
A CONTROL-BASED LOAD BALANCING ALGORITHM WITH FLOW

CONTROL FOR DYNAMIC AND HETEROGENEOUS SERVERS

Rodolpho Guedino de Siqueira

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Daniel Ratton Figueiredo

Rio de Janeiro

Julho de 2017

A CONTROL-BASED LOAD BALANCING ALGORITHM WITH FLOW

CONTROL FOR DYNAMIC AND HETEROGENEOUS SERVERS

Rodolpho Guedino de Siqueira

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE

SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Daniel Ratton Figueiredo, Ph.D.

Prof. Lucia Maria de Assumpção Drummond, D.Sc.

Prof. Valmir Carneiro Barbosa, Ph.D.

RIO DE JANEIRO, RJ – BRASIL

JULHO DE 2017

Siqueira, Rodolpho Guedino de

A Control-based Load Balancing Algorithm with Flow

Control for Dynamic and Heterogeneous Servers/Rodolpho

Guedino de Siqueira. – Rio de Janeiro: UFRJ/COPPE,

2017.

XII, 39 p.: il.; 29, 7cm.

Orientador: Daniel Ratton Figueiredo

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2017.

Bibliography: p. 38 – 39.

1. Load-balancing. 2. Feedback Control. 3.

Distributed Systems. 4. Computer Networks. I.

Figueiredo, Daniel Ratton. II. Universidade Federal do Rio

de Janeiro, COPPE, Programa de Engenharia de Sistemas

e Computação. III. T́ıtulo.

iii

I dedicate this work to those who

have dedicated their life to me -

my parents: Marco and Tânia;

Antônio and Elydea.

iv

Acknowledgements

I would like to thank Prof. Daniel Figueiredo for all the valuable help he provided

me. He has taught me so much and has also been very comprehensible during our

work together. I would also like prof. Daniel and prof. Valmir Barbosa for giving

me opportunity to attend their classes, which were sincerely some of the best I have

had in my life. Finally, I would like to thank prof. Lucia Drummond for the help

and availability to review this work. Thank you all very much!

Then I will mostly repeat the people I have already thanked in other occasions

and who I will probably always thank in my life:

I want to thank the friends that I consider to be my second family: Felipe

Alecrim, Gilson Falcão, Hugo Lins and Thiago Girard. There is no way I can

properly thank all that I have gone through with you guys. You made my life in

Recife so much better and easier, and it was with you that I spent most of the best

moments of my life! I am sure there is more to come, and I will be there for you

wherever I am.

I also thank my great friends Fernando Rodrigues and Renan Ferraz for the

amazing friendship and all awesome conversations we have had. I really like you

guys and I look forward to having you as my best men very soon at my wedding!

I thank all my cousins, for they have been my friends all my life, and especially

the older ones for being such role-models. I thank my cousin José Jr. for his

close friendship during all our lives, as we have grown up together and have always

supported each other.

I greatly thank my mom for her lighthearted spirit, which really inspires me to

less serious, for the strength she has shown to me throughout life and for all the

incredible food! She is one of the most talented persons I have known. I also greatly

thank my dad for all the lessons, for the impressive clearness of thought and all the

braveness shown during some more difficult time. Everything I am is because of you

two, and I am so proud of it!

I thank my stepmom, Ana, for being so good to me all this time and for giving

me, along with my dad, one of the true joys of my life: my sister Ĺıvia. I also

thank another true joy of my life: my little brother, João. I am so proud of you, my

brother. You have a brilliant future ahead of you!

v

I thank my grandparents, Elydea and Antônio, for all the effort and all the help.

I also thank them for the good lessons on life and marriage and for providing me

such good role-models on how to be a man: my dad, my uncle and grandpa himself.

I miss you so much, grandpa! So much!

I would like to thank my fiancée Mayara Llaguno for the comprehension during

stressful times, for all the love, laughter, good food, interesting conversations and

awesome dancing! I also thank you for helping me achieve everything we now have

together. I love you so, so much! You’re my princess! I would also like thank my

in-laws, Silvio, Elaine and Caique Llaguno, as they have become a real family for

me.

At last, for this and any work of science I will always especially thank my dad,

for all the answers he gave me, and my little brother, for all the questions he made

me. They are indeed the best science teachers I have had. They are the ones who

have never let the discovery spirit vanish in me.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UM ALGORITMO DE BALANCEAMENTO DE CARGA BASEADO EM

CONTROLE DE FLUXO PARA SERVIDORES DINÂMICOS E

HETEROGÊNEOS

Rodolpho Guedino de Siqueira

Julho/2017

Orientador: Daniel Ratton Figueiredo

Programa: Engenharia de Sistemas e Computação

Apesar de o problema de balanceamento de carga ser fundamental e ter sido

bem estudado como problema de alocação de recursos, os cenários e tecnologias

diferentes que sempre surgem em sistemas distribúıdos demandam novas aborda-

gens e algoritmos. Nesse contexto, nós consideramos um problema prático de um

cenário real no qual os servidores são heterogêneos e sujeitos a uma carga de fundo

não controlada pelo balanceador de carga. Nesses casos, poĺıticas clássicas tais como

Round Robin ou mais novas como Join the Shortest Queue não são efetivas. Nós

propomos um algoritmo de balanceamento de carga que despacha requisições a um

conjunto de servidores heterogêneos de acordo com a sua disponibilidade de recursos

de CPU, utilizando controle com retroalimentação para prevenir sobrecarga. Nós

implementamos essa poĺıtica e avaliamos sua performance em um cenário real con-

trolado. Nossa avaliação indica que o algoritmo proposto é mais eficaz em distribuir

a carga do que outras poĺıticas clássicas nesse cenário, em particular quando a carga

de fundo é dinâmica.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

A CONTROL-BASED LOAD BALANCING ALGORITHM WITH FLOW

CONTROL FOR DYNAMIC AND HETEROGENEOUS SERVERS

Rodolpho Guedino de Siqueira

July/2017

Advisor: Daniel Ratton Figueiredo

Department: Systems Engineering and Computer Science

Although load balancing is a fundamental and well-studied problem in resource

allocation, the ever changing scenarios and technologies in distributed systems de-

mand new approaches and algorithms. In this context, we consider a real world

scenario where servers are heterogeneous and have dynamic background loads not

controlled by the load balancer. In such scenarios, classic round robin policy or the

novel join-the-shortest-queue policy are not effective. We propose a load balancing

algorithm that dispatches requests to a set of heterogeneous servers according to

their CPU availability using a feedback control loop to prevent overloading. We

implement this policy and evaluate its performance in real and controlled scenarios.

