits by a measurement, the CSOP

represents this final step. Notice that this freedom on the measurement is

consequence of our freedom selecting unitary operators.

It is important to mention that the query operator is also an unitary opera-

tor, but it is different from set {Ui : 0 ≤ i ≤ t} in the sense that it depends on x.

The computation of the QQM algorithm for input x alternates unitary and query

operators, thereby it produces a final state

∣∣Ψf
x

〉
= UtOxUt−1...U1OxU0 |0, 0〉 . (2.3)

6

We define the number of queries as the number of times that Ox appears in the

computation. Using the CSOP, an output z ∈ T is obtained with a probability

πx (z) =
∥∥Pz ∣∣Ψf

x

〉∥∥2
.

Definition 1. A QQM algorithm computes a function f : {0, 1}n → T within error

ε if for all input x, there is πx (f (x)) ≥ 1− ε. An algorithm is exact if ε = 0 and it

is bounded-error if ε ≤ 1
3
.

Notice that if we choose a bigger constant error than some ε > 1
2

and maintain

a fixed number of queries, the set of functions that can be computed under such

conditions grow.

Within computational complexity, Boolean functions can also be classified as

total or partial. A Boolean function is total if its domain is all the set {0, 1}n and

it is partial otherwise.

We show an example. Consider HW an empty set, where the algorithm has initial

state |0〉,

U0 =

 0 0 1
1√
2

1√
2

0
1√
2
− 1√

2
0

 , (2.4)

and U1 = I. Notice that the operator U0 is a 3x3 matrix, because HA has dimension

3 as HQ has dimension n+1 = 3 and HW has dimension 1. Remember that HQ does

not represent the space of all possible inputs, otherwise it would have dimension 4.

Thus, we don’t include the qubits that contain input, for a similar formulation of

quantum query that also includes a input space see Barnum et al.[13].

The measurement step is defined by a CSOP {Pi}, where

P0 =

 0 0 0

0 1
2

1
2

0 1
2

1
2

 ,

P1 =

 0 0 0

0 1
2
−1

2

0 −1
2

1
2


and

P2 =

 1 0 0

0 0 0

0 0 0

 .
Notice that∥∥∥P0

∣∣∣Ψf
00

〉∥∥∥2

=
∥∥∥P0

∣∣∣Ψf
11

〉∥∥∥2

=
∥∥∥P1

∣∣∣Ψf
01

〉∥∥∥2

=
∥∥∥P1

∣∣∣Ψf
10

〉∥∥∥2

= 1,

7

therefore the outputs have value 0 if we apply other elements from the CSOP on

the same final states. This algorithm solves the Deutsch Problem exactly (see Sub-

section 2.5.1), in other words it separates sets {00, 11} from {01, 10} within error 0.

2.2 Decision trees

We present classical query algorithms using decision trees. Similarly to the QQM,

these are models for algorithms that compute a function given a Boolean input x [8].

Deterministic decision trees are defined as rooted ordered binary trees, where

each internal node has a variable xi as label and each leaf has 1 or 0 as label. The

tree evaluates an input x as follows. It starts at the root and it executes the following

recursive procedure:

1. If it is a leaf, then stop and choose its label as output.

2. Otherwise, query the variable xi that labels the root with that label. If xi = 0

then apply this recursive procedure over the left sub-tree. If xi = 1 then apply

this recursive procedure over the right sub-tree.

A deterministic decision tree T computes f , if it outputs f (x) for all x ∈ D ⊂
{0, 1}n, where D is the domain of f . The complexity or number of queries used

by T is its depth. Notice that it is deterministic because it always gives the same

output for a given input x. Finally, observe that each node of the tree is labelled

with just one variable xi, that models that our classical algorithms can obtain the

value of just one variable per query.

We present two examples, first a trivial decision tree that outputs 1 without

querying any variable, and second the decision tree of Figure 2.1 which queries

variables xi and xj.

Figure 2.1: Deterministic decision tree that queries variables xi and xj. Notice that
taking i = 1 and j = 2, it solves the Deutsch problem (see Subsection 2.5.1 on page
14).

8

Randomized decision trees are defined as a probability distribution µ over a finite

set of deterministic decision trees. The evaluation of some input x starts by choosing

a tree according to µ and follows by evaluating it as any other deterministic tree.

The complexity is defined as the depth of the deepest deterministic tree T , such that

µ (T) > 0. Notice that the randomized model generalizes the deterministic model,

because a deterministic tree is just a randomized tree that gives probability one to

a single tree. At the same time the QQM generalizes both models, because we can

simulate a randomized decision tree using a QQM algorithm with the same error

probability and number of queries [8].

We present an example of randomized tree, giving probability 1
3

to the tree that

always outputs 1 and probability n(n−1)
3

to each different pairs i, j that determines

a decision tree from Figure 2.1. This randomized tree solves the Deutsch-Jozsa

problem within error 1
3

(see Subsection 2.5.1).

2.3 Quantum Complexity

The QQM has an implicit optimization problem, that is calculating a given function

f : {0, 1}n → T , within error ε and using a minimal number of queries.

Definition 2. There are the following complexity measures:

• D (f) is the minimal number of queries for calculating f , by a deterministic

decision tree.

• R2 (f) is the minimal number of queries for calculating f , by a randomized

decision tree.

• Q2 (f) is the minimal number of queries for calculating f , by a quantum

bounded-error algorithm.

• QE (f) is the minimal number of queries for calculating f , by a quantum exact

algorithm.

• Qε (f) is the minimal number of queries for calculating f , by a quantum algo-

rithm within error ε.

We have that n ≥ D (f) ≥ R2 (f) ≥ Q2 (f) and D (f) ≥ QE (f) ≥ Q2 (f) for

any f [8]. We deduce the upper-bound n, just noticing that a deterministic decision

tree can compute any function just checking all the terms xi.

An interesting theoretical problem in quantum complexity, it is that of finding

inequalities that relate these measures between them, or with other measures defined

over Boolean functions that we will present in this chapter. The following inequality

9

is a very important bound in the complexity gain of QQM algorithms over their

classical counterparts.

Theorem 1. Let f be a total function, then D (f) ≤ 212Q2 (f)6

This theorem [8] implies that if a QQM algorithm has at least bounded error

precision, then it could obtain an exponential speed over deterministic classical

algorithms only in promise problems, where it is guaranteed that input can take

limited configurations. In the particular case of exact quantum algorithms, we can

expect a lower potential gain due to bigger restrictions.

Theorem 2. Let f be a total function, then QE (f) = Ω
(
D (f)1/3

)
.

Theorem 2 says that an exact quantum algorithm cannot exceed a cubic gain

over deterministic algorithms for total functions. We ignore if this lower bound

is tight, we do not know if there exists an exact quantum algorithm reaching a

cubical gain for total functions [10]. Nevertheless, exact quantum algorithms can

reach an exponential gain over deterministic classical algorithms, as Deutsch-Jozsa

algorithm [11]. But this potential complexity gain cannot be significant or even exist

for some functions, for example if f is the function ANDn (see A.4 on page 55) then

QE (f) = D (f) [21].

2.4 Complexity measures and methods

A basic problem in the field is obtaining the value D (f), R2 (f), Q2 (f) or QE (f)

for a given function f . The most often used strategy is obtaining a lower bound for

such complexity measure and comparing such bound with the most efficient known

algorithm. If the complexity of such algorithm is equal to the lower bound, then we

know the complexity of f . If there is a gap between the complexity of the algorithm

and the lower bound, then there are three possibilities:

• The algorithm can use fewer queries,

• The lower bound is not tight,

• Both possibilities hold.

Thus, the development of tight lower-bound methods is an active research di-

rection. We will present a review of results for the most important lower bound

approaches, without much mathematical details.

10

2.4.1 The Hybrid method

We can formulate a search problem, where our goal is finding a marked element k

in {1, 2, .., n}. Such search problem is more difficult than a decision problem that

consists in simply determining if there is some xi = 1, for x ∈ {0, 1}n, because a

search algorithm can be trivially transformed in a decision algorithm. Thus, a lower

bound for ORn is also a lower bound for our original search problem [7]. The first

developed lower bound method in the field is the hybrid method [22], which gives

a tight lower bound for ORn. The basic idea of this method can be described as

follows. Suppose that we already have a QQM algorithm for ORn. This method

starts analysing how orthogonal must be the final states
∣∣∣Ψf

0n

〉
and

∣∣Ψf
x

〉
, where

0n represents a space without marked elements and x represents a space with one

marked element. The orthogonality of those final states is a necessary condition if

we need to distinguish one from the other with enough precision (A.3 on page 55),

at the measurement step. A QQM algorithm starts with the initial state |0, 0〉 for all

inputs, thereby each query modifies the orthogonality of the state of the algorithm

for 0n and y, at each step. So the Hybrid method uses an upper bound for the rate

of orthogonalization in final states, which finally implies a lower bound for ORn or

the following theorem by Bennett et al. [22].

Theorem 3. If a bounded-error QQM algorithm recognizes 0n from the set B =

{x ∈ {0, 1}n : |{i : xi = 1}| = 1} and |B| = Ω (n), then it requires at least Ω (
√
n)

queries.

This complexity result demonstrated that Grover’s algorithm is optimal, because

Grover’s algorithm executes a search in time O
(√

N
)

, with high probability [5]. At

the same time the existence of Grover’s algorithm shows that the hybrid method is

tight for this problem.

2.4.2 Polynomial method

The polynomial method for the QQM is based on two properties. First,
∣∣Ψf

x

〉
can be

decomposed in a linear combination using a basis for HA, where the amplitude for

each element i from the basis is a n-variate polynomial pi (x), with degree at most 2t

(t is the number of queries). Second, any Boolean function f can be interpolated by

a n-variate polynomial q (x). Thereby, the degree of q (x) cannot exceed the degree

of pi (x), if the algorithm calculates f . So, this is a method based in the polynomial

measures that we define formally below [23].

Definition 3. We say that a n-variate polynomial q (x) represents a Boolean func-

tion f : D → {0, 1}, if f (x) = q (x) for x ∈ D ⊂ {0, 1}n. Then the minimum degree

for a polynomial that represents f is denoted as deg (x).

11

The polynomial representing total functions is unique [7].

Definition 4. We say that a n-variate polynomial q (x) approximates a Boolean

function f : D → {0, 1}, if |f (x)− q (x)| ≤ 1
3

for x ∈ D ⊂ {0, 1}n. Then the

minimum degree for a polynomial that approximates f is denoted as d̃eg (x).

Thus, we have the following theorems proved by Beals et al. [23].

Theorem 4. Let f be a Boolean function, then QE (f) ≥ deg(x)
2

.

Theorem 5. Let f be a Boolean function, then Q2 (f) ≥ d̃eg(x)
2

.

The polynomial method has proved to be a powerful method, due to diverse

applications in quantum complexity like the collision problem [24] or direct product

theorems [25, 26].

2.4.3 Adversary methods

This approach was born as an extension of the hybrid method and can also be con-

sidered a generalization of the block sensitivity approach [7]. Instead of assuming

orthogonality between individual final quantum states in a hypothetical algorithm,

this approach assumes the orthogonality between sets of final quantum states, where

each set corresponds to a different desired output for an algorithm that calculates f .

Depending on f and the tolerated error ε, a value V that measures the orthogo-

nality of the sets is calculated. This method produces an upper-bound R for the

rate of orthogonalization of such sets at each step of the algorithm, similarly to

the Hybrid method. Finally, V/R gives us a lower-bound for calculating f with

error ε in the QQM model [7]. In the first years after its introduction, the orig-

inal Adversary method [27] was modified in several formulations [13, 28–30], but

those first modifications resulted in equivalent methods to the original [31]. Nev-

ertheless, this approach received deeper modifications that increased its power, as

the negative weight adversary method [32] and the multiplicative adversary method

[33]. It is known that the negative weight adversary method is able to obtain better

lower-bounds than the original adversary method [32] and it also offers important

reformulations of the QQM [17].

We introduce some notations first. A function g : S → T , where S ⊂ Znm. A

hermitian matrix Γ, with rows and columns indexed by elements of S. If there

is (g (x) = g (y)⇔ Γ [x, y] = 0), we say that Γ is an adversary matrix. We denote

‖M‖ by the spectral norm of the matrix M . If M is a real matrix, then M ≥
0 says that the entries of M are non negative. M ◦ N denotes the entry-wise

(Hadamard) product, between matrices M and N . Thus, we can introduce the

spectral formulation of the adversary methods developed by Hoyer et al. [32].

12

Definition 5. The complexity measure for the adversary method is defined by

ADV (f) = max
Γ ≥ 0

Γ 6= 0

‖Γ‖
max
i
‖Γ ◦Di‖

,

where Γ is a symmetric adversary matrix, and Di [x, y] = 1 if xi 6= yi and otherwise

Di [x, y] = 0.

Theorem 6. For any function g as above, one has

Qε (g) ≥
1− 2

√
ε (1− ε)
2

ADV (g) .

