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Prof. Fábio Protti, D.Sc.

Prof. Luerbio Faria, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

ABRIL DE 2017
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“Lasciate ogne speranza, voi

ch’entrate.”

“Abandon all hope, ye who enter

here.”

(Hell’s Gate)

— D. Alighieri, Divine Comedy
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

COMPLEXIDADE E ALGORITMOS RELACIONADOS A DUAS CLASSES DE

PROBLEMAS DE GRAFOS

Carlos Vińıcius Gomes Costa Lima

Abril/2017

Orientadores: Jayme Luiz Szwarcfiter

Mitre Costa Dourado

Uéverton dos Santos Souza

Programa: Engenharia de Sistemas e Computação

Esta tese aborda problemas associados a conversões em grafos e de edição pela

remoção de um emparelhamento. Estudamos processos f -reverśıveis, que são aque-

les associados a um valor de limiar para cada vértice e cuja dinâmica depende da

quantidade de vizinhos com estado contrário para cada vértice. Estabelecemos um

limite superior justo para o tamanho do peŕıodo e transiente, caracterizamos todas

as árvores que alcançam o transiente máximo em processos 2-reverśıveis e mostramos

que determinar o tamanho de um conjunto conversor mı́nimo é NP -dif́ıcil.

Mostramos que o modelo AND-OR define uma convexidade sobre grafos.

Mostramos resultados de NP -completude e algoritmos eficientes para certos

parâmetros de convexidade para esta nova, assim como algoritmos aproximativos.

Introduzimos o conceito de processos de limiar generalizados, onde mostramos

resultados de NP -completude e algoritmos eficientes para ambas as versões não

relaxada e relaxada.

Estudamos o problema de decidir se um dado grafo admite uma remoção de um

emparelhamento de modo a remover todos os ciclos. Mostramos que este problema

é NP -dif́ıcil mesmo para grafos subcúbicos, mas admite solução eficiente para várias

classes de grafos.

Estudamos o problema de decidir se um dado grafo admite uma remoção de um

emparelhamento de modo a remover todos os ciclos ı́mpares. Mostramos que este

problema é NP -dif́ıcil mesmo para grafos planares com grau limitado, mas admite

solução eficiente para algumas classes de grafos. Mostramos também resultados

parametrizados.
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This thesis addresses the problems associated with conversions on graphs and

editing by removing a matching. We study the f -reversible processes, which are

those associated with a threshold value for each vertex, and whose dynamics depends

on the number of neighbors with different state for each vertex. We set a tight upper

bound for the period and transient lengths, characterize all trees that reach the

maximum transient length for 2-reversible processes, and we show that determining

the size of a minimum conversion set is NP -hard.

We show that the AND-OR model defines a convexity on graphs. We show

results of NP -completeness and efficient algorithms for certain convexity parameters

for this new one, as well as approximate algorithms.

We introduce the concept of generalized threshold processes, where the results are

NP -completeness and efficient algorithms for both non relaxed and relaxed versions.

We study the problem of deciding whether a given graph admits a removal of

a matching in order to destroy all cycles. We show that this problem is NP -hard

even for subcubic graphs, but admits efficient solution for several graph classes.

We study the problem of deciding whether a given graph admits a removal of a

matching in order to destroy all odd cycles. We show that this problem is NP -hard

even for planar graphs with bounded degree, but admits efficient solution for some

graph classes. We also show parameterized results.
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Chapter 1

Introduction

“And a mind needs books like a

sword needs a whetstone.”

(Tyrion Lannister)

— G. Martin, A Game of Thrones

Graph theory is a branch of the math that is used by the computer

science to describe and model several real and theoretical problems. In

this thesis we concern on some different problems regarding mainly dis-

tributed computing and graph editing problems, where its structure is

modified in order to obtain some property. In particular, we study a spe-

cific reversible dynamical process on graphs that we call as f -reversible

process, where each vertex has a state and an integer label. The next

problem consists of also labeling the vertices of a given graph G into two

types (AND- and OR-vertices). This labeling is based on the AND-OR

model [14] that describes deadlocks in a distributed computation. The

third problem is a generalization of threshold processes on graphs, that

are processes that start with a subset of vertices S, and a new vertex v

is included in S whenever some condition on the neighborhood of v is

satisfied. Finally we study two graph editing problems based on the re-

moval of a subset of edges that induces a matching, in order to know

whether the obtained graph is a tree, as well as if it is a bipartite graph,

respectively.

The results obtained in this thesis can be found at the final of each

chapter in the appendixes, as well as all of the complete proofs. In the

text we have chosen to hide some proofs for simplicity. Next we provide a

short overview of the problems studied. More details on these problems

can be founded in the next three chapters.
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1.1 A Short Overview of the Problems

1.1.1 Discrete Conversion Processes on Graphs

A discrete conversion process on a graph G = (V,E) is one that, starting with

an initial subset S ⊆ V (G), and following a determined rule at each discrete time

step t ≥ 0, the set S is eventually modified. If vertices can only be added to S and S

cannot be modified, then the process is called irreversible. Otherwise, if the process

follows in such a way that some vertices of S can be removed from the current S as

well as vertices from V (G) \ S can be added to the current S, then the process is

said to be reversible.

In this thesis we deal with discrete conversion processes based on some restricted

rules that are employed in a wide number of branches of the computer science,

specially on the distributed computing. Several parameters studied here on these

processes are based on graph convexities.

The convexity concept comes from the Euclidean and Arquimedes works on

geometry. A convex set in their works is a set S such that every line segment

between two points of S remains in S. The convex hull of a set V of points is the

set of all points obtained by the convex combination of the points in V . We can

model a convexity on graphs considering for example the set of points as a set S of

vertices, and some vertices are added to S according to some condition, that can be

based on the distances between those points, as in the geodetic convexity, as well as

some neighborhood condition, as in the P3 convexity.

Here we consider discrete conversion processes on a graph G such that the conver-

sion rules depend on the neighborhood of the vertices. An example can be done by

the P3 convexity, where given an initial subset S of the vertices, a vertex v ∈ V (G)\S
is added to S if and only if v has at least two neighbors in S. Moreover this graph

convexity is an example of an irreversible discrete conversion process. Since we con-

sider only finite graphs, at some time this process ends, that is, the set S is such that

no vertices can be added to it. Natural parameters arise from such processes, as the

size of the final set S related to the initial one, the number of time steps required

to reach this final S, the maximum number of new vertices it can be reached in just

one time step, the minimum number of vertices required to form S in order that the

entire vertex set is converted, and so on. Some graph convexity parameters will be

presented in the final of this chapter.

For reversible processes, another natural parameter can be proposed. Since the

graph is finite, and if only a finite number of “states” for each vertex (for example

if a vertex v is in S or not) is considered, and the conversion rule is deterministic,

then the process finishes in a periodic configuration, that is, a state assignment to

the vertices that can be reached again after a finite number p of time steps. Such

2



a parameter p is the size of the periodic phase of the reversible process. Next we

present an overview of the considered discrete conversion processes.

f -Reversible Processes

The main motivation for the study of the f -reversible processes comes from dis-

tributed computing, and some graph convexity parameters. It consists on an as-

signment to each vertex of G of a non-negative integer f(v), as well as an initial

state between two, say 0 and 1, and represented by c0(v). The process follows in such

a way that each vertex changes its state if and only if at least f(v) of its neighbors

have the opposite state. The changes are done synchronously, that is, all vertices do

the test in its neighborhood at the same time. Moreover, the process takes a non

bounded number of time steps.

Such processes are classified as reversible, since each vertex can change its state

from 0 to 1, as well as from 1 to 0. They represent several real problems in many

different branches of the science, such as astrophysics [121], physical and biological

cell population simulation [95, 136], percolation [9], marketing strategies [56, 64, 92],

neural networks [81], local interaction games [106, 109] and in distributed comput-

ing [71, 72, 87, 98, 111, 120], manly in the study of consensus and distributed voting

in a network.

We study the periodic behavior of f -reversible processes, since such processes

acquire a periodic phase after a finite number of time steps. Moreover, we consider

the complexity of determining the minimum number of vertices with the same initial

state 1 required to obtain an f -reversible process where all vertices have state 1 in the

periodic phase. Such a parameter is similar to the hull number in graph convexities.

AND/OR-Convexity

The next problem studied is also based on distributed computing, where we relate

some classical convexity parameters to blocking sets that cause deadlocks. Let V

denote a set of processes in a distributed computation. Informally, as described

by Barbosa and Benevides [14], a deadlock is said to exist in this computation if a

subset S ⊆ V can be identified whose members are all blocked due to the occurrence

of some condition that can only be relieved by members of the same subset S. Such

a set S is called a blocking set.

We study the AND-OR model, where each vertex receives a label AND or a

label OR, where an AND-vertex (resp., OR-vertex) depends on the computation of

all (resp., at least one) of its neighbors. We define a graph convexity, that we call

AND/OR-convexity based on this model, such that a set S ⊆ V (G) is convex if and

only if every AND-vertex (resp., OR-vertex) v ∈ V (G) \ S has at least one (resp.,

3



all) of its neighbors in V (G) \ S.

We relate some classical convexity parameters, such as the convexity number,

hull number, interval number, and Charathéodory number to blocking sets that cause

deadlock situations in the AND-OR model. In particular, we show that those pa-

rameters in the AND/OR-convexity represent for example the sizes of minimum

or maximum blocking sets, and also the computation time until system stability is

reached. Finally, a study on the complexity of computing such parameters in the

AND/OR-convexity is provided.

Generalized Threshold Processes on Graphs

In this problem we consider a process on a graph G = (v, E) starting with some

given subset of vertices S, and such that every vertex v has a list τ(v) of subsets of its

neighbors. Such a process is irreversible and iteratively adds to S all vertices u of G

outside of S for which the intersection of the current set S with the neighborhood

of u in G belongs to a τ(u). Based on discrete convexity notions, we study the

corresponding interval number, called τ -interval number, where only one iteration is

executed, and present some results on the hull number, called τ -hull number, where

the number of iterations is unbounded. Special choices of the function τ allow to

include several well studied graph processes and parameters within this framework.

We call such processes as τ -threshold processes.

A motivation for the study of τ -threshold processes on graphs is that they gen-

eralize some gates of logical circuits. For example, an and-gate v outputs true only

if all of its inputs are true; on the other hand, for a xor-gate outputs true it must re-

ceive an odd number of positive inputs. A vertex with τ(v) equals its neighborhood

operates according to an and-gate, and when τ(v) = {N ∈ 2NG(u) : |N | mod 2 = 1}
the vertex operates as an xor-gate, where VG(u) denotes the neighborhood of u in

a graph G.

We also consider a relaxed version of the above notions, where a vertex u

from V (G)\S belongs to the interval of S if NG(u)∩S contains some set from τ(u)

instead of requiring to be equal to some such a set. This process is called relaxed τ -

threshold process, and the analogous parameters such as the relaxed τ -interval num-

ber and the relaxed τ -hull number

Special choices for τ lead to many well known graph parameters. If τ(u) =

2NG(u)\{∅} for every vertex u of some graph G, then the τ -interval number coincides

with the domination number γ(G) [88]. Alternatively, if τ(u) =
(
NG(u)

1

)
, then the

relaxed τ -interval number also coincides with the domination number γ(G). More

generally, if τ(u) =
(
NG(u)
k

)
for some positive integer k, then the relaxed τ -interval

number coincides with the k-domination number γk(G) [34, 43, 69, 88, 126, 142],

and the relaxed τ -threshold processes correspond to the processes considered in [2,
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34, 39, 141].

1.1.2 Editing Problems

Given a graph G = (V,E) and a graph property Π, the Π edge-deletion problem

consists in determining the minimum number of edges required to be removed in

order to obtain a graph satisfying Π [28]. Given an integer k ≥ 0, the Π edge-deletion

decision problem asks for a set F ⊆ E(G) with |F | ≤ k, such that the obtained graph

by the removal of F satisfies Π. Both versions have received widely attention on

the study of their complexity, where we can cite [5, 28, 76, 86, 113, 138, 139] and

references therein for applications.

Here we investigate two variants of this kind of graph problem, where the required

set of edges to be removed induces a matching.

Decycling with a Matching

Destroying all cycles of a given graph by removing vertices or edges is a classical

theme. Clearly, the minimum number of edges of a connected graph of order n and

size m whose removal destroys all cycles is exactly m − n + 1, and standard mini-

mum spanning tree algorithms allow to solve even weighted optimization versions.

Contrary to this, the minimum number of vertices whose removal destroys all cycles

(or produces a tree) is a difficult parameter [17, 19, 66, 80, 125].

We consider a specific graph editing problem, where we ask whether a given

graph G admits a matching whose removal destroys all cycles of the graph. In other

words, we want to know if G is the union of a forest and a matching. We proof that

such a decision problem is NP -complete even for subcubic graphs, and we show a

set of polynomial time algorithms for some classical graph classes.

Odd Decycling with a matching

When the obtained graph is required to be bipartite, the corresponding edge-

(vertex-) deletion problem is called edge (vertex ) bipartization [1, 38, 74] or edge

(vertex ) frustration [140]. Choi, Nakajima, and Rim [38] showed that the edge

bipartization decision problem is NP -complete even for cubic graphs.

Furmańczyk, Kubale, and Radziszowski [74] considered vertex bipartization of

cubic graphs by the removal of an independent set. We study the analogous edge

deletion decision problem, that is, the problem of determining whether a finite,

simple, and undirected graph G admits a removal of a set of edges that is a matching

in G in order to obtain a bipartite graph.

This problem is also equivalent to the problem of determining whether a graph G

admits an (1, 1)-coloring, which is a 2-coloring of V (G) in which each color class in-
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duces a graph of maximum degree at most 1. We show that such a decision problem

is NP -complete even for planar graphs of maximum degree 4, but can be solved in

linear time in graphs of maximum degree 3. We also present polynomial time algo-

rithms for (claw, paw)-free graphs, graphs containing only triangles as odd cycles,

graphs with bounded dominating sets, and P5-free graphs. In addition, we show

that the problem is fixed-parameter tractable when parameterized by clique-width,

which implies polynomial time solvability for many interesting graph classes such

as distance-hereditary graphs and outerplanar graphs. Finally a 2vc(G).n algorithm,

and a kernel having at most 2.nd(G) vertices are presented, where n is the order

of G, and vc(G) and nd(G) are the vertex cover number and the neighborhood

diversity of the input graph, respectively.

1.2 Preliminaries

In this section, we provide the definitions concerning graphs that will be used in

the text, and some others. In order to take more details on the definitions on graph

theory we refer to the book of Bondy and Murty [22]. We also present definitions

concerning graph convexity in the final of this section.

In this thesis we do not address in detail the questions involving complexity

classes, although we use the usual notions that an algorithm whose execution time

is limited by a polynomial in the input size is efficient, and that a problem in the

class of problems NP -difficult is probably intractable. Thus, whenever we consider

computational aspects of the problems involved, we will be looking for an efficient

algorithm of smallest complexity as possible, or an NP -completeness proof for a

simplest instance as possible.

1.2.1 Basic Definitions

For some function f : A→ B and S ⊆ A, we denote by Imf = {f(x) ∈ B : x ∈ A},
and by Imf (S) = {f(x) ∈ B : x ∈ S}. We call Imf as image of f . Moreover, we

denote by N the set of non-negative integer numbers, that is, N = {0, 1, 2, . . . }.
We denote by τ(u) =

(
V
k

)
the set of all subsets of V size k, and denote the set

of all subsets of a given set S by 2S. A family of V is a set of subsets of V .

We say that the set of sets V1, V2, . . . , Vk is a partition of a set V if and only

if V =
⋃

1≤i≤k Vi, and Vi ∩ Vj = ∅, for every pair 1 ≤ i < j ≤ k. A bipartition of V

occurs when k = 2.

A graph G = (V,E) is an ordered pair (V (G), E(G)), such that V is a non empty

set of elements called vertices, and E is a set of non ordered pairs of distinct ver-

tices called edges. We denote a graph G = (V,E) only by G by simplicity whenever
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possible. In the same way, we will denote V (G) and E(G) by simply V and E, respec-

tively. We also use the notation |V (G)| = n(G) (or simply n) and |E(G)| = m(G)

(or simply m) for the cardinalities of the vertex set and edge set of G, respectively.

A graph is called finite if its vertex set is finite.

We say an edge e connects two vertices u and v and we say that u and v are the

endvertices of e. Moreover, we say that u and v are adjacent if they are endvertices

of a common edge, that is, they are connected by an edge. An edge e is incident to

a vertex v if v is an endvertex of e. We denote an edge e with endvertices u and v

by e = (u, v).

Given disjoint subsets A and B of V (G), we denote the set of all edges with one

end in A and the other in B by [A,B].

The set of adjacent vertices of a vertex v in a graph G is denoted by NG(V )

and it is called the neighborhood of v. A vertex u ∈ NG(v) is called a neighbor of v

in G. The closed neighborhood of v is the set NG[v] = N(v) ∪ {v}. The degree of

a vertex v in G is the number of neighbors of v and it is denoted by dG(v). For a

subset S ⊆ V (G), let NG(S) =
⋃
v∈S NG(v) and NG[S] =

⋃
v∈S NG[v].

A simple graph G is a graph such that if there sexists an edge e = (u, v) in G,

then there is no other edge e′ = (u, v), that is, e is the unique edge incident to u

and v. We say that a graph G is directed if all of its edges e = (u, v) are directed

from u toward v.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Given a graph G, an induced subgraph H of G by S ⊆ V (G), denoted by G[S], is

such that for all u, v ∈ V (H), if (u, v) ∈ E(G), then (u, v) ∈ E(H).

We denote by G − v and G − e the induced subgraphs of a graph G, where

we eliminate a vertex v and an edge e, respectively. In the same way, we denote

by G − S and G −M the induced subgraphs of a graph G, where we eliminate a

vertex set S ⊆ V (G) and an edge set M ⊆ E(G), respectively.

A path in a graph G is a sequence P = v1v2 . . . vk of distinct vertices of G and

such that (vi, vi+1) ∈ E(G), for all i ∈ {1, . . . , k − 1}. A chord in a path is an

edge connecting two non consecutive vertices of the path. An induced path is a

path without chords. A cycle in a graph G is a sequence C = v1v2 . . . vk, such

that P = v1v2 . . . vk−1 is a path and v1 = vk. An induced cycle is a cycle without

chords in the path P . We denote by Pk and Ck the induced path and induced cycle

by k vertices, respectively. The length of a path Pk and a cycle Ck is equals their

number of edges. If there exists a path P between two distinct vertices u and v,

then we say that P is a uv-path. The distance between two vertices u and v in a

graph G is the size of a minimum uv-path in G. For a cycle Ck, we say that it is an

even cycle if k is even and an odd cycle, otherwise.

A graph G is connected if there exists a path between all pair of distinct vertices
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of G. Otherwise, we say that G is disconnected. A connected component of G is a

maximal connected subgraph of G. We denote by w(G) the number of connected

components of G.

A graph with no cycles is called acyclic. A forest is an acyclic graph. A tree is a

connected acyclic graph. A tree T is rooted if a vertex v ∈ V (T ) is chosen as a root

and all the other vertices are organized in levels l1, l2, . . . , lh, such that all vertices

in the level lk have distance k until v. The height of a rooted tree is given by the

number of its levels plus one. If a vertex is in the level lk, then its neighbor in the

level lk−1 is its parent and all of its neighbors in the level lk+1 are its children.

A chordal graph is one that every cycle with at least 4 vertices contains a chord.

The complement of a graph G = (V,E) is the graph G = (V,E ′), where (u, v) ∈
E(G) if and only if (u, v) /∈ E ′(G). A graph is complete if all of its pairs of distinct

vertices are adjacent. We denote a complete graph with ` vertices by K`. A graph

is called empty if its complement graph is a complete graph. A set of vertices C

in a graph G is a clique if G[S] is a complete graph. We say that S ⊆ V (G) is an

independent set if G[S] is an empty graph.

A set S ⊆ V (G) is a vertex cover of a graph G if all edges of G are incident to

some vertex in S. The size of a minimum vertex cover of G is denoted by β(G).

A set S ⊆ V (G) is a dominating set of a graph G if all vertices of V (G) \ S are

adjacent to some vertex in S. The size of a minimum vertex cover, the domination

number of G, is denoted by γ(G).

A coloring of the vertices of a graph G is a color assignment to the vertices

of G. More precisely, a coloring is a function c : V (G)→ N. A proper coloring is a

coloring such that adjacent vertices receive distinct colors, otherwise such a coloring

is called improper. A graph is k-colorable if it admits a proper coloring with k colors,

called as k-coloring. In the same way, a graph is k-improper colorable if it admits

an improper coloring with k colors, called as k-improper coloring. The minimum

number of colors required to properly color G is the chromatic number of G, χ(G).

A bipartite graph G is a graph that admits a bipartition of its vertices into

sets V1 and V2, such that all edges of G have one endvertex in V1 and the other one

in V2. Equivalently, there exists a partition of V (G) into two sets, such that each

one induces an independent set in G. A complete bipartite graph is a bipartite graph

where each vertex from one part is adjacent to all vertices to other one. A complete

bipartite graph whose parts have size r and s is denoted by Kr,s. The claw graph is

the K1,3 and the paw is the claw plus one edge.

A regular graph G is one that all vertices have the same degree k > 0, and we

say that G is k-regular. A cubic graph is the 3-regular graph. A subcubic graph is

one that all vertices have degree at most 3.

A distance-hereditary graph is one that all distances between any pair of vertices
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is the same in all connected induced subgraph.

Table 1.1 resumes the basic symbols and their meanings about graph theory.

More specific definitions will be given in the next chapters as necessary.

Table 1.1: Terms and basic symbols of graph theory used in this thesis.

Symbol Description

G = (V,E) Graph G with vertex set V (G) and edge set E(G)

V (G) Set of vertices of G

E(G) Set of edges of G

n(G) Number of vertices of G

m(G) Number of edges of G

vi vertex vi

e = (vi, vj) edge e with endvertices vi and vj

dG(v) Degree of v in G

δ(G) Minimum degree of G

∆(G) Maximum degree of G

NG(v) Neighborhood of v in G

NG[v] Closed neighborhood of v in G

G[S] Induced subgraph by S ⊆ V (G)

Pk Path with k vertices

Ck Cycle with k vertices

Kk Clique or complete graph with k vertices

Kr,s Complete bipartite graph with parts of size r and s

N Set of non-negative integer numbers N = {0, 1, 2, . . . }
β(G) The size of a minimum vertex cover of a graph G

γ(G) The domination number of a graph G

χ(G) The chromatic number of a graph G

Imf Image of a function f

2S Set of all subsets of S

1.2.2 Graph Convexity

Let V be a finite set. A family C of V is a convexity on V if:

• C is closed under intersections;

• ∅ ∈ C;

• V ∈ C.
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Every C ∈ C is called a convex set. An example can be done by the following

set V = {a, b, c, d, e} and family C = {{a, b, c, d, e}, ∅, {a, b}, {a, c, e}, {b, d}}.
A graph convexity on a graph G = (V,E) is one that the convex sets represent

some special property, such as path convexities, where if two vertices v1 and v2 belong

to a convex set C, then all inner vertices in a minimal path between v1 and v2 also

belong to C. We denote a graph convexity on a graph G by a pair (G,C), where C

is a family of convex sets.

Another graph convexities deal with the neighborhood of the vertices. For exam-

ple, starting with an initial vertex set S, the P3 convexity can be see as a dynamical

process, such that every vertex v ∈ V (G) \S with two neighbors in S is added to S.

The process continues until there no exist such a vertex, when S passes to be a

convex set. Note that the P3 convexity can be see as a family containing all paths of

exactly three vertices. Figure 1.1 shows an example of an initial vertex set in the P3

convexity in a tree, where the gray vertices are those in such a set S. We can see

that the vertices v8, v9, v10, and v11 are added to S at the second time step. In the

same way, v6 and v7 are added to S at the third time step, as well as v3 is added

at the forth, and v2 at the fifth time step. It is easy to see that V (G) \ {v4, v5}
is a convex set. We can determine all convex sets by starting from every subset of

vertices and applying the same process.

v1 v2 v3 v4

v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15 v16 v17 v18 v19

Figure 1.1: Example of an initial vertex set in a P3 convexity.

Now, we present some convexity invariants.

We say that a graph convexity (G,C) is an interval convexity when it ad-

mits a function I : 2V (G) → 2V (G), called interval function, where for every S ⊆
V (G), I(S) = S ∪ W , where W is a set of vertices determined by some prop-

erty Π of the considered convexity. Let I0[S] = S and It[S] = It−1[S] ∪Wt for any

positive integer t, where Wt is the set of all vertices that can be added according

to Π. For example, in Figure 1.1 we can take S as the set of the gray vertices,

and W1 = {v8, v9, v10, v11}. The notion of interval function is clear with respect

to f -reversible processes as well as for the both irreversible processes considered in

this thesis.

The interval number of G is the minimum cardinality in(G) of a subset S ⊆ V (G)

satisfying I1[S] = V (G). We call such a set S as an interval set of G. In the example
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given by Figure 1.1 we can see that all leaves of the tree must be in all interval set.

Moreover, it is enough to add three vertices in order to obtain an interval set, for

example v2, v6, and v7, and there is no interval set with less vertices.

The convex hull of a subset S ⊆ V (G) is the smallest convex set H(S) that

contains S. The convex hull of a set S can also be denoted by I∞(S) for interval

convexities. If H(S) = V (G), then S is a hull set of G. The cardinality hn(G) of a

minimum hull set of G is the hull number of G. In Figure 1.1, the convex hull of S

given by the gray vertices is V (G) \ {v4, v5}, and since H(S) is not V (G), then S is

not a hull set of G. We can see that any hull set of G must contain all leaves of the

tree, and hence S ∪ {v4, v5} is a minimal hull set of G.

We say that V (G) and the empty set are trivial convex sets. The convexity

number of G is the largest cardinality cx(G) of a non-trivial convex set C ⊂ V (G).

In Figure 1.1 we can just remove any vertex of degree one in order to obtain a

non-trivial convex set of maximum cardinality.

The Carathéodory number is the smallest integer c(G) such that for every S ⊆
V (G), and every u ∈ H(S), there is a subset X ⊆ S in which |X| ≤ c(G),

and u ∈ H(X). Equivalently, the Carathéodory number can be defined as the

smallest integer c(G) such that for all S ⊆ V (G),

H(S) =
⋃
{H(X) : X ⊆ S, |X| ≤ c(G)} .

The remainder of this thesis is organized as follows. In Chapter 2 we present

the results obtained on the study of f -reversible processes. Chapter 3 contains the

results concerning the And/Or-convexity and the generalized threshold processes.

Chapter 4 is devoted to problems of editing graphs by the removal of a matching.

Finally, Chapter 5 contains our conclusions and open problems.
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Chapter 2

f -Reversible Processes

“Ladies and gentlemen, let the 74th

Hunger Games begin – and may the

odds be ever in your favor!”

(Claudius Templesmith)

— S. Collins, The Hunger Games

2.1 Dissemination on Graphs

Let V be a set defined by you, your family, your friends and coworkers that you

contact directly, besides all of the relatives, friends and coworkers from the people

in V , and so on. Suppose that this set will not change for a while supposed to be

infinite. Let G be the graph whose set of vertices is V and set of edges is defined

such that there exists an edge between two persons if and only if they are known.

It is not difficult to see that this graph is finite, no directed, simple, and connected .

We can partition V into two sets: the people who eat healthily and who do not.

Suppose you have the OCD (Obsessive-compulsive disorder) of counting, every day,

the number of people who you know that eat healthily. Moreover, if today exist

at least pi people eating differently than you, then tomorrow you will change your

eating habits, otherwise you will remain them. We assume a stronger supposition,

where every person j ∈ V has the same disorder, such that j changes its eating

from one day to the next if and only if it knows at least pj people with the opposite

habits.

The above situation exemplifies an automata network , that is a discrete dynam-

ical system defined over a finite set of vertices V = {v1, v2, . . . , vn} and a finite set

of states Q, where each vertex vi has a state ci(t) ∈ Q at each integer instant t ≥ 0.

Moreover, each vertex vi has a state transition rule from the instant t to t+1, which

depends on the states of a subset of vertices in the instant t, such that ci(t+1) ∈ Q.
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More precisely, we are interested in a particular case of automata networks, that are

the dynamic systems on graphs , where the set of vertices is the same of the graph,

the state updating of a vertex is done based on its neighborhood, and are used only

two states, 0 and 1.

The example above illustrates a discrete dynamical system on graphs that uses

only two states. Naturally, this example does not make much practical sense for

several reasons: it was not defined, and probably it does not exist, a border between

what is eating healthily and what is not; the number of people is considered constant

during all process; people know others, therefore new edges could be added to the

graph, as well as edges can be removed over the days; each person knows the eating

habit of each acquainted, at each day; all people have the same OCD is also fishy.

Let us consider a more realistic example. Suppose we are in the election season

and there are two presidential candidates. Consider the same graph G as in the

previous example, but containing only the people who can vote. When the electoral

campaign begins, each person has a pre-candidate. Moreover let us assume that

there is no white or null votes. In this case, the states are defined by the candidates.

Suppose that each person i changes its vote if and only if he knows at least pi people

with opposite opinion to himself. We can use a weekly time stamp in order to be

more realistic.

We can note that the last example, although it is much more plausible than the

previous one, it also does not represent reality perfectly. For example, the value of pi

of an individual i represents the importance degree of others opinions over yours.

However, the rule to determine your decision in each week is always the same. If this

assumption were true, we would not need to have an election campaign, since the

result can be obtained by simply simulating it from the first opinions of each person.

In order to avoid questions of interpretation, which are extraneous to prediction, we

remove any subjectivity and consider only deterministic systems , that is, the state

updating function is always the same throughout the process.

The leader election is an important problem in the theory of distributed al-

gorithms, multi-agent systems and in sociobiology. Through the use of cellular

automata of two states, which are a particular case of automata networks, Pe-

ter Banda [10] has obtained significant results in this problem, showing that the

approach of such systems is quite fruitful. In fact, the study of dynamic sys-

tems in graphs has wide applicability in several distinct areas, as in astrophysics

and physical simulations [121, 136], simulation of biological cell population [95],

modeling of chemical systems [93], social influence [36, 73, 92, 122–124], gene ex-

pression networks [91], immune systems [3], cellular automata [4], percolation [9],

marketing strategies [56, 64, 92], finite discrete dynamic systems [16, 117, 137],

neural networks [81], local interaction games [106, 109] and in distributed com-
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puting [71, 72, 87, 98, 111, 120]. These works show that, even eliminating some

subjective questions, we still achieve significant results of prediction and analysis of

the behavior of such discrete systems.

Other opinion dissemination models have also been proposed for the study of

more specific situations, where the dissemination among the individuals can be

modified in such a way that clusters among similar individuals are formed according

to some property and as the process follows. Examples can be given by hemophilia

dissemination [6, 7], or using stochastic actor models [101, 105, 132, 133].

2.2 Reversible Processes

In this thesis we concern with a particular case of dynamic systems on graphs, that

are the reversible processes . A reversible process is defined over a simple, finite and

non-directed graph G = (V,E), where each vertex has one state in {0, 1}, and a

function f : V (G)→ N, called threshold function. At each discrete time step t ≥ 0,

each vertex v ∈ V changes its state if and only if v has at least f(v) neighbors

with opposite state to itself at t. Moreover, the state modification is done in a

synchronous way, that is, all vertices apply the threshold function to its own state

and the states of its all neighbors at each time step.

2.2.1 f -Reversible Processes

As we saw, reversible processes models iterative voting mechanisms or consensus in

a network. Mustafa and Pekeč [111] considered reversible processes on graphs G

such that the threshold function is constant and equals
⌊
|V (G)|

2

⌋
+ 1. Such processes

are known in the literature as majority processes or iterative voting processes . They

were addressed to different problems in distributed computing, such as fault and em

tolerance and fault recovery [87, 98, 112, 119, 120]. The reversible processes with

constant threshold function and equals k ≥ 2 are called k-reversible processes .

A configuration in a reversible processes over a graph G is a {0, 1} state assign-

ment to the vertices of G at t. Given a reversible process on G, a configuration

at the time t ∈ N is denoted by ct. We can note that reversible processes reach

periodic behavior, since we consider the time as infinite and the number of possible

configurations is finite as well as G. In this way, it is interesting from the compu-

tational point of view to know the length of the periodic phase and the number of

time steps required to reach such a periodic phase. For example, in asynchronous

distributed systems, where the components of the computation do not have infor-

mation about the whole system and does not exist a common time stamp to all of

them, it is essential to know if the system is in a periodic configuration, that is, if
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new computations cannot be formed. This property is important in the cases of the

system acquire a global termination or some of its part reaches a deadlock behavior

or even if it is the moment to start a new phase of the computation.

Given a initial configuration c0, the set of configurations starting in c0 until

the last one preceding the periodic behavior defines the transient of the reversible

process. We denote the length of the transient by τ(c0). Note that the length of the

transient can be zero, if the initial configuration is periodic. Moreover, the length

of the transient and of the period of a reversible process on G could be exponential

in the number of vertices of G, since there exists 2|V (G)| possible configurations.

Independently, Poljak and Sura [122], and Goles and Olivos [82], however, showed

that the period has length at most 2. Moreover, in the same work, Goles and Olivos

showed that the maximum transient length is polynomially upper bounded.

In Oliveira’s [115] dissertation, it is done a combinatorial study on k-reversible

processes based on the work of Goles and Olivos [82]. In that dissertation is presented

an energy function that captures with more intuition the dynamics of k-reversible

processes. Goles and Olivos also used an energy function in their results, but that

are used in more general dynamic processes than the reversible one. Such processes

are known as threshold processes [82, 84]. The results presented in these studies

are based on more general bounds that use an algebraic approach. The new and

more specific energy function, Oliveira proved in an alternative and simpler way

that k-reversible processes have period upper bounded by 2, besides a better upper

bound for the transient length.

Another important question related to the study of reversible processes is to

determine the size of a minimum f -conversion set (or k-conversion set when f is

a k constant function), which is a vertex set that has initial state equals 1 and

whose periodic configuration is unique, where all vertices have state equal to 1.

Dreyer [65] showed many results regarding this question, but also restricted to k-

reversible processes. He showed that determining the size of the minimum conversion

set of k-reversible processes is NP -hard for k ≥ 3, and determined exact values for

some graph classes.

2.2.2 Formalization

In this section we present the formalization of the reversible processes considered in

this work and some of their characteristics, such as the periodicity after a transient

phase, given by an initial configuration, besides some problems concerning such

processes.

Let G = (V,E) be a simple finite non-directed graph with n vertices and m

edges. To each vertex of G we associate one state between two, that are represented
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by the values 0 and 1. A configuration at the discrete time t ≥ 0, denoted by ct, is

an assignment of the states 0 or 1 to the vertices of G, ct : V (G)→ {0, 1}.
A discrete dynamical process on G is an infinite sequence P = (ct)t∈N =

(c0, c1, . . . ) of configurations. We say that c0 is the initial configuration of P and ct(v)

denotes the state of v at time t ∈ N.

In this work, we consider a special kind of iterative processes on simple finite non-

directed graphs that generalizes the majority voting approach studied by Peleg [120].

Formally, the update rule is such that ct+1 is obtained from ct according to a threshold

function f : V (G)→ N applied to each vertex v ∈ V (G) and at each time t ∈ N.

The update rule is defined as

ct+1(v) =

{
1− ct(v) , if |{u ∈ N(v) : ct(u) 6= ct(v)}| > f(v);

ct(v) , otherwise.
(2.1)

In other words, every vertex v changes its state if and only if it has at least f(v)

neighbors with the opposite state, at each time step t ∈ N. Moreover, the state

updates are done synchronously.

We say that f(v) is the threshold value of v, which does not change during the en-

tire process. Given an initial configuration c0, we call such an iterative process follow-

ing Equation (2.1) as an f -reversible process on G, denoted by Rf (G, c0) = (ct)t∈N,

or simply Rf (G, c0). If f is a k-constant function, then it is denoted by Rk(G, c0)

and it is called k-reversible process on G, k ∈ N.

Gargano et al. [78] considered the influence diffusion in social networks in which

some individuals are “actives” to influence their neighbors for a limited number of

time steps, once they were influenced by a sufficient number of neighbors. However,

if a vertex has been influenced then it remains in this state forever. An f -reversible

process represents the extreme case such that the elements have no “memory”. Thus,

the vertices do not keep themselves influenced if they have the required amount of

neighbors to change their states. Moreover, each vertex needs to be convinced by a

subset of neighbors to change its opinion, at each time step.

It is clear that an f -reversible process is uniquely determined by G, f and c0.

Furthermore, due to Equation (2.1), every vertex v depends on only its own state

and on the states of its neighbors to define its next one. Thus, we will consider only

connected graphs in the remainder of the chapter. Moreover, if f(v) > d(v) for some

vertex v then its initial state does not change during the whole process. Therefore

we can assume f(v) = d(v) + 1 in this case. Hence, only threshold functions f

satisfying Imf = {0, . . . ,∆(G) + 1} will be considered. Note that if f(v) = 0 then

the state of v changes at every time step t ∈ N.
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2.2.3 Threshold Networks

We can define a threshold network through a square matrix A with dimensions d×d,

and a threshold vector b of dimension d. We represent a threshold network with

matrix A and threshold vector b by (A, b). Such processes model dynamic systems

on graphs, where each vertex has one between two states, non necessarily equal

to 0 or 1, constituting configurations ct at each discrete time step t ≥ 0. The state

updating rule in these processes from instant t to t+ 1 is as follows:

ct+1(vi) =

{
1 , if

∑d
j=1Aijct(vj)− bi > 0;

0 , otherwise.
(2.2)

In fact, the state updating of the vertices is done by comparing the vector Act

and b, for each index 1 ≤ i ≤ d, considering ct as a vector, where its i-th element is

given by ct(vi).

Next we show thatf -reversible processes can be modeled as threshold networks,

that is, f -reversible processes are particular cases of threshold networks. In fact, we

do it for (f1,f2)-reversible processes, such that there are two threshold functions f1

and f2, where v changes its state from 0 to 1 according to f1, and from 1 to 0

according to f2. If f = f1 = f2, then we obtain an f -reversible process. The proof

is analogous to that presented by Dreyer [65] in his thesis for k-reversible processes

and it can be found in Appendix 5.1.5.

Theorem 2.1 An (f1,f2)-reversible process on a graph G is a threshold net-

work (A, f1), such that

Aij =





1 , if vivj ∈ E(G) and i 6= j;

0 , if vivj /∈ E(G) and i 6= j;

f1(vi) + f2(vi)− d(vi)− 1 , if i = j.

Proof. Let n1
t (vi) and n0

t (vi) be the number of neighbors of vi with states 1 and 0

at time t, respectively. By Equation 2.2 It is enough to show that ct+1(vi) 6= ct(vi)

if and only if vi has at least f1(vi) neighbors with state 1, or vi has at least f2(vi)

neighbors with state 0 at time t, when v has states 0 and 1, respectively.

• ct(vi) = 0: we get that ct+1(vi) = 1 if and only if
∑n

j=1Aijct(vj) − bi > 0.

Hence:

n∑

j=1

Aijct(vj) > f1(vi);

(f1(vi) + f2(vi)− d(vi)− 1)ct(vi) + n1
t (vi) + n0

t (vi) > f1(vi);

n1
t (vi) > f1(vi).
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In this way, vi changes its state from 0 to 1 if and only if f1(vi) ≤ n1
t (vi), as (f1,f2)-

reversible processes.

• ct(vi) = 1: we get that ct+1(vi) = 0 if and only if
∑n

j=1Aijct(vj) − bi < 0.

Hence:

n∑

j=1

Aijct(vj) < f1(vi);

(f1(vi) + f2(vi)− d(vi)− 1)ct(vi) + n1
t (vi) + n0

t (vi) < f1(vi);

f1(vi) + f2(vi)− d(vi)− 1 + n1
t (vi) < f1(vi);

f2(vi)− (n1
t (vi) + n0

t (vi))− 1 + n1
t (vi) < 0;

f2(vi)− n0
t (vi)− 1 < 0;

f2(vi) < n0
t (vi) + 1;

f2(vi) 6 n0
t (vi).

Analogously, vi changes its state from 1 to 0 if and only if f2(vi) ≤ n0
t (vi), as (f1,f2)-

reversible processes. �
Such processes simulate situations in which there exists a preference for ac-

ceptance of one opinion over another. Oliveira, Barbosa and Protti [115] proved

that k1-k2-reversible processes (when f1 and f2 are k1 and k2 constant functions,

respectively) are particular threshold networks.

An irreversible process is one that a vertex does not change its state once reached

state 1. Among their many applications, we can cite the opinion dissemination in a

network, such that the interest is to acquire the largest possible number of people,

and using a few number of opinion transmitting agents, vertices of state 1, or by the

necessity of a quick spread. Disease spread is another important application, where

it is desired to measure its reach in a given population. In short, these processes

are applied to dynamic systems that there is no meaning the state change, once an

individual is reached.

Irreversible processes are also particular cases of threshold networks. In order to

demonstrate this fact, we only consider the first case in the proof of Theorem 2.1

and same threshold network (A, f1).

With Theorem 2.1, we can use the knowledge on threshold networks [82] for f -

reversible processes.

2.2.4 The Periodic Behavior

Let Rf (G, c0) be an f -reversible process. We say that a configuration ct reaches

all of the configurations ct′ , for every t ≥ 0 and t′ > t, or that ct is reached by all

configurations ct′′ , for every t ≥ 1 and 0 ≤ t′′ < t.
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(a) c0 (b) c1

(c) c2 (d) c3

Figure 2.1: Example of the dynamic of an f -reversible process.

Given the configuration ct of Rf (G, c0), t ≥ 1, we say that ct−1 is a predecessor

configuration of ct and that ct is the successor configuration of ct−1. If the successor

of a configuration c is itself, then c is known as fixed point configuration.

Given an f -reversible process Rf (G, c0), we call as phase graph of Rf (G, c0)

the directed graph whose vertex set is given by all configurations (ct)t∈N, that is,

all reachable configurations from c0. Moreover, there exists a directed edge from c

toward c′ if and only if c is predecessor of c′. We denote the phase graph of Rf (G, c0)

by F (G, c0, f).

Figure 2.1 exemplifies the execution of an-f -reversible process over a C4 whose

vertex set is {v1, v2, v3, v4}. The gray vertices have state equal to 1. The number

over each vertex vi represents the value f(vi). The figures of this chapter will follow

this pattern. Figure 2.2 represents the phase graph of the process presented in

Figure 2.1.

By Figure 2.1, we can see that, in c0, v1 and v3 have a neighbor with opposite

state to each one and threshold value 1. Moreover, v4 has two neighbors with

opposite state to itself and threshold value equals 2, while v2 has no neighbor with

opposite state to itself and has threshold value equals 2. Therefore, only v2 does not

change its state from the time step 0 to 1. The same analysis can be done from the

time step 1 to 2, and so on.

Let Rf (G, c0) be an f -reversible process. Since G is finite and ct+1 is obtained

deterministically from ct, according to Equation (2.1), the number of possible con-

figurations equals 2n. Hence, there must exist a finite time step when the process

becomes periodic. The set of configurations preceding the periodic phase is called

Figure 2.2: Phase graph of the process presented in Figure 2.1.
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transient, and its length is denoted by τ(c0) ≥ 0. The length of the periodic phase

is called period, and it is denoted by p(c0) ≥ 1. A periodic configuration is one

that occurs in the periodic phase. Note that the first one is reached at time τ(c0).

Formally, the period and transient length satisfy the following conditions:

• ct+p(c0) = ct, for all t ≥ τ(c0);

• ct+q 6= ct , for all (t < τ(c0) and q ≥ 1) or (t ≥ τ(c0) and 1 ≤ q < p(c0)).

Two natural parameters arise from the above definitions. Given a threshold

function f and a graph G, denote the largest transient length over all initial config-

urations by τf (G) (resp. τk(G) if f is a k-constant function). Analogously, let pf (G)

be (resp. pk(G) if f is a k-constant function) the largest period over all initial

configurations.

Figure 2.3 shows the phase graphs over all of the 24 possible configurations with

respect to the f -reversible process described up to now. The subscribed in each

vertex denotes the configuration cx1x2x3x4 , xi ∈ {0, 1}, where xi represents the state

of the vertex vi, 1 ≤ i ≤ 4.

(a)

(b) (c)

(d) (e)

Figure 2.3: Phase graphs of the f -reversible process defined in Figure 2.1.

We can note by Figure 2.3 that starting the process in any configuration among

the 24 possible ones it always reaches a directed cycle. In Figures 2.3d and 2.3e the

period is equal to 1 in each one, while the remainder phase graphs finish in cycles

of length 2. Moreover, the transient length in Figures 2.3b and 2.3c are equal to 0,

while all the other initial configurations have transient length equal to 1.

Consider now Figure 2.4. We can see that the first periodic configuration occurs

only at the time step 3, that is, the transient length is equal to 3, while its period
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values 2. In fact, Figure 2.4 shows that there exists an f -reversible process with

unbounded transient length, since such processes over a Pn have transient length

equals n− 2 . Figure 2.5 represents its phase graph.

(a) c0 (b) c1

(c) c2 (d) c3

(e) c4 (f) c3

Figure 2.4: Example of an f -reversible process with unbounded transient length.

Figure 2.5: Phase graph of the process described in Figure 2.4.

We can observe that the period in Figure 2.4 is equals 2, even with an unbounded

transient length. In fact, Goles, Fogelman and Pellegrin [84] showed the following

result:

Theorem 2.2 [84] Let (A, b) be a threshold network. If A is symmetric, then the

period length of (A, b) is at most 2, for any initial configuration.

Combining Theorem 2.1 and Theorem 2.2, where is used a symmetric matrix in

the proof, we can obtain the following corollary:

Corollary 2.3 The period of (f1,f2)-reversible processes is at most 2.

The same result has been obtained by Oliveira, Barbosa and Protti [115] for k-

reversible processes, k-irreversible processes and k1-k2-reversible processes. Analo-

gously the same result works for irreversible processes. However, note that Corol-

lary 2.3 cannot be applied to threshold networks (A, b) whose matrix A is not sym-

metric. For example, considering directed graphs where a vertex changes its state

if and only if it has at least k in-neighbors with opposite state, then Corollary 2.3

does not work. Figure 2.6 exemplifies such a negative result, where each vertex has
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(a) c0 (b) c1 (c) c2 (d) c3

Figure 2.6: Example of threshold network with period greater than 2.

exactly an in-neighbor and k = 1. It is not difficult to verify that p(c0) = n for such

a process.

Goles, Fogelman and Pellegrin [84] also determined a polynomial upper bound

for the maximum transient length of a threshold network (A, b), denoted by τ(A, b):

Theorem 2.4 [84] Let (A, b) be a threshold network on a graph G. If A is symmet-

ric, then τ(A, b) ≤∑n
i=1

∑n
j=1 |Aij|+ 2

∑n
i=1 |bi|.

Corollary 2.5 The maximum transient length of an f -reversible process on a

graph G is upper bounded by 2m+ 2n∆(G).

Proof. By Theorem 2.4 and using a matrix A as in Theorem 2.1 and threshold

vector equals 0, it follows that:

T (A, b) ≤ 2m+
∑n

i=1 |2f(vi)− d(vi)− 1|

The maximum value of |2f(vi) − d(vi) − 1| is acquired when f(vi) = ∆(G) + 1

and d(vi) = 1, for every 1 ≤ i ≤ n. Therefore, the expression inside the modulo is

positive, and it follows that:

T (A, b) ≤ 2m+
∑n

i=1 |2f(vi)− d(vi)− 1|
= 2m+

∑n
i=1(2(∆(G) + 1)− 1− 1)

≤ 2m+
∑n

i=1(2∆(G))

= 2m+ 2n∆(G)
�

Corollary 2.5 shows that the maximum transient length of f -reversible processes

is polynomially upper bounded with relation to the input graph, although there is

an exponential amount of configurations. However that is not a tight upper bound.

This can be verified observing that at least one vertex vi must be such that f(vi) ≤
∆(G), otherwise the initial configuration is already periodic, and hence τ(A, b) =

0. Moreover, since we consider only simple connected graphs, if d(vi) = 1 for all

vertices, then G = K2. In this case it is possible to verify that τ(A, b) ≤ 1 for any

initial configuration, where the maximum value is obtained for example in the case
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that f(v1) = 0, f(v2) = 1, and c0(v1) = c0(v2). However, by the above upper bound,

we get that τ(A, b) ≤ 2m+ 2n∆(G) = 4.

With this result it is possible to know in polynomial time if an f -reversible process

has period equals 1 or 2 by executing the transitions of the configurations through-

out the process. Such a complexity can be given since we know that there are at

most O (m+ n∆(G)) time steps to reach a periodic configuration, by Corollary 2.5,

and each configuration updating can be done inO(n+m). Hence there exist a general

algorithm whose complexity is O (m(n+m) + n∆(G)(n+m)) = O (m2 + n2m).

Despite the existence of a polynomial time algorithm to determine the size of the

period of an f -reversible process, an interesting question is to find conditions that,

only from the initial configuration, it is possible to determine the size of the period,

without the need to execute the process step by step.

2.2.5 The Potential Function

The proof of Theorem 2.2 of Goles and Olivos [81] was better presented by Goles,

Fogelman, and Pellegrin [84], where they used an algebraic monotonic operator

called energy function. Given a threshold network (A, b) and a configuration ct, the

energy function is given as follows:

E(ct) = −1

2

n∑

i=1

ct(vi)
n∑

j=1

Aijct(vj) +
n∑

i=1

bict(vi) (2.3)

This definition is very similar to that of the energy function associated with

Hopfield networks [90]. It is a Lyapunov function and can be used to prove several

results associated with the period and transient lengths of threshold and major-

ity networks. This function dates back to Ref. [84] (page 269, inside the proof of

Proposition 2) and was later reproduced in Ref. [83] (page 70, Eq. (3.3)).

The energy function 2.3, although useful for showing upper bounds to the tran-

sient and period lengths of general threshold networks, it does not capture the

necessary intuition to achieve fair limits on specific processes, such as f -reversible

processes.

We present the new energy function defined by Oliveira, Barbosa, and

Protti [115] for k-reversible processes, which is more intuitive than Equation 2.3

when applied to such processes. Before present it, let give some definitions. For

all t ∈ N, let S1(t) and S2(t) be a bipartition of V (G), where S1(t) denotes the set

of vertices that change their states at time t and S2(t) the set of those that do not.

Given a vertex v, we denote the number of neighbors with the opposite state of v
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at t by opt(v). Thus, it follows that

S1(t) = {v : opt(v) ≥ k}

and

S2(t) = {v : opt(v) < k}.

Such an energy function is based on the difference opt(v) − f(v), for every ver-

tex v ∈ S1(t), and in the difference f(v)− opt(v), for every vertex v ∈ S2(t). These

differences represent the facility of a vertex of S1(t) to change its state, besides what

is necessary, and the facility of a a vertex of S2(t), also besides what is necessary, to

keep its state, respectively. The energy function is given as follows:

E(t) =
∑

v∈S1(t)

(opt(v)− k) +
∑

v∈S2(t)

(k − opt(v)) (2.4)

We slightly modify Equation 2.4, such that it can be used to general f -reversible

processes. We call it as potential function. For this, we also slightly modify the

definitions of S1(t) and S2(t) such that

S1(t) = {v : opt(v) ≥ f(v)}

and

S2(t) = {v : opt(v) < f(v)}.

The potential function is as follows:

P (t) =
∑

v∈S1(t)

(opt(v)− f(v)) +
∑

v∈S2(t)

(f(v)− opt(v)) (2.5)

Clearly the potential function does not assume negative values, since it is formed

by the sum of non-negative portions given in the definition of sets S1(t) and S2(t). In

addition, the set S2(t) always contributes positively, unless it is empty, contributing

nil. Figure 2.7 shows an example of an f -reversible process, while Table 2.1 shows

the number of neighbors with opposite state of each vertex and in each configuration,

besides the value of the energy function given by Equation 2.4:

Fig. 2.9 contains plots of the potential and energy functions against time. One

of them (filled line) is the energy function represented by Equation 2.3. The other

(dotted line) refers to the potential function of Equation 2.5. Data in the plots

correspond to the tree depicted in Figure 2.8. Both plots refer to a 2-reversible
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(a) c0 (b) c1

(c) c2 (d) c3

Figure 2.7: Configurations of an f -reversible process over P5.

Table 2.1: Sets S1(t), S2(t), values opt(vi), 1 ≤ i ≤ 5, and potential function P (t).

Config. S1(t) S2(t) opt(v1) opt(v2) opt(v3) opt(v4) opt(v5) P (t)

c0 {v2, v4, v5} {v1, v3} 1 1 1 2 1 3
c1 {v2, v5} {v1, v3, v4} 0 1 1 1 1 5
c2 {v2, v5} {v1, v3, v4} 1 1 0 0 0 5
c3 {v2, v5} {v1, v3, v4} 0 1 1 1 1 5

process and, in the case of the energy function, to bi = 1.5 as the additional required

parameter for every vertex vi. The initial configuration has 0 at vertices v2–v11 and 1

at all the others. The two functions differ markedly and no simple reduction seems

to exist to transform one into the other. In particular, the potential function is

nondecreasing (rather than monotonically decreasing), as illustrated by Fig. 2.9.

v1 v2 v3 v4

v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15 v16 v17 v18 v19

Figure 2.8: The initial configuration of a 2-reversible process on a tree whose gray
vertices have state 1.

2.2.6 The Minimum f -Conversion Set Problem

In this subsection we deal with another problem related to f -reversible processes,

where are considered only those having a fixed point as their periodic configuration.

We say that an f -reversible process Rf (G, c0) is uplifting if all vertices achieve

state 1 in a finite number of time steps, which is given by τ(c0). In addition, the set

of vertices with state equal to 1 in the initial configuration is called the f -conversion

set of G. Clearly, for an f -conversion set to exist, all of the vertices must have
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Figure 2.9: Time evolution of the potential (dotted line) and energy (filled line)
functions.

a positive threshold value. In addition, for any vertex v whose threshold value

is d(v) + 1, we get that the initial state of v must be equals 1. Thus, we will restrict

ourselves to specific f -reversible processes, where f : V (G)→ {1, 2, . . . ,∆(G) + 1},
and c0(v) = 1 for all v such that f(v) > d(v), and whose initial configurations lead

to be uplifting.

By the above restrictions, we can see that there are two trivial f -conversion sets

for a graph G, which are the set V (G), and that process where f(v) ≥ d(v) + 1 for

every vertex v. Figure 2.10 shows the complete execution of a 2-reversible process,

where we can see that it is uplifting, besides exemplifying a non-trivial f -conversion

set given by {V1, v3, v5, v7}:

(a) c0 (b) c1 (c) c2 (d) c3

Figure 2.10: Example of a non trivial f -conversion set.

f -conversion sets are defined not only for freversible processes, but also for
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irreversible processes. Given a graph G and threshold values for each vertex, we can

see that a set C is uplifting in an f -reversible process over G is also an f -conversion

set in the irreversible process over G, which uses the same threshold values. This

is due to the fact that at each time step, the set of vertices with equals 1 in the f -

reversible process is always contained in the set of vertices with state equals 1 in

the irreversible process. Moreover, since C uplifts all the vertices to state 1 at the

end of the f -reversible process, so does the irreversible process. In addition, given

an f -conversion set C of G in an irreversible process, every superset of C is also

an f -conversion of G. The same is not true for f -reversible processes, as we can see

by Figure 2.11.

(a) c0 (b) c1

(c) c′0 (d) c′1

Figure 2.11: Example of a superset that is not an f -conversion set of G.

Figures 2.11a and 2.11c represent distinct initial configurations over the same

graph and threshold function. We can observe that {v1, v4} is an f -conversion set,

but its superset {v1, v3, v4} is not, where vertices v2 and v3 alternate their states

indefinitely. This fact exemplifies that f -reversible processes have a more complex

analysis related to the irreversible ones.

An interesting question is to answer if a given initial configuration causes the f -

reversible process to uplift just by looking at the properties of the graph and the

threshold values. This question is not included in determining the size of the period

of f -reversible processes without the need to execute the process at each time step.

This is true because, besides determining that the period is 1, we must show that

all vertices have state equal to 1 in the periodic configuration. The following remark

shows a sufficient condition for an f -reversible process not to reach fixed point.

Observation 2.6 Let an f -reversible reversible process Rf (G, c0) and a biparti-

tion of V (G) into sets A and B, such that each vertex v ∈ A has opposite state

to each vertex u ∈ B, at t ≥ 0, and |NB(v)| ≥ f(v), for every vertex v ∈ A,

and |NA(u)| ≥ f(u), for every vertex u ∈ B. We can observe that this situation

causes a periodic behavior with period exactly 2, where A and B alternate their states

for every instant t′ ≥ t, independently of the states of the other vertices of G. Note

that ct is not necessarily periodic.
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An example of configuration satisfying Observation 2.6 can be done by the K2

where each vertex has threshold value equals 1 and they have opposite states, as

vertices v2 and v3 in Figure 2.11c. Figure 2.12 presents an non-trivial example:

Figure 2.12: Example of configuration satisfying Observation 2.6.

We will deal with the problem of finding the size of an smallest f -conversion set,

denoted by rf (G). If f is a constant function with image 0 < k ≤ ∆(G) + 1, we

denote the such a parameter as rk(G). In other words, we want to find an initial

configuration that has the smallest number of vertices with state 1, so that the

process uplifts. We consider the following decision problem:

f -Conversion Set

Input: A simple, finite, undirected, and connected graph G, a

threshold function f : V (G)→ N, and an integer q ≥ 1.

Question: Is rf (G) ≤ q

Note that in the definition of f-Conversion Set we require the graph to be

connected, since vertices in distinct connected components do not influence the

dynamics of state change of each other. Therefore rf (G) =
∑w(G)

i=1 rf (Wi), where Wi

is the i-th connected component of G.

It is not hard to verify that Figure 2.10a and Figure 2.11a are examples of

initial configurations where the sets of vertices with state 1 have minimum size. In

fact, for 2-reversible processes on trees T with ` leaves, Dourado et al. [59] showed

that r2(T ) ≤ n+`
2

. If ` = 2, that is, T is a path, then the previous limit is fair,

as we can see in Figure 2.11. Independently, Dreyer [65] and Dourado et al. [59]

reached the same bound for paths and also showed that it is the same for cycles,

for 2-reversible processes.

Dourado et al. [59] showed the NP -hardness of determining r2(G) for general

graphs G. They also stated an algorithm based on dynamic programming which

computes rf (Pn) for specific paths Pn with n vertices. They consider both threshold

values 1 and 2, where every v with f(v) = 1 has a neighbor u with f(u) = 1. Thus,

computing rf (G) even for paths and cycles remains open.
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In his thesis, Dreyer [65] proved that f -Conversion Set is NP -complete for

k-reversible processes on k-regular graphs, k ≥ 3. Moreover he gave exact values

of rk(G) for some specific graph classes. Dourado et al. [59] proved that deter-

mining r2(G) is NP -hard. Table 2.2 presets a resume of the studied cases in the

literature related to f -Conversion Set. However, all of these results are restricted

to k-reversible processes. Symbol Gp,q denotes the complete grid graph with dimen-

sions p and q. Symbol Cp,q denotes the circular graph, that is the complete grid

graph where its joined the horizontal ends of the same line. Finally, symbol Tp,q

denotes the torus graph, that is the circular graph where we join the vertical ends

of the same column.