Our evaluation indicates the proposed algorithm is more effective in distributing

load than other classic policies in this scenario, in particular when background load

is dynamic.

viii

Contents

List of Figures xi

List of Tables xii

1 Introduction 1

2 Problem Formulation and Objectives 5

2.1 Load balancing . 6

2.2 Flow Control . 6

3 Related Work 7

3.1 Load Balancing . 7

3.1.1 Static Algorithms . 8

3.1.2 Dynamic Algorithms . 8

3.2 Dynamic Resource Provisioning . 10

4 Proposed Load-balancer 12

4.1 Balancing mechanism . 12

4.2 Controller . 13

4.2.1 Modeling and Tuning . 14

5 Deployment in Real Scenario 18

5.1 Architecture . 19

5.2 Servers . 19

5.3 Wire-Protocol . 19

5.4 RESTful interface . 21

5.5 Clients . 21

5.6 Proxy . 22

5.7 Communication Pattern . 23

5.8 Controller . 24

5.8.1 Feedback Metrics . 24

5.8.2 Integral Wind-Up . 24

ix

6 Results and Discussion 25

6.1 Comparison with Round Robin for Homogeneous Servers 25

6.1.1 Infinite load scenario . 26

6.1.2 Limited load scenario . 27

6.2 Results for Heterogeneous Servers . 28

6.2.1 Different CPU Utilization Targets 28

6.2.2 Different CPU Processing Power 28

7 Conclusions 36

7.1 Future work . 37

Bibliography 38

x

List of Figures

1.1 Illustration of the considered scenario 3

4.1 Comparison between model prediction and real system behavior

(CPU utilization as a function of number of requests sent periodi-

cally). 15

5.1 Proxy architecture in which the load-balancer is implemented 20

6.1 Results under modified round robin and infinite load - Server 0 (top),

Server 1 (middle) and Client (bottom) 30

6.2 Results under proposed controller and infinite load - Server 0 (top),

Server 1 (middle) and Client (bottom) 31

6.3 Results under modified Round Robin and finite load - Server 0 (top),

Server 1 (middle) and Client (bottom) 32

6.4 Results under proposed controller and finite load - Server 0 (top),

Server 1 (middle) and Client (bottom) 33

6.5 Results under proposed controller and different processing targets -

Server 0 (top), Server 1 (middle) and Client (bottom) 34

6.6 Results under proposed controller and different processing power -

Server 0 (top), Server 1 (middle) and Client (bottom) 35

xi

List of Tables

xii

Chapter 1

Introduction

Load balancing is a fundamental block in the design of many distributed systems

since it provides for sharing demand (i.e., load) across a set of resources. Not sur-

prisingly, load balancing mechanisms have been broadly studied from a theoretical

perspective and is widely applied to real systems, most recently in the context of

data centers and cloud services [1].

The tradeoffs and effectiveness of load balancing mechanisms greatly depend on

the scenario under consideration. For example, load balancing web traffic in a data

center is very different from load balancing backbone traffic in an ISP (Internet

Service Provider). Underlying assumptions on the available information, such as

the state of resources (e.g., current CPU load) and the demand (e.g., processing

time of a request), as well as assumptions concerning dynamic aspects of resources

and demand, greatly influence the design of an effective load balancing mechanism.

Indeed, despite its long history, research and development on load balancing mecha-

nisms continues [2], as different scenarios and assumptions emerge from technological

advancements and new applications.

This work considers a real world scenario where common assumptions do not

hold, prompting the design of a new load balancing mechanism.

A common assumption is that the load balancer is rather close to the resources,

in the sense that processing a request takes longer than sending the request to the

resource. In our case, the balancer and the clients of the application handled by the

balancer are far away from the servers.

Another common assumption in the design of load balancing mechanisms is

that servers receive requests (i.e., load) only from single load balancer. In this

case, the load imposed on the servers comes only from one source, and hence no

feedback mechanism is needed in order to evaluate the availability of each server.

However, there are practical scenarios in which the servers are subject to load from

different applications and the total load is not handled by a single load balancer.

In these cases, even if there is a load balancer for each application, they do not

1

know the load caused by each other, and hence cannot make decisions regarding the

availability of resources on the servers without a feedback mechanism or some kind

of communication among them.

One scenario in which it would be very difficult to create a single load balancer

for all load is one in which there is at least one application that uses a proprietary

protocol over TCP. In this case, there is not a simple way to interpret the appli-

cation’s TCP stream and split it into well defined requests that can be dispatched

between servers.

Another hard case for load-balancing is one in which the servers are utilized for

a stateful application. In this case, when a client connects to a server, no balancing

can be done with his following requests, because servers do not have their full state

synchronized. Thus, a client connects to a server and sticks to it for a long period,

and its requests are handled as if there was no load balancer.

Our case is a mixture of the two above scenarios, with servers handling load

from two different applications, with the high priority application being stateful

and using proprietary protocol. Thus, the high priority requests are not handled by

our load-balancer. On the other hand, there is a low priority stateless application

which uses a known protocol, and thus we create a load balancer to dispatch those

requests between the servers in a controlled way, in order to not overload them,

leaving enough resources available for the high priority application.

We consider a scenario where a large set of clients need to monitor real-time

variables stored on a small set of co-located servers. These real-time variables are

replicated across the servers on local databases. However, the servers also run a

mission critical application that has high priority and unpredictable behavior - the

application remains idle for long periods and suddenly needs to be served with no

delay. Thus, requests for reading real-time variables have low priority and must not

impose a load that interfere with dynamic high priority demands. Last, servers have

heterogeneous resources (e.g., different CPUs) and low priority clients are far from

the set of servers (e.g, RTT is longer than the time to read a real-time variable).

Figure 1.1 illustrates the scenario.

This scenario is commonly found in oil platforms where inland clients need to

monitor real-time variables in offshore oil platforms that run legacy servers and

mission critical applications.

For the reasons mentioned above, the high priority requests cannot be handled

by the load balancer used for the low priority ones. Thus, as servers are subject to

load not controlled by our load balancer, the decision of which server will receive the

requests should consider real-time information regarding the availability of resources

for each server.

As the servers in our scenario run legacy operating systems which do not provide

2

Figure 1.1: Illustration of the considered scenario

many tools for programming complex software, we choose make the server software

as simple as possible and decide to leave to a centralized load balancer all the

complexity of the balancing decisions. Hence, given that premise, strategies such

as Join-Idle-Queue, which require the servers to actively inform the balancer when

they are idle [3], are not a good choice.

Considering that the servers do not perform any active role in the balancing

decision and that all decisions are centralized in the load balancer but not all load

passes through it, we need some kind of polling measurement which can then be

used in a feedback control mechanism.

For this scenario, we propose a load balancing mechanism based on a Integral

Controller, which is a variation of a very common algorithm in Control Theory,

vastly used in the Industrial Automation field, the PID. Both our algorithm and

the PID calculate their control decision as a function of the error, defined as the

difference between the current value of the variable being controlled - in our case,

the CPU utilization - and its desired value. The full PID variation calculates its

output as the sum of three functions of the error: one is proportional to the current

error, the other is proportional to the sum of the past measured errors and the

last is proportional to the current derivative of the error - hence the name PID:

Proportional, Integral, Derivative controller. Our controller uses only the integral

part.

Although very common in Industrial Automation for controlling Process vari-

ables such as temperature and pressure, feedback control algorithms have not been

so vastly used in Computer Science up to the last years. However, in order to re-

duce costs, delays and increase efficiency, Cloud providers nowadays have the need

to fully automate the tuning and operation of their platforms [4], and thus the in-

terest in automated feedback control systems has increased in this industry [5, 6].

Some applications of a feedback control system in Computer Science nowadays in-

clude automatically adjusting the following: cache size by measuring the hit rate;

3

number of deployed servers by measuring request latency; number of worker threads

by measuring wait time.