Definition 6. The complexity measure for the negative weight adversary method is

ADV ± (f) = max
Γ 6=0

‖Γ‖
max
i
‖Γ ◦Di‖

Theorem 7. For any function g as above, one has

Qε (g) ≥
1− 2

√
ε (1− ε)− 2ε

2
ADV ± (g) .

If g is Boolean (|T | = 2), then

Qε (g) ≥
1− 2

√
ε (1− ε)
2

ADV ± (g) .

As ADV ± (f) ≥ ADV (f), it is easy to see that the negative weight adversary

method obtains the same or better lower-bounds for Boolean functions, than the

original adversary method. Also, we can see that the adversary methods are similar

to the polynomial method, in the sense that we can define a complexity measure for

g that is associated to a lower bound theorem. Jointly with the polynomial method,

the adversary approach is a fundamental tool in quantum complexity.

2.5 Exact quantum algorithms

In this last section we present a review of exact quantum algorithms in the QQM.

The techniques are not mentioned in detail, we are just interested in presenting

the versatility and application of those ideas. This is enough information for a

comparison with future proposals.

13

2.5.1 Deutsch-Jozsa algorithm and parity trees

Before we introduce the applications of Deutsch-Jozsa algorithm, we present

Deutsch’s problem. Let x ∈ {0, 1}n be a vector that contains exactly n/2 ones

(balanced), n ones or 0 ones. We have the problem of determining if x is balanced.

It is easy to see that a classical algorithm would need n/2+1 queries to x for solving

such problem, where each query just determines one variable xi from x (see 2.2 on

page 8). In contrast, the Deutsch-Jozsa algorithm solves it with just one query,

which implies an exponential gain [11]. This is not a problem with practical appli-

cations, but the Deutsch-Jozsa gave important insights on the power of quantum

computing. Thus, it is an important theoretical result. The particular case were

n = 2 is known as Deutsch’s algorithm. While n > 2 implies the promise of x

presenting determinate configurations, n = 2 implies a total function, particularly

the operation x1 ⊕ x2 with a single query. For almost two decades, using Deutsch’s

algorithm as subroutine with classical steps was the basic strategy for designing

quantum exact algorithms [12]. The algorithms that are constructed in such way

are modelled using a tree like the deterministic decision tree, but with internal nodes

that also can be labelled with predicates of the form xi ⊕ xj. Thus, the value of

such a predicate decides which sub-tree will be taken. Notice that labelling an in-

ternal node with such a predicate is equivalent to calling a subroutine of Deutsch’s

algorithm. This tree is a particular case of the parity tree model [12].

2.5.2 Semi-definite programming

Let f be a Boolean function, t an integer, Ei a matrix such that 〈x|Ei |y〉 =

(−1)xi+yi , and Fi a diagonal matrix where 〈x|Fi |x〉 = 1 ⇔ f (x) = i and otherwise

〈x|Fi |x〉 = 0. Find the 2n dimensional real symmetric matrices Γi for i ∈ {0, 1},
and M j

i for 0 ≤ i ≤ n and 0 ≤ j ≤ t− 1; satisfying the following conditions

n∑
i=0

M0
i = E0,

n∑
i=0

M j
i =

n∑
i=0

Ei ◦M j−1
i

(for 1 ≤ j ≤ t− 1),

Γ0 + Γ1 =
n∑
i=0

Ei ◦M t−1
i ,

F0 ◦ Γ0 ≥ (1− ε)F0,

14

and

F1 ◦ Γ1 ≥ (1− ε)F1.

This semi-definite program is denoted as SDP (f, t, ε)

Theorem 8. There is a QQM algorithm that calculates f , within an error ε and t

queries if and only if SDP (f, t, ε) has a solution [13].

This reformulation allows us to apply powerful numerical methods, but it is

difficult to infer the logic from such numerical results. Nevertheless, that it is a

valid strategy for discovering new quantum algorithms. This approach led to the

discovery of new exact quantum algorithms, that cannot be constructed simply using

Deutsch’s algorithm as subroutine. Specifically, there was obtained a general exact

algorithm that distinguishes inputs with Hamming weight n/2 from those inputs

with Hamming weight in the set {0, 1, n− 1, n}. Semi-definite programming also

showed that such algorithms can be quite common [12].

2.5.3 Delayed measurement

QQM algorithms are commonly formulated with a final measurement step, but in-

termediate measurements do not affect the power of the model. Thus, an algorithm

with intermediate measurements can be transformed in one with just a final measure-

ment [20]. Using intermediate measurement steps could facilitate the formulation of

recursive exact algorithms. Algorithms with this characteristic are used for obtain-

ing EXACTk,n and THRESHOLDk,n (x) (see A.4 on page 55) with max {k, n− k}
and max {k, n− k + 1} queries, respectively [14]. This approach was employed for

obtaining an algorithm that reaches the optimal QE

(
DJkn

)
= k + 1. Function

DJkn (x) generalizes Deutsch-Jozsa problem, (see A.4). This approach also gives

good results for EXACT nk,l[34], (see A.4).

2.5.4 P-computing

Taking p ∈ [−1, 1], we say that a QQM algorithm A p-computes a function f , if

there is a quantum state |Ψ〉 with the following properties:

1. A |Ψ〉 = |Ψ〉 if f = 0.

2. If f (x) = 1, then A |Ψ〉 = p |Ψ〉+
√

1− p2A |Φ〉 for some state |Φ〉 orthogonal

to |Ψ〉. Vector |Φ〉 may depend on x.

Using recursive properties of this framework for function NEi, it is possible to obtain

a QQM algorithm that calculates NEd with O
(

2048
d
8

)
queries. These recursive

15

properties allow us to transform an efficient algorithm for a fixed d in a general

efficient algorithm for any i. A deterministic decision tree requires 3d queries for

solving NEd, this implies the first known QQM exact algorithm that has a super-

linear advantage over classical, because QE (NEi) = O
(
D (NEi)

0.8675..
)

[10].

16

Chapter 3

Alternatives to the Quantum

Query Model

In the last chapter, we presented the few currently available approaches for design of

exact QQM algorithms. The parity trees from Deutsch’s algorithm can provide exact

QQM algorithms for any function, but recent results proved that this approach has

complexity limitations [12]. Semi-definite programming give us the most efficient

algorithms for functions of fixed size, but it is difficult to generalize those numerical

solutions to infinite sets of functions. Delayed measurement and p-computing ap-

proaches obtained important complexity results, but the applicability of those ideas

to other families of algorithms is not clear. The toolbox for designing exact QQM

algorithms has grown with these results, but there is still work to do in developing

frameworks for a wider range of Boolean functions [10].

In this work, we believe that constructing QQM exact algorithms could be a

hard theoretical problem itself or just a consequence of using an inappropriate for-

mulation. The second hypothesis becomes stronger, if we consider the results of

span programs. This reformulation of the QQM obtained optimal algorithms for an

important family of Boolean functions, where those algorithms admits a bounded-

error [18].

This chapter is organised as follows. In Section 3.1, we analyse a reformulation

of the QQM. In Section 3.2, we apply this reformulation to the construction and

analysis of exact quantum algorithms. In Section 3.3, we obtain a lower bound

method for exact quantum query complexity.

17

3.1 Characterizing quantum query with multiple

CSOP

We introduce some notations first. A sequence of unitary operators UnUn−1...U0

will be denoted as Ũn. Unless mentioned otherwise, we consider that a CSOP

{Pk : 0 ≤ k ≤ n} is composed by projectors Pi acting on the subspace |i〉 ⊗HW . It

is convenient to denote operators P̃ j
i = Ũ †jPiŨj. In the following Lemma 1 we prove

that
{
P̃ j
k : 0 ≤ k ≤ n

}
is a CSOP for any constant j.

Lemma 1. If {Pz : z ∈ T} is a CSOP and U is an unitary operator, then{
U †PzU : z ∈ T

}
is a CSOP.

Proof. First we proof that the sum of operators is equal to the unity operator:∑
z∈T

U †PzU = U †(
∑
z∈T

Pz)U = U †IHU = IH (3.1)

and second that they are pairwise orthogonal:

〈
Φ|U †P †yUU †PzU |Ψ

〉
=
〈
Φ|U †P †yPzU |Ψ

〉
= 0. (3.2)

We represent an algorithm without measurement step by a 7-tuple

A = (t, n,m,HQ, HW ,Ψ, {Ui}) ,

such that dim (HQ) = n + 1, dim (HW) = m, |Ψ〉 ∈ HA is an unit vector and the

unitary operators in {Ui : 0 ≤ i ≤ t+ 1} are defined on HQ ⊗HW . These elements

represent all the information that we require for describing an algorithm using t+ 1

queries and an initial state |Ψ〉, ignoring the measurement step. Without loss of

generality, we could always take |0, 0〉 as the initial state, and change U0 accord-

ingly. However, we will keep an arbitrary Ψ in the above notation, since it will be

convenient in the following developments.

3.1.1 Block set formulation

Definition 7. Let us denote a = (a0, a1, .., at) for 0 ≤ ai ≤ n and Zn+1 =

{0, 1, .., n}. We say that an indexed set of vectors

{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}

18

is associated with A = (t, n,m,HQ, HW ,Ψ, {Ui}) if

|Ψ (a)〉 = P̃ t
at ..P̃

1
a1
P̃ 0
a0
|Ψ〉 . (3.3)

Intuitively, each unitary operator rotates a vector state and each query cuts

pieces of such vector, for a posterior sign change of those pieces. Each projector P i
ai

represents one of such cuts and multiples cuts produce more of such pieces. The

vector |Ψ (a)〉 represents such independent pieces after all of such cuts. Using the

operators defined above, we have a valid expression for any vector, given by

|Ψ〉 =

(
n∑

kt=0

P̃ t
kt

)
...

(
n∑

k0=0

P̃ 0
k0

)
|Ψ〉 (3.4a)

=
n∑

kt=0

...
n∑

k0=0

|Ψ (k0, ..., kt)〉 . (3.4b)

Observe that, if |Ψ〉 is an unit vector, then {|Ψ (k0, ..., kt)〉} is associated with some

algorithm A with t + 1 queries and initial state |Ψ〉. Thus, Eq. (3.4) can be a

decomposition of a given initial state. Considering that
{
P̃ j
i : 0 ≤ i ≤ n

}
is a CSOP

for each fixed j and

Ox |Ψ〉 =
∑

i∈{k:xk=0}

Pi |Ψ〉 −
∑

i∈{k:xk=1}

Pi |Ψ〉 , (3.5)

then we have that

Ũ †jOxŨj |Ψ〉 =
∑

i∈{k:xk=0}

P̃ j
i |Ψ〉 −

∑
i∈{k:xk=1}

P̃ j
i |Ψ〉 . (3.6)

Eq. (3.6) shows that the query operator between the unitary operators has a simple

behaviour, determined by the operators that define our decomposition. We will see

that this property allows us to represent with simplicity any QQM algorithm for a

given input x, using our decomposition.

Theorem 9. If an indexed set
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
is associated with an al-

gorithm A =
(
t, n,m, HQ, HW ,Ψ, {Ui}), then

Ũ †tOxUt...U1OxU0 |Ψ〉 =
n∑

kt=0

...

n∑
k0=0

(−1)
∑t

i=0 xki |Ψ (k0, ..., kt)〉 . (3.7)

Proof. We prove the theorem by induction. First, we check that Eq. 3.7 is true when

t = 0: Evaluating for t = 0: Ũ †0OxU0 |Ψ〉 = U †0OxU0 |Ψ〉 =
∑n

k0=0 (−1)xk0 |Ψ (k0)〉 .
Now, let t′ > 0 and assume that Eq. 3.7 is also true for some t = t′. Then, we

have

19

Ũ †t′Ox...OxU0 |Ψ〉 =
n∑

kt′=0

...
n∑

k0=0

(−1)
∑t′

i=0 xki |Ψ (k0, ..., kt′)〉 .

If we apply Eq. (3.6), then we find that

Ũ †t′+1Ox...OxU0 |Ψ〉

=
n∑

kt′=0

...

n∑
k0=0

(−1)
∑t′

i=0 xki

 n∑
kt′+1=0

(−1)
δkt′+1

(Sx)
P̃ t′+1
kt′+1
|Ψ (k0, ..., kt′)〉

 .

A reordering of the summations gives

Ũ †t′+1Ox...OxU0 |Ψ〉 =
n∑

kt′+1=0

...
n∑

k0=0

(−1)
∑t′+1

i=0 xki P̃ t′+1
kt′+1
|Ψ (k0, ..., kt′)〉 .

Using Definition 7, we have

Ũ †t′+1Ox...OxU0 |Ψ〉 =
n∑

kt′+1=0

...
n∑

k0=0

(−1)
∑t′+1

i=0 xki |Ψ (k0, ..., kt′+1)〉 ,

which means that Eq. 3.7 is also true for t = t′ + 1. Thus, Eq. 3.7 is true for all

t ≥ 0.