Table 2.2: Resume of the main exact results on rf (G).

Graph G rk(G) Reference

Pn and Cn r2(Pn) = r2(Cn) =
⌊
n+2

2

⌋
Dreyer [65]
and
Dourado
et al. [59]

Kp,q, p ≥ q rk(Kp,q) =





p+ n , if p < k
p , if p ≥ k and n < k
n+ 1 , if p < 2k − 1 and n ≥ k
p+ n− 2(k − 1) , if p ≥ 2k − 1 and n ≥ k

Dreyer [65]

Gp,q

r2(G2,q) = q + 1

r3(G2,q) = q + 2

r4(Gp,q) = 2p+ 2q − 4 + b(p− 2)(q − 2)/2c

r3(Gp,q) =

{
(3q + 1)/2 , if p or q is odd
(3q + 2)/2 , if n is even

Dreyer [65]

Tp,q

r3(Tp,q) =





(3q + 1)/2 , if p or q is odd
3q/2 , if is even and n ≥ 6
(3q + 2)/2 , if n = 2, 4

r4(Tp,q) =

{
max{q

⌊
p
2

⌋
, p
⌊
q
2

⌋
} , if p or q is odd

pq
2

, otherwise

Dreyer [65]

Cp,q

r2(C2,q) =

{
q + 1 , if q is odd
q + 2 , otherwise

r3(C2,q) = q + 1

r3(C3,q) =

{
(3q + 1)/2 , if q is odd
(3q + 2)/2 , otherwise

Dreyer [65]

29



2.3 Results

“This thing all things devours:

Birds, beasts, trees, flowers; Gnaws

iron, bites steel; Grinds hard stones

to meal; Slays king, ruins town,

And beats high mountain down.”

(Gollum)

— J.R.R. Tolkien, The Hobbit

In this section we will present our results concerning f -reversible processes. The

complete proofs can be found in Appendix 5.1.5 and Appendix 5.1.5. Here we

provide the main ideas of the proofs. The first results have been presented in Sub-

section 2.2.3, by Theorem 2.1, and Subsection 2.2.4, by Corollary 2.3. They concern

the maximum length of the period on f -reversible processes, where it is proved that

it is always at most 2. Next we summarize a tight upper bound for the maximum

transient length, a characterization of the trees that need n− 3 time steps to reach

the periodic phase, and we prove the NP -completeness of f-Conversion Set for

bipartite graphs with bounded degree.

2.3.1 A Tight Upper Bound on the Transient Length of f -

Reversible Processes

An Equivalent Potential Function

First, we will prove that the potential function (2.5) is equivalent to

P ′(t) =
∑

v∈S1(t)

(opt+1(v)− f(v)) +
∑

v∈S2(t)

(f(v)− opt+1(v)). (2.6)

It is not so intuitive that Equation (2.5) and Equation (2.6) are equivalent. Ta-

ble 2.3 shows the same analysis on Table 2.1 using the new potential function P ′(t).

We can note that the found values are the same for P (t) and P ′(t), at each time

step t:

In order to prove the equivalence, we consider a partition of

the edges whose ends have opposite states at time t as follows:

• A(t) = {(u, v) ∈ E(G) : u ∈ S1(t), v ∈ S1(t), and ct(u) 6= ct(v)};
• B(t) = {(u, v) ∈ E(G) : u ∈ S2(t), v ∈ S2(t), and ct(u) 6= ct(v)};
• C(t) = {(u, v) ∈ E(G) \ {A(t) ∪B(t)}, and ct(u) 6= ct(v)}.

Note that each edge of C(t) does not have both ends in the same set S1(t)
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Table 2.3: Sets S1(t), S2(t), values opt+1(vi), 1 ≤ i ≤ 5, and potential function P ′(t).

Config. S1(t) S2(t) opt+1(v1) opt+1(v2) opt+1(v3) opt+1(v4) opt+1(v5) P ′(t)

c0 {v2, v4, v5} {v1, v3} 0 1 1 1 1 3
c1 {v2, v5} {v1, v3, v4} 1 1 0 0 0 5
c2 {v2, v5} {v1, v3, v4} 0 1 1 1 1 5
c3 {v2, v5} {v1, v3, v4} 1 1 0 0 0 5

or S2(t). Hence, we get that

∑

v∈S1(t)

opt(v) = 2|A(t)|+ |C(t)| and
∑

v∈S2(t)

opt(v) = 2|B(t)|+ |C(t)|.

Therefore,

∑

v∈S1(t)

opt(v)−
∑

v∈S2(t)

opt(v) = 2(|A(t)| − |B(t)|). (2.7)

Lemma 2.7 For t ≥ 0, P (t) = P ′(t).

Proof. Observe that P (t) and P ′(t) can be rewritten as

P (t) =


 ∑

v∈S1(t)

opt(v)−
∑

v∈S2(t)

opt(v)


+


 ∑

v∈S2(t)

f(v)−
∑

v∈S1(t)

f(v)


 ,

P ′(t) =


 ∑

v∈S1(t)

opt+1(v)−
∑

v∈S2(t)

opt+1(v)


+


 ∑

v∈S2(t)

f(v)−
∑

v∈S1(t)

f(v)


 .

Thus, it is enough to prove that

∑

v∈S1(t)

opt(v)−
∑

v∈S2(t)

opt(v) =
∑

v∈S1(t)

opt+1(v)−
∑

v∈S2(t)

opt+1(v). (2.8)

We can observe that both terms of Equation (2.8) are defined on the same sets,

but referring to the number of neighbors with opposite states at sequential instants,

to each vertex v. We also consider similar sets to A(t), B(t) and C(t), but referring

to edges whose ends have opposite states at time t+ 1:

• A′(t) = {(u, v) ∈ E(G) : u ∈ S1(t), v ∈ S1(t) and ct+1(u) 6= ct+1(v)};
• B′(t) = {(u, v) ∈ E(G) : u ∈ S2(t), v ∈ S2(t) and ct+1(u) 6= ct+1(v)};
• C ′(t) = {(u, v) ∈ E(G) \ {A′(t) ∪B′(t)} and ct+1(u) 6= ct+1(v)}.

Since all vertices in S1(t) change their states and all vertices in S2(t) do not, all

edges of A(t) appear in A′(t). The same holds for all edges of B(t) in B′(t). More-
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over, since A(t) and A′(t) are defined over edges whose ends are in same set S1(t),

we get that A(t) = A′(t). It is analogous for B(t) and B′(t) with respect to S2(t).

Therefore,

∑

v∈S1(t)

opt+1(v)−
∑

v∈S2(t)

opt+1(v) = 2(|A′(t)| − |B′(t)|). (2.9)

Equation (2.7) and Equation (2.9) show that Equation (2.8) is true. �

Monotonicity of the Potential Function

The next lemma shows that the potential function is nondecreasing. The proof

gives the necessary intuition to obtain the new upper bound on the transient length.

Let ∆P (t) be the potential variation from t to t+ 1, i.e., ∆P (t) = P (t+ 1)− P (t).

Now, we will show that the potential variation is not negative, for all t ∈ N.

Lemma 2.8 P (t) is a nondecreasing function.

Proof. By Lemma 2.7, we can rewrite the potential variation as ∆P (t) =

P (t+ 1)− P ′(t). Therefore,

∆P (t) =
∑

v∈S1(t+1)

(opt+1(v)− f(v)) +
∑

v∈S2(t+1)

(f(v)− opt+1(v))

−
∑

v∈S1(t)

(opt+1(v)− f(v))−
∑

v∈S2(t)

(f(v)− opt+1(v)).

Now, we can observe the contribution of each vertex to ∆P (t):

• If v ∈ S1(t) and v ∈ S1(t+ 1): opt+1(v)− f(v)− opt+1(v) + f(v) = 0;

• If v ∈ S2(t) and v ∈ S2(t+ 1): f(v)− opt+1(v)− f(v) + opt+1(v) = 0;

• If v ∈ S1(t) and v ∈ S2(t+ 1):

– f(v)− opt+1(v)− opt+1(v) + f(v) = 2(f(v)− opt+1(v)) > 0, since f(v) >

opt+1(v);

• If v ∈ S2(t) and v ∈ S1(t+ 1):

– opt+1(v)− f(v)− f(v) + opt+1(v) = 2(opt+1(v)− f(v)) ≥ 0, since f(v) ≤
opt+1(v).

Since in each case the contribution is not negative, the lemma follows. �
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A New Upper Bound on the Maximum Transient Length

Now we present a tight upper bound on the transient length of f -reversible processes.

Lemma 2.9 gives an upper bound based on the potential function and the cardinality

of S2 at τ(c0)− 1, the last time step of the transient phase.

Lemma 2.9 For c0 such that τ(c0) > 0, τ(c0) ≤ P (τ(c0)− 1)− |S2(τ(c0)− 1)|+ 1.

Moreover, this bound is attained.

The proof of Lemma 2.9 can be found in Appendix 5.1.5. Next, let us con-

sider V (G) partitioned according to time step τ(c0)− 1 as follows:

• X1 = {v ∈ V (G) : cτ(c0)−1(v) = 0 and v ∈ S1(τ(c0)− 1)};
• X2 = {v ∈ V (G) : cτ(c0)−1(v) = 0 and v ∈ S2(τ(c0)− 1)};
• Y1 = {v ∈ V (G) : cτ(c0)−1(v) = 1 and v ∈ S1(τ(c0)− 1)};
• Y2 = {v ∈ V (G) : cτ(c0)−1(v) = 1 and v ∈ S2(τ(c0)− 1)}.

Let us denote the minimum threshold value by fmin. Moreover, let us denote Sf =∑
v∈V (G) f(v). Thus, by Equation (2.5) and Equation (2.7), it follows that

P (τ(c0)− 1) =
∑

v∈S2(τ(c0)−1)

f(v)−
∑

v∈S1(τ(c0)−1)

f(v) + 2|[X1, Y1]| − 2|[X2, Y2]|

= Sf − 2


 ∑

v∈S1(τ(c0)−1)

f(v)


+ 2|[X1, Y1]| − 2|[X2, Y2]|.

(2.10)

Next, by Lemma 2.9 and Equation (2.10) we obtain a tight upper bound on τ(c0),

for all c0. This bound depends on the threshold function and the number of edges

and vertices of the input graph, as follows.

Theorem 2.10 For c0 such that τ(c0) > 0,

τ(c0) ≤





Sf − (n+ 2fmin − 2) , if X1 = ∅ or Y1 = ∅;
Sf − (n+ 2fmin − 1) , if p(c0) = 1, X1 6= ∅, and Y1 6= ∅;
Sf + 2m− 3n+ 1−∑
v∈S1(τ(c0)−1)

(2f(v)− 3) , if p(c0) = 2, X1 6= ∅, and Y1 6= ∅.

Proof. Case 1: X1 = ∅ or Y1 = ∅ :

In this case we get that [X1, Y1] = ∅. Thus

P (τ(c0)− 1) ≤ Sf − 2


 ∑

v∈S1(τ(c0)−1)

f(v)


− 2|[X2, Y2]|
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and, by Lemma 2.9, we have

τ(c0) ≤ Sf − 2


 ∑

v∈S1(τ(c0)−1)

f(v)


− (n− |S1(τ(c0)− 1)|) + 1− 2|[X2, Y2]|

= Sf − 2


 ∑

v∈S1(τ(c0)−1)

f(v)


+ |S1(τ(c0)− 1)| − n+ 1− 2|[X2, Y2]|

= Sf − (n− 1)−
∑

v∈S1(τ(c0)−1)

(2f(v)− 1)− 2|[X2, Y2]|.

(2.11)

Since Sf − (n − 1) is constant, |S1(τ(c0) − 1)| ≥ 1, and 2f(v) − 1 > 0 for

all v ∈ V (G), the limit obtained by Equation (2.11) is maximum when [X2, Y2] = ∅,
and S1(τ(c0)− 1) = {v}, where f(v) = fmin. Hence, we obtain

τ(c0) ≤ Sf − (n− 1)− (2fmin − 1) = Sf − (n+ 2fmin − 2).

Case 2: p(c0) = 1, X1 6= ∅, and Y1 6= ∅ :

Since every v ∈ S1(τ(c0)−1) belongs to S2(τ(c0)), we get that |NY1(v)| ≤ f(v)−1,

for every v ∈ X1, and |NX1(u)| ≤ f(u)− 1, for every u ∈ Y1. Therefore

2|[X1, Y1]| =
∑

v∈X1

|NY1(v)|+
∑

u∈Y1
|NX1(u)| ≤

∑

v∈S1(τ(c0)−1)

f(v)−|S1(τ(c0)− 1)|.

Thus, we can rewrite Equation (2.10) as

P (τ(c0)− 1) ≤
∑

v∈S2(τ(c0)−1)

f(v)−
∑

v∈S1(τ(c0)−1)

f(v) +
∑

v∈S1(τ(c0)−1)

f(v)−

|S1(τ(c0)− 1)| − 2|[X2, Y2]|
≤

∑

v∈S2(τ(c0)−1)

f(v)− |S1(τ(c0)− 1)|.

By Lemma 2.9 and the fact that |S1(τ(c0)− 1)| ≥ 2, it follows that

τ(c0) ≤
∑

v∈S2(τ(c0)−1)

f(v)− |S1(τ(c0)− 1)| − |S2(τ(c0)− 1)|+ 1

=


 ∑

v∈V (G)

f(v)−
∑

v∈S1(τ(c0)−1)

f(v)


− n+ 1

≤ Sf − (n+ 2fmin − 1).

Case 3: p(c0) = 2, X1 6= ∅, and Y1 6= ∅ :

As in Case 2, P (τ(c0) − 1) is maximum when [X2, Y2] = ∅, while |[X1, Y1]| ≤
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m−|S2(τ(c0))−1|. It means that S1(τ(c0)−1) and S2(τ(c0)−1) induce independent

sets. Furthermore, d(v) = 1 for all v ∈ S2(τ(c0) − 1). Hence, we can rewrite

Equation (2.10) as

P (τ(c0)− 1) ≤ Sf − 2


 ∑

v∈S1(τ(c0)−1)

f(v)


+ 2(m− |S2(τ(c0)− 1)|)

= Sf + 2m− 2


 ∑

v∈S1(τ(c0)−1)

f(v)


− 2|S2(τ(c0)− 1)|.

Hence, by Lemma 2.9 we complete the proof:

τ(c0) ≤ Sf + 2m− 2


 ∑

v∈S1(τ(c0)−1)

f(v)


− 3|S2(τ(c0)− 1)|+ 1

= Sf + 2m+ 1− 2


 ∑

v∈S1(τ(c0)−1)

f(v)


− 3(n− |S1(τ(c0)− 1)|)

≤ Sf + 2m− 3n+ 1−
∑

v∈S1(τ(c0)−1)

(2f(v)− 3)

= Sf + 2m− 3n+ 1−
∑

v∈S1(τ(c0)−1)

(2f(v)− 3).

�
Figure 2.13 shows an example illustrating that the bound on Case 1 of

Theorem 2.10 is tight. We consider an f -reversible process Rf (Cn, c0) on odd

cycles Cn = v1v2 . . . vn, in which f(v1) = 1, and f(vi) = 2, for all i 6= 1. More-

over c0(v1) = 0 if and only if i > 1 and i is odd. This process is uplifting and

satisfies the following conditions:

• v1 ∈ S1(t), for all t < τ(c0);

• For every j > 1, vj ∈ S1(t), for all t < (j − 2);

• For every j > 1, vj ∈ S2(t), for all t ≥ (j − 2).

Thus τ(c0) = n − 1, as well as in Case 1 of Theorem 2.10. However, such

a bound can be arbitrarily far from τ(c0). For instance, consider an f -reversible

process on a star G with n vertices and whose central vertex is v. Suppose f(v) = n

and f(u) = 1, for all u 6= v. If c0(v) = 1 − c0(u), for every u 6= v, then τ(c0) = 1,

although Theorem 2.10 results on τ(c0) ≤ (n− 1). Notice that Lemma 2.9 gives to

us the correct value.

Figure 2.14e is an example attaining the bound on Case 2 of Theorem 2.10,

where every vertex has threshold value 2. With respect to Case 3, we can cite an 1-

reversible process on a path Pn = {v1, v2, . . . , vn} with n ≥ 3, in which v1 has the

35



v1

1
v2

2
v3

2
v4

2
v5

2
v6

2
v7

2

(a) c0

v1

1
v2

2
v3

2
v4

2
v5

2
v6

2
v7

2

(b) c1

v1

1
v2

2
v3

2
v4

2
v5

2
v6

2
v7

2

(c) c2

v1

1
v2

2
v3

2
v4

2
v5

2
v6

2
v7

2

(d) c3

v1

1
v2

2
v3

2
v4

2
v5

2
v6

2
v7

2

(e) c4

v1

1
v2

2
v3

2
v4

2
v5

2
v6

2
v7

2

(f) c5

Figure 2.13: Transient phase of Rf (C7, c0).

opposite state from the all others. Such a process has transient length equal to n−2,

as well as in Case 3.

2.3.2 The Transient Length of

2-Reversible Processes on Trees

In this subsection we consider the maximum transient length of 2-reversible processes

on trees. If n ≤ 4 and τ(c0) > 0, it can be seen that τ(c0) ≤ n− 2, for all c0. Such a

limit holds when T is a path with 3 vertices, whose central vertex has the opposite

state to the others Figure 2.14a. However, all non-periodic configurations with four

vertices Figure 2.14 have transient length equal to n−3. Actually, we prove that n−3

is a tight upper bound for all initial configurations on trees with n ≥ 4. If n ≤ 2

then all configurations are periodic. In fact, the proof gives a characterization of all

trees requiring n− 3 time steps, with n ≥ 4.

Theorem 2.11 For T a tree with n ≥ 4, τ2(T ) ≤ n− 3.

Proof. The theorem follows directly in both Cases 2 and 3 of Theorem 2.10,

while Case 1 shows that τ2(T ) ≤ n− 2. For trees T with f(v) = 2 for all v ∈ V (T ),
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Figure 2.14: All non-periodic configurations with three and four vertices.

we resort to Equation (2.10) and Lemma 2.9 as follows, where p = |S1(τ(c0)− 1)|:

τ(c0) ≤ Sf − 2


 ∑

v∈S1(τ(c0)−1)

f(v)


+ 2|[X1, Y1]| − 2|[X2, Y2]|−

|S2(τ(c0)− 1)|+ 1

≤ 2(n)− 2(2p)− (n− p) + 1 + 2|[X1, Y1]| − 2|[X2, Y2]|
= n− 3p+ 1 + 2|[X1, Y1]| − 2|[X2, Y2]|.

(2.12)

We split the proof into cases according to the cardinalities of sets X1 and Y1.

Case 1: X1 = ∅ or Y1 = ∅:
By Equation (2.12) and the fact that p ≥ 1, if p > 1 or [X2, Y2] 6= ∅ then

τ(c0) ≤ n− 4. Therefore, let us suppose that [X2, Y2] = ∅ and S1(τ(c0)− 1) = {v},
where N(v) = {v1, v2, . . . , vd(v)}, d(v) ≥ 2. Moreover, let us consider v being the root

of T and cτ(c0)−1(v) = 0, without loss of generality. Thus, each subtree Tvi , rooted

at vi, has all its vertices with the same state at τ(c0)−1, for each i ∈ {1, 2, . . . , d(v)}.
Since only v must change its state at time τ(c0) − 1, there must exist at least two

subtrees Tvi whose vertices have state 1 at time τ(c0)−1. Furthermore there exists at

most one subtree with all its vertices having state 0 at time τ(c0)−1. Hence p(c0) = 1

in this case.

Let us consider that Tv1 is the last subtree whose vertices reach their final state.

Since the process follows concurrently in all subtrees, we split the analysis in two

sub-cases based on the degree of v.

ut2

Tut2 \ {ut2}

ut2+1 ut2+2 ut1−1 ut1 v v2

Tv2 \ {v2}

. . .P

Figure 2.15: Representation of configuration ct2 in Sub-case 1.1.
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Sub-case 1.1: d(v) = 2.

Notice that all vertices in V (T )\{v} must have the same state 1 at time τ(c0)−1,

where the process is uplifting from the leaves toward v.

Let t1 and t2 be the time steps in which Tv1 and Tv2 are uplifting, respectively.

Since t1 = τ(c0) − 1, we get that both of v and v1 must keep state 0 from t2 to t1.

If t1 = t2, then t1 is maximum when V (Tv1) induces a maximum path that is uplift-

ing. Thus Tv1 is a path whose states of the vertices alternate. Furthermore Tv2 must

have the same length as Tv1 . Thus T is an odd size path whose vertices alternate,

implying that τ(c0) = n−1
2

. Hence, if τ(c0) = n− 2 then n = 3, and if τ(c0) = n− 3

then n = 5. These cases are depicted in Figure 2.14a and Figure 2.17b, respectively.

On the other hand, if t1 > t2, it means that v1 must keep state 0 from t2 to t1−1.

Thus t1− t2 is equal to the length of a path P = {ut2 , ut2+1, . . . , ut1}, where ut1 = v1

and each ui reaches state 1 at time i, for all i ∈ {t2, t2 + 1, . . . , t1}. Moreover, for

every ui we get that d(ui) > 2 and each one must have at most one neighbor with

opposite state, from time t2 to time i. The configuration obtained at time t2 which

maximizes |P | is depicted in Figure 2.15, where all vertices have state 1, unless v

and those of V (P ) \ {ut2}.
For every tree T , we can obtain a tree T ′ such that τ2(T ′) ≥ τ2(T ) as follows. To

each pair of vertices w and w′ of Tv2 \ {v2}, remove them from Tv2 , add w to P and,

add an edge between w and w′. Moreover, assign c0(w) = 0 and c0(v2) = c0(w′) = 1.

If |Tv2 | is even then there remain two vertices in Tv2 , by the previous procedure.

Thus, remove the last neighbor w′′ of v2 from Tv2 and add it to Tv1 as a neighbor of

the vertex of P at maximum distance from v, such that c0(w′′) = 1. Figure 2.16a

and Figure 2.16b represent the cases in which |Tv2| is odd or even, respectively. Thus

path P increases, yielding a new path P ′ = {u1, u2, . . . , ut1}. Hence it is obtained

one more time for each pair of moved vertices.

Note that τ2(c0) = |P ′|. Hence, if |Tv2| is odd then τ(c0) = |P ′| ≤ n−1
2

and it

follows that:

• n−1
2

= n− 2 ⇒ n = 3 and |P ′| = 1 (Figure 2.14a);

• n−1
2

= n− 3 ⇒ n = 5 and |P ′| = 2 (Figure 2.17a).

u1 u2 ut1−1 ut1 v v2
. . .P ′

(a) T ′ when |Tv2 | is odd.

u1 u2 ut1−1 ut1 v v2
. . .P ′

(b) T ′ when |Tv2 | is even.

Figure 2.16: Representation of tree T ′ obtained from a tree T , such that τ2(T ′) ≥
τ2(T ).
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vv1 v2

(a)

vv1 v2

(b)

Figure 2.17: All configurations with τ(c0) ≥ n− 3, such that X1 = Y1 = ∅, d(v) = 2
and n ≥ 5.

Finally, if |Tv2| is even then τ(c0) = |P ′| = n−2
2

and it follows that:

• n−2
2

= n− 2 ⇒ n = 2 and |P ′| = 0;

• n−2
2

= n− 3 ⇒ n = 4 and |P ′| = 1 (Figure 2.14d).

Sub-case 1.2: d(v) ≥ 3.

Let us suppose that all non-leaf vertices reach their final states exactly one time

step after all of their children. Let P = {p1, p2, . . . , p`} be a longest path from p1 = v

until a leaf p`. Thus, for each internal vertex pi, we get that pi reaches its final state

exactly after pi+1, i < ` and τ(c0) = |P |, where |P | ≤ n−3. Figure 2.18 depicts this

case, in which d(v) = 3 and the internal vertices of P must alternate their states,

since they have degree equal to 2. Therefore v must have 2 neighbors with opposite

states, for all t < τ(c0) − 1. If d(v) ≥ 4 or d(pi) ≥ 3 for some internal vertex pi

then τ(c0) ≤ n− 4, in this case.

Now, let u 6= v be a non-leaf vertex whose state does not change even if all of its

children reach their final states. Moreover, let consider u the farther vertex from v

satisfying this property. Since all leaves of a subtree Tvi must have the same state,

say s ∈ {0, 1}, we have d(u) = 2. Moreover u and its parent w must have the same

initial state 0, when the child of u achieves its final state, and u changes its state

exactly one time step after w. In other words, the uplifting of Tvi follows from the

leaves to v, but it stops at u, which is “released” by w.

Therefore, either w is released by at least two children, or w also depends on its

parent. Hence, there exists a path W = {wx, wx−1, . . . , w1}, such that wi depends

on its parent wi−1 to change its state, for all i ∈ {1, . . . , x − 1}. Thus it follows

v

v3

v2
. . .P

(a) n odd.

v

v3

v2
. . .P

(b) n even.

Figure 2.18: Representation of the initial configurations of trees in which τ2(c0) =
n− 3 and all non-leaf vertices reach their final states exactly one time step after all
of their children.
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u

Tu

wx

T ′wx

wx−1

T ′wx−1

w1

T ′w1

z1 z2 zy−1 zy v v2

v3

. . . . . .

W Z

Figure 2.19: Representation of tree T , where v ∈ S1(t), for all t ≤ τ(c0)− 1.

that d(wi) ≥ 3, for all wi ∈ W . Moreover w1 is the first vertex of W to be released,

where the vertices in W ∪ {u} change their initial states from w1 to u. If z1 =

N(w1)∩ P does not reach its final state before w1, the process follows changing the

states of the vertices from w1 to u and returns to w1. Otherwise, the process takes

fewer time steps, since it would follow simultaneously to T \ Tz1 . In this case, all

vertices on path Z = {z1, z2, . . . , zy} must alternate their states until Tw1 is uplifting.

Let T ′(wi) be the subtree of wi which does not intersect P , for all i ∈ {1, . . . , x}.
To maximize the transient length, wi must keep state 0 from t = 0 until its parent

and all of its children achieve state 1. Thus wi waits until T ′wi
is uplifting (see Fig-

ure 2.19). Moreover, since wi does not affect the state of its children, the maximum

number of time steps required to the uplifting of T ′wi
is |T ′wi

|−1. Thus, it follows that

τ(c0) ≤ 2x+ y + 2 +
x∑

i=1

τ2(T ′wi
) + τ2(Tu)

≤ 2x+ y + 2 +
x∑

i=1

(|T ′wi
| − 1) + (|Tu| − 1)

= x+ y + 1 +
x∑

i=1

|T ′wi
|+ |Tu|

≤ n− 3.

Thus τ(c0) = n − 3 when T is as in Figure 2.20a and Figure 2.20b, where all

subtrees T ′wi
and Tu have exactly one vertex and all vertices of Y have degree 2.

Note that if x = 0 then the obtained configurations are equivalent to those in

Figure 2.18. On the other hand, if n is even and y = 0 then v “starts” the process,

where its state must be equal to the states of the leaves of P , as well as when n is

odd and y = 0, but with initial state opposite to that of the leaves. In the last case

it is possible to keep the state of v, adding one neighbor to v with opposite state,

yielding a tree with even number of vertices Figure 2.21a. The effect is to extend W

including v, increasing the transient length by one time step and the number of

vertices also by one, keeping the upper bound on n − 3. On the other hand, no

other vertex can be added as a neighbor of v, since v already have two neighbors
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u v v2

v3

. . .. . .
W Z

(a) n even.

u v v2

v3

. . .. . .
W Z

(b) n odd.

Figure 2.20: Representation of a general initial configuration of trees in
which τ(c0) = n − 3 and at least one non-leaf vertex reaches its final state after
all of its children.

of each state. Finally, we can obtain the configuration given in Figure 2.21b, where

the additional vertex is added as a neighbor of v2, in which the effect is the same as

the previous case. Moreover, any additional vertex does not increase the transient

length. Hence, no other initial configuration is possible.

Case 2: X1 6= ∅ and Y1 6= ∅:
Since |[X1, Y1]| ≤ p−1 and V (S1(τ(c0)− 1)) induces a forest, by Equation (2.12)

it follows that

τ(c0) ≤ n− 3p+ 1 + 2(p− 1)− 2|[X2, Y2]|
= n− p− 1− 2|[X2, Y2]|.

Therefore, if p > 2 or [X2, Y2] 6= ∅ then τ(c0) ≤ n − 4 and the theorem fol-

lows. Thus, let us suppose [X2, Y2] = ∅ and consider S1(τ(c0) − 1) = {u, v}, such

that (u, v) ∈ E(T ) and cτ(c0)−1(v) = 1− cτ(c0)−1(u).

Since every w ∈ S2(τ(c0)−1) has at most one neighbor with opposite state (u or

v), w belongs to S2(τ(c0)). Thus |S1(τ(c0))| = 2 only if S1(τ(c0)) = {u, v}, implying

that cτ(c0)−1 is periodic, a contradiction. Therefore, either p(c0) = 1, where u and v

have opposite states, or S1(τ(c0)) contains exactly one vertex, which is either u or v.

Suppose p(c0) = 2, where S1(τ(c0)) = v and cτ(c0)−1(v) = i, i ∈ {0, 1}.

u v v2

v3

. . .
W

(a)

u v v2

v3

. . .
W

(b)

Figure 2.21: Representation of trees T with τ(c0) = n − 3, in which y = 0 and n
even.
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Thus d(v) ≥ 4 and v has at least one neighbor with state i and at least three with

state 1−i (where u is one of them), at τ(c0)−1. Since (N(u) \ {v}) ⊂ S2 (τ(c0)− 1),

it follows that the value of τ(c0) is at most the maximum length of a path P

whose vertices alternate their states, where P is a subtree of u. Hence τ(c0) ≤
n− |N(v) ∪ {v}| = n− 5.

Now, suppose that p(c0) = 1. Thus cτ(c0)−1(w) = 1−cτ(c0)−1(u), for all w ∈ N(u),

and cτ(c0)−1(w′) = 1 − cτ(c0)−1(v), for all w′ ∈ N(v). Therefore τ(c0) is maximum

when a subtree T ′u of u has maximum transient length. Thus T ′u is a path whose

vertices alternate their states. Hence, we get that τ(c0) ≤ n− |N(v)∪{v}| ≤ n− 3.

Moreover, the previous limit is obtained only if d(u) = d(v) = 2, where τ(c0) = 1,

since v ∈ S2(1). This situation is depicted in Figure 2.14e. Finally, consider d(u) ≥
3. Since V (G) \ {u, v} = S2(τ(c0)− 1), all subtrees of u which do not contain v and

every subtree of v that do not contain u must reach their final states at same time

step τ(c0) − 1. Analogously, τ(c0) is maximum when a subtree T ′v of v is a path

whose vertices alternate their states. Hence τ(c0) ≤ n− |N(u)∪{u, v}| = n− 4. �
Let #τf (G, q) be the number of configurations c0 such that τ(c0) = q for an f -

reversible process on G. Thus, we prove that #τ2(T, n − 3) = O(n) for trees T

with n ≥ 4.

Corollary 2.12 For T a tree with n ≥ 4,

#τ2(T, n− 3) =





4 , if n = 4;

3 , if n = 5;
n
2

, if n ≥ 6 and n is even;
n−3

2
, if n ≥ 7 and n is odd.

It follows also from Theorem 2.11 an algorithm that generates all such initial

configurations.

Corollary 2.13 For T a tree with n ≥ 4, τ2(T ) = n− 3 if and only if c0 is output

by Algorithm 1.

Both proofs of Corollary 2.12 and Corollary 2.13 can be found in Appendix 5.1.5.

2.3.3 NP-Completeness of f -Conversion Set

In this section, we prove the NP -completeness for bipartite graphs of f -

Conversion Set. The proof is a reduction through a restriction of 3SAT, where

each clause has 2 or 3 literals and each variable occurs in at most 3 clauses [75]. It

can be polynomially solved if all clauses have exactly 2 or exactly 3 literals [118].
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Algorithm 1: Generate all trees T with n ≥ 4 and corresponding initial
configurations leading to τ2(T ) = n− 3.
Input: Number n of vertices.
Output: Trees Tj , each with the corresponding initial configuration Cj such that

τ(Cj) = n− 3.
1 V ← {v1, v2, . . . , vn};
2 E ← ∅;
3 j ← 1;
4 for i← 1 to n− 2 do // Lines 4 -- 7 result on tree T1.

5 E ← E ∪ (vi, vi+1);
6 if i = n− 2 then
7 E ← E ∪ (vi, vi+2);

8 for i← 1 to n do // Lines 8 -- 12 result on configuration C1.

9 if i is odd then
10 c0(vi)← 1;
11 else
12 c0(vi)← 0;

13 Tj ← G(V,E);
14 Cj ← c0; // Fig. 2.18a and Fig. 2.18b are obtained for n odd and even, respectively.

15 j ← j + 1;
16 if n = 4 or n = 5 then
17 c0(v4)← 1− c0(v4); // Lines 17 -- 21 result on Fig. 2.14b and Fig. 2.17a for n = 4 and n = 5, respectively.

18 if n = 5 then
19 c0(v3)← 1− c0(v3);

20 Tj ← G(V,E);
21 Cj ← c0;
22 j ← j + 1;
23 E ← E \ (vn, vn−2); // Lines 23 -- 29 result on Fig. 2.14d and Fig. 2.17b for n = 4 and n = 5, respectively.

24 E ← E ∪ (vn−1, vn);
25 if n = 5 then
26 c0(v3)← c0(v4);
27 c0(v4)← 1− c0(v4);

28 Tj ← G(V,E);
29 Cj ← c0;
30 if n = 4 then // Lines 31 -- 34 obtain the tree and configuration given by Fig. 2.14e.

31 j ← j + 1;
32 c0(v4)← 1− c0(v4);
33 Tj ← G(V,E);
34 Cj ← c0;

35 else
36 for i← 3 to n− 3 do // Lines 36 -- 42 obtain Fig. 2.20a and Fig. 2.20b for n even and odd, respectively.

37 if i is odd then // For n even and i = n− 3, it is obtained Fig. 2.21a.

38 E ← E \ (vi, vi−1);
39 E ← E ∪ (vi−1, vi+1);
40 Tj ← G(V,E);
41 Cj ← c0;
42 j ← j + 1;

43 if i = n− 3 and n is even then // Lines 43 -- 48 obtain Fig. 2.21b for n even.

44 E ← E \ (vi+1, vi+3);
45 E ← E ∪ (vi, vi+3);
46 Tj ← G(V,E);
47 Cj ← c0;
48 j ← j + 1;
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Given an integer q > 0, Dourado et al. [59] proved that determining if r2(G) ≤ q

is NP -hard. We say that two disjoint vertex subsets A and B are a bad pair of

an f -reversible process Rf (G, c0) if:

• each vertex of A has the opposite state from the vertices of B;

• |NB(v)| ≥ f(v), for all v ∈ A;

• |NA(u)| ≥ f(u), for all u ∈ B.

As proved by Dourado et al. [59], every uplifting f -reversible process cannot

contain any bad pair.

Lemma 2.14 If Rf (G, c0) is uplifting and, for some v ∈ V (G), f(v) = d(v)

and f(u) = 1 for every u ∈ N(v), then ct(v) = 1 and ct(u) = 1 for some u ∈ N(v)

and every t ≥ 0.

Proof. Suppose by contradiction that the lemma is false. Since Rf (G, c0) is

uplifting, if there exists a time step t0 ≥ 0 such that ct0(v) = 0 then there exists

a time step t > t0 in which v changes its state. Suppose t to be the smallest. In

this case, ct−1(v) = 0 and ct−1(u) = 1 for all u ∈ N(v). Hence, sets A = {v}
and B = N(v) are a bad pair of Rf (G, c0), a contradiction. The argument for the

existence of a vertex u ∈ N(v) which has state 1 through the process is similar. �

Theorem 2.15 f-Conversion Set is NP -complete for G bipartite with maxi-

mum degree 3 and Imf = {1, 2, 3}.

Proof. f-Conversion Set is in NP because, given an integer q > 0, we can

execute the process from c0, that has q vertices with state 1, to cτ(c0). Moreover, we

can obtain ct+1 from ct in O(n+m) for all t ≥ 0, because by Case 1 of Theorem 2.10

we can execute the whole process in O((n+m)(Sf − n)).

Let F be an instance of the restricted 3SAT problem with n variables

X1, X2, . . . , Xn and m clauses C1, C2, . . . , Cm. We construct a graph G of f-

Conversion Set as follows. For each variableXi, G contains three vertices denoted

by xi, xi and ai, 1 ≤ i ≤ n. For each clause Cj, there is one vertex denoted by cj,

1 ≤ j ≤ m. Each vertex ai is adjacent only to xi and xi, 1 ≤ i ≤ n. Moreover,

edges xicj, x
i ∈ {xi, xi}, are added if and only if xi ∈ Cj in F , for all 1 ≤ i ≤ n and

1 ≤ j ≤ m. Figure 2.22 depicts the graph, initial configuration and threshold values

obtained from F = (X1 ∨X2) ∧ (X1 ∨X2 ∨X3) ∧ (X2 ∨X3 ∨X4) ∧ (X3 ∨X4).

Let A =
⋃
ai, X =

⋃{xi ∪ xi} and, C =
⋃
ci denote the sets of vertices called

auxiliar, literal and, clause vertices, respectively. Note that each vertex of A has

degree 2 and, since each clause has 2 or 3 literals and each literal occurs in 1 or 2

clauses, the maximum degree of G is 3. Moreover, A ∪ C and X are a bipartition

of V (G), where each part induces an independent set. Therefore G is a bipartite
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a1

2

x1

1

x1

1

a2

2

x2

1

x2

1

a1

2

x3

1

x3

1

a4

2

x4

1

x4

1

c1

2

c2

3

c3

3

c4

2

Figure 2.22: A labelling with rf (G) vertices satisfying F = (X1 ∨X2) ∧ (X1 ∨X2 ∨
X3) ∧ (X2 ∨X3 ∨X4) ∧ (X3 ∨X4).

graph with maximum degree 3. To complete the transformation, we assign f(x) = 1,

for each x ∈ X, and f(v) = d(v) for all v ∈ V (G) \ {X}.
Now, we prove that F is satisfying if and only if rf (G) = m+2n. By Lemma 2.14,

we get that all vertices v ∈ A ∪ C and at least one of xi or xi must have state 1

in c0, for all 1 ≤ i ≤ n. Thus rf (G) ≥ m + 2n. We can consider that c0(xi) = 1 if

and only if xi has its true value in F , xi ∈ {xi, xi}.
If F is satisfying then for each vertex cj, 1 ≤ j ≤ m, there is at least a neighbor

that is a literal vertex with initial state 1. Furthermore, for each pair of literal

vertices xi and xi, 1 ≤ i ≤ n, only one of them has its initial state equal to 1. Thus,

clearly c1(v) = 1 for every v ∈ V (G) and rf (G) = m+ 2n. Now, if rf (G) = m+ 2n

then, for each pair of vertices xi and xi, only one of them must have its initial

state equal to 1, because all vertices u ∈ A ∪ C have their initial state equal to 1.

Moreover, since the process is uplifting, each clause vertex cj, 1 ≤ j ≤ m, is adjacent

to a literal vertex with initial state 1, by Lemma 2.14. Hence, all clauses are satisfied,

concluding the proof. �
We also analyze the complexity of finding a minimum f -conversion set on gen-

eral graphs when f(v) = d(v), for all v ∈ V (G). In this case, if an edge is such

that the states of its ends are the same then these vertices will never change their

states, showing that rf (G) ≥ β(G). We establish the following result relating rf (G)

and β(G) in this situation.

Theorem 2.16 Let Rf (G, c0) be such that f(v) = d(v) for all v ∈ V (G). If a

minimum vertex cover of G exists that is not an independent set then rf (G) = β(G).

Otherwise, rf (G) = β(G) + 1.

Proof. Let C be a minimum vertex cover of G and let us consider that a vertex v

belongs to C if and only if c0(v) = 1. Clearly rf (G) ≥ β(G), otherwise, there

must exist at least one edge whose ends have state zero in c0, meaning that the

process does not uplift. Let It be the set of vertices v such that ct(v) = 0, for
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all 0 ≤ t ≤ τ(c0) − 1. Hence, It must induce an independent set in G and rf (G) is

obtained taking I0 the greatest possible.

Suppose that C does not induce an independent set in G. Thus there is at least

one edge e = (u, v) in G[C] and, hence, u and v remain with state 1 forever. Suppose

by contradiction that the process is not uplifting. Let us also suppose that there

exists an edge e′ whose ends have state zero in cτ(c0). Furthermore, let t > 0 be

the first time step in which such an edge e′ appears. Since at time t− 1 there were

not any such edges, all vertices z ∈ It−1 change their states. Thus, It induces an

independent set, a contradiction. Hence, if p(c0) = 1, then the process is uplifting.

Thus, suppose that p(c0) = 2. In this case, there must exist a bad pair A and B.

Hence A and B induce independent sets, and since no edge whose ends have state

zero is formed through the process, we get that τ(c0) = 0 and G[A∪B] is a connected

component which does not contain u and v, a contradiction.

Finally, suppose that any minimum vertex cover C of G induces an independent

set. Thus, we need more vertices than β(G) for the uplifting. It is enough to show

that we need only one vertex more than a minimum covering. Let C ∪ {v′} be the

vertex subset of G with initial state 1, for some v′ ∈ V (G) \ C . Hence, since G is

connected, there is an edge in G[C ∪ {v′}] and the same argument of the previous

case works now, completing the proof. �

Corollary 2.17 If G is not bipartite and f(v) = d(v) for all v ∈ G then rf (G) =

β(G).

Proof. Since there is no minimum vertex cover of G inducing an independent set,

the corollary follows from Theorem 2.16. �
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Chapter 3

Some Irreversible Processes with

Thresholds

“Every time we deal with an

enemy, we create two more.”

(Tyrion Lannister)

— G. Martin, A Game of Thrones

In this chapter we will present some irreversible processes on graphs

related to some invariants of distributed computing. The first one con-

cerns on the study of the AND-OR model, which describes a deadlock

prevention model. In this model each vertex v has a label among two,

which describes the amount of out-neighbors of v required to be realized

in order to avoid a wait state of v. In particular we show that some

classical convexity parameters are closed related to stable properties of

the AND-OR model.

The another irreversible process is a generalization of processes where

the vertices depend on certain amount of neighbors to be added in the

initial vertex set S taken as input. In particular, each vertex u has a list

of subset of NG(u), such that u is included in S if some such a subset is

in S. We consider two versions, where is required that an exact subset

of NG(u) of the initial list is in S, and where just a subset of NG(u) of

the initial list is in S.
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3.1 Threshold Process Based on the AND-OR

Model

As described by Barbosa and Benevides [14], a deadlock situation can be charac-

terized by the permanent impossibility for a group of processes to progress with

their tasks due to the occurrence of a condition that prevents at least one needed

resource from being granted to each of the processes in that group. Note that a

necessary condition for the existence of a deadlock in the distributed computation

is the existence of cycles of dependency.

A useful abstraction to analyze deadlock situations is the wait-for graph G =

(V,E), where E is a set of directed edges, and an edge exists in E directed away

from vi ∈ V towards vj ∈ V if vi is blocked for some condition that vj may

relieve. The graph G changes dynamically as the computation progresses, and what

determines the evolution of G by allowing for changes in the set of its directed

edges is the deadlock model that holds for the computation [14]. In essence, what a

deadlock model does is to specify rules for vertices that are not sinks in G to become

sinks. (A sink is a vertex with out-degree zero).

We are concerned with stable properties. Once a stable property takes hold of a

group of processes, only an external intervention that eventually follows its detection

can break it. Whenever we refer to G, we mean the wait-for graph that corresponds

to a “snapshot” of the distributed computation in the usual sense of a consistent

global state [13, 35].

We show that combinatorial concepts from graph convexity have a close relation

to stable properties of a wait-for graph in the AND-OR model. In essence, such

properties can be regarded as structures associated with graph convexity invariants

whose definitions are based on the wait-conditions in the AND-OR model. Some

examples are the size of a maximum knot (b-knot [14]), or the minimum number of

processes that must become sinks in order to eliminate deadlock. Our studies con-

sider convexity properties of wait-for graphs, directed graphs, and their undirected

underlying graphs. The concepts of graph convexity and AND-OR deadlock model

will be detailed later.

3.1.1 The AND-OR Model

Let G be a directed graph with vertex set V (G) = {v1, v2, . . . , vn}. For vi ∈ V (G),

let N+
G (vi) denote the set of descendants of vi in G (nodes that are reachable from vi,

including itself) and N−G (vi) denote the set of ancestors of vi in G (nodes from

which vi is reachable, including itself). Let Di ⊆ N+
G (vi) be the set of immediate

descendants of vi ∈ G (descendants that are one edge away from vi) and Ai ⊆ N−G (vi)
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its set of immediate ancestors in G (ancestors that are one edge away from vi). Nodes

in N+
G (vi) \N−G (vi) are called subordinates of vi.

As in [14], a deadlock model for the distributed computation underlying G is a

collection of subsets W 1
i , . . . ,W

pi
i of Di for all vi ∈ V (G), where:

• W 1
i ∪ · · · ∪W pi

i = Di;

• No two nonempty sets in W 1
i , . . . ,W

pi
i are such that one is a subset of the

other;

• In order to exit its blocked state and proceed with its local computation, a

node vi for which Di 6= ∅ must receive a signal from all nodes in at least one

of the nonempty sets W 1
i , . . . ,W

pi
i .

At this level of generality, the deadlock model is known as the AND-OR model,

reflecting the need for vi to be signaled by all members of W 1
i (if nonempty), or

all members of W 2
i (if nonempty), and so on. If at most one of W 1

i , . . . ,W
pi
i is

nonempty for all vi ∈ V (G), then the deadlock model is the AND model. Similarly,

if all nonempty sets in W 1
i , . . . ,W

pi
i are singletons for all vi ∈ V (G), then the

deadlock model is known as the OR model. A sufficient condition for the existence

of a deadlock in the AND model is the same as the general necessary condition

mentioned earlier, that is, the existence of a directed cycle in G. For the OR model,

a necessary and sufficient condition is the existence of a knot in G. A knot is a

subset K ⊆ V (G) with |K| > 1 such that N+
G (vi) = K, for all vi ∈ K. For details

on these conditions and related material, the reader is referred to [94, 131] and the

references therein.

Situations that can be characterized by the AND-OR model are, for example,

those in which vi perceives several conjunctions of resources as equivalent to one

another, and issues requests for several of them with provisions to withdraw some

of them later [14, 27, 96, 127].

We consider in our analysis a simplified AND-OR model in which there are

two types of processes, AND and OR. An AND process vi can only become a sink

when its wait is relieved by all the processes in Di, whereas an OR process vi can

be released by any positive number of processes in Di. Simplified AND-OR model

generalizes AND model and OR model, and although it is a natural subcase of AND-

OR model, it is easy to see that a system in the general AND-OR model can be

transformed in polynomial-time into a system operating according to the simplified

AND-OR model.

For short, we simply say and/or graph to refer to a wait-for graph in the simplified

AND-OR model. And/or graphs are a well-known data structure in the literature,
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with many applications in different fields of Computer Science. For instance, artifi-

cial intelligence [114, 130], game theory, robotics, operational research, automation

and software engineering. And/or graphs model cutting problems [57, 107], robotic

task plans [33], assembly/disassembly sequences [54], evaluation of boolean formu-

las [99], failure dependencies [15], software versioning [45], game trees [97], composi-

tion of web services [104] and distributed systems [12]. The optimization problem of

minimizing the solution subgraph of an edge-weighted and/or graph was considered

in [58, 128], where complexity aspects from both the classical and parameterized

point of view are dealt with.

3.1.2 The And/Or-Convexity

As stated earlier, we link the study of and/or graphs with convexity on graphs,

a discipline that has received broad attention recently, specially for the geodetic,

monophonic, and P3 convexities [8, 29, 32, 44, 52, 61–63].

We define a family C∗ of vertex subsets of an undirected underlying and/or

graph G as follows:

(∗) A set C is a member of C∗ if and only if every or-vertex in V (G) \ C does

not have neighbors in C and every and-vertex in V (G) \ C has at least one

neighbor in V (G) \ C.

Analogously, for the directed version, we define a family C∗∗ of vertex subsets of

an and/or graph G as follows:

(∗∗) A set C is a member of C∗∗ if and only if every or-vertex in V (G) \C does not

have out-neighbors in C and every and-vertex in V (G) \ C has at least one

out-neighbor in V (G) \ C.

Now, we prove that (G,C∗) and (G,C∗∗) are graph convexities, called and/or-

convexities on undirected and directed graphs, respectively. The main goal of this

work is to relate the convexity parameters defined below with stable properties of

a distributed computation in the AND-OR model that uses an and/or graph as the

network topology.

Theorem 3.1 (G,C∗) defines a graph convexity.

Proof. By (∗), it is clear that ∅ ∈ C∗ and V (G) ∈ C∗. To prove that C∗ is closed

under intersections, consider two sets in C∗, A and B, and prove that C = A ∩B is

in C∗. Let v /∈ A. If v is an or-vertex, then v has no neighbor in A, and thus in C.

If v is an and-vertex, then NG(v) * A, and thus NG(v) * C. By symmetry on the

vertices no in B, it follows that C ∈ C∗. �
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Corollary 3.2 (G,C∗∗) defines a graph convexity.

Proof. The proof is similar to Theorem 3.1. �
In terms of applications to the convexity parameters presented in Chapter 1, we

can cite the following ones:

• A convex set C can be viewed as a set of processes with the following property:

relieving all the processes in C from their wait condition, with the correspond-

ing dispatch of grant messages, cannot relieve any process w /∈ C from its wait

condition. In addition, for every subset of processes S, the minimum convex

set C containing S is the set of all processes that can be transitively relieved

by those of S. Hence, a hull set S is a minimum set of processes such that all

processes in V (G) \ S can be transitively relieved by those of S.

• A b-knot is a structure in G that can be used to characterize deadlocks under

the AND-OR model [14]. As can be observed in Chapter 1, the convexity

number of a directed graph G and the size of a minimum b-knot of G, in

fact, are complementary quantities. Hence, computing cx(G) is equivalent to

calculating the size of a minimum b-knot of G, which is n− cx(G).

• Any process can be transitively relieved by an appropriated subset of processes

of G. The Carathéodory number of G, c(G), means that each process p of G

can be transitively relieved by a subset of processes Xp with |Xp| ≤ c(G).

• Computing the interval number and the hull number of undirected graphs are

special cases of such problems on directed graphs (an undirected edge can be

regarded as a pair of directed edges, one for each direction). In practice, the

interval number expresses the smallest set of processes that must send grant

messages at the initial step of the computation such that all the remaining

processes are relieved from their wait condition in exactly one time step. On

the other hand, the hull number expresses the minimum number of processes

that must send grant messages at the initial step of the computation such that

all remaining processes are eventually relieved from their wait condition.

3.2 Computing the Convexity Parameters

In this section, we prove a number of results on the classical convexity parameters

defined previously. Remember tat we suppose only connected graphs in this paper.

We need some additional definitions. An and/or graph G is a graph whose all

vertices are labelled as one of {and,or}. Let Gor (resp. Gand) denote the induced

subgraph defined by all the or-vertices (resp. and-vertices) of G. Moreover, let Gi
or
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be the i-th-connected component of Gor, 1 ≤ i ≤ ω(Gor), such that ω(Gor) denotes

the number of connected components of Gor. We will refer to G always as an and/or

graph in the remainder of the section.

3.2.1 The Convexity Number

In this subsection we prove that there exists a linear time algorithm which com-

putes cx(G) for every undirected graph G. Let θ(G) = min1≤i≤ω(Gor) |NG[V (Gi
or)]|

denote the smallest cardinality of the closed neighborhood among all the or-

connected components of G.

Theorem 3.3 Given an undirected connected and/or-graph G, it follows that

cx(G) =





0 , if V (Gand) = ∅;
n− 2 , if V (Gand) 6= ∅ and V (Gand) is not an independent set;

n− θ(G) , otherwise.

Furthermore cx(G) can be computed in linear time.

Proof. If G does not contain any and-vertex, then It[{v}] = V (G) for every ver-

tex v and some time step t. Thus the convex sets of G are only the trivial convex

sets and thus cx(G) = 0. Hence, suppose that there must exist at least one and-

vertex in V (G). For every vertex v, the subset V (G) \ {v} is not convex, implying

that cx(G) ≤ n−2. If there exists an edge (u, v) such that u and v are and-vertices,

then V (G)\{u, v} is a convex set, since u and v are neighbors outside V (G)\{u, v}.
Thus, we get that cx(G) = n− 2.

Let us suppose now that V (Gand) induces an independent set. Note that a

non-trivial convex set cannot contain all the or-vertices of G. Moreover, if an

or-vertex v does not belong to a non-trivial convex set C then no vertex of the

connected component Gi
or containing v could be in C either. Furthermore, if an

and-vertex v ∈ NG(V (Gi
or)) belongs to C, then C must include the entire or-

component Gi
or. Hence NG[V (Gi

or)] must be in V (G) \ C and the maximum car-

dinality of C is equal to n − θ(G). It is not hard to see that computing θ(G) can

be done in Θ(n+m) time. �

Corollary 3.4 The convexity number of directed connected graphs can be computed

in polynomial time.

Proof. Let G be a directed graph. If G has a sink vertex v, then V (G) \ {v} is a

maximum non-trivial convex set. Otherwise, if G has only and-vertices, then V (G)\
Ck is a maximum non-trivial convex set, where Ck is a minimum directed cycle
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of G. Such a cycle can be found in polynomial time by adapting the Floyd-Warshall

algorithm [46]. If G has both and- and or- vertices, then V (G) \ B is a maximum

non-trivial convex set, where B is a minimum b-knot of G, which can also be found

in polynomial time [14]. �

3.2.2 The Interval Number

Computing the interval number of an and/or graph G is NP -hard in general. If

all vertices are labelled “or” then determining in(G) is equivalent to finding the

cardinality of a minimum dominating set of G, denoted by γ(G), which is an NP -

hard problem even for split or bipartite graphs [20]. On the other hand, if all

vertices are labelled “and” then computing in(G) is equivalent to determining the

cardinality of a minimum vertex cover of G. This is true because, for each pair

of adjacent vertices u and v that are not in a subset S ⊂ V (G), they cannot be

in It[S], for any t > 0. Thus, V (G) \ S must be an independent set in G, for any

interval set S, which implies that S is a vertex cover of G. Since it is NP -hard to

compute β(G) even for cubic planar graphs [75], computing in(G) is also NP -hard.

Therefore, every interval set S must contain a vertex cover of Gand and every

vertex in V (G)\S has a neighbor in S. Moreover, every minimum vertex cover of G

is an interval set of G. From these observations it follows that

min{γ(G), β (Gand)} ≤ in(G) ≤ β(G).

Next, we consider the complexity of determining in(G) for general bipartite

graphs. We consider the following decision problem:

Interval Number

Input: An and/or graph G and an integer k > 1.

Question: Is in(G) = k?

Theorem 3.5 Interval Number is NP -complete for connected bipartite graphs

with exactly one and-vertex.

Proof. We consider a reduction from the Vertex Cover problem for cubic

graphs with at least six vertices, which remains NP -complete [75]. Given a cubic

graph G = (V,E), we construct a bipartite graph G′ = (V ′, E ′) such that

V (G′) = {wvi : vi ∈ V (G)} ∪ {wvivj : vivj ∈ E(G)} ∪ {w}

and

E(G′) = {wwvi : wvi ∈ V (G′)}∪{wviwvlvr : i = l or i = r, and wvi , wvlvr ∈ V (G′)}.
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Finally, assign “and” to w and “or” to the remaining vertices of V ′(G′). Fig-

ure 3.1 shows an example of the construction. Observe that G′ is a bipartite graph

with 1+5n/2 vertices and 4n edges. Its parts are defined by {w}∪⋃vivj∈E(G){wvivj}
and

⋃
vi∈V {wvi}.

Now we will prove that in(G′) = β(G)+1. Notice that the set S = {w}∪C is an

interval set of G′, where C is a minimum vertex cover of G, since every vertex wvivj
has a neighbor wvi ∈ C and every vertex wvi is adjacent to w. Thus in(G′) ≤ |S| =
β(G) + 1.

Let S be a minimum interval set of G′. If w /∈ S then every vertex wvi must

be in S, implying that in(G) = n, since S is an interval set of G′. Therefore n ≤
β(G) + 1, which implies that G is a clique. In other words, G = K4, a contradiction

by the assumption n ≥ 6. Hence w ∈ S and we can obtain a new interval set S ′

from S as follows. For every wv`vr ∈ S, if both wv` and wvr are not in S, replace wv`vr

by either wv` or wvr . Otherwise, just remove wv`vr of S. We can see that S ′ is an

interval set of G′ smaller than S. Moreover S ′ is also a minimum vertex cover of G.

Hence β(G) + 1 = |S ′| ≤ |S| = in(G′), completing the proof. �

(a) A cubic graph G. (b) Bipartite graph G′ obtained from G.

Figure 3.1: Example of transformation from graph G to G′ in Theorem 3.5. The
black vertices are a minimum vertex cover of G in Figure 3.1a and a minimum
interval set of G′ in Figure 3.1b.

Corollary 3.6 Determining the interval number of a directed connected graph G is

NP -hard.

Proof. Given an undirected and/or graph G, we can construct a directed and/or

graph G′ replacing each edge e = (u, v) by two arcs a1
e = (u, v) and a2

e = (v, u).

Assuming that G has only and-vertices, it is easy to see that G has a vertex cover

of size k if and only if G′ has an interval set of size k. Note that, if G has only

or-vertices we obtain a reduction from the dominating set problem. �
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Approximation Algorithm

Algorithm 2 describes an approximation procedure for the interval number. Given

a connected and/or graph G, a set S is an interval set if and only if

• G \ S does not contain any edge uv, where u or v is an and-vertex, and

• every or-vertex in V (G) \ S has a neighbor in S.

The first condition implies that if G1 is the spanning subgraph of G that contains

all edges uv of G where u or v is an and-vertex, then in(G) ≥ β(G1). The second

condition implies in(G) ≥ γ(G, V (GOR)), where γ(G, V (GOR)) is the minimum car-

dinality of a set D of vertices of G such that every vertex in V (GOR)\D has a neigh-

bor in D. The union of a 2-approximate vertex cover of G1 and of a log |V (GOR)|-
approximate V (GOR)-dominating set of G yields a (2 + log |V (GOR)|)-approximate

interval set of G.

In fact, one can easily construct an equivalent set cover instance in order to carry

over to γ(G, V (GOR)), where the ground set to be covered is the set of or-vertices,

and the sets are the closed neighborhoods of all vertices of G.

Algorithm 2: A (2 + log |V (GOR)|)-approximation algorithm for in(G).

Data: A connected and/or Graph G.
Result: An interval set S of G of size at most (2 + log |GOR|) ∗ in(G).

1 G1 ← A spanning subgraph of G that contains all edges uv of G where u or v is an
and-vertex;

2 S ← The matched vertices of a maximal matching in G1;
3 U ← V (GOR);
4 while U 6= ∅ do
5 v ← The vertex of G whose NG[v] contains the largest number of uncovered or-vertices;
6 Cover all vertices in N [v] ∩ V (GOR);
7 U ← U \N [v];
8 S ← S ∪ {v};

Result: S

Theorem 3.7 Given a connected and/or graph G, Algorithm 2 is a (2 +

log |V (GOR)|)-approximation algorithm for in(G). Furthermore computing in(G)

is a Log-APX-complete problem.