This work proposes an effective mechanism for the above scenario in which the

load balancer dispatches aggregated requests to the servers according to a rate deter-

mined by a corresponding feedback control loop that reacts to the CPU utilization

on the server, an information periodically probed by the load balancer. We design

the feedback control mechanism using a simple model for the relationship between

number of requests and CPU load.

We implement the proposed mechanism and evaluate its performance under dif-

ferent scenarios, also comparing with the traditional Round Robing load balancing

mechanism. Our results indicate that the proposed mechanism is effective in using

the available resources in the servers without overshooting the pre-specified target

CPU utilization. Moreover, the mechanism adapts to changes in CPU utilization

of the servers due to high priority demands, moving low priority requests to under

utilized servers.

The remainder of this dissertation is organized as follows. Chapter 2 poses the

problem and the challenges in devising a load balancing mechanism in this context.

Chapter 3 reviews the relevant work related to load balancing and control algo-

rithms within the context of Dynamic Resource Provisioning. Chapter 4 describes

the feedback controller for the proposed load balancing mechanism, while chapter

5 presents the details of the real-world deployment of the proposal. Chapter 6

discusses the results of the test implementation when running in different scenarios.

Finally, chapter 7 presents our conclusions and possible future work.

4

Chapter 2

Problem Formulation and

Objectives

As discussed in chapter 1, we consider a real world scenario in which a small set

of servers must respond with high priority to a mission critical application whose

behavior is not easy to predict, but that remains idle for long periods of time. Thus,

servers are mostly underutilized and their resources could be used more effectively,

in particular when high priority applications are idle.

Consider the problem of remotely monitoring a very large set of real-time vari-

ables stored across this set of servers, with the condition that this monitoring has

low priority with respect to other applications running on them. Thus, resource

usage by the monitoring application is restricted to a maximum budget, because

servers must always be available to process high priority applications when needed.

Moreover, as variables are consistently replicated across the servers, requests can be

distributed across the servers, in particular proportionally to their CPU availability

(and below the target) to minimize the chances of overloading the CPU when high

priority applications suddenly run in any given server.

In summary, three basic goals must be achieved, which we discuss below:

1. Distribute low priority load to replicated but heterogeneous servers subject to

uncontrolled high priority load.

2. Distribute low priority load to servers with CPU utilization below a pre-

specified target.

3. Balance the low priority load across the servers in proportion to their CPU

availability.

5

2.1 Load balancing

A common solution to load balancing is to adopt simple mechanisms such as Round

Robin, and dispatch requests to servers accordingly. Nonetheless, since in our sce-

nario the servers receive high priority demands from applications not subject to the

load balancer, this kind mechanism does not necessarily distribute the load propor-

tionally to the available resources (i.e., CPU) - even overloaded servers would keep

receiving the same share of total load.

Other approaches use feedback signals from the servers to dispatch requests - for

example, the balancer sends the request to the server with most available resources.

In the case when even the most available server should not receive further requests

because it is operating with a CPU utilization above the pre-specified target, the

balancer could totally refrain from sending requests. However, this kind of policy

may lead to oscillation between two extremes, full-rate or no flow. In this case,

when a server becomes available it can receive a great amount of flow and suddenly

become overloaded. Instead, we choose to control the load in a more subtle way, by

controlling the flow to a steady target.

2.2 Flow Control

A possible solution to the problem of avoiding overloading is to always dispatch

low priority requests to servers and make them explicitly reject these requests when

overloaded. However, such alternative can place an extra burden on an already

loaded server, as rejecting small requests may cost almost the same as processing

them.

An alternative solution to avoid overloading the servers is to implement a throt-

tling mechanism on the client side, making clients perceive timeouts as a sign of

server overload and then slow down the request rate. However, this solution requires

changing the code running on the client application. Thus, this alternative is not

transparent to the clients and makes existing client implementations incompatible

with the system (all clients must be changed).

Thus, we propose a joint solution which mixes load balancing with overload

avoidance. Our solution meets the pre-specified target CPU utilization of the servers

while simultaneously balancing the load proportionally to their CPU availability.

Moreover, since the control intelligence is in the load balancer, our solution requires

no change to the clients or the servers.

6

Chapter 3

Related Work

This dissertation considers the problem of distributing low priority requests across

a set of servers while keeping CPU utilization imposed by such requests within a

given target. This is necessary since servers must be ready to handle sudden high

priority demands, not subject to the load balancer. Thus, our work is related to

load balancing and to dynamic provisioning of resources, and in the following we

comment on both research topics.

3.1 Load Balancing

The work of [7] provides a good survey of the available load balancing algorithms.

We use that survey as a reference and comment on the most relevant algorithms

below.

Load balancing algorithms can be basically classified into two classes, static and

dynamic. Static algorithms consider only nominal resources available on the servers,

such as processing power and memory, while dynamic algorithms consider run-time

characteristics, such as the actual load imposed on the server - as is considered by

our proposal.

The main advantage of static algorithms is their simplicity and fast execution

at run time, because all data considered is available beforehand and no complex

operations are needed when the system is running. However, they do not adapt to

the system dynamics.

Dynamic load-balancing algorithms have the advantage that they can adapt to

changes in load or to changes in the availability of resources of each server at run

time, but this comes at the expense of extra communication and/or computation

overhead.

The dynamic load balancing algorithms can be centralized, decided by a single

balancer, or distributed, involving the participation of many different processors.

Centralized approaches are very simple, but suffer from bottleneck and have a single

7

point failure. Distributed load balancing algorithms are free from these problems,

but are more complex and sometimes require non-trivial communication among

participants.

Distributed dynamic load-balancing can be cooperative or non-cooperative. In

the latter type, a balancer makes decisions autonomously, without taking into con-

sideration the rest of the balancers decisions. In cooperative systems, the balancers

act as a team and each one has the responsibility to execute its own part in order

for the whole system to achieve its global goal.

We comment on some of those algorithms below, focusing on centralized load-

balancing systems, because these are more related to our scenario.

3.1.1 Static Algorithms

A Randomized algorithm randomly selects a server to process a request. It is a very

simple algorithm, but it does not consider the availability of resources of the server

being selected. This may result in the overloading of servers and unnecessarily long

response times. The works of [1] and [2] present load balancing mechanisms to many

different low-level contexts, such as NAT and Virtual IP Addresses using a weighted

random approach.

The Round Robin algorithm assigns requests to servers in a rotating manner.

The load balancer starts with any random server and the subsequent requests are

then served in a circular order. If the requests are not homogeneous, some servers

may become much more loaded than the rest.

Weighted Round Robin is a modified version of Round Robin which considers

the differences in nominal characteristics of the servers. If a server has twice the

processing power of the others, the load balancer will assign two requests to this

server for each request assigned to the weaker ones. It suffers from the same problem

as the original Round Robin - if requests are heterogeneous, a server may become

much more loaded than the others.

3.1.2 Dynamic Algorithms

Active Monitoring Load Balancing (AMLB) Algorithm maintains information about

each server and the number of requests currently allocated to them. When a request

arrives, the balancer chooses the least loaded server. As the choice of server only

considers its current load and not its processing power, the processing time of some

requests may suffer and violate QoS requirements.