Corollary 1. Let us denote
∣∣Ψ̄ (k0, ..., kt)

〉
= Ut+1Ũt |Ψ (k0, ..., kt)〉 ∀ki ∈ Zn+1. If{

|Ψ (k)〉 ∈ HA : k ∈ Zt+1
n+1

}
is associated with A = (t, n,m,HQ, HW ,Ψ, {Ui}) then

Ut+1OxUt...U1OxU0 |Ψ〉 =
n∑

kt=0

...
n∑

k0=0

(−1)
∑t

i=0 xki
∣∣Ψ̄ (k0, ..., kt)

〉
. (3.8)

Corollary 1 implies that any QQM algorithm can be characterized by a sum of

invariant vectors, whose signs depend on the input.

Figure 3.1 shows an example of a generic QQM algorithm with two queries.

Observe that algorithm A mentioned in Corollary 1 is equivalent to the algorithm

A mentioned in Theorem 9, if we ignore the measurement step. This is due to

the fact that both algorithms have the same Gram matrices for the final states∣∣Ψf
x

〉
. Thereby, the last unitary operator Ut+1 can be ignored and we conclude

that an algorithm without measurement is fully described by the vectors of the

decomposition, see Eq. (3.4).

We can ask which properties allow a set of vectors to be associated to some

20

arbitrary QQM algorithm. The answer of such a question would offer an alternative

description of QQM algorithms. The next definition and theorems advance in that

direction.

Figure 3.1: Schematic representation of P̃ 1
x P̃

0
x |Ψ〉 using Eq.(3.7), where x = 1001.

Grey boxes represent vectors with inverted sign respect to the decomposition of |Ψ〉.

Definition 8 (Block Set). Let n, t ≥ 0. An indexed set

{
|Ψ (k)〉 ∈ H1 ⊗H2 : k ∈ Zt+1

n+1

}
is a Block Set for an ordered pair of Hilbert spaces (H1, H2), if:

1. The vectors defined as |Ψi (a0, .., at−i)〉 =
n∑

k1=0

...
n∑

ki=0

|Ψ (a0, .., at−i, k1, .., ki)〉

satisfy 〈Ψi (b0, .., bt−i) | Ψi (c0, .., ct−i)〉 = 0 if bt−i 6= ct−i for 0 ≤ i ≤ t.

2. There is unitarity for the sum of vectors
n∑

k0=0

...
n∑

kt=0

‖|Ψ (k0, .., kt)〉‖2 = 1.

3. The spaces H (i, j) satisfy dim (H (i, j)) ≤ dim (H2) ∀i, j, where H (i, j) rep-

resents the space generated by Ci
j = {|Ψt−i (a0, .., ai−1, j)〉 : ak ∈ Zn+1}.

4. The space H1 satisfies n = dim (H1)− 1.

Theorem 10. Let
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
be an indexed set of vectors, that is

associated with A = (t, n,m,HQ, HW ,Ψ, {Ui}), then such vectors are a Block Set

for (HQ, HW).

Proof. The proof is divided into four parts, each corresponding to one of the Block

Set properties from Definition 8 (on page 21).

1. Considering that
{
P̃ t−i
k : 0 ≤ k ≤ n

}
is a CSOP and |Ψi (a0, a1, .., at−i)〉 =

P̃ t−i
at−i

..P̃ 1
a1
P̃ 0
a0
|Ψ〉 then 〈Ψi (b1, .., bt−i) | Ψi (c1, .., ct−i)〉 = 0 for all bt−i 6= ct−i.

21

2. Using induction:

• For t = 0,
n∑

k0=0

‖|Ψ (k0)〉‖2 =
n∑

k0=0

∥∥∥P̃ 0
k0
|Ψ〉
∥∥∥2

= 1.

• If
n∑

k0=0

...
n∑

kt=0

‖|Ψ (k0, .., kt)〉‖2 = 1

⇒
n∑

k0=0

...
n∑

kt=0

∥∥∥P̃ t
kt
..P̃ 1

k1
P̃ 0
k0
|Ψ〉
∥∥∥2

= 1

⇒
n∑

k0=0

...
n∑

kt=0

(
n∑

kt+1=0

∥∥∥P̃ t+1
kt+1

P̃ t
kt
..P̃ 1

k1
P̃ 0
k0
|Ψ〉
∥∥∥2
)

= 1

⇒
n∑

k0=0

...
n∑

kt+1=0

‖|Ψ (k0, .., kt+1)〉‖2 = 1.

3. Consider that the spaces generated by {|Ψi (a0, .., at−i−1, j)〉 : ak ∈ Zn+1} and{
P̃ t−i
j P̃ t−i−1

at−i−1
...P̃ 0

a0
|Ψ〉 : ak ∈ Zn+1

}
are the same space. That is a subspace of

the space generated by the set of vectors
{
Ũ †t−i |j〉 |w〉 : w ∈ HW

}
, this larger

space has dimension dim (HW).

4. dim (HQ) = n+ 1.

Lemma 2. If {P 1
z : z ∈ T} and {P 2

z : z ∈ T} are two CSOP on H, where each H i
z

is the range of P i
z and dim (H i

z) is constant ∀i, z. Then, there is a unitary matrix

U , such that U †P 1
z U = P 2

z ∀z ∈ T .

Proof. Suppose that Bi
z is an orthonormal basis of H i

z, U1 is a unitary matrix whose

rows are the elements of
⋃
z

B1
z and U2 is an unitary matrix whose rows are the

elements of
⋃
z

B2
z . There exists U1 and U2, where for each i the i-th row belongs to

H1
zi

and H2
zi

, then
(
U †1U2

)†
P 1
z

(
U †1U2

)
= P 2

z .

Theorem 11. If
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
is a Block Set for (HQ, HW), then it is

associated with some algorithm A = (t, n,m,HQ, HW ,Ψ, {Ui}).

Proof. We must describe the elements of A from the Block Set. Values t and n are

easily obtained from {|Ψ (k)〉∈ HQ ⊗HW :ki ∈ Zn+1} and m is obtained from HW ,

but we need to construct the other elements:

The initial state can be |Ψ〉 =
n∑

k0=0

...
n∑

kt=0

|Ψ (k0, .., kt)〉 . The vector |Ψ〉 must

be an unit vector. Using |Ψi (a0, .., at−i)〉 =
n∑
j=0

|Ψi−1 (a0, .., at−i, j)〉 and the

first property of the Block Set definition, we have that ‖Ψi (a0, .., at−i)‖
2

=
n∑
j=0

‖Ψi−1 (a0, .., at−i, j)‖
2
. If we apply last expression recursively in |Ψ〉 and

22

use the second property of the Block Set definition, we get: ‖Ψ‖2 =
n∑

k0=0

...
n∑

kt=0

‖|Ψ (k0, .., kt)〉‖2 = 1.

In this part of the proof we constrain the unitary operators for A, we obtain such

operators by a previous construction of the CSOP sequence that fulfils Eq (3.3) (on

page 19) with the given Block Set. Take H i
1 =

⊕
j

H (i, j) and a second space

H i
2 orthogonal to the first, such that HA = H i

1 ⊕ H i
2. Considering that the third

property of Definition 8 (on page 21) implies dim (H (i, j)) ≤ dim (HW); if B (i) is

an orthogonal basis for H i
2, then we can take (dim (HW)− dim (H (i, j))) linearly

independent elements from B (i) for each pair i, j and denote such set as Bi
j. The

space generated by Bi
j is represented as Ĥ (i, j). We define H̃ (i, j) = Ĥ (i, j) ⊕

H (i, j), which has the same dimension as HW . For each i, we can impose the

condition of
{
Bi
j : 0 ≤ j ≤ n

}
being a disjoint collection of sets, due to 0 ≤ j ≤ n

and dim (HA) = (n+ 1) dim (HW). Thus, if j1 6= j2, then H̃ (i, j1) and H̃ (i, j2)

are orthogonal spaces. Thereby, there is a CSOP
{
P̃ i
j : 0 ≤ j ≤ n

}
for each i; such

that the range of the projector P̃ i
j is H̃ (i, j). Also, there is an unitary operator Ũi

such that Ũ †i PjŨi = P̃ i
j by Lemma 2 (on page 22) and the definition of the CSOP

{Pk : 0 ≤ k ≤ n}. The unitary operators are obtained from U0 = Ũ0 and Ui = ŨiŨ
†
i−1

for i > 0.

Thus, we proved that for any QQM algorithm without measurement there is a

Block Set, and for any Block Set there is a QQM algorithm without measurement.

The Block Set model is almost complete, except for one detail: any algorithm is

associated with one Block Set; but we can find a Block Set that is associated with

more than one QQM algorithm, because the unitary operator after last query has

no influence by Eq. (3.7) (on page 19). The next theorem implies that there is no

problem if we do not have a bijective relation between models, because algorithms

with the same Gram matrix for final states can output the same results depending

on the measurement step.

Theorem 12. Consider two different algorithms that are associated to the same

Block Set {|Ψ (k)〉∈ HA :k ∈ Zt+1
n+1

}
, then the final states of such algorithms form

the same Gram matrix.

Proof. A set of vectors
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
associated to an algorithm is af-

fected just by the unitary operators that appear before the last query. If two algo-

rithms are associated to such a set; by Corollary 1 (on page 20), the final state of

the algorithms is equal to the same linear combination of vectors from the Block Set

for a given x, but they can be different in the final unitary operator applied over

each sum. As consequence,
〈
Ψf
x

∣∣ Ψf
y

〉
is invariant in both algorithms.

23

Definition 9. Let
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
be a Block Set, then its output state

for input x is defined as:

∣∣Ψf
x

〉
=

n∑
kt=0

...
n∑

k0=0

−1(
∑t

i=0 xki) |Ψ (k0, ..., kt)〉 . (3.9)

Notice that Definition 9 implies that an associated Block Set and QQM algorithm

produce equivalent outputs, the relation between both models is represented by

Figure 3.2. The equivalence of outputs is represented by equal Gram matrices,

which implies that we can compute the same function within same margin of error

from two associated QQM and BSF algorithms. This formulation maintains the

space HA and we can consider that the measurement step is identical to the original

model. Notice that several QQM algorithms can be equivalent to a single BSF

algorithm, this implies less redundancy in the BSF.

Figure 3.2: The figure shows that the relation between both models is not bijective.
The red line means that all BSF or QQM algorithm inside it have the same Gram
matrix.

We present a simple example of Block Set associated to a single query QQM

algorithm, in particular a quantum algorithm for Deutsch’s problem. Recall that we

have defined Deutsch’s problem in subsection 2.5.1 (on page 14). We consider the

same example seen on page 7. Thus we take HW as an empty set, a initial state |0〉,

U0 =

 0 0 1
1√
2

1√
2

0
1√
2
− 1√

2
0

 , (3.10)

and U1 = I. The final measurement CSOP is not important for our purposes.

Taking the CSOP {Pk} that was defined in Section 3, there is Pi = |i〉 〈i|. From

Definition 7 on 18, we have the following elements of the Block Set:

24

|Ψ (0)〉 = U †0P0U0 |0〉 =

 0

0

0

 , (3.11)

|Ψ (1)〉 = U †0P1U0 |0〉 =


1
2
1
2

0

 , (3.12)

and

|Ψ (2)〉 = U †0P2U0 |0〉 =


1
2

−1
2

0

 . (3.13)

We denote by
{∣∣Ψf

x

〉}
and

{∣∣∣Ψ̃f
x

〉}
the final states of Deutsch’s algorithm and

the Block Set, respectively. We take x = xn..x2x1. From Definition 9 (on page 23)

or Theorem 9 (on page 19), we have

∣∣∣Ψ̃f
00

〉
= |Ψ (0)〉+ |Ψ (1)〉+ |Ψ (2)〉 =

 1

0

0

 , (3.14)

∣∣∣Ψ̃f
01

〉
= |Ψ (0)〉 − |Ψ (1)〉+ |Ψ (2)〉 =

 0

−1

0

 , (3.15)

∣∣∣Ψ̃f
10

〉
= |Ψ (0)〉+ |Ψ (1)〉 − |Ψ (2)〉 =

 0

1

0

 (3.16)

and

∣∣∣Ψ̃f
11

〉
= |Ψ (0)〉 − |Ψ (1)〉 − |Ψ (2)〉 =

 −1

0

0

 . (3.17)

As ∣∣∣Ψf
00

〉
=

 0
1√
2

1√
2

 = −
∣∣∣Ψf

11

〉
(3.18)

25

and ∣∣∣Ψf
01

〉
=

 0

− 1√
2

1√
2

 = −
∣∣∣Ψf

10

〉
, (3.19)

then
{∣∣Ψf

x

〉}
and

{∣∣∣Ψ̃f
x

〉}
have the same Gram matrix:

G =


1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

 . (3.20)

We can see that for both algorithms the states corresponding to inputs X = {00, 11}
are orthogonal to the states corresponding to inputs Y = {01, 10}. Then for both

algorithms, there are CSOPs that discriminate X from Y within error 0. That shows

that such QQM and BSF algorithms are equivalent.