Proof. Let us denote the size of an optimum solution by OPT and the size

returned by Algorithm 2 for an instance I by A(I). We know that every interval

set of G must include a vertex cover of GAND. Thus, line 1 represents the classical

2-approximation algorithm to obtain a vertex cover [135]. After the line 2 it is

obtained a set S1 that covers all edges between and-vertices. Since any interval set

must be a vertex cover for Gand, it follows that

|S1|/2 ≤ OPT =⇒ |S1| ≤ 2 ∗OPT. (3.1)
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Lines 3–8 present the log n-approximation algorithm for Dominating Set [135],

where U represents the universal set and the sets are composed by |NG[v]|, for

every v ∈ V (G). Hence, all or-vertices are covered by a set S2, following that

|S2| ≤ log(|V (GOR)|) ∗OPT. (3.2)

From Eq. (3.1) and Eq. (3.2) we obtain the following for any instance I:

A(I) = |S1|+ |S2|
≤ 2 ∗OPT + log(|V (GOR)|) ∗OPT
= (2 + log |V (GOR)|) ∗OPT.

Since Dominating Set is in Log-APX-complete [68], the theorem follows. �

Corollary 3.8 Algorithm 2 is a (1 + log |V (GOR)|)-approximation for in(G), if G

is a bipartite connected and/or graph. Moreover, if G is such that one part has

only and-vertices and the other has only or-vertices, then in(G) can be computed in

polynomial time.

Proof. By the well-known König-Egerváry’s theorem, a minimum vertex cover

for G can be found in polynomial time for bipartite graphs. Thus the first step in

Algorithm 2 results in a vertex cover for the and-vertices of size at most OPT . Hence

the approximation is limited by the dominating step of the or-vertices, obtaining an

approximation of (1 + log |V (GOR)|).
When G has each part formed by vertices of the same type, distinct from the type

of the other part, we can see that every interval set S must be a minimum vertex

cover of G. This is true because no edges can exist between vertices of V (G) \ S.

Hence the proof follows by the König-Egerváry’s theorem. �

A Linear Time Algorithm for Trees

Now we prove that Interval Number is polynomially solvable for trees. We

adapt the classical linear time algorithm presented in [42], which computes γ(T ) for

a tree T . In fact, the algorithm works for a more general domination called mixed

domination, defined as follows. Consider a partition P of the vertices of G into three

subsets V1, V2, V3 containing free, bound, and required vertices, respectively. Such a

partition P is called an m-partition. A mixed dominating set D of a graph G with

respect to P (or simply wrt P ) is a subset of vertices containing all required vertices

and such that every bound vertex either belongs to D or is adjacent to some vertex

of D. Furthermore, we require an additional restriction on each and-vertex v: v /∈ D
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if and only if NG(v) ⊆ D. We denote the size of a minimum mixed dominating set

of G wrt P by γm(G,P ).

Proposition 3.9 There exists an m-partition P of a connected graph G such

that in(G) = γm(G,P ).

Proof. Let S be a minimum interval set of G. This implies that every or-vertex

of V (G) \ S has at least one neighbor in S and all and-vertices in V (G) \ S have

their entire neighborhood in S. By setting V1 = V3 = ∅ and V2 = V (G) we obtain

an m-partition P such that S is a mixed dominating set D of G wrt P . This shows

that γm(G,P ) ≤ in(G). Now, let D be a minimum mixed dominating set of G

wrt P . Clearly, every and-vertex v of V (G) \ D has all of its neighbors in D, and

every or-vertex of V (G) \D is covered by at least one vertex of D. Hence D is also

an interval set of G, which implies in(G) ≤ γm(G,P ). �
The next theorem is the basis of the algorithm that computes γm(T, P ) for a

tree T . We assume without loss of generality that all leaves of T are or-vertices.

Denote by G − v the graph obtained by removing v from G. Moreover, for each

and-vertex v, let r(v) denote the number of its required neighbors.

Theorem 3.10 Let T be a tree with an m-partition P , v a leaf of T , u the neighbor

of v, and T ′ = T − v. Let Pv be the m-partition of T ′ obtained by removing v from

the member of P that contains v. Then:

1. if v ∈ V1 and u ∈ V (Tand) then γm(T, P ) = γm(T ′, P ′), where P ′ is the m-

partition obtained from Pv by setting u as required;

2. if v ∈ V2 then γm(T, P ) = γm(T ′, P ′), where P ′ is the m-partition obtained

from Pv by setting u as required;

3. if v ∈ V3 and u ∈ V3 then γm(T, P ) = 1 + γm(T ′, Pv);

4. if v ∈ V3 and u /∈ V3 then γm(T, P ) = 1 + γm(T ′, P ′′), where P ′′ is the m-

partition of T ′ obtained by setting u as free if either u ∈ V (Tor) or u ∈ V (Tand)

and r(u) = |NT (u) ∩ V (T )|.

Proof. (1) Since v ∈ V1, any mixed dominating set of T ′ wrt P ′ is also a

mixed dominating set of T wrt P , and therefore γm(T, P ) ≤ γm(T ′, P ′). To prove

that γm(T ′, P ′) ≤ γm(T, P ), let D be a minimum mixed dominating set of T wrt P .

If v /∈ D then D is also a mixed dominating set of T ′ wrt P ′. Thus, suppose

that v ∈ D; this implies u /∈ D (otherwise D \ {v} is a mixed dominating set of T

wrt P , contradicting the optimality of D). Let D′ = (D \{v})∪{u}. If u ∈ V (Tand)
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then D′ is a mixed dominating set of T ′ wrt P ′, because v /∈ (NT (u) ∩D′).
Hence γm(T ′, P ′) ≤ |D′| = |D| = γm(T, P ).

(2) Since u is required in T ′, every mixed dominating set of T ′ wrt P ′ is also a

mixed dominating set of T wrt P , implying that γm(T, P ) ≤ γm(T ′, P ′). The proof

of inequality γm(T ′, P ′) ≤ γm(T, P ) follows as in item (1).

(3) The proof of this case is trivial.

(4) Let D′ be a mixed dominating set of T ′ wrt P ′′. From the definition of P ′′, it

is clear that D ∪ {u} is a mixed dominating set of T wrt P . Therefore γm(T, P ) ≤
1+γm(T ′, P ′′). Now, let D be a minimum mixed dominating set of T wrt P . Since v

is required, v ∈ D. Moreover, if u ∈ D then D \ {v} is a mixed dominating set of T ′

wrt P ′′. Finally, assume u /∈ D. Since u is free in T ′, we have two cases: (a) if u

is an or-vertex then u is dominated for some vertex w ∈ D \ {u, v}; (b) if u is an

and-vertex then r(u) = |NT (u) ∩ V (T )|. In both cases it is clear that D \ {v} is a

mixed dominating set of T ′ wrt P ′′. Hence, γm(T ′, P ′′) ≤ |D| − 1 = γm(T, P ) − 1.

�
Theorem 3.10 directly leads to the following linear time procedure to compute a

minimum mixed domination set for a labelled tree:

Algorithm 3: Linear time algorithm that computes γm(T, P ) for a tree T .

Data: An and/or tree T whose vertices are labelled as free, bound, or required.
Result: A minimum mixed dominating set MDS of T .

1 MDS ← ∅;
2 for every v ∈ V (Tand) do
3 r(v)← 0;

4 repeat
5 v ← a leaf of T ;
6 u← neighbor of v in T ;
7 if ((v is free and u ∈ V (Tand)) or v is bound ) and u is not required then
8 set u as required;
9 for every w ∈ NT (u) ∩ V (Tand) do

10 r(w)← r(w) + 1;

11 else
12 if v is required then
13 MDS ← MDS ∪ {v};
14 if u is not required and

(u ∈ V (Tor) or (u ∈ V (Tand) and r(u) = |NT (u) ∩ V (T )|)) then
15 set u as free;

16 T ← T − v;

17 until n = 1;
18 if the last vertex v is not free then
19 MDS ← MDS ∪ {v};

In the above algorithm, r(v) is initially set to zero for each and-vertex v. Lines

7–10 cover cases (1) and (2) in Theorem 3.10, whereas lines 11–15 cover cases (3)

and (4). If v ∈ V1 then v may or may not belong to a mixed dominating set of T .
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Thus, if v is an or-vertex then it is either a leaf of T or has a required neighbor

already processed. On the other hand, if v is an and-vertex then r(v) = d(v), and

therefore v is the last vertex in the computation. If r(v) = d(v) − 1 then v is a

bound vertex, since v depends on whether u ∈ NT (v) is in D or not, where u has

not been analyzed yet.

3.2.3 The Hull Number

In this subsection we present some complexity and structural properties on hull sets

of and/or graphs G. Computing hn(G) is trivially solvable if G contains only or-

vertices – in this case every vertex defines itself a hull set. However, as described in

Subsection. 3.2.2, if G contains no or-vertex then determining hn(G) is an NP -hard

problem, since β (Gand) ≤ hn(G) ≤ in(G) and so hn(G) = β(G) = β (Gand). Based

on this fact, we obtain the following result:

Lemma 3.11 Let G be a connected graph containing and-vertices. For any hull

set S of G, there exists a hull set S ′ with no or-vertices and such that |S ′| ≤ |S|.

Proof. Let S be a hull set of G and let v ∈ S be an or-vertex. If NG(v) ∩ S \
{v} 6= ∅, then S ′ = S \ {v} is also a hull set of G. Otherwise, if there exists at

least one and-vertex u ∈ NG(v) ∩ (V (G) \ S), then S ′ = {u} ∪ S \ {v} is also a

hull set of G, since S ⊂ I1[S ′]. Finally, assume that NG(v) is entirely contained

in Gi
or. Thus, if NG(V (Gi

or) \ {v}) ∩ S 6= ∅, then S ′ = S \ {v} is a hull set of G.

Otherwise, all the and-neighbors of Gi
or have at least one neighbor outside S. Hence

let S ′ = {u}∪S\{v}, where u is such an and-neighbor of NG(V (Gi
or)\{v}). It is easy

to see that S ′ is a hull set of G. Applying the same reasoning to each or-vertex v ∈ S
we obtain a new hull set as required in the statement. �

Let G∗ be the and/or graph obtained from G contracting each or-component Gi
or

to a unique vertex vi, for all 1 ≤ i ≤ ω (Gor). In other words, replace V (Gi
or)

by vi such that N (vi) = N (V (Gi
or)) ∩ V (Gand). We say that G∗ is the contracted

graph of G. Moreover, for each subset S ⊆ V (G) let us define the contracted

set S∗ ⊆ V (G∗) of S as follows:

• v ∈ S ∩ V (Gand) if and only if v ∈ S∗ ∩ V (Gand);

• if v ∈ S ∩ V (Gi
or) then vi ∈ S∗;

• if vi ∈ S∗ then there exists at least one vertex u ∈ S ∩ V (Gi
or).

Observe that the or-vertices of G∗ induce an independent set.

Lemma 3.12 Let G∗ be the contracted graph of G. For every S ⊆ V (G), H(S) ∩
V (Gand) = H(S∗) ∩ V (Gand).
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Proof. If S does not contain any or-vertex, then S∗ = S and the lemma is trivial.

Since every and-vertex of S is in S∗, and vice versa, let v ∈ H(S) ∩ (V (Gand) \ S).

Thus NG(v) ⊆ It[S] for some t ∈ N, and suppose by contradiction that v /∈ H(S∗).

For every u ∈ NG(v) ∩ V (Gi
or), we get that u ∈ It∗ [S] for some t∗ ≤ t, implying

that S∩N [V (Gi
or)] 6= ∅. Hence S∗∩N [vi] 6= ∅ and thus vi ∈ H[S∗]. Therefore, there

must exist an and-vertex w ∈ NG(v) such that w ∈ H(S) and w /∈ H(S∗). If w /∈ S
then w and v depend on each other to be in H(S), which implies that w /∈ H(S).

This means that w ∈ S and thus w ∈ S∗. Hence w ∈ H(S∗), a contradiction.

Conversely, consider v ∈ H(S∗)∩ (V (Gand) \ S∗). As observed before, each and-

neighbor of v must be in S∗ and thus in S. Moreover, each vi ∈ NG(v) belongs

to It[S
∗] for some t ∈ N. Thus there must exist an or-vertex u ∈ V (Gi

or) such

that u ∈ H(S). Hence V (Gi
or) ⊂ H[S], i.e., NG(v) ⊆ H(S) in G. �

Theorem 3.13 For every connected and/or graph G, hn(G) = hn(G∗).

Proof. Let S be a minimum hull set of G that contains only and-vertices, which

exists by Lemma 3.11. Since all the or-vertices of G must be in H(S), it follows

that every or-component of G must be “reached” by S. Thus all the or-vertices

of G∗ are also reached by S. By Lemma 3.12, S is also a hull set of G∗, implying

that hn(G∗) ≤ hn(G).

Conversely, let S∗ be a minimum hull set of G∗ containing only and-vertices.

Since all the or-vertices of G∗ belong to H(S∗), at least one vertex of each or-

connected component of G∗ either is in S or is adjacent to one vertex of S. Hence

all the or-vertices of G belong to H(S∗). Therefore, by Lemma 3.12, S∗ is also a

hull set of G, that is, hn(G) ≤ hn(G∗). �
By Theorem 3.13, we assume that G is contracted in the remaining of this

subsection.

Corollary 3.14 If V (Gand) is an independent set, then computing hn(G) is NP -

hard.

Proof. In this case G is a bipartite graph whose parts are formed by the and-

vertices and the or-vertices, respectively. Since every or-vertex must be in H(S)

for every hull set S, we get that all and-vertices must also be in H(S). Thus, it

follows by Lemma 3.11, Lemma 3.12 and, Theorem 3.13 that hn(G) is the size of

a minimum set S of and-vertices which covers all the or-vertices. In other words,

computing a minimum hull number is equivalent to determining a minimum Set

cover of G, where the or-vertices are the elements and each and-vertex v represents

the subset of elements that v is adjacent. Since computing a minimum Set Cover

is NP -hard, the corollary follows. �
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Now, let us consider that the and-vertices does not induce an independent set.

Let Ci be the i-th vertex cover of Gand. Moreover, let Gi be the subgraph induced by

the subset V (G) \ (Ci ∪ (N (Ci) ∩ V (Gor))), and let Gi
j denote the j-th connected

component of Gi. We use the notation H ′ ⊆ H to mean that H ′ is a connected

component of graph H. Figure 3.2a shows a representation of a hull set of G by the

gray sets.

Theorem 3.15 The hull number of a connected graph G can be determined as

hn(G) = min
Ci



|C

i|+
∑

Gi
j ⊆Gi

hn
(
Gi
j

)


 .

Proof. Let Ci be a vertex cover of Gand, and let S denote the set formed by Ci

and the union of the minimum hull sets of each Gi
j, that contain only and-vertices by

Lemma 3.11. Let us prove that hn(G) ≤ min
{
|Ci|+∑Gi

j ⊆Gi hn
(
Gi
j

)}
. Note that

every or-vertex has at least one neighbor in S, otherwise their and-neighbors cannot

be in H(S), a contradiction. Furthermore, since V (Gand) \ S is an independent set,

we get that all the and-vertices are reached in at most two time steps. Hence S is

a hull set of G.

Conversely, let S be a minimum hull set of G which contains only and-vertices.

We know that S must contain a vertex cover Ci of Gand, otherwise the endpoints of

an edge between and-vertices are neighbors outside S. Therefore, every connectedGi
j

component of Gi is a bipartite graph with parts containing only and-vertices and

only or-vertices, respectively. Hence, a minimum hull set of G containing only and-

vertices can be defined by taking a vertex cover of Gand that minimizes the sum

of the hull numbers of the generated connected components. Therefore hn(G) ≥
min

{
|Ci|+∑Gi

j ⊆Gi hn
(
Gi
j

)}
. �

(a) Hull set of G. (b) Component Gi
j .

Figure 3.2: Representation of a hull set of G given by the gray sets.
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We can see a minimum hull set of G as a smallest set S of and-vertices that

covers all the or-vertices and such that V (Gand) \ S is an independent set. Further-

more, a hull set S containing only and-vertices is also an interval set of G if and

only if S covers all the or-vertices and every and-vertex outside S has their whole

neighborhood in S.

Corollary 3.16 Algorithm 2 is a (2 + log |V (GOR)|)-approximation algorithm

for hn(G). Furthermore computing hn(G) is a Log-APX-complete problem.

Proof. The proof is analogous to that of Theorem 3.7. �

Corollary 3.17 Determining the hull number of a directed connected graph G is

NP -hard.

Proof. Assuming that G has only and-vertices the interval and hull numbers are

equal. �

Linear Time Algorithm for Trees

Given a tree T , we can adapt Algorithm 3 to find its hull number, where V (T ) is

partitioned into free, bound and required vertices. However, the definition of mixed

domination is slightly different in this case. Formally, a mixed dominating set D∗

of T is as follows: D∗ contains all required vertices; every bound vertex belongs

to D∗ or is covered by it; v /∈ D∗ if and only if NG(v) ∩ V (Gand) ⊆ D∗, for every

and-vertex v. We denote by γ∗m(T, P ) the size of a minimum mixed dominating set

of T wrt an m-partition P into free, bound, and required vertices. The following

proposition is the analogous of Proposition 3.9 for γ∗m(G,P ).

Proposition 3.18 Let G be a connected and/or graph. Then there exists an m-

partition P of G such that hn(G) = γ∗m(G,P ).

Proof. Let S be a minimum hull set of G containing no or-vertices. Then S must

cover all the or-vertices of G, and every and-vertex of V (G) \S must have its entire

neighborhood in S. Thus S is a mixed dominating set of G wrt the m-partition

P = (∅, V (G), ∅), and this implies γ∗m(G,P ) ≤ hn(G). Now, let D∗ be a minimum

mixed dominating set of G wrt P . Thus NG(v)∩V (Gand) ⊆ D∗ if and only if v /∈ D∗,
for each and-vertex v. Let w be an or-vertex such that w ∈ D∗. If w is a bound

vertex and NG(w) ∩D∗ 6= ∅ then D∗ \ {w} is also a mixed dominating set of G wrt

P , a contradiction. Hence there must exist u ∈ NG(w) ∩ (V (G) \ D∗), and then

(D∗ \ {w}) ∪ {u} is also a minimum mixed dominating set of G wrt P . However,

if w is a required vertex, we can set w as bound and apply the same arguments,
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for each such or-vertex. The set D′ obtained in this way contains only and-vertices

and every or-vertex is adjacent to some vertex of D′. Hence D′ is a hull set of G,

implying that hn(G) ≤ |D′| = |D∗| = γ∗m(G,P ). �
Let us denote by r∗(v) the number of required and-neighbors of v, for every

and-vertex v. The following theorem describes how to compute a minimum hull set

on trees.

Theorem 3.19 Let T be a tree with an m-partition P , v a leaf of T , u the neighbor

of v, and T ′ = T − v. Let Pv be the m-partition of T ′ obtained by removing v from

the member of P that contains v. Then:

1. if v ∈ V1 then γ∗m(T, P ) = γ∗m(T ′, Pv);

2. if v ∈ V2 then γ∗m(T, P ) = γ∗m(T ′, P ′), where P ′ is the m-partition obtained

from Pv by setting u as required;

3. if v ∈ V3 and u ∈ V3 then γ∗m(T, P ) = 1 + γ∗m(T ′, Pv);

4. if v ∈ V3 and u /∈ V3 then γ∗m(T, P ) = 1 + γ∗m(T ′, P ′′), where P ′′ is the m-

partition of T ′ obtained by setting u as free if either u ∈ V (Tor) or u ∈ V (Tand)

and r∗(u) = |NT (u) ∩ V (Tand)|.

The proof of Theorem 3.19 is very similar to that of Theorem 3.10, and its proof

can be found in Appendix 5.1.5, as well as a procedure that computes in linear time

the hull number for trees.

3.2.4 The Carathéodory Number

Now, we present results on the Carathéodory number in the and/or-convexity.

Lemma 3.20 Given a connected and/or graph G, it follows that

c(G) =

{
1 , if G contains only or-vertices;

∆(G) , if G contains only and-vertices.
(3.3)

Proof. Since each vertex defines a hull set of G, if G contains only or-vertices,

the theorem trivially holds in this case. Assume that G contains only and-vertices.

The convex hull of any subset S ⊂ V (G) must contain the entire neighborhood

of each vertex in H(S) \ S. This implies that c(G) ≤ ∆(G). Let S = NG(v),

where d(v) = ∆(G). The convex hull of every subset X ⊂ S cannot contain v,

although v ∈ H(S). Hence c(G) ≥ ∆(G). �
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Lemma 3.20 implies that c(G) ≥ max{1,∆(Gand)}, where ∆(Gand) denotes the

maximum degree of Gand. Next we present a polynomial-time algorithm that com-

putes c(G) for every graph G. Let dand(v) denote the number of and-neighbors of v.

In addition, given an and-vertex v, let dor(v) denote the number of or-neighbors

of v that are not adjacent to any and-vertex in the neighborhood of v. Formally,

dor(v) =
∣∣∣Nor(v) \⋃u∈Nand(v) NG(u)

∣∣∣.

Theorem 3.21 Given a connected and/or graph G, it follows that

c(G) = max{1, max
v∈V (Gand)

{dand(v) + dor(v)}}.

Furthermore, computing c(G) can be done in linear time.

Proof. By Lemma 3.20, if G contains only or-vertices then c(G) = 1 and the

theorem trivially holds. Hence, let S ⊆ V (G) containing both and-vertices and or-

vertices. Since the or-vertices in H(S) can be obtained by taking all subsets X ⊆ S

with |X| = 1, we can consider only the and-vertices in H(S) \ S. Thus, let v be

such an and-vertex. As in the proof of Lemma 3.20, every and-neighbor of v must

be in any subset X ⊂ S such that v ∈ H(X). Also, the entire neighborhood of v

should satisfy this condition. Thus, if there exists an or-neighbor w of v which is not

adjacent to any and-neighbor of v, w must be included in X. Hence |X| ≥ dand(v)+

dor(v) and it is clear to see that c(G) ≥ maxv∈V (Gand){dand(v)+dor(v)}. Furthermore,

it is not hard to see that c(G) ≤ maxv∈V (Gand){dand(v) + dor(v)}, otherwise there

must exist an and-vertex that is not in H(S), which contradicts the maximality

of dand(v) + dor(v). Finally, it is not hard to see that computing c(G) can be done

in Θ(n+m) time, which concludes the proof. �

3.3 Generalized Threshold Processes on Graphs

“Everything’s better with some

wine in the belly.”

(Tyrion Lannister)

— G. Martin, A Game of Thrones

Many irreversible processes typically consider a set of vertices of a given graph

that grows iteratively according to certain extension rules. These rules usually

involve threshold values, which may be vertex-dependent. A specific vertex might

for instance enter some set of ‘infected’ vertices provided that sufficiently many of

its neighbors are already contained in that set. In the present section we consider

a generalization of such processes, where we replace the threshold values by specific
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sets, that is, each vertex may individually specify certain subsets of its neighborhood,

and the process is guided by these specific selections.

For an integer k and a set V , let [k] be the set of all positive integers at most k.

Based on discrete convexity notions [30, 60], now we give formal definitions for

the generalized threshold processes.

Let G be a graph. A threshold function on G is a function τ : V (G) → 2V (G)

such that τ(u) ⊆ 2NG(u) for every vertex u of G.

Let S be a set of vertices of G. The τ -interval Iτ (S) of S is the set

S ∪ {u : u ∈ V (G) \ S and NG(u) ∩ S ∈ τ(u)},

that is, Iτ (S) contains S as well as all vertices u from the complement of S whose

neighborhood intersects S in a set that is contained in τ(u). For example, in Fig-

ure 3.3 let τ such that τ(v1) = {∅, {v2}}, τ(v2) = {{v1}, {v1, v3}}, and τ(v3) = {∅}.
Considering S = {v2}, we can see that Iτ (S) = {v1, v2}, since {v2} ∈ τ(v1),

and {v2} /∈ τ(v3).

v1 v2 v3

Figure 3.3: Example of a graph and τ function.

Let I0
τ (S) = S, and, for every positive integer i, let I iτ (S) = Iτ (I

i−1
τ (S)). If k

is the smallest non-negative integer with Ik+1
τ (S) = Ikτ (S), then Ikτ (S) is the τ -

hull Hτ (S) of S, and the sequence
(
I0
τ (S), . . . , Ikτ (S)

)
is the τ -threshold process on G

starting with S.

If Iτ (S) = S, then S is τ -convex. If Iτ (S) = V (G), then S is a τ -interval set.

Finally, if Hτ (S) = V (G), then S is a τ -hull set. The minimum order of a τ -interval

set is the τ -interval number iτ (G) of G, and the minimum order of a τ -hull set is the

τ -hull number hτ (G) of G. These notions are similar to that used in the previous

section.

We also consider a relaxed version of the above notions, where a vertex u

from V (G)\S belongs to the interval of S if NG(u)∩S contains some set from τ(u)

instead of requiring to be equal to some such a set. In other words, a way of in-

troducing this variant is by suitably modifying the function τ . Therefore, let the

closure τ̄ of τ be the threshold function

τ̄ : V (G)→ 2V (G) : u 7→
{
N̄ : N̄ ⊆ NG(u) and ∃N ∈ τ(u) : N ⊆ N̄

}
.

The sets Iτ̄ (S) and Hτ̄ (S) are the relaxed τ -interval of S, and the relaxed τ -hull of S,

respectively. The τ̄ -threshold process on G starting with S is the relaxed τ -threshold

process on G starting with S. The relaxed τ -interval number of G is iτ̄ (G), and the
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relaxed τ -hull number of G is hτ̄ (G).

In the example given by Figure 3.3, considering τ̄ = τ and S = {v3}, we can see

that Iτ̄ (S) = {v2, v3}, since τ̄(v2) contains {v1, v3}.
As seen in Chapter 1, special choices for τ lead to many well known graph

parameters. Those examples already imply several hardness results.

In view of algorithmic aspects though, some remarks concerning encoding lengths

are necessary. Given a graph G of order n(G), and a threshold function τ on G,

we can encode the pair (G, τ) listing, for every vertex u of G, the dG(u) neighbors

of u by indicating their names, which are 0/1-vectors of length O(lnn(G)), as well

as the |τ(u)| distinct 0/1-incidence vectors of length dG(u) of the sets in τ(u), where

the i-th entry of such a vector corresponds to the neighbor of u with the i-th smallest

name. This encoding has size

O


 ∑

u∈V (G)

(
dG(u)

(
ln(n(G)) + |τ(u)|

))

 . (3.4)

In the remainder of this section we assume the input is encoded as above. Note

that |τ(u)| can be Ω
(
2dG(u)

)
, hence this size is not necessarily polynomial in n(G).

However, we assume that the hardest instances have size O(poly(n(G))).

An interesting threshold function based on xor-gates of logic circuits is the fol-

lowing parity related function:

⊕ : V (G)→ 2V (G) : u 7→
{
N ∈ 2NG(u) : |N | mod 2 = 1

}
.

Clearly, the reasonable encoding length of the pair (G,⊕) is just the encoding length

of G, which is much smaller than the expression in (3.4). Note that ⊕-hull number

of a tree equals 1.

3.3.1 Hardness results

Our first hardness results concern complete graphs, that is, even on extremely simple

graphs sufficiently complex threshold functions lead to hard problems.

Theorem 3.22 Given a pair (k, τ), where k is a non-negative integer and τ

is a threshold function on a complete graph Kn, it is NP -complete to decide

whether iτ̄ (Kn) ≤ k and it is NP -complete to decide whether hτ̄ (Kn) ≤ k.

Proof. The two considered decision problems are clearly in NP, because the τ̄ -

threshold process on G starting with a given set can be generated in polynomial

time. In order to establish hardness, we describe polynomial reductions from Set

Cover. Therefore, let C = (k, (S1, . . . , Sp)) be an instance of Set Cover, that is,
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k is a positive integer, the Si are subsets of some ground set V , and C is a ‘Yes’-

instance of Set Cover if and only if there is a set C of at most k integers in [p]

with
⋃
i∈C Si = V . Clearly, we may assume that

⋃
i∈[p] Si = V and k < min{p, |V |}.

Let n = p + |V |, and let V (Kn) = {S1, . . . , Sp} ∪ V . For i ∈ [p], let τ(Si) = {∅},
and, for u ∈ V , let τ(u) = {{Si} : i ∈ [p] and u ∈ Si}. It is easy to see that C is a

‘Yes’-instance of Set Cover if and only if iτ̄ (Kn) ≤ k. Since the encoding length

of the Set Cover instance C is Ω(ln(k) +p|V |), the special choice of τ implies that

the encoding length of (Kn, τ) is polynomially bounded in terms of the encoding

length of C.

Let n′ = 2p + 1 + |V |, and let V (Kn′) = {S1, . . . , Sp} ∪ V ∪ X, where X is a set

of order p + 1 that is disjoint from {S1, . . . , Sp} ∪ V . For i ∈ [p], let τ ′(Si) = {X},
for u ∈ V , let τ ′(u) = {{Si} : i ∈ [p] and u ∈ Si}, and, for x ∈ X, let τ ′(x) = {V }.
Again, the encoding length of (Kn′ , τ

′) is polynomially bounded in terms of the

encoding length of C.
Suppose that C is a ‘Yes’-instance of Set Cover, and let C be as above. Let S =

{Si : i ∈ C}. The definition of τ ′ implies that Iτ̄ ′(S) = S ∪ V , I2
τ̄ ′(S) = S ∪ V ∪X,

and I3
τ̄ ′(S) = V (Kn′), which implies hτ̄ ′(Kn′) ≤ k.

Conversely, suppose that hτ̄ ′(Kn′) ≤ k. Let S be a set of at most k vertices of Kn′

with Hτ̄ ′(S) = V (Kn′) such that |S∩V | is as small as possible. If u ∈ S∩V and Si is

such that u ∈ Si, then u ∈ Iτ̄ ′((S\{u})∪{Si}), which implies Hτ̄ ′((S\{u})∪{Si}) =

V (Kn′). Since |(S\{u})∪{Si}| ≤ |S| and |((S\{u})∪{Si})∩V | < |S∩V |, this yields

a contradiction to the choice of S. Hence S contains no element of V . Since k < p,

the set S does not contain all elements of X. If V 6⊆ Iτ̄ ′(S), then the definition of τ ′

implies Iτ̄ ′(S) = Hτ̄ ′(S) 6= V (Kn′), which is a contradiction. Hence, V ⊆ Iτ̄ ′(S). We

obtain
⋃
Si∈S Si = V , which yields that C is a ‘Yes’-instance of Set Cover. �

As observed by Chleb́ık and Chleb́ıková [37], Feige [70], Dinur and Steurer [55]

showed the hardness of approximation of Set Cover for instance with ln(p+|V |) ≈
ln(|V |). Therefore, the construction in the proof of Theorem 3.22 actually implies

the following.

Theorem 3.23 For a given threshold function τ on a complete graph Kn, nei-

ther iτ̄ (Kn) nor hτ̄ (Kn) can be approximated in polynomial time within a factor

of (1− ε) ln(n) for any constant ε > 0 unless P = NP .

Replacing Set Cover with Exact Cover by 3-Sets (cf. the proof of Theo-

rem 3.26 below) within the proof of Theorem 3.22 yields the following additional

result.
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Theorem 3.24 Given a pair (k, τ), where k is a non-negative integer and τ

is a threshold function on a complete graph Kn, it is NP -complete to decide

whether iτ (Kn) ≤ k.

Note that in the construction used in the proof of Theorem 3.22 several edges of the

complete graph Kn are in fact irrelevant because of the special choice of τ . Removing

these edges easily implies that deciding iτ̄ (G) ≤ k and iτ (G) ≤ k are NP -complete

for a given triple (G, k, τ), where G is a bipartite graph, k is a non-negative integer,

and τ is a threshold function on G.

We present some more hardness results concerning special choices of the thresh-

old function.

Theorem 3.25 Given a graph G and a given integer k, it is NP-complete to decide

whether iτ (G) ≤ k, where τ is the threshold function on G with τ(u) =
(
NG(u)

1

)
for

every vertex u of G.

Proof. Again, the considered decision problem is clearly in NP . In order to

prove completeness, we describe a polynomial reduction from 1-in-3Sat. There-

fore, let F be an instance of 1-in-3Sat with m clauses C1, . . . , Cm over n Boolean

variables x1, . . . , xn. We specify a graph G and an integer k such that the order of G

is polynomially bounded in terms of n and m, and F has a satisfying truth assign-

ment that leads to exactly one true literal in each clause if and only if iτ (G) ≤ k for

the special threshold function τ described in the statement.

Therefore,

• for every variable xi, we create a copy Gi of K4−e and denote the two vertices

of degree 3 in Gi by xi and x̄i,

• for every clause Cj, we create a vertex Cj, and

• for every literal x ∈ {x1, . . . , xn}∪{x̄1, . . . , x̄n} and every clause Cj such that x

appears in Cj, we add the edge xCj.

This completes the construction of G. Let k = n.

If F has a satisfying truth assignment that leads to exactly one true literal in

each clause, then the set S of all vertices that correspond to true literals is a τ -

interval set of order n. Conversely, if S is a τ -interval set of order at most n, then

the special choice of τ and k implies that S ∩V (Gi) ∈ {{xi}, {x̄i}} for every i ∈ [n],

and S ∩ {C1, . . . , Cm} = ∅. Therefore, since S is a τ -interval set, the elements in S

indicate a satisfying truth assignment for F that leads to exactly one true literal in

each clause, which completes the proof. �
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Theorem 3.26 Given a bipartite graph G and a given integer k, it is NP -complete

to decide whether i⊕(G) ≤ k.

Proof. Again, the considered decision problem is clearly in NP . In order to prove

completeness, we describe a polynomial reduction from Exact Cover by 3-Sets.

Therefore, let C be an instance of Exact Cover by 3-Sets consisting of m 3-

element subsets C1, . . . , Cm of a ground set X of order 3n. Clearly, we may assume

that
⋃m
i=1 Ci = X. We specify a bipartite graph G and an integer k such that

the order of G is polynomially bounded in terms of n and m, and C is a ‘Yes’-

instance of Exact Cover by 3-Sets if and only if i⊕(G) ≤ k. Let V (G) =

X ∪ {C1, . . . , Cm} ∪ {r} ∪ {s1, . . . , sn+2},

E(G) = {xCi : x ∈ X, i ∈ [m], and x ∈ Ci} ∪ {rCi : i ∈ [m]} ∪ {rsj : j ∈ [n+ 2]},
and

k = n+ 1.

If C is a ‘Yes’-instance, and I is a set of exactly n indices in [m] such

that
⋃
i∈I Ci = X, then {r} ∪ {Ci : i ∈ I} is an ⊕-interval set of G, which im-

plies i⊕(G) ≤ n+1. Conversely, let S be an ⊕-interval set of G of order at most n+1.

If S does not contain r, then sj ∈ S for every j ∈ [n+2], which implies the contradic-

tion |S| > n+1. Hence, r ∈ S. Let nX = |S∩X| and nC = |S∩{C1, . . . , Cm}|. Since

each of the 3n−nX vertices in X \S has at least one neighbor in S ∩{C1, . . . , Cm},
and every vertex Ci has exactly 3 neighbors in X, we obtain 3n− nX ≤ 3nC , which

implies 1
3
nX + nC ≥ n. Since nX + nC ≤ |S| − 1 ≤ n, we obtain nX = 0. Therefore,

if I = {i ∈ [m] : Ci ∈ S}, then |I| = nC ≤ n and
⋃
i∈I Ci = X, which implies that C

is a ‘Yes’-instance. �

3.3.2 Efficient algorithms for trees

In view of the strong hardness results in the previous subsection, efficient algorithms

seem possible only for either quite restricted graph classes (and general threshold

functions) or quite restricted threshold functions (and more general graph classes).

The second of these two options comprises the many well known efficient algorithms

for domination, multiple domination, vertex cover, independence and target set

selection in special graph classes. Therefore, we focus here on the first option, that

is, we do not want to restrict the threshold functions.

In [40, 41] generalizations of target selection problem (a special case of the prob-

lem studied here) have been studied on trees where size/cost set bound and time

bound are considered. They provided linear algorithms for such cases. However

these problems assume that any vertex v has an integer value t(v) meaning that v
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needs t(v) activate neighbors to become activate. Clearly relaxed τ -threshold pro-

cess provides more general problems such as relaxed τ -interval (time bound equals

1) and relaxed τ -hull (time bound equals n(G)).

Relaxed and non-relaxed τ-hull number

We present some efficient algorithms for trees. Our first result concerns the re-

laxed τ -hull number.

Lemma 3.27 Let G be a graph, and let τ be a threshold function on G. Let uv be

an edge of G such that v has degree 1 in G.

(i) If τ(v) = ∅, then for the threshold function σ on G− v defined as

σ(x) =




{N \ {v} : N ∈ τ(u)} , if x = u, and

τ(x) , otherwise,

it holds that hτ̄ (G) = hσ̄(G− v) + 1.

(ii) If ∅ ∈ τ(v), and the threshold function σ on G− v is as in (i), then hτ̄ (G) =

hσ̄(G− v).

(iii) If τ(v) = {{u}}, and the threshold function σ on G− v is such that

σ(x) =




{N : N ∈ τ(u) and v 6∈ N} , if x = u, and

τ(x) , otherwise,

then hτ̄ (G) = hσ̄(G− v).

Proof. (i) Since τ̄(v) = ∅, every τ̄ -hull set of G contains v. The definition of σ easily

implies that S is a τ̄ -hull set of G if and only if S \ {v} is a σ̄-hull set of G − v,

which implies (i).

(ii) Since ∅ ∈ τ̄(v), no τ̄ -hull set of G that is minimal with respect to inclusion

contains v. For a set S ⊆ V (G) \ {v}, the definition of σ easily implies that S is

a τ̄ -hull set of G if and only if S is a σ̄-hull set of G− v, which implies (ii).

(iii) If S is a τ̄ -hull set of G that is minimal with respect to inclusion and v ∈ S,

then u 6∈ S, and (S \ {v}) ∪ {u} is a τ̄ -hull set of G. Hence, G has a τ̄ -hull set of

minimum order that does not contain v. For a set S ⊆ V (G) \ {v}, the definition

of σ easily implies that S is a τ̄ -hull set of G if and only if S is a σ̄-hull set of G− v,

which implies (iii). �
Iteratively applying Lemma 3.27 immediately implies the following.
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Theorem 3.28 For a given pair (T, τ), where T is a tree and τ is a threshold

function on T , the relaxed τ -hull number of T can be determined in linear time.

Note that the linear running time refers to the encoding length as specified in (3.4).

The non-relaxed τ -hull number seems to be much harder even for trees. More

specifically, given a tree T rooted by some vertex u and a threshold function τ on T ,

it seems difficult to verify even if u does not belong to any τ -hull set S of T . This

occurs because u needs an exact subset N ∈ τ(u) of its neighbors at some time

step t ≥ 1 during the process, such that N ⊆ H(S) at t and all of the vertices

in NG(u) \N are not in H(S) at t. Hence, it is required a mutual synchronization

of the τ -hull sets of all subtrees of u. However, a simple dynamic programming

approach works for paths.

Proposition 3.29 For a given pair (Pn, τ), where τ is a threshold function on the

path Pn of order n, the τ -hull number of Pn can be determined in polynomial time.

Proof. For every two vertices u and v of Pn, it is possible to determine efficiently

whether Hτ ({u, v}) contains all vertices that lie between u and v on Pn. Similarly,

for every vertex u of Pn, it is possible to determine efficiently whether Hτ ({u})
contains all vertices that lie between u and some specific endvertex of Pn. In view

of these observations, a simple dynamic programming approach allows to determine

the τ -hull number of Pn efficiently. �

Relaxed and non-relaxed τ-interval number

Remember that we cannot able to answer whether a given vertex does not belong to

a τ -hull set of a tree T due to the requirement of a synchronization of the τ -hull sets

of the subtrees of a vertex. The next two results concern the recognition of vertices

that are not in every τ -interval set for trees.

Lemma 3.30 Let T be a tree, and let τ be a threshold function on T . Let u be a

vertex. For v ∈ NT (u), let Tv be the component of T − u that contains v.

There is a τ -interval set S of T that does not contain u if and only if there is

some set N in τ(u) such that for every v ∈ NG(u) \N , there is a τv-interval set Sv

of Tv that does not contain v, where

τv(x) =




{X : X ∈ τ(v) and u 6∈ X} , if x = v, and

τ(x) , x ∈ V (Tv) \ {v}.

Proof. Suppose that S is a τ -interval set of T that does not contain u. Clearly,

N = S ∩ NG(u) ∈ τ(u), and if v ∈ NG(u) \ N , then S ∩ V (Tv) is a τv-interval set

of Tv that does not contain v. This proves the necessity.
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For the sufficiency, let N ∈ τ(u), and Sv for v ∈ NG(u)\N be as in the statement.

By the definition of τv, the set S =
⋃
v∈N V (Tv) ∪

⋃
v∈NG(u)\N Sv is a τ -interval set

of T that does not contain u. �

Proposition 3.31 For a given triple (T, τ, u), where T is a tree, τ is a threshold

function on T , and u is a vertex of T , one can determine in linear time whether T

has a τ -interval set that does not contain u.

Proof. We root T in u. For every vertex v of T that is distinct from u, let Tv denote

the subtree of T that contains v as well as all descendants of v, and that is rooted

in v. Furthermore, if v− is the parent of v, then let τv be the threshold function

on Tv defined by

τv(x) =




{X : X ∈ τ(v) and v− 6∈ X} , if x = v, and

τ(x) , x ∈ V (Tv) \ {v}.

Iteratively applying Lemma 3.30 and processing the vertices v of T in an order

of non-increasing depth, one can determine in linear time, whether Tv has a τv-

interval set that does not contain v. Note that if exists N ∈ τ(u) such that for

every v ∈ NG(u) \ N , Tv has a τ -interval set that does not contain v, then T

has a τ -interval set S that does not contain u, because, without loss of generality,⋃
w∈N V (Tw) ⊆ S. �

Our next goal is an efficient algorithm for the τ -interval number of a tree.

Lemma 3.32 Let T be a rooted tree, and let τ be a threshold function on T . For

every vertex u of T that is not a leaf, every child v of u, and every subset F of {u, v},
let

i(u, v, F ) = min
{
|S \ {u}| : S is a τuv-interval set of Tuv with S ∩ {u, v} = F

}
,

where Tuv is the subtree of T that contains u, v, and all descendants of v, τuv is the

threshold function on Tuv such that

τuv(x) =




{F ∩ {v}} , if x = u, and

τ(x) , x ∈ V (Tuv) \ {u},

and min ∅ =∞.
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(i) If v is a leaf, then

i(u, v, F ) =





1 , if v ∈ F ,

0 , if v 6∈ F and F ∩ {u} ∈ τ(v), and

∞ , otherwise.

(ii) If v is not a leaf, W is the set of children of v, and v 6∈ F , then

i(u, v, F ) = min

{ ∑

w∈W∩N
i(v, w, {w}) +

∑

w∈W\N
i(v, w, ∅) : N ∈ τ(v)

with N ∩ {u} = F ∩ {u}
}
.

(iii) If v is not a leaf, W is the set of children of v, and v ∈ F , then

i(u, v, F ) = 1 +
∑

w∈W
min

{
i(v, w, {v}), i(v, w, {v, w})

}
.

Proof. (i) Note that V (Tuv) = {u, v}. The set F is a τuv-interval set of Tuv if and

only if either v ∈ F or v 6∈ F but F ∩ {u} ∈ τ(v). By the definition of i(u, v, F ),

this immediately yields the stated values.

(ii) Let S be a τuv-interval set of Tuv with S ∩ {u, v} = F and i(u, v, F ) = |S \ {u}|.
Since v 6∈ F , we obtain that v 6∈ S. Hence, the set N = S ∩NTuv(v) belongs to τ(v)

and satisfies N ∩ {u} = F ∩ {u}. For every child w of v, let Sw = S ∩ V (Tvw).

If w ∈ W ∩ N , then Sw is a τvw-interval set of Tvw with Sw ∩ {v, w} = {w}, and,

if w ∈ W \N , then Sw is a τvw-interval set of Tvw with Sw∩{v, w} = ∅. This implies

i(u, v, F ) = |S \ {u}| =
∑

w∈W∩N
|Sw|+

∑

w∈W\N
|Sw|

≥
∑

w∈W∩N
i(v, w, {w}) +

∑

w∈W\N
i(v, w, ∅),

which implies that i(u, v, F ) is at least the minimum stated in (ii).

Conversely, let N ∈ τ(v) with N ∩ {u} = F ∩ {u} be such that

∑

w∈W∩N
i(v, w, {w}) +

∑

w∈W\N
i(v, w, ∅)

is minimum. For w ∈ W ∩N , let Sw be a τvw-interval set of Tvw with Sw ∩{v, w} =

{w} and i(v, w, {w}) = |Sw \ {v}|, and, for w ∈ W \ N , let Sw be a τvw-interval

set of Tvw with Sw ∩ {v, w} = ∅ and i(v, w, ∅) = |Sw \ {v}|. By the definition
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of τuv and the choice of N , the set S = F ∪ ⋃w∈W Sw is a τuv-interval set of Tuv

with S ∩ {u, v} = F . We obtain

i(u, v, F ) ≤ |S \ {u}| =
∑

w∈W∩N
|Sw|+

∑

w∈W\N
|Sw|

=
∑

w∈W∩N
i(v, w, {w}) +

∑

w∈W\N
i(v, w, ∅),

which implies that i(u, v, F ) is at most the minimum stated in (ii).

(iii) Let S be a τuv-interval set of Tuv with S ∩{u, v} = F and i(u, v, F ) = |S \ {u}|.
For every child w of v, let Sw = S ∩ V (Tvw). Since v ∈ F ⊆ S, the set Sw is

a τvw-interval set of Tvw with v ∈ Sw. We obtain

i(u, v, F ) = |S \ {u}| = |{v}|+
∑

w∈W
|Sw \ {v}|

≥ 1 +
∑

w∈W
min

{
i(v, w, {v}), i(v, w, {v, w})

}
,

which implies that i(u, v, F ) is at least the minimum stated in (iii).

Conversely, for w ∈ W , let Sw be a τvw-interval set of Tvw with v ∈ Sw and

min
{
i(v, w, {v}), i(v, w, {v, w})

}
= |Sw \ {v}|.

By the definition of τuv, the set S = F ∪ ⋃w∈W Sw is a τuv-interval set of Tuv

with S ∩ {u, v} = F . We obtain

i(u, v, F ) ≤ |S \ {u}| = |{v}|+
∑

w∈W
|Sw \ {v}|

= 1 +
∑

w∈W
min

{
i(v, w, {v}), i(v, w, {v, w})

}
,

which implies that i(u, v, F ) is at most the minimum stated in (iii). �

Theorem 3.33 For a given pair (T, τ), where T is a tree of order n and τ is a

threshold function on T , the τ -interval number of T can be determined in linear

time.

Proof. We root T in an endvertex r. Let s be the neighbor of r in T . By Lemma 3.32,

the vectors
(
i(u, v, ∅), i(u, v, {u}), i(u, v, {v}), i(u, v, {u, v})

)
can be determined in

linear time processing the edges uv of T in an order of non-increasing depth of u.
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By definition,

iτ (T ) = min

{
i(r, s, F ) + |F ∩ {r}| : F ⊆ {r, s} with either r ∈ F

or r 6∈ F and F ∩ {s} ∈ τ(r)

}
.

�
By definition, the relaxed τ -interval number of a tree T equals the τ̄ -interval

number of T , and we can apply the algorithm described in the proof of Theorem 4.12.

Unfortunately, this only leads to a running time that is linear in the encoding length

of (T, τ̄), which may be much bigger than the encoding length of (T, τ). Therefore,

for the next result, we need to argue how to obtain a running time that is linear in

the encoding length of (T, τ).

Corollary 3.34 For a given pair (T, τ), where T is a tree of order n and τ is a

threshold function on T , the relaxed τ -interval number of T can be determined in

linear time.

Proof. In view of Lemma 3.32, it suffices to argue, how to evaluate the expression

min





∑

w∈W∩N̄
i(v, w, {w}) +

∑

w∈W\N̄
i(v, w, ∅) : N̄ ∈ τ̄(v) with N̄ ∩ {u} = F ∩ {u}





in O(dG(v)|τ(v)|) time, where v is a child of u, and v 6∈ F ⊆ {u, v}. By the definition

of τ̄ , we obtain that N̄ ∈ τ̄(v) if and only if there is a set N ∈ τ(v) with N ⊆ N̄ ,

which easily implies that the above expression equals

min

{ ∑

w∈W∩N
i(v, w, {w}) +

∑

w∈W\N
min{i(v, w, ∅), i(v, w, {w})} : N ∈ τ(v) with

N ∩ {u} ⊆ F ∩ {u}
}
,

which can clearly be determined in O(dG(v)|τ(v)|) time. �
The problem of computing a smallest⊕-interval set is close related to parity dom-

ination problem [79], which can be solved in linear time for graphs with bounded

treewidth [79]. However, parity domination algorithms cannot be applied to obtain

the ⊕-interval number of a graph, because the parity domination set property de-

pends on a given partition of the vertices and a given function π : V → {0, 1}. For

more information about parity domination see [53, 79, 88].

Hence, in order to determine the ⊕-interval number in linear time, the special

choice τ = ⊕ requires some arguments concerning the running time.

75



Theorem 3.35 For a given tree T , the ⊕-interval number of T can be determined

in linear time.

Proof. Again, we can root T in an endvertex r and apply the algorithm described in

the proof of Theorem 4.12. Now, we only need to argue how to improve its running

time to be linear in the encoding length of T . Consider w− the parent of a vertex w

of T . In view of Lemma 3.32, it suffices to explain how to minimize an expression

of the form ∑

w∈N
i1(w) +

∑

w∈W\N
i2(w)

over all subsets N of a set W of a fixed parity p modulo 2 in O(|W |) time, where

i1(w) =

∣∣∣∣∣∣
∑

s∈N(w)\{w−}
min

{
i(w, s, F ) : F ⊆ {r, s} and r ∈ F

}
∣∣∣∣∣∣

+ 1,

and

i2(w) =

∣∣∣∣∣∣
∑

s∈N(w)\{w−}
min

{
i(w, s, F ) : F ⊆ {r, s} and r /∈ F

}
∣∣∣∣∣∣
.

If i1(w) = i2(w) for some w ∈ W , then the minimum

equals
∑

w∈W min{i1(w), i2(w)}. Hence, we may assume that i1(w) 6= i2(w)

for every w ∈ W . Let N = {w ∈ W : i1(w) < i2(w)}. If |N | mod 2 = p, then the

minimum equals again
∑

w∈W min{i1(w), i2(w)}. If |N | mod 2 6= p, and w∗ ∈ W is

such that

|i1(w∗)− i2(w∗)| = min{|i1(w)− i2(w)| : w ∈ W},

then the minimum equals |i1(w∗)− i2(w∗)|+∑w∈W min{i1(w), i2(w)}. These obser-

vations easily imply the linear running time. �
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Chapter 4

Editing Problems by the Removal

of a Matching

“If I look back I am lost.”

(Daenerys Targarean)

— G. Martin, A Dance with

Dragons

As a natural variant of the many decycling notions studied in graphs,

we consider two problems to decide whether a given graph G has a

matching M such that G −M is a forest, and whether G is a bipartite

graph, respectively.

Concerning the first problem, we establish NP -completeness for 2-

connected planar subcubic graphs, and describe polynomial time algo-

rithms that also determine such a matching if it exists for graphs that are

claw- and paw-free, P5-free graphs, chordal graphs, and C4-free distance

hereditary graphs.

In order to obtain a bipartite graph by the removal of a matching,

we show that such a decision problem is NP -complete even for planar

graphs of maximum degree 4, but can be solved in linear time in graphs

of maximum degree 3. We also present polynomial time algorithms for

(claw, paw)-free graphs, graphs containing only triangles as odd cycles,

graphs with bounded dominating sets, and P5-free graphs. In addition,

we show that the problem is fixed-parameter tractable when parame-

terized by clique-width, which implies polynomial time solvability for

many interesting graph classes such as distance-hereditary graphs and

outerplanar graphs. Finally a 2β(G).n algorithm, and a kernel having at
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most 2.nd(G) vertices are presented, where nd(G) is the neighborhood

diversity of the input graph.

4.1 Obtaining a Forest

For a set E of edges of a graph G, let G−E be the graph with vertex set V (G) and

edge set E(G) \E. If G−E is a forest, then E is decycling. Let FM be the set of

all graphs that have a decycling matching.

The following lemma collects some basic observations concerning graphs that

have a decycling matching.

Lemma 4.1 Let G be a graph.

(i) If G ∈ FM is connected, then G has a matching M for which G−M is a tree.

(ii) If G ∈ FM, then m(H) ≤
⌊

3n(H)
2

⌋
− 1 for every subgraph H of G.

(iii) If G is subcubic and connected, then G ∈ FM if and only if G has a spanning

tree T such that all endvertices of T are of degree at most 2 in G.

Proof. (i) Let G ∈ FM be connected. Let M be a matching of G such that G−M
is a forest F with as few components as possible. Suppose, for a contradiction, that

F is not connected. Since G is connected, M contains an edge e between different

components of F . Now, N = M \{e} is a matching of G such that G−N is a forest

with less components than F , which implies a contradiction. Hence, F is a tree.

(ii) Let G ∈ FM. Since FM is closed under taking subgraphs, it suffices to show

m(G) ≤
⌊

3n(G)
2

⌋
− 1. Let M be a decycling matching of G. Clearly, m(G) ≤

m(G−M) + |M | ≤ (n(G)− 1) +
⌊
n(G)

2

⌋
=
⌊

3n(G)
2

⌋
− 1.

(iii) Let G be a connected subcubic graph. Clearly, we may assume that n(G) ≥ 3.

First, suppose that G ∈ FM. By (i), G has a matching M such that G−M is

a spanning tree T . If u is an endvertex of T , then dG(u) ≤ dT (u) + 1 ≤ 2, which

implies that all endvertices of T have degree at most 2 in G.

Next, suppose that T is a spanning tree of G such that all endvertices of T are

of degree at most 2 in G. Let M = E(G) \ E(T ). Clearly, M is decycling, and it

remains to show that M is a matching. Suppose that M contains two edges incident

with the same vertex u of G. This implies dT (u) ≤ dG(u)− 2 ≤ 3− 2 = 1, that is, u

is an endvertex of T . By the choice of T , we obtain dT (u) ≤ dG(u)− 2 ≤ 2− 2 = 0,

which is a contradiction. �
Lemma 4.1(iii) is the key observation for the following hardness result.
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Theorem 4.2 For a given 2-connected planar subcubic graph G, it is NP -complete

to decide whether G ∈ FM.

Proof. The considered decision problem is clearly in NP . In order to show NP -

completeness, we use [77] that deciding the existence of a Hamiltonian cycle for

a given 3-connected planar cubic graph is NP -complete. In fact, the 3-connected

planar cubic graphs G constructed by Garey et al. in [77] contain several edges

that necessarily belong to every Hamiltonian cycle of G; regardless of whether such

a cycle exists or not. Therefore, removing such an edge, their construction implies

the NP -completeness of the following decision problem: Given a 2-connected planar

subcubic graph G with exactly two vertices u and v of degree 2, does G have a

Hamiltonian path whose endvertices are u and v?

LetG be a 2-connected planar subcubic graph with exactly two vertices u and v of

degree 2. In order to complete the proof, it suffices to show that G has a Hamiltonian

path whose endvertices are u and v if and only if G ∈ FM. First, suppose that P is

a Hamiltonian path of G whose endvertices are u and v. Clearly, P is a spanning tree

of G such that all endvertices of P are of degree at most 2 in G. By Lemma 4.1(iii),

this implies G ∈ FM. Next, suppose that G ∈ FM. By Lemma 4.1(iii), this

implies that G has a spanning tree T such that all endvertices of T are of degree

at most 2 in G. Since u and v are the only vertices of G of degree at most 2, this

implies that T has exactly the two endvertices u and v. Hence, T is a Hamiltonian

path of G whose endvertices are u and v. �
In order to enable suitable reductions, we now consider a slightly more general

version of our decision problem.

Allowed Decycling Matching

Input: A graph G and a set F of edges of G.

Question: Is G has a decycling matching M that does not inter-

sect F , and determine such a matching if it exists

A matching M as in Allowed Decycling Matching is an allowed decycling

matching of (G,F ).

Theorem 4.3 Allowed Decycling Matching can be solved in polynomial time

for (claw, paw)-free graphs.

Proof. Let G be a (claw, paw)-free graph and let F be a set of edges of G.

Since (G,F ) has an allowed decycling matching if and only if (K,E(K)∩F ) has an

allowed decycling matching for every component K of G, we may assume that G is

connected.

The following claim is an immediate consequence of Lemma 4.1(ii).
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Claim 4.4 If G contains K4 as an induced subgraph, then (G,F ) has no allowed

decycling matching.

Claim 4.5 If G has a vertex of degree at least 4, then (G,F ) has no allowed decy-

cling matching.

Proof of Claim 4.5: Let u be a vertex of G with four neighbors v1, v2, v3, and v4.

Since G is {claw, paw, K4}-free, we may assume, by symmetry, that v1v2, v2v3 ∈
E(G) and v1v3 6∈ E(G). Considering v1, v3, and v4, this implies, by symmetry,

that v3v4 ∈ E(G). Considering the three triangles uv1v2u, uv2v3u, and uv3v4u, it

follows that (G,F ) does not have an allowed decycling matching. 2

Since no endvertex of G lies on a cycle, we may assume that G has minimum degree

at least 2. Since whether G is K4-free and has maximum degree at most 3, can

be tested in polynomial time, we may assume, by Claim 4.4 and Claim 4.5, that G

is K4-free and has maximum degree at most 3. If G does not have any vertex of

degree 3, then G is a cycle, and (G,F ) has an allowed decycling matching if and only

if F does not contain all edges of G. Hence, we may assume that G has a vertex b

of degree 3. Let NG(b) = {a, c, d}. Since G is {claw, paw, K4}-free, we may assume,

by symmetry, that ac, cd ∈ E(G) and ad 6∈ E(G). Let G′ = (V (G) \ {b, c}, (E(G) \
{ab, ac, bc, bd, cd}) ∪ {ad}), and let F ′ = (F \ {ab, ac, bc, bd, cd}) ∪ {ad} ∪ {xa : x ∈
NG(a) \ {b, c}} ∪ {ad} ∪ {yd : x ∈ NG(d) \ {b, c}}.

Claim 4.6 (i) G′ is (claw, paw)-free.

(ii) (G,F ) has an allowed decycling matching if and only if

• ab, cd 6∈ F or ac, bd 6∈ F , and

• (G′, F ′) has an allowed decycling matching.

Proof of Claim 4.6: (i) Suppose, for a contradiction, that G′ contains an induced

subgraph H that is isomorphic to a claw or a paw. Since G is (claw, paw)-free,

H contains the edge ad. By symmetry, we may assume that either dH(a) = 3

or dH(a) = dH(d) = 2. If dH(a) = 3, then G[(V (H) \ {d}) ∪ {b}] is isomorphic to

a claw or to a paw, which is a contradiction. If dH(a) = dH(d) = 2, and x is the

common neighbor of a and d in H, then G[{a, b, c, x}] is isomorphic to a paw, which

is a contradiction.