Weighted Active Monitoring Load Balancing Algorithm is a combination of

Weighted Round Robin and Active Monitoring Load Balancing Algorithm. In this

algorithm different weights are assigned to the servers, considering their processing

8

power capabilities. The requests are assigned to the least loaded servers according

to their capabilities. It thus tries to solve the disadvantage of the Active Monitor-

ing Load Balancing Algorithm by considering also the processing power of available

servers.

Join-Idle-Queue is an algorithm proposed for dynamically scalable web services.

This algorithm provides large scale load balancing with distributed dispatchers by

removing the load balancing work from the critical path of request processing. It

decouples the discovery of lightly loaded servers from job assignment, so that a

balancer, when receiving a request, already knows the available servers beforehand.

This is done as the idle servers inform the balancers when they become idle. This

removes the load balancing work from the critical path of request processing [3]. This

algorithm is proposed to solve problems in distributed load balancing scenarios with

many balancers, which makes it more complex, because the servers need to decide

which balancer(s) to inform. However, as our scenario deals with a centralized

balancer, we will not comment on those details.

The Weighted Least Connection (WLC) algorithm sends load to the server with

the smallest number of connections. However, this number may not accurately reflect

the actual load on the server and the algorithm does not take into consideration the

capabilities of the server, such as storage capacity, processing power and bandwidth

[8].

Exponential Smoothing Forecast based on Weighted-Least Connection (ESB-

WLC) is proposed by [9], an improvement to the WLC algorithm which considers

a metric mixing usage of CPU, network, memory and disk. The algorithm, having

measured past values for such resources, predicts the next value for each server and

sends the load to the one with the smallest value. ESBWLC takes advantage of all

historical data and, based on exponential smoothing, distinguishes them through

the smoothing factor to let recent data make a greater impact on the predictive

value than long-term data.

Join-Shortest-Queue algorithm sends an arriving request to the server with the

smallest queue length. The work [5] proposes a load balancer which modifies JSQ

and which would work for brownout applications, where servers have the ability to

provide as response only part of the content being requested, in order to adapt and

to guarantee response times when the load is high. They propose a modification by

adding an offset to the queue length of the servers based on their current length.

They actually define which server should have the virtual shortest queue length,

resulting from the sum of the actual queue length with the offset, which will then be

chosen by the standard JSQ algorithm. For the offset calculation, they propose a PI

controller, which reads the current length and uses it as the feedback measurement.

Thus, they use the offset as the control action and the queue length as the controlled

9

variable. Their solution is general enough so that non-brownout applications are seen

as a particular case and can also be handled by the load balancer. The only difference

made for the brownout case is that the controller takes into consideration not only

the queue length but other measurements related to the brownout algorithm being

utilized. In the non-brownout case, their PI controller considers only the queue

length and in fact becomes an integral-only controller, like the one we propose, but

they only provide empirical values for their tuning.

These algorithms are related to the our proposal, but they all consider a different

problem. In our scenario, we must decide not only which server is the best candidate

for an arriving request, but also if any of the servers should receive the request at

all! The servers may be too busy handling high priority demands and thus the load

balancer may have to block the low priority requests. In other words, we perform

not only load balancing, but also flow control, which provides or takes resources

from an application depending on the state of the other. In this sense, our scenario

and proposal also has similarities with dynamic resource provisioning.

3.2 Dynamic Resource Provisioning

Dynamic resource provisioning is a highly researched subject nowadays, triggered

mostly by large Cloud data centers and Big Data processing. In order for user ap-

plications to scale properly, more resources must be allocated to them when their

load increases. However, the allocation should also be cost-effective and should not

allocate more resources than needed. Thus, a lot of research has been done on auto-

matic scaling techniques which can guarantee the SLA (Service Level Agreement) for

the user applications cost-effectively for both the user and the Cloud provider. We

comment on such mechanisms that leverage feedback/feedforward control methods,

as our work also uses this methodology. Still, many current commercial services only

provide elasticity mechanism with thresholds and parameters left to the users, who

most probably cannot make those choices optimally and are usually more focused

on the application details.

The work of [10] mentions the difficulties of dynamic resource provisioning tech-

niques based on thresholds or reinforcement learning when applied to real systems.

They emphasize the fact that dynamic resource provisioning turn back to core con-

cepts of automatic control - controllability, inertia, gain and stability. They summa-

rize learned lessons mentioning good practices to be followed by automatic control

algorithms - for example, that the time delay between two decisions must be long

enough for the performance to stabilize to its new expected level, as we mention in

chapter 4.

Automated control for elastic storage is the subject of the research in [11]. They

10

specifically deal with common problems in control applications, such as actuator

delays and interference in measured signals. A classic integral controller is chosen

as their control policy - very similar to our choice-, with the addition of a dead band

around the setpoint to deal with the oscillation which may be caused by the discrete

actuator.

Many papers have proposed dynamic provisioning algorithms for Cloud resources

based on classical control theory. The work of [12] proposes a controller which uses

a Proportional-Integral feedback and an adaptive feedforward methods to guaran-

tee the SLA of general Cloud services, while [13] propose an adaptive PI controller

to control the mean round trip time for N -tier web applications. A proportional-

derivative algorithm is proposed by [14] for scaling the application server tier and

have deployed a prototype implementation in the Amazon Elastic Compute Cloud.

The work of [15] proposes a controller which mixes classical PI feedback with a feed-

forward controller to scale horizontally a cluster of key-value datastore and evaluate

their algorithm on a Voldemort deployment.

Other researches, while not proposing classical control algorithms, have also

based their proposal on feedback control theory. The work of [16] proposes an algo-

rithm based on an adaptive feedback controller for the allocation of cloud resources.

The work of [17] proposes a control algorithm based on classic feedback and feedfor-

ward methods to scale automatically the number of nodes in a MapReduce cluster

in order to guarantee a certain level of performance. They propose a dynamic model

that predicts MapReduce cluster performance based on the number of nodes and

the number of clients and, based on this model, they propose a controller based on

classic feedback and feedforward methods.

The papers above, however, assume there is always more available resources that

can be allocated to an application in order to maintain its SLA. This is a reasonable

assumption in many cases, but our problem considers a small pool of resources which

must be shared between applications with different priorities, and when a resource is

allocated to handle a request, it immediately interferes with the other requests. This

is the main difference between this work and the current literature. It is also worth

noting that in our scenario only low priority demands are subject to control, with

high priority demands arising arbitrarily to servers. Last, we should note that the

majority of the control-based proposals we mentioned use empirical tuning values

with no insight as to how they can be obtained, while we try to show how the tuning

must be changed if the certain conditions of the problem vary.

11

Chapter 4

Proposed Load-balancer

We design a load balancer which does not simply distribute load equally among

servers. Instead, it dispatches requests according to the servers’ CPU availability,

measured by an out-of-band feedback channel.

4.1 Balancing mechanism

The balancer has a single request queue, from which requests are taken, bundled and

sent to the servers (see Figure 1.1). The queue is accessed in parallel by different

threads, one for each server.

The requests are bundled so that the network resources are more efficiently used

and so that the long RTT ≈ 20 ms does not limit the rate of request service.