3.1.2 Gram matrices and Block Sets

In this section we start using Block Sets as an equivalent parametrization of QQM

algorithms and we consider the elements in a Block Set as such parameters. We

are interested in knowing how each element affects the final Gram Matrix of output

states. Thereby, our objective is obtaining a Gram Matrix that allows calculating a

given function.

Suppose that inputs x and y give different outputs for a given function, then the

QQM algorithm must induce
〈
Ψf
x|Ψf

y

〉
to approximate to zero. We define |A〉 , |B〉 ,

|C〉 , |D〉 ∈ HA, where |A〉 is the sum of components |Ψ (a)〉 whose sign is positive

in
∣∣Ψf

x

〉
and

∣∣Ψf
y

〉
, |B〉 is the sum of negative components in

∣∣Ψf
y

〉
but positive in∣∣Ψf

x

〉
, |C〉 is the sum of negative components in

∣∣Ψf
x

〉
and

∣∣Ψf
y

〉
, and |D〉 is the sum of

negative components in
∣∣Ψf

x

〉
but positive in

∣∣Ψf
y

〉
. Then |Ψ〉 = |A〉+|B〉+|C〉+|D〉,∣∣Ψf

x

〉
= |A〉+ |B〉 − |C〉 − |D〉 and

∣∣Ψf
y

〉
= |A〉 − |B〉 − |C〉+ |D〉.

Expanding
〈
Ψf
x|Ψf

y

〉
and 〈Ψ|Ψ〉, we have, respectively:

〈
Ψf
x|Ψf

y

〉
=

〈A|A〉 − 〈A|B〉 − 〈A|C〉+ 〈A|D〉 ..
+ 〈B|A〉 − 〈B|B〉 − 〈B|C〉+ 〈B|D〉 ..
−〈C|A〉+ 〈C|B〉+ 〈C|C〉 − 〈C|D〉 ..
−〈D|A〉+ 〈D|B〉+ 〈D|C〉 − 〈D|D〉

(3.21)

and

26

〈Ψ|Ψ〉 =

〈A|A〉+ 〈A|B〉+ 〈A|C〉+ 〈A|D〉 ..
+ 〈B|A〉+ 〈B|B〉+ 〈B|C〉+ 〈B|D〉 ..
+ 〈C|A〉+ 〈C|B〉+ 〈C|C〉+ 〈C|D〉 ..
+ 〈D|A〉+ 〈D|B〉+ 〈D|C〉+ 〈D|D〉

= 1. (3.22)

Summing equations (3.21) and (3.22), one obtains:

〈
Ψf
x|Ψf

y

〉
= 2

(〈
Ψ+
x |Ψ+

y

〉
+
〈
Ψ−x |Ψ−y

〉)
− 1. (3.23)

Where |Ψ+
x 〉 =

|Ψf
x〉+|Ψ〉

2
and |Ψ−x 〉 =

−|Ψf
x〉+|Ψ〉
2

, analogously for y.

Lemma 3. Let
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
be a complex Block Set for (HQ, HW),

where its output states and some CSOP gives a function f : {0, 1}n → {0, 1} within

error ε. Then, there exists a Block Set
{∣∣∣Ψ̂ (k)

〉
∈ ĤQ ⊗ ĤW :k ∈ Zt+1

n+1

}
whose

elements have real terms for some
(
ĤQ, ĤW

)
, where its output states and a CSOP

calculate f within the same error.

Proof. If we can use the outputs from {|Ψ (k)〉} for computing f within error ε,

then Theorem 11 (on page 22) and Theorem 9 (on page 19) imply that there is a

quantum query algorithm that computes f within error ε and t + 1 queries. Also,

there is a quantum algorithm that computes f within error ε in t+ 1 queries, if and

only if a semi-definite program P (f, t+ 1, ε) has solution [13]. Using the solution of

P (f, t+ 1, ε) we can obtain a QQM algorithm, where unitary matrices and states

can be taken as real [12]. This QQM algorithm calculates f , within error ε and t+1

queries. Thus, using Corollary 1 (on page 20), there is a Block Set that has the same

output states of this real QQM algorithm and all its elements are real vectors.

Using this lemma we can restrict Block Sets to be real, without loss of generality.

The following lemma shows a simplification that comes from this real case.

Lemma 4. If
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
is a real Block Set. Then 〈Ψ+

x | Ψ−x 〉 = 0,

for any x ∈ {0, 1}n.

Proof. We have 〈Ψ+
x | Ψ−x 〉 = 1

4

(
‖|Ψ〉‖2 +

〈
Ψf
x | Ψ

〉
−
〈
Ψ | Ψf

x

〉
−
∥∥∣∣Ψf

x

〉∥∥2
)

. A real

Block Set implies that |Ψ〉 and
∣∣Ψf

x

〉
are real unit vectors, then

〈
Ψf
x | Ψ

〉
=
〈
Ψ | Ψf

x

〉
.

Finally ‖|Ψ〉‖ =
∥∥∣∣Ψf

x

〉∥∥ = 1 implies that 〈Ψ+
x | Ψ−x 〉 = 0.

Theorem 13. If A, B, C and D are real. Then

〈
Ψf
x | Ψf

y

〉
= 2

(
‖|A〉‖2 − 2 〈A | C〉+ ‖|C〉‖2)− 1. (3.24)

Proof. Applying Lemma 4 to (|Ψ+
x 〉 , |Ψ−x 〉) and

(∣∣Ψ+
y

〉
,
∣∣Ψ−y 〉) we get:

27

〈A+B | C +D〉 = 〈A | C〉+ 〈B | C〉+ 〈A | D〉+ 〈B | D〉 = 0 (3.25)

and

〈A+D | B + C〉 = 〈A | B〉+ 〈D | B〉+ 〈A | C〉+ 〈D | C〉 = 0. (3.26)

From equations (3.25) and (3.26) it follows that:

− (〈A | C〉+ 〈B | D〉) = 〈A | B〉+ 〈C | D〉 = 〈B | C〉+ 〈A | D〉 . (3.27)

From equation (3.23) we have:

〈
Ψf
x | Ψf

y

〉
=

2
(
‖|A〉‖2 + 〈A | D〉+ 〈B | A〉+ 2 〈B | D〉+ 〈C | B〉+ ‖|C〉‖2 + 〈D | C〉

)
− 1.

(3.28)

Applying equation (3.27) on equation (3.28), there is finally:

〈
Ψf
x | Ψf

y

〉
= 2

(
‖|A〉‖2 − 2 〈A | C〉+ ‖|C〉‖2)− 1. (3.29)

This last theorem gives us a way to obtain the Gram Matrix of final states,

directly from a given Block Set.

Let B =
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
be a Block Set for (HQ, HW). We denote

k = (k0, k1, ..., kt) and the following subsets of B:

1. B+
x =

{
|Ψ (k)〉 ∈ HA : (−1)

∑t
i=0 xki = 1

}
.

2. B−x =
{
|Ψ (k)〉 ∈ HA : (−1)

∑t
i=0 xki = −1

}
.

Then Ãxy = B+
x ∩ B+

y and C̃xy = B−x ∩ B−y .

Notice that B+
x and B−x are the sets of the positive and negative terms in Eq. (3.7)

(on page 19), respectively. So for each pair x, y; Ãxy and C̃xy contain vectors of a

Block Set, whose sum is |A〉 and |C〉, respectively.

Lemma 5. Let B =
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
be a Block Set for (HQ, HW), where:

• P (k) is the set of pairs (x, y) such that |Ψ (k)〉 ∈ Ãxy.

• Q (k) is the set of pairs (x, y) such that |Ψ (k)〉 ∈ C̃xy.

Then P (k) = {x : (xk0 ⊕ ...⊕ xkt) = 0}2 and Q (k) = {x : (xk0 ⊕ ...⊕ xkt) = 1}2.

28

Proof. Using the definitions of Ãxy and C̃xy, we have

P (k) =
{

(x, y) :
(

(−1)
∑t

i=0 xki = 1
)
∧
(

(−1)
∑t

i=0 δki (Sy) = 1
)}

(3.30)

and

Q (k) =
{

(x, y) :
(

(−1)
∑t

i=0 xki = −1
)
∧
(

(−1)
∑t

i=0 δki (Sy) = −1
)}

. (3.31)

As x does not have any influence in the Boolean value to the predicates of y and

vice-versa, then the set of possible values for x and y form the Cartesian products

P (k) =
{
x :
(

(−1)
∑t

i=0 xki = 1
)}
×
{
x :
(

(−1)
∑t

i=0 xki = 1
)}

(3.32)

and

Q (k) =
{
x :
(

(−1)
∑t

i=0 xki = −1
)}
×
{
x :
(

(−1)
∑t

i=0 xki = −1
)}

. (3.33)

We introduce the following square matrices, whose entries only take values zero

or one. Rows and columns are indexed by the elements of {0, 1}n.

• P̄k,h, where the element in row x and column y has value 1 ⇐⇒

(x, y) ∈ (P (k) ∩ P (h)).

• Q̄k,h, where the element in row x and column y has value 1 ⇐⇒

(x, y) ∈ (Q (k) ∩Q (h)).

• R̄k,h, where the element in row x and column y has value 1 ⇐⇒

(x, y) ∈ (P (k) ∩Q (h)).

Theorem 14. Let B =
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
be a real Block Set for (HQ, HW),

then the Gram matrix of their output states
{∣∣Ψf

x

〉}
is:

G = 2

(∑
k,h

(
P̄k,h − 2R̄k,h + Q̄k,h

)
〈Ψ (k) | Ψ (h)〉

)
− J. (3.34)

where J is the matrix with all elements equal to 1.

Proof. Using Theorem 13, for all (x, y):

29

〈
Φf
x | Φf

y

〉
=

2

 ∑
|Φ(k1)〉,|Φ(k2)〉∈Ãxy

〈Φ (k1) | Φ (k2)〉


−4

 ∑
|Φ(k1)〉∈Ãxy ,|Φ(k2)〉∈C̃xy

〈Φ (k1) | Φ (k2)〉


+ 2

 ∑
|Φ(k1)〉,|Φ(k2)〉∈C̃xy

〈Φ (k1) | Φ (k2)〉

− 1 (3.35)

As:

•
(
|Φ (k1)〉 , |Φ (k2)〉 ∈ Ãxy

)
⇐⇒ ((x, y) ∈ Pk1 ∧ (x, y) ∈ Pk2) ⇐⇒

(x, y)∈Pk1 ∩ Pk2 ⇐⇒ P̄k1,k2 [x, y] = 1.

•
(
|Φ (k1)〉 ∈ Ãxy, |Φ (k2)〉 ∈ C̃xy

)
⇐⇒ ((x, y) ∈ Pk1 ∧ (x, y) ∈ Qk2) ⇐⇒

(x, y)∈Pk1 ∩Qk2 ⇐⇒ R̄k1,k2 [x, y] = 1.

•
(
|Φ (k1)〉 , |Φ (k2)〉 ∈ C̃xy

)
⇐⇒ ((x, y) ∈ Qk1 ∧ (x, y) ∈ Qk2) ⇐⇒

(x, y)∈Qk1 ∩Qk2 ⇐⇒ Q̄k1,k2 [x, y] = 1.

Then Equation (3.35) turns into Equation (3.34).

This theorem implies that products of components in the Block Set determine

the Gram matrix of final states. Each matrix P̄ , R̄ and Q̄ acts like masks over the

Gram matrix. There is also a particular case computationally less powerful, however

with a simpler Gram matrix representation.

Definition 10. A Block Set B =
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
for (HQ, HW) is or-

thogonal, if all its elements are pairwise orthogonal.

Corollary 2. If B =
{
|Ψ (k)〉 ∈ HA : k ∈ Zt+1

n+1

}
is an orthogonal real Block Set for

(HQ, HW), then the Gram matrix of their output states
{∣∣Ψf

x

〉}
is

G = 2

(∑
k

(
P̄k,k + Q̄k,h

)
‖|Ψ (k)〉‖

2

)
− J.

Proof. Apply 〈Ψ (k) | Ψ (h)〉 = 0 for k 6= h and R̄k,k = 0 for all k; in Eq. (3.34).

Now, we extend our last example of Block Set obtained from Deutsch’s algorithm.

All one dimensional Block Sets are orthogonal, thus this algorithm is represented by

Corollary 2. Thus, we are only interested in matrices controled by a single element

30

of the Block Set, |Ψ (k)〉, that is matrices of the form P k,k + Qk,k. The matrices

controled by each element k are

P 0,0 +Q0,0 =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 , (3.36)

P 1,1 +Q1,1 =


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

 (3.37)

and

P 2,2 +Q2,2 =


1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

 . (3.38)

Thus, taking the equations (3.11), (3.12) and (3.13) (on page 25), we calculate

M =
2∑
i=0

(
P i,i +Qi,i

)
〈Ψ (i) |Ψ (i)〉 =


1 1

2
1
2

0
1
2

1 0 1
2

1
2

0 1 1
2

0 1
2

1
2

1

 . (3.39)

We finally obtain the Gram matrix of Deutsch’s algorithm from Corollary 2

G = 2 (M)−


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 =


1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

 . (3.40)

We can see that M is the sum of our weighted masks and obtaining M [x, y] = 1
2

guarantees the orthogonality between the final states of x and y.