(ii) First, we assume that M is an allowed decycling matching of (G,F ).

Since G[{a, b, c, d}] − (M ∩ E(G[{a, b, c, d}])) is a forest, we obtain that M ∩
E(G[{a, b, c, d}]) is either {ab, cd} or {ac, bd}, that is, ab, cd 6∈ F or ac, bd 6∈
F . Since G − M contains either the path abcd or the path acbd, it follows

that M \ E(G[{a, b, c, d}]) is an allowed decycling matching of (G′, F ′).
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Next, we assume that M ′ is an allowed decycling matching of (G′, F ′), and that,

by symmetry, ab, cd 6∈ F . Since ad ∈ F ′, we obtain that ad 6∈ M ′. This implies

that M ′ ∪ {ab, cd} is an allowed decycling matching of (G,F ).

Iteratively applying the reductions captured by the above claims, clearly allows

to decide in polynomial time whether (G,F ) has an allowed decycling matching,

and to determine such a matching in polynomial time if it exists. �
Now we show a polynomial time algorithm for a P5-free graph G. By a result

of Liu et al. [102], G has a dominating induced cycle of length 5 or a dominating

clique.

Theorem 4.7 Allowed Decycling Matching can be solved in polynomial time

for P5-free graphs.

Proof. Let G be a P5-free graph and let F be a set of edges of G. Again, we may

assume that G is connected.

First, we assume that G has a dominating induced cycle C of length 5. Since G is

P5-free, every vertex in V (G)\V (C) has at least two neighbors in V (C). This implies

that m(G) ≥ 5 + 2(n(G)−5) = 2n(G)−5. If n(G) ≥ 9, then m(G) > 3n(G)
2
−1, and

Lemma 4.1(ii) implies that (G,F ) has no allowed decycling matching. Hence, we

may assume that n(G) ≤ 8 in this case, which implies that Allowed Decycling

Matching can be solved in constant time.

Next, we assume that G has a dominating clique C of order p. Lemma 4.1(ii),

we may assume that p ≤ 3. If p = 1, then G has a universal vertex u. Now, it

follows easily that (G,F ) has an allowed decycling matching if and only if one of

the following two conditions holds:

• G− u is a graph of maximum degree at most 1 that contains no edge from F .

• u has a neighbor v of degree at most 2 such that uv 6∈ F , and G− {u, v} is a

graph of maximum degree at most 1 that contains no edge from F .

The first condition is equivalent to the existence of an allowed decycling matching

that contains no edge incident with u, while the second condition is equivalent to

the existence of an allowed decycling matching that contains the edge uv.

If p = 3, then G has a dominating triangle uvwu. Clearly, every decycling

matching must contain one of the three edges of uvwu. Furthermore, u, v, and w

belong to the same component of G−M for every matching M of G. Considering

the polynomially many possibilities to select one of the three edges of uvwu as well

as at most one further edge incident to a vertex in C, both forming a matching that

does not intersect F , we can deduce a polynomial number of efficiently checkable

conditions, very similar to those explicitly stated in the case p = 1, such that (G,F )

has an allowed decycling matching if and only if one of these conditions is satisfied.
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Finally, if p = 2, then we may assume that no vertex in V (G) \ C has two

neighbors in C; since otherwise, G has a dominating triangle. This implies that

if uv is a dominating edge of G, then V (G) is partitioned into {u, v}, NG(u) \ {v},
and NG(v) \ {u}. Clearly, every matching contains at most two edges incident

with u and v. Again, considering the polynomially many possibilities to select

such edges, we can deduce a polynomial number of efficiently checkable conditions

such that (G,F ) has an allowed decycling matching if and only if one of these

conditions is satisfied. For example, (G,F ) has an allowed decycling matching that

contains uv if and only if uv 6∈ F , and there is a set E containing at most one edge

between NG(u) \ {v} and NG(v) \ {u} such that (G − {u, v}) − E has maximum

degree at most 1, and contains no edge from F . Clearly, this implies the desired

statement. �
Next we prove that there exists a polynomial time algorithm for chordal graphs.

Theorem 4.8 Allowed Decycling Matching can be solved in polynomial time

for chordal graphs.

Proof. Let G be a chordal graph and let F be a set of edges of G. Again, we may

assume that G is connected. Furthermore, we may assume that G does not contain

bridges, that is, every block of G has order at least 3. If G contains a cycle C of

length ` at least 5, then, since G is chordal, m(G[V (C)]) ≥ 2` − 3 > 3`
2
− 1, and

Lemma 4.1(ii) implies that G does not have an allowed decycling matching. Hence,

every cycle of G has length at most 4.

Let B be a block of G of order at least 4. Since G is chordal, B contains a

triangle abca. Since B has order at least 4, we may assume that b has a neighbor d

distinct from a and c. Since G has no cycle of length at least 5, considering a

shortest path in B− b between d and a vertex in {a, c} implies that we may assume,

by symmetry, that c and d are adjacent. By Lemma 4.1(ii), G does not contains K4,

which implies that G[{a, b, c, d}] is K4 − e. Suppose that B has order at least 5.

This implies that some vertex x in V (B) \ {a, b, c, d} has a neighbor y in {a, b, c, d}.
Considering a shortest path in B − y between x and a vertex in {a, b, c, d} \ {y},
and using the absence of cycles of length at least 5, we obtain that x is adjacent

to a and d. Hence, m(G[{a, b, c, d, x}]) ≥ 7 > 3·5
2
− 1, and Lemma 4.1(ii) implies

that G does not have an allowed decycling matching. Hence, we may assume that

every block of G is either a triangle or isomorphic to K4 − e.
Clearly, we may assume that G has at least 2 blocks. Let B be an endblock of G,

that is, B contains exactly one cutvertex.

First, we assume that B is a triangle abca and that c is the cutvertex of B.

If ab, bc, ca ∈ F , then (G,F ) does not have an allowed decycling matching. If ab 6∈
F , then (G,F ) has an allowed decycling matching if and only if (G − {a, b}, F \
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{ab, bc, ca}) has an allowed decycling matching. If ab ∈ F but ac 6∈ F or bc 6∈
F , then (G,F ) has an allowed decycling matching if and only if

(
G − {a, b}, (F \

{ab, bc, ca}) ∪ {cx : x ∈ NG(c) \ {a, b}}
)

has an allowed decycling matching.

Next, we assume that B is isomorphic to K4 − e. Let x denote the cutvertex

contained in B. It follows that (G,F ) has an allowed decycling matching if and only

if one of the two perfect matchings of B does not intersect F , and
(
G − (V (B) \

{x}), (F \ E(B)) ∪ {xy : y ∈ NG(x) \ V (B)}
)

has an allowed decycling matching.

Iteratively applying these reductions allows to decide in polynomial time

whether (G,F ) has an allowed decycling matching, and also, to determine such

a matching in polynomial time if it exits. �
Next we prove that there exists a polynomial time algorithm for C4-free distance

hereditary graphs. By results of Bandelt and Mulder [11], this implies that G has

an endvertex, or that G contains two vertices a and b with either NG[a] = NG[b]

or NG(a) = NG(b).

Theorem 4.9 Allowed Decycling Matching can be solved in polynomial time

for C4-free distance hereditary graphs.

Proof. Let G be a (connected) C4-free distance hereditary graph and let F be a set

of edges of G. Clearly, we may assume that G has order at least 3.

Clearly, if G has an endvertex x, then (G,F ) has an allowed decycling matching

if and only if (G− x, F ∩E(G− x)) has an allowed decycling matching. Hence, we

may assume that G has no endvertex, and that the second case occurs. If |NG(a) \
{b}| ≥ 3, then, since G is C4-free, we obtain m(G[NG[a]]) > 3

2
|NG[a]| − 1, and

Lemma 4.1(ii) implies that (G,F ) does not have an allowed decycling matching.

If |NG(a) \ {b}| = 2, then, since G is C4-free, G[NG[a]] is isomorphic either to K4

or to K4 − e. In the first case, Lemma 4.1(ii) implies that (G,F ) does not have an

allowed decycling matching, and, in the second case, (G,F ) has an allowed decycling

matching, if and only if some perfect matching of G[NG[a]] does not intersect F ,

and (G − {a, b}, (F ∩ E(G − {a, b})) ∪ {uv ∈ E(G − {a, b}) : u ∈ NG[a] \ {a, b}})
has an allowed decycling matching. If |NG(a) \ {b}| = 1, then, since G does not

have an endvertex, a and b are adjacent and lie on a triangle with the unique

vertex c in NG(a) ∩ NG(b). If ab, bc, ca ∈ F , then (G,F ) does not have an allowed

decycling matching, if ab 6∈ F , then (G,F ) has an allowed decycling matching if

and only if (G− {a, b}, F ∩ E(G− {a, b})) has an allowed decycling matching, and

if ab ∈ F and ac 6∈ F , then (G,F ) has an allowed decycling matching if and only

if (G − {a, b}, (F ∩ E(G − {a, b})) ∪ {uc ∈ E(G) : u ∈ NG(c) \ {a, b}}) has an

allowed decycling matching. Iteratively applying these reductions allows to decide

in polynomial time whether (G,F ) has an allowed decycling matching, and also, to

determine such a matching in polynomial time if it exits. �
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4.2 Obtaining a Bipartite Graph

In this section we deal with the complexity of the following decision problem.

Odd Decycling Matching

Input: A finite, simple, and undirected graph G.

Question: Does G ∈ BM?

A more restricted version of this problem is considered by Schaefer [129]. He

deals with the problem of determining whether a given graph G admits a 2-coloring

of the vertices so that each vertex has exactly one neighbor with same color as itself.

We can see that the removal of the set of edges whose endvertices have same color,

which is a perfect matching of G, generates a bipartite graph. Schaefer proved that

such a problem is NP -complete even for planar cubic graphs.

With respect to the minimization version, the edge-deletion decision problem

in order to obtain a bipartite graph is analogous to Simple Max Cut, which

was proved to be NP -complete by Garey, Johnson and Stockmeyer [76]. Yan-

nakakis [139] proved its NP -completeness even for cubic graphs.

Odd Decycling Matching can also be seen as another problem. A graph G

is (d1, . . . , dk)-colorable if V (G) can be partitioned into V1, . . . , Vk, such that the

induced subgraph G[Vi] has maximum degree at most di, for all 1 ≤ i ≤ k. This

is a generalization of the classical proper k-coloring, when every di = 0, and the d-

improper k-coloring, when every di = d ≥ 1. It is clear to see that G ∈ BM
if and only if G is (1, 1)-colorable. Lovász [103] proved that if a graph G satis-

fies (d1 + 1) + (d2 + 1) + · · ·+ (dk + 1) ≥ ∆(G) + 1 then G is (d1, . . . , dk)-colorable,

where ∆(G) denotes the maximum degree of G. This result shows that every sub-

cubic graph is (1, 1)-colorable and thus belongs to BM. Borodin, Kostochka, and

Yancey [24] studied the (1, 1)-colorable graphs with respect to the sparseness pa-

rameter mad(G) = max
{

2|E(H)|
|V (H)| , for all H ⊆ G

}
. They proved that every graph G

with mad(G) ≤ 14
5

is (1, 1)-colorable, where this bound is sharp. Moreover, they

defined the parameter ρ(G) = min
S⊆V (G)

ρG(S), such that ρG(S) = 7|S| − 5|E(G[S])|.
They showed that G is (1, 1)-colorable if ρ(G) ≥ 0. Finally, they also proved that

every planar graph with girth (the size of the smallest cycle of G) at least 7 is (1, 1)-

colorable. This is the best result concerning (1, 1)-coloring of planar graphs.

For a matching M ⊆ E(G), we say that M is an odd decycling matching of G

if G − M is bipartite. Let BM denote the set of all graphs admitting an odd

decycling matching.

4.2.1 Preliminaries

A diamond is the graph obtained by removing one edge from the K4. Let Wk be

the wheel graph of order k, that is, the graph containing a vertex v, called central,
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Figure 4.1: Some examples of forbidden subgraphs.

and a cycle C of order k, such that v is adjacent to all vertices of C.

We say that a graph is a k-pool if it is formed by k triangles edge disjoint whose

bases induce a Ck. Formally, a k-pool is obtained from a cycle C = {v1, v2, . . . , v2k}
(k ≥ 3), such that the odd-indexed vertices induce a cycle p1p2 . . . pkp1, called in-

ternal cycle of the k-pool, where pi = v2i−1, 1 ≤ i ≤ k. The even-indexed vertex bi

is the i-th-border of the k-pool, where {bi} = NC(pi) ∩NC(pi+1) and i + 1 is taken

modulo 2k. Fig. 4.1c and Fig. 4.1d represent the 3-pool and 5-pool, respectively.

Clearly, every graph G ∈ BM admits a proper 4-coloring. Hence every graph

in BM is K5-free. More precisely, every graph in BM is W4-free, which is depicted

in Fig 4.1a. Hence some proper 4-colorable graphs do not admits an odd decycling

matching. Fig. 4.1 shows some others examples of forbidden subgraphs. Lemma 4.10

collects some properties of graphs in BM.

Lemma 4.10 Given a graph G in BM and an odd decycling matching M of G, the

following assertions are true.

(i) If G has a diamond D as a subgraph, then M contains no edge e /∈ E(D)

incident to only one vertex of degree three of D.

(ii) G[NG(v)] cannot contain two disjoint P3, for every v ∈ V (G).

(iii) G cannot contain a Wk as a subgraph, for all k ≥ 4.

(iv) G cannot contain a k-pool as a subgraph, for all odd k ≥ 3.

Proof. (i) Let G ∈ BM be a graph that contains a diamond D as a subgraph, such

that V (D) = {u, v1, v2, v3} and dD(u) = dD(v2) = 3. We can see that M ∩ E(D)
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equals to exactly one of the following sets: {uv1, v2v3}, {v1v2, uv3}, {uv2}. For

each of such sets, both u and v2 are matched by M . Hence M cannot contain any

edge e /∈ E(G[V (D)]) incident to only u or v2.

(ii) Let v ∈ V (G) such that G[NG(v)] contains two disjoint P3, P and P ′. It

follows that G[{v} ∪ P ] and G[{v} ∪ P ′] are diamonds that share a vertex of degree

at least three. By (i) the statement holds.

(iii) Suppose for a contradiction that G contains a subgraph H isomorphic to a

wheel graph Wk, k ≥ 4. Let V (H) = {u, v1, v2, . . . , vk−1, vk}, such that u is adjacent

to all vertices of the cycle C = v1v2 . . . vkv1. If k ≥ 6, then u contains two disjoint P3

in its neighborhood, and thus it follows by (ii) that k ≤ 5. In this case, it can be

easily verified that W4 and W5 are forbidden subgraphs.

(iv) Suppose, for a contradiction, that G contains a subgraph H isomorphic to

a k-pool, for some odd k ≥ 3. Let C = {p1p2 . . . pkp1} be its internal cycle and

let B = {b1, b2, . . . , bk} be the vertices of the border of H, such that {pibi, pi+1bi} ⊂
E(H), for all 1 ≤ i ≤ k modulo k. Clearly M must contain some edge of C and one

edge of every triangle pibipi+1. W.l.o.g., consider p1p2 ∈ M ∩ E(C). This implies

that M contains no edge in {p2b2, p2p3, p1bk, p1pk}. Therefore, pkbk and p3b2 must

be in M , which forbids two more edges from the triangles pk−1bk−1pk and p3b3p4.

Continuing this process, it follows that cb k+3
2 c, which is at the same distance of p1

and p2 in C, must contain two incident edges in M , a contradiction. �

4.2.2 A linear Time Algorithm for Subcubic Graphs

Bondy and Locke [23] presented the following lemma, which was also obtained by

Erdős [67] by induction on n(G).

Lemma 4.11 (Bondy and Locke [23]) Let G be a graph and let B be a largest

bipartite subgraph of G. Then dB(v) ≥ 1
2
dG(v), for every v ∈ V (G).

Lemma 4.11 shows that every subcubic graph G admits an odd decycling match-

ing, since every vertex has at most one incident edge not in a largest bipartite

subgraph of G. This result was also obtained by Lovász [103] with respect to 1-

improper 2-coloring of graphs with maximum degree at most 3.

Consider a bipartition of V (G) into sets A and B. For every vertex v, we say

that v is of type (a, b) if dV (G)\X(v) = a and dX(v) = b, where X is the part

(either A or B) which contains v. We present a linear algorithm to find an odd

decycling matching of subcubic graphs, Algorithm 4.

Theorem 4.12 Algorithm 4 returns in linear time an odd decycling matching for

subcubic graphs.
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Algorithm 4: A linear time algorithm that determines an odd decycling
matching for subcubic graphs.
Data: A subcubic graph G.
Result: An odd decycling matching M of G.

1 A← A maximal independent set of G;
2 B ← V (G) \A;
3 M ← ∅;
4 while exists a vertex v ∈ B of type (1, 2), with respect to A and B, do
5 u← NG[A](v);
6 if u is of type (3, 0) then
7 B ← B \ {v};
8 A← A ∪ {v};
9 else

10 B ← {B ∪ {u}} \ {v};
11 A← {A ∪ {v}} \ {u};

12 M ← all edges of G[A] ∪G[B];
13 return M ;

Proof. Let A be a maximal independent set of G. Let B = V (G) \ A. In this

case, every vertex of A is of type (k, 0) and there is no vertex in B of type (0, k),

k ∈ {1, 2, 3}. Therefore, if there exists a vertex v of type (a, b) with a < b, then it

must be in B and be of type (1, 2). In order to prove the correctness of Algorithm 4,

it is sufficient to show that the operations on lines 7–8 and 10–11 do not generate

vertices of type (a, b) with a < b.

Let {u} = NG[A](v). If u is of type (3, 0), then v is moved from B to A by

lines 7–8. In this case, it follows that both u and v are vertices of type (2, 1) after

the line 8. If u is not of type (3, 0), then the lines 10–11 modify the types of u and v

as follows.

• If u is of type (1, 1), then u and v are modified to type (2, 0) and (3, 0),

respectively;

• If u is of type (1, 0), then u and v are modified to type (1, 0) and (3, 0),

respectively;

• If u is of type (2, 0), then u and v are modified to type (1, 1) and (3, 0),

respectively;

• If u is of type (2, 1), then u and v are modified to type (2, 1) and (3, 0),

respectively.

We can see that each neighbor w of u in the same part X ∈ {A,B} of u loses

exactly one neighbor (that is u) in G[X]. Moreover, w receives at most one new

neighbor (that is v) in G[X]. The same occurs for every neighbor of v in V (G) \X.

Therefore, in any case it is not obtained vertices of type (a, b) with a < b, which

implies that the Algorithm 4 finishes. �
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Despite the simplicity of Algorithm 4, determining the size of a minimum odd

decycling matching of subcubic graphs is NP -hard, since this problem becomes

analogous to MAX CUT [75] for such a class.

4.2.3 NP-Completeness for Odd Decycling Matching

In this section we prove that Odd Decycling Matching is NP -complete even

for planar graphs of maximum degree at most 4. We organize the proof in three

parts. In the first one we show some polynomial time reductions from Not-All-

Equal 3-SAT (NAE-3SAT) [129] and Positive Planar 1-In-3-SAT [110].

In the second part we prove that Odd Decycling Matching is NP -complete for

graphs with maximum degree at most 4. This proof is a more intuitive and easier to

understand the gadgets and construction of the next part. The third part presents

a proof that Odd Decycling Matching is NP -complete even for planar graphs

with maximum degree at most 5. Finally, the proof finishes as a corollary from the

previous results by just slightly modifying the used gadgets.

Preliminaries

Let F be a Boolean formula in CNF with set of variables X = {x1, x2, . . . , xn} and

set of clauses C = {c1, c2, . . . , cm}. The associated graph of F , GF = (V,E), is the

bipartite graph such that there exists a vertex for every variable and clause of F ,

where (X,C) is a bipartition of V (GF ) into independent sets. Furthermore, there

exists an edge xicj ∈ E(GF ) if and only if cj contains either xi or xi. We say that F

is planar if its associated graph is planar. In order to obtain a polynomial reduction,

we consider the following decision problems, which are NP -complete.

Not-All-Equal 3-SAT (NAE-3SAT) [129]

Input: A Boolean formula in 3-CNF, F .

Question: Is there a truth assignment to the variables of F , in

which each clause has one literal assigned true and one literal

assigned false?

Positive Planar 1-In-3-SAT [110]

Input: A planar Boolean formula in 3-CNF, F , with no negated

literals.

Question: Is there a truth assignment to the variables of F , in

which each clause has exactly one literal assigned true?
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In order to prove the NP -completeness of Odd Decycling Matching, we first

present a polynomial time reduction from NAE-3SAT and Positive Planar 1-

In-3-SAT to the following decision problems, respectively:

NAE-3SAT3

Input: A Boolean formula in CNF, F , where each clause has

either 2 or 3 literals, each variable occurs at most 3 times, and

each literal occurs at most twice.

Question: Is there a truth assignment to the variables of F in

which each clause has at least one literal assigned true and at least

one literal assigned false?

Planar 1-In-3-SAT3

Input: A planar Boolean formula in CNF, F , where each clause

has either 2 or 3 literals and each variable occurs at most 3 times.

Moreover, each positive literal occurs at most twice, while every

negative literal occurs at most once in F .

Question: Is there a truth assignment to the variables of F in

which each clause has exactly one true literal?

Theorem 4.13

• NAE-3SAT3 is NP -complete.

• Planar 1-In-3-SAT3 is NP -complete.

Proof. Since verifying whether a graph is planar can be done in linear time [89],

as well as whether a formula in 3-CNF has a truth assignment, both problems are

in NP .

Let F be a Boolean formula in 3-CNF such that X = {x1, x2, . . . , xn} denotes

the set of variables and C = {c1, c2, . . . , cm} is the set of clauses of F . We construct

a formula F ′ from F as follows. For a vertex xi ∈ V (GF [X]), let dGF
(xi) be the

degree of xi in GF . For such a variable xi with dGF
(xi) = k ≥ 3, we create k new

clauses cji of size 2, and k new variables xzi as follows:

cji =





(
xji , x

j+1
i

)
, if j ∈ {1, . . . , k − 1};(

xki , x
1
i

)
, if j = k.

In addition, we replace the jth (1 ≤ j ≤ k) occurrence of the variable xi ∈ X by

an occurrence of a variable xji , where a literal xi (resp. xi) is replaced by a literal

xji

(
resp. xji

)
.
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Figure 4.2: The associated graph GF ′ obtained from F = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨
x4) ∧ (x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x5). The black vertices correspond to clauses.

Let S be the set of all vertices xi ∈ V (GF [X]) with dGF
(xi) = k ≥ 3. For such a

vertex xi ∈ S, let Xi = {x1
i , . . . , x

k
i } and Ci = {c1

i , . . . , c
k
i }.

Note that, the associated graph GF ′ can be obtained from GF by replacing

the corresponding vertex of xi ∈ S by a cycle of length 2dGF
(xi) induced by the

corresponding vertices of the new clauses in Ci and the new variables in Xi. In

addition, for each xi ∈ S and cj ∈ NGF
(xi) an edge xticj is added in E(GF ′), such

that every corresponding vertex xti ∈ Xi has exactly one neighbor cj /∈ Ci. Figure 4.2

shows an example of the transformation for a Boolean formula.

As we can see, every variable x occurs at most 3 times in the clauses of F ′, since

every variable xi with dGF
(xi) ≥ 3 is replaced by dGF

(xi) new variables that are

in exactly 3 clauses of F ′. By the construction, each literal occurs at most twice.

Moreover, if F has no negative literals, then only the new variables have a negated

literal and each one occurs exactly once in F ′.

Now, it remains to show that if GF is planar then we can construct F ′ as a

planar formula. Consider a planar embedding Ψ of GF , we construct GF ′ replacing

each corresponding vertex xi ∈ S by a cycle of length 2dGF
(xi), as described above.

After that, in order to preserve the planarity, we can follow the planar embedding Ψ

to add a matching between vertices corresponding to variables in such a cycle and

vertices corresponding to clauses cj /∈ Ci and that xi ∈ cj. Such a matching indicates

in which clause of Ci a given new variable will replace xi in F ′. Thus, without loss

of generality, if GF is planar then we can assume that F ′ is planar as well.

Let F be an instance of NAE-3SAT (resp. Positive Planar 1-In-3-SAT)

such that X = {x1, . . . , xn} denotes its set of variables and C = {c1, c2, . . . , cm} its

set of clauses. Let F ′ be the formula obtained from F by the above construction. As

we can observe, for any truth assignment of F ′, all xti ∈ Xi (for a given variable xi

of F ) have the same value. Therefore, any clause of F ′ containing exactly two literals

has true and false values. At this point, it is easy to see that F has a not-all-equal

(resp. 1-in-3) truth assignment if and only if F ′ has a not-all-equal (resp. 1-in-3)
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(a) The head graph H. (b) The odd decycling
matching of H.

Figure 4.3: The head graph and its odd decycling matching M , which is represented
by the stressed edges. Vertices with same color belong to the same part in the
bipartition of G−M .

truth assignment. �

Now we show the NP -completeness of Odd Decycling Matching by a re-

duction from NAE-3SAT3. The next simple lemma is used in the correctness of

our reduction.

Let us call the graph depicted in Figure 4.3a by head. Vertex v is the neck of the

head. Given a graph G, the next lemma shows that such a structure is very useful

to ensure that some edges cannot be in any odd decycling matching of G.

Lemma 4.14 Let G be a graph that contains an induced subgraph H isomorphic

to a head graph, whose neck is v. Then all edges not in H incident to v cannot

be in any odd decycling matching of G. Moreover H admits only one odd decycling

matching.

Proof. Let M be an odd decycling matching of G. Suppose for a contradiction

that there exists an edge e incident to v, such that e contains an endvertex not

in H. In this case, we get that vh1 and vh4 does not belong to M , which implies

that h1h4 ∈ M . By the triangle h1h2h5, it follows that h2h5 must be in M . Hence

the cycle vh1h2h3h4v remains in G−M , a contradiction.

Now suppose that vh4 ∈M . In this case, the edge h1h2 cannot be inM , otherwise

the cycle h1h4h3h2h5h1 survives in G −M . In the same way, the edge h1h5 /∈ M ,

otherwise the cycle h1h2h5h3h4h1 is not destroyed by M . Therefore we get that h2h5

must be in M , which implies that h3h6 ∈M . Hence the cycle h5h3h4h7h6h5 belongs

to G−M . Since the triangle h1h2h5 has no edge in M , it is not destroyed by M , a

contradiction.

Finally, we get that vh1 must be in M , which implies that h2h5 ∈ M as well.

Therefore, it follows that h3h6 must be in M . Hence h4h7 also must be in M , which

turns the graph bipartite. Since all choices of the edges of M are necessary, we

get that there is only one possible odd decycling matching of H, which is perfect.

Fig. 4.3b shows such a matching. This concludes the proof. �
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NP -Completeness for Graphs with Maximum Degree at Most 4

With Lemma 4.14 we can establish the NP -completeness of Odd Decycling

Matching. Remember that graphs in BM are all 4-colorable. The next result

shows that the NP -completeness is also obtained even for 3-colorable graphs and

bounded degree graphs. The circles with an H in the figures represent an induced

subgraph isomorphic to the head graph, whose neck is the vertex touching the circle.

By simplicity, this pattern will be used in the remaining figures whenever possible.

Theorem 4.15 Odd Decycling Matching is NP -complete even for 3-colorable

graphs with maximum degree at most 4.

Proof. We prove that Odd Decycling Matching is NP -complete by a reduction

from NAE-3SAT3 Let F be an instance of NAE-3SAT3, with X = {x1, x2, . . . , xn}
and C = {c1, c2, . . . , cm} be the sets of variables and clauses of F , respectively. We

construct a graph G = (V,E) as follows:

• For each variable xi ∈ X, we construct a variable gadget Gxi . Such a gadget

consists on a diamond D with a head, whose neck is the vertex ui of degree two

in D. The vertices of degree three in D, d1
i and d2

i , represent the literal xi, while

the last one, d3
i , of degree two represents the negative literal xi. Figure 4.4

shows the variable gadget Gxi .

• For each clause cj ∈ C, we associate a clause gadget Gcj . If cj contains three

literals, then Gcj is a triangle with vertices c1
j , c

2
j , and c3

j . Moreover, each

vertex ckj is adjacent to a linking vertex `kj , k ∈ {1, 2, 3}, which is a neck of a

head H. Such clause gadget is showed in Figure 4.5b. In a similar way, if cj

has size two, then Gcj is as depicted in Figure 4.5a, where `1
j and `2

j are the

vertices that connect Gcj to the gadgets of the variables contained in cj.

• We link a clause gadget Gcj to a variable gadget Gxi , such that xi ∈ cj,

as follows. If cj contains the positive literal xi, then add one edge between

a linking vertex `kj to either d1
i or d2

i , otherwise we add the edge `kjd
3
i , for

some 1 ≤ k ≤ 3.

Since the Head graph is 3-colorable, clearly the above construction generates also

a 3-colorable graph. Next we prove that F has a truth assignment if and only if the

graph G obtained form the above construction has an odd decycling matching. If F

has a truth assignment φ, then each clause cj contains at least one true literal and

at least one false literal. For such a clause, we associate true to ckj if and only if its

corresponding literal is true in φ. In the same way, for every variable gadget Gxi , we

associate true to d1
i and d2

i if and only if the positive literal xi is true in φ. Therefore,
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Figure 4.4: Variable gadget Gcj in Theorem 4.15.

(a) For clauses of size two. (b) For clauses of size three.

Figure 4.5: Clause gadget Gcj in Theorem 4.15.

we can construct a bipartition of V (G) into sets T and F , that represent the literal

assigned true and false, respectively, as follows.

• For each clause gadget Gcj of 3 literals, remove the edge czjc
w
j if φ(czj) = φ(cwj ),

1 ≤ z 6= w ≤ 3;

• For each clause gadget Gcj of 2 literals, remove either the edge w1
j c

1
j or w1

j c
2
j ;

• For every variable gadget Gxi , remove the edge d1
i d

2
i ;

• For each induced head H, remove edges as in Fig. 4.3b.

It is not hard to see that the obtained graph is bipartite, since each linking vertex `kj

is in the opposite set of ckj and of dzi , such that `kjd
z
i ∈ E(G). Moreover, c1

j and c2
j

are in opposite sets, for every clause of length 2. Since the removed edges are clearly

a matching in G, it follows that G ∈ BM.

Now we consider that G ∈ BM. By Lemma 4.14, it follows that d1
i d

2
i must be

in any odd decycling matching of G, for every variable gadget Gxi . Analogously,

either w1
j c

1
j or w1

j c
2
j and exactly one edge ckj c

z
j must be included in any odd decycling

matching of G, for every clause gadget Gcj of 2 and 3 literals, respectively. Therefore,

for an odd decycling matching of G, we can associate to the parts of the bipartition

of G−M as true and false. Thus, it follows that:
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• d1
i and d2

i are in the same part, while d3
i is in the opposite one, for every

variable gadget Gxi ;

• c1
j and c2

j are in different parts, for every clause gadget Gcj of length 2;

• All the vertices ckj are not in the same part, for every clause gadget Gcj of

length 3;

Hence, every clause has at least one true and one false literal, which implies that F

is satisfiable. �
Since NAE-3SAT is polynomial time solvable for planar graphs [108], the previ-

ous construction cannot be planar. Moreover planar graphs are classical 4-colorable

graphs. Hence it is interesting to know what happens in such a class. The next

Subsection deals with this problem.

NP -Completeness for Planar Graphs

Now we will show that Odd Decycling Matching remains NP -complete even

for planar graphs. We prove the NP -completeness by a reduction from Planar

1-In-3-SAT3. In order to prove this result, next we give a useful lemma.

Lemma 4.16 Let b be a border of an odd k-pool graph G, such that c1 and ck are its

neighbors in G. It follows that every odd decycling matching of G− b must contain

exactly one edge of the internal cycle, which is different from c1ck. Moreover, there

is only one odd decycling matching for each such an edge.

Proof. Let C = p1p2 . . . pkp1 be the internal cycle of G and let bi be the i-th-border

of G, such that NG(bi) = {pi, pi+1}, 1 ≤ i ≤ k−1. Since C has odd length, it follows

that every odd decycling matching of G contains at least one edge of C.

Suppose for a contradiction that G has an odd decycling matching M contain-

ing p1pk. In this case, we get that the edges in {p1p2, p1b1, pkpk−1, pkbk−1} cannot be

in M . Therefore M must contain the edges b1p2 and bk−1pk−1. In the same way, we

can see that the edges {p2p3, p2b2, pk−1pk−2, pk−1bk−2} are not in M . Hence, it can

be seen that all edges indent to p k−1
2

are forbidden to be in M , which implies that

the triangles p k−2
2
p k−1

2
b k−2

2
and p k−1

2
p k+1

2
b k−1

2
have no edge in M , a contradiction by

the choice of M .

Let pipi+1 be an edge of C contained in an odd decycling matching M of G. In a

same fashion, the edges in {pipi−1, pibi−1, pipi+1, pibi+1} cannot be in M . Following

this pattern, we can see that every edge pjbj must be in M , for every 1 ≤ j ≤ i− 1.

Furthermore, it follows that bzpz+1 ∈ M , for every i + 1 ≤ z ≤ k − 1. Since M

contains one edge of every triangle of G, it follows that M is unique, for every

edge pipi+1. Finally, such an odd decycling matching contains only one edge of C.

�
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(a) For clauses of size two. (b) For clauses of size three.

Figure 4.6: Clause gadget Gcj in Theorem 4.17.

Figure 4.7: Variable gadget Gxi in Theorem 4.17. Each pair of edges with one no
endvertex connects Gxi to one clause gadget Gca , Gcb , or Gcc , where xi ∈ (ca∩cb∩cc).

Theorem 4.17 Odd Decycling Matching is NP -complete even for 3-colorable

planar graphs with maximum degree at most 5.

Proof. Let F be an instance of Planar 1-In-3-SAT3, with X = {x1, x2, . . . , xn}
and C = {c1, c2, . . . , cm} be the sets of variables and clauses of F , respectively. We

construct a planar graph G = (V,E) of maximum degree 5 as follows:

• For each clause cj ∈ C, we construct a gadget Gcj as depicted in Fig. 4.6.

Such gadgets are just a 5-pool and a 7-pool less a border for clauses of size 2

and 3, respectively. Moreover, for the alternate edges of the internal cycle we

subdivide them twice and append a head graph to each such a new vertex.

Finally, we add two vertices `j(k, w) and `j(k, b), such that b2k−1
j `j(k, w) ∈

E(G) and b2k
j `j(k, b) ∈ E(G), for k ∈ {1, 2, 3}. For such new vertices, we

append a head graph to each one.

• For each variable xi ∈ X, we construct a gadget Gxi as depicted in Fig. 4.7.
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Such a gadget is a 7-pool less a border, where we subdivide the edges p2
i p

3
i ,

p3
i p

4
i , p

4
i p

5
i , and p6

i p
7
i twice, where every such a new vertex has a pendant head.

We rename each border vertex b2k−1
i (k ∈ {1, 3}) as di(k, b) and b2k

i as di(k, w),

for k ∈ {1, 2, 3}. Moreover we add a new vertex di(2, b) adjacent to p4
i , which

has a pendant head graph.

• The connection between clause and variable gadgets are as in Fig. 4.6

and Fig. 4.7, where each pair of arrow head edges in a variable gadget Gxi cor-

responds to a pair of such edges in a clause gadget Gcj , such that xi ∈ cj. More

precisely, if xi ∈ cj, then we add the edges `j(k, b)di(k
′, b) and `j(k, w)di(k

′, w),

for some k ∈ {1, 2, 3} and for some k′ ∈ {1, 2}. On the other hand,

if xi ∈ cj, then we add the edges `j(k, b)di(3, b) and `j(k, w)di(3, w), for

some k ∈ {1, 2, 3}.

• If a variable occurs only twice in F , then just consider those connections corre-

sponding to the literals of xi in the clauses of F , such that di(3, b) and di(3, w)

represent xi.

Let G be the graph obtained from F by the above construction. We can see

that G has maximum degree 5, where the only vertices with degree 5 are those p4
i ,

for each variable gadget Gxi . Furthermore, it is clear that G is 3-colorable.

It remains to show that if F is planar (that is, if GF is planar), then G is

planar. Consider a planar embedding ψ of GF . We replace each variable vertex vxi
of GF by a variable gadget Gxi , as well as every clause vertex vcj of Gcj by a clause

gadget Gcj . The clause gadgets correspond to clauses of length two or three, which

depends on the degree of vcj in GF . Since the clause and variable gadgets are planar,

we just need to show that the connections among them keep the planarity. Given

an edge vxivcj ∈ E(GF ), we connect Gxi and Gcj by duplicating such an edge as

parallel edges `j(k, w)`i(k
′, w) and `j(k, b)`i(k

′, b), for some k ∈ {1, 2, 3} and for

some k′ ∈ {1, 2} or `j(k, b)`i(3, b) and `j(k, w)`i(3, w), for some k ∈ {1, 2, 3}, as

previously discussed.

In order to prove that F is satisfiable if and only if G ∈ BM, we discuss some

considerations related to odd decycling matchings of the clause and variable gadgets.

By Lemma 4.16, we know that an odd k-pool graph less a border admits one odd

decycling matching for each edge of the internal cycle, except that whose both

endvertices are adjacent to the removed border. Furthermore, by Lemma 4.14 it

follows that each external edge incident to the neck of an induced head cannot be in

any odd decycling matching. In this way, Fig. 4.8 shows the possible odd decycling

matchings M , given by the stressed edges for the clause gadget Gcj of clauses of

length three. The black and white vertex assignment represents the bipartition

ofGcj−M . Notice that exactly one pair of vertices `j(k, w) and `j(k, b) (k ∈ {1, 2, 3})
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(a) p1jp
2
j ∈M (b) p3jp

4
j ∈M

(c) p5jp
6
j ∈M

Figure 4.8: All possible configurations given by the removal of an odd decycling
matching M , represented by the stressed edges, from a clause gadget Gcj of three
literals. The colors in the vertices represent the bipartition of Gcj −M .

is such that they have the same color, while the other such pairs have opposite

colors. More precisely, we can see that `j(k, w) has the same color for each pair with

opposite color vertices as well as `j(k, b), for each odd decycling matching of Gcj . In

this way, we can associate one literal x1
j , x

2
j , and x3

j to each pair of vertices `j(k, w)

and `j(k, b), k ∈ {1, 2, 3}. A similar analysis can be done for clause gadgets of

clauses of length two.

In the same fashion as the clause gadgets, each variable gadget Gxi admits two

possible odd decycling matchings M as depicted in Fig. 4.9. We can see that the

pair `i(3, b) and `i(3, b) has a different assignment for the other two pairs `i(k, b)

and `i(k, b), k ∈ {1, 2}. Moreover, the last two pairs have the same assignment,

as it can be seen in Fig. 4.9a and Fig. 4.9b. One more detail is that the unique

possibilities for such pairs is such that `i(3, b) and `i(3, b) have opposite assignments

if and only if the vertices `i(k, b) and `i(k, b) have the same assignment, k ∈ {1, 2}.
Therefore we can associate the positive literal xi to the pairs `i(k, b) and `i(k, b),

k ∈ {1, 2}, while xi can be represented by `i(3, b) and `i(3, b).
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(a) p1i p
2
i ∈M (b) p5i p

6
i ∈M

Figure 4.9: All possible configurations given by the removal of an odd decycling
matching M , represented by the stressed edges, from a variable gadget Gxi . The
colors in the vertices represent the bipartition of Gxi −M .

As observed above for clause gadgets, we can associate true value to the pair

of vertices `j(k, w) and `j(k, b) with same color, k ∈ {1, 2, 3}. This implies that

exactly one of them is true and, that is, exactly one literal of cj has true value.

Moreover, each variable gadget has two positive literals and a negative one, such

that the positive and negative have opposite truth assignment.

Hence, if G ∈ BM, then every clause gadget has exactly one true literal and

every variable has a correct truth assignment, which implies that F is satisfiable.

Conversely, if F is satisfiable, then each clause has exactly one true literal. Thus,

for each clause cj gadget we associate to pair of vertices corresponding to its true

literal a same color. By Fig.4.8, there is an appropriate choice of an odd decycling

matching for each true literal of cj. Moreover, for each literal gadget Gxi there is

also an appropriate odd decycling matching for the choice of the true literal. This

concludes the proof. �
Let G be the graph obtained by the construction in Theorem 4.17, next we show

how to obtain a planar graph of maximum degree 4. Since the only vertices of

degree 5 of G are those p4
i in the variable gadgets, we present a slightly modified

variable gadget, which is depicted in Fig 4.10. In fact, we just modify the head

graph. In Fig. 4.3 we can see that the vertex h6 has degree 3, which allows us to use

it to connect the variable gadget to the clause one. Fig. 4.11 shows the possible odd

decycling matching of the modified variable gadget. Since such configurations are

analogous to those of the original variable gadget, with respect to the vertex that

connect to clause gadgets, we obtain our main result of this section.

Corollary 4.18 Odd Decycling Matching is NP -complete even for 3-colorable

planar graphs with maximum degree 4.
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Figure 4.10: The modified variable gadget.

(a) p1i p
2
i ∈M (b) p5i p

6
i ∈M

Figure 4.11: All possible configurations given by the removal of an odd decycling
matching M from the modified variable gadget.

4.3 Polynomial Time Results

In this section we present our positive results about Odd Decycling Matching

for some graph classes.

(Claw, Paw)-free Graphs

Now we consider graphs that have no induced subgraph isomorphic to the claw or

to the paw. Let G be a connected (claw, paw)-free graph. We first prove that

if G ∈ BM, then the neighborhood of any vertex v of G has a small size.

Lemma 4.19 If G ∈ BM is a claw-free graph, then ∆(G) ≤ 5.

Proof. Suppose for a contradiction that G has a vertex v of degree at least 6, such

that {v1, v2, v3, v4, v5, v6} ⊆ NG(v). Since G is claw-free, then either G[NG(v)] has
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Figure 4.12: All possible neighborhoods of v of a claw-free graph G ∈ BM.

exactly two connected components, which must be cliques, or itself is connected.

In the first case, since G is K5-free, it follows that each connected component

of G[NG(v)] has size at most 3. Moreover, by Lemma 4.10(ii), if both have size

at least 3, then G /∈ BM, a contradiction.

Now suppose that G[NG(v)] is connected. If G[NG(v)] has a P5 = abcde as

a subgraph, then it is not difficult to see that the only odd decycling match-

ing M of G[{v} ∪ {a, b, c, d, e}] should have the edges ab, vc and de. More-

over ae /∈ E(G), otherwise G[{v} ∪ {a, b, c, d, e}] has a W5 as a subgraph, a con-

tradiction by Lemma 4.10(iii). In this way, any other vertex f ∈ N(v) can be

adjacent only to vertex c, since all of the vertices in {v, a, b, c, d, e} are matched

by M . Hence G[{v} ∪ {a, e, f}] induces a claw in G, a contradiction.

On the other hand, necessarily G[NG(v)] has a P3, otherwise there exist at least

three connected components in G[NG(v)]. By symmetry, suppose that v1v2 and

v2v3 ∈ E(G). By Lemma 4.10(ii) G[{v4, v5, v6}] has exactly one edge, say v4v5.

Since G[NG(v)] is connected, the same has a path P of length at least 4 which

connects v6 to v4 and v5 by at least one vertex between v1, v2, and v3. Since G[NG(v)]

does not contain P5, we can rename the vertices in {v1, v2, v3, v4, v5, v6} such that P =

v1v2v3v4. We know that v1v4 /∈ E(G), otherwise P ∪ {v} is a W4, a contradiction

by Lemma 4.10(iii). Hence v5 and v6 must be adjacent to at least one of v1 and v4,

which creates a P5 in G[NG(v)], a contradiction. �
By Lemma 4.19, it is not hard to see that the possible neighborhoods of a vertex v

of a claw-free graph G ∈ BM are depicted in Fig. 4.12.

It follows from Lemma 4.19 and of Fig. 4.12 that the only possibilities to the

neighborhood of a vertex v in a (claw, paw)-free graph are as in Fig. 4.12a, Fig. 4.12f,
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Fig. 4.12g, Fig. 4.12h and Fig. 4.12i. In this way we can directly conclude the

following lemma.

Lemma 4.20 If G ∈ BM is a (claw, paw)-free graph then ∆(G) ≤ 3.

Hence we can just apply Algorithm 4 to obtain a linear time algorithm

for (claw, paw)-free graphs. Moreover, by Lemma 4.20 we can characterize the

connected (claw, paw)-free graphs that admit an odd decycling matching.

Theorem 4.21 If G is a connected (claw, paw)-free graph, then G ∈ BM if and

only if G is isomorphic to a path, a cycle, a diamond or to a K4.

Proof. Let G be a connected (claw, paw)-free graph. Clearly, if G is isomorphic to

a path, a cycle, a diamond or to a K4, then G ∈ BM.

Now consider G ∈ BM. By Lemma 4.20 we know that does not exist any vertex

of degree 4 in G.

If all of the vertices of G have degree 2, then G is isomorphic to a cycle.

If G is the trivial graph, then the theorem follows. Let v be a vertex of degree 1

in G. It follows that either G is a path of length at least one, or there is a vertex u

of degree three. Consider u such that it is such a vertex closest to v in G. Let w ∈
NG(u) be in the path P from v to u and let u1 and u2 be its two neighbors except

for w in G. Since dG(w) ≤ 2, we get that w is not adjacent neither to u1, nor to u2.

Thus u1u2 ∈ E(G), since G is claw-free. In this way G[wuu1u2] is isomorphic to a

paw, a contradiction. Hence G must be a path.

Finally suppose that G has a vertex v of degree 3 and that G is not isomorphic

to a K4. In this way it follows that G[{v} ∪ NG(v)] is isomorphic to a diamond.

Let NG(v) = {v1, v2, v3}, such that dG(v2) = 3. Since v and v2 have degree 3, they

cannot be adjacent to any other vertex. Suppose that v1 has a neighbor u /∈ {v, v2}.
Since uv, uv2 /∈ E(G), then G[{u, v, v1, v2}] is isomorphic to a paw, a contradiction.

It follows in a similar way that NG(v3) = {v, v2}. Hence G is isomorphic to a

diamond, which concludes the proof. �

Graphs with Small Dominating Sets

We will show now that Odd Decycling Matching can be solved in polynomial

time when the given graph G has a dominating set of size constant compared to G.

Such a result generalizes some known graph classes, as fo example P5-free graphs[31],

since the graphs in BM do not admit K5 as subgraph.

Theorem 4.22 Let k be a positive integer. For a graph G whose domination number

is at most k, it is possible to decide in polynomial time whether G has a matching M

such that G−M is bipartite, and to find such a matching if it exists.
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Proof. Let G be as in the statement. A dominating set of order at most k can be

found in time O(nk). Let D be such a dominating set of G of order at most k.

Let PD be the set of all bipartitions PD of D into sets AD and BD, such that D[AD]

and D[BD] do not have any vertex of degree 2. Note that |PD| = O(2k).

Let PD ∈ PD be a bipartition of D. We partition all of the other vertices of G−D
in such a way that PD defines a bipartition of G −MD, if one exists, where MD is

a matching that will be removed, given the choice of D. We do the following tests

and operations for each vertex v ∈ V (G) \ V (D):

• If dAD
(v) ≥ 2 and dBD

(v) ≥ 2, then PD is not a valid partition;

• If dAD
(v) ≥ 2, then AD ← AD ∪ {v};

• If dBD
(v) ≥ 2, then BD ← BD ∪ {v}.

Iteratively we allocate the vertices in V (G) \ V (D) as described above into the

respective sets AD e BD, or we stop if it is not possible to acquire a valid bipartition.

After these operations, V (G) \ V (AD ∪ BD) can be partitioned into three sets as

follows:

• X = {u ∈ V (G) \ V (AD ∪BD) : dAD
(u) = 1 and dBD

(u) = 0};

• Y = {u ∈ V (G) \ V (AD ∪BD) : dAD
(u) = 0 and dBD

(u) = 1};

• Z = {u ∈ V (G) \ V (AD ∪BD) : dAD
(u) = 1 and dBD

(u) = 1};

Since every vertex in V (G) \ V (D) has a neighbor in D, it follows that the

neighborhood of all the vertices of X ∪ Y ∪ Z in AD ∪ BD is in D. In this way, we

can make a choice of a matching MD to be removed, such that all of the vertices

of X ∪ Y ∪Z in AD ∪BD are allocated in AD ∪BD and G−MD must be bipartite.

Note that there are (n− k)k possibilities of choices for MD.

In this way, we can choose a dominating set D of order at most k and make all

possible bipartitions PD of V (D) into sets AD and BD as previously described. For

each one, we iteratively allocate the vertices of V (G) \ V (D) into AD and BD in a

unique way. After this operations, we test all possible matchings MD with edges

between vertices of D and those in X ∪ Y ∪ Z. We can see that in any case we

do O(nk) operations, which concludes the proof. �

Graphs with Only Triangles as Odd Cycles

We consider now a slightly general version of Odd Decycling Matching, where

some edges are forbidden to be in any odd decycling matching.
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Allowed Odd Decycling Matching (AODM)

Instance: A graph G and a set F of edges of G.

Task: Decide whether G has an odd decycling matching M that does not

intersect F , and determine such a matching if it exists.

A matching M as in AODM is an allowed odd decycling matching of (G,F ).

Since (G,F ) has an allowed odd decycling matching if and only if (K,E(K) ∩ F )

has an allowed odd decycling matching for every component K of G, we may assume

that G is connected. Moreover, note that if G has an allowed odd decycling match-

ing, then G ∈ BM, since all allowed odd decycling matching is an odd decycling

matching of G. With this new notion, it follows the next result.

Theorem 4.23 AODM can be solved in polynomial time for graphs with only tri-

angles as odd cycles.

Proof. Let G be a graph without odd cycles of size at least 5 and let F be a set

of edges of G. As described above, we can consider G connected. Moreover, we

can assume G as a bridge-free graph, that is, a graph whose all blocks have size at

least 3.

Consider a block decomposition Π of G. Clearly we can assume that G has at

least two blocks. Let B be a block of G that contains exactly one cut-vertex v, that

is, B is a final block in Π. If G[B] is bipartite, then clearly (G,F ) has an allowed odd

decycling matching if and only if (G
′
, F
′
) admits an allowed odd decycling matching,

where G
′

= ((V (G) \ V (B)) ∪ {v}, E(G) \ E(B)) and F
′

= F \ E(B). Hence we

can suppose that B has a triangle v1v2v3v1.

If {v1v2, v1v3} is not a edge cut, then G − {v1v2, v1v3} has a path P from v1

to {v2, v3}. Consider P such a path of length at least 2 and such that it is a

longest one. Moreover, consider v2 as the first vertex reached by P between v2

and v3. In this way P must have the form v1uv2, otherwise either G[V (P ) ∪ {v3}]
or P ∪ {v1v2} would contain an odd cycle of length at least 5, when P has either

an even number of vertices or an odd number, respectively. It also follows that all

path between v1 and v2, except v1v2, has length 2. Moreover, every path between v1

and v3, except v1v3, has length 2 and contains v2.

If uv3 ∈ E(G), then NB(v1) = {u, v2, v3}, otherwise let w ∈ NB(v1).

Since dB(w) ≥ 2, we get that NB(w) = {v1, v2}, otherwise would exist a path be-

tween v1 and v2 of length at least 3, a contradiction. However the cycle v1uv3v2wv1

has length 5, a contradiction. Thus G[{v1, v2, v3, u}] is isomorphic to a K4

and {v1v2, v1v3, v1u} is an edge cut. Hence B is a block of G and, by symme-

try, v = v1. In this case we get that (G,F ) has an allowed odd decycling matching

if and only if (G
′
, F
′
) has an allowed odd decycling matching, where F does contain
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any matching of B of maximum size

G
′
= ((V (G) \ V (B)) ∪ {v}, E(G) \ E(B))

and

F
′
= (F \ E(B)) ∪ {vx : x ∈ NG(v) \ {v1, v2, v3}}.

If uv3 /∈ E(G), then {zv2, zv1} is an edge cut for every vertex z ∈ NB(v2) ∩
NB(v1). Furthermore, by symmetry, NB(v2) ∩ NB(v1) is an independent set.

Thus {v1, v2} ∪ {NB(v2) ∩ NB(v1)} is a block of G. If v ∈ {v1, v2} and |NB(v2) ∩
NB(v1)| ≥ 3, then (G,F ) has an allowed odd decycling matching is and only

if (G
′
, F
′
) has an allowed odd decycling matching, where v1v2 /∈ F and

G
′
= ((V (G) \ V (B)) ∪ {v}, E(G) \ E(B))

and

F
′
= (F \ E(B)) ∪ {vx : x ∈ NG(v) \ V (B)}.

If v ∈ {v1, v2} and |NB(v2)∩NB(v1)| = 2, then (G,F ) has an allowed odd decycling

matching if and only if (G
′
, F
′
) has an allowed odd decycling matching, where v1v2 /∈

F , or F + {v1u, v2v3}, or F + {v1v3, v2u}, and

G
′
= ((V (G) \ V (B)) ∪ {v}, E(G) \ E(B)) , and F

′
= (F \ E(B))∪{vx : x ∈ NG(v)\V (B)},

If v /∈ {v1, v2}, then (G,F ) has an allowed odd decycling matching if and only

if (G
′
, F
′
) has an allowed odd decycling matching, where v1v2 /∈ F and

G
′
= ((V (G) \ V (B)) ∪ {v}, E(G) \ E(B))

and

F
′
= (F \ E(B)) .

Finally it remains the case that G[{v1, v2, v3}] is a block and, by symmetry,

suppose v = v1. Thus (G,F ) has an allowed odd decycling matching if and only

if (G
′
, F
′
) has an allowed odd decycling matching, where v2v3 /∈ F and

G
′
= ((V (G) \ V (B)) ∪ {v}, E(G) \ E(B))

and

F
′
= F \ E(B),
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or v1v2 /∈ F or, v1v3 /∈ F , and

G
′
= ((V (G) \ V (B)) ∪ {v}, E(G) \ E(B))

and

F
′
= (F \ E(B)) ∪ {vx : x ∈ NG(v) \ V (B)}.

This concludes the proof. �

4.3.1 Fixed-Parameter Tractability

In this section, we consider the parameterized complexity of Odd Decycling

Matching, and present an analysis of its complexity when parameterized by some

classical parameters.

Definition 4.24 The clique-width of a graph G, denoted by cwd(G), is defined as

the minimum number of labels needed to construct G, using the following four oper-

ations [26]:

1. Create a single vertex v with an integer label ` (denoted by `(v));

2. Disjoint union of two graphs (i.e. co-join) (denoted by ⊕);

3. Join by an edge every vertex labeled i to every vertex labeled j for i 6= j (denoted

by η(i, j));

4. Relabeling all vertices with label i by label j (denoted by ρ(i, j)).

Some graph classes with bounded clique-width include cographs [26], distance-

hereditary graphs [85], graphs with bounded neighborhood diversity [100], and

graphs with bounded tree-width such as forests, pseudoforests, cactus graphs, series-

parallel graphs, outerplanar graphs, Halin graphs, Apollonian networks, and control

flow graphs [21, 25, 134].

Courcelle, Makowsky and Rotics [48] stated that for any graph G with clique-

width bounded by a constant k, and for each graph property Π that can be formu-

lated in a monadic second order logic (MSOL1), there is a f(cwd(G)).n algorithm

that decides if G satisfies Π (cf. [47–51]). In this monadic second-order graph logic

known as MSOL1, the graph is described by a set of vertices V and a binary adja-

cency relation edge(., .), and the graph property in question may be defined in terms

of sets of vertices of the given graph, but not in terms of sets of edges.

Using Courcelle, Makowsky and Rotics’s meta-theorem based on monadic second

order logic [48], in order to show the fixed-parameter tractability of Odd Decy-

cling Matching when parameterized by clique-width, it remains to show that the

related property is MSOL1-expressible.
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Theorem 4.25 Odd Decycling Matching is fixed-parameter tractable when pa-

rameterized by the clique-width.

Proof. Remind that the problem of determining whether G has an odd decycling

matching is equivalent to determine whether G admits an (1, 1)-coloring, which is

a 2-coloring of V (G) in which each color class induces a graph of maximum degree

at most 1 (cf. [103]). Thus, it is enough to show that the property “G has an (1, 1)-

coloring” is MSOL1-expressible.

We construct a formula ϕ(G) such that G ∈ BM⇔ ϕ(G) as follows:

∃ S1, S2 ⊆ V (G) : (S1 ∩ S2 = ∅) ∧
(S1 ∪ S2 = V (G)) ∧
(∀ v1 ∈ S1[ @ u1, w1 ∈ S1 : (u1 6= w1) ∧ edge(u1, v1) ∧ edge(w1, v1)]) ∧
(∀ v2 ∈ S2[ @ u2, w2 ∈ S2 : (u2 6= w2) ∧ edge(u2, v2) ∧ edge(w2, v2)])

�
From Theorem 4.25 we can solve several interesting classes of graphs in poly-

nomial time, as for example some subclasses of planar graphs such as outerplanar

graphs, Halin graphs and Apollonian networks. In addition, since clique-width gen-

eralizes several graph parameters [100], we have the following corollary.

Corollary 4.26 Odd Decycling Matching is fixed-parameter tractable when

parameterized by the following parameters:

• neighborhood diversity;

• treewidth;

• pathwidth;

• feedback vertex set;

• vertex cover.

Courcelle’s theorem is a good classification tool, however it does not provide a

precise running time bound. Next result shows the exact upper bound for Odd

Decycling Matching parameterized by β(G).

Theorem 4.27 Odd Decycling Matching admits a 2O(β(G)).n algorithm.

Proof. Let S be a vertex cover of G such that |S| = β(G). The algorithm follows

in a similar way to Algorithm 4.22. Let PS be the set of all bipartitions PS of S
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into sets AS and BS, such that S[AS] and S[BS] do not have any vertex of degree 2.

Note that |PS | = O(2k).

For each PS ∈ PS , we will check if an odd decycling matching of G can be

obtained from PS by applying the following operations:

For each vertex v ∈ V (G) \ V (S) do

• If dAS
(v) ≥ 2 and dBS

(v) ≥ 2, then PS is not a valid partial partition;

• If dAS
(v) ≥ 2, then AS ← AS ∪ {v};

• If dBS
(v) ≥ 2, then BS ← BS ∪ {v}.

After that, if for all vertices the first condition is not true, then V (G)\V (AS∪BS)

can be partitioned into three sets:

• X = {u ∈ V (G) \ V (AS ∪BS) : dAS
(u) = 1 and dBS

(u) = 0};

• Y = {u ∈ V (G) \ V (AS ∪BS) : dAS
(u) = 0 and dBS

(u) = 1};

• Z = {u ∈ V (G) \ V (AS ∪BS) : dAS
(u) = 1 and dBS

(u) = 1};

Since V (G) \ V (S) is an independent set, it follows that all edges of vertices

in X∪Y can remain in the graph G. For each z ∈ Z, denote by az ∈ AS and bz ∈ BS

the neighbors of z in G.

Now, we apply a bounded search tree algorithm. While G[AS] and G[BS] have

both maximum degree equal to one, and Z 6= ∅ do. Remove a vertex z ∈ Z and

apply recursively the algorithm for the following cases:

1. z is added to AS, and all vertices in Z ∩N(az) is added to BS.