The balancer sends bundles one at a time. When the balancer completes sending

a bundle, it waits for the server to respond to all requests in that bundle before

sending another one.

Since the flow of requests to a server at time instant t depends on both the

number of requests Nt in a bundle and the interval between bundles, we could

control the rate by varying either of those values.

We could try to control the flow of requests by choosing a fixed time period of

tr and by sending to a server bundles with a varying number of requests, Nt, every

tr seconds. This scheme would make the balancer start counting the elapsed time

right after sending a bundle of requests so that, when receiving the responses, it

could know how much to wait until tr elapsed, allowing it to send another bundle.

Considering that a request takes tp seconds to be processed, this would work well if

the time necessary to process all Nt requests in a bundle, Nttp, was smaller than tr

- the balancer would only need to wait a period equal to tr −Nttp. However, as Nt

varies, we could face problems when Nt increases and the time necessary to process

all the requests becomes larger than tr. If that happened, we would not be sending

12

Nt requests every tr time units anymore. Thus, we could not control the flow of

requests in this manner.

In order to have a known flow of requests to a server, we choose to vary the

number of requests in a bundle, Nt, and we make the balancer wait for a fixed time

period td after the arrival of the responses for the last bundle of requests: it waits for

more td seconds after receiving the responses, and only then sends another bundle.

Thus, we control the flow of requests by varying Nt while using a fixed delay

parameter td.

The number of requests per bundle that can be sent to each server, Nt, is defined

by its own controller. The control is not performed jointly, but occurs independently

for each server, following the same control algorithm.

4.2 Controller

In order to decide how Nt should vary for properly controlling the CPU utilization

of a server, we propose a Integral Controller, a variation of the vastly used PID,

Proportional Integral Derivative, using only the integral action.

Usually, control problems are basically split into two categories, disturbance

rejection and command tracking. The goal of our balancer is the latter: to increase

slowly the CPU utilization of the servers due to low priority requests until a budget

is reached.

Once the flow to a server is at the target, we do not intend to actually keep

the total CPU utilization regulated at that value at all times, because that would

mean rejecting the “disturbances” caused by high priority load. If that was the

goal, other kinds of controllers would be more appropriate, such as PI controller for

example. However, in our case we could never do that kind of regulation, because

high priority requests shall not be controlled at all and we have no power over them.

So, our integral controller will actually react to “disturbances”, but will not react

to them as if it intended to quickly regulate the CPU utilization at all times.

An integral-only controller is sufficient for our goal and, due to its simplicity, this

controller is easier to understand, model and operate, as it needs fewer parameters

than the full PID variation or other more complex control algorithms. Moreover, it

is also a goal of our work to show with simple models and intuitive reasoning how

to find the parameters of the controller.

After designed, the load-balancer is going the need operational adjustments to

tune the controllers when the characteristics of the servers change. Thus, simplicity

and ease of understanding greatly facilitates its operation.

We thus use a discrete-time integral controller for each server, which varies the

flow of requests served by updating its control decision variable Nt, the number

13

of requests per bundle. The controller updates its decision every ts seconds, after

having a new feedback measurement of CPU utilization, Ct, trying to control its

value at C∗ :

Nt = Nt−1 + g(C∗ − Ct−1) (4.1)

Then the only tuning we need to do is to choose properly the single parameter

g, commonly called controller gain, which tells the controller how much to change

its decision based on the difference between the target C∗ and the current value of

CPU utilization.

4.2.1 Modeling and Tuning

We propose a controller tuning which shall be applied independently to every server.

Thus, we note that every parameter mentioned applies to a single controller instance,

designed for a specific server. And every reference we make from now on to variables

related to time shall be considered in the controller frame of reference.

In order to control the CPU utilization, we measure it at a constant frequency,

taking samples every ts seconds, which is the minimum time interval necessary for

the measured value to change. Moreover, the controller also updates its control

decision once every ts seconds. The measurements are taken using the complement

of a classic Linux administration metric, “CPU idle”, which is calculated as a moving

average over the last minute. Also, it was found experimentally that this metric does

not change significantly in a period smaller than 5 seconds, so we chose ts = 5 -

which is much greater than RTT ≈ 20ms. This measurements normally do not

impose any significant load on the servers, and their impact is even smaller with

this sampling period of many seconds.

If the controller decision-making period is smaller than ts, then it will see the

same previously measured value and may prematurely change its decision. On the

other hand, if takes longer, it may unnecessarily delay its reaction to changes in

CPU resources availability.

In order to design the controller, we first determine a simple model of the steady-

state relationship between CPU utilization of an idle server and the number of

requests received with each bundle. This simple model assumes the CPU is idle

- which is the case most of the time within our assumptions, as the high priority

applications only runs sporadically.

Using this assumption, we estimate the CPU utilization through the ratio be-

tween the time spent processing a bundle of requests and the total time between the

receiving of two consecutive bundles.

Let Ct denote CPU utilization at time t, Nt the number of requests in a bundle

14

Figure 4.1: Comparison between model prediction and real system behavior (CPU
utilization as a function of number of requests sent periodically).

at time t, tp the time required to process a single request, and td the delay period

the balancer waits after receiving the responses of the last bundle. With those

definitions we have the following ratio:

Ct =
Nttp

td + Nttp
(4.2)

where we have assumed that the network delay is negligible when compared to td

and to the time required to process the whole bundle of requests, Nttp.

Note that this is a steady-state model, while in practice there is a one-minute

moving average dynamic relating a change in the number of requests per bundle to a

change in the measured CPU utilization, which we need to consider when tuning the

controller. Note also that tp may be different across a set of heterogeneous servers,

and hence the model can be adjusted for each case.

Figure 4.1 shows the predicted value and the actual measured value of CPU

utilization (in steady-state) as a function of the number of requests sent to the

server, indicating a very good agreement, in particular when the number of requests

is small. As the number of requests increases, the model assumption starts to

be violated as the time required to transmit the requests become less negligible.

Nonetheless, the model prediction is still in good agreement, and this simplified

model has proved to be a good enough approximation for our purposes.

With the model relating Ct to Nt, we can evaluate how much N should vary

in order for C to vary a desired amount. In particular, assuming a first-order

15

approximation of C as a function of N , we have the following:

Ct − Ct−1 = (Nt −Nt−1)
dCt−1

dNt−1

= (Nt −Nt−1)
d

dNt−1

(
tpNt−1

td + tpNt−1

)
= (Nt −Nt−1)

tptd
(td + tpNt−1)2

(4.3)

Now, considering that C is measured by a moving average, we cannot expect to

control C by making it vary the desired amount faster than the window over which

the average is calculated, tw, and this is considered by the tuning.

Our controller thus tries to make Ct approach C∗, the CPU utilization set-point,

by varying N through a process which takes place in an interval proportional to the

time window tw. In other words, the controller should take longer to achieve the

reference if tw is long, and make smaller variations to Nt.

Note also that, since the controller only updates its control decision when it

receives a feedback sample, once every ts seconds, the variation its control action

should be proportional to ts. If samples are not taken frequently, the measured

CPU utilization shall have varied more from one sample to another, and then the

controller needs to be more intense each time it has a chance to act.