3.2 Towards a framework for constructing quan-

tum exact query algorithms

In the last section we identify matrices that describe the influence of each element

from the Block Set, in this section we apply such matrices in constructing systems

31

of equations that characterize the existence of exact quantum algorithms.

We define next the set of unknowns
{
wkh : k, h ∈ Zt+1

n+1

}
, two disjoint sets X, Y ⊂

{0, 1}n and the set SIi (k
′) =

{
k ∈ (Zn+1)t+1 : ∀j, (0 ≤ j ≤ i) ∧

(
k′j = kj

)}
. We

define the following equations:

1. For each (x, y) ∈ X × Y

∑
k,h∈Zt+1

n+1

(
P̄k,h [x, y]− 2R̄k,h [x, y] + Q̄k,h [x, y]

)
wkh =

1

2
. (3.41)

2. For each i ∈ Zt+1 and k′, h′ ∈ (Zn+1)i+1, such that k′i 6= h′i

∑
k∈SIi(k′)

 ∑
h∈SIi(h′)

wkh

 = 0. (3.42)

3. A unique equation ∑
k∈Zt+1

n+1

wkk = 1. (3.43)

The union of these equations is denoted by E (t, n,X, Y).

Theorem 15. Consider a function f : {0, 1}n → {0, 1} where (x ∈ X) ∧ (y ∈ Y)

implies that f (x) 6= f (y). Then there is an exact quantum algorithm for f , that uses

t+1 queries, if and only if E (t, n,X, Y) has a real solution for
{
wkh : k, h ∈ Zt+1

n+1

}
,

where these values form a positive semi-definite matrix with such indices.

Proof. Proving that the condition is necessary; if a quantum query algorithm A
computes f exactly within t+1 queries, then a set

{
|Ψ (k)〉 : k ∈ Zt+1

n+1

}
is associated

to the algorithm A and by Theorem 10 (on page 21) this set is a Block Set. If such

Block Set is complex, Lemma 3 (on page 27) says that there is another real Block

Set
{∣∣∣Ψ̂ (k)

〉
: k ∈ Zt+1

n+1

}
, whose output states can compute function f exactly.

We take wk1k2 =
〈

Ψ̂ (k1) | Ψ̂ (k2)
〉

. Considering that f is computed exactly;

if x ∈ X, y ∈ Y then f (x) 6= f (y) and the output states of A are orthogonal〈
Ψ̂f
x | Ψ̂f

y

〉
= 0. By Theorem 14 (on page 29), Eq. (3.41) for (x, y) is satisfied,

because A and the Block Set have the same Gram matrix for their output states.

Eq. (3.42) follows straightforward by property 1 in Definition 8. Eq. (3.43) comes

from property 2 in Definition 8. Finally, {wk1k2} forms a positive semi-definite

matrix, because it was defined as the Gram Matrix of
{

Ψ̂ (k)
}

.

In the proof about the second condition, considering that the values for {wk1k2}
form a positive semi-definite matrix, then it is also a Gram matrix for some set

of vectors
{
|Ψ (k)〉 : k ∈ Zt+1

n+1

}
. Such vectors fulfil property 1 in Definition 8 (on

32

page 8) by Eq. (3.42) and property 2 in Definition 8 by Eq. (3.43). Giving the

appropriate dimension to the spaces H1 and H2, then properties 3 and 4 in Definition

8 are satisfied and vectors {Ψ (k)} form a Block Set. The sets of output states{∣∣Ψf
x

〉
, x ∈ X

}
and

{∣∣Ψf
x

〉
, x ∈ Y

}
generate two orthogonal spaces, by Eq. (3.41)

and Theorem 14. Thus there is a CSOP that can measure the correct output exactly.

Finally, we conclude that a quantum query algorithm associated to {Ψ (k)} and the

CSOP computes f exactly in t+ 1 queries, by Theorems 9 and 11 (on pages 19 and

22, respectively).

System E (t, n,X, Y) has a problem, it has an exponential number of variables.

Solving these equations numerically is impractical and there are also some difficulties

in using such a system as an analytical tool. Part of the problem is maintaining the

semi-definite property in the solution. However, we can consider special cases of the

general formulation. For example, we can set some variables to be equal to zero,

that allows us to construct particular families of exact quantum algorithms more

easily. The next theorem uses such a strategy in obtaining a more practical tool.

Take Ê (t, n,X, Y) to be the union of the following equations:

1. For each pair (x, y) ∈ X × Y add the equation:

∑
k∈Zt+1

n+1

(
P̄k,k [x, y] + Q̄k,k [x, y]

)
wkk =

1

2
. (3.44)

2. Also add the unique equation ∑
k∈Zt+1

n+1

wkk = 1. (3.45)

Corollary 3. Let f : {0, 1}n → {0, 1} be a function, such that (x ∈ X) ∧ (y ∈ Y)

implies f (x) 6= f (y). If the system Ê (t, n,X, Y) has a solution over the non-

negative real numbers, then a quantum query algorithm computes f in exactly t+ 1

queries.

Proof. If the Block Set is orthogonal (see Definition 10 on page 30) and computes f ,

the condition wk1k2 = 〈Ψ (k1) | Ψ (k2)〉 implies that (k1 6= k2 ⇒ wk1k2 = 0). There-

fore Eq. (3.43) becomes equal to Eq. (3.45). Eq. (3.42) vanishes and as R̄k,k = 0

then Eq. (3.41) produces Eq. (3.44). Finally, a matrix formed by wk1k2 gives non-

negative values in the diagonal and zero in the rest, which guarantees the positive

semi-definite property.

Corollary 3 is a simpler tool than Theorem 15, because each k ∈ Zt+1
n+1 has a

influence to the Gram matrix that is independent of the other elements in Zt+1
n+1.

33

Defining Tk as the set of pairs (x, y) such that P̄k,k [x, y] + Q̄k,k [x, y] = 1, we can

claim that the influence of Tk on the Gram matrix is given by wkk and the intersec-

tion of those sets determines the regions of {0, 1}n × {0, 1}n that fulfil Eq. (3.44).

Satisfying such equation is equivalent to those regions having value 0 in the Gram

matrix, and thus such sets condition which inputs can be calculated exactly for

a given algorithm. But the weight that we can assign to each k is limited by

Eq. (3.45). We can observe that increasing t increases the possible shapes for

Tk and enlarges the range of possible Gram matrices that we can construct. We

can consider a random procedure for obtaining exact quantum algorithms by as-

signing weights for some set of variables
{
wkk : k ∈ L ⊂ Zt+1

n+1

}
until we reach the

limit of Eq. (3.45), the final step is finding interesting sets X and Y such that(
x ∈ X ∧ y ∈ Y ⇔

∑
k

(
P̄k,k [x, y] + Q̄k,k [x, y]

)
wkk = 1

2

)
. In conclusion, designing

exact algorithms using Corollary 3 is about analysing intersections between elements

in
{
Tk : k ∈ Zt+1

n+1

}
, which needs Corollary 2 (on page 30).

Using Corollary 3, we have two properties about orthogonal block sets. Taking

vector x ∈ {0, 1}n for x ∈ {0, 1}n, such that ∀i, xi 6= xi. For all k: P̄k,k [x, y] +

Q̄k,k [x, y] = P̄k,k [x, y]+Q̄k,k [x, y] and thereby all possible Gram matrices G obtained

using the corollary satisfy G [x, y] = G [x, y]. Second, defining p (k) as the set of

permutations for k, then P̄k,k + Q̄k,k = P̄k′,k′ + Q̄k′,k′ for all k′ ∈ p (k). Suppose

that we assign random values to the unknowns W (k) = {wk′k′ : k′ ∈ p (k)}. If

v =
∑

k′∈W (k)

wk′k′ remains constant, this implies no change over the Gram Matrix.

System Ê (t, n,X, Y) represents a clear view on how Orthogonal BSF algorithms

act over the Gram matrix of final states. But, we can obtain the same algorithms

using a smaller system. Let (x⊕ y) ∈ {0, 1}n be the xor bitwise operation for x, y ∈
{0, 1}n. System Ẽ (t, n,X, Y) is defined as the union of the following equations:

1. For each (x, y) ∈ X × Y

∑
k∈Zt+1

n+1

P̄k,k [0n, x⊕ y]wkk =
1

2
. (3.46)

2. An unique equation ∑
k∈Zt+1

n+1

wkk = 1. (3.47)

Theorem 16. System Ê (t, n,X, Y) is equivalent to the system Ẽ (t, n,X, Y).

Proof. We have the identity P̄k,k [x, y] + Q̄k,k [x, y] = P̄k,k [0n, x⊕ y]. Finally∑
k∈Zt+1

n+1

(
P̄k,k [x, y] + Q̄k,k [x, y]

)
wkk =

∑
k∈Zt+1

n+1

P̄k,k [0n, x⊕ y]wkk. (3.48)

34

Figure 3.3: Every black layer represents the influence of some formula over each x.
From top to bottom, these are x1 ⊕ x2, x1 ⊕ x3, x0 and x3. If we give weight 1

4
to

these formulas, then any x with exactly two layers over it is orthogonal to 000. In
this case 001, 100 and 101.

Notice that system Ẽ (t, n,X, Y) is the same as Ê (t, n, 0n, Z), where we define

Z = {x⊕ y : (x, y) ∈ X × Y }. This implies that if an exact Orthogonal BSF al-

gorithm separates 0n from Z, then it also can be used for separating X from Y

without error. Thus for Orthogonal BSF algorithms we simplify our problem, just

determining which sets can be separated from 0n for a bounded t. We state a prob-

lem denoted as the XOR-WEIGHTED problem: find the values {wkk} where a set

of Boolean formulas {⊕
i

xki : x0 = 0, k ∈ K ⊂ Zt+1
n+1

}
,

has each formula associated to a value wkk > 0, such that (i)
∑
k∈K

wkk = 1 and (ii) for

any z ∈ Z the sum of values from formulas not satisfied by z is 1
2
. Therefore, systems

Ẽ (t, n,X, Y) and Ê (t, n, 0n, Z) are equivalent to solving the XOR-WEIGHTED

problem and solving the XOR-WEIGHTED problem is equivalent to obtaining an

exact BSF algorithm that separates X from Y within t+1 queries. Figure 3.3 shows

an example of this alternative formulation.

3.2.1 A generalization of the Deutsch-Jozsa algorithm

We present an example of BSF algorithm, that was obtained by our analytical tools.

Assume that n is even and n > 2t. We take a set {ki/0 < i ≤ n} ⊂ Zt+1
n+1, with ki =

(r (i) , r (i+ 1) , ..., r (i+ t)), such that r (i) = i for i ≤ n and r (i) = (i−n) for i > n.

Define S (x) as the number of satisfied Boolean clauses φi = xr(i)⊕xr(i+1)⊕...⊕xr(i+t),
such that 0 < i ≤ n. Taking wkiki = 1

n
for all 0 < i ≤ n, solves Ê (t, n,X, Y) for

X = {0n, 1n} and Y =
{
x ∈ {0, 1}n /S (x) = n

2

}
. We affirm that Ê (t, n,X, Y) is

solved by the next observations. Equation

∑
i

(
P̄ki,ki [0n, y] + Q̄ki,ki [0n, y]

)
wkiki =

1

2
(3.49)

35

is true only if there are n
2

matrices P̄ki,ki equal to 1 in column y and row 0n, because

matrices Q̄ki,ki only have values zero on row 0n. This is equivalent to S (y) = n
2
.

Finally, considering that
(
S (x) = n

2
⇒ S (x) = S (x)

)
, then Eq. (3.49) is satisfied

for y. Applying G [x, y] = G [x, y], there is

∑
i

(
P̄ki,ki [1n, y] + Q̄ki,ki [1n, y]

)
wkiki =

1

2
(3.50)

for any y where S (y) = n
2
.

Using Corollary 3 (on page 33), an exact quantum algorithm computes two

different outputs for X and Y . We detail the first two cases:

• For t = 0 we have a BSF algorithm equivalent to Deutsch-Jozsa algorithm

[11].

• For t = 1 we have a BSF algorithm that separates {0n, 1n} from all x, where

in x occurs n/2 times that the i-th bit is equal to the next one, defining the

first bit as next of the last bit.

3.3 A lower bound for exact quantum algorithms

In this part, we apply the BSF approach for developing a lower bound result for

exact quantum algorithms. This lower bound is stated for functions with Boolean

domain and arbitrary output.

We introduce some mathematical constructions. We take a basis for the linear

space generated by Boolean functions [35]. That is a set of functions

Fnk : {0, 1}n → {1,−1} ,

where each Fnk (x) =
∏n−1

i=0 (−1)xki is indexed by vectors k ∈ Znn.