2. z is added to BS, and all vertices in Z ∩N(bz) is added to AS.

Note that the search tree T has height equals β(G) + 1. Finally, if T has a leaf

representing a configuration with G[AS] and G[BS] having both maximum degree

equal to one, and Z = ∅ then G has an odd decycling matching. �
ow we analyze the parameterized complexity of Allowed Odd Decycling

Matching considering the neighborhood diversity number, nd(G), as parameter.

Definition 4.28 A graph G(V,E) has neighborhood diversity nd(G) = t if we can

partition V into t sets V1, . . . , Vt such that, for every v ∈ V and all i ∈ 1, . . . , t,

either v is adjacent to every vertex in Vi or it is adjacent to none of them. Note

that each part Vi of G is either a clique or an independent set.

The neighborhood diversity parameter is a natural generalization of the vertex

cover number. In 2012, Lampis [100] showed that for every graphG we have nd(G) ≤
2vc(G) +vc(G). The optimal neighborhood diversity decomposition of a graph G can

be computed in O(n3) time [100].
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Theorem 4.29 Allowed Odd Decycling Matching admits a kernel with at

most 2.nd(G) vertices when parameterized by neighborhood diversity number.

Proof. Given an instance (G,F ) of Allowed Odd Decycling Matching such

that G is a graph and F ⊆ E(G) a set of forbidden edges. The kernelization

algorithm consists on applying the following reduction rules:

1. If G contains a K5, then G has no allowed odd decycling matching; otherwise

2. If a part Vi induces a K3 and exist two vertices in V (G) \ Vi adjacent to Vi,

then G has no allowed odd decycling matching; otherwise

3. If a subgraph of G induces either a K3 or a K4 and does not admit an al-

lowed odd decycling matching, then G has no allowed odd decycling matching;

otherwise

4. Remove all parts isomorphic to a K4;

5. Remove all isolated parts isomorphic to a K3;

6. If Vi is a part that induces a K3 and v ∈ V (G) \Vi is adjacent to Vi (note that

{v} is a part), then remove Vi and F ← F ∪ {uv : u ∈ NG(v) \ Vi};

7. If a part Vi induces an independent set of size at least 3, then contract it into

a single vertex vi (without parallel edges) and forbids all of its incident edges;

It is easy to see that all reduction rules can be applied in polynomial time, and

after applying them any remaining part has size at most two. As the resulting

graph G′ has nd(G′) ≤ nd(G) then |V (G′)| ≤ 2.nd(G). Thus, it remains to prove

that the application of each reduction rule is correct. As K5 and K5−e are forbidden

subgraphs, and any odd decycling matching of a K4 is a perfect matching then rules

1,2,3,4,5 and 6 can be applied in such an order. Finally, the correctness of rule 7

follows from the following facts: (i) if G′ has an allowed odd decycling matching,

then G has also an allowed odd decycling matching, because bipartite graph class is

closed under the operation of replacing vertices by a set of false twins, which have the

same neighborhood as the replaced vertex; (ii) if G′ does not admit an allowed odd

decycling matching then G also does not admit an allowed odd decycling matching,

because if a contracted single vertex vi is in an odd cycle in G′, then even replacing vi

by Vi (|Vi| ≥ 3) and removing some incident edges of Vi which form a matching,

some vertex of Vi remains to an odd cycle. �
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Chapter 5

Conclusion

We have presented our results obtained during the doctorate. The sequence of the

chapters follows the order of obtained results and submissions. We have studied

five different problems, with some similar characteristics, that generate a number of

submissions, almost of them without answer until now.

We first studied the f -reversible processes and their natural parameters, such

as the period and transient lengths. We have obtained a tight upper bound for

the transient length and show that the period length is also limited by two as

well as the threshold networks. We also characterized the trees that reach the

maximum transient length for 2-reversible processes, that we prove to be equals n−3.

Finally we prove that determining the minimum f -conversion set is NP -hard even

for bipartite graphs with bounded degree.

At the same time we have worked on the AND/OR-convexity, where we proved

many NP -hardness results and polynomial time algorithms for the different param-

eters considered, that were convexity number, hull number, interval number, and

Charathéodory number.

The generalized threshold processes are considered right after, where its motiva-

tion comes from processes in distributed computing, such as the xor-circuits. We

have proved several NP -hardness results even for simple classes as the complete

graphs. However, we present efficient algorithms for trees.

The previous problems use notions of convexity and iterative processes. In Chap-

ter 4 we start the study of editing problems on graphs. We consider two cases where

it is desired to know whether a given graph G admits a matching whose removal

generates a forest or a bipartite graph. We have proved that both versions are NP -

hard and present several polynomial time algorithms for some specific graph classes.

We also considered parameterized results about the second version.

All results of this thesis are submitted or published.
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5.1 Open Problems

“It’s the job that’s never started as

it takes longest to finish.”

(Sam)

— J.R.R. Tolkien, The Fellowship

of the Ring

5.1.1 f-Reversible Processes

The potential function gave the necessary interpretation in other to obtain all

initial configurations on 2-reversible processes on trees reaching at least n− 3 time

steps, where its value is tight when n ≥ 4. Determining such configurations based

on only G and f is a no trivial work. This can be observed by the work of Oliveira,

Barbosa and Protti [116], in which determining if there exists a predecessor

configuration of a given one is NP -complete even for bipartite graphs. In this way,

we left two problems regarding the maximum transient length:

• To characterize all initial configurations reaching the maximum transient

length in terms of only G and f ;

• To count the number of such configurations.

We also have studied the problem of determining the minimum size rf (G) of

a vertex subset that allows f -reversible processes to uplift. We have shown that

determining if rf (G) is at most a constant q > 0 is NP -complete for bipartite graphs

with maximum degree 3 and Imf = {1, 2, 3}. We also have proved that β(G) ≤
rf (G) ≤ β(G) + 1, when f(v) = d(v) for all vertices. In fact, determining rf (G)

seems a no trivial job even for simple graph classes as paths and cycles [59]. In

addition to this open problem, we propose the following:

• To determine a lower and an upper bound on rf (G);

• To find an approximative algorithm to compute rf (G).

5.1.2 AND/OR-Convexity

We leave open the study of other convexity parameters, such as the Radon number,

the rank, and the Helly number. It is interesting to know what is the complexity of

computing them in the AND-OR model, and what are their meanings in this model.

5.1.3 Generalized Threshold Process

Many questions about this new problem can be done. We left some of them here.
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What is the complexity of the non-relaxed τ -hull number for trees? Are there

non-trivial bounds on the relaxed or non-relaxed τ -hull number?

It seems interesting to study a ‘total’ version of τ -interval sets, where S is a total

τ -interval set of a graph G with threshold function τ if NG(u) ∩ S ∈ τ(u) for every

vertex u of G, and not only for every vertex u in V (G) \ S. It is easy to see that

deciding the existence of a total ⊕-interval set for a given graph is equivalent to a

suitable system of n linear equalities over F2.

Let V be a set of order n. For which vectors (t0, t1, . . . , tn) does there exist a set

system T ⊆ 2V with ∀X ∈ T : ∀Y ⊆ V : X ⊆ Y ⇒ Y ∈ T such that ti =
∣∣T ∩

(
V
i

)∣∣
for every i?

5.1.4 Decycling with a Matching

we only study a special case of the more general problem of destroying all cycles by

removing edges under the restriction that the graph formed by the removed edges

has bounded maximum degree. This problem can certainly be considered more

generally.

Another class of graphs where Allowed Decycling Matching might be

solvable efficiently are chordal bipartite graphs. Their guaranteed density is close

to the threshold from Lemma 4.1(ii), which should imply strong restrictions on the

block structure of chordal bipartite graphs with a decycling matching.

5.1.5 Odd Decycling with a Matching

The polynomial time results obtained here can clearly be extended to other graph

classes, as well as characterizations of such graph classes that have an odd decycling

matching. Such polynomial time algorithms must be applicable to sparse graphs,

since they are even subgraph of K5 free, such as the W4.

We found a good dichotomy related to theNP -completeness of Odd Decycling

Matching, where it is know that subcubic graphs have a linear time algorithm and

it is NP -complete even for planar graphs with degree at most 4.

As we saw, the minimization version have received attention in the literature,

where we can see that Odd Decycling Matching coincides to MAX-CUT when

restricted to subcubic graphs. The ideas presented in this work can be used to

obtain new combinatorial approximative algorithms with a better approximation

factor than the best one know, which is based on semi-defined programming [18].

Interesting properties regarding the chromatic number of graphs in BM can be

proposed. For example, which graphs G ∈ BM are such that χ(G −M) ≤ χ(G),

for an odd decycling matching M of G? Moreover, what is the maximum size of the

gap between χ(G−M) and χ(G)?
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Appendices

Appendix A:

On f-Reversible Processes on Graphs

This appendix contains the article “On f -Reversible Processes on Graphs” presented

in VIII Latin-American Algorithms, Graphs and Optimization Symposium, 2015, and

published in Electronic Notes in Discrete Mathematics journal as a proceeding.
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Abstract

Given a graph G and a function f : V (G) → N we study the iterative process on G
such that, given an initial vertex labelling c0 : V (G) → {0, 1}, each vertex v changes
its label if and only if at least f(v) of its neighbors have the different label. It is
known that these processes reach periodic behavior after a phase called transient.
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at most two, for all c0. We also study the problem of finding the minimum number
rf (G) of vertices with initial label 1, such that all vertices reach label 1. Given a
constant k ≥ 1, we show that is NP-complete to determine if rf (G) ≤ k, even if G
is a bipartite graph with Δ(G) ≤ 3 and f : V (G) → {1, 2, 3}. We also prove that
this problem is NP-complete for planar cubic graphs and f : V (G) → {3}, through
relationship between rf (G) and the size of a minimum vertex cover of G, in the case
in which f(v) = d(v), for all vertex v.

Keywords: f -reversible processes, maximum transient length, f -conversion set
problem, complexity, graph dynamical systems.

1 Email addresses: mitre@nce.ufrj.br (Dourado), gclima@cos.ufrj.br (Lima),
jayme@nce.ufrj.br (Szwarcfiter)
2 Partially supported by CAPES, FAPERJ and CNPq/Brazil.

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 50 (2015) 231–236

1571-0653/© 2015 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

http://dx.doi.org/10.1016/j.endm.2015.07.039

125



1 Introduction

Given a finite, undirected and simple graph G, a process on G is an infinite
sequence P = (ct)t∈N = (c0, c1, . . .) of labellings ct : V (G) → {0, 1} called
configuration of P and such that ct(v) denotes the state of v, at time t ∈ N.
Moreover, we say that ct is a predecessor configuration of ct+1, for all t ∈ N,
and c0 is the initial configuration of P. This approach is used in a lot of areas.
In this work, we consider a special kind of these iterative processes, such that
ct+1 is obtained from ct by applying a threshold function f : V (G) → N to
each vertex v ∈ V (G), so that v changes its state if and only if it has at least
f(v) neighbors with the opposite state at t, for each time step t ∈ N. We
say that f(v) is the threshold value of v. We call such iterative processes as
f -reversible processes on G and we denote them by Rf (G) = (ct)t∈N, given an
initial configuration c0, or simply Rf (G). If f is a k-constant function, then
we denote them by Rk(G) and call them k-reversible processes on G.

Clearly f -reversible processes are uniquely determined by G, f and c0 and,
due to state updating rule of a vertex v depends only of the states in N(v), the
neighborhood of v, we consider only connected graphs. Moreover, denoting
the degree of v by d(v), if f(v) > d(v) for some vertex v, then its initial
state remains the same for all time. So, we can consider f(v) = d(v) + 1.
Hence, only threshold functions f satisfying f : V (G) → {0, . . . ,Δ(G) + 1}
will be considered, where Δ(G) denotes the maximum degree of G. Note that
if f(v) = 0, then ct(v) will change for each t ∈ N.

Because G is finite, ct+1 is obtained deterministically from ct, for all t ∈ N,
and are used only two states, there are 2n possible configurations and there
must exist a time step in which the process becomes periodic, which depends of
the initial configuration. The length of the periodic phase is called period and
it is denoted by p(c0) ≥ 1. A periodic configuration is one which occurs in the
periodic phase. The phase of no periodic configurations is called transient and
its length is denoted by τ(c0) ≥ 0. Note that the first periodic configuration is
obtained at time τ(c0). Oliveira, Barbosa and Protti [1] showed that p(c0) ≤ 2
and they gave a no tight upper bound for τ(c0) of O(nΔ(G)), both for k-
reversible processes, k ≥ 2. Here, we give a sharp upper bound for τ(c0), with
the same approach of [1], but for general threshold functions. Moreover, we
also show that p(c0) ≤ 2 in these cases.

We say that an f -reversible process converges if all vertices achieve state
equal to 1 in cτ(c0). So, for convergence we must consider f(v) > 0, for
all v ∈ V (G). Given an f -reversible process Rf (G) that converges, the set
of vertices with initial state equal to 1 is called an f -conversion set of G.
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Furthermore, V (G) is a trivial f -conversion set. We also study the problem of
finding the minimum cardinality of an f -conversion set ofG, denoted by rf (G).
Similarly, we denote rk(G) if f is constant with value k ≥ 1. Dreyer [2] proved
that finding rk(G) is NP-hard for k ≥ 3 and gave exact values for some specific
graph classes. Dourado et al. [3] showed the NP-hardness for k = 2. For k = 1,
the trivial solution is the unique. We show that determining if rf (G) ≤ k is
NP-complete even if G is bipartite with Δ(G) ≤ 3 and f : V (G) → {1, 2, 3}.
Furthermore, we also show the NP-completeness for 3-reversible processes on
planar cubic graphs, by relationship between the size of a minimum vertex
cover of G and rf (G), in the cases in which f(v) = d(v), for all v ∈ V (G).

2 Period and Transient Length

We show that p(c0) ≤ 2, whose upper bound occurs for example in R1(K2),
whose vertices have opposite states. To this end, we prove that f -reversible
processes are particular cases of threshold networks, denoted by (A, b), which
are defined by a quadratic matrix A and a threshold vector b. The vertex states
of threshold networks belong also to {0, 1}, for example, and configuration
ct+1 is given from ct, defining an iterative process, according to the following
rule: ct+1(vi) = 1, if and only if

∑n
j=1 Aijct(vj) − bi � 0. It was established

in [4] that p(c0) ≤ 2 if A is symmetric. Hence, our approach consists in
finding appropriate symmetric matrix and threshold vector. We do it for f1-
f2-reversible processes, in which there are two threshold functions f1 and f2,
where v changes its state from 0 to 1 according f1 and from 1 to 0 according f2.
If f1 = f2, then we obtain an f -reversible process, with f1 = f2 = f .

Theorem 2.1 f1-f2-Reversible processes on G are particular threshold net-
works (A, f1), whose matrix A is given as the adjacency matrix of G, such
that Aii = f1(vi) + f2(vi)− d(vi)− 1, for all 1 ≤ i ≤ n.

In the proof of Theorem 2.1, we show that ct+1(v) �= ct(v) if and only if v
has at least f(v) neighbors with different state at t. We consider the switch
cases from 0 to 1 and 1 to 0 according to update rule of threshold networks.

Corollary 2.2 The period of f1-f2-reversible processes is at most two.

Now, we will present a polynomial tight upper bound for transient length of
f -reversible processes on G. For all t ∈ N, let S1(t) and S2(t) be a partition of
V (G), such that S1(t) denotes the vertices that change their states at instant t
and S2(t) those that do not. Given a vertex v, we denote the number of neigh-
bors with the opposite state of v at time t by opt(v). So, we can denote the
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previous sets by S1(t) = {v : opt(v) ≥ f(v)} and S2(t) = {v : opt(v) < f(v)}.
We modify slightly the approach presented by Oliveira, Barbosa and Protti [1]
for k-reversible processes, so that it works to general threshold functions f .
The energy function of an f -reversible process at time t is given as:

E(t) =
∑

v∈S1(t)

(opt(v)− f(v)) +
∑

v∈S2(t)

(f(v)− opt(v))

Theorem 2.3 gives an upper bound for transient length based in the energy
value and cardinality of S2 at time τ(c0)− 1, last time of transient phase.

Theorem 2.3 If τ(c0) > 0, then τ(c0) ≤ E(τ(c0) − 1) − |S2(τ(c0) − 1)| + 1.
Furthermore, the bound is attained.

The idea of the proof is to first show that the energy function never de-
crease. Hence, it reach a maximum value, denoted by Emax, because it can
not increase in the periodic phase. We analyse the energy variation of each
vertex v from time t to t + 1 in all cases in which v change between S1 and
S2, or otherwise. So, we relate τ(c0) with the energy variation from time 0
to τ(c0) − 1. Corollary 2.4 gives the tight upper bound based on graph size,
denoted by n, and the maximum and minimum threshold values, fmax and
fmin, respectively. Note that it is restricted to processes with period equal to
one. We define the following sets used in its proof:

• X1 = {v ∈ V (G)|cτ(c0)−1(v) = 0 and v ∈ S1(τ(c0)− 1)}
• Y1 = {v ∈ V (G)|cτ(c0)−1(v) = 1 and v ∈ S1(τ(c0)− 1)}
Corollary 2.4 If τ(c0) > 0 and p(c0) = 1, then, for all c0:

τ(c0) ≤

⎧
⎨
⎩

(n− 1)(fmax − 1)− (fmin − 1) , if X1 or Y1 is empty;

(n− 1)(fmax − 1)− fmax , otherwise.

Figure 1 shows an example illustrating that Theorem 2.3 and Corollary 2.4
are sharp. The gray vertices have state one and the number above vertex v
represents f(v). We consider odd cycles Cn = v1v2 . . . vn, so that f(v1) = 1
and f(vi) = 2, for all i �= 1. Furthermore, c0(v1) = 1 and c0(vi) = 1 if and only
if i is even and i > 0. Actually, the bound of Corollary 2.4 can be arbitrarily
far from τ(c0). For example, consider an f -reversible process on a star G with
n vertices and central vertex v, such that f(v) = n and f(u) = 1, for all u �= v.
If c0(v) = 1 and c0(u) = 0, for all u �= v, then τ(c0) = 1. But, Corollary 2.4,
give τ(c0) ≤ (n− 1)(fmax − 1)− (fmin − 1) = (n− 1)2. However, Theorem 2.3
give us the correct value in this case. In this way, a characterization of this
limit in terms of G, c0 and f remains an interesting problem.
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(a) c0 (b) c1

(c) c2 (d) c3

Fig. 1. Transient configurations of Rf (C5).

3 NP-Completeness of f-Conversion Set Problem

In this section, we prove the NP-completeness of f-Conversion Set Prob-
lem. The proof is a reduction through a restriction of 3SAT, where each
clause has 2 or 3 literals and each variable occurs in at most 3 clauses [5]. It
can be polynomially solved if all clauses have exactly 2 or exactly 3 literals [6].
f-Conversion Set Problem
Instance: A graph G, a function f : V (G) → N and an integer k � 1.
Question: Is rf (G) � k?

Determining whether r2(G) ≤ k was proved to be NP-hard by Dourado et
al. [3]. Denoting the neighborhood of a vertex v in a vertex set X by NX(v),
they also determined that if there exist two disjoint vertex subsets A and B
where each vertex of A has different state of the vertices of B, |NB(v)| ≥ f(v),
for all v ∈ A and |NA(u)| ≥ f(u), for all u ∈ B, then the process does not
converge. Based in this observation, we give a simple lemma:

Lemma 3.1 Let Rf (G) be an f -reversible process on G which converges. If
there exists a vertex v ∈ V (G) such that f(v) = d(v) and f(u) = 1, for all
u ∈ N(v), then ct(v) = 1 and ct(u) = 1, for some u ∈ N(v) and for all t ≥ 0.

Theorem 3.2 f-Conversion Set Problem is NP-complete, even if G is
a bipartite graph with maximum degree 3 and f : V (G) → {1, 2, 3}.

Sketch of proof: The problem is in NP, since the process has a polynomial
number of steps, by Corollary 2.4, and each one is executed in O(n+m). More-
over, given a restricted 3SAT problem formula F with variablesX1, . . . , Xn and
clauses C1, . . . , Cm, we construct a graph G, such that: for each Xi, G con-
tains three vertices xi, xi and ai; for each clause Cj, we assign one vertex cj;
we add edges aixi and aixi for all 1 ≤ i ≤ n, and xicj if and only if Xi ∈ Cj;
finally we assign f(xi) = f(xi) = 1 and f(v) = d(v), to the other vertices. By
Lemma 3.1 we prove that F is satisfying if and only if rf (G) = m+ 2n. �

M.C. Dourado et al. / Electronic Notes in Discrete Mathematics 50 (2015) 231–236 235

129



We also analyse the complexity of finding a minimum f -conversion set on
general graphs, such that f(v) = d(v) for all v ∈ V (G). In this case, if an edge
is such that the states of its ends are the same, then these vertices never will
change their states, showing that rf (G) ≥ β(G), the size of a minimum vertex
cover[7] of G. We stablish the following theorem relating rf (G) and β(G).

Theorem 3.3 Given an f -reversible process on a connected graph G, such
that f(v) = d(v) for all v ∈ V (G), if exists a minimum vertex cover of G which
is not an independent set, then rf (G) = β(G). Otherwise, rf (G) = β(G) + 1.

Until this moment, approximation results on f-Conversion Set Prob-
lem are unknown. By König-Egervry Theorem [7], if G is a bipartite graph,
then β(G) can be found in polynomial time. Thus, by second case of The-
orem 3.3 we can determine rf (G) in polynomial time for bipartite graphs.
Moreover, because Vertex Cover Problem [5] is NP-complete even for
planar cubic graphs, follows that:

Corollary 3.4 f-Conversion Set Problem is NP-complete even if G is
a planar cubic graph and f : V (G) → {3}. But we can determine rf (G) in
polynomial time if G is connected bipartite and f(v) = d(v), for all v ∈ V (G).
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Appendix B:

A Computational Study of f -Reversible Processes

on Graphs

This appendix contains the article “A Computational Study of f-Reversible Processes

on Graphs” submitted on December 2015 to Discrete Applied Mathematics journal.
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1. Introduction

Let G = (V,E) be a simple, undirected, finite graph with n vertices and m
edges. A discrete dynamical process on G is an infinite sequence P = (ct)t∈N =
(c0, c1, . . . ) of configurations ct : V (G) → {0, 1}. We say that c0 is the initial
configuration of P and ct(v) denotes the state of v at time t ∈ N. The transition
from ct to ct+1 takes place under the same predetermined rule at each time
step. This approach is employed on a wide variety of areas such as social
influence [9, 17, 28, 41–43], gene expression networks [27], immune systems [2],
cellular automata [3], statistical mechanics [1, 4], marketing strategies [11, 13,
28], finite discrete dynamical systems [5, 37, 45], astrophysics and physics [20,
40, 44], opinion and disease [10, 32] dissemination, simulations of biologic cell
populations [30], modeling of chemical systems [29], neural networks [22], local
interaction games [33, 34] and distributed computing [15, 16, 25, 31, 35, 39].

In this work we consider a special kind of iterative processes on simple
undirected graphs that generalizes the majority voting approach studied by
Peleg [39]. Formally, the update rule is such that ct+1 is obtained from ct ac-
cording to a threshold function f : V (G)→ N applied to each vertex v ∈ V (G)
and at each time t ∈ N. Denoting the neighborhood of v by N(v), the update
rule is defined as

ct+1(v) =

{
1− ct(v) , if |{u ∈ N(v) : ct(u) 6= ct(v)}| > f(v);
ct(v) , otherwise.

(1)

In other words, every vertex v changes its state if and only if it has at least f(v)
neighbors with the opposite state, at each time step t ∈ N. Moreover, the state
updates are done synchronously.

We say that f(v) is the threshold value of v, which does not change during the
process. Given an initial configuration c0, we call such an iterative process fol-
lowing Eq. (1) as an f -reversible process on G, denoted by Rf (G, c0) = (ct)t∈N,
or simply Rf (G, c0). If f is a k-constant function, it is denoted by Rk(G, c0)
and called k-reversible process on G, k ∈ N.

An f -reversible process is analogous to the majority voting approach studied

by Mustafa and Pekeč [35] with f(v) =
⌊
d(v)
2

⌋
+ 1, where d(v) denotes the

degree of v. In fact, several works consider iterative processes on graphs where
changes of states are allowed at most once during the process [7, 8, 13, 15].
These approaches are used, for instance, in contexts of opinion spread on a
social network or disease dissemination among individuals. Gargano et al. [19]
considered the influence diffusion in social networks in which some individuals
are “actives” to influence their neighbors for a limited number of time steps, once
they were influenced by a sufficient number of neighbors. However, if a vertex
has been influenced then it remains in this state forever. An f -reversible process
represents the extremal case in which the elements do not have “memory”. Thus,
the vertices do not keep themselves influenced if they have the required amount
of neighbors to change their states and each one needs to be convinced by a
subset of neighbors to change its opinion, at each time step.
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We deal with two problems regarding f -reversible processes. The first one
concerns on its periodic behavior, where we present the following results:

1. We show that f -reversible processes are particular cases of threshold net-
works, which have at most two configurations in their periodic phase. This
result is presented in Theorem 1;

2. Using a so called energy function, Goles et al. [24] provided an upper
bound on the number of time steps needed to achieve the periodic behavior
(maximum transient length). In this work we present a more intuitive
function which provides a tight upper bound based on G, f and c0. This
result is given in Theorem 6;

3. We also analyze the maximum transient length of 2-reversible processes
on trees with at least 5 vertices, where we prove that it is at most n−3 in
Theorem 7. The proof yields an algorithm (Algorithm 1) that generates
all initial configurations that allow the process to reach n− 3 time steps.
Moreover, we prove that the number of such configurations is O(n).

The second problem studied refers to finding the minimum cardinality of a
vertex subset which allows that all the vertices of G reach same state 1. This
problem was proved to be NP -hard even for 2-reversible processes on general
graphs [12]. In the same work, this problem was left open for paths and cycles,
where Imf = {1, 2}. Dreyer [14] determined in his thesis the exact value for
some specific graph classes, where f is constant. Moreover he proved that such a
problem is NP -complete for k-regular graphs, where the function is k-constant.
Regarding this problem, we obtain the following results:

1. We prove that it is NP-hard to determine such a parameter for bipartite
graphs whose maximum degree is at most 3 and Imf = {1, 2, 3}. This
result is presented in Theorem 11;

2. Denoting the size of a minimum vertex cover of G by β(G), we prove that
such a parameter is equal to β(G) or β(G) + 1, when f(v) = d(v) for
all v ∈ V (G). Theorem 12 presents this result. As a corollary, if G is not
a bipartite graph then β(G) is the exact number of vertices required.

2. Definitions, Properties, and Main Results

We refer to [6] for definitions and concepts related to the theory of graphs.
It is clear that an f -reversible process is uniquely determined by G, f and c0.
Furthermore, due to Eq. (1), every vertex v depends on only its own state and
on the states of its neighbors to define its next one. Thus, we will consider only
connected graphs in the remaining of the paper. Moreover, if f(v) > d(v) for
some vertex v then its initial state does not change during the whole process.
Therefore we can assume f(v) = d(v) + 1 in this case. Hence, only threshold
functions f satisfying Imf = {0, . . . ,∆(G) + 1} will be considered, where ∆(G)
denotes the maximum degree of G. Note that if f(v) = 0 then the state of v
changes at every time step t ∈ N.
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2.1. The Periodic Behavior

Let Rf (G, c0) be an f -reversible process. Since G is finite and ct+1 is ob-
tained deterministically from ct, according to Eq. (1), the number of possible
configurations is equal to 2n. Hence, there must exist a finite time step in which
the process becomes periodic. The set of configurations preceding the periodic
phase is called transient and its length is denoted by τ(c0) ≥ 0. The length
of the periodic phase is called period, denoted by p(c0) ≥ 1. A periodic config-
uration is one that occurs in the periodic phase and note that the first one is
reached at time τ(c0). Formally, the period and transient lengths satisfy the
following conditions:

• ct+p(c0) = ct, for all t ≥ τ(c0);

• ct+q 6= ct , for all (t < τ(c0) and q ≥ 1) or (t ≥ τ(c0) and 1 ≤ q < p(c0)).

Two natural parameters arise from the above definitions. Given a threshold
function f and a graph G, denote the largest transient length over all initial
configurations by τf (G) (resp. τk(G) if f is a k-constant function). Analogously,
let pf (G) be (resp. pk(G) if f is a k-constant function) the largest period over
all initial configurations.

Oliveira, Barbosa and Protti [36] studied the problem of determining if a
configuration c has a predecessor configuration, which is one that reaches c
within exactly one time step. They have dealt only with k-reversible processes,
where they proved that determining if there exits a predecessor configuration
of one given it is NP -complete for bipartite graphs, but linear time solvable
for trees. Moreover they also present a linear time algorithm for 2-reversible
processes on graphs whose maximum degree is at most 3. They also dealt with
the problem of counting the number of predecessor configurations, in which they
showed an O(n2) time algorithm for trees.

Dreyer [14] proved that τk(G) is O(m + n2) and pk(G) ≤ 2, where these
results are based on reductions from the so-called threshold networks [22, 23]. It
is known that the maximum period of threshold networks is at most 2 [24, 41].
An intuitive approach to prove this result is based on a monotonic function
called energy function. Its definition is very similar to that of the energy function
associated with Hopfield networks [26]. It is a Lyapunov function and can be
used to prove several results associated with the period and transient lengths of
threshold and majority networks. This function dates back to Ref. [24] (page
269, inside the proof of Proposition 2) and was later reproduced in Ref. [21]
(page 70, Eq. (3.3)).

2.2. The Potential Function

Let us consider an f -reversible process on a graph G. For all t ∈ N, let
S1(t) and S2(t) be a bipartition of V (G), where S1(t) denotes the set of vertices
which change their states at time t and S2(t) the set those that do not. Given
a vertex v, we denote the number of neighbors with the opposite state of v at t
by opt(v). Thus, it follows that

S1(t) = {v : opt(v) ≥ f(v)}

4
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Figure 1: The initial configuration of a 2-reversible process on a tree whose gray vertices have
state 1.

and

S2(t) = {v : opt(v) < f(v)}.

We define a nonnegative function that we call potential function P (t) for f -
reversible processes as

P (t) =
∑

v∈S1(t)

(opt(v)− f(v)) +
∑

v∈S2(t)

(f(v)− opt(v)) . (2)

Fig. 2 contains plots of the potential and energy functions against time.
One of them (filled line) is the energy function of Ref. [24] (page 269, inside
the proof of Proposition 2), later reproduced in Ref. [21] (page 70, Eq. (3.3)).
The other (dotted line) refers to the potential function of Eq. (2). Data in the
plots correspond to the tree depicted in Fig. 1. Both plots refer to a 2-reversible
process and, in the case of the energy function of Ref. [24], to bi = 1.5 as the
additional required parameter for every vertex vi. The initial configuration has 0
at vertices v2–v11 and 1 at all others. The two functions differ markedly and no
simple reduction seems to exist to transform one into the other. In particular,
the potential function is nondecreasing (rather than monotonically decreasing),
as illustrated by Fig. 2.

2.3. The Minimum f-Conversion Set Problem

We say that an f -reversible process Rf (G, c0) is uplifting if all vertices
achieve state 1 in a finite number of time steps, which is given by τ(c0). An f -
conversion set of G is a subset of vertices whose initial states are equal to 1 and
for which the process is uplifting. For this end, we cannot consider any threshold
values equal to 0. Furthermore V (G) is a trivial f -conversion set of G. We also
study the problem of finding the minimum cardinality of an f -conversion set
of G, denoted by rf (G) (rk(G) if f is a k-constant function, k ≥ 1). For k = 1,
the trivial solution given by V (G) is unique. We consider the following decision
problem in this work:
f -Conversion Set

5
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Figure 2: Time evolution of the potential (dotted line) and energy (filled line) functions.

Input: A graph G, a function f : V (G)→ N and an integer q ≥ 1.
Question: Is rf (G) ≤ q?

In his thesis, Dreyer [14] proved that f -Conversion Set is NP -complete
for k-reversible processes on k-regular graphs, k ≥ 3. Moreover he gave exact
values of rk(G) for some specific graph classes. Dourado et al. [12] showed the
NP -hardness of determining r2(G) for general graphs G. They also stated an
algorithm based on dynamic programming which computes rf (Pn) for specific
paths Pn with n vertices. They consider both threshold values 1 and 2, where
every v with f(v) = 1 has a neighbor u with f(u) = 1. Thus, computing rf (G)
even for paths and cycles remains open.

The remainder of the text is organized as follows. In Section 3 we prove that
f -reversible processes are particular cases of threshold networks whose matrix
is symmetric, proving that pf (G) ≤ 2. We also present a sharp upper bound
for τf (G), based on the potential function given by Eq. (2). To this end we
prove that such a function is monotonically non-decreasing. In Section 4 we
show that τ2(T ) ≤ n − 3, for trees T with n ≥ 4. Moreover, we present all
the initial configurations reaching such a bound. We also present an algorithm
that generate all the initial configurations achieving n − 3 time steps until the
uplifting is reached and the number of such configurations. In Section 5 we prove
that f-Conversion Set is NP -complete for bipartite graphs G with ∆(G) ≤ 3
and Imf = {1, 2, 3}. It also contains the proof that rf (G) ∈ {β(G), β(G) + 1},
when f(v) = d(v) for all v ∈ V (G). Section 6 contains our conclusions.

3. The Period and the Transient Length

In this section we prove that the potential function given by Eq. (2) is
nondecreasing. Thus, we show how it can be used to give a tight upper bound
for the maximum transient length. Next we consider the maximum transient
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length of 2-reversible processes on trees. But first, we concern ourselves with
the maximum period of f -reversible processes.

3.1. The Maximum Period

We prove that pf (G) ≤ 2, where this bound occurs for example in an 1-
reversible process on K2 whose vertices have opposite states. To this end, we
prove that f -reversible processes are particular cases of threshold networks (A, b),
which are defined by a square matrix A and a threshold vector b. The vertex
states also belong to {0, 1}, for example, and configuration ct+1 is obtained
from ct, defining an iterative process such that: ct+1(vi) = 1 if and only
if
∑n
j=1Aijct(vj)−bi ≥ 0. It was established in [24] that pf (G) ≤ 2 if A is sym-

metric. Hence, our approach consists on finding appropriate symmetric matrix
and threshold vector. In fact, we do it for (f1,f2)-reversible processes, in which
there are two threshold functions f1 and f2, where v changes its state from 0
to 1 according to f1 and from 1 to 0 according to f2. If f1 = f2 then we obtain
an f -reversible process, with f = f1 = f2.

Theorem 1. An (f1,f2)-reversible process on G is a threshold network (A, f1)
for which

Aij =





1 , if vivj ∈ E(G) and i 6= j;
0 , if vivj /∈ E(G) and i 6= j;

f1(vi) + f2(vi)− d(vi)− 1 , if i = j.

Proof. Let n1t (vi) and n0t (vi) be the number of neighbors of vi with states 1
and 0 at time t, respectively. It is enough to show that ct+1(vi) 6= ct(vi) if and
only if vi has at least f1(vi) neighbors with state 1 or vi has at least f2(vi)
neighbors with state 0 at time t, if v has states 0 or 1, respectively.
• ct(vi) = 1: we get that ct+1(vi) = 0 if and only if

∑n
j=1Aijct(vj)− bi < 0.

Hence:

n∑

j=1

Aijct(vj) < f1(vi);

(f1(vi) + f2(vi)− d(vi)− 1)ct(vi) + n1t (vi) + n0t (vi) < f1(vi);

f1(vi) + f2(vi)− d(vi)− 1 + n1t (vi) < f1(vi);

f2(vi)− (n1t (vi) + n0t (vi))− 1 + n1t (vi) < 0;

f2(vi)− n0t (vi)− 1 < 0;

f2(vi) < n0t (vi) + 1;

f2(vi) 6 n0t (vi).

In this way, vi changes its state from 1 to 0 if and only if f2(vi) ≤ n0t (vi),
as (f1,f2)-reversible processes.
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• ct(vi) = 0: we get that ct+1(vi) = 1 if and only if
∑n
j=1Aijct(vj)− bi > 0.

Hence:

n∑

j=1

Aijct(vj) > f1(vi);

(f1(vi) + f2(vi)− d(vi)− 1)ct(vi) + n1t (vi) + n0t (vi) > f1(vi);

n1t (vi) > f1(vi).

Analogously, vi changes its state from 0 to 1 if and only if f1(vi) ≤ n1t (vi), as
(f1,f2)-reversible processes.

Corollary 2. The period of (f1,f2)-reversible processes is at most 2.

Proof. Since A is symmetric, the corollary follows directly from the result of
Ref. [24].

3.2. Monotonicity of the Potential Function

First, we will prove that the potential function given by Eq. (2) is equivalent
to

P ′(t) =
∑

v∈S1(t)

(opt+1(v)− f(v)) +
∑

v∈S2(t)

(f(v)− opt+1(v)). (3)

To this end, we consider a partition of the edges whose ends have opposite
states at time t as follows:

• A(t) = {(u, v) ∈ E(G) : u ∈ S1(t), v ∈ S1(t) and ct(u) 6= ct(v)};
• B(t) = {(u, v) ∈ E(G) : u ∈ S2(t), v ∈ S2(t) and ct(u) 6= ct(v)};
• C(t) = {(u, v) ∈ E(G) \ {A(t) ∪B(t)} and ct(u) 6= ct(v)}.

Note that each edge of C(t) does not have both ends in the same set S1(t)
or S2(t). Hence, we get that

∑

v∈S1(t)

opt(v) = 2|A(t)|+ |C(t)| and
∑

v∈S2(t)

opt(v) = 2|B(t)|+ |C(t)|.

Therefore,

∑

v∈S1(t)

opt(v)−
∑

v∈S2(t)

opt(v) = 2(|A(t)| − |B(t)|). (4)

Lemma 3. For t ≥ 0, P (t) = P ′(t).

Proof. Observe that P (t) and P ′(t) can be rewritten as

P (t) =


 ∑

v∈S1(t)

opt(v)−
∑

v∈S2(t)

opt(v)


+


 ∑

v∈S2(t)

f(v)−
∑

v∈S1(t)

f(v)


 ,
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P ′(t) =


 ∑

v∈S1(t)

opt+1(v)−
∑

v∈S2(t)

opt+1(v)


+


 ∑

v∈S2(t)

f(v)−
∑

v∈S1(t)

f(v)


 .

Thus, it is enough to prove that

∑

v∈S1(t)

opt(v)−
∑

v∈S2(t)

opt(v) =
∑

v∈S1(t)

opt+1(v)−
∑

v∈S2(t)

opt+1(v). (5)

We can observe that both terms of Eq. (5) are defined on the same sets, but
referring to the number of neighbors with opposite states at sequential instants,
to each vertex v. We also consider similar sets to A(t), B(t) and C(t), but
referring to edges whose ends have opposite states at time t+ 1:
• A′(t) = {(u, v) ∈ E(G) : u ∈ S1(t), v ∈ S1(t) and ct+1(u) 6= ct+1(v)};
• B′(t) = {(u, v) ∈ E(G) : u ∈ S2(t), v ∈ S2(t) and ct+1(u) 6= ct+1(v)};
• C ′(t) = {(u, v) ∈ E(G) \ {A′(t) ∪B′(t)} and ct+1(u) 6= ct+1(v)}.

Since all vertices in S1(t) change their states and all vertices in S2(t) do not,
all edges of A(t) appear in A′(t). The same holds for all edges of B(t) in B′(t).
Moreover, since A(t) and A′(t) are defined over edges whose ends are in same
set S1(t), we get that A(t) = A′(t). It is analogous for B(t) and B′(t) with
respect to S2(t). Therefore,

∑

v∈S1(t)

opt+1(v)−
∑

v∈S2(t)

opt+1(v) = 2(|A′(t)| − |B′(t)|). (6)

Eq. (4) and Eq. (6) show that Eq. (5) is true, completing the proof.

Let ∆P (t) be the variation of the potential function from t to t + 1, i.e.,
∆P (t) = P (t+ 1)− P (t). Now, we will show that the potential variation is not
negative, for all t ∈ N.

Lemma 4. P (t) is a nondecreasing function.

Proof. By Lemma 3, we can rewrite the potential variation as ∆P (t) = P (t+ 1)−
P ′(t). Therefore,

∆P (t) =
∑

v∈S1(t+1)

(opt+1(v)− f(v)) +
∑

v∈S2(t+1)

(f(v)− opt+1(v))

−
∑

v∈S1(t)

(opt+1(v)− f(v))−
∑

v∈S2(t)

(f(v)− opt+1(v)).

Now, we can observe the contribution of each vertex to ∆P (t):

• If v ∈ S1(t) and v ∈ S1(t+ 1): opt+1(v)− f(v)− opt+1(v) + f(v) = 0;

• If v ∈ S2(t) and v ∈ S2(t+ 1): f(v)− opt+1(v)− f(v) + opt+1(v) = 0;

• If v ∈ S1(t) and v ∈ S2(t+ 1):
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– f(v)−opt+1(v)−opt+1(v)+f(v) = 2(f(v)−opt+1(v)) > 0, since f(v) >
opt+1(v);

• If v ∈ S2(t) and v ∈ S1(t+ 1):

– opt+1(v)−f(v)−f(v)+opt+1(v) = 2(opt+1(v)−f(v)) ≥ 0, since f(v) ≤
opt+1(v).

Since in each case the contribution is not negative, the lemma follows.

3.3. A New Upper Bound on the Maximum Transient Length

Now we present a tight upper bound on the transient length of f -reversible
processes. Lemma 5 gives an upper bound based on the potential function and
the cardinality of S2 at τ(c0)− 1, the last time step of the transient phase.

Lemma 5. For c0 such that τ(c0) > 0, τ(c0) ≤ P (τ(c0)−1)−|S2(τ(c0)−1)|+1.
Moreover, this bound is attained.

Proof. As in the proof of Lemma 4, if the process is not in the periodic phase
at time t then there must exist at least one vertex v such that either v ∈
(S1(t) ∩ S2(t+ 1)) or v ∈ (S2(t) ∩ S1(t+ 1)). Let TS1→S2

(v), T>0
S2→S1

(v), and

T=0
S2→S1

(v) be the number of time steps in which v passes from S1(t) to S2 (t+ 1),
from S2(t) to S1(t + 1) with potential variation, and from S2(t) to S1 (t+ 1)
without potential variation, respectively, for all 0 ≤ t ≤ τ(c0) − 2. We de-
note

∑
v∈V (G) TS1→S2

(v) by TS1→S2
and, analogously, we define T>0

S2→S1
and

T=0
S2→S1

. Thus, for any initial configuration, the maximum transient length
could be given in such a way just one vertex changes between S1 and S2, from t
to t+ 1. Hence, it follows that

τ(c0) ≤ TS1→S2
+ T>0

S2→S1
+ T=0

S2→S1
+ 1. (7)

Let Si→j be the set of vertices v such that v ∈ Si(0) and v ∈ Sj (τ(c0)− 1),
for i, j ∈ {1, 2}. Now, we consider the relation between the numbers of transi-
tions of a vertex v from time 0 to τ(c0)− 1:

T>0
S2→S1

(v) + T=0
S2→S1

(v) =





TS1→S2(v) , if v ∈ S1→1;
TS1→S2

(v) , if v ∈ S2→2;
TS1→S2

(v) + 1 , if v ∈ S2→1;
TS1→S2

(v)− 1 , if v ∈ S1→2.

The above equation shows that

T>0
S2→S1

+ T=0
S2→S1

= TS1→S2
+ |S2→1| − |S1→2|. (8)

By Eq. (7) and Eq. (8) we get that

τ(c0) ≤ 2TS1→S2
+ |S2→1| − |S1→2|+ 1. (9)

As in the proof of Lemma 4, for every v ∈ (S1(t) ∩ S2(t+ 1)) a potential
increase of at least 2 is obtained. Thus TS1→S2

≤ (P (τ(c0)− 1)− P (0)) /2.
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Furthermore, by Eq. (2), we get that P (0) ≥ |S2(0)| = |S2→1|+ |S2→2|. Hence,
we can rewrite Eq. (9) and the lemma follows:

τ(c0) ≤ P (τ(c0)− 1)− P (0) + |S2→1| − |S1→2|+ 1;

≤ P (τ(c0)− 1)− |S2→1| − |S2→2|+ |S2→1| − |S1→2|+ 1;

= P (τ(c0)− 1)− |S2(τ(c0)− 1)|+ 1.

Let us consider V (G) partitioned according to time step τ(c0)−1 as follows:
• X1 = {v ∈ V (G) : cτ(c0)−1(v) = 0 and v ∈ S1(τ(c0)− 1)};
• X2 = {v ∈ V (G) : cτ(c0)−1(v) = 0 and v ∈ S2(τ(c0)− 1)};
• Y1 = {v ∈ V (G) : cτ(c0)−1(v) = 1 and v ∈ S1(τ(c0)− 1)};
• Y2 = {v ∈ V (G) : cτ(c0)−1(v) = 1 and v ∈ S2(τ(c0)− 1)}.

Given disjoint subsets A and B of V (G), we denote the set of all edges with
one end in A and the other in B by [A,B]. Let us denote the minimum threshold
value by fmin. Furthermore, let us denote Sf =

∑
v∈V (G) f(v). Thus, by Eq. (2)

and Eq. (4), it follows that

P (τ(c0)− 1) =
∑

v∈S2(τ(c0)−1)
f(v)−

∑

v∈S1(τ(c0)−1)
f(v) + 2|[X1, Y1]| − 2|[X2, Y2]|

= Sf − 2


 ∑

v∈S1(τ(c0)−1)
f(v)


+ 2|[X1, Y1]| − 2|[X2, Y2]|.

(10)

Next, by Lemma 5 and Eq. (10) we obtain a tight upper bound on τ(c0), for
all c0.

Theorem 6. For c0 such that τ(c0) > 0,

τ(c0) ≤





Sf − (n+ 2fmin − 2) , if X1 = ∅ or Y1 = ∅;
Sf − (n+ 2fmin − 1) , if p(c0) = 1, X1 6= ∅, and Y1 6= ∅;
Sf + 2m− 3n+ 1−∑
v∈S1(τ(c0)−1)

(2f(v)− 3) , if p(c0) = 2, X1 6= ∅, and Y1 6= ∅.

Proof. Case 1: X1 = ∅ or Y1 = ∅ :
In this case we get that [X1, Y1] = ∅. Thus

P (τ(c0)− 1) ≤ Sf − 2


 ∑

v∈S1(τ(c0)−1)
f(v)



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and, by Lemma 5, we have

τ(c0) ≤ Sf − 2


 ∑

v∈S1(τ(c0)−1)
f(v)


− (n− |S1(τ(c0)− 1)|) + 1− 2|[X2, Y2]|

= Sf − 2


 ∑

v∈S1(τ(c0)−1)
f(v)


+ |S1(τ(c0)− 1)| − n+ 1− 2|[X2, Y2]|

= Sf − (n− 1)−
∑

v∈S1(τ(c0)−1)
(2f(v)− 1)− 2|[X2, Y2]|.

(11)

Since Sf − (n− 1) is a constant, |S1(τ(c0)− 1)| ≥ 1, and 2f(v)− 1 > 0 for
all v ∈ V (G), the limit obtained by Eq. (11) is maximum when [X2, Y2] = ∅
and S1(τ(c0)− 1) = {v}, where that f(v) = fmin. Hence, we obtain

τ(c0) ≤ Sf − (n− 1)− (2fmin − 1) = Sf − (n+ 2fmin − 2).

Case 2: p(c0) = 1, X1 6= ∅, and Y1 6= ∅ :
Since every v ∈ S1(τ(c0)− 1) belongs to S2(τ(c0)), we have that |NY1

(v)| ≤
f(v)− 1, for every v ∈ X1 and |NX1

(u)| ≤ f(u)− 1, for every u ∈ Y1. Therefore

2|[X1, Y1]| =
∑

v∈X1

|NY1
(v)|+

∑

u∈Y1

|NX1
(u)| ≤

∑

v∈S1(τ(c0)−1)
f(v)−|S1(τ(c0)−1)|.

Thus, we can rewrite Eq. (10) as

P (τ(c0)− 1) ≤
∑

v∈S2(τ(c0)−1)
f(v)−

∑

v∈S1(τ(c0)−1)
f(v) +

∑

v∈S1(τ(c0)−1)
f(v)−

|S1(τ(c0)− 1)| − 2|[X2, Y2]|
≤

∑

v∈S2(τ(c0)−1)
f(v)− |S1(τ(c0)− 1)|.

By Lemma 5 and the fact that |S1(τ(c0)− 1)| ≥ 2, it follows that

τ(c0) ≤
∑

v∈S2(τ(c0)−1)
f(v)− |S1(τ(c0)− 1)| − |S2(τ(c0)− 1)|+ 1

=


 ∑

v∈V (G)

f(v)−
∑

v∈S1(τ(c0)−1)
f(v)


− n+ 1

≤ Sf − (n+ 2fmin − 1).

Case 3: p(c0) = 2, X1 6= ∅, and Y1 6= ∅ :
As in Case 2, P (τ(c0)−1) is maximum when [X2, Y2] = ∅, while |[X1, Y1]| ≤

m − |S2(τ(c0)) − 1|. It means that S1(τ(c0) − 1) and S2(τ(c0) − 1) induce
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independent sets. Furthermore, d(v) = 1 for all v ∈ S2(τ(c0) − 1). Hence, we
can rewrite Eq. (10) as

P (τ(c0)− 1) ≤ Sf − 2


 ∑

v∈S1(τ(c0)−1)
f(v)


+ 2(m− |S2(τ(c0)− 1)|)

= Sf + 2m− 2


 ∑

v∈S1(τ(c0)−1)
f(v)


− 2|S2(τ(c0)− 1)|.

Hence, by Lemma 5 we complete the proof:

τ(c0) ≤ Sf + 2m− 2


 ∑

v∈S1(τ(c0)−1)
f(v)


− 3|S2(τ(c0)− 1)|+ 1

= Sf + 2m+ 1− 2


 ∑

v∈S1(τ(c0)−1)
f(v)


− 3(n− |S1(τ(c0)− 1)|)

≤ Sf + 2m− 3n+ 1−
∑

v∈S1(τ(c0)−1)
(2f(v)− 3)

= Sf + 2m− 3n+ 1−
∑

v∈S1(τ(c0)−1)
(2f(v)− 3).

Fig. 3 shows an example illustrating that the bound on Case 1 of Theo-
rem 6 is tight. The gray vertices have state 1 and the number above a ver-
tex vi represents f(vi). We consider an f -reversible process Rf (Cn, c0) on odd
cycles Cn = v1v2 . . . vn, in which f(v1) = 1 and f(vi) = 2, for all i 6= 1. More-
over c0(v1) = 0 if and only if i > 1 and odd. This process is uplifting and
satisfies the following conditions:
• v1 ∈ S1(t), for all t < τ(c0);
• For every j > 1, vj ∈ S1(t), for all t < (j − 2);
• For every j > 1, vj ∈ S2(t), for all t ≥ (j − 2).

Thus τ(c0) = n−1, as well as in Case 1 of Theorem 6. However, such a bound
can be arbitrarily far from τ(c0). For instance, consider an f -reversible process
on a star G with n vertices and whose central vertex is v. Suppose f(v) = n
and f(u) = 1, for all u 6= v. If c0(v) = 1−c0(u), for every u 6= v, then τ(c0) = 1,
although Theorem 6 results on τ(c0) ≤ (n− 1). Notice that Lemma 5 gives to
us the correct value.

Figure 4e is an example attaining the bound on Case 2 of Theorem 6, where
every vertex has threshold value 2. With respect to Case 3, we can cite an 1-
reversible process on a path Pn = {v1, v2, . . . , vn} with n ≥ 3, in which v1 has
the opposite state from the all others. Such a process has transient length equal
to n− 2, as well as in Case 3.
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(a) c0

v1

1
v2

2
v3

2
v4

2
v5

2
v6

2
v7

2

(b) c1

v1

1
v2

2
v3

2
v4

2
v5

2
v6

2
v7

2

(c) c2
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(f) c5

Figure 3: Transient phase of Rf (C7, c0).

14

145



4. The Transient Length of 2-Reversible Processes on Trees

In this section we consider the maximum transient length of 2-reversible
processes on trees. If n ≤ 4 and τ(c0) > 0, it can be seen that τ(c0) ≤ n − 2,
for all c0. Such a limit holds when T is a path with 3 vertices, whose central
vertex has the opposite state to the others (Fig. 4a). However, all non-periodic
configurations with four vertices (Fig. 4) have transient length equal to n − 3.
Actually, we prove that n−3 is a tight upper bound on all initial configurations
on trees with n ≥ 4. If n ≤ 2 then all configurations are periodic.

Theorem 7. For T a tree with n ≥ 4, τ2(T ) ≤ n− 3.

Proof. The theorem follows directly in both Cases 2 and 3 of Theorem 6, while
Case 1 shows that τ2(T ) ≤ n − 2. For trees T with f(v) = 2 for all v ∈ V (T ),
we resort to Eq. (10) and Lemma 5 as follows, where p = |S1(τ(c0)− 1)|:

τ(c0) ≤ Sf − 2


 ∑

v∈S1(τ(c0)−1)
f(v)


+ 2|[X1, Y1]| − 2|[X2, Y2]|−

|S2(τ(c0)− 1)|+ 1

≤ 2(n)− 2(2p)− (n− p) + 1 + 2|[X1, Y1]| − 2|[X2, Y2]|
= n− 3p+ 1 + 2|[X1, Y1]| − 2|[X2, Y2]|.

(12)

We split the proof into cases according to the cardinalities of sets X1 and Y1.
Case 1: X1 = ∅ or Y1 = ∅:

By Eq. (12) and the fact that p ≥ 1, if p > 1 or [X2, Y2] 6= ∅ then τ(c0) ≤
n − 4. Therefore, let us suppose that [X2, Y2] = ∅ and S1(τ(c0) − 1) = {v},
where N(v) = {v1, v2, . . . , vd(v)}, d(v) ≥ 2. Moreover, let us consider v being the
root of T and cτ(c0)−1(v) = 0, without loss of generality. Thus, each subtree Tvi ,
rooted at vi, has all its vertices with the same state at τ(c0) − 1, for each i ∈
{1, 2, . . . , d(v)}. Since only v must change its state at time τ(c0)−1, there must
exist at least two subtrees Tvi whose vertices have state 1 at time τ(c0) − 1.
Furthermore there exists at most one subtree with all its vertices having state 0
at time τ(c0)− 1. Hence p(c0) = 1 in this case.

v1 v2 v3

(a)

v1 v2 v3

v4

(b)

v1 v2 v3

v4

(c)

v1 v2 v3 v4

(d)

v1 v2 v3 v4

(e)

Figure 4: All non-periodic configurations with three and four vertices.
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ut2

Tut2
\ {ut2}

ut2+1 ut2+2 ut1−1 ut1 v v2

Tv2 \ {v2}

. . .P

Figure 5: Representation of configuration ct2 in Sub-case 1.1.

Let us consider that Tv1 is the last subtree whose vertices reach their final
state. Since the process follows concurrently in all subtrees, we split the analysis
in two sub-cases based on the degree of v.

Sub-case 1.1: d(v) = 2.
Notice that all vertices in V (T ) \ {v} must have the same state 1 at time

τ(c0)− 1, where the process is uplifting from the leaves toward v.
Let t1 and t2 be the time steps in which Tv1 and Tv2 are uplifting, respec-

tively. Since t1 = τ(c0) − 1, we get that both of v and v1 must keep state 0
from t2 to t1. If t1 = t2, then t1 is maximum when V (Tv1) induces a maximum
path that is uplifting. Thus Tv1 is a path whose states of the vertices alternate.
Furthermore Tv2 must have the same length as Tv1 . Thus T is an odd size path
whose vertices alternate, implying that τ(c0) = n−1

2 . Hence, if τ(c0) = n − 2
then n = 3, and if τ(c0) = n−3 then n = 5. These cases are depicted in Fig. 4a
and Fig. 7b, respectively.

On the other hand, if t1 > t2, it means that v1 must keep state 0 from t2
to t1− 1. Thus t1− t2 is equal to the length of a path P = {ut2 , ut2+1, . . . , ut1},
where ut1 = v1 and each ui reaches state 1 at time i, for all i ∈ {t2, t2+1, . . . , t1}.
Moreover, for every ui we get that d(ui) > 2 and each one must have at most
one neighbor with opposite state, from time t2 to time i. The configuration
obtained at time t2 which maximizes |P | is depicted in Fig. 5, where all vertices
have state 1, unless v and those of V (P ) \ {ut2}.

u1 u2 ut1−1 ut1 v v2
. . .P ′

(a) T ′ when |Tv2 | is odd.
u1 u2 ut1−1 ut1 v v2

. . .P ′

(b) T ′ when |Tv2 | is even.

Figure 6: Representation of tree T ′ obtained from a tree T , such that τ2(T ′) ≥ τ2(T ).
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vv1 v2

(a)

vv1 v2

(b)

Figure 7: All configurations with τ(c0) ≥ n− 3, such that X1 = Y1 = ∅, d(v) = 2 and n ≥ 5.

For every tree T , we can obtain a tree T ′ such that τ2(T ′) ≥ τ2(T ) as
follows. To each pair of vertices w and w′ of Tv2 \ {v2}, remove them from Tv2 ,
add w to P and, add an edge between w and w′. Moreover, assign c0(w) = 0
and c0(v2) = c0(w′) = 1. If |Tv2 | is even then there remain two vertices in Tv2 ,
by the previous procedure. Thus, remove the last neighbor w′′ of v2 from Tv2
and add it to Tv1 as a neighbor of the vertex of P at maximum distance from v,
such that c0(w′′) = 1. Fig. 6a and Fig. 6b represent the cases in which |Tv2 |
is odd or even, respectively. Thus path P increases, yielding a new path P ′ =
{u1, u2, . . . , ut1}. Hence it is obtained one more time for each pair of moved
vertices.

Note that τ2(c0) = |P ′|. Hence, if |Tv2 | is odd then τ(c0) = |P ′| ≤ n−1
2 and

it follows that:

• n−1
2 = n− 2 ⇒ n = 3 and |P ′| = 1 (Fig. 4a);

• n−1
2 = n− 3 ⇒ n = 5 and |P ′| = 2 (Fig. 7a).

Finally, if |Tv2 | is even then τ(c0) = |P ′| = n−2
2 and it follows that:

• n−2
2 = n− 2 ⇒ n = 2 and |P ′| = 0;

• n−2
2 = n− 3 ⇒ n = 4 and |P ′| = 1 (Fig. 4d).

Sub-case 1.2: d(v) ≥ 3.
Let us suppose that all non-leaf vertices reach their final states exactly one

time step after all of their children. Let P = {p1, p2, . . . , p`} be a longest path
from p1 = v until a leaf p`. Thus, for each internal vertex pi, we get that pi
reaches its final state exactly after pi+1, i < ` and τ(c0) = |P |, where |P | ≤ n−3.
Fig. 8 depicts this case, in which d(v) = 3 and the internal vertices of P must
alternate their states, since they have degree equal to 2. Therefore v must have 2
neighbors with opposite states, for all t < τ(c0)− 1. If d(v) ≥ 4 or d(pi) ≥ 3 for
some internal vertex pi then τ(c0) ≤ n− 4, in this case.