With that reasoning, we come to the conclusion that Ct should approach C∗ by

a fraction ts
tw

of the difference C∗ − Ct−1 every ts seconds:

Ct − Ct−1 = Nt = Nt−1 + g(C∗ − Ct−1) (4.4)

= (Nt −Nt−1)
tptd

(td + tpNt−1)2

This yields a integral controller which, at each instant t taken discretely once

every ts seconds, increments the allowed number of requests in each bundle to a

server based on a fraction of the difference between the reference CPU utilization,

C∗, and its current measured value:

Nt = Nt−1 + k
ts
tw

(td + tpNt−1)
2

tptd
(C∗ − Ct−1) (4.5)

= Nt−1 + gt(C
∗ − Ct−1)

This controller is adaptive and non-linear, as it adjusts the fraction of the mea-

sured difference used for the control action increments depending on the current

control action value. So, g in 4.1 is fact varying in time and becomes gt - this

adaptation is sometimes called gain-scheduling.

The parameter k = 0.6 was chosen experimentally in order to main the controller

16

response stable. The experiments have shown that if k > 0.6, there is an overshoot

of the target CPU utilization, which is not desired according to our goals.

Note that, although there is an experimental parameter in the proposed tuning,

the modeling we have shown provides an intuitive way to evaluate how the tuning

should vary if the characteristics of the servers change. In fact, chapter 6 shows that

the controller dynamics work equally well in different scenarios if k is maintained

constant and tp varies to reflect the server processing power.

Finally, note also that this controller can be extended to handle different kinds

of requests, each one with a different processing time, as long as these times are are

known in advance by the balancer so that the tp can be adjusted in real-time as

requests are received. Moreover, the same mechanism can adjusted for controlling

some metric related to IO resources instead of CPU utilization.

17

Chapter 5

Deployment in Real Scenario

The proposed load-balancer algorithm was implemented in a proxy actually deployed

in a real scenario. This proxy is being used in the biggest Oil and Gas company

in Brazil to provide access to a remotely distributed and replicated database for

multiple real-time monitoring applications.

The load-balancing mechanism was implemented as part of a proxy which re-

ceives requests from the client applications and dispatches them to the available

servers.

In summary, these are the services which are provided by the implemented proxy:

1. Caching - if two clients make the same request in a small period of time, the

last client receives a copy of the response received by the the first client; in

the same manner, if the same client repeatedly makes the same request during

the cache expiration interval, it will receive a copy of the response obtained.

2. Request Grouping - as the clients are independent, they make their requests in

an asynchronous way, and that could lead to many small packets being sent to

the remote servers. Thus, the proxy waits for the the arrival of requests until

a timer expires, groups the received requests and then sends the bundle to a

server. As this waiting adds delay to responses, the timer should be set prop-

erly. For our monitoring application, there is no strict timing requirements,

and the timer is set to expire in 2 seconds.

3. Flow Control - in order to prevent the overloading of any server, the proxy

monitors the CPU utilization of each server and controls the flow of requests

they receive

4. Load-balancing - the requests are distributed among the servers obeying the

flow control.

18

5.1 Architecture

The general architecture of the system is described by figure 5.1.

The components inside the Proxy are different classes in a Object-Oriented archi-

tecture used for the actual implementation of the Proxy software, which is described

in section 5.6

5.2 Servers

The machines which have the real-time database containing the values of the vari-

ables to be monitored run legacy software on top of OpenVms operating system.

The real-time database in this case does not provide an interface for remotely

accessing those variables through a TCP/IP network. The only interface natively

provided to this database is local, through calls to a C API.

An application was implemented in order to receive requests from remote clients

and then issue the local call to the database on the same machine using the C API.

This application listens on a given TCP port, through each it serves the requests

of the remote clients. It is this server application which we refer to as the ”actual

server” that receives requests from the proxy/load-balancer.

As the main task of the machine on which our server runs is to serve another

higher priority application, we chose to implement this server as simple as possible,

consuming very few resources, as a single-threaded TCP server which only translates

remote requests to local calls to the C API. Also, we consider the OpenVms operating

system to be an environment not very programming-friendly, so we chose to leave

all the complexity for the proxy, which runs on Linux.

When the server queries locally the value of a variable through the C API, it

makes a call to the database passing the id of the variable as the parameter. In the

Oil and Gas industry, this id is more commonly known as “tag”.

The local database C API is tag-oriented and only accepts a single tag as param-

eter. Thus, remote calls to this API would be very inefficient, as many calls would

be needed in order to read a great number of variables.

We created a simple wire-protocol for communication between remote clients and

the server which is also based on tags but which can handle requests for many tags

in a single call, in order to more efficiently use the network resources.

5.3 Wire-Protocol

The Proxy communicates with both the clients and the servers utilizing the same

protocol. Thus, clients could communicate directly with the server, but the proxy

19

Figure 5.1: Proxy architecture in which the load-balancer is implemented

20

works as a transparent bridge to provide the aforementioned services - it does not

work as gateway, which would make a translation between protocols.

As the servers run a C application on OpenVms, which does not have many

available tools, we needed to create the communication solution from a very a low

level of abstraction, through the use of Berkeley TCP sockets.

The ”wire-protocol” used over the TCP socket is very simple and character-

oriented. We created this wire-protocol based on JSON, which is not as bandwidth-

efficient as a binary protocol would be, but is more efficient than XML and is also

very friendly to use and debug. Moreover, JSON is a very commonly used format

nowadays and has many available tools to facilitate implementation.

In summary, the wire-protocol is composed by a request message, which contains

a ordered list of the tags being requested, and a response message, which contains

a list of responses in the same order as the corresponding requests.

5.4 RESTful interface

As the servers run a C application with very few tools for communication, their

interface had to be implemented through TCP sockets. On the other hand, the proxy

was implemented on a Linux machine with all the tools available in a productive

programming environment. Thus, we also created a different and optional interface

in order for the clients to communicate with proxy in a easier way.

A RESTful interface was implemented to enable client applications to easily

make requests to the proxy through a simple HTTP GET method - which can be

made with a single line of Python code using the ”requests” module, for example.

The interface was implemented using PHP and an Apache server which had al-

ready been deployed for other uses. The PHP code receives the list of tags requested

as parameters of the HTTP GET method and then sends a message containing the

same requests to the proxy using the low-level wire-protocol we defined. Thus, this

code behaves a server for the RESTful interface but as a client of the proxy.

We used the Apache server for implementing the RESTful interface because it

was already being used and had already taken port 80. So, any other way would

require clients to change the port of their HTTP request. Moreover, using the

Apache server we obtained also other advantages it already provided such as logging,

access control etc.

5.5 Clients

The proxy was deployed in a Service-Oriented-Architecture, so that each software

concentrates on its own task, providing solutions as services not tightly coupled to

21

others. Thu, services can be mixed to compose different solutions, and an application

can behave as a client of a service but as a server of other.

Any application that wants to query the real-time values of the process variables

on the remote servers will issue requests to the proxy and then behave as its client.

A browser can query the values of a list of tags and show them for the user,

behaving as a client to the RESTful interface, which is provided by the Apache

Server. On the other hand, the Apache server behaves as a client of the proxy itself.