If k 6= h, there is the possibility of having Fnk = Fnh . Thus, we define an

equivalence relation k ∼ h, for k, h ∈ Znn where Fnk = Fnh . We take the sets Sn and

[k] ∈ Sn as the quotient set of our relation and the equivalence class for element

k, respectively. We also take a) Fn, whose elements are functions indexed by Sn
where Fn[h] = Fnk iff k ∈ [h], and b) Fn (m) ⊂ Fn, where F[k] ∈ Fn (m) iff [k] has

an element h such that the number of non-zero terms is not bigger than 2m. We

introduce Fn[k,h] : {0, 1}n → {0, 1}, such that it has value 1 iff Fn[k] (x) = Fn[h] (x) = 1.

Observe that Fn[k,h] (x) =
Fn

[k]
(x)+Fn

[h]
(x)+Fn

[k◦h](x)+1

4
, such that the set [k ◦ h] ∈ Sn is an

equivalence class where Fn[k◦h] (x) = 1 iff Fn[k] (x) = Fn[h] (x).

In order to obtain a exact quantum algorithm that computes a given function,

some regions in the Gram matrix of final states must to be equal to 0. More specifi-

36

cally, if some exact quantum algorithm separates an input x from some set of inputs

Y , then G[x,x⊕y] = 0 for all y ∈ Y. Using the values of the Gram matrix on row x,

we can define a function 1
2

(
G[x,x⊕w] + 1

)
depending on w. If the quantum algorithm

applies no more than k queries, then such function can be decomposed in a sum of

functions α[h]Fn[h] (w), where each Fn[h] ∈ Fn (k) and
∑

[h]∈Sn
α[h] = 1. Thus, we have

a necessary condition for an exact quantum algorithm separating x from Y in k

queries. This condition is the existence of some function g whose sum of coefficients

α[h] is equal or bigger than 1 (where we just consider functions from Fn (k)) and

such function has value 1
2

in z = x⊕ y for all y ∈ Y .

Let F : {0, 1}n → R be a function, we define an operation

F ∗ Fn[h] =
∑

x∈{0,1}n
F (x)Fn[h] (x) ,

notice that
1

2
√

2n

(
G[x,x⊕w] + 1

)
∗ Fn[h] = α[h].

We can obtain a lower-bound method by taking the minimum k, such that there

is a function g that satisfies some of our conditions. First, we need a function

g that maximizes
∑

Fn
[h]
∈Fn(k)

g ∗ Fn[h]. We must introduce additional notations. We

define a as a vector whose all its terms are a, and ρ (i) = 0 if i is even, ρ (i) = 1

if i is odd. Let Xi ⊂ {0, 1}n be m disjoint sets, where each x ∈ Xi has a set

Z (x) = {x⊕ y : y ∈ Xj and j 6= i}. We have a family of functions gky (x) where a)

gky
(
0
)

= 1, b) gky (x) = 1
2

for x ∈ Z (y), c) gky (x) = 1 for x, such that

2k∑
i=0

∑
j=0

(
|x|

i− 2j − ρ (i)

)(
n− |x|

2j + ρ (i)

)
>

2k∑
i=0

(
n

i

)
2

(3.51)

and d) gky (x) = 0 otherwise. Next theorem applies the introduced ideas.

Theorem 17. If condition
∑

Fn
[h]
∈Fn(k)

gky ∗ Fn[h] ≥ 1 is fulfilled for all y ∈
⋃
i

Xi, then

there is an exact quantum algorithm that produces different outputs for each Xi and

it applies at least k queries.

Proof. Consider a quantum algorithm that separates x ∈ Xi from
⋃
j 6=i
Xj, by applying

k queries and error zero. The Gram matrix representation of Theorem 14 (on page

29) at row x, gives us

1

2

(
G[x,x⊕y] + 1

)
=
∑

[h]∈Sn

α[h]Fn[h] (y) +
∑

[hi] 6=[hj]

α[hi,hj]Fn[hi,hj] (y) . (3.52)

37

Taking T h1,h2 = P h1,h2 − 2Rh1,h2 + Qh1,h2 where we consider the matrices in

Eq. (3.34) (on page 29), we can see that first sum in Eq. 3.52 follows from T h1,h2

when h1 = h2 and second sum follows from T h1,h2 when h1 6= h2. Thereby, there are∑
[h]∈Sn

α[h] = 1 and
∑

[hi] 6=[hj]

α[hi,hj] = 0, which give

∑
Fn

[h]
∈Fn(k)

1

2

(
G[x,x⊕y] + 1

)
∗ Fn[h] =

√
2n. (3.53)

We can formulate the necessary condition of orthogonality between the final

states indexed by x ∈ Xi and
⋃
j 6=i
Xj, where the algorithm is restricted to k queries.

Such condition is the existence of a function g : {0, 1}n → [0, 1], where g (x) = 1
2

for x ∈
⋃
j 6=i
Xj, g

(
0
)

= 1 and
∑

Fn
[h]
∈Fn(k)

g ∗ Fn[h] ≥
√

2n. Function gky (x) satisfies such

restrictions and maximizes
∑

Fn
[h]
∈Fn(k)

g ∗ Fn[h]. In other words, for x /∈
⋃
j 6=i
Xj −

{
0
}

we have gky (x) = 1 if there are more functions in Fn (k) with value 1 than −1 in x,

and gky (x) = 0 otherwise. Observe that
2k∑
i=0

(
n

i

)
represents the cardinality of set

Fn (k) and
2k∑
i=0

∑
j=0

(
|x|

i− 2j − ρ (i)

)(
n− |x|

2j + ρ (i)

)
is the number of functions contained in Fn (k) that have value 1 in x.

Therefore, this theorem implies another lower-bound different from main ap-

proaches like Polynomial and Adversary methods. The lower bound is the minimum

value k such that all functions gky satisfy the condition. We give an example for this

approach, we apply it to a total function f that give different outputs to X1 =
{

0, 1
}

and X2 = {0, 1}n − X1. For all y ∈ X1, there is gky (x) = ĝy (x) + g̃y (x). Where

such functions satisfies these properties a) ĝy
(
0
)

= 1 and ĝy (x) = 1
2

for x 6= 0, b)

g̃y
(
1
)

= 1
2

and g̃y (x) = 0 for x 6= 1. Function gky is selected under the assumption

k ≤
⌊
n
2

⌋
, because Eq. (3.51) for x = 1 takes form

k∑
i=0

(
n

2i

)
>

2k∑
i=0

(
n

i

)
2

.

Thus, there is ∑
Fn

[h]
∈Fn(k)

ĝy ∗ Fn[h] =
1√
2n

2k∑
i=0

(
n

i

)

38

and ∑
Fn

[h]
∈Fn(k)

g̃y ∗ Fn[h] =
1

2
√

2n

k∑
i=0

(
n

2i

)
.

Taking k =
⌈

4n
10

⌉
, there is

d 4n10 e∑
i=0

(
n

2i

)
> 4

 n∑
i=2d 4n10 e

(
n

i

) .
The calculations and selection of k can be improved, nevertheless, that result is

enough for proving ∑
Fn

[h]
∈Fn(d 4n10 e)

g
d 4n10 e
y ∗ Fn[h] ≥

√
2n,

which implies the following lower bound QE (f) = Ω (n).

39

Chapter 4

Quantum speed-up and quantum

query

A central problem in quantum computing is understanding the conditions that pro-

duce a computational advantage in relation to classical computing. Such question

can be studied from two approaches a) determining which functions or b) determin-

ing which algorithms allow an advantage between quantum and classical computing.

The first approach is the core of quantum query complexity, this mainly consists in

obtaining bounds or relations for complexity measures and evaluating their tight-

ness [8, 36]. The second approach tries to identify quantum features that are hard to

simulate for classical sources [37]. Among the earliest attempts within this second

approach, there is the hypothetical quantum parallelism on quantum algorithms [38].

Another quantum feature is quantum entanglement [39], that is identified as a neces-

sary condition for quantum speed-up in pure-state algorithms [40]. In the literature,

we find other quantum properties for explaining such quantum gain [41–44]. How-

ever, these quantum features were directly applied to models equivalent to Turing

machines. In this chapter, we study a property restricted just to quantum queries.

4.1 A simulation defined over decompositions

In this section, we introduce a simulation of quantum query algorithms by classical

algorithms. The idea applies the following corollary from Theorem 9 (on page 19).

Corollary 4. Given an indexed set of vectors
{
|Ψ (k)〉 ∈ H : k ∈ Zt+1

n+1

}
, such that

a CSOP {Pz : z ∈ T} defines its final measurement, the probability of obtaining z

given an input x is

πx (z) =
∑
k,h

(−1)γx(k)+γx(h) 〈Ψ (k)|Pz |Ψ (h)〉 , (4.1)

40

where γx (k) =
∑t

i=0 xki.

Proof. Taking Eq. 3.7 (on page 19) from Theorem 9

∣∣Ψf
x

〉
= Ũ †tOxUt . . . OxU0 |Ψ〉 =

∑
k

(−1)
∑t

i=0 xki |Ψ (k)〉 .

As Pz=P
2
z , then

πx (z) =
∥∥Pz ∣∣Ψf

x

〉∥∥2
=
∑
k,h

(−1)
∑t

i=0 xki+
∑t

i=0 xhi 〈Ψ (k)|Pz |Ψ (h)〉 .

We apply again the basis for the Boolean cube [35] and functions introduced in

Section 3.3 (on page 36).

Lemma 6. Suppose that A is a quantum algorithm that applies t queries. Let

πx (1) =
∑

[k]∈Sn
α[k]Fn[k] be the output probability of obtaining 1 from algorithm A. If

the class [k] contains an element k = (k0, k1, .., kn−1) with 2t + 1 distinct terms

ki 6= 0, then α[k] = 0.

Proof. The proof consists in rewriting Corollary 4.

Theorem 18. Consider a quantum algorithm A that computes f : S → {0, 1} for

S ⊂ {0, 1}n, within error ε. There is a classical algorithm that computes f within

error

ε̃ =
ε+ L (πx (1))

1 + 2L (πx (1))
,

using the same number of queries as A.

Proof. Applying Lemma 6, the output probability of algorithm A can be denoted as

πx (1) =
∑

[k]∈Sn
α[k]Fn[k]. Take D ([k]) to be a deterministic classical algorithm which

outputs 1 with probability

π̂[k]
x (1) =

1

2
+ sgn

(
α[k]

)(1

2
Fn[k]

)
, (4.2)

for [k] ∈ Sn and within n queries. Let R be a classical randomized algorithm that

simply executes:

• An algorithm D ([k]), with probability
2|α[k]|

1+2L(πx(1))
.

• An algorithm that outputs 0 for any x, with probability 1
1+2L(πx(1))

.

41

Denoting π̂x (1) the probability of obtaining output 1 given input x by algorithm

R, we have

π̂x (1) =

∑
[k]

2
∣∣α[k]

∣∣ π̂[k]
x (1)

1 + 2L (πx (1))
(4.3)

and applying Eq. 4.2, we have

π̂x (1) =

∑
[k]

∣∣α[k]

∣∣+
∑
[k]

α[k]Fn[k]

1 + 2L (πx (1))
. (4.4)

Thus, we need to prove the theorem for two cases. (i) For x such that f (x) = 1,

there is ε ≥ 1− πx (1) = 1−
∑
[k]

α[k]Fn[k]. Then, we have

1− π̂x (1) = 1−

(
L (πx (1)) +

∑
[k]

α[k]Fn[k]

)
1 + 2L (πx (1))

=

1 + L (πx (1))−
∑
[k]

α[k]Fn[k]

1 + 2L (πx (1))
≤ ε̃.

(ii) For x such that f (x) = 0, there is ε ≥ πx (1) =
∑
[k]

α[k]Fn[k] and we have

π̂x (1) ≤ ε+ L (πx (1))

1 + 2L (πx (1))
= ε̃. (4.5)

We presented a classical simulation for a given quantum algorithm, although pro-

ducing a big error. The next theorem shows a reduced error, by using probabilistic

amplification.

Theorem 19. Consider a quantum algorithm A that computes a function f : S →
{0, 1} for S ⊂ {0, 1}n, within error ε and applying t queries. Then, we can compute

f within error exp
(
− k

2(1−ε̃)

(
1
2
− ε̃
)2
)

, where ε̃ = ε+L(πx(1))
1+2L(πx(1))

, by a classical algorithm

with kt queries.

Proof. We apply the Chernoff bound [45]. If we take k, p, β where 0 ≤ p ≤ 1,

0 ≤ β ≤ 1 and 0 ≤ k, then

m∑
i=0

(
k

i

)
pi (1− p)k−i ≤ exp

(
−β2kp/2

)
, (4.6)

for m = b(1− β) kpc.