Now, let u 6= v be a non-leaf vertex whose state does not change even if all of
its children reach their final states. Moreover, let consider u the farther vertex
from v satisfying this property. Since all leaves of a subtree Tvi must have the
same state, say s ∈ {0, 1}, we have d(u) = 2. Moreover u and its parent w must
have the same initial state 0, when the child of u achieves its final state, and u
changes its state exactly one time step after w. In other words, the uplifting
of Tvi follows from the leaves to v, but it stops at u, which is “released” by w.
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Therefore, either w is released by at least two children, or w also depends
on its parent. Hence, there exists a path W = {wx, wx−1, . . . , w1}, such that wi
depends on its parent wi−1 to change its state, for all i ∈ {1, . . . , x− 1}. Thus
we get that d(wi) ≥ 3, for all wi ∈W . Moreover w1 is the first vertex of W to be
released, where the vertices in W ∪{u} change their initial states from w1 to u.
If z1 = N(w1) ∩ P does not reach its final state before w1, the process follows
changing the states of the vertices from w1 to u and returns to w1. Otherwise,
the process takes fewer time steps, since it would follow simultaneously to T \Tz1 .
In this case, all vertices on path Z = {z1, z2, . . . , zy} must alternate their states
until Tw1

is uplifting.
Let T ′(wi) be the subtree of wi which does not intersect P , for all i ∈

{1, . . . , x}. To maximize the transient length, wi must keep state 0 from t = 0
until its parent and all of its children achieve state 1. Thus wi waits until T ′wi

is
uplifting (see Fig. 9). Moreover, since wi does not affect the state of its children,
the maximum number of time steps required to the uplifting of T ′wi

is |T ′wi
| − 1.

Thus, it follows that

τ(c0) ≤ 2x+ y + 2 +

x∑

i=1

τ2(T ′wi
) + τ2(Tu)

≤ 2x+ y + 2 +

x∑

i=1

(|T ′wi
| − 1) + (|Tu| − 1)

= x+ y + 1 +

x∑

i=1

|T ′wi
|+ |Tu|

≤ n− 3.

Thus τ(c0) = n − 3 when T is as in Fig. 10a and Fig. 10b, where all sub-
trees T ′wi

and Tu have exactly one vertex and all vertices of Y have degree 2.
Note that if x = 0 then the obtained configurations are equivalent to those

in Fig. 8. On the other hand, if n is even and y = 0 then v “starts” the process,

v

v3

v2
. . .P

(a) n odd.

v

v3

v2
. . .P

(b) n even.

Figure 8: Representation of the initial configurations of trees in which τ2(c0) = n− 3 and all
non-leaf vertices reach their final states exactly one time step after all of their children.
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u

Tu

wx

T ′wx

wx−1

T ′wx−1

w1

T ′w1

z1 z2 zy−1 zy v v2

v3

. . . . . .

W Z

Figure 9: Representation of tree T , where v ∈ S1(t), for all t ≤ τ(c0)− 1.

where its state must be equal to the states of the leaves of P , as well as when n
is odd and y = 0, but with initial state opposite to that of the leaves. In the last
case it is possible to keep the state of v, adding one neighbor to v with opposite
state, yielding a tree with even number of vertices (Fig. 11a). The effect is to
extend W including v, increasing the transient length by one time step and the
number of vertices also by one, keeping the upper bound on n−3. On the other
hand, no other vertex can be added as a neighbor of v, since v already have
two neighbors of each state. Finally, we can obtain the configuration given in
Fig. 11b, where the additional vertex is added as a neighbor of v2, in which the
effect is the same as the previous case. Moreover, any additional vertex does not
increase the transient length. Hence, no other initial configuration is possible.

u v v2

v3

. . .. . .

W Z

(a) n even.

u v v2

v3

. . .. . .

W Z

(b) n odd.

Figure 10: Representation of a general initial configuration of trees in which τ(c0) = n − 3
and at least one non-leaf vertex reaches its final state after all of its children.
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u v v2

v3

. . .

W

(a)

u v v2

v3

. . .

W

(b)

Figure 11: Representation of trees T with τ(c0) = n− 3, in which y = 0 and n even.

Case 2: X1 6= ∅ and Y1 6= ∅:
Since |[X1, Y1]| ≤ p − 1 and V (S1(τ(c0)− 1)) induces a forest, by Eq. (12)

it follows that

τ(c0) ≤ n− 3p+ 1 + 2(p− 1)− 2|[X2, Y2]|
= n− p− 1− 2|[X2, Y2]|.

Therefore, if p > 2 or [X2, Y2] 6= ∅ then τ(c0) ≤ n − 4 and the theorem
follows. Thus, let us suppose [X2, Y2] = ∅ and consider S1(τ(c0)− 1) = {u, v},
such that (u, v) ∈ E(T ) and cτ(c0)−1(v) = 1− cτ(c0)−1(u).

Since every w ∈ S2(τ(c0)− 1) has at most one neighbor with opposite state
(u or v), w belongs to S2(τ(c0)). Thus |S1(τ(c0))| = 2 only if S1(τ(c0)) = {u, v},
implying that cτ(c0)−1 is periodic, a contradiction. Therefore, either p(c0) = 1,
where u and v have opposite states, or S1(τ(c0)) contains exactly one vertex,
which is either u or v.

Suppose p(c0) = 2, where S1(τ(c0)) = v and cτ(c0)−1(v) = i, i ∈ {0, 1}.
Thus d(v) ≥ 4 and v has at least one neighbor with state i and at least three
with state 1 − i (where u is one of them), at τ(c0) − 1. Since (N(u) \ {v}) ⊂
S2 (τ(c0)− 1), it follows that the value of τ(c0) is at most the maximum length
of a path P whose vertices alternate their states, where P is a subtree of u.
Hence τ(c0) ≤ n− |N(v) ∪ {v}| = n− 5.

Now, suppose that p(c0) = 1. Thus cτ(c0)−1(w) = 1−cτ(c0)−1(u), for all w ∈
N(u), and cτ(c0)−1(w′) = 1 − cτ(c0)−1(v), for all w′ ∈ N(v). Therefore τ(c0)
is maximum when a subtree T ′u of u has maximum transient length. Thus T ′u
is a path whose vertices alternate their states. Hence, we get that τ(c0) ≤
n−|N(v)∪{v}| ≤ n−3. Moreover, the previous limit is obtained only if d(u) =
d(v) = 2, where τ(c0) = 1, since v ∈ S2(1). This situation is depicted in
Fig. 4e. Finally, consider d(u) ≥ 3. Since V (G) \ {u, v} = S2(τ(c0) − 1), all
subtrees of u which do not contain v and every subtree of v that do not contain u
must reach their final states at same time step τ(c0)− 1. Analogously, τ(c0) is
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maximum when a subtree T ′v of v is a path whose vertices alternate their states.
Hence τ(c0) ≤ n− |N(u) ∪ {u, v}| = n− 4.

Let #τf (G, q) be the number of configurations c0 such that τ(c0) = q for
an f -reversible process on G. Thus, we prove that #τ2(T, n − 3) = O(n) for
trees T with n ≥ 4.

Corollary 8. For T a tree with n ≥ 4,

#τ2(T, n− 3) =





4 , if n = 4;
3 , if n = 5;
n
2 , if n ≥ 6 and n is even;

n−3
2 , if n ≥ 7 and n is odd.

Proof. Fig. 4 presents all initial configurations when n = 4. As in the proof of
Theorem 7, there are only three initial configurations attaining the bound n−3
when n = 5, where two of them are depicted in Fig. 7 and the last one is given
by Fig. 8a. For n = 6, since d(v) ≥ 3 (where S1(τ(c0)− 1) = {v}) each subtree
of v has at most three vertices. Thus, there is no configuration with |W | > 0.
Hence, either |Z| = 0 or |Z| = 3. When |Z| = 0 we get that both configurations
attaining the bound n− 3 are given in Fig. 11a and Fig.11b. Fig. 8b represents
the case in which |Z| = 3.

If n ≥ 7 and n is odd then |Z| must be even and there exists exactly one
configuration for each even value of |Z| from 0 to n − 7. Furthermore, there
exists one more for |Z| = n− 3. Hence, we get that

#τ2(T, n− 3) = 1 +

n−7∑

i=0 and i even

(1) = 1 +

(
n− 5

2

)
=
n− 3

2
.

Analogously, if n ≥ 8 and n is even then for the cases in which |Z| > 0, we
get that |Z| must be odd and there exists exactly one configuration for each odd
value of |Z| from 1 to n−7. Moreover, there are two configurations when |Z| = 0
(Fig. 11) and one more when |Z| = n− 3 (Fig. 8a). Hence, we get that

#τ2(T, n− 3) = 3 +

n−7∑

i=1 and i odd

(1) = 3 +

⌈
n− 7

2

⌉
= 3 +

(
n− 6

2

)
=
n

2
.

Corollary 9. For T a tree with n ≥ 4, τ2(T ) = n− 3 if and only if c0 is output
by Algorithm 1.

Proof. In Algorithm 1, such trees Tj with n ≥ 4 and initial configurations Cj ,
where τ2(Cj) = n− 3, are as in the proof of Theorem 7. In such an algorithm,
lines 1–12 represent the construction of the configuration represented in Fig. 8a
and Fig. 8b for n odd and even, respectively. Lines 4–7 result on the construction
of the tree, while lines 8–12 represent the assignment of the states to the vertices.
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Thus, tree T1 and configuration C1 are generated. For trees with n = 4 or n = 5,
lines 17–19 construct the trees and configurations given by Fig. 4b and Fig. 7a
for n = 4 and n = 5, respectively. Lines 23–27 describe the construction of
trees and configurations depicted by Fig. 4d and Fig. 7b for n = 4 and n = 5,
respectively. Lines 31–34 we get the tree and configuration given by Fig. 4e.
For n ≥ 6, lines 36–48 modify the tree and configuration generated one step
before, which are respectively T1 and C1, for each odd i from 3 to n − 3. At
each step, the graph obtained has |Z| decreased by 1, while |W | increase by 1.
Such configurations are represented by Fig. 10a and Fig. 10b for n even and odd,
respectively. If n is even and i = n−3 then we obtain the configuration depicted
in Fig. 11a. Lines 43–48 construct the tree and configuration depicted in Fig. 11b
when n is even. Since all configurations c0 attaining τ(c0) = n− 3 presented in
Theorem 7 are generated by the algorithm and no other configuration can be
obtained, the corollary follows.

5. NP-Completeness of f -Conversion Set

In this section, we prove the NP -completeness for bipartite graphs of f -
Conversion Set. The proof is a reduction through a restriction of 3SAT,
where each clause has 2 or 3 literals and each variable occurs in at most 3
clauses [18]. It can be polynomially solved if all clauses have exactly 2 or
exactly 3 literals [38]. Given an integer q > 0, Dourado et al. [12] proved that
determining if r2(G) ≤ q is NP -hard. Denoting the neighborhood of v in a
vertex set X by NX(v), we say that two disjoint vertex subsets A and B are a
bad pair of an f -reversible process Rf (G, c0) if:

• each vertex of A has a different state from the vertices of B;
• |NB(v)| ≥ f(v), for all v ∈ A;
• |NA(u)| ≥ f(u), for all u ∈ B.

As proved by Dourado et al. [12], every uplifting f -reversible process cannot
contain any bad pair.

Lemma 10. If Rf (G, c0) is uplifting and, for some v ∈ V (G), f(v) = d(v)
and f(u) = 1 for every u ∈ N(v), then ct(v) = 1 and ct(u) = 1 for some u ∈
N(v) and every t ≥ 0.

Proof. Suppose by contradiction that the lemma is false. Since Rf (G, c0) is
uplifting, if there exists a time step t0 ≥ 0 such that ct0(v) = 0 then there exists
a time step t > t0 in which v changes its state. Suppose t to be the smallest.
In this case, ct−1(v) = 0 and ct−1(u) = 1 for all u ∈ N(v). Hence, sets A = {v}
and B = N(v) are a bad pair of Rf (G, c0), a contradiction. The argument for
the existence of a vertex u ∈ N(v) which has state 1 through the process is
similar.

Theorem 11. f-Conversion Set is NP -complete for G bipartite with max-
imum degree 3 and Imf = {1, 2, 3}.
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Algorithm 1: Generate all trees T with n ≥ 4 and corresponding initial
configurations leading to τ2(T ) = n− 3.

Input: Number n of vertices.
Output: Trees Tj , each with the corresponding initial configuration Cj such that

τ(Cj) = n− 3.
1 V ← {v1, v2, . . . , vn};
2 E ← ∅;
3 j ← 1;
4 for i← 1 to n− 2 do // Lines 4 -- 7 result on tree T1.

5 E ← E ∪ (vi, vi+1);
6 if i = n− 2 then
7 E ← E ∪ (vi, vi+2);

8 for i← 1 to n do // Lines 8 -- 12 result on configuration C1.

9 if i is odd then
10 c0(vi)← 1;
11 else
12 c0(vi)← 0;

13 Tj ← G(V,E);
14 Cj ← c0; // Fig. 8a and Fig. 8b are obtained for n odd and even, respectively.

15 j ← j + 1;
16 if n = 4 or n = 5 then
17 c0(v4)← 1− c0(v4); // Lines 17 -- 21 result on Fig. 4b and Fig. 7a for n = 4 and n = 5,

respectively.

18 if n = 5 then
19 c0(v3)← 1− c0(v3);

20 Tj ← G(V,E);
21 Cj ← c0;
22 j ← j + 1;
23 E ← E \ (vn, vn−2); // Lines 23 -- 29 result on Fig. 4d and Fig. 7b for n = 4 and n = 5, respectively.

24 E ← E ∪ (vn−1, vn);
25 if n = 5 then
26 c0(v3)← c0(v4);
27 c0(v4)← 1− c0(v4);

28 Tj ← G(V,E);
29 Cj ← c0;
30 if n = 4 then // Lines 31 -- 34 obtain the tree and configuration given by Fig. 4e.

31 j ← j + 1;
32 c0(v4)← 1− c0(v4);
33 Tj ← G(V,E);
34 Cj ← c0;

35 else
36 for i← 3 to n− 3 do // Lines 36 -- 42 obtain Fig. 10a and Fig. 10b for n even and odd, respectively.

37 if i is odd then // For n even and i = n − 3, it is obtained Fig. 11a.

38 E ← E \ (vi, vi−1);
39 E ← E ∪ (vi−1, vi+1);
40 Tj ← G(V,E);
41 Cj ← c0;
42 j ← j + 1;

43 if i = n− 3 and n is even then // Lines 43 -- 48 obtain Fig. 11b for n even.

44 E ← E \ (vi+1, vi+3);
45 E ← E ∪ (vi, vi+3);
46 Tj ← G(V,E);
47 Cj ← c0;
48 j ← j + 1;

23

154



a1

2

x1

1

x1

1

a2

2

x2

1

x2

1

a1

2

x3
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3

c3
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Figure 12: A labelling with rf (G) vertices satisfying F = (X1 ∨X2)∧ (X1 ∨X2 ∨X3)∧ (X2 ∨
X3 ∨X4) ∧ (X3 ∨X4).

Proof. f-Conversion Set is in NP because, given an integer q > 0, we can
execute the process from c0, that has q vertices with state 1, to cτ(c0). Moreover,
we can obtain ct+1 from ct in O(n + m) for all t ≥ 0, because by Case 1 of
Theorem 6 we can execute the whole process in O((n+m)(Sf − n)).

Let F be an instance of the restricted 3SAT problem with n variables
X1, X2, . . . , Xn and m clauses C1, C2, . . . , Cm. We construct a graph G of
f-Conversion Set as follows. For each variable Xi, G contains three ver-
tices denoted by xi, xi and ai, 1 ≤ i ≤ n. For each clause Cj , there is one
vertex denoted by cj , 1 ≤ j ≤ m. Each vertex ai is adjacent only to xi
and xi, 1 ≤ i ≤ n. Moreover, edges xicj , x

i ∈ {xi, xi}, are added if and
only if xi ∈ Cj in F , for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Fig. 12 de-
picts the graph, initial configuration and threshold values obtained from F =
(X1 ∨X2) ∧ (X1 ∨X2 ∨X3) ∧ (X2 ∨X3 ∨X4) ∧ (X3 ∨X4).

Let A =
⋃
ai, X =

⋃{xi ∪ xi} and, C =
⋃
ci denote the sets of vertices

called auxiliar, literal and, clause vertices, respectively. Note that each vertex
of A has degree 2 and, since each clause has 2 or 3 literals and each literal occurs
in 1 or 2 clauses, the maximum degree of G is 3. Moreover, A ∪C and X are a
bipartition of V (G), where each part induces an independent set. Therefore G
is a bipartite graph with maximum degree 3. To complete the transformation,
we assign f(x) = 1, for each x ∈ X, and f(v) = d(v) for all v ∈ V (G) \ {X}.

Now, we prove that F is satisfying if and only if rf (G) = m + 2n. By
Lemma 10, we get that all vertices v ∈ A ∪ C and at least one of xi or xi must
have state 1 in c0, for all 1 ≤ i ≤ n. Thus rf (G) ≥ m + 2n. We can consider
that c0(xi) = 1 if and only if xi has its true value in F , xi ∈ {xi, xi}.

If F is satisfying then for each vertex cj , 1 ≤ j ≤ m, there is at least a
neighbor that is a literal vertex with initial state 1. Furthermore, for each pair
of literal vertices xi and xi, 1 ≤ i ≤ n, only one of them has its initial state
equal to 1. Thus, clearly c1(v) = 1 for every v ∈ V (G) and rf (G) = m + 2n.
Now, if rf (G) = m + 2n then, for each pair of vertices xi and xi, only one
of them must have its initial state equal to 1, because all vertices u ∈ A ∪ C
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have their initial state equal to 1. Moreover, since the process is uplifting, each
clause vertex cj , 1 ≤ j ≤ m, is adjacent to a literal vertex with initial state 1,
by Lemma 10. Hence, all clauses are satisfied, concluding the proof.

We also analyze the complexity of finding a minimum f -conversion set on
general graphs when f(v) = d(v), for all v ∈ V (G). In this case, if an edge
is such that the states of its ends are the same then these vertices will never
change their states, showing that rf (G) ≥ β(G). We establish the following
result relating rf (G) and β(G) in this situation.

Theorem 12. Let Rf (G, c0) be such that f(v) = d(v) for all v ∈ V (G). If a
minimum vertex cover of G exists that is not an independent set then rf (G) =
β(G). Otherwise, rf (G) = β(G) + 1.

Proof. Let C be a minimum vertex cover of G and let us consider that a vertex v
belongs to C if and only if c0(v) = 1. Clearly rf (G) ≥ β(G), otherwise, there
must exist at least one edge whose ends have state zero in c0, meaning that the
process does not uplift. Let It be the set of vertices v such that ct(v) = 0, for
all 0 ≤ t ≤ τ(c0)− 1. Hence, It must induce an independent set in G and rf (G)
is obtained taking I0 the greatest possible.

Suppose that C does not induce an independent set in G. Thus there is
at least one edge e = (u, v) in G[C] and, hence, u and v remain with state 1
forever. Suppose by contradiction that the process is not uplifting. Let us
also suppose that there exists an edge e′ whose ends have state zero in cτ(c0).
Furthermore, let t > 0 be the first time step in which such an edge e′ appears.
Since at time t − 1 there were not any such edges, all vertices z ∈ It−1 change
their states. Thus, It induces an independent set, a contradiction. Hence,
if p(c0) = 1, then the process is uplifting.

Thus, suppose that p(c0) = 2. In this case, there must exist a bad pair A
and B. Hence A and B induce independent sets, and since no edge whose ends
have state zero is formed through the process, we get that τ(c0) = 0 and G[A∪B]
is a connected component which does not contain u and v, a contradiction.

Finally, suppose that any minimum vertex cover C of G induces an indepen-
dent set. Thus, we need more vertices than β(G) for the uplifting. It is enough to
show that we need only one vertex more than a minimum covering. Let C ∪{v′}
be the vertex subset of G with initial state 1, for some v′ ∈ V (G) \ C . Hence,
since G is connected, there is an edge in G[C ∪ {v′}] and the same argument of
the previous case works now, completing the proof.

Corollary 13. If G is not bipartite and f(v) = d(v) for all v ∈ G then rf (G) =
β(G).

Proof. Since there is no minimum vertex cover of G inducing an independent
set, the corollary follows from Theorem 12.

6. Conclusions

We have presented a potential function to aid in the study of the periodic
behavior of f -reversible processes, which we have proved to be of threshold
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networks. We have shown that this function is nondecreasing and, using this
fact, we have presented new upper bound on the transient length based on f ,
n and m. Moreover, the potential function gave the necessary interpretation in
other to obtain all initial configurations on 2-reversible processes on trees reach-
ing at least n− 3 time steps, where its value is tight when n ≥ 4. Determining
such configurations based on only G and f is a no trivial work. This can be
observed by the work of Oliveira, Barbosa and Protti [36], in which determining
if there exists a predecessor configuration of a given one is NP -complete even
for bipartite graphs. In this way, we left two problems regarding the maximum
transient length:
• To characterize all initial configurations reaching the maximum transient

length in terms of only G and f ;
• To count the number of such configurations.

We also have studied the problem of determining the minimum size rf (G) of
a vertex subset that allows f -reversible processes to uplift. We have shown that
determining if rf (G) is at most a constant q > 0 is NP -complete for bipartite
graphs with maximum degree 3 and Imf = {1, 2, 3}. We also have proved
that β(G) ≤ rf (G) ≤ β(G) + 1, when f(v) = d(v) for all vertices. In fact,
determining rf (G) seems a no trivial job even for simple graph classes as paths
and cycles [12]. In addition to this open problem, we propose the following:
• To determine a lower and an upper bound on rf (G);
• To find an approximative algorithm to compute rf (G).
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Appendix C:

And/Or-Convexity: A Graph Convexity Based on

Processes and Deadlock Models

This appendix contains the article “A Graph Convexity Based on Processes and

Deadlock Models” submitted on March 2015 to Annals of Operations Research jour-

nal.
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Abstract Deadlock prevention techniques are essential in the design of robust distributed
systems. However, despite the large number of different algorithmic approaches to detect
and solve deadlock situations, yet there remains quite a wide field to be explored in the study
of deadlock-related combinatorial properties. In this work we consider a simplified AND-
OR model, where the processes and their communication are given as a graph G. Each vertex
of G is labelled AND or OR, in such a way that an AND-vertex (resp., OR-vertex) depends
on the computation of all (resp., at least one) of its neighbors. We define a graph convexity
based on this model, such that a set S ⊆ V (G) is convex if and only if every AND-vertex
(resp., OR-vertex) v ∈V (G)\S has at least one (resp., all) of its neighbors in V (G)\S. We
relate some classical convexity parameters to blocking sets that cause deadlock. In particular,
we show that those parameters in a graph represent the sizes of minimum or maximum
blocking sets, and also the computation time until system stability is reached. Finally, a study
on the complexity of combinatorial problems related to such graph convexity is provided.

Keywords Graph Convexity · Deadlock · AND-OR Model · And/Or Graphs

1 Introduction

Let V denote a set of processes in a distributed computation. Informally, as described by Bar-
bosa and Benevides (1998), a deadlock is said to exist in this computation if a subset S⊆V
can be identified whose members are all blocked due to the occurrence of some condition
that can only be relieved by members of the same subset S. In other words, a deadlock situa-
tion is characterized by the permanent impossibility for a group of processes to progress with
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2 Carlos V.G.C. Lima et al.

their tasks due to the occurrence of a condition that prevents at least one needed resource
from being granted to each of the processes in that group. Note that a necessary condition
for the existence of a deadlock in the distributed computation is the existence of cycles of
dependency.

A useful abstraction to analyze deadlock situations is the wait-for graph G = (V,E),
where E is a set of directed edges, and an edge exists in E directed away from vi ∈ V
towards v j ∈V if vi is blocked for some condition that v j may relieve. The graph G changes
dynamically as the computation progresses, and what determines the evolution of G by
allowing for changes in the set of its directed edges is the deadlock model that holds for the
computation (Barbosa and Benevides, 1998). In essence, what a deadlock model does is to
specify rules for vertices that are not sinks in G to become sinks. (A sink is a vertex with
out-degree zero).

In this paper we are concerned with stable properties. Once a stable property takes hold
of a group of processes, only an external intervention that eventually follows its detection
can break it. Whenever we refer to G, we mean the wait-for graph that corresponds to a
“snapshot” of the distributed computation in the usual sense of a consistent global state (Bar-
bosa, 1996; Chandy and Lamport, 1985).

In this work we show that combinatorial concepts from graph convexity have a close
relation to stable properties of a wait-for graph in the AND-OR model. In essence, such
properties can be regarded as structures associated with graph convexity invariants whose
definitions are based on the wait-conditions in the AND-OR model. Some examples are the
size of a maximum knot (b-knot (Barbosa and Benevides, 1998)), or the minimum number
of processes that must become sinks in order to eliminate deadlock. Our studies consider
convexity properties of wait-for graphs, directed graphs, and their undirected underlying
graphs. The concepts of graph convexity and AND-OR deadlock model will be detailed
later.

We summarize the results of this paper as follows:

1. We prove that the AND-OR model defines a graph convexity in both cases of directed
and undirected graphs. In such a convexity, the graphs are defined in such a way that
each vertex depends on all (AND-vertex) or on at least one (OR-vertex) of its neighbors
to be realized. Moreover, we present applications of some convexity parameters to stable
properties related to the AND-OR model;

2. Having defined the convexity, we study the complexity of determining some of its con-
vexity parameters. The first one is the convexity number, and we prove that computing
this parameter can be done in linear-time;

3. On the other hand, we prove that computing the interval number of such a convexity
is an NP-hard problem. In particular, we prove that it is true even if all the vertices are
AND-vertices, as well as all vertices are OR-vertices. Furthermore, we also prove that
it is NP-hard even if there exists only one AND-vertex and the graph is bipartite. We
also present an efficient (2+ log |Vor|)-approximation algorithm to compute the inter-
val number, where Vor denotes the set of all OR-vertices. Finally, we present a linear-
time algorithm to compute the interval number for trees, where we adapt the algorithm
of Cockayne, Goodman, and Hedetniemi (1975);

4. We also deal with the problem of determining the hull number. We prove that there is al-
ways a minimum hull set containing no OR-vertices. In particular, we show that a mini-
mum hull set can be described as a minimum vertex cover of all the AND-vertices, which
covers all the OR-vertices. We also prove an efficient (2+ log |Vor|)-approximation al-
gorithm to compute the hull number. Moreover, we show how to adapt the linear-time
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algorithm that determines the interval number for trees, such that it computes the hull
number for trees, keeping the same complexity;

5. Finally we prove that the Carathéodory number can be determined in linear-time.

2 Additional Concepts and Notations

In this section we provide the necessary definitions and notations used in the remainder of
the text. We first explain the AND-OR model. Next, we give the related definitions from
graph convexities. Moreover we show how the convexity parameters can be related to stable
properties of the AND-OR model. Finally we prove that AND/OR graphs define a graph
convexity.

2.1 The AND-OR Model

In this work we use standard terminology and notation of finite graphs (Bondy and Murty,
2008) with n vertices and m edges. Let G be a directed graph with vertex set V (G) =
{v1,v2, . . . ,vn}. For vi ∈ V (G), let N+

G (vi) denote the set of descendants of vi in G (nodes
that are reachable from vi, including itself) and N−G (vi) denote the set of ancestors of vi in G
(nodes from which vi is reachable, including itself). Let Di ⊆ N+

G (vi) be the set of immedi-
ate descendants of vi ∈ G (descendants that are one edge away from vi) and Ai ⊆ N−G (vi)
its set of immediate ancestors in G (ancestors that are one edge away from vi). Nodes
in N+

G (vi)\N−G (vi) are called subordinates of vi.
As in (Barbosa and Benevides, 1998), a deadlock model for the distributed computation

underlying G is a collection of subsets W 1
i , . . . ,W

pi
i of Di for all vi ∈V (G), where:

– W 1
i ∪·· ·∪W pi

i = Di;
– No two nonempty sets in W 1

i , . . . ,W
pi

i are such that one is a subset of the other;
– In order to exit its blocked state and proceed with its local computation, a node vi for

which Di 6= /0 must receive a signal from all nodes in at least one of the nonempty
sets W 1

i , . . . ,W
pi

i .

At this level of generality, the deadlock model is known as the AND-OR model, reflecting
the need for vi to be signaled by all members of W 1

i (if nonempty), or all members of W 2
i

(if nonempty), and so on. If at most one of W 1
i , . . . ,W

pi
i is nonempty for all vi ∈ V (G),

then the deadlock model is the AND model. Similarly, if all nonempty sets in W 1
i , . . . ,W

pi
i

are singletons for all vi ∈ V (G), then the deadlock model is known as the OR model. A
sufficient condition for the existence of a deadlock in the AND model is the same as the
general necessary condition mentioned earlier, that is, the existence of a directed cycle in G.
For the OR model, a necessary and sufficient condition is the existence of a knot in G. A
knot is a subset K ⊆V (G) with |K|> 1 such that N+

G (vi) = K, for all vi ∈ K. For details on
these conditions and related material, the reader is referred to (Knapp, 1987; Singhal, 1989)
and the references therein.

Situations that can be characterized by the AND-OR model are, for example, those in
which vi perceives several conjunctions of resources as equivalent to one another, and issues
requests for several of them with provisions to withdraw some of them later (Barbosa and
Benevides, 1998; Brzezinski et al., 1995; Ryang and Park, 1995; Kshemkalyani and Singhal,
1994).
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We consider in our analysis a simplified AND-OR model in which there are two types
of processes, AND and OR. An AND process vi can only become a sink when its wait
is relieved by all the processes in Di, whereas an OR process vi can be released by any
positive number of processes in Di. Simplified AND-OR model generalizes AND model
and OR model, and although it is a natural subcase of AND-OR model, it is easy to see
that a system in the general AND-OR model can be transformed in polynomial-time into a
system operating according to the simplified AND-OR model.

For short, we simply say and/or graph to refer to a wait-for graph in the simplified AND-
OR model. And/or graphs are a well-known data structure in the literature, with many appli-
cations in different fields of Computer Science. For instance, artificial intelligence (Nilsson,
1971; Simon and Lee, 1971), game theory, robotics, operational research, automation and
software engineering. And/or graphs model cutting problems (dos S. Souza, 2014; Morabito
and Pureza, 2010), robotic task plans (Cao and Sanderson, 1998), assembly/disassembly se-
quences (de Mello and Sanderson, 1991), evaluation of boolean formulas (Laber, 2008),
failure dependencies (Barnett and Verma, 1994), software versioning (Conradi and West-
fechtel, 1998), game trees (Kumar and Kanal, 1984), composition of web services (Ma,
Dong, and He, 2008) and distributed systems (Barbosa, 2002). The optimization problem of
minimizing the solution subgraph of an edge-weighted and/or graph was considered in (dos
S. Souza, Protti, and da Silva, 2013; Sahni, 1974), where complexity aspects from both the
classical and parameterized point of view are dealt with.

2.2 The And/Or-Convexity

As stated earlier, we link the study of and/or graphs with convexity on graphs, a discipline
that has received broad attention recently, specially for the geodetic, monophonic, and P3
convexities (Araujo et al., 2013; Cáceres et al., 2006; Campos et al., 2015; Coelho et al.,
2014; da F. Ramos et al., 2014; Dourado et al., 2009, 2010, 2012).

Formally, given a graph G, a graph convexity is a pair (G,C) such that:

– C is a collection of subsets of V (G) closed under intersections;
– /0 ∈ C;
– V (G) ∈ C.

Every C ∈ C is called convex. We define a family C∗ of vertex subsets of an undirected
underlying and/or graph G as follows:

(∗) A set C is a member of C∗ if and only if every or-vertex in V (G) \C does not have
neighbors in C and every and-vertex in V (G)\C has at least one neighbor in V (G)\C.

Analogously, for the directed version, we define a family C∗∗ of vertex subsets of an
and/or graph G as follows:

(∗∗) A set C is a member of C∗∗ if and only if every or-vertex in V (G) \C does not have
out-neighbors in C and every and-vertex in V (G) \C has at least one out-neighbor
in V (G)\ C.

Now, we prove that (G,C∗) and (G,C∗∗) are graph convexities, called and/or-convexities
on undirected and directed graphs, respectively. The main goal of this work is to relate the
convexity parameters defined below with stable properties of a distributed computation in
the AND-OR model that uses an and/or graph as the network topology.
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Theorem 1 (G,C∗) defines a graph convexity.

Proof By (∗), it is clear that /0 ∈ C∗ and V (G) ∈ C∗. To prove that C∗ is closed under inter-
sections, consider two sets in C∗, A and B, and prove that C = A∩B is in C∗. Let v /∈ A. If v is
an or-vertex, then v has no neighbor in A, and thus in C. If v is an and-vertex, then NG(v)*A,
and thus NG(v)*C. By symmetry on the vertices no in B, it follows that C ∈ C∗. ut
Corollary 2 (G,C∗∗) defines a graph convexity.

Proof The proof is similar to Theorem 1. ut

2.3 Some Convexity Parameters and Their Applications

Now, we present some convexity invariants used in this paper. Furthermore, for each invari-
ant we present interpretations with respect to stable properties of a distributed computation.

The convex hull of a subset S ⊆ V (G) is the smallest convex set H(S) that contains S.
If H(S) =V (G), then S is a hull set of G. The cardinality hn(G) of a minimum hull set of G
is the hull number of G.

– Application: A convex set C can be viewed as a set of processes with the following prop-
erty: relieving all the processes in C from their wait condition, with the corresponding
dispatch of grant messages, cannot relieve any process w /∈C from its wait condition. In
addition, for every subset of processes S, the minimum convex set C containing S is the
set of all processes that can be transitively relieved by those of S. Hence, a hull set S is a
minimum set of processes such that all processes in V (G)\S can be transitively relieved
by those of S.

It follows by (∗) that V (G) and the empty set are convex sets, where we say that they
are trivial convex sets. The convexity number of G is the largest cardinality cx(G) of a
non-trivial convex set C ⊂V (G).

– Application: A b-knot is a structure in G that can be used to characterize deadlocks un-
der the AND-OR model (Barbosa and Benevides, 1998). As can be observed in Subsec-
tion 3.1, the convexity number of a directed graph G and the size of a minimum b-knot
of G, in fact, are complementary quantities. Hence, computing cx(G) is equivalent to
calculating the size of a minimum b-knot of G, which is n− cx(G).

The Carathéodory number is the smallest integer c(G) such that for every S ⊆ V (G)
and every u ∈ H(S), there is a subset X ⊆ S in which |X | ≤ c(G) and u ∈ H(X).

– Application: Any process can be transitively relieved by an appropriated subset of pro-
cesses of G. The Carathéodory number of G, c(G), means that each process p of G can
be transitively relieved by a subset of processes Xp with |Xp| ≤ c(G).

We say that a graph convexity (G,C) is an interval convexity when it admits a function I :
2V (G)→ 2V (G), called interval function, where for every S⊆V (G), I(S) = S∪W , where W is
a set of vertices determined by some properties of C. If I(S) = S, then S is convex. The most
common graph convexities, as the geodetic, monophonic, and P3 convexities, are all interval
convexities, each one having its corresponding interval function. Similarly, we define an
interval function for and/or-graphs as follows. Let I0[S] = S and It [S] = It−1[S]∪Wt for any
positive integer t, where Wt is the set of all or-vertices (resp. and-vertices) with at least one
neighbor (resp. all neighbors) in It−1[S].

The interval number of G is the minimum cardinality in(G) of a subset S⊆V (G) satis-
fying I1[S] =V (G). We call such a set S as an interval set of G.
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– Application: Computing the interval number and the hull number of undirected graphs
are special cases of such problems on directed graphs (an undirected edge can be re-
garded as a pair of directed edges, one for each direction). In practice, the interval num-
ber expresses the smallest set of processes that must send grant messages at the initial
step of the computation such that all the remaining processes are relieved from their
wait condition in exactly one time step. On the other hand, the hull number expresses
the minimum number of processes that must send grant messages at the initial step of
the computation such that all remaining processes are eventually relieved from their wait
condition.

The remainder of the text is organized as follows. In Section 3 we prove the following
results on the and/or convexities defined above:

– In Subsection 3.1 we show that computing the convexity number can be done in linear
time for every and/or graph;

– In Subsection 3.2 we prove that deciding if the interval number of an and/or graph G is
equal to a given integer k is an NP-complete problem even if G has only and- or only or-
vertices. In addition, we show that it remains NP-complete even if G is a bipartite graph
having only one and-vertex. We also present a (2+ log |V (Gor)|) approximation algo-
rithm to compute in(G), where V (Gor) denotes the set of all or-vertices of G. Moreover
we present a linear-time algorithm to compute the interval number for trees.

– In Subsection 3.3 we prove that there is always a minimum hull set containing no or-
vertices if G contains and-vertices. In particular, contracting each induced or-components
of G to one vertex, we show that a minimum hull set can be described as a minimum
vertex cover of all the and-vertices and such that it covers all the or-vertices. Moreover,
we show how to adapt the (2+ log |V (Gor)|) approximation algorithm and the linear-
time algorithm for the interval number for general graphs and trees, respectively, so that
they compute their hull number.

– Finally, in Subsection 3.4 we prove that the Carathéodory number can be obtained in
linear time for every and/or graph.

In Section 4 we present our conclusions.

3 Computing the Convexity Parameters

In this section, we prove a number of results on the classical convexity parameters defined
previously. Let us suppose only connected graphs in this paper. We need some additional
definitions. An and/or graph G is a graph whose all vertices are labelled as one of {and,or}.
Let Gor (resp. Gand) denote the induced subgraph defined by all the or-vertices (resp. and-
vertices) of G. Moreover, let Gi

or be the i-th-connected component of Gor, 1 ≤ i ≤ ω(Gor),
such that ω(Gor) denotes the number of connected components of Gor. The closed neigh-
borhood of S ∈V (G) is defined as N[S] = S∪NG(S), where NG(X) =

⋃
v∈X NG(v). We will

refer to G always as an and/or graph in the remainder of the text.

3.1 The Convexity Number

In this subsection we prove that there exists a linear time algorithm which computes cx(G)
for every undirected graph G. Let θ(G) = min1≤i≤ω(Gor) |NG[V (Gi

or)]| denote the smallest
cardinality of the closed neighborhood among all the or-connected components of G.
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Theorem 3 Given an undirected connected and/or-graph G, it follows that

cx(G) =





0 , if V (Gand) = /0;
n−2 , if V (Gand) 6= /0 and V (Gand) is not an independent set;
n−θ(G) , otherwise.

Furthermore cx(G) can be computed in linear time.

Proof If G does not contain any and-vertex, then It [{v}] =V (G) for every vertex v and some
time step t. Thus the convex sets of G are only the trivial convex sets and thus cx(G) = 0.
Hence, suppose that there must exist at least one and-vertex in V (G). For every vertex v,
the subset V (G) \ {v} is not convex, implying that cx(G) ≤ n− 2. If there exists an edge
(u,v) such that u and v are and-vertices, then V (G)\{u,v} is a convex set, since u and v are
neighbors outside V (G)\{u,v}. Thus, we get that cx(G) = n−2.

Let us suppose now that V (Gand) induces an independent set. Note that a non-trivial
convex set cannot contain all the or-vertices of G. Moreover, if an or-vertex v does not belong
to a non-trivial convex set C then no vertex of the connected component Gi

or containing v
could be in C either. Furthermore, if an and-vertex v ∈ NG(V (Gi

or)) belongs to C, then C
must include the entire or-component Gi

or. Hence NG[V (Gi
or)] must be in V (G) \C and the

maximum cardinality of C is equal to n− θ(G). It is not hard to see that computing θ(G)
can be done in Θ(n+m) time. ut

Corollary 4 The convexity number of directed connected graphs can be computed in poly-
nomial time.

Proof Let G be a directed graph. If G has a sink vertex v, then V (G) \ {v} is a maximum
non-trivial convex set. Otherwise, if G has only and-vertices, then V (G)\Ck is a maximum
non-trivial convex set, where Ck is a minimum directed cycle of G. Such a cycle can be
found in polynomial time by adapting the Floyd-Warshall algorithm (Cormen et al., 2009).
If G has both and- and or- vertices, then V (G) \B is a maximum non-trivial convex set,
where B is a minimum b-knot of G, which can also be found in polynomial time (Barbosa
and Benevides, 1998). ut

3.2 The Interval Number

Computing the interval number of an and/or graph G is NP-hard in general. If all vertices
are labelled “or” then determining in(G) is equivalent to finding the cardinality of a mini-
mum dominating set of G, denoted by γ(G), which is an NP-hard problem even for split or
bipartite graphs (Bertossi, 1984). On the other hand, if all vertices are labelled “and” then
computing in(G) is equivalent to determining the cardinality of a minimum vertex cover
of G, denoted by β (G). This is true because, for each pair of adjacent vertices u and v that
are not in a subset S ⊂V (G), they cannot be in It [S], for any t > 0. Thus, V (G)\S must be
an independent set in G, for any interval set S, which implies that S is a vertex cover of G.
Since it is NP-hard to compute β (G) even for cubic planar graphs (Garey and Johnson,
1990), computing in(G) is also NP-hard.

Therefore, every interval set S must contain a vertex cover of Gand and every vertex
in V (G)\S has a neighbor in S. Moreover, every minimum vertex cover of G is an interval
set of G. From these observations we get that

min{γ(G),β (Gand)} ≤ in(G) ≤ β (G).
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Next, we consider the complexity of determining in(G) for general bipartite graphs. We
consider the following decision problem:

INTERVAL NUMBER
INSTANCE: An and/or graph G and an integer k > 1.
QUESTION: Is in(G) = k?

Theorem 5 INTERVAL NUMBER is NP-complete for connected bipartite graphs with ex-
actly one and-vertex.

Proof We consider a reduction from the VERTEX COVER problem for cubic graphs with at
least six vertices, which remains NP-complete (Garey and Johnson, 1990). Given a cubic
graph G = (V,E), we construct a bipartite graph G′ = (V ′,E ′) such that

V (G′) = {wvi : vi ∈V (G)}∪{wviv j : viv j ∈ E(G)}∪{w}

and

E(G′) = {wwvi : wvi ∈V (G′)}∪{wvi wvlvr : i = l or i = r,wvi ∈V (G′) and wvlvr ∈V (G′)}.

Finally, assign “and” to w and “or” to the remaining vertices of V ′(G′). Fig. 1 shows
an example of the construction. Observe that G′ is a bipartite graph with 1+ 5n/2 vertices
and 4n edges. Its parts are defined by {w}∪⋃viv j∈E(G){wviv j} and

⋃
vi∈V{wvi}.

Now we will prove that in(G′) = β (G)+ 1. Notice that the set S = {w}∪C is an in-
terval set of G′, where C is a minimum vertex cover of G, since every vertex wviv j has a
neighbor wvi ∈C and every vertex wvi is adjacent to w. Thus in(G′)≤ |S|= β (G)+1.

Let S be a minimum interval set of G′. If w /∈ S then every vertex wvi must be in S,
implying that in(G) = n, since S is an interval set of G′. Therefore n ≤ β (G)+ 1, which
implies that G is a clique. In other words, G = K4, a contradiction by the assumption n≥ 6.
Hence w∈ S and we can obtain a new interval set S′ from S as follows. For every wv`vr ∈ S, if
both wv` and wvr are not in S, replace wv`vr by either wv` or wvr . Otherwise, just remove wv`vr

of S. We can see that S′ is an interval set of G′ smaller than S. Moreover S′ is also a minimum
vertex cover of G. Hence β (G)+1 = |S′| ≤ |S|= in(G′), completing the proof. ut

(a) A cubic graph G. (b) Bipartite graph G′ obtained from G.

Fig. 1: Example of transformation from graph G to G′ in Theorem 5. The black vertices are
a minimum vertex cover of G in Fig. 1a and a minimum interval set of G′ in Fig. 1b.
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Corollary 6 Determining the interval number of a directed connected graph G is NP-hard.

Proof Given an undirected and/or graph G, we can construct a directed and/or graph G′

replacing each edge e = (u,v) by two arcs a1
e = (u,v) and a2

e = (v,u). Assuming that G has
only and-vertices, it is easy to see that G has a vertex cover of size k if and only if G′ has
an interval set of size k. Note that, if G has only or-vertices we obtain a reduction from the
dominating set problem. ut

3.2.1 Approximation Algorithm

Algorithm 1 describes an approximation procedure for the interval number. Given a con-
nected and/or graph G, a set S is an interval set if and only if

– G\S does not contain any edge uv, where u or v is an and-vertex, and
– every or-vertex in V (G)\S has a neighbor in S.

The first condition implies that if G1 is the spanning subgraph of G that contains all
edges uv of G where u or v is an and-vertex, then in(G) ≥ β (G1). The second condition
implies in(G)≥ γ(G,V (GOR)), where γ(G,V (GOR)) is the minimum cardinality of a set D
of vertices of G such that every vertex in V (GOR) \D has a neighbor in D. The union of a
2-approximate vertex cover of G1 and of a log |V (GOR)|-approximate V (GOR)-dominating
set of G yields a (2+ log |V (GOR)|)-approximate interval set of G.

In fact, one can easily construct an equivalent set cover instance in order to carry over
to γ(G,V (GOR)), where the ground set to be covered is the set of or-vertices, and the sets
are the closed neighborhoods of all vertices of G.

Algorithm 1: A (2+ log |V (GOR)|)-approximation algorithm for in(G).
Data: A connected and/or Graph G.
Result: An interval set S of G of size at most (2+ log |GOR|)∗ in(G).

1 G1← A spanning subgraph of G that contains all edges uv of G where u or v is an and-vertex;
2 S← The matched vertices of a maximal matching in G1;
3 U ←V (GOR);
4 while U 6= /0 do
5 v← The vertex of G whose NG[v] contains the largest number of uncovered or-vertices;
6 Cover all vertices in N[v]∩V (GOR);
7 U ←U \N[v];
8 S← S ∪{v};

Result: S

Theorem 7 Given a connected and/or graph G, Algorithm 1 is a (2+log |V (GOR)|)-approximation
algorithm for in(G). Furthermore computing in(G) is a Log-APX-complete problem.

Proof Let us denote the size of an optimum solution by OPT and the size returned by Algo-
rithm 1 for an instance I by A(I). We know that every interval set of G must include a vertex
cover of GAND. Thus, line 1 represents the classical 2-approximation algorithm to obtain a
vertex cover (Vazirani, 2001). After the line 2 it is obtained a set S1 that covers all edges
between and-vertices. Since any interval set must be a vertex cover for Gand, it follows that

|S1|/2≤ OPT =⇒ |S1| ≤ 2∗OPT. (1)
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Lines 3–8 present the logn-approximation algorithm for DOMINATING SET (Vazirani,
2001), where U represents the universal set and the sets are composed by |NG[v]|, for ev-
ery v ∈V (G). Hence, all or-vertices are covered by a set S2, following that

|S2| ≤ log(|V (GOR)|)∗OPT. (2)

From Eq. (1) and Eq. (2) we obtain the following for any instance I:

A(I) = |S1|+ |S2|
≤ 2∗OPT + log(|V (GOR)|)∗OPT

= (2+ log |V (GOR)|)∗OPT.

Since DOMINATING SET is in Log-APX-complete (Escoffier and Paschos, 2006), the
theorem follows. ut

Corollary 8 Algorithm 1 is a (1+ log |V (GOR)|)-approximation for in(G), if G is a bipartite
connected and/or graph. Moreover, if G is such that one part has only and-vertices and the
other has only or-vertices, then in(G) can be computed in polynomial time.

Proof By the well-known König-Egerváry’s theorem, a minimum vertex cover for G can be
found in polynomial time for bipartite graphs. Thus the first step in Algorithm 1 results in a
vertex cover for the and-vertices of size at most OPT . Hence the approximation is limited
by the dominating step of the or-vertices, obtaining an approximation of (1+ log |V (GOR)|).

When G has each part formed by vertices of the same type, distinct from the type of the
other part, we can see that every interval set S must be a minimum vertex cover of G. This
is true because no edges can exist between vertices of V (G)\S. Hence the proof follows by
the König-Egerváry’s theorem. ut

3.2.2 Linear Time Algorithm for Trees

Now we prove that INTERVAL NUMBER is polynomially solvable for trees. We adapt the
classical linear time algorithm presented in (Cockayne, Goodman, and Hedetniemi, 1975),
which computes γ(T ) for a tree T . In fact, the algorithm works for a more general domina-
tion called mixed domination, defined as follows. Consider a partition P of the vertices of G
into three subsets V1,V2,V3 containing free, bound, and required vertices, respectively. Such
a partition P is called an m-partition. A mixed dominating set D of a graph G with respect
to P (or simply wrt P) is a subset of vertices containing all required vertices and such that
every bound vertex either belongs to D or is adjacent to some vertex of D. Furthermore, we
require an additional restriction on each and-vertex v: v /∈ D if and only if NG(v) ⊆ D. We
denote the size of a minimum mixed dominating set of G wrt P by γm(G,P).

Proposition 9 There exists an m-partition P of a connected graph G such that in(G) =
γm(G,P).

Proof Let S be a minimum interval set of G. This implies that every or-vertex of V (G) \ S
has at least one neighbor in S and all and-vertices in V (G)\S have their entire neighborhood
in S. By setting V1 = V3 = /0 and V2 = V (G) we obtain an m-partition P such that S is a
mixed dominating set D of G wrt P. This shows that γm(G,P) ≤ in(G). Now, let D be a
minimum mixed dominating set of G wrt P. Clearly, every and-vertex v of V (G)\D has all
of its neighbors in D, and every or-vertex of V (G)\D is covered by at least one vertex of D.
Hence D is also an interval set of G, which implies in(G)≤ γm(G,P). ut
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The next theorem is the basis of the algorithm that computes γm(T,P) for a tree T . We
assume without loss of generality that all leaves of T are or-vertices. Denote by G− v the
graph obtained by removing v from G. Moreover, for each and-vertex v, let r(v) denote the
number of its required neighbors.

Theorem 10 Let T be a tree with an m-partition P, v a leaf of T , u the neighbor of v,
and T ′ = T − v. Let Pv be the m-partition of T ′ obtained by removing v from the member
of P that contains v. Then:

1. if v∈V1 and u∈V (Tand) then γm(T,P) = γm(T ′,P′), where P′ is the m-partition obtained
from Pv by setting u as required;

2. if v ∈ V2 then γm(T,P) = γm(T ′,P′), where P′ is the m-partition obtained from Pv by
setting u as required;

3. if v ∈V3 and u ∈V3 then γm(T,P) = 1+ γm(T ′,Pv);
4. if v ∈ V3 and u /∈ V3 then γm(T,P) = 1+ γm(T ′,P′′), where P′′ is the m-partition of T ′

obtained by setting u as free if either u ∈ V (Tor) or u ∈ V (Tand) and r(u) = |NT (u)∩
V (T )|.

Proof (1) Since v∈V1, any mixed dominating set of T ′ wrt P′ is also a mixed dominating set
of T wrt P, and therefore γm(T,P) ≤ γm(T ′,P′). To prove that γm(T ′,P′) ≤ γm(T,P), let D
be a minimum mixed dominating set of T wrt P. If v /∈D then D is also a mixed dominating
set of T ′ wrt P′. Thus, suppose that v ∈ D; this implies u /∈ D (otherwise D\{v} is a mixed
dominating set of T wrt P, contradicting the optimality of D). Let D′ = (D \ {v})∪{u}.
If u ∈ V (Tand) then D′ is a mixed dominating set of T ′ wrt P′, because v /∈ (NT (u)∩D′).
Hence γm(T ′,P′)≤ |D′|= |D|= γm(T,P).

(2) Since u is required in T ′, every mixed dominating set of T ′ wrt P′ is also a mixed
dominating set of T wrt P, implying that γm(T,P) ≤ γm(T ′,P′). The proof of inequal-
ity γm(T ′,P′)≤ γm(T,P) follows as in item (1).

(3) The proof of this case is trivial.
(4) Let D′ be a mixed dominating set of T ′ wrt P′′. From the definition of P′′, it is clear

that D∪{u} is a mixed dominating set of T wrt P. Therefore γm(T,P)≤ 1+γm(T ′,P′′). Now,
let D be a minimum mixed dominating set of T wrt P. Since v is required, v ∈D. Moreover,
if u ∈D then D\{v} is a mixed dominating set of T ′ wrt P′′. Finally, assume u /∈D. Since u
is free in T ′, we have two cases: (a) if u is an or-vertex then u is dominated for some
vertex w ∈ D \ {u,v}; (b) if u is an and-vertex then r(u) = |NT (u)∩V (T )|. In both cases it
is clear that D\{v} is a mixed dominating set of T ′ wrt P′′. Hence, γm(T ′,P′′)≤ |D|−1 =
γm(T,P)−1. ut

Theorem 10 directly leads to the following linear time procedure to compute a minimum
mixed domination set for a labelled tree:

In the above algorithm, r(v) is initially set to zero for each and-vertex v. Lines 7–10
cover cases (1) and (2) in Theorem 10, whereas lines 11–15 cover cases (3) and (4). If v∈V1
then v may or may not belong to a mixed dominating set of T . Thus, if v is an or-vertex then
it is either a leaf of T or has a required neighbor already processed. On the other hand,
if v is an and-vertex then r(v) = d(v), and therefore v is the last vertex in the computation.
If r(v) = d(v)−1 then v is a bound vertex, since v depends on whether u ∈ NT (v) is in D or
not, where u has not been analyzed yet.
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Algorithm 2: Linear time algorithm that computes γm(T,P) for a tree T .
Data: An and/or tree T whose vertices are labelled as free, bound, or required.
Result: A minimum mixed dominating set MDS of T .

1 MDS← /0;
2 for every v ∈V (Tand) do
3 r(v)← 0;
4 repeat
5 v← a leaf of T ;
6 u← neighbor of v in T ;
7 if ((v is free and u ∈V (Tand)) or v is bound ) and u is not required then
8 set u as required;
9 for every w ∈ NT (u)∩V (Tand) do

10 r(w)← r(w)+1;
11 else
12 if v is required then
13 MDS←MDS ∪ {v};
14 if u is not required and (u ∈V (Tor) or (u ∈V (Tand) and r(u) = |NT (u)∩V (T )|)) then
15 set u as free;
16 T ← T − v;
17 until n = 1;
18 if the last vertex v is not free then
19 MDS←MDS ∪ {v};

3.3 The Hull Number

In this section we present some complexity and structural properties on hull sets of and/or
graphs G. Computing hn(G) is trivially solvable if G contains only or-vertices – in this case
every vertex defines itself a hull set. However, as described in Subsection. 3.2, if G contains
no or-vertex then determining hn(G) is an NP-hard problem, since β (Gand) ≤ hn(G) ≤
in(G) and so hn(G) = β (G) = β (Gand). Based on this fact, we obtain the following result:

Lemma 11 Let G be a connected graph containing and-vertices. For any hull set S of G,
there exists a hull set S′ with no or-vertices and such that |S′| ≤ |S|.

Proof Let S be a hull set of G and let v ∈ S be an or-vertex. If NG(v)∩S\{v} 6= /0, then S′ =
S \{v} is also a hull set of G. Otherwise, if there exists at least one and-vertex u ∈ NG(v)∩
(V (G)\S), then S′ = {u}∪ S \ {v} is also a hull set of G, since S ⊂ I1[S′]. Finally, assume
that NG(v) is entirely contained in Gi

or. Thus, if NG(V (Gi
or)\{v})∩S 6= /0, then S′ = S\{v} is

a hull set of G. Otherwise, all the and-neighbors of Gi
or have at least one neighbor outside S.

Hence let S′ = {u}∪ S \ {v}, where u is such an and-neighbor of NG(V (Gi
or) \ {v}). It is

easy to see that S′ is a hull set of G. Applying the same reasoning to each or-vertex v ∈ S we
obtain a new hull set as required in the statement.

Let G∗ be the and/or graph obtained from G contracting each or-component Gi
or to

a unique vertex vi, for all 1 ≤ i ≤ ω (Gor). In other words, replace V
(
Gi

or
)

by vi such
that N

(
vi
)
=N

(
V (Gi

or)
)
∩V (Gand). We say that G∗ is the contracted graph of G. Moreover,

for each subset S⊆V (G) let us define the contracted set S∗ ⊆V (G∗) of S as follows:

– v ∈ S∩V (Gand) if and only if v ∈ S∗∩V (Gand);
– if v ∈ S∩V (Gi

or) then vi ∈ S∗;
– if vi ∈ S∗ then there exists at least one vertex u ∈ S∩V (Gi

or).

Observe that the or-vertices of G∗ induce an independent set.
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Lemma 12 Let G∗ be the contracted graph of G. For every S ⊆ V (G), H(S)∩V (Gand) =
H(S∗)∩V (Gand).

Proof If S does not contain any or-vertex, then S∗ = S and the lemma is trivial. Since every
and-vertex of S is in S∗, and vice versa, let v ∈ H(S)∩ (V (Gand)\S). Thus NG(v)⊆ It [S] for
some t ∈N, and suppose by contradiction that v /∈H(S∗). For every u ∈ NG(v)∩V (Gi

or), we
get that u ∈ It∗ [S] for some t∗ ≤ t, implying that S∩N[V (Gi

or)] 6= /0. Hence S∗ ∩N[vi] 6= /0
and thus vi ∈H[S∗]. Therefore, there must exist an and-vertex w∈NG(v) such that w∈H(S)
and w /∈ H(S∗). If w /∈ S then w and v depend on each other to be in H(S), which implies
that w /∈ H(S). This means that w ∈ S and thus w ∈ S∗. Hence w ∈ H(S∗), a contradiction.

Conversely, consider v∈H(S∗)∩(V (Gand)\S∗). As observed before, each and-neighbor
of v must be in S∗ and thus in S. Moreover, each vi ∈ NG(v) belongs to It [S∗] for some t ∈N.
Thus there must exist an or-vertex u ∈ V (Gi

or) such that u ∈ H(S). Hence V (Gi
or) ⊂ H[S],

i.e., NG(v)⊆ H(S) in G. ut

Theorem 13 For every connected and/or graph G, hn(G) = hn(G∗).

Proof Let S be a minimum hull set of G that contains only and-vertices, which exists by
Lemma 11. Since all the or-vertices of G must be in H(S), it follows that every or-component
of G must be “reached” by S. Thus all the or-vertices of G∗ are also reached by S. By
Lemma 12, S is also a hull set of G∗, implying that hn(G∗)≤ hn(G).

Conversely, let S∗ be a minimum hull set of G∗ containing only and-vertices. Since all
the or-vertices of G∗ belong to H(S∗), at least one vertex of each or-connected component
of G∗ either is in S or is adjacent to one vertex of S. Hence all the or-vertices of G belong
to H(S∗). Therefore, by Lemma 12, S∗ is also a hull set of G, that is, hn(G)≤ hn(G∗). ut

By Theorem 13, we assume that G is contracted in the remaining of this subsection.

Corollary 14 If V (Gand) is an independent set, then computing hn(G) is NP-hard.