A monitoring and trending application queries the RESTful interface periodically

to store historical data, behaving as a client. But This kind of client behaves as a

server when providing those stored values to other applications.

5.6 Proxy

The proxy was implemented in Python due to its readability and productivity.

An Object-Oriented architecture was used, with a class for each component show

in figure 5.1 and summarized below.

Channel handles the low level details of a TCP connection through a socket and

does the reading and writing of messages. It is used by Clients and Servers, the

classes which communicate with their real counterparts.

Interpreter takes the messages delivered by a Channel and interprets them using

the conventions of the wire-protocol we defined. It then transforms those messages

into Request or Response objects, which will be handled by the Dispatcher. The

Interpreter is a Singleton and it is used by every class which has a Channel connec-

tion.

Request is a query for a tag and is created from the interpretation of a request

message containing a list of tags, which is split by the Interpreter. The Request

objects can then be dispatched in different ways and end up being serviced by

different servers. Thus, a request message to a Server may contain Requests from

different clients and be different from any of the request messages individually issued

by them.

Response is the result of a Request, containing the current value of a tag. It is

created from the interpretation of a response message coming from an actual server,

which contains the results of queries which were possibly issued by different clients.

This list is split into independent Response objects by the Interpreter, which can

then be handled and delivered to the correct Clients.

Client is a virtual representation of an actual client. It receives through a Channel

a message sent by a client application and uses an Interpreter in order to transform

them into Requests. It then handles these Requests to the Dispatcher. When it

receives the Responses, it transforms them into a message using the Interpreter and

22

sends it back to the Client through the Channel again.

Cache stores the values for which resulted from the last Request of each tag

and its time-stamp. It is queried by the Dispatcher for every new Request. The

Dispatcher only puts a new Request in the Queue if the Cache does not have a valid

value for it.

Dispatcher receives the Requests which could not be resolved by the Cache and

puts them into the Queue, where they will wait to be serviced by one of the Servers.

Queue is used by the Proxy to store the Requests which need servicing. The

Servers take Requests from the Queue obeying the rate given by their respective

Controllers. The Servers take Requests from the Queue in parallel, and this is the

way the load is balanced among them.

Server is the virtual representation of an actual server. It takes Requests from

the Queue, transforms them into a message using the Interpreter and sends them

through its Channel, doing the opposite when they receive a message from the actual

server.

Controller is owned by a Server instance to evaluate how great is the allowed

flow of Requests. It implements the integral control algorithm for each Server and

can be tuned differently for each one of them. It is an application of the Template

Method Pattern.

Monitor is owned by a Controller and used to obtain the feedback measurements

of CPU utilization of the respective Server. It is implemented using the Zabbix-

Get tool, which reads the data from Zabbix-Agent installed on the same operating

system as the actual server. Changing this class will change the feedback metric

used by the Controller.

5.7 Communication Pattern

The communication between a Client and the Proxy is synchronous: a Client sends a

message containing its Requests and waits until a message containing all Responses

is received.

The communication among the Proxy and Servers is asynchronous, using the

Queue. The Proxy puts Requests in the Queue and then the Servers, right after

delivering the Responses of their last group of Requests, get new Requests from the

Queue in a flow rate defined by the Controller.

23

5.8 Controller

5.8.1 Feedback Metrics

In order to implement the feedback mechanism, a Zabbix Agent was installed on

the servers to provide metrics regarding the availability of CPU resources. This

feedback measurement solution is simple and Zabbix is a vastly used tool for network

monitoring.

We have used classic Linux administration metrics, provided by Zabbix, such as

“CPU load” and “CPU idle”, for measuring the available CPU resources. The metric

“CPU load” measures the average number of process in the scheduler queue and has

a correlation with CPU utilization but does not actually measure it, so we did not

have good results with that metric. All the results we show illustrate experiments

using only the “CPU idle” metric Cidle, whose complement, 100% − Cidle, we used

as “CPU utilization”.

5.8.2 Integral Wind-Up

One detail worth mentioning regarding the implementation of the integral controller

is that, by default, this kind of controller would infinitely increment its control

decision Nt if there was no load. This would happen because the controller would

try to achieve the CPU utilization target, C∗, while there is nothing to be processed

in order to vary the CPU utilization measurement Ct - a common problem to integral

controllers and usually called Integral Wind-up.

To prevent Integral Wind-up, we stop the execution of the control algorithm for

a server if a given threshold time interval has elapsed since the last time a request

was handled by the load balancer for that server - the threshold was set to three

times the period used for sampling and updating the control action, ts.

24

Chapter 6

Results and Discussion

We implemented the proposed load balancing mechanism and evaluated its perfor-

mance in a controlled environment consisting of four Linux machines: a client, the

load balancer, and two servers. We report on actual resource usage as reported by

Zabbix, a common Network Monitoring tool. In particular, the load balancer ma-

chine runs a Zabbix poller, and the other machines run Zabbix agents that report

the values for CPU utilization and network bandwidth.

In all experiments, we use the fixed constant k = 0.6 in 4.5, found experimen-

tally - we started with k = 1 and decreased it until there was not overshoot, for

guaranteeing the stability of the controller.

6.1 Comparison with Round Robin for Homoge-

neous Servers

We evaluate and compare with the performance of a slightly modified round robin

load balancer. This modifications sets a limit to the maximum request rate sent

to each server in order to respect the target CPU utilization - using equation 4.2.

However, this limit is computed assuming the servers are idle and is fixed - no

adjustments to the maximum rate is performed during the experiments. Note that

this modification avoids overloading any individual server when idle, allowing for a

more direct comparison with our proposal.

We consider the following parameters: Target CPU utilization for the low priority

requests of 15% (C∗ in the model), time window over which the CPU utilization is

measured is 1 minute (tw in the model), and sampling period is 5 seconds (ts in

the model). Thus, the proposed controller repeatedly calculates, based on feedback

values received every 5 seconds, the maximum request rate that can be allowed so

that the CPU utilization does not violate the target.

Two different scenarios are considered for the evaluation and comparison of the

25

load balancing mechanisms: infinite load and limited load for low priority requests.

In the infinite load scenario, the client makes low priority requests as fast as possible:

a single message with a large number of requests is sent to the load balancer and,

as soon as the response message is received, another message with many requests

is sent. This scenario evaluates the controller response more directly, since there

is always enough demand to achieve different values of CPU utilization. In the

limited load scenario, the client periodically sends a message with a limited number

of requests in a rate that is not enough to reach the target CPU utilization when

the servers are idle.

6.1.1 Infinite load scenario

In this scenario we start at time t = 0 with the two servers idle (no high priority

traffic), and thus receiving and processing low priority requests. At time t = 4

minutes, a high priority demand arrives to Server 0, generating a CPU utilization of

25%, which lasts until time t = 9 minutes. Server 1 never receives any high priority

demands.

Figure 6.1 shows the behavior of the two servers under the modified Round Robin

policy. Note that the computed maximum request rate keeps the CPU utilization

of the servers on target when servers are idle (until t = 4 minutes), balancing the

requests equally among the two servers (note that incoming traffic to each server

is 25Kbps). However, there is no reaction to the high priority demand, at time

t = 4 to Server 0, and the load balancer maintains the request rate to both servers.

Thus, it continues to impose a CPU load on Server 0 with low priority requests

while high priority demand is processing and generating CPU utilization above the

target. When high priority load finishes at time t = 7 minutes, the servers return

to the target CPU utilization.

As a result of not existing any feedback mechanism to react to extra high priority

load, the client keeps sending requests at the same rate, as shown by figure 6.1.

Figure 6.2 shows the behavior of the same scenario with the proposed load

balancing controller. Note that until time t = 4 minutes the behavior is very similar

to round robin policy, with the controller meeting the target CPU utilization and

equally dividing the requests among the two servers (note incoming traffic to each

server). However, when high priority demands arrive to Server 0, the controller

reacts by reducing the low priority traffic, allowing the CPU to essentially exclusively

handle the high priority demand, which demands 25% CPU utilization. Note that

low priority traffic to Server 0 reduced from 25Kbps to 5Kbps. When high demand

is over, at around time t = 8 minutes, the controller ramps up the low priority

request rate to meet the target CPU utilization, at 15%.

26

As expected, the controller does not increase the request rate of Server 1, in

order to compensate the the low request rate sent to Server 0. Note that Server 1 is

already at its target CPU utilization, and thus cannot handle a higher request rate.

As a consequence, the client must wait more, as requests previously handled by

Server 0 are not being dispatched. Indeed, at time t = 4 we note that the delay

between requests leaving the client increases (recall that client run an infinite request

loop). At around time t = 10 the delay between requests return to original values.

Thus, the proposed controller is effectively shielding the servers, pushing back to

the client the dynamic adjustments in the request rates.

6.1.2 Limited load scenario

In this scenario the client application generates low priority requests periodically

(at a fixed rate) such that the CPU load imposed on the servers is below the target

of 15% (when servers are idle). However, this CPU load surpasses the target when

high priority demands arrives to the servers.

At around t = 3 minutes, high priority demand arrives to Server 0, generating a

CPU load of about 25%, which finishes at around t = 8 minutes.

Figure 6.3 shows the behavior of the round robin policy, which as expected does

not react to the sudden increase in load. The policy continues to dispatch requests

to both servers equally, demanding CPU resources from Server 0, and thus reducing

the CPU available to process the high priority demand.

Moreover, as the request rate is not being reduced, there is no modification to

the client behavior.

As expected, the proposed mechanism behaves quite differently, as shown in

Figure 6.3. In particular, the controller reacts to the increase in load in Server 0 by

decreasing its low priority request rate, making available the needed CPU resources

to process the high priority demand.

As the CPU utilization of Server 1 is still below the target, the load balancer

increases the low priority request rate to that server. As a result, Server 1 absorbs

the load that cannot be handled by Server 0, while meeting its target CPU utilization

(of 15%). Note the increase in the network traffic to Server 1. At time t = 9 when

high priority demand on Server 0 finishes, the controller again adapts and places part

of the low priority request rate from Server 1 back to Server 0, equally distributing

the load.

Interestingly, the reallocation of the client request rate from Server 0 to Server

1 allows the client to maintain its original request rate. The Client traffic remains

unchanged while load is shifted from Server 0 to Server 1 by the load balancer. The

client is totally shielded from such dynamics on the servers, illustrating another

27

benefit of the proposed controller.

6.2 Results for Heterogeneous Servers

Having shown a comparison between our balancing mechanism and the classic Round

Robin, we now show how our controller and load balancer perform in an infinite load

scenario with heterogeneous servers.

6.2.1 Different CPU Utilization Targets

First, we show the behavior of the controller in a scenario with two equally capable

servers which, however, have been configured with different CPU utilization targets.

Figure 6.5 shows that, after the servers start receiving requests, the controller

makes sure their CPU utilization stabilize around their respective targets even

though they are different. We can also see that the dynamics involved in the con-

trol process is the same for both of them, as both CPU utilization metrics stabilize

around their target in about 2 minutes.

The controller is adaptive and adjusts its integral factor accordingly, as men-

tioned in 4, so this behavior was expected, and the experiments confirm that its

performance is not dependent on the CPU utilization target and not restricted to

any operating point.

After stabilizing, around t = 4 minutes, Server 0 receives an extra load which

would alone occupy 25% of CPU resources. The controller then reacts and decreases

the low priority load sent to that server, bringing the CPU utilization back to the

target. Thus, the controller prevents the overloading of the server without ever

stopping the low priority requests completely.

In the meanwhile, Server 1 remains unaffected and cannot handle any more

requests.

As a result, the time it takes for the Client to have his requests served increases.

6.2.2 Different CPU Processing Power

Now we show the behavior of controllers for two different kinds of servers, one with

more processing power than the other - Server 1 has three times the processing

power of Server 0.

Figure 6.6 shows that each controller brings its own server to the target CPU

utilization, even though the servers have different processing power.

As mentioned in chapter 4, each controller is tuned with the correct parameter tp

for its own server, so that its control action is adjusted to the server’s characteristics.

In this case, tp for Server 1 is one third of tp for Server 0 - meaning three times the

28

processing power. Thus, the controller for Server 1 increases the flow of requests in

greater increments, considering a greater fraction of the error C∗ −Ct every time it

acts.

As we can see, the difference in processing power is then finally reflected by the

stabilized flow being about three times greater for Server 1.

At t = 4 minutes, Server 0 receives an extra load which would alone occupy

25% of CPU resources. However, this time the CPU utilization target is set to 15%,

so the controller decreases the flow but still cannot reach the target. This makes

the flow of requests to Server 0 cease - the measured incoming traffic is background

traffic for feedback measurements etc.

In the meanwhile, Server 1 remains unaffected and cannot handle any more

requests.

As a result, in this experiment the behavior of the latency to the Client is dif-

ferent. Instead of the time between client requests increase when one of the servers,

Server 0, cannot receive any more flow, it decreases between t = 7 and t= 11. This

happens because the Client only issues another bundle of requests when it has re-

ceived the answers for the last one and because the load-balancing mechanism does

not take into account the time each request would take to be processed by each

server.

When both servers are available, they receive their respective share of requests

from a client bundle, and the slowest server, Server 0, becomes a bottleneck, because

the Client has to wait for its slow response. On the other hand, when only server

1 is available, it can process all requests by itself, which takes less time due to its

greater processing power.

As a consequence, the client graph during this experiment looks like the comple-

ment of the the graph for the experiment with different CPU targets.

29

Figure 6.1: Results under modified round robin and infinite load - Server 0 (top),
Server 1 (middle) and Client (bottom)

30

Figure 6.2: Results under proposed controller and infinite load - Server 0 (top),
Server 1 (middle) and Client (bottom)

31

Figure 6.3: Results under modified Round Robin and finite load - Server 0 (top),
Server 1 (middle) and Client (bottom)

32

Figure 6.4: Results under proposed controller and finite load - Server 0 (top), Server
1 (middle) and Client (bottom)

33

Figure 6.5: Results under proposed controller and different processing targets -
Server 0 (top), Server 1 (middle) and Client (bottom)

34

Figure 6.6: Results under proposed controller and different processing power - Server
0 (top), Server 1 (middle) and Client (bottom)

35

Chapter 7

Conclusions

This dissertation