42

We obtain a new algorithm R̂ from classical algorithm R within error ε̃ (recall

that R is constructed for Theorem 18). Algorithm R̂ is a probability amplification

of R, that is the execution of algorithm R k times and the selection of the most

frequent result or randomly if two results have same frequency. The random variable

X represents the number of correct answers in the repetition. Take β = 1 − 1
2(1−ε̃)

and p = (1− ε̃) in Eq. (4.6), then

P
[
X ≤

⌊
k

2

⌋]
≤ exp

(
− k

2 (1− ε̃)

(
1

2
− ε̃
)2
)

(4.7)

is an upper-bound for R̂.

4.2 Upper bounds for quantum speed-up

In this part, we introduce measures for quantum algorithms that can make our

simulation less efficient. Quantum speed-up can occur only when there is not an

efficient enough classical simulation. Therefore, if a condition makes difficult any

classical simulation, then it is a necessary condition for a quantum speed-up. Next

theorem shows how L1-norm affects our simulation. Notice that there is still the

possibility of a classical efficient simulation for some cases where such conditions

apply.

Theorem 20. Consider a function f : {0, 1}n → {0, 1} that is computed within

error ε > 0 and t queries, using a quantum query algorithm. Defining a function

Fε (x) =

⌈
−16 ln (ε) (1 + x) (1 + x− ε)

(1− 2ε)2

⌉
, (4.8)

we have
Rε (f)

t
≤ Fε (L (πx (1))) , (4.9)

where Rε (f) is the minimum number of queries for computing f within error ε by

a classical algorithm.

Proof. We simulate the quantum algorithm using the classical algorithm from The-

orem 19 and within an error that does not exceed ε for function f . From Eq. (4.7),

we have

ε = exp

(
− k

2 (1− ε̃)

(
1

2
− ε̃
)2
)
. (4.10)

Considering that Rε(f)
t
≤ d2ke, if we obtain k from Eq. (4.10), then we get Eq. (4.9).

43

The following example is an application of Theorem 20. We take Deutsch-Jozsa

algorithm, that implies the next output probability for inputs of size n

πx (1) =
1

n2
(n− 2 |x|)2 .

We obtain the terms
{
α[k]

}
applying the orthogonality property of functions Fn[k].

Considering that the algorithm applies only one query, by Lemma 6 (on page 41)

we have 3 kinds of equivalent classes that index our basis functions. First, there is

the class [k0] which indexes the constant function Fn[k0]. Then we have α[k0] = 1
n
.

Second, there are the classes which contain at least one element k, such that ki 6= 0

for just one i. If [k] is in that class, then α[k] = 0. Third, there are n(n−1)
2

classes

which contain at least one element k, where there are just two indices i 6= j such

that ki 6= 0, kj 6= 0 and ki 6= kj. If [k] is in that class, then α[k] = 2
n2 . Thus we have∑∣∣α[k]

∣∣ = 1 and it implies that

Rε ≤
⌈
−16 ln (ε) (2− ε)

(1− 2ε)2

⌉
.

In absolute values, that is not quite tight because R0 = 2. Our interest is in the

asymptotic behaviour and that shows perfectly that Deutsch-Jozsa algorithm has a

classical simulation with a constant number of queries and fixed error.

Observe that L1-norm is defined over the algorithm itself, thus it does not nec-

essarily depends on the function. Then, we can obtain an explicit expression for the

L1-norm from the algorithm itself. Denote the vectors h1, h2 in Ztn+1 and [k] in Sn.

We consider (h1, h2) ∼ [k], if

(−1)

∑
i
x
h1
i
+
∑
i
x
h2
i = (−1)

∑
i
xki
,

for some k ∈ [k].

Thus, if we consider a t−query algorithm, then we have the following equation

L (πx (1)) =
∑

[k]∈Sn

∣∣∣∣∣∣∣∣∣∣∣∣∣
∑

h1, h2 ∈ Ztn+1

(h1, h2) ∼ [k]

〈
Ψ
(
h1
)∣∣P1

∣∣Ψ (h2
)〉
∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.11)

The last expression give us a straightforward upper bound for L (πx (1)):

L̃ (πx (1)) =
∑
k

∑
h

|〈Ψ (k)|Pz |Ψ (h)〉| . (4.12)

44

These equations come from the state decomposition in Definition 7 (on page 18).

Theorem 9 (on page 19) states that each quantum algorithm has a state decompo-

sition, thus next theorem shows relations between metrics on such decomposition

with the gap between quantum and classical query.

Theorem 21. We use the same hypothesis of Theorem 20, denote #S as the car-

dinality of set S and define d = # {k : |Ψ (k)〉 6= 0}. Then

Rε (f)

t
≤ Fε

(
L̃ (πx (1))

)
, (4.13)

Rε (f)

t
≤ Fε

(∑
k

‖|Ψ (k)〉‖

)2
 , (4.14)

Rε (f)

t
≤ Fε (d) , (4.15)

and

Rε (f)

t
≤ Fε

 1

min
k
〈Ψ (k)| Ψ (k)〉

 . (4.16)

Proof. Considering that Fε is an increasing function, then Eq. (4.13) follows from

Eq. (4.12) and Theorem 20. Eq. (4.14) comes from Eq. (4.12) by

|〈Ψ (k)|Pz |Ψ (h)〉| ≤ ‖|Ψ (k)〉‖ ‖|Ψ (h)〉‖ , (4.17)

that implies

L (πx (1)) ≤

(∑
k

‖|Ψ (k)〉‖

)2

. (4.18)

If we apply Theorem 9 (on page 19), we have

〈Ψ| Ψ〉 =
∑
k,h

〈Ψ (k)| Ψ (h)〉 = 1, (4.19)

that is combined with
∑
k

‖|Ψ (k)〉‖ ≤
√
d
∑
k

〈Ψ (k)| Ψ (k)〉 and Eq. (4.18), to give

L (πx (1)) ≤ d. (4.20)

Eq. (4.16) comes from d
(

min
k
〈Ψ (k)| Ψ (k)〉

)
≤ 1.

45

Chapter 5

Conclusion

We developed a new approach for quantum query and applied such tool to the study

of exact quantum algorithms and quantum speed-up. Exact quantum algorithms

frameworks have few developments in comparison to bounded error algorithms and

it is more challenging. Understanding what makes quantum computing faster than

classical computing is an important objective in computer science, however previous

research did not cover this issue in detail for quantum query. As we have two main

results, we divide the conclusion in two parts.

5.1 Results and potential extensions of the Block

Set approach

In this part of the work, we obtained theoretical results. The main theoretical

result was a reformulation of the Quantum Query Model, where unitary operators

are replaced by sign inversions applied over a set of vectors. This model proposes

a different interpretation of how quantum query computes a function. Another

result is the application of this model to designing exact quantum algorithms [10],

which developed a linear system that allows the analysis of a family of quantum

exact algorithms. Finally, we developed a lower bound method for exact quantum

algorithms, thus it gives a validation for our model. This approach leaves open

questions and possible developments:

• Most of complexity tools were developed using the QQM formulation

([23],[27]). If we start from other formulations like BSF, can we obtain better

relations between complexity measures (D,R2, QE, Q2)?

• It is possible to relax the precision using the BSF tools, for example by ob-

taining approximate solutions to a system E (t, n,X, Y), but such thing does

not guarantee a bounded error. The system in Theorem 15 (on page 32) can

46

be extended, by finding sufficient and/or necessary conditions for a bounded

error algorithm?

• The condition (k1 6= k2 ⇒ wk1k2 = 0) imposed in Corollary 3 (on page 33) could

be weakened, the goal is obtaining powerful yet complicated models than the

orthogonal BSF framework. Can we develop tools for constructing exact quan-

tum algorithms under some stronger BSF case?

5.2 Results and potential extensions of the L1-

norm approach

We proved a necessary condition for the hardness on the classical simulation of

quantum query algorithm. This condition is stated as a high L1-norm defined from

the output probability. An important feature about L1-norm is its dependency on

both evolution and measurement steps. A broadly studied property like quantum

entanglement is limited just on the quantum states, that implies that an inadequate

measurement step can nullify the computational power obtained in the evolution

stage. However, the tightness of L1-norm for estimating quantum speed-up depends

on a simulation and the relation between such simulation and the optimal classical

simulation is unknown.

As it was proved in Section 3.1 (on page 18), a state decomposition can be an

alternative formulation for quantum query algorithms, such decomposition is stated

as a set of vectors related to a given algorithm. The BSF suggests the importance of

quantum parallelism, because each pair of vectors in the Block Set controls a function

in the Boolean cube, finally the sum of all those parametrized functions produces

an output probability function. The L1-norm is related to the Block Set. That

implies that (a) several non-zero vectors in the Block Set (# (k : |Ψ (k)〉 6= 0)), and

(b) low values for the minimum product between such vectors
(

min
k
〈Ψ (k)| Ψ (k)〉

)
must be present for a hard classical simulation. We can relate both measures to

quantum parallelism. A low value for # {k : |Ψ (k)〉 6= 0} implies less combinations

of vectors that add functions to the output probability function. Big values for

min
k
〈Ψ (k)| Ψ (k)〉 produces lower values for # {k : |Ψ (k)〉 6= 0} and it gives to the

output probability function a shape closer to the basis functions of the Boolean cube.

Remember that basis functions of the Boolean cube can be efficiently simulated by

classical means.

We leave some open questions:

• The asymptotic relation between Rε(f)
t

, L1-norm and the other measures is

unknown, where t represents the number of steps for a quantum algorithm

computing f within error ε.

47

• How close is the relation between L1-norm and quantum entanglement?

• The quantum query model can formulate algorithms such as quantum-walk-

based searches on graphs, thus those algorithms are influenced by L1-norm.

Nevertheless, that kind of algorithms are designed in other ad hoc frameworks,

thus the L1-norm condition requires an adaptation to such models.

48

Bibliography

[1] MOORE, G. E. “Cramming more components onto integrated circuits,

Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.

114 ff.” IEEE Solid-State Circuits Newsletter, v. 3, n. 20, pp. 33–35, 2006.

[2] DUBASH, M. “Moore s Law is dead, says Gordon Moore”, Techworld (April

2005), 2005.

[3] FEYNMAN, R. P. “Simulating physics with computers”, International journal

of theoretical physics, v. 21, n. 6, pp. 467–488, 1982.

[4] SHOR, P. W. “Algorithms for quantum computation: Discrete logarithms and

factoring”. In: Foundations of Computer Science, 1994 Proceedings., 35th

Annual Symposium on, pp. 124–134. IEEE, 1994.

[5] GROVER, L. K. “A fast quantum mechanical algorithm for database search”.

In: Proceedings of the twenty-eighth annual ACM symposium on Theory

of computing, pp. 212–219. ACM, 1996.

[6] BERNSTEIN, E., VAZIRANI, U. “Quantum complexity theory”, SIAM Journal

on Computing, v. 26, n. 5, pp. 1411–1473, 1997.

[7] KAYE, P., LAFLAMME, R., MOSCA, M. An introduction to quantum comput-

ing. Oxford University Press, 2007.

[8] BUHRMAN, H., DE WOLF, R. “Complexity measures and decision tree com-

plexity: a survey”, Theoretical Computer Science, v. 288, n. 1, pp. 21–43,

2002.

[9] JORDAN, S. “Quantum algorithm zoo”. http://math.nist.gov/quantum/zoo/,

2015.

[10] AMBAINIS, A. “Superlinear advantage for exact quantum algorithms”, SIAM

Journal on Computing, v. 45, n. 2, pp. 617–631, 2016.

[11] DEUTSCH, D., JOZSA, R. “Rapid solution of problems by quantum compu-

tation”. In: Proceedings of the Royal Society of London A: Mathematical,

49

Physical and Engineering Sciences, v. 439, pp. 553–558. The Royal Soci-

ety, 1992.

[12] MONTANARO, A., JOZSA, R., MITCHISON, G. “On exact quantum query

complexity”, Algorithmica, v. 71, n. 4, pp. 775–796, 2015.

[13] BARNUM, H., SAKS, M., SZEGEDY, M. “Quantum query complexity and

semi-definite programming”. In: Computational Complexity, 2003. Pro-

ceedings. 18th IEEE Annual Conference on, pp. 179–193. IEEE, 2003.

[14] AMBAINIS, A., IRAIDS, J., SMOTROVS, J. “Exact quantum query com-

plexity of EXACT and THRESHOLD”, arXiv preprint arXiv:1302.1235,

2013.

[15] NISAN, N., SZEGEDY, M. “On the degree of Boolean functions as real poly-

nomials”, Computational complexity, v. 4, n. 4, pp. 301–313, 1994.

[16] COOK, S., DWORK, C., REISCHUK, R. “Upper and lower time bounds

for parallel random access machines without simultaneous writes”, SIAM

Journal on Computing, v. 15, n. 1, pp. 87–97, 1986.

[17] LEE, T., MITTAL, R., REICHARDT, B. W., et al. “Quantum query complex-

ity of state conversion”. In: Foundations of Computer Science (FOCS),

2011 IEEE 52nd Annual Symposium on, pp. 344–353. IEEE, 2011.

[18] REICHARDT, B. W., SPALEK, R. “Span-program-based quantum algorithm

for evaluating formulas”. In: Proceedings of the fortieth annual ACM sym-

posium on Theory of computing, pp. 103–112. ACM, 2008.

[19] BELOVS, A. “Span programs for functions with constant-sized 1-certificates”.

In: Proceedings of the forty-fourth annual ACM symposium on Theory of

computing, pp. 77–84. ACM, 2012.

[20] NIELSEN, M. A., CHUANG, I. L. Quantum computation and quantum infor-

mation. Cambridge university press, 2010.

[21] AMBAINIS, A., GRUSKA, J., ZHENG, S. “Exact query complexity of some

special classes of Boolean functions”, arXiv preprint arXiv:1404.1684,

2014.

[22] BENNETT, C. H., BERNSTEIN, E., BRASSARD, G., et al. “Strengths and

weaknesses of quantum computing”, SIAM journal on Computing, v. 26,

n. 5, pp. 1510–1523, 1997.

50

[23] BEALS, R., BUHRMAN, H., CLEVE, R., et al. “Quantum lower bounds by

polynomials”, Journal of the ACM (JACM), v. 48, n. 4, pp. 778–797,

2001.

[24] AARONSON, S., SHI, Y. “Quantum lower bounds for the collision and the

element distinctness problems”, Journal of the ACM (JACM), v. 51, n. 4,

pp. 595–605, 2004.

[25] AARONSON, S. “Limitations of quantum advice and one-way communica-

tion”. In: Computational Complexity, 2004. Proceedings. 19th IEEE An-

nual Conference on, pp. 320–332. IEEE, 2004.

[26] KLAUCK, H., ŠPALEK, R., DE WOLF, R. “Quantum and classical strong

direct product theorems and optimal time-space tradeoffs”, SIAM Journal

on Computing, v. 36, n. 5, pp. 1472–1493, 2007.

[27] AMBAINIS, A. “Quantum lower bounds by quantum arguments”. In: Proceed-

ings of the thirty-second annual ACM symposium on Theory of computing,

pp. 636–643. ACM, 2000.

[28] ZHANG, S. “On the power of Ambainis lower bounds”, Theoretical Computer

Science, v. 339, n. 2, pp. 241–256, 2005.

[29] AMBAINIS, A. “Polynomial degree vs. quantum query complexity”. In: Foun-

dations of Computer Science, 2003. Proceedings. 44th Annual IEEE Sym-

posium on, pp. 230–239. IEEE, 2003.

[30] LAPLANTE, S., MAGNIEZ, F. “Lower bounds for randomized and quan-

tum query complexity using Kolmogorov arguments”. In: Computational

Complexity, 2004. Proceedings. 19th IEEE Annual Conference on, pp.

294–304. IEEE, 2004.

[31] ŠPALEK, R., SZEGEDY, M. “All quantum adversary methods are equiva-

lent”. In: International Colloquium on Automata, Languages, and Pro-

gramming, pp. 1299–1311. Springer, 2005.

[32] HOYER, P., LEE, T., SPALEK, R. “Negative weights make adversaries

stronger”. In: Proceedings of the thirty-ninth annual ACM symposium

on Theory of computing, pp. 526–535. ACM, 2007.

[33] SPALEK, R. “The multiplicative quantum adversary”. In: Proc. 23rd IEEE

Complexity.

[34] AMBAINIS, A., IRAIDS, J., NAGAJ, D. “Exact quantum query complexity

of EXACT nk,l”. 2016.

51

[35] DE WOLF, R. “A Brief Introduction to Fourier Analysis on the Boolean Cube”.

Theory of Computing, Graduate Surveys, 2008.

[36] AARONSON, S., A. A. “The Need for Structure in Quantum Speedups”. arXiv

preprint arXiv:0911.0996, 2009.

[37] ABBOTT, A. A., CALUDE, C. S. “Understanding the quantum computational

speed-up via de-quantisation”, arXiv preprint arXiv:1006.1419, 2010.

[38] DEUTSCH, D. “Quantum theory, the Church-Turing principle and the univer-

sal quantum computer”. In: Proceedings of the Royal Society of London

A: Mathematical, Physical and Engineering Sciences, v. 400, pp. 97–117.

The Royal Society, 1985.

[39] JOZSA, R. “Entanglement and quantum computation”. arXiv preprint quant-

ph/9707034, 1997.

[40] JOZSA, R., LINDEN, N. “On the role of entanglement in quantum-

computational speed-up”, Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences.

[41] DATTA, A., SHAJI, A., CAVES, C. M. “Quantum discord and the power of

one qubit”, Physical Review Letters.

[42] BELL, J. S. “On the problem of hidden variables in quantum mechanics”,

Reviews of Modern Physics.

[43] KOCHEN, S., SPECKER, E. P. “The problem of hidden variables in quantum

mechanics”, Reviews of Modern Physics.

[44] HOWARD, M., WALLMAN, J., VEITCH, V., et al. “Contextuality supplies

the magic for quantum computation”, Nature.

[45] ANGLUIN, D., VALIANT, L. “Fast probabilistic algorithms for Hamiltonian

circuits and matchings”, Journal of Computer and System Sciences.

[46] HARDY, L. “Quantum theory from five reasonable axioms”, arXiv preprint

quant-ph/0101012, 2001.

[47] DE WOLF, R. “Quantum Computing: Lecture Notes”.

http://homepages.cwi.nl/ rdewolf/qcnotes.pdf, 2016.

[48] AARONSON, S. “PHYS771 Quantum Computing Since Democritus”.

http://www.scottaaronson.com/democritus/, 2006.

52

Appendix A

Preliminary notions

In this appendix, we present necessary notions in mathematics and quantum me-

chanics. Section A.1 is intended to help the introduction of quantum algorithms.

Section A.2 presents a mathematical concept that helps as an alternative to the

formulation presented in Subsection A.1.4. Section A.3 presents a consequence of

quantum measurement. Finally Section A.4 introduces Boolean functions that are

necessary for understanding the state of art for exact quantum query algorithms.

A.1 Postulates of quantum mechanics

In this section we remark the mathematical formulation of quantum mechanics. The

postulates work for both finite or infinite Hilbert spaces, but for our purposes we

consider that the finite case is enough. These notions may be helpful for Chapter 2.

Other helpful references are an article by Lucien Hardy [46], or lecture notes by

Ronald de Wolf [47] and Scott Aaronson [48].

A.1.1 State postulate

The state of a quantum system is formulated as a unit vector from a Hilbert space

H.

For example, we have a qubit defined over a Hilbert SpaceH with basis {|0〉 , |1〉},
where |0〉 and |1〉 represent classical states where a bit has value 0 and 1, respectively.

Thus, the state of the system in H is described as α0 |0〉+ α1 |1〉, such that |α0|2 +

|α1|2 = 1 and α0, α1 ∈ C.

A.1.2 Evolution postulate

Given a closed quantum system, its evolution on time is described by a unitary

operator.

53

In other words, if |Ψ1〉 describes the state of a isolated quantum system and |Ψ2〉
describes the state of the same system in other time, then there exists a unitary U

operator such that |Ψ2〉 = U |Ψ1〉.

A.1.3 Composition of systems postulate

We can treat two physical systems as one combined system. In that case, the state

space of the combined quantum systems is the tensor product H1 ⊗H2 between the

spaces H1,H2 corresponding to each subsystem. If the first system is in state |Ψ1〉
and second system is in state |Ψ2〉, then the combined state of both systems is de-

scribed by |Ψ1〉 ⊗ |Ψ2〉.
This work only considers finite spaces, thus for our purposes the tensor product

can be considered a Kronecker product. For example, if we consider two qubits, then

we have the spaces H1,H2 whose basis are {|0〉 , |1〉}. Thus, space of the composite

system is {|00〉 , |01〉 , |10〉 , |11〉}, where |i〉 ⊗ |j〉 = |ij〉. If the first qubit is in state

|Ψ1〉 = 1√
2

(|0〉+ |1〉) and the second qubit is in state |Ψ2〉 = 1√
2

(|0〉 − |1〉), then the

composition state is |Ψ3〉 = 1
2

(|00〉 − |01〉+ |10〉 − |11〉).
Not all states of the composite system can be represented as tensor prod-

ucts of the states from the subsystems, for example two qubits in state |Ψ〉 =
1√
2

(|00〉 − |11〉). In that case we say that such subsystems are entangled and we

cannot describe the state of one subsystem without the others. This does not vi-

olate the first postulate, because entanglement implies that each system is not a

closed system anymore.

A.1.4 Measurement postulate

Let B = {|ϕi〉} be a orthogonal basis for the state space H of the system. We

can perform a measurement in relation to basis B over state
∑
i

αi |ϕi〉 such that it

outputs label i with probability α2
i and leaves system in state |ϕi〉.

For example, take the state |Ψ〉 = 1√
2

(|0〉+ |1〉). If we chose basis B1 =

{|0〉 , |1〉}, we will get both states |0〉 and |1〉 with probability 1
2
. If we chose

basis B2 =
{

1√
2

(|0〉 − |1〉) , 1√
2

(|0〉+ |1〉)
}

, we will get states 1√
2

(|0〉 − |1〉) and
1√
2

(|0〉+ |1〉) with probability 0 and 1, respectively.

A.2 Complete set of orthogonal projectors

Let H be a finite Hilbert space and T a finite set. Two operators A and B are

orthogonal if 〈Ψ|A†B |Φ〉 = 0 for all |Φ〉,|Ψ〉 ∈ H. A complete set of orthogonal

projectors (CSOP) is a set {Pz : z ∈ T}. Where each element Pz is a projector,

54

orthogonal to the others and satisfy∑
z∈T

Pz = IH , (A.1)

such that IH as the identity operator on H. The concept of CSOP is applied

in an alternative definition of quantum measurement. The chosen formulation for

quantum query takes such measurement definition (see Section 2.1).

A.3 State guessing bound

Suppose that we have two given quantum states |ΨX〉 and |ΨY 〉. Where

|〈ΨX |ΨY 〉| = δ. Consider a procedure for determining if Z = X or Z = Y , for

an input |ΨZ〉. Then, this procedure will guess correctly at most with probability
1
2
+ 1

2

√
1− δ2. Reaching such probability requires an optimal measurement or CSOP.

This bound implies that we can separate two quantum states without error if

and only if both states are orthogonal (see Subsection 3.1.2 and Section 3.2).

A.4 Important Boolean functions

Let |x| be the Hamming weight of x ∈ {0, 1}n. Then we define the next total Boolean

functions:

• ORn (x) = 1 ⇐⇒ |x| = 1.

• ANDn (x) = 1 ⇐⇒ |x| = n.

• PARITYn (x) = 1 ⇐⇒ |x| is odd.

• MAJn (x) = 1 ⇐⇒ |x| > n
2
.

• EXACTk,n (x) = 1 ⇐⇒ |x| = k.

• THRESHOLDk,n (x) ⇐⇒ |x| ≥ k.

• Let NE : {0, 1}3 → {0, 1} be a function where: NE (x1, x2, x3) = 1 if xi 6= xj

for some i, j ∈ {1, 2, 3}, and NE (x1, x2, x3) = 0, if x1 = x2 = x3. There is the

recursive sequence of functions {NEi}, where NE0 (x) = x and for d > 0

NEd (x1, .., x3d) =

NE
(
NEd−1 (x1, .., x3d−1) , NEd−1 (x3d−1+1, .., x2.3d−1) , NEd−1 (x2.3d−1+1, .., x3d)

)
55

• DJkn (x) =

1 if |x| = n
2

0 if |x| ≤ k or |x| ≥ n− k

where 0 ≤ k < n
2

and n is even.

• EXACT nk,l (x) = 1 ⇐⇒ |x| ∈ {k, l}.

These functions are mentioned in Chapter 2, where we review the state of art in

quantum algorithms and lower bound methods.

56

	List of Figures
	Introduction
	The Quantum Query Model revisited
	The quantum query model
	Decision trees
	Quantum Complexity
	Complexity measures and methods
	The Hybrid method
	Polynomial method
	Adversary methods

	Exact quantum algorithms
	Deutsch-Jozsa algorithm and parity trees
	Semi-definite programming
	Delayed measurement
	P-computing

	Alternatives to the Quantum Query Model
	Characterizing quantum query with multiple CSOP
	Block set formulation
	Gram matrices and Block Sets

	Towards a framework for constructing quantum exact query algorithms
	A generalization of the Deutsch-Jozsa algorithm

	A lower bound for exact quantum algorithms

	Quantum speed-up and quantum query
	A simulation defined over decompositions
	Upper bounds for quantum speed-up

	Conclusion
	Results and potential extensions of the Block Set approach
	Results and potential extensions of the L1-norm approach

	Bibliography
	Preliminary notions
	Postulates of quantum mechanics
	State postulate
	Evolution postulate
	Composition of systems postulate
	Measurement postulate

	Complete set of orthogonal projectors
	State guessing bound
	Important Boolean functions