Proof In this case G is a bipartite graph whose parts are formed by the and-vertices and
the or-vertices, respectively. Since every or-vertex must be in H(S) for every hull set S, we
get that all and-vertices must also be in H(S). Thus, it follows by Lemma 11, Lemma 12
and, Theorem 13 that hn(G) is the size of a minimum set S of and-vertices which covers
all the or-vertices. In other words, computing a minimum hull number is equivalent to de-
termining a minimum SET COVER of G, where the or-vertices are the elements and each
and-vertex v represents the subset of elements that v is adjacent. Since computing a mini-
mum SET COVER is NP-hard, the corollary follows. ut

Now, let us consider that the and-vertices does not induce an independent set. Let Ci be
the i-th vertex cover of Gand. Moreover, let Gi be the subgraph induced by the subset V (G)\(
Ci∪

(
N
(
Ci
)
∩V (Gor)

))
, and let Gi

j denote the j-th connected component of Gi. We use
the notation H ′ ⊆ H to mean that H ′ is a connected component of graph H. Fig. 2a shows a
representation of a hull set of G by the gray sets.

Theorem 15 The hull number of a connected graph G can be determined as

hn(G) = min
Ci



|C

i|+ ∑
Gi

j⊆Gi

hn
(
Gi

j
)


 .
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Proof Let Ci be a vertex cover of Gand, and let S denote the set formed by Ci and the
union of the minimum hull sets of each Gi

j, that contain only and-vertices by Lemma 11.

Let us prove that hn(G) ≤ min
{
|Ci|+∑Gi

j⊆Gi hn
(

Gi
j

)}
. Note that every or-vertex has at

least one neighbor in S, otherwise their and-neighbors cannot be in H(S), a contradiction.
Furthermore, since V (Gand) \ S is an independent set, we get that all the and-vertices are
reached in at most two time steps. Hence S is a hull set of G.

Conversely, let S be a minimum hull set of G which contains only and-vertices. We know
that S must contain a vertex cover Ci of Gand, otherwise the endpoints of an edge between
and-vertices are neighbors outside S. Therefore, every connected Gi

j component of Gi is a
bipartite graph with parts containing only and-vertices and only or-vertices, respectively.
Hence, a minimum hull set of G containing only and-vertices can be defined by taking a
vertex cover of Gand that minimizes the sum of the hull numbers of the generated connected
components. Therefore hn(G)≥min

{
|Ci|+∑Gi

j⊆Gi hn
(

Gi
j

)}
. ut

(a) Hull set of G. (b) Component Gi
j .

Fig. 2: Representation of a hull set of G given by the gray sets.

We can see a minimum hull set of G as a smallest set S of and-vertices that covers all
the or-vertices and such that V (Gand) \ S is an independent set. Furthermore, a hull set S
containing only and-vertices is also an interval set of G if and only if S covers all the or-
vertices and every and-vertex outside S has their whole neighborhood in S.

Corollary 16 Algorithm 1 is a (2+ log |V (GOR)|)-approximation algorithm for hn(G). Fur-
thermore computing hn(G) is a Log-APX-complete problem.

Proof The proof is analogous to that of Theorem 7. ut

Corollary 17 Determining the hull number of a directed connected graph G is NP-hard.

Proof Assuming that G has only and-vertices the interval and hull numbers are equal. ut

3.3.1 Linear Time Algorithm for Trees

Given a tree T , we can adapt Algorithm 2 to find its hull number, where V (T ) is parti-
tioned into free, bound and required vertices. However, the definition of mixed domination
is slightly different in this case. Formally, a mixed dominating set D∗ of T is as follows: D∗

contains all required vertices; every bound vertex belongs to D∗ or is covered by it; v /∈D∗ if
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and only if NG(v)∩V (Gand)⊆D∗, for every and-vertex v. We denote by γ∗m(T,P) the size of
a minimum mixed dominating set of T wrt an m-partition P into free, bound, and required
vertices. The following proposition is the analogous of Proposition 9 for γ∗m(G,P).

Proposition 18 Let G be a connected and/or graph. Then there exists an m-partition P of G
such that hn(G) = γ∗m(G,P).

Proof Let S be a minimum hull set of G containing no or-vertices. Then S must cover all the
or-vertices of G, and every and-vertex of V (G) \ S must have its entire neighborhood in S.
Thus S is a mixed dominating set of G wrt the m-partition P = ( /0,V (G), /0), and this implies
γ∗m(G,P) ≤ hn(G). Now, let D∗ be a minimum mixed dominating set of G wrt P. Thus
NG(v)∩V (Gand) ⊆ D∗ if and only if v /∈ D∗, for each and-vertex v. Let w be an or-vertex
such that w ∈ D∗. If w is a bound vertex and NG(w)∩D∗ 6= /0 then D∗ \{w} is also a mixed
dominating set of G wrt P, a contradiction. Hence there must exist u∈NG(w)∩(V (G)\D∗),
and then (D∗ \{w})∪{u} is also a minimum mixed dominating set of G wrt P. However, if
w is a required vertex, we can set w as bound and apply the same arguments, for each such
or-vertex. The set D′ obtained in this way contains only and-vertices and every or-vertex is
adjacent to some vertex of D′. Hence D′ is a hull set of G, implying that hn(G) ≤ |D′| =
|D∗|= γ∗m(G,P). ut

Let us denote by r∗(v) the number of required and-neighbors of v, for every and-vertex v.
The following theorem describes how to compute a minimum hull set on trees.

Theorem 19 Let T be a tree with an m-partition P, v a leaf of T , u the neighbor of v, and
T ′ = T − v. Let Pv be the m-partition of T ′ obtained by removing v from the member of P
that contains v. Then:

1. if v ∈V1 then γ∗m(T,P) = γ∗m(T ′,Pv);
2. if v ∈ V2 then γ∗m(T,P) = γ∗m(T ′,P′), where P′ is the m-partition obtained from Pv by

setting u as required;
3. if v ∈V3 and u ∈V3 then γ∗m(T,P) = 1+ γ∗m(T ′,Pv);
4. if v ∈ V3 and u /∈ V3 then γ∗m(T,P) = 1+ γ∗m(T ′,P′′), where P′′ is the m-partition of T ′

obtained by setting u as free if either u ∈ V (Tor) or u ∈ V (Tand) and r∗(u) = |NT (u)∩
V (Tand)|.

Proof (1) Since v ∈ V1, any mixed dominating set of T ′ wrt Pv is a mixed dominating set
of T wrt P, and thus γ∗m(T,P) ≤ γ∗m(T ′,Pv). Let D∗ be a minimum mixed dominating set
of T wrt P. If v /∈D∗ then D∗ is also a mixed dominating set of T ′ wrt Pv. Suppose then that
v∈D∗. If v is an and-vertex then r∗(v) = |NT (v)∩V (Gand)|. Moreover, if u∈V (Gand) then u
must be labelled as required, which implies that u also belongs to D∗. Hence, if u ∈D∗ then
D∗ \{v} is also a mixed dominating set of T wrt P even if v is either an and- or an or-vertex,
a contradiction. Hence we get that u /∈ D∗, and then D′ = (D∗ \{v})∪{u} is also a mixed
dominating set of T wrt P. We conclude that γ∗m(T ′,Pv)≤ |D′|= |D∗|= γ∗m(T,P).

(2) Since v is dominated by u in every mixed dominating set D∗ of T ′ wrt P′, D∗ is also
a mixed dominating set of T wrt P, implying that γ∗m(T,P) ≤ γ∗m(T ′,P′). Now, let D∗ be a
minimum mixed dominating set of T wrt P. If v /∈D∗ then D∗ is also a mixed dominating set
of T ′ wrt P′, and this means that u must be in D∗. Thus u is a required vertex and D∗ is also
a mixed dominating set of T ′ wrt P′. Then suppose that v ∈ D∗. If u ∈ D∗ then D∗ \{v} is a
mixed dominating set of T wrt P, a contradiction. Then let us suppose that u /∈D∗. Consider
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D′ = (D∗ \{v})∪{u}. It is easy to see that D′ is a mixed dominating set of T ′ wrt P′. Hence
γ∗m(T ′,P′)≤ |D′|= |D∗|= γ∗m(T,P).

(3) The proof is trivial.
(4) The proof of this case is analogous to case (4) in Theorem 10, where we show that

every mixed dominating set of T ′ wrt P′′ plus u is a mixed dominating set of T wrt P.
Furthermore, we prove that u is either an or-vertex and has a neighbor in T ′ or u is an and-
vertex with r∗(u) = |NT (v)∩V (Tand)|. ut

Algorithm 3 presents a linear time procedure that computes the minimum mixed domi-
nating set γ∗(T,P) of an and/or tree T .

Algorithm 3: Linear time algorithm that computes γ∗(T,P) for a tree T .
Data: An and/or tree T whose vertices are labelled as free, bound or required.
Result: A minimum mixed dominating set MDS∗ of T .

1 MDS∗ ← /0;
2 for every v ∈V (Tand) do
3 r∗(v)← 0;
4 repeat
5 v← a leaf of T ;
6 u← neighbor of v in T ;
7 if v is bound and u is not required then
8 set u as required;
9 for every w ∈ NT (u)∩V (Tand) do

10 r∗(w)← r∗(w)+1;
11 else
12 if v is required then
13 MDS∗ ←MDS∗ ∪ {v};
14 if u is not required and (u ∈V (Tor) or (u ∈V (Tand) and r∗(u) = |NT (u)∩V (Tand)|))

then
15 set u as free;
16 T ← T − v;
17 until n = 1;
18 if the last vertex v is not free then
19 MDS∗ ←MDS∗ ∪ {v};

3.4 The Carathéodory Number

Now, we present results on the Carathéodory number in the and/or-convexity.

Lemma 20 Given a connected and/or graph G, it follows that

c(G) =

{
1 , if G contains only or-vertices;
∆(G) , if G contains only and-vertices.

(3)

Proof Since each vertex defines a hull set of G, if G contains only or-vertices, the theorem
trivially holds in this case. Assume that G contains only and-vertices. The convex hull of
any subset S ⊂V (G) must contain the entire neighborhood of each vertex in H(S)\S. This
implies that c(G) ≤ ∆(G). Let S = NG(v), where d(v) = ∆(G). The convex hull of every
subset X ⊂ S cannot contain v, although v ∈ H(S). Hence c(G)≥ ∆(G). ut
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Lemma 20 implies that c(G)≥max{1,∆(Gand)}, where ∆(Gand) denotes the maximum
degree of Gand. Next we present a polynomial-time algorithm that computes c(G) for every
graph G. Let dand(v) denote the number of and-neighbors of v. In addition, given an and-
vertex v, let dor(v) denote the number of or-neighbors of v that are not adjacent to any
and-vertex in the neighborhood of v. Formally, dor(v) =

∣∣∣Nor(v)\
⋃

u∈Nand(v) NG(u)
∣∣∣.

Theorem 21 Given a connected and/or graph G, it follows that

c(G) = max{1, max
v∈V (Gand)

{dand(v)+dor(v)}}.

Furthermore, computing c(G) can be done in linear time.

Proof By Lemma 20, if G contains only or-vertices then c(G) = 1 and the theorem triv-
ially holds. Hence, let S ⊆ V (G) containing both and-vertices and or-vertices. Since the
or-vertices in H(S) can be obtained by taking all subsets X ⊆ S with |X | = 1, we can con-
sider only the and-vertices in H(S) \ S. Thus, let v be such an and-vertex. As in the proof
of Lemma 20, every and-neighbor of v must be in any subset X ⊂ S such that v ∈ H(X).
Also, the entire neighborhood of v should satisfy this condition. Thus, if there exists an
or-neighbor w of v which is not adjacent to any and-neighbor of v, w must be included
in X . Hence |X | ≥ dand(v)+dor(v) and it is clear to see that c(G)≥maxv∈V (Gand){dand(v)+
dor(v)}. Furthermore, it is not hard to see that c(G) ≤ maxv∈V (Gand){dand(v)+dor(v)}, oth-
erwise there must exist an and-vertex that is not in H(S), which contradicts the maximality
of dand(v)+dor(v). Finally, it is not hard to see that computing c(G) can be done in Θ(n+m)
time, which concludes the proof. ut

4 Conclusion

In this work we related some special graph convexity parameters to combinatorial proper-
ties of distributed computation and deadlocks. Up to the authors’ knowledge, no study on
Distributed Systems has been done under this point of view. We showed that some structures
of blocking sets in the AND-OR model are actually well-known optimization problems on
graphs, such as the dominating set problem and the vertex cover problem.

Furthermore, such parameters describe the trade-off between the cost of the number of
processes initially active and the total time of the computation, as exemplified by the interval
number and the hull number. Although in both concepts a minimum vertex set is required
for the computation to reach all the nodes, the former demands a quick execution, while
the latter is not concerned about the time – and this allows choosing a smaller set at the
beginning of the computation. For example, in a deadlocked distributed system, where all
processes are blocked, a minimum hull set is equivalent to the minimum number of processes
required to be released in order to ensure that all the processes will eventually be reached
by the computation. Since deadlock is a stable property, removing it from a distributed
computation requires some external intervention. Hence, a minimum hull set is precisely a
minimum set of processes to which some external operations must be applied in order to
guarantee that all the processes will eventually be relieved from their wait condition.

We leave open the study of other convexity parameters, such as the Radon number, the
rank, and the Helly number. What is the complexity of computing them in the AND-OR
model? What are their meanings in this model?
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1 PESC, COPPE, Federal University of Rio de Janeiro
Rio de Janeiro, Brazil, {gclima,jayme}@cos.ufrj.br

2 Institute of Optimization and Operations Research, Ulm University
Ulm, Germany, dieter.rautenbach@uni-ulm.de

3 Institute of Computing, Fluminense Federal University
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Abstract

We consider an iterative irreversible process on graphs. Starting with some initial set S of
vertices of a given graph G, this process iteratively adds to S all vertices u of G outside of S for
which the intersection of the current set S with the neighborhood NG(u) of u in G belongs to a
collection τ(u) of subsets of NG(u) given for each vertex u. Based on discrete convexity notions,
we study the corresponding interval number, where only one iteration is executed, and present
some results on the hull number, where the number of iterations is unbounded. Special choices
of the function τ allow to include several well studied graph processes and parameters within
this framework. The results of the paper are the following: the general problems are NP-hard in
several very restricted cases, that is, even on extremely simple graphs sufficiently complex threshold
functions lead to hard problems; in view of the strong hardness results, linear time algorithms for
trees in the τ interval version and for paths in the τ hull version are given; a probabilistic upper
bound on the size of a solution for the relaxed τ -interval number.

Keywords: Irreversible Threshold Processes · Target Set · Dynamic Monopoly · Domination

1 Introduction

Motivated by completely different applications such as distributed computing, cellular automata, mar-
keting strategies, spreading of infectious diseases, discrete convexity notions, and physical percolation
effects, several iterative irreversible processes on graphs have been studied in recent years [1–5, 8, 13,
16, 17, 24, 26]. Such processes typically consider a set of vertices of a given graph that grows itera-
tively according to certain extension rules. These rules usually involve threshold values, which may be
vertex-dependent. A specific vertex might for instance enter some set of ‘infected’ vertices provided
that sufficiently many of its neighbors are already contained in that set. In the present paper we
consider a generalization of such processes, where we replace the threshold values by specific sets, that
is, each vertex may individually specify certain subsets of its neighborhood, and the process is guided
by these specific selections.

Before giving the precise definitions, we recall some classical terminology and notation.
We consider finite, simple, and undirected graphs. The vertex set and the edge set of a graph G

are denoted by V (G) and E(G), respectively. For a vertex u of a graph G, the neighborhood NG(u)
of u in G is the set {v ∈ V (G) : uv ∈ E(G)}, the degree dG(u) of u in G is |NG(u)|, and the closed
neighborhood NG[u] of u in G is {u} ∪NG(u). The minimum and maximum degree of a graph G are
denoted by δ(G) and ∆(G), respectively.

For an integer k and a set V , let [k] be the set of all positive integers at most k, let 2V be the set
of all subsets of V , and let

(
V
k

)
be the set of all subsets of V of order k.

Based on discrete convexity notions [6,18], now we give formal definitions for the generalized threshold
processes.

1
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LetG be a graph. A threshold function onG is a function τ : V (G)→ 2V (G) such that τ(u) ⊆ 2NG(u)

for every vertex u of G.
Let S be a set of vertices of G. The τ -interval Iτ (S) of S is the set

S ∪ {u : u ∈ V (G) \ S and NG(u) ∩ S ∈ τ(u)},

that is, Iτ (S) contains S as well as all vertices u from the complement of S whose neighborhood
intersects S in a set that is contained in τ(u).

Let I0
τ (S) = S, and, for every positive integer i, let Iiτ (S) = Iτ (Ii−1

τ (S)). If k is the small-
est non-negative integer with Ik+1

τ (S) = Ikτ (S), then Ikτ (S) is the τ -hull Hτ (S) of S, and the se-
quence

(
I0
τ (S), . . . , Ikτ (S)

)
is the τ -threshold process on G starting with S.

If Iτ (S) = S, then S is τ -convex. If Iτ (S) = V (G), then S is a τ -interval set. Finally, if Hτ (S) =
V (G), then S is a τ -hull set. The minimum order of a τ -interval set is the τ -interval number iτ (G)
of G, and the minimum order of a τ -hull set is the τ -hull number hτ (G) of G.

A motivation for the study of τ -threshold processes on graphs is that they generalize some gates
of logical circuits. For example, an and-gate v outputs true only if all of its inputs are true; on the
other hand, for a xor-gate outputs true it must receive an odd number of positive inputs. A vertex
with τ(v) = N(v) operates according to an and-gate and when τ(v) = {N ∈ 2NG(u) : |N | mod 2 = 1}
the vertex operates as an xor-gate.

We also consider a relaxed version of the above notions, where a vertex u from V (G) \ S belongs
to the interval of S if NG(u)∩S contains some set from τ(u) instead of requiring to be equal to some
such a set. In other words, a way of introducing this variant is by suitably modifying the function τ .
Therefore, let the closure τ̄ of τ be the threshold function

τ̄ : V (G)→ 2V (G) : u 7→
{
N̄ : N̄ ⊆ NG(u) and ∃N ∈ τ(u) : N ⊆ N̄

}
.

The sets Iτ̄ (S) and Hτ̄ (S) are the relaxed τ -interval of S and the relaxed τ -hull of S, respectively.
The τ̄ -threshold process on G starting with S is the relaxed τ -threshold process on G starting with S.
The relaxed τ -interval number of G is iτ̄ (G), and the relaxed τ -hull number of G is hτ̄ (G).

Special choices for τ lead to many well known graph parameters.
If τ(u) = 2NG(u)\{∅} for every vertex u of some graph G, then iτ (G) coincides with the domination

number γ(G) [22]. Alternatively, if τ(u) =
(
NG(u)

1

)
, then iτ̄ (G) also coincides with the domination

number γ(G). More generally, if τ(u) =
(NG(u)

k

)
for some positive integer k, then iτ̄ (G) coincides with

the k-domination number γk(G) [9,13,19,22,25,27], and the relaxed τ -threshold processes correspond
to the processes considered in [1, 5, 8, 12,13,16,26].

The above examples already imply several hardness results.

In view of algorithmic aspects though, some remarks concerning encoding lengths are necessary.
Given a graph G of order n(G), and a threshold function τ on G, we can encode the pair (G, τ) listing,
for every vertex u of G, the dG(u) neighbors of u by indicating their names, which are 0/1-vectors
of length O(lnn(G)), as well as the |τ(u)| distinct 0/1-incidence vectors of length dG(u) of the sets
in τ(u), where the i-th entry of such a vector corresponds to the neighbor of u with the i-th smallest
name. This encoding has size

O


 ∑

u∈V (G)

(
dG(u)

(
ln(n(G)) + |τ(u)|

))

 . (1)

In the remainder of this work we assume the input is encoded as above. Note that |τ(u)| can
be Ω

(
2dG(u)

)
, hence this size is not necessarily polynomial in n(G). However, we assume that the

hardest instances have size O(poly(n(G))).

An interesting threshold function based on xor-gates of logic circuits is the following parity related
function:

⊕ : V (G)→ 2V (G) : u 7→
{
N ∈ 2NG(u) : |N | mod 2 = 1

}
.

2
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Clearly, the reasonable encoding length of the pair (G,⊕) is just the encoding length of G, which is
much smaller than the expression in (1). Note that ⊕-hull number of a tree equals 1.

The results of the paper can be summarized as follows:

1. Results about the τ -interval number and τ -interval sets:

• NP-completeness of computing the τ -interval number on complete graphs (Theorem 3).

• NP-completeness of computing the τ -interval number for very special threshold functions
(Theorems 4 and 5); Theorem 5 is about computing the so-called ⊕-interval number on
bipartite graphs.

• A linear time algorithm for computing the tau-interval number of a tree (Theorem 12).

• A linear time algorithm for determining whether a given tree has a τ -interval set that does
not contain a given vertex (Proposition 10).

2. Results about the relaxed τ -interval number:

• NP-completeness and inapproximability results for computing the relaxed τ -interval number
on complete graphs (Theorems 1 and 2).

• A linear time algorithm for computing the relaxed τ -interval number for a given tree (Corol-
lary 13).

• A linear time algorithm for computing the ⊕-interval number of a tree (Theorem 14).

• A probabilistic upper bound is given for the relaxed τ -interval parameter (Theorem 15,
Corollary 16), together with an example suggesting that there is no reasonable version of
Corollary 16 for the usual τ -interval number.

3. Results for the τ -hull number:

• A polynomial time algorithm for computing the τ -hull number of a path (Proposition 8).

4. Results for the relaxed τ -hull number:

• NP-completeness and inapproximability results for computing the relaxed τ -hull number
on complete graphs (Theorems 1 and 2).

• A linear time algorithm for computing the relaxed tau-hull number of a tree (Theorem 7).

2 Results

We organize our results in three subsections.

2.1 Hardness results

Our first hardness results concern complete graphs, that is, even on extremely simple graphs sufficiently
complex threshold functions lead to hard problems.

Theorem 1 Given a pair (k, τ), where k is a non-negative integer and τ is a threshold function on a
complete graph Kn, it is NP-complete to decide whether iτ̄ (Kn) ≤ k and it is NP-complete to decide
whether hτ̄ (Kn) ≤ k.

Proof: The two considered decision problems are clearly in NP, because the τ̄ -threshold process on G
starting with a given set can be generated in polynomial time. In order to establish hardness, we
describe polynomial reductions from Set Cover. Therefore, let C = (k, (S1, . . . , Sp)) be an instance
of Set Cover, that is, k is a positive integer, the Si are subsets of some ground set V , and C is a ‘Yes’-
instance of Set Cover if and only if there is a set C of at most k integers in [p] with

⋃
i∈C Si = V .

Clearly, we may assume that
⋃
i∈[p] Si = V and k < min{p, |V |}.

3
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Let n = p + |V |, and let V (Kn) = {S1, . . . , Sp} ∪ V . For i ∈ [p], let τ(Si) = {∅}, and, for u ∈ V ,
let τ(u) = {{Si} : i ∈ [p] and u ∈ Si}. It is easy to see that C is a ‘Yes’-instance of Set Cover if
and only if iτ̄ (Kn) ≤ k. Since the encoding length of the Set Cover instance C is Ω(ln(k) + p|V |),
the special choice of τ implies that the encoding length of (Kn, τ) is polynomially bounded in terms
of the encoding length of C.
Let n′ = 2p+1+|V |, and let V (Kn′) = {S1, . . . , Sp}∪V ∪X, whereX is a set of order p+1 that is disjoint
from {S1, . . . , Sp}∪V . For i ∈ [p], let τ ′(Si) = {X}, for u ∈ V , let τ ′(u) = {{Si} : i ∈ [p] and u ∈ Si},
and, for x ∈ X, let τ ′(x) = {V }. Again, the encoding length of (Kn′ , τ

′) is polynomially bounded in
terms of the encoding length of C.

Suppose that C is a ‘Yes’-instance of Set Cover, and let C be as above. Let S = {Si : i ∈ C}.
The definition of τ ′ implies that Iτ̄ ′(S) = S ∪ V , I2

τ̄ ′(S) = S ∪ V ∪ X, and I3
τ̄ ′(S) = V (Kn′), which

implies hτ̄ ′(Kn′) ≤ k.
Conversely, suppose that hτ̄ ′(Kn′) ≤ k. Let S be a set of at most k vertices of Kn′ with Hτ̄ ′(S) =

V (Kn′) such that |S ∩ V | is as small as possible. If u ∈ S ∩ V and Si is such that u ∈ Si, then u ∈
Iτ̄ ′((S \ {u}) ∪ {Si}), which implies Hτ̄ ′((S \ {u}) ∪ {Si}) = V (Kn′). Since |(S \ {u}) ∪ {Si}| ≤ |S|
and |((S \ {u})∪{Si})∩V | < |S ∩V |, this yields a contradiction to the choice of S. Hence S contains
no element of V . Since k < p, the set S does not contain all elements of X. If V 6⊆ Iτ̄ ′(S), then the
definition of τ ′ implies Iτ̄ ′(S) = Hτ̄ ′(S) 6= V (Kn′), which is a contradiction. Hence, V ⊆ Iτ̄ ′(S). We
obtain

⋃
Si∈S Si = V , which yields that C is a ‘Yes’-instance of Set Cover. 2

As observed by Chleb́ık and Chleb́ıková [7], Feige [20], Dinur and Steurer [15] showed the hardness of
approximation of Set Cover for instance with ln(p+ |V |) ≈ ln(|V |). Therefore, the construction in
the proof of Theorem 1 actually implies the following.

Theorem 2 For a given threshold function τ on a complete graph Kn, neither iτ̄ (Kn) nor hτ̄ (Kn) can
be approximated in polynomial time within a factor of (1−ε) ln(n) for any constant ε > 0 unless P=NP.

Replacing Set Cover with Exact Cover by 3-Sets (cf. the proof of Theorem 5 below) within the
proof of Theorem 1 yields the following additional result.

Theorem 3 Given a pair (k, τ), where k is a non-negative integer and τ is a threshold function on a
complete graph Kn, it is NP-complete to decide whether iτ (Kn) ≤ k.

Note that in the construction used in the proof of Theorem 1 several edges of the complete graph Kn

are in fact irrelevant because of the special choice of τ . Removing these edges easily implies that
deciding iτ̄ (G) ≤ k and iτ (G) ≤ k are NP-complete for a given triple (G, k, τ), where G is a bipartite
graph, k is a non-negative integer, and τ is a threshold function on G.

We present some more hardness results concerning special choices of the threshold function.

Theorem 4 Given a graph G and a given integer k, it is NP-complete to decide whether iτ (G) ≤ k,
where τ is the threshold function on G with τ(u) =

(
NG(u)

1

)
for every vertex u of G.

Proof: Again, the considered decision problem is clearly in NP. In order to prove completeness, we
describe a polynomial reduction from 1-in-3Sat. Therefore, let F be an instance of 1-in-3Sat with m
clauses C1, . . . , Cm over n Boolean variables x1, . . . , xn. We specify a graph G and an integer k such
that the order of G is polynomially bounded in terms of n and m, and F has a satisfying truth
assignment that leads to exactly one true literal in each clause if and only if iτ (G) ≤ k for the special
threshold function τ described in the statement.

Therefore,

• for every variable xi, we create a copy Gi of K4− e and denote the two vertices of degree 3 in Gi
by xi and x̄i,

• for every clause Cj , we create a vertex Cj , and
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• for every literal x ∈ {x1, . . . , xn} ∪ {x̄1, . . . , x̄n} and every clause Cj such that x appears in Cj ,
we add the edge xCj .

This completes the construction of G. Let k = n.
If F has a satisfying truth assignment that leads to exactly one true literal in each clause, then the

set S of all vertices that correspond to true literals is a τ -interval set of order n. Conversely, if S is a τ -
interval set of order at most n, then the special choice of τ and k implies that S∩V (Gi) ∈ {{xi}, {x̄i}}
for every i ∈ [n], and S ∩ {C1, . . . , Cm} = ∅. Therefore, since S is a τ -interval set, the elements in S
indicate a satisfying truth assignment for F that leads to exactly one true literal in each clause, which
completes the proof. 2

Theorem 5 Given a bipartite graph G and a given integer k, it is NP-complete to decide whether
i⊕(G) ≤ k.

Proof: Again, the considered decision problem is clearly in NP. In order to prove completeness, we
describe a polynomial reduction from Exact Cover by 3-Sets. Therefore, let C be an instance of
Exact Cover by 3-Sets consisting of m 3-element subsets C1, . . . , Cm of a ground set X of order 3n.
Clearly, we may assume that

⋃m
i=1Ci = X. We specify a bipartite graph G and an integer k such

that the order of G is polynomially bounded in terms of n and m, and C is a ‘Yes’-instance of Exact
Cover by 3-Sets if and only if i⊕(G) ≤ k. Let V (G) = X ∪ {C1, . . . , Cm} ∪ {r} ∪ {s1, . . . , sn+2},

E(G) = {xCi : x ∈ X, i ∈ [m], and x ∈ Ci} ∪ {rCi : i ∈ [m]} ∪ {rsj : j ∈ [n+ 2]}, and

k = n+ 1.

If C is a ‘Yes’-instance, and I is a set of exactly n indices in [m] such that
⋃
i∈I Ci = X, then {r}∪

{Ci : i ∈ I} is an ⊕-interval set of G, which implies i⊕(G) ≤ n+ 1. Conversely, let S be an ⊕-interval
set of G of order at most n + 1. If S does not contain r, then sj ∈ S for every j ∈ [n + 2], which
implies the contradiction |S| > n+ 1. Hence, r ∈ S. Let nX = |S ∩X| and nC = |S ∩ {C1, . . . , Cm}|.
Since each of the 3n− nX vertices in X \ S has at least one neighbor in S ∩ {C1, . . . , Cm}, and every
vertex Ci has exactly 3 neighbors in X, we obtain 3n − nX ≤ 3nC , which implies 1

3nX + nC ≥ n.
Since nX+nC ≤ |S|−1 ≤ n, we obtain nX = 0. Therefore, if I = {i ∈ [m] : Ci ∈ S}, then |I| = nC ≤ n
and

⋃
i∈I Ci = X, which implies that C is a ‘Yes’-instance. 2

2.2 Efficient algorithms for trees

In view of the strong hardness results in the previous subsection, efficient algorithms seem possible only
for either quite restricted graph classes (and general threshold functions) or quite restricted threshold
functions (and more general graph classes). The second of these two options comprises the many
well known efficient algorithms for domination, multiple domination, vertex cover, independence and
target set selection in special graph classes. Therefore, we focus here on the first option, that is, we
do not want to restrict the threshold functions.

In [10, 11] generalizations of target selection problem (a special case of the problem studied here)
have been studied on trees where size/cost set bound and time bound are considered. They provided
linear algorithms for such cases. However these problems assume that any vertex v has an integer
value t(v) meaning that v needs t(v) activate neighbors to become activate. Clearly relaxed τ -threshold
process provides more general problems such as relaxed τ -interval (time bound equals 1) and relaxed τ -
hull (time bound equals n(G)).

Relaxed and non-relaxed τ-hull number

We present some efficient algorithms for trees. Our first result concerns the relaxed τ -hull number.

Lemma 6 Let G be a graph, and let τ be a threshold function on G. Let uv be an edge of G such
that v has degree 1 in G.
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(i) If τ(v) = ∅, then for the threshold function σ on G− v defined as

σ(x) =

{
{N \ {v} : N ∈ τ(u)} , if x = u, and

τ(x) , otherwise,

it holds that hτ̄ (G) = hσ̄(G− v) + 1.

(ii) If ∅ ∈ τ(v), and the threshold function σ on G− v is as in (i), then hτ̄ (G) = hσ̄(G− v).

(iii) If τ(v) = {{u}}, and the threshold function σ on G− v is such that

σ(x) =

{
{N : N ∈ τ(u) and v 6∈ N} , if x = u, and

τ(x) , otherwise,

then hτ̄ (G) = hσ̄(G− v).

Proof: (i) Since τ̄(v) = ∅, every τ̄ -hull set of G contains v. The definition of σ easily implies that S is
a τ̄ -hull set of G if and only if S \ {v} is a σ̄-hull set of G− v, which implies (i).

(ii) Since ∅ ∈ τ̄(v), no τ̄ -hull set of G that is minimal with respect to inclusion contains v. For a
set S ⊆ V (G) \ {v}, the definition of σ easily implies that S is a τ̄ -hull set of G if and only if S is
a σ̄-hull set of G− v, which implies (ii).

(iii) If S is a τ̄ -hull set of G that is minimal with respect to inclusion and v ∈ S, then u 6∈ S,
and (S \ {v}) ∪ {u} is a τ̄ -hull set of G. Hence, G has a τ̄ -hull set of minimum order that does not
contain v. For a set S ⊆ V (G) \ {v}, the definition of σ easily implies that S is a τ̄ -hull set of G if
and only if S is a σ̄-hull set of G− v, which implies (iii). 2

Iteratively applying Lemma 6 immediately implies the following.

Theorem 7 For a given pair (T, τ), where T is a tree and τ is a threshold function on T , the relaxed τ -
hull number of T can be determined in linear time.

Note that the linear running time refers to the encoding length as specified in (1).

The non-relaxed τ -hull number seems to be much harder even for trees. More specifically, given a
tree T rooted by some vertex u and a threshold function τ on T , it seems difficult to verify even if u
does not belong to any τ -hull set S of T . This occurs because u needs an exact subset N ∈ τ(u) of its
neighbors at some time step t ≥ 1 during the process, such that N ⊆ H(S) at t and all of the vertices
in NG(u) \N are not in H(S) at t. Hence, it is required a mutual synchronization of the τ -hull sets
of all subtrees of u. However, a simple dynamic programming approach works for paths.

Proposition 8 For a given pair (Pn, τ), where τ is a threshold function on the path Pn of order n,
the τ -hull number of Pn can be determined in polynomial time.

Proof: For every two vertices u and v of Pn, it is possible to determine efficiently whether Hτ ({u, v})
contains all vertices that lie between u and v on Pn. Similarly, for every vertex u of Pn, it is possible
to determine efficiently whether Hτ ({u}) contains all vertices that lie between u and some specific
endvertex of Pn. In view of these observations, a simple dynamic programming approach allows to
determine the τ -hull number of Pn efficiently. 2

Relaxed and non-relaxed τ-interval number

Remember that we cannot able to answer whether a given vertex does not belong to a τ -hull set of a
tree T due to the requirement of a synchronization of the τ -hull sets of the subtrees of a vertex. The
next two results concern the recognition of vertices that are not in every τ -interval set for trees.
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Lemma 9 Let T be a tree, and let τ be a threshold function on T . Let u be a vertex. For v ∈ NT (u),
let Tv be the component of T − u that contains v.

There is a τ -interval set S of T that does not contain u if and only if there is some set N in τ(u)
such that for every v ∈ NG(u) \N , there is a τv-interval set Sv of Tv that does not contain v, where

τv(x) =

{
{X : X ∈ τ(v) and u 6∈ X} , if x = v, and

τ(x) , x ∈ V (Tv) \ {v}.

Proof: Suppose that S is a τ -interval set of T that does not contain u. Clearly, N = S∩NG(u) ∈ τ(u),
and if v ∈ NG(u) \N , then S ∩ V (Tv) is a τv-interval set of Tv that does not contain v. This proves
the necessity.

For the sufficiency, let N ∈ τ(u), and Sv for v ∈ NG(u)\N be as in the statement. By the definition
of τv, the set S =

⋃
v∈N V (Tv) ∪

⋃
v∈NG(u)\N Sv is a τ -interval set of T that does not contain u. 2

Proposition 10 For a given triple (T, τ, u), where T is a tree, τ is a threshold function on T , and u is
a vertex of T , one can determine in linear time whether T has a τ -interval set that does not contain u.

Proof: We root T in u. For every vertex v of T that is distinct from u, let Tv denote the subtree
of T that contains v as well as all descendants of v, and that is rooted in v. Furthermore, if v− is the
parent of v, then let τv be the threshold function on Tv defined by

τv(x) =

{
{X : X ∈ τ(v) and v− 6∈ X} , if x = v, and

τ(x) , x ∈ V (Tv) \ {v}.

Iteratively applying Lemma 9 and processing the vertices v of T in an order of non-increasing
depth, one can determine in linear time, whether Tv has a τv-interval set that does not contain v.
Note that if exists N ∈ τ(u) such that for every v ∈ NG(u) \N , Tv has a τ -interval set that does not
contain v, then T has a τ -interval set S that does not contain u, because, without loss of generality,⋃
w∈N V (Tw) ⊆ S. 2

Our next goal is an efficient algorithm for the τ -interval number of a tree.

Lemma 11 Let T be a rooted tree, and let τ be a threshold function on T . For every vertex u of T
that is not a leaf, every child v of u, and every subset F of {u, v}, let

i(u, v, F ) = min
{
|S \ {u}| : S is a τuv-interval set of Tuv with S ∩ {u, v} = F

}
,

where Tuv is the subtree of T that contains u, v, and all descendants of v, τuv is the threshold function
on Tuv such that

τuv(x) =

{
{F ∩ {v}} , if x = u, and

τ(x) , x ∈ V (Tuv) \ {u},
and min ∅ =∞.

(i) If v is a leaf, then

i(u, v, F ) =





1 , if v ∈ F ,

0 , if v 6∈ F and F ∩ {u} ∈ τ(v), and

∞ , otherwise.

(ii) If v is not a leaf, W is the set of children of v, and v 6∈ F , then

i(u, v, F ) = min





∑

w∈W∩N
i(v, w, {w}) +

∑

w∈W\N
i(v, w, ∅) : N ∈ τ(v) with N ∩ {u} = F ∩ {u}



 .
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(iii) If v is not a leaf, W is the set of children of v, and v ∈ F , then

i(u, v, F ) = 1 +
∑

w∈W
min

{
i(v, w, {v}), i(v, w, {v, w})

}
.

Proof: (i) Note that V (Tuv) = {u, v}. The set F is a τuv-interval set of Tuv if and only if either v ∈ F
or v 6∈ F but F ∩{u} ∈ τ(v). By the definition of i(u, v, F ), this immediately yields the stated values.

(ii) Let S be a τuv-interval set of Tuv with S ∩ {u, v} = F and i(u, v, F ) = |S \ {u}|. Since v 6∈ F , we
obtain that v 6∈ S. Hence, the set N = S ∩NTuv(v) belongs to τ(v) and satisfies N ∩ {u} = F ∩ {u}.
For every child w of v, let Sw = S ∩ V (Tvw). If w ∈ W ∩ N , then Sw is a τvw-interval set of Tvw
with Sw ∩{v, w} = {w}, and, if w ∈W \N , then Sw is a τvw-interval set of Tvw with Sw ∩{v, w} = ∅.
This implies

i(u, v, F ) = |S \ {u}| =
∑

w∈W∩N
|Sw|+

∑

w∈W\N
|Sw| ≥

∑

w∈W∩N
i(v, w, {w}) +

∑

w∈W\N
i(v, w, ∅),

which implies that i(u, v, F ) is at least the minimum stated in (ii).
Conversely, let N ∈ τ(v) with N ∩ {u} = F ∩ {u} be such that

∑

w∈W∩N
i(v, w, {w}) +

∑

w∈W\N
i(v, w, ∅)

is minimum. For w ∈ W ∩ N , let Sw be a τvw-interval set of Tvw with Sw ∩ {v, w} = {w}
and i(v, w, {w}) = |Sw\{v}|, and, for w ∈W\N , let Sw be a τvw-interval set of Tvw with Sw∩{v, w} = ∅
and i(v, w, ∅) = |Sw \ {v}|. By the definition of τuv and the choice of N , the set S = F ∪⋃w∈W Sw is
a τuv-interval set of Tuv with S ∩ {u, v} = F . We obtain

i(u, v, F ) ≤ |S \ {u}| =
∑

w∈W∩N
|Sw|+

∑

w∈W\N
|Sw| =

∑

w∈W∩N
i(v, w, {w}) +

∑

w∈W\N
i(v, w, ∅),

which implies that i(u, v, F ) is at most the minimum stated in (ii).

(iii) Let S be a τuv-interval set of Tuv with S ∩{u, v} = F and i(u, v, F ) = |S \ {u}|. For every child w
of v, let Sw = S ∩ V (Tvw). Since v ∈ F ⊆ S, the set Sw is a τvw-interval set of Tvw with v ∈ Sw. We
obtain

i(u, v, F ) = |S \ {u}| = |{v}|+
∑

w∈W
|Sw \ {v}| ≥ 1 +

∑

w∈W
min

{
i(v, w, {v}), i(v, w, {v, w})

}
,

which implies that i(u, v, F ) is at least the minimum stated in (iii).
Conversely, for w ∈W , let Sw be a τvw-interval set of Tvw with v ∈ Sw and

min
{
i(v, w, {v}), i(v, w, {v, w})

}
= |Sw \ {v}|.

By the definition of τuv, the set S = F ∪⋃w∈W Sw is a τuv-interval set of Tuv with S ∩ {u, v} = F .
We obtain

i(u, v, F ) ≤ |S \ {u}| = |{v}|+
∑

w∈W
|Sw \ {v}| = 1 +

∑

w∈W
min

{
i(v, w, {v}), i(v, w, {v, w})

}
,

which implies that i(u, v, F ) is at most the minimum stated in (iii). 2

Theorem 12 For a given pair (T, τ), where T is a tree of order n and τ is a threshold function on T ,
the τ -interval number of T can be determined in linear time.
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Proof: We root T in an endvertex r. Let s be the neighbor of r in T . By Lemma 11, the vec-

tors
(
i(u, v, ∅), i(u, v, {u}), i(u, v, {v}), i(u, v, {u, v})

)
can be determined in linear time processing the

edges uv of T in an order of non-increasing depth of u. By definition,

iτ (T ) = min
{
i(r, s, F ) + |F ∩ {r}| : F ⊆ {r, s} with either r ∈ F or r 6∈ F and F ∩ {s} ∈ τ(r).

}
.

2

By definition, the relaxed τ -interval number of a tree T equals the τ̄ -interval number of T , and we can
apply the algorithm described in the proof of Theorem 12. Unfortunately, this only leads to a running
time that is linear in the encoding length of (T, τ̄), which may be much bigger than the encoding
length of (T, τ). Therefore, for the next result, we need to argue how to obtain a running time that is
linear in the encoding length of (T, τ).

Corollary 13 For a given pair (T, τ), where T is a tree of order n and τ is a threshold function on T ,
the relaxed τ -interval number of T can be determined in linear time.

Proof: In view of Lemma 11, it suffices to argue, how to evaluate the expression

min





∑

w∈W∩N̄
i(v, w, {w}) +

∑

w∈W\N̄
i(v, w, ∅) : N̄ ∈ τ̄(v) with N̄ ∩ {u} = F ∩ {u}





in O(dG(v)|τ(v)|) time, where v is a child of u, and v 6∈ F ⊆ {u, v}. By the definition of τ̄ , we obtain
that N̄ ∈ τ̄(v) if and only if there is a set N ∈ τ(v) with N ⊆ N̄ , which easily implies that the above
expression equals

min





∑

w∈W∩N
i(v, w, {w}) +

∑

w∈W\N
min{i(v, w, ∅), i(v, w, {w})} : N ∈ τ(v) with N ∩ {u} ⊆ F ∩ {u}



 ,

which can clearly be determined in O(dG(v)|τ(v)|) time. 2

The problem of computing a smallest ⊕-interval set is close related to parity domination problem [21],
which can be solved in linear time for graphs with bounded treewidth [21]. However, parity domination
algorithms cannot be applied to obtain the ⊕-interval number of a graph, because the parity domi-
nation set property depends on a given partition of the vertices and a given function π : V → {0, 1}.
For more information about parity domination see [14,21,22].

Hence, in order to determine the ⊕-interval number in linear time, the special choice τ = ⊕ requires
some arguments concerning the running time.

Theorem 14 For a given tree T , the ⊕-interval number of T can be determined in linear time.

Proof: Again, we can root T in an endvertex r and apply the algorithm described in the proof of
Theorem 12. Now, we only need to argue how to improve its running time to be linear in the encoding
length of T . Consider w− the parent of a vertex w of T . In view of Lemma 11, it suffices to explain
how to minimize an expression of the form

∑

w∈N
i1(w) +

∑

w∈W\N
i2(w)

over all subsets N of a set W of a fixed parity p modulo 2 in O(|W |) time, where

i1(w) =

∣∣∣∣∣∣
∑

s∈N(w)\{w−}
min

{
i(w, s, F ) : F ⊆ {r, s} and r ∈ F

}
∣∣∣∣∣∣
+ 1,

and
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i2(w) =

∣∣∣∣∣∣
∑

s∈N(w)\{w−}
min

{
i(w, s, F ) : F ⊆ {r, s} and r /∈ F

}
∣∣∣∣∣∣
.

If i1(w) = i2(w) for some w ∈ W , then the minimum equals
∑

w∈W min{i1(w), i2(w)}. Hence,
we may assume that i1(w) 6= i2(w) for every w ∈ W . Let N = {w ∈ W : i1(w) < i2(w)}. If |N |
mod 2 = p, then the minimum equals again

∑
w∈W min{i1(w), i2(w)}. If |N | mod 2 6= p, and w∗ ∈W

is such that
|i1(w∗)− i2(w∗)| = min{|i1(w)− i2(w)| : w ∈W},

then the minimum equals |i1(w∗)−i2(w∗)|+∑w∈W min{i1(w), i2(w)}. These observations easily imply
the linear running time. 2

2.3 A probabilistic upper bound

It seems intuitively plausible that large average cardinalities of the sets τ(u) should lead to small values
of the corresponding relaxed or non-relaxed interval and hull numbers. The following result supports
this intuition at least for the relaxed τ -interval number. We then describe an example showing that
this intuition is actually misleading when it comes to the (non-relaxed) τ -interval number.

Theorem 15 If G is a graph of order n, τ is a threshold function on G, and 0 ≤ p ≤ 1, then

iτ̄ (G) ≤ n−
∑

u∈V (G)

dG(u)∑

i=0

∣∣∣∣τ̄(u) ∩
(
NG(u)

i

)∣∣∣∣ pi(1− p)dG(u)−i+1.

Proof: Let X be a random subset of V (G) that contains each vertex of G independently at random
with probability p. Let Y = {u ∈ V (G) : u 6∈ X and NG(u) ∩ X 6∈ τ̄(u)}. By the choice of X, for
every vertex u of G, the probability that NG(u) ∩X belongs to τ̄(u) equals

p(u) :=

dG(u)∑

i=0

∣∣∣∣τ̄(u) ∩
(
NG(u)

i

)∣∣∣∣ pi(1− p)dG(u)−i.

This implies that P[u ∈ Y ] = (1− p)(1− p(u)). Since X ∪ Y is a τ̄ -interval set, we obtain

iτ̄ (G) ≤ E[|X|+ |Y |]
= E[|X|] +

∑

u∈V (G)

P[u ∈ Y ]

= pn+
∑

u∈V (G)

(1− p)(1− p(u))

= n−
∑

u∈V (G)

(1− p)p(u)

which completes the proof. 2

For p = 1
2 , the term in Theorem 15 simplifies as follows.

Corollary 16 If G is a graph of order n, and τ is a threshold function on G, then

iτ̄ (G) ≤ n− 1

2

∑

u∈V (G)

|τ̄(u)|
2dG(u)

.

Using the method of conditional expectation, it is possible to devise an efficient deterministic algorithm
based on the proof of Theorem 15 that produces a τ̄ -interval set of the guaranteed cardinality for a
given pair (G, τ).
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The following example suggests that there is no reasonable version of Corollary 16 for the non-
relaxed τ -interval number. Let k and n be positive integers with n > k. Let (G, τ) be such that G is
a complete graph with vertex set V (G) = {x1, . . . , xk} ∪ {y1, . . . , yn−k}, and τ is a threshold function
on G defined as follows:

u 7→




{{y1, . . . , yn−k}} , if u ∈ {x1, . . . , xk}, and
{
N ⊆ NG(u) : {x1, . . . , xk} 6⊆ N

}
, if u ∈ {y1, . . . , yn−k}.

Let I be a τ -interval set of G. If {x1, . . . , xk} 6⊆ I, then the value of τ(xi) for some xi 6∈ I im-
plies {y1, . . . , yn−k} ⊆ I. If {x1, . . . , xk} ⊆ I, then the value of τ(yj) for every yj implies {y1, . . . , yn−k} ⊆
I. This easily implies iτ (G) = n− k. Note that

∑

u∈V (G)

|τ(u)|
2dG(u)

=
k∑

i=1

1

2n−1
+
n−k∑

j=1

2n−k−1
(
2k − 1

)

2n−1
>
(

1− 2−k
)

(n− k).

This implies that for every ε > 0, there is a pair (G, τ), where G has order n, such that

∑

u∈V (G)

|τ(u)|
2dG(u)

≥ (1− ε)n but iτ (G) ≥ (1− ε)n,

that is, even though on average each of the sets τ(u) contains at least a (1 − ε)-fraction of all 2dG(u)

possible subsets of NG(u), the τ -interval number is close to the trivial upper bound n.

3 Conclusion

We conclude with several open questions.
What is the complexity of the non-relaxed τ -hull number for trees? Are there non-trivial bounds

on the relaxed or non-relaxed τ -hull number?
It seems interesting to study a ‘total’ version of τ -interval sets, where S is a total τ -interval set of

a graph G with threshold function τ if NG(u) ∩ S ∈ τ(u) for every vertex u of G, and not only for
every vertex u in V (G) \ S. It is easy to see that deciding the existence of a total ⊕-interval set for a
given graph is equivalent to a suitable system of n linear equalities over F2.

Let V be a set of order n. For which vectors (t0, t1, . . . , tn) does there exist a set system T ⊆ 2V

with ∀X ∈ T : ∀Y ⊆ V : X ⊆ Y ⇒ Y ∈ T such that ti =
∣∣∣T ∩

(
V
i

)∣∣∣ for every i?
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Appendix E:

Decycling with a Matching (Resume)

This appendix contains the resume “Decycling with a Matching” presented in II

Workshop Franco-brasileiro de Grafos e Otimização Combinatória, 2016.
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I. INTRODUCTION

Given a finite, simple, and undirected graph of order n
and size m, destroying all cycles by removing vertices or
edges is a classical theme. The minimum number of edges
whose removal destroys all cycles is exactly m− n+ 1, and
standard minimum spanning tree algorithms allow to solve
even weighted optimization versions. Contrary to this, the
minimum number of vertices whose removal yields a tree is
a difficult parameter [1]–[3], [5], [6].

We study the apparently simple case when the removed
edges are required to form a matching. Quite surprisingly,
we show that the corresponding decision problem, that is, the
problem to decide whether a given graph is the union of a
tree and a matching, is already hard. Furthermore, we present
efficient algorithms for a number of well-known graph classes.

For a set E of edges of a graph G, let G−E be the graph
with vertex set V (G) and edge set E(G) \ E. If G − E is a
forest, then E is decycling. Let FM be the set of all graphs
that have a decycling matching.

II. RESULTS

The following lemma collects some basic observations
concerning graphs that have a decycling matching.

Lemma 1: Let G be a graph.
(i) If G ∈ FM is connected, then G has a matching M

for which G−M is a tree.
(ii) If G ∈ FM, then m(H) ≤

⌊
3n(H)

2

⌋
− 1 for every

subgraph H of G.
(iii) If G is subcubic and connected, then G ∈ FM if and

only if G has a spanning tree T such that all endvertices
of T are of degree at most 2 in G.

Lemma 1(iii) is the key observation for the following result.
Theorem 2: For a given 2-connected planar subcubic

graph G, it is NP-complete to decide whether G ∈ FM.
Sketch of Proof: The considered decision problem is

clearly in NP. The 3-connected planar cubic graphs G con-
structed in [4] contain several edges that necessarily belong
to every Hamiltonian cycle of G; regardless of whether such
a cycle exists or not. Therefore, removing such an edge, their
construction implies the NP-completeness of the following de-
cision problem: Given a 2-connected planar subcubic graph G
with exactly two vertices u and v of degree 2, does G have a
Hamiltonian path whose endvertices are u and v?

Let G be a 2-connected planar subcubic graph with exactly
two vertices u and v of degree 2. In order to complete the
proof, it suffices to show that G has a Hamiltonian path whose
endvertices are u and v if and only if G ∈ FM.
We also consider a more general decision problem.

ALLOWED DECYCLING MATCHING
Instance: A graph G and a set F of edges of G.
Task: Decide whether G has a decycling matching M

that does not intersect F , and determine such a
matching if it exists.

For this new version, we summarize our positive results as
follows.

Theorem 3: ALLOWED DECYCLING MATCHING can be
solved in polynomial time for {K1,3,K1,3 + e}-free graphs.

Theorem 4: ALLOWED DECYCLING MATCHING can be
solved in polynomial time for P5-free graphs.

Theorem 5: ALLOWED DECYCLING MATCHING can be
solved in polynomial time for chordal graphs.

Theorem 6: ALLOWED DECYCLING MATCHING can be
solved in polynomial time for C4-free distance hereditary
graphs.

III. CONCLUSION

We study a special case of the more general problem of
destroying all cycles by removing edges under the restriction
that the graph formed by the removed edges has bounded
maximum degree. This problem can certainly be considered
more generally. Furthermore, one can consider variants, such
as, for instance, deciding whether a given graph is the union
of a bipartite graph and a matching, that is, whether it has a
matching whose removal destroys all odd cycles.
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ueverton@ic.uff.br

Abstract

As a natural variant of the many decycling notions studied in graphs, we consider the problem

to decide whether a given graph G has a matching M such that G −M is a forest. We establish

NP-completeness of this problem for 2-connected planar subcubic graphs, and describe polynomial

time algorithms that also determine such a matching if it exists for graphs that are claw- and

paw-free, P5-free graphs, chordal graphs, and C4-free distance hereditary graphs.

Keywords: decycling; matching; feedback vertex set

1 Introduction

We consider finite, simple, and undirected graphs, and use standard notation and terminology.

Destroying all cycles of a given graph by removing vertices or edges is a classical theme. Clearly,

the minimum number of edges of a connected graph of order n and size m whose removal destroys

all cycles is exactly m − n + 1, and standard minimum spanning tree algorithms allow to solve even

weighted optimization versions. Contrary to this, the minimum number of vertices whose removal

destroys all cycles (or produces a tree) is a difficult parameter [2–4,6, 8].

In the present paper we study a special case of the problem of destroying all cycles by removing

only edges under the natural restriction that the graph formed by the removed edges has bounded

maximum degree. In fact, we consider the apparently simple case when the removed edges are required

to form a matching. Quite surprisingly, we show that the corresponding decision problem, that is,

the problem to decide whether a given graph is the union of a tree and a matching, is already hard.

Furthermore, we present efficient algorithms for a number of well-known graph classes.

For a set E of edges of a graph G, let G − E be the graph with vertex set V (G) and edge set

E(G) \ E. If G − E is a forest, then E is decycling. Let FM be the set of all graphs that have a

decycling matching.

1
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2 Results

The following lemma collects some basic observations concerning graphs that have a decycling match-

ing.

Lemma 1 Let G be a graph.

(i) If G ∈ FM is connected, then G has a matching M for which G−M is a tree.

(ii) If G ∈ FM, then m(H) ≤
⌊
3n(H)

2

⌋
− 1 for every subgraph H of G.

(iii) If G is subcubic and connected, then G ∈ FM if and only if G has a spanning tree T such that

all endvertices of T are of degree at most 2 in G.

Proof: (i) Let G ∈ FM be connected. Let M be a matching of G such that G −M is a forest F

with as few components as possible. Suppose, for a contradiction, that F is not connected. Since G is

connected, M contains an edge e between different components of F . Now, N = M \{e} is a matching

of G such that G−N is a forest with less components than F , which implies a contradiction. Hence,

F is a tree.

(ii) Let G ∈ FM. Since FM is closed under taking subgraphs, it suffices to show m(G) ≤
⌊
3n(G)

2

⌋
−1.

Let M be a decycling matching of G. Clearly, m(G) ≤ m(G −M) + |M | ≤ (n(G) − 1) +
⌊
n(G)
2

⌋
=

⌊
3n(G)

2

⌋
− 1.

(iii) Let G be a connected subcubic graph. Clearly, we may assume that n(G) ≥ 3.

First, suppose that G ∈ FM. By (i), G has a matching M such that G−M is a spanning tree T .

If u is an endvertex of T , then dG(u) ≤ dT (u) + 1 ≤ 2, which implies that all endvertices of T have

degree at most 2 in G.

Next, suppose that T is a spanning tree of G such that all endvertices of T are of degree at

most 2 in G. Let M = E(G) \ E(T ). Clearly, M is decycling, and it remains to show that M is a

matching. Suppose that M contains two edges incident with the same vertex u of G. This implies

dT (u) ≤ dG(u) − 2 ≤ 3 − 2 = 1, that is, u is an endvertex of T . By the choice of T , we obtain

dT (u) ≤ dG(u)− 2 ≤ 2− 2 = 0, which is a contradiction. 2

Lemma 1(iii) is the key observation for the following hardness result.

Theorem 2 For a given 2-connected planar subcubic graph G, it is NP-complete to decide whether

G ∈ FM.

Proof: The considered decision problem is clearly in NP. In order to show NP-completeness, we use [5]

that deciding the existence of a Hamiltonian cycle for a given 3-connected planar cubic graph is NP-

complete. In fact, the 3-connected planar cubic graphs G constructed by Garey et al. in [5] contain

several edges that necessarily belong to every Hamiltonian cycle of G; regardless of whether such a

cycle exists or not. Therefore, removing such an edge, their construction implies the NP-completeness

of the following decision problem: Given a 2-connected planar subcubic graph G with exactly two

vertices u and v of degree 2, does G have a Hamiltonian path whose endvertices are u and v?

Let G be a 2-connected planar subcubic graph with exactly two vertices u and v of degree 2. In

order to complete the proof, it suffices to show that G has a Hamiltonian path whose endvertices are

u and v if and only if G ∈ FM. First, suppose that P is a Hamiltonian path of G whose endvertices

2
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are u and v. Clearly, P is a spanning tree of G such that all endvertices of P are of degree at most

2 in G. By Lemma 1(iii), this implies G ∈ FM. Next, suppose that G ∈ FM. By Lemma 1(iii),

this implies that G has a spanning tree T such that all endvertices of T are of degree at most 2 in G.

Since u and v are the only vertices of G of degree at most 2, this implies that T has exactly the two

endvertices u and v. Hence, T is a Hamiltonian path of G whose endvertices are u and v. 2

In order to enable suitable reductions, we now consider a slightly more general version of our decision

problem.

Allowed Decycling Matching
Instance: A graph G and a set F of edges of G.

Task: Decide whether G has a decycling matching M that does not intersect F , and

determine such a matching if it exists.

A matching M as in Allowed Decycling Matching is an allowed decycling matching of (G,F ).

The claw K1,3 and the paw K1,3 + e are the unique graphs with degree sequences 1, 1, 1, 3 and

1, 2, 2, 3, respectively.

Theorem 3 Allowed Decycling Matching can be solved in polynomial time for {K1,3,K1,3+e}-
free graphs.

Proof: Let G be a {K1,3,K1,3 + e}-free graph and let F be a set of edges of G. Since (G,F ) has an

allowed decycling matching if and only if (K,E(K) ∩ F ) has an allowed decycling matching for every

component K of G, we may assume that G is connected.

The following claim is an immediate consequence of Lemma 1(ii).

Claim 1 If G contains K4 as an induced subgraph, then (G,F ) has no allowed decycling matching.

Claim 2 If G has a vertex of degree at least 4, then (G,F ) has no allowed decycling matching.

Proof of Claim 2: Let u be a vertex of G with four neighbors v1, v2, v3, and v4. Since G is {K1,3,K1,3+

e,K4}-free, we may assume, by symmetry, that v1v2, v2v3 ∈ E(G) and v1v3 6∈ E(G). Considering v1,

v3, and v4, this implies, by symmetry, that v3v4 ∈ E(G). Considering the three triangles uv1v2u,

uv2v3u, and uv3v4u, it follows that (G,F ) does not have an allowed decycling matching. 2

Since no endvertex of G lies on a cycle, we may assume that G has minimum degree at least 2. Since

whether G is K4-free and has maximum degree at most 3, can be tested in polynomial time, we may

assume, by Claim 1 and Claim 2, that G is K4-free and has maximum degree at most 3. If G does

not have any vertex of degree 3, then G is a cycle, and (G,F ) has an allowed decycling matching if

and only if F does not contain all edges of G. Hence, we may assume that G has a vertex b of degree

3. Let NG(b) = {a, c, d}. Since G is {K1,3,K1,3 + e,K4}-free, we may assume, by symmetry, that

ac, cd ∈ E(G) and ad 6∈ E(G). Let G′ = (V (G) \ {b, c}, (E(G) \ {ab, ac, bc, bd, cd}) ∪ {ad}), and let

F ′ = (F \ {ab, ac, bc, bd, cd}) ∪ {ad} ∪ {xa : x ∈ NG(a) \ {b, c}} ∪ {ad} ∪ {yd : x ∈ NG(d) \ {b, c}}.

Claim 3 (i) G′ is {K1,3,K1,3 + e}-free.

(ii) (G,F ) has an allowed decycling matching if and only if

• ab, cd 6∈ F or ac, bd 6∈ F , and

• (G′, F ′) has an allowed decycling matching.

3
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Proof of Claim 3: (i) Suppose, for a contradiction, that G′ contains an induced subgraph H that is

isomorphic to K1,3 or K1,3 +e. Since G is {K1,3,K1,3 +e}-free, H contains the edge ad. By symmetry,

we may assume that either dH(a) = 3 or dH(a) = dH(d) = 2. If dH(a) = 3, then G[(V (H)\{d})∪{b}]
is isomorphic to K1,3 or K1,3+e, which is a contradiction. If dH(a) = dH(d) = 2, and x is the common

neighbor of a and d in H, then G[{a, b, c, x}] is isomorphic to K1,3 + e, which is a contradiction.

(ii) First, we assume that M is an allowed decycling matching of (G,F ). Since G[{a, b, c, d}]− (M ∩
E(G[{a, b, c, d}])) is a forest, we obtain that M ∩ E(G[{a, b, c, d}]) is either {ab, cd} or {ac, bd}, that

is, ab, cd 6∈ F or ac, bd 6∈ F . Since G −M contains either the path abcd or the path acbd, it follows

that M \ E(G[{a, b, c, d}]) is an allowed decycling matching of (G′, F ′).

Next, we assume that M ′ is an allowed decycling matching of (G′, F ′), and that, by symmetry,

ab, cd 6∈ F . Since ad ∈ F ′, we obtain that ad 6∈ M ′. This implies that M ′ ∪ {ab, cd} is an allowed

decycling matching of (G,F ). 2

Iteratively applying the reductions captured by the above claims, clearly allows to decide in polyno-

mial time whether (G,F ) has an allowed decycling matching, and to determine such a matching in

polynomial time if it exists. 2

Theorem 4 Allowed Decycling Matching can be solved in polynomial time for P5-free graphs.

Proof: Let G be a P5-free graph and let F be a set of edges of G. Again, we may assume that G is

connected. By a result of Liu et al. [7], G has a dominating induced cycle of length 5 or a dominating

clique.

First, we assume that G has a dominating induced cycle C of length 5. Since G is P5-free, every

vertex in V (G)\V (C) has at least two neighbors in V (C). This implies that m(G) ≥ 5+2(n(G)−5) =

2n(G)− 5. If n(G) ≥ 9, then m(G) > 3n(G)
2 − 1, and Lemma 1(ii) implies that (G,F ) has no allowed

decycling matching. Hence, we may assume that n(G) ≤ 8 in this case, which implies that Allowed

Decycling Matching can be solved in constant time.

Next, we assume that G has a dominating clique C of order p. Lemma 1(ii), we may assume that

p ≤ 3. If p = 1, then G has a universal vertex u. Now, it follows easily that (G,F ) has an allowed

decycling matching if and only if one of the following two conditions holds:

• G− u is a graph of maximum degree at most 1 that contains no edge from F .

• u has a neighbor v of degree at most 2 such that uv 6∈ F , and G−{u, v} is a graph of maximum

degree at most 1 that contains no edge from F .

The first condition is equivalent to the existence of an allowed decycling matching that contains no

edge incident with u, while the second condition is equivalent to the existence of an allowed decycling

matching that contains the edge uv.

If p = 3, then G has a dominating triangle uvwu. Clearly, every decycling matching must contain

one of the three edges of uvwu. Furthermore, u, v, and w belong to the same component of G −M

for every matching M of G. Considering the polynomially many possibilities to select one of the three

edges of uvwu as well as at most one further edge incident to a vertex in C, both forming a matching

that does not intersect F , we can deduce a polynomial number of efficiently checkable conditions, very

similar to those explicitly stated in the case p = 1, such that (G,F ) has an allowed decycling matching

if and only if one of these conditions is satisfied.

4
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Finally, if p = 2, then we may assume that no vertex in V (G) \ C has two neighbors in C; since

otherwise, G has a dominating triangle. This implies that if uv is a dominating edge of G, then V (G)

is partitioned into {u, v}, NG(u) \ {v}, and NG(v) \ {u}. Clearly, every matching contains at most

two edges incident with u and v. Again, considering the polynomially many possibilities to select such

edges, we can deduce a polynomial number of efficiently checkable conditions such that (G,F ) has an

allowed decycling matching if and only if one of these conditions is satisfied. For example, (G,F ) has

an allowed decycling matching that contains uv if and only if uv 6∈ F , and there is a set E containing

at most one edge between NG(u) \ {v} and NG(v) \ {u} such that (G − {u, v}) − E has maximum

degree at most 1, and contains no edge from F . Clearly, this implies the desired statement. 2

Theorem 5 Allowed Decycling Matching can be solved in polynomial time for chordal graphs.

Proof: Let G be a chordal graph and let F be a set of edges of G. Again, we may assume that G

is connected. Furthermore, we may assume that G does not contain bridges, that is, every block

of G has order at least 3. If G contains a cycle C of length ` at least 5, then, since G is chordal,

m(G[V (C)]) ≥ 2` − 3 > 3`
2 − 1, and Lemma 1(ii) implies that G does not have an allowed decycling

matching. Hence, every cycle of G has length at most 4.

Let B be a block of G of order at least 4. Since G is chordal, B contains a triangle abca. Since

B has order at least 4, we may assume that b has a neighbor d distinct from a and c. Since G has

no cycle of length at least 5, considering a shortest path in B − b between d and a vertex in {a, c}
implies that we may assume, by symmetry, that c and d are adjacent. By Lemma 1(ii), G does not

contains K4, which implies that G[{a, b, c, d}] is K4 − e. Suppose that B has order at least 5. This

implies that some vertex x in V (B) \ {a, b, c, d} has a neighbor y in {a, b, c, d}. Considering a shortest

path in B − y between x and a vertex in {a, b, c, d} \ {y}, and using the absence of cycles of length at

least 5, we obtain that x is adjacent to a and d. Hence, m(G[{a, b, c, d, x}]) ≥ 7 > 3·5
2 − 1, and Lemma

1(ii) implies that G does not have an allowed decycling matching. Hence, we may assume that every

block of G is either a triangle or isomorphic to K4 − e.

Clearly, we may assume that G has at least 2 blocks. Let B be an endblock of G, that is, B

contains exactly one cutvertex.

First, we assume that B is a triangle abca and that c is the cutvertex of B. If ab, bc, ca ∈ F ,

then (G,F ) does not have an allowed decycling matching. If ab 6∈ F , then (G,F ) has an allowed

decycling matching if and only if (G − {a, b}, F \ {ab, bc, ca}) has an allowed decycling matching.

If ab ∈ F but ac 6∈ F or bc 6∈ F , then (G,F ) has an allowed decycling matching if and only if(
G− {a, b}, (F \ {ab, bc, ca}) ∪ {cx : x ∈ NG(c) \ {a, b}}

)
has an allowed decycling matching.

Next, we assume that B is isomorphic to K4 − e. Let x denote the cutvertex contained in B. It

follows that (G,F ) has an allowed decycling matching if and only if one of the two perfect matchings

of B does not intersect F , and
(
G − (V (B) \ {x}), (F \ E(B)) ∪ {xy : y ∈ NG(x) \ V (B)}

)
has an

allowed decycling matching.

Iteratively applying these reductions allows to decide in polynomial time whether (G,F ) has an

allowed decycling matching, and also, to determine such a matching in polynomial time if it exits. 2

Theorem 6 Allowed Decycling Matching can be solved in polynomial time for C4-free distance

hereditary graphs.

Proof: Let G be a (connected) C4-free distance hereditary graph and let F be a set of edges of G.

Clearly, we may assume that G has order at least 3. By results of Bandelt and Mulder [1], this

5
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implies that G has an endvertex, or that G contains two vertices a and b with either NG[a] = NG[b]

or NG(a) = NG(b). Clearly, if G has an endvertex x, then (G,F ) has an allowed decycling matching

if and only if (G − x, F ∩ E(G − x)) has an allowed decycling matching. Hence, we may assume

that G has no endvertex, and that the second case occurs. If |NG(a) \ {b}| ≥ 3, then, since G is

C4-free, we obtain m(G[NG[a]]) > 3
2 |NG[a]| − 1, and Lemma 1(ii) implies that (G,F ) does not have

an allowed decycling matching. If |NG(a) \ {b}| = 2, then, since G is C4-free, G[NG[a]] is isomorphic

either to K4 or to K4− e. In the first case, Lemma 1(ii) implies that (G,F ) does not have an allowed

decycling matching, and, in the second case, (G,F ) has an allowed decycling matching, if and only if

some perfect matching of G[NG[a]] does not intersect F , and (G− {a, b}, (F ∩E(G− {a, b}))∪ {uv ∈
E(G−{a, b}) : u ∈ NG[a]\{a, b}}) has an allowed decycling matching. If |NG(a)\{b}| = 1, then, since

G does not have an endvertex, a and b are adjacent and lie on a triangle with the unique vertex c in

NG(a)∩NG(b). If ab, bc, ca ∈ F , then (G,F ) does not have an allowed decycling matching, if ab 6∈ F ,

then (G,F ) has an allowed decycling matching if and only if (G − {a, b}, F ∩ E(G − {a, b})) has an

allowed decycling matching, and if ab ∈ F and ac 6∈ F , then (G,F ) has an allowed decycling matching

if and only if (G − {a, b}, (F ∩ E(G − {a, b})) ∪ {uc ∈ E(G) : u ∈ NG(c) \ {a, b}}) has an allowed

decycling matching. Iteratively applying these reductions allows to decide in polynomial time whether

(G,F ) has an allowed decycling matching, and also, to determine such a matching in polynomial time

if it exits. 2

3 Conclusion

As observed in the introduction, we only study a special case of the more general problem of destroying

all cycles by removing edges under the restriction that the graph formed by the removed edges has

bounded maximum degree. This problem can certainly be considered more generally. Furthermore,

one can consider variants, such as, for instance, deciding whether a given graph is the union of a

bipartite graph and a matching, that is, whether it has a matching whose removal destroys all odd

cycles. Another class of graphs where Allowed Decycling Matching might be solvable efficiently

are chordal bipartite graphs. Their guaranteed density is close to the threshold from Lemma 1(ii),

which should imply strong restrictions on the block structure of chordal bipartite graphs with a

decycling matching.
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Appendix G:

Odd Decycling with a matching

This appendix contains the extended abstract “Odd Decycling with a matching” sub-

mitted on February to 43rd International Workshop on Graph-Theoretic Concepts

in Computer Science (WG 2017).
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Abstract. We study the problem of determining whether a given graph G =
(V,E) admits a matching M whose removal destroys all odd cycles of G (or
equivalently whether G−M is bipartite). This problem is also equivalent to de-
termine whether G admits an (1,1)-coloring, which is a 2-coloring of V (G) in
which each color class induces a graph of maximum degree at most 1. We found
a dichotomy related to the NP-completeness such a decision problem, we show
that ODD DECYCLING MATCHING is NP-complete even for 3-colored planar
graphs of maximum degree 4, but can be solved in linear time in graphs of maxi-
mum degree 3. In addition, we present a polynomial time algorithm for the case
where the input graph G contains only triangles as odd cycles. Polynomial time
algorithms for (claw, paw)-free graphs, graphs with bounded dominating sets,
and P5-free graphs are also presented. Additionally, we show that the problem
is fixed-parameter tractable when parameterized by clique-width, which implies
polynomial time solvability for many interesting graph classes such as distance-
hereditary graphs and outerplanar graphs.

Keywords: Odd decycling matching, (1,1)-coloring, edge-deletion, bipartiza-
tion, frustration, planar graphs.

1 Introduction

Given a graph G= (V,E) and a graph property Π , the Π edge-deletion problem consists
in determining the minimum number of edges required to be removed in order to obtain
a graph satisfying Π [9]. Given an integer k≥ 0, the Π edge-deletion decision problem
asks for a set F ⊆ E(G) with |F | ≤ k, such that the obtained graph by the removal of F
satisfies Π . Both versions have received widely attention on the study of their complex-
ity, where we can cite [2, 9, 19, 22, 28, 31, 32] and references therein for applications.
When the obtained graph is required to be bipartite, the corresponding edge- (vertex-)
deletion problem is called edge (vertex) bipartization [1, 11, 18] or edge (vertex) frus-
tration [33]. Choi, Nakajima, and Rim [11] showed that the edge bipartization decision
problem is NP-complete even for cubic graphs.

Furmańczyk, Kubale, and Radziszowski [18] considered vertex bipartization of cu-
bic graphs by the removal of an independent set. In this paper we study the analo-
gous edge deletion decision problem, that is, the problem of determining whether a
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finite, simple, and undirected graph G admits a removal of a set of edges that is a
matching in G in order to obtain a bipartite graph. Formally, for a set M of edges of a
graph G = (V,E), let G−M be the graph with vertex set V (G) and edge set E(G)\M.
For a matching M ⊆ E(G), we say that M is an odd decycling matching of G if G−M
is bipartite. Let BM denote the set of all graphs admitting an odd decycling matching.
We deal with the complexity of the following decision problem.

ODD DECYCLING MATCHING
Input: A finite, simple, and undirected graph G.
Question: Does G ∈BM ?

A more restricted version of this problem is considered by Schaefer [29]. He deals
with the problem of determining whether a given graph G admits a 2-coloring of the
vertices so that each vertex has exactly one neighbor with same color as itself. We can
see that the removal of the set of edges whose endvertices have same color, which is a
perfect matching of G, generates a bipartite graph. Schaefer proved that such a problem
is NP-complete even for planar cubic graphs.

With respect to the minimization version, the edge-deletion decision problem in
order to obtain a bipartite graph is analogous to SIMPLE MAX CUT, which was proved
to be NP-complete by Garey, Johnson and Stockmeyer [19]. Yannakakis [31] proved
its NP-completeness even for cubic graphs.

ODD DECYCLING MATCHING can also be seen as another problem. A graph G is
(d1, . . . ,dk)-colorable if V (G) can be partitioned into V1, . . . ,Vk, such that the induced
subgraph G[Vi] has maximum degree at most di, for all 1≤ i≤ k. This is a generalization
of the classical proper k-coloring, when every di = 0, and the d-improper k-coloring,
when every di = d≥ 1. It is clear to see that G∈BM if and only if G is (1,1)-colorable.
Lovász [25] proved that if a graph G satisfies (d1 + 1) + (d2 + 1) + · · ·+ (dk + 1) ≥
∆(G)+ 1 then G is (d1, . . . ,dk)-colorable, where ∆(G) denotes the maximum degree
of G. This result shows that every subcubic graph is (1,1)-colorable and thus be-
longs to BM . Borodin, Kostochka, and Yancey [6] studied the (1,1)-colorable graphs
with respect to the sparseness parameter mad(G) =max

{
2|E(H)|
|V (H)| , for all H ⊆ G

}
. They

proved that every graph G with mad(G) ≤ 14
5 is (1,1)-colorable, where this bound is

sharp. Moreover, they defined the parameter ρ(G) = min
S⊆V (G)

ρG(S), such that ρG(S) =

7|S|−5|E(G[S])|. They showed that G is (1,1)-colorable if ρ(G)≥ 0. Finally, they also
proved that every planar graph with girth (the size of the smallest cycle of G) at least 7
is (1,1)-colorable. This is the best result concerning (1,1)-coloring of planar graphs.

In this work we summarize our results as follows. We prove that ODD DECYCLING
MATCHING is NP-complete even for planar graphs with maximum degree 4. As pos-
itive results, we show polynomial time algorithms for (claw, paw)-free graphs, graphs
that have only triangles as odd cycles, and graphs that have a small dominating set.
We also show that graphs in BM can be expressed in monadic second order logic.
Hence, using MSOL’s meta-theorems [12, 13, 15, 16] we prove that ODD DECYCLING
MATCHING is fixed-parameter tractable when parameterized by clique-width. We also
show a exact 2O(vc(G)).n algorithm, where vc(G) is the vertex cover number of G. Fi-
nally, for a generalization of ODD DECYCLING MATCHING, we show a kernel with at
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most 2.nd(G) vertices when such a more general problem is parameterized by neigh-
borhood diversity number, nd(G).

1.1 Preliminaries

A diamond is the graph obtained by removing one edge from the K4. Let Wk be the wheel
graph of order k, that is, the graph containing a vertex v, called central, and a cycle C
of order k, such that v is adjacent to all vertices of C. We say that a graph is a k-pool if
it is formed by k triangles edge disjoint whose bases induce a Ck. Formally, a k-pool is
obtained from a cycle C = {v1,v2, . . . ,v2k} (k ≥ 3), such that the odd-indexed vertices
induce a cycle p1 p2 . . . pk p1, called internal cycle of the k-pool, where pi = v2i−1, 1 ≤
i≤ k. The even-indexed vertex bi is the i-th-border of the k-pool, where {bi}=NC(pi)∩
NC(pi+1) and i+ 1 is taken modulo 2k. The claw (K1,3) and the paw graphs are the
unique with degree sequences 1,1,1,3 and 1,2,2,3, respectively.

Clearly, every graph G ∈ BM admits a proper 4-coloring. Hence every graph
in BM is K5-free. More precisely, every graph in BM is W4-free. Hence some proper
4-colorable graphs do not admits an odd decycling matching. Lemma 1 collects some
properties of graphs in BM .

Lemma 1. Given a graph G in BM and an odd decycling matching M of G, the
following assertions are true.

(i) If G has a diamond D as a subgraph, then M contains no edge e /∈ E(D) incident
to only one vertex of degree three of D.

(ii) G[NG(v)] cannot contain two disjoint P3, for every v ∈V (G).
(iii) G cannot contain a Wk as a subgraph, for all k ≥ 4.
(iv) G cannot contain a k-pool as a subgraph, for all odd k ≥ 3.

Bondy and Locke [5] presented the following lemma, which was also obtained by
Erdős [17] by induction on n(G).

Lemma 2. (Bondy and Locke [5]) Let G be a graph and let B be a largest bipartite
subgraph of G. Then dB(v)≥ 1

2 dG(v), for every v ∈V (G).

Lemma 2 shows that every subcubic graph G admits an odd decycling matching,
since every vertex has at most one incident edge not in a largest bipartite subgraph of G.
This result was also obtained by Lovász [25] with respect to 1-improper 2-coloring of
graphs with maximum degree at most 3.

Consider a bipartition of V (G) into sets A and B. For every vertex v, we say that v is
of type (a,b) if dV (G)\X (v) = a and dX (v) = b, where X is the part (either A or B) which
contains v. We present a linear algorithm to find an odd decycling matching of subcubic
graphs, Algorithm 1.

Theorem 1. Algorithm 1 returns in linear time an odd decycling matching for subcubic
graphs.

Despite the simplicity of Algorithm 1, determining the size of a minimum odd decy-
cling matching of subcubic graphs is NP-hard, since this problem becomes analogous
to MAX CUT [20] for such a class.
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Algorithm 1: A linear time algorithm that determines an odd decycling matching
for subcubic graphs.

Data: A subcubic graph G.
1 A← A maximal independent set of G;
2 B←V (G)\A;
3 M← /0;
4 while exists a vertex v ∈ B of type (1,2), with respect to A and B, do
5 u← NG[A](v);
6 if u is of type (3,0) then
7 B← B\{v};
8 A← A∪{v};
9 else

10 B←{B∪{u}}\{v};
11 A←{A∪{v}}\{u};

12 M← all edges of G[A]∪G[B];
13 return M;

2 NP-Completeness for ODD DECYCLING MATCHING

In this section we prove that ODD DECYCLING MATCHING is NP-complete even for
planar graphs of maximum degree at most 4.

We consider a well-known NP-complete problem so-called POSITIVE PLANAR 1-
IN-3-SAT [27]. In order to prove the NP-completeness of ODD DECYCLING MATCH-
ING, we must first observe that there is a polynomial time reduction from POSITIVE
PLANAR 1-IN-3-SAT to the following decision problem:

– PLANAR 1-IN-3-SAT3: Version of PLANAR 1-IN-3-SAT where each clause has
either 2 or 3 literals and each variable occurs at most 3 times. Moreover, each
positive literal occurs at most twice, while every negative literal occurs at most
once in F .

Theorem 2. PLANAR 1-IN-3-SAT3 is NP-complete.

The next simple lemma is used in the correctness of our reduction. Let us call the
graph depicted in Fig 1a by head. Vertex v is the neck of the head.

Lemma 3. Let G be a graph that contains an induced subgraph H isomorphic to a
head graph, whose neck is v. Then all edges not in H incident to v cannot be in any odd
decycling matching of G. Moreover H admits only one odd decycling matching.

With Lemma 3 we can establish the NP-completeness of ODD DECYCLING MATCH-
ING. Remember that graphs in BM are all 4-colorable. Moreover planar graphs are
classical 4-colorable graphs. Hence it is interesting to know what happens in such a
class. The next result shows that the NP-completeness is also obtained even for 3-
colorable planar and bounded degree graphs. The circles with an H in the figures rep-
resent an induced subgraph isomorphic to the head graph, whose neck is the vertex
touching the circle. By simplicity, this pattern will be used in the remaining figures
whenever possible.
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(a) The head graph H. (b) The odd decycling matching of H.

Fig. 1: The head graph and its odd decycling matching M.

2.1 NP-Completeness for Planar Graphs with Maximum Degree at Most 4

We prove the NP-completeness by a reduction from PLANAR 1-IN-3-SAT3. In order
to prove this result, next we give a useful lemma.

Lemma 4. Let b be a border of an odd k-pool graph G, such that c1 and ck are its
neighbors in G. It follows that every odd decycling matching of G− b must contain
exactly one edge of the internal cycle, which is different from c1ck. Moreover, there is
only one odd decycling matching for each such an edge.

(a) For clauses of size two. (b) For clauses of size three.

Fig. 2: Clause gadget Gc j in Theorem 3. Fig. 2a is such that c j = (xa ∨ xb). Fig. 2b is
such that c j = (xa∨ xb∨ xc).

Theorem 3. ODD DECYCLING MATCHING is NP-complete even for 3-colorable pla-
nar graphs with maximum degree at most 5.

Proof. Let F be an instance of PLANAR 1-IN-3-SAT3, with X = {x1,x2, . . . ,xn} and C =
{c1,c2, . . . ,cm} be the sets of variables and clauses of F , respectively. We construct a
planar graph G = (V,E) of maximum degree 5 as follows:
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Fig. 3: Variable gadget Gxi in Theorem 3. Each pair of edges with one no endvertex
connects Gxi to one clause gadget Gca , Gcb , or Gcc , where xi ∈ (ca∩ cb∩ cc).

– For each clause c j ∈C, we construct a gadget Gc j as depicted in Fig. 2. Such gad-
gets are just a 5-pool and a 7-pool less a border for clauses of size 2 and 3, respec-
tively. Moreover, for the alternate edges of the internal cycle we subdivide them
twice and append a head graph to each such a new vertex. Finally, we add two ver-
tices ` j(k,w) and ` j(k,b), such that b2k−1

j ` j(k,w) ∈ E(G) and b2k
j ` j(k,b) ∈ E(G),

for k ∈ {1,2,3}. For such new vertices, we append a head graph to each one.
– For each variable xi ∈ X , we construct a gadget Gxi as depicted in Fig. 3. Such a

gadget is a 7-pool less a border, where we subdivide the edges p2
i p3

i , p3
i p4

i , p4
i p5

i ,
and p6

i p7
i twice, where every such a new vertex has a pendant head. We rename

each border vertex b2k−1
i (k ∈ {1,3}) as di(k,b) and b2k

i as di(k,w), for k ∈ {1,2,3}.
Moreover we add a new vertex di(2,b) adjacent to p4

i , which has a pendant head
graph.

– The connection between clause and variable gadgets are as in Fig. 2 and Fig. 3,
where each pair of arrow head edges in a variable gadget Gxi corresponds to a pair
of such edges in a clause gadget Gc j , such that xi ∈ c j. More precisely, if xi ∈ c j,
then we add the edges ` j(k,b)di(k′,b) and ` j(k,w)di(k′,w), for some k ∈ {1,2,3}
and for some k′ ∈ {1,2}. On the other hand, if xi ∈ c j, then we add the edges
` j(k,b)di(3,b) and ` j(k,w)di(3,w), for some k ∈ {1,2,3}.

– If a variable occurs only twice in F , then just consider those connections corre-
sponding to the literals of xi in the clauses of F , such that di(3,b) and di(3,w)
represent xi.

Let G be the graph obtained from F by the above construction. We can see that G
has maximum degree 5, where the only vertices with degree 5 are those p4

i , for each
variable gadget Gxi . Furthermore, it is clear that G is 3-colorable.

It remains to show that if F is planar (that is, if GF is planar), then G is planar.
Consider a planar embedding ψ of GF . We replace each variable vertex vxi of GF by a
variable gadget Gxi , as well as every clause vertex vc j of Gc j by a clause gadget Gc j . The
clause gadgets correspond to clauses of length two or three, which depends on the de-
gree of vc j in GF . Since the clause and variable gadgets are planar, we just need to show
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that the connections among them keep the planarity. Given an edge vxivc j ∈ E(GF),
we connect Gxi and Gc j by duplicating such an edge as parallel edges ` j(k,w)`i(k′,w)
and ` j(k,b)`i(k′,b), for some k ∈ {1,2,3} and for some k′ ∈ {1,2} or ` j(k,b)`i(3,b)
and ` j(k,w)`i(3,w), for some k ∈ {1,2,3}, as previously discussed.

In order to prove that F is satisfiable if and only if G ∈ BM , we discuss some
considerations related to odd decycling matchings of the clause and variable gadgets.
By Lemma 4, we know that an odd k-pool graph less a border admits one odd decycling
matching for each edge of the internal cycle, except that whose both endvertices are
adjacent to the removed border. Furthermore, by Lemma 3 it follows that each external
edge incident to the neck of an induced head cannot be in any odd decycling matching.
In this way, Fig. 4 shows the possible odd decycling matchings M, given by the stressed
edges for the clause gadget Gc j of clauses of length three. The black and white vertex
assignment represents the bipartition of Gc j −M. Notice that exactly one pair of ver-
tices ` j(k,w) and ` j(k,b) (k ∈ {1,2,3}) is such that they have the same color, while the
other such pairs have opposite colors. More precisely, we can see that ` j(k,w) has the
same color for each pair with opposite color vertices as well as ` j(k,b), for each odd
decycling matching of Gc j . In this way, we can associate one literal x1

j , x2
j , and x3

j to
each pair of vertices ` j(k,w) and ` j(k,b), k ∈ {1,2,3}. A similar analysis can be done
for clause gadgets of clauses of length two.

In the same fashion as the clause gadgets, each variable gadget Gxi admits two pos-
sible odd decycling matchings M as depicted in Fig. 5. We can see that the pair `i(3,b)
and `i(3,b) has a different assignment for the other two pairs `i(k,b) and `i(k,b),
k ∈ {1,2}. Moreover, the last two pairs have the same assignment, as it can be seen in
Fig. 5a and Fig. 5b. One more detail is that the unique possibilities for such pairs is such
that `i(3,b) and `i(3,b) have opposite assignments if and only if the vertices `i(k,b)
and `i(k,b) have the same assignment, k ∈ {1,2}. Therefore we can associate the pos-
itive literal xi to the pairs `i(k,b) and `i(k,b), k ∈ {1,2}, while xi can be represented
by `i(3,b) and `i(3,b).

As observed above for clause gadgets, we can associate true value to the pair of
vertices ` j(k,w) and ` j(k,b) with same color, k ∈ {1,2,3}. This implies that exactly
one of them is true and, that is, exactly one literal of c j has true value. Moreover, each
variable gadget has two positive literals and a negative one, such that the positive and
negative have opposite truth assignment.

Hence, if G ∈BM , then every clause gadget has exactly one true literal and every
variable has a correct truth assignment, which implies that F is satisfiable. Conversely,
if F is satisfiable, then each clause has exactly one true literal. Thus, for each clause c j
gadget we associate to pair of vertices corresponding to its true literal a same color.
By Fig.4, there is an appropriate choice of an odd decycling matching for each true
literal of c j. Moreover, for each literal gadget Gxi there is also an appropriate odd decy-
cling matching for the choice of the true literal. This concludes the proof. ut

By just slightly modifying the gadgets used in the previous proof, we obtain the
following corollary.

Corollary 1. ODD DECYCLING MATCHING is NP-complete even for 3-colorable pla-
nar graphs with maximum degree 4.
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(a) p1
j p2

j ∈M (b) p3
j p4

j ∈M

(c) p5
j p6

j ∈M

Fig. 4: All possible configurations given by the removal of an odd decycling match-
ing M, from a clause gadget Gc j of three literals.

(a) p1
i p2

i ∈M (b) p5
i p6

i ∈M

Fig. 5: All possible configurations given by the removal of an odd decycling match-
ing M, from a variable gadget Gxi .
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3 Polynomial Time Results

In this section we present positive results about ODD DECYCLING MATCHING.

3.1 Graphs with Only Triangles as Odd Cycles

Given a graph G and a set F of edges of G, ALLOWED ODD DECYCLING MATCHING
(AODM) consists of deciding whether G has an odd decycling matching M that does
not intersect F , and determine such a matching if it exists. We may assume that G is
connected.

Theorem 4. AODM can be solved in polynomial time for graphs with only triangles
as odd cycles.

Proof. Let G be a graph without odd cycles of size at least 5 and let F be a set of edges
of G. As described above, we can consider G connected. Moreover, we can assume G
as a bridge-free graph, that is, a graph whose all blocks have size at least 3.

Consider a block decomposition Π of G. Clearly we can assume that G has at least
two blocks. Let B be a block of G that contains exactly one cut-vertex v, that is, B is a
final block in Π . If G[B] is bipartite, then clearly (G,F) has an allowed odd decycling
matching if and only if (G

′
,F
′
) admits an allowed odd decycling matching, where G

′
=

((V (G)\V (B))∪{v},E(G)\E(B)) and F
′
= F \E(B). Hence we can suppose that B

has a triangle v1v2v3v1.
If {v1v2,v1v3} is not a edge cut, then G−{v1v2,v1v3} has a path P from v1 to {v2,v3}.

Consider P such a path of length at least 2 and such that it is a longest one. Moreover,
consider v2 as the first vertex reached by P between v2 and v3. In this way P must have
the form v1uv2, otherwise either G[V (P)∪{v3}] or P∪{v1v2} would contain an odd cy-
cle of length at least 5, when P has either an even number of vertices or an odd number,
respectively. It also follows that all path between v1 and v2, except v1v2, has length 2.
Moreover, every path between v1 and v3, except v1v3, has length 2 and contains v2.

If uv3 ∈E(G), then NB(v1) = {u,v2,v3}, otherwise let w∈NB(v1). Since dB(w)≥ 2,
we get that NB(w) = {v1,v2}, otherwise would exist a path between v1 and v2 of length
at least 3, a contradiction. However the cycle v1uv3v2wv1 has length 5, a contradic-
tion. Thus G[{v1,v2,v3,u}] is isomorphic to a K4 and {v1v2,v1v3,v1u} is an edge cut.
Hence B is a block of G and, by symmetry, v = v1. In this case we get that (G,F) has
an allowed odd decycling matching if and only if (G

′
,F
′
) has an allowed odd decycling

matching, where F does contain any matching of B of maximum size

G
′
= ((V (G)\V (B))∪{v},E(G)\E(B))

and F
′
= (F \E(B))∪{vx : x ∈ NG(v)\{v1,v2,v3}}.

If uv3 /∈ E(G), then {zv2,zv1} is an edge cut for every vertex z ∈ NB(v2)∩NB(v1).
Furthermore, by symmetry, NB(v2) ∩ NB(v1) is an independent set. Thus {v1,v2} ∪
{NB(v2)∩NB(v1)} is a block of G. If v∈ {v1,v2} and |NB(v2)∩NB(v1)| ≥ 3, then (G,F)
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has an allowed odd decycling matching is and only if (G
′
,F
′
) has an allowed odd de-

cycling matching, where v1v2 /∈ F and

G
′
=((V (G)\V (B))∪{v},E(G)\E(B)) and F

′
=(F \E(B))∪{vx : x∈NG(v)\V (B)}.

If v ∈ {v1,v2} and |NB(v2)∩NB(v1)| = 2, then (G,F) has an allowed odd decycling
matching if and only if (G

′
,F
′
) has an allowed odd decycling matching, where v1v2 /∈F ,

or F + {v1u,v2v3}, or F + {v1v3,v2u}, and

G
′
=((V (G)\V (B))∪{v},E(G)\E(B)) , and F

′
=(F \E(B))∪{vx : x∈NG(v)\V (B)},

If v /∈ {v1,v2}, then (G,F) has an allowed odd decycling matching if and only if (G
′
,F
′
)

has an allowed odd decycling matching, where v1v2 /∈ F and

G
′
= ((V (G)\V (B))∪{v},E(G)\E(B)) and F

′
= (F \E(B)) .

Finally it remains the case that G[{v1,v2,v3}] is a block and, by symmetry, sup-
pose v = v1. Thus (G,F) has an allowed odd decycling matching if and only if (G

′
,F
′
)

has an allowed odd decycling matching, where v2v3 /∈ F and

G
′
= ((V (G)\V (B))∪{v},E(G)\E(B)) and F

′
= F \E(B),

or v1v2 /∈ F or, v1v3 /∈ F , and

G
′
=((V (G)\V (B))∪{v},E(G)\E(B)) , and F

′
=(F \E(B))∪{vx : x∈NG(v)\V (B)}.

This concludes the proof. ut

3.2 Graphs with Small Dominating Sets

We will show now that ODD DECYCLING MATCHING can be solved in polynomial time
when the given graph G has a dominating set of constant size. Such a result generalizes
some known graph classes, as fo example P5-free graphs [10], since the graphs in BM
do not admit K5 as subgraph.

Theorem 5. Let k be a positive integer. For a graph G whose domination number is at
most k, it is possible to decide in polynomial time whether G has a matching M such
that G−M is bipartite, and to find such a matching if it exists.

Proof. Let G be as in the statement. A dominating set of order at most k can be found
in time O(nk). Let D be such a dominating set of G of order at most k. Let PD be the
set of all bipartitions PD of D into sets AD and BD, such that D[AD] and D[BD] do not
have any vertex of degree 2. Note that |PD |= O(2k).

For each PD ∈PD . We partition all of the other vertices v ∈V (G)\V (D) in such a
way: (i) If dAD(v)≥ 2 and dBD(v)≥ 2, then PD is not a valid partition; (ii) If dAD(v)≥ 2,
then AD← AD∪{v}; (iii) If dBD(v)≥ 2, then BD← BD∪{v}.

Iteratively applying these operations, we allocate the vertices in V (G)\V (D) as de-
scribed above into the respective sets AD e BD, or we stop if it is not possible to acquire
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a valid bipartition. After that, V (G) \V (AD ∪BD) can be partitioned into three sets as
follows: X = {u ∈V (G)\V (AD∪BD) : dAD(u) = 1 and dBD(u) = 0}; Y = {u ∈V (G)\
V (AD ∪BD) : dAD(u) = 0 and dBD(u) = 1}; Z = {u ∈ V (G) \V (AD ∪BD) : dAD(u) =
1 and dBD(u) = 1};

Since every vertex in V (G) \V (D) has a neighbor in D, it follows that the neigh-
borhood of all the vertices of X ∪Y ∪Z in AD ∪BD is in D. In this way, we can make
a choice of a matching MD to be removed, such that all of the vertices of X ∪Y ∪ Z
in AD ∪ BD are allocated in AD ∪ BD and G−MD must be bipartite. Note that there
are (n− k)k possibilities of choices for MD. ut
Corollary 2. ODD DECYCLING MATCHING can be solved in polynomial time for
P5-free graphs.

3.3 (Claw, Paw)-free Graphs

Lemma 5. If G ∈BM is a claw-free graph, then ∆(G)≤ 5.

Proof. Suppose that G has a vertex v of degree at least 6, such that {v1,v2,v3,v4,v5,v6}⊆
NG(v). Since G is claw-free, then either G[NG(v)] has exactly two connected compo-
nents, which must be cliques, or itself is connected. In the first case, since G is K5-free,
it follows that each connected component of G[NG(v)] has size at most 3. Moreover, by
Lemma 1(ii), if both have size at least 3, then G /∈BM , a contradiction.

Now suppose that G[NG(v)] is connected. If G[NG(v)] has a P5 = abcde as a sub-
graph, then it is not difficult to see that the only odd decycling matching M of G[{v}∪
{a,b,c,d,e}] should have the edges ab, vc and de. Moreover ae /∈E(G), otherwise G[{v}∪
{a,b,c,d,e}] has a W5 as a subgraph, a contradiction by Lemma 1(iii). In this way,
any other vertex f ∈ N(v) can be adjacent only to vertex c, since all of the vertices
in {v,a,b,c,d,e} are matched by M. Hence G[{v}∪ {a,e, f}] induces a claw in G, a
contradiction. On the other hand, necessarily G[NG(v)] has a P3, otherwise there ex-
ist at least three connected components in G[NG(v)]. By symmetry, suppose that v1v2
and v2v3 ∈ E(G). By Lemma 1(ii) G[{v4,v5,v6}] has exactly one edge, say v4v5. Since
G[NG(v)] is connected, the same has a path P of length at least 4 which connects v6 to v4
and v5 by at least one vertex between v1,v2, and v3. Since G[NG(v)] does not contain P5,
we can rename the vertices in {v1,v2,v3,v4,v5,v6} such that P = v1v2v3v4. We know
that v1v4 /∈ E(G), otherwise P∪{v} is a W4, a contradiction by Lemma 1(iii). Hence v5
and v6 must be adjacent to at least one of v1 and v4, which creates a P5 in G[NG(v)], a
contradiction. ut

By Lemma 5, it is not hard to enumerate all possible neighborhoods of a vertex v of
a claw-free graph G∈BM . In this way we can directly conclude the following lemma.

Lemma 6. If G ∈BM is a (claw, paw)-free graph then ∆(G)≤ 3.

Hence we can just apply Algorithm 1 to obtain a linear time algorithm for (claw, paw)-
free graphs. Moreover, by Lemma 6 we can characterize the connected (claw, paw)-free
graphs that admit an odd decycling matching.

Theorem 6. If G is a connected (claw, paw)-free graph, then G∈BM if and only if G
is isomorphic to a path, a cycle, a diamond or to a K4.
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4 Fixed-Parameter Tractability

Now, we consider the parameterized complexity of ODD DECYCLING MATCHING.

Definition 1. The clique-width of a graph G, denoted by cwd(G), is defined as the min-
imum number of labels needed to construct G, using the following four operations [7]:

1. Create a single vertex v with an integer label ` (denoted by `(v));
2. Disjoint union of two graphs (i.e. co-join) (denoted by ⊕);
3. Join by an edge every vertex labeled i to every vertex labeled j for i 6= j (denoted

by η(i, j));
4. Relabeling all vertices with label i by label j (denoted by ρ(i, j)).

Courcelle, Makowsky and Rotics [15] stated that for any graph G with clique-width
bounded by a constant k, and for each graph property Π that can be formulated in a
monadic second order logic (MSOL1), there is a f (cwd(G)).n algorithm that decides if
G satisfies Π (cf. [12–16]). In this monadic second-order graph logic known as MSOL1,
the graph is described by a set of vertices V and a binary adjacency relation edge(., .),
and the graph property in question may be defined in terms of sets of vertices of the
given graph, but not in terms of sets of edges.

Theorem 7. ODD DECYCLING MATCHING is in FPT when parameterized by the clique-
width.

Proof. Remind that the problem of determining whether G has an odd decycling match-
ing is equivalent to determine whether G admits an (1,1)-coloring, which is a 2-coloring
of V (G) in which each color class induces a graph of maximum degree at most 1 (cf. [25]).
Thus, using Courcelle, Makowsky and Rotics’s meta-theorem based on monadic second
order logic for graphs G with bounded clique-width [15], it is enough to observe that
the property “G has an (1,1)-coloring” is MSOL1-expressible. ut

From Theorem 7 we can solve several interesting classes of graphs in polynomial
time, as for example distance-hereditary graphs, series-parallel graphs, control flow
graphs, and some subclasses of planar graphs such as outerplanar graphs, Halin graphs
and Apollonian networks [4, 7, 8, 21, 30]. In addition, since clique-width generalizes
several graph parameters [24], we have the following corollary.

Corollary 3. ODD DECYCLING MATCHING is fixed-parameter tractable when param-
eterized by the following parameters: neighborhood diversity; treewidth; pathwidth;
feedback vertex set; and vertex cover.

MSOL’s meta-theorem is a good classification tool, however it does not provide a
precise running time bound. Next we present some exact upper bounds.

Theorem 8. ODD DECYCLING MATCHING admits a 2O(vc(G)).n algorithm, where vc(G)
is the vertex cover number.

Theorem 9. ALLOWED ODD DECYCLING MATCHING admits a kernel with at most
2.nd(G) vertices when parameterized by neighborhood diversity.
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APPENDIX

Fig. 6 shows some others examples of forbidden subgraphs.

c1 c2

c3c4

u

(a) The W4.

c1 c2

c3

c4

c5

u

(b) The W5.

p1 p2

p3

b1

b2b3

(c) The 3-pool.

p1 p2

p3

p4

p5

b1

b2

b3b4

b5

(d) The 5-pool.

u

c1 c2 c3 c4 c5 c6

(e) Two diamonds sharing a
vertex of degree 3.

Fig. 6: Some examples of forbidden subgraphs.

Proof of Lemma 1.

Proof. (i) Let G ∈ BM be a graph that contains a diamond D as a subgraph, such
that V (D) = {u,v1,v2,v3} and dD(u) = dD(v2) = 3. We can see that M∩E(D) equals to
exactly one of the following sets: {uv1,v2v3}, {v1v2,uv3}, {uv2}. For each of such sets,
both u and v2 are matched by M. Hence M cannot contain any edge e /∈ E(G[V (D)])
incident to only u or v2.

(ii) Let v ∈ V (G) such that G[NG(v)] contains two disjoint P3, P and P′. It follows
that G[{v}∪P] and G[{v}∪P′] are diamonds that share a vertex of degree at least three.
By (i) the statement holds.

(iii) Suppose for a contradiction that G contains a subgraph H isomorphic to a wheel
graph Wk, k ≥ 4. Let V (H) = {u,v1,v2, . . . ,vk−1,vk}, such that u is adjacent to all ver-
tices of the cycle C = v1v2 . . .vkv1. If k≥ 6, then u contains two disjoint P3 in its neigh-
borhood, and thus it follows by (ii) that k ≤ 5. In this case, it can be easily verified
that W4 and W5 are forbidden subgraphs.

(iv) Suppose, for a contradiction, that G contains a subgraph H isomorphic to a k-
pool, for some odd k ≥ 3. Let C = {p1 p2 . . . pk p1} be its internal cycle and let B =
{b1,b2, . . . ,bk} be the vertices of the border of H, such that {pibi, pi+1bi} ⊂ E(H), for
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all 1≤ i≤ k modulo k. Clearly M must contain some edge of C and one edge of every
triangle pibi pi+1. W.l.o.g., consider p1 p2 ∈M∩E(C). This implies that M contains no
edge in {p2b2, p2 p3, p1bk, p1 pk}. Therefore, pkbk and p3b2 must be in M, which forbids
two more edges from the triangles pk−1bk−1 pk and p3b3 p4. Continuing this process, it
follows that cb k+3

2 c, which is at the same distance of p1 and p2 in C, must contain two
incident edges in M, a contradiction. ut

Proof of Theorem 1.

Proof. Let A be a maximal independent set of G. Let B =V (G)\A. In this case, every
vertex of A is of type (k,0) and there is no vertex in B of type (0,k), k ∈ {1,2,3}.
Therefore, if there exists a vertex v of type (a,b) with a < b, then it must be in B and
be of type (1,2). In order to prove the correctness of Algorithm 1, it is sufficient to
show that the operations on lines 7–8 and 10–11 do not generate vertices of type (a,b)
with a < b.

Let {u}= NG[A](v). If u is of type (3,0), then v is moved from B to A by lines 7–8.
In this case, it follows that both u and v are vertices of type (2,1) after the line 8. If u is
not of type (3,0), then the lines 10–11 modify the types of u and v as follows.

– If u is of type (1,1), then u and v are modified to type (2,0) and (3,0), respectively;
– If u is of type (1,0), then u and v are modified to type (1,0) and (3,0), respectively;
– If u is of type (2,0), then u and v are modified to type (1,1) and (3,0), respectively;
– If u is of type (2,1), then u and v are modified to type (2,1) and (3,0), respectively.

We can see that each neighbor w of u in the same part X ∈ {A,B} of u loses exactly
one neighbor (that is u) in G[X ]. Moreover, w receives at most one new neighbor (that
is v) in G[X ]. The same occurs for every neighbor of v in V (G) \X . Therefore, in any
case it is not obtained vertices of type (a,b) with a < b, which implies that the Algo-
rithm 1 finishes. ut
Proof of Theorem 2.

Proof. Since verifying whether a graph is planar can be done in linear time [23], as well
as whether a formula in 3-CNF has a truth assignment, both problems are in NP.

Let F be a Boolean formula in 3-CNF such that X = {x1,x2, . . . ,xn} denotes the
set of variables and C = {c1,c2, . . . ,cm} is the set of clauses of F . We construct a for-
mula F ′ from F as follows. For a vertex xi ∈V (GF [X ]), let dGF (xi) be the degree of xi

in GF . For such a variable xi with dGF (xi) = k≥ 3, we create k new clauses c j
i of size 2,

and k new variables xz
i as follows:

c j
i =





(
x j

i , x j+1
i

)
, if j ∈ {1, . . . ,k−1};(

xk
i , x1

i

)
, if j = k.

In addition, we replace the jth (1 ≤ j ≤ k) occurrence of the variable xi ∈ X by
an occurrence of a variable x j

i , where a literal xi (resp. xi) is replaced by a literal x j
i(

resp. x j
i

)
.
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Fig. 7: The associated graph GF ′ obtained from F = (x1∨x2∨x3)∧(x1∨x3∨x4)∧(x1∨
x4∨ x5)∧ (x2∨ x3∨ x5). The black vertices correspond to clauses.

Let S be the set of all vertices xi ∈ V (GF [X ]) with dGF (xi) = k ≥ 3. For such a
vertex xi ∈ S, let Xi = {x1

i , . . . ,x
k
i } and Ci = {c1

i , . . . ,c
k
i }.

Note that, the associated graph GF ′ can be obtained from GF by replacing the cor-
responding vertex of xi ∈ S by a cycle of length 2dGF (xi) induced by the corresponding
vertices of the new clauses in Ci and the new variables in Xi. In addition, for each xi ∈ S
and c j ∈ NGF (xi) an edge xt

ic j is added in E(GF ′), such that every corresponding ver-
tex xt

i ∈ Xi has exactly one neighbor c j /∈Ci. Fig. 7 shows an example of the transfor-
mation for a Boolean formula.

As we can see, every variable x occurs at most 3 times in the clauses of F ′, since
every variable xi with dGF (xi) ≥ 3 is replaced by dGF (xi) new variables that are in
exactly 3 clauses of F ′. By the construction, each literal occurs at most twice. Moreover,
if F has no negative literals, then only the new variables have a negated literal and each
one occurs exactly once in F ′.

Now, it remains to show that if GF is planar then we can construct F ′ as a planar
formula. Consider a planar embedding Ψ of GF , we construct GF ′ replacing each corre-
sponding vertex xi ∈ S by a cycle of length 2dGF (xi), as described above. After that, in
order to preserve the planarity, we can follow the planar embeddingΨ to add a matching
between vertices corresponding to variables in such a cycle and vertices corresponding
to clauses c j /∈ Ci and that xi ∈ c j. Such a matching indicates in which clause of Ci a
given new variable will replace xi in F ′. Thus, without loss of generality, if GF is planar
then we can assume that F ′ is planar as well.

Let F be an instance of NAE-3SAT (resp. POSITIVE PLANAR 1-IN-3-SAT) such
that X = {x1, . . . ,xn} denotes its set of variables and C = {c1,c2, . . . ,cm} its set of
clauses. Let F ′ be the formula obtained from F by the above construction. As we can
observe, for any truth assignment of F ′, all xt

i ∈ Xi (for a given variable xi of F) have
the same value. Therefore, any clause of F ′ containing exactly two literals has true and
false values. At this point, it is easy to see that F has a not-all-equal (resp. 1-in-3) truth
assignment if and only if F ′ has a not-all-equal (resp. 1-in-3) truth assignment. ut

Proof of Lemma 3.
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Proof. Let M be an odd decycling matching of G. Suppose for a contradiction that there
exists an edge e incident to v, such that e contains an endvertex not in H. In this case,
we get that vh1 and vh4 does not belong to M, which implies that h1h4 ∈ M. By the
triangle h1h2h5, it follows that h2h5 must be in M. Hence the cycle vh1h2h3h4v remains
in G−M, a contradiction.

Now suppose that vh4 ∈M. In this case, the edge h1h2 cannot be in M, otherwise the
cycle h1h4h3h2h5h1 survives in G−M. In the same way, the edge h1h5 /∈M, otherwise
the cycle h1h2h5h3h4h1 is not destroyed by M. Therefore we get that h2h5 must be in M,
which implies that h3h6 ∈M. Hence the cycle h5h3h4h7h6h5 belongs to G−M. Since
the triangle h1h2h5 has no edge in M, it is not destroyed by M, a contradiction.

Finally, we get that vh1 must be in M, which implies that h2h5 ∈M as well. There-
fore, it follows that h3h6 must be in M. Hence h4h7 also must be in M, which turns the
graph bipartite. Since all choices of the edges of M are necessary, we get that there is
only one possible odd decycling matching of H, which is perfect. Fig. 1b shows such a
matching. This concludes the proof. ut
Proof of Lemma 4.

Proof. Let C = p1 p2 . . . pk p1 be the internal cycle of G and let bi be the i-th-border
of G, such that NG(bi) = {pi, pi+1}, 1 ≤ i ≤ k− 1. Since C has odd length, it follows
that every odd decycling matching of G contains at least one edge of C.

Suppose for a contradiction that G has an odd decycling matching M contain-
ing p1 pk. In this case, we get that the edges in {p1 p2, p1b1, pk pk−1, pkbk−1} cannot
be in M. Therefore M must contain the edges b1 p2 and bk−1 pk−1. In the same way, we
can see that the edges {p2 p3, p2b2, pk−1 pk−2, pk−1bk−2} are not in M. Hence, it can
be seen that all edges indent to p k−1

2
are forbidden to be in M, which implies that the

triangles p k−2
2

p k−1
2

b k−2
2

and p k−1
2

p k+1
2

b k−1
2

have no edge in M, a contradiction by the
choice of M.

Let pi pi+1 be an edge of C contained in an odd decycling matching M of G. In a
same fashion, the edges in {pi pi−1, pibi−1, pi pi+1, pibi+1} cannot be in M. Following
this pattern, we can see that every edge p jb j must be in M, for every 1 ≤ j ≤ i− 1.
Furthermore, it follows that bz pz+1 ∈M, for every i+1 ≤ z ≤ k−1. Since M contains
one edge of every triangle of G, it follows that M is unique, for every edge pi pi+1.
Finally, such an odd decycling matching contains only one edge of C. ut
Proof of Corollary 1.

Proof. Let G be the graph obtained by the construction in Theorem 3, next we show
how to obtain a planar graph of maximum degree 4. Since the only vertices of degree 5
of G are those p4

i in the variable gadgets, we present a slightly modified variable gadget,
which is depicted in Fig 8. In fact, we just modify the head graph. In Fig. 1 we can see
that the vertex h6 has degree 3, which allows us to use it to connect the variable gadget
to the clause one. Fig. 9 shows the possible odd decycling matching of the modified
variable gadget. Since such configurations are analogous to those of the original variable
gadget, with respect to the vertex that connect to clause gadgets, we obtain our main
result of this section. ut
Proof of Theorem 6.
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Fig. 8: The modified variable gadget.

Proof. Let G be a connected (claw, paw)-free graph. Clearly, if G is isomorphic to a
path, a cycle, a diamond or to a K4, then G ∈BM .

Now consider G ∈BM . By Lemma 6 we know that does not exist any vertex of
degree 4 in G.

If all of the vertices of G have degree 2, then G is isomorphic to a cycle.
If G is the trivial graph, then the theorem follows. Let v be a vertex of degree 1

in G. It follows that either G is a path of length at least one, or there is a vertex u of
degree three. Consider u such that it is such a vertex closest to v in G. Let w ∈ NG(u)
be in the path P from v to u and let u1 and u2 be its two neighbors except for w in G.
Since dG(w) ≤ 2, we get that w is not adjacent neither to u1, nor to u2. Thus u1u2 ∈
E(G), since G is claw-free. In this way G[wuu1u2] is isomorphic to a paw, a contradic-
tion. Hence G must be a path.

Finally suppose that G has a vertex v of degree 3 and that G is not isomorphic to
a K4. In this way it follows that G[{v}∪NG(v)] is isomorphic to a diamond. Let NG(v) =
{v1,v2,v3}, such that dG(v2) = 3. Since v and v2 have degree 3, they cannot be adjacent
to any other vertex. Suppose that v1 has a neighbor u /∈ {v,v2}. Since uv, uv2 /∈ E(G),
then G[{u,v,v1,v2}] is isomorphic to a paw, a contradiction. It follows in a similar way
that NG(v3) = {v,v2}. Hence G is isomorphic to a diamond, which concludes the proof.

ut

A monadic second order logic formula ϕ(G) such that G ∈BM ⇔ ϕ(G):

∃ S1,S2 ⊆V (G) : (S1 ∩ S2 = /0) ∧
(S1 ∪ S2 = V (G)) ∧
(∀ v1 ∈ S1[ @ u1,w1 ∈ S1 : (u1 6= w1)∧ edge(u1,v1)∧ edge(w1,v1)]) ∧
(∀ v2 ∈ S2[ @ u2,w2 ∈ S2 : (u2 6= w2)∧ edge(u2,v2)∧ edge(w2,v2)])

Proof of Theorem 8.
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(a) p1
i p2

i ∈M (b) p5
i p6

i ∈M

Fig. 9: All possible configurations given by the removal of an odd decycling matching M
from the modified variable gadget.

Proof. Let S be a vertex cover of G such that |S| = vc(G). The algorithm follows in a
similar way to Algorithm 5. Let PS be the set of all bipartitions PS of S into sets AS
and BS, such that S[AS] and S[BS] do not have any vertex of degree 2. For each PS ∈
PS , we will check if an odd decycling matching of G can be obtained from PS by
applying the following operations: For each vertex v ∈V (G)\V (S) do (i) If dAS(v)≥ 2
and dBS(v) ≥ 2, then PS is not a valid partial partition; (ii) If dAS(v) ≥ 2, then AS ←
AS ∪{v}; (iii) If dBS(v) ≥ 2, then BS ← BS ∪{v}. After that, if for all vertices the first
condition is not true, then V (G) \V (AS ∪BS) can be partitioned into three sets: X =
{u ∈ V (G) \V (AS ∪BS) : dAS(u) = 1 and dBS(u) = 0}; Y = {u ∈ V (G) \V (AS ∪BS) :
dAS(u) = 0 and dBS(u) = 1}; Z = {u∈V (G)\V (AS∪BS) : dAS(u) = 1 and dBS(u) = 1};

Since V (G)\V (S) is an independent set, it follows that all edges of vertices in X ∪Y
can remain in the graph G. For each z ∈ Z, denote by az ∈ AS and bz ∈ BS the neighbors
of z in G. Now, we apply a bounded search tree algorithm. While G[AS] and G[BS] have
both maximum degree equal to one, and Z 6= /0 do. Remove a vertex z ∈ Z and apply
recursively the algorithm for the following cases: z is added to AS, and all vertices in
Z∩N(az) is added to BS; z is added to BS, and all vertices in Z∩N(bz) is added to AS.

T has height at most vc(G)+1. Finally, if T has a leaf representing a configuration
with G[AS] and G[BS] having both maximum degree equal to one, and Z = /0 then G has
an odd decycling matching. ut

Proof of Theorem 9.

Proof. Given an instance (G,F) of ALLOWED ODD DECYCLING MATCHING such
that G is a graph and F ⊆ E(G) a set of forbidden edges. The kernelization algorithm
consists on applying the following reduction rules:

1. If G contains a K5, then G has no allowed odd decycling matching; otherwise
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2. If a part Vi induces a K3 and exist two vertices in V (G)\Vi adjacent to Vi, then G
has no allowed odd decycling matching; otherwise

3. If a subgraph of G induces either a K3 or a K4 and does not admit an allowed odd
decycling matching, then G has no allowed odd decycling matching; otherwise

4. Remove all parts isomorphic to a K4;
5. Remove all isolated parts isomorphic to a K3;
6. If Vi is a part that induces a K3 and v ∈V (G)\Vi is adjacent to Vi (note that {v} is

a part), then remove Vi and F ← F ∪{uv : u ∈ NG(v)\Vi};
7. If a part Vi induces an independent set of size at least 3, then contract it into a

single vertex vi (without parallel edges) and forbids all of its incident edges;

It is easy to see that all reduction rules can be applied in polynomial time, and af-
ter applying them any remaining part has size at most two. As the resulting graph G′

has nd(G′) ≤ nd(G) then |V (G′)| ≤ 2.nd(G). Thus, it remains to prove that the appli-
cation of each reduction rule is correct. As K5 and K5− e are forbidden subgraphs, and
any odd decycling matching of a K4 is a perfect matching then rules 1,2,3,4,5 and 6 can
be applied in such an order. Finally, the correctness of rule 7 follows from the follow-
ing facts: (i) if G′ has an allowed odd decycling matching, then G has also an allowed
odd decycling matching, because bipartite graph class is closed under the operation of
replacing vertices by a set of false twins, which have the same neighborhood as the
replaced vertex; (ii) if G′ does not admit an allowed odd decycling matching then G
also does not admit an allowed odd decycling matching, because if a contracted single
vertex vi is in an odd cycle in G′, then even replacing vi by Vi (|Vi| ≥ 3) and removing
some incident edges of Vi which form a matching, some vertex of Vi remains to an odd
cycle. ut
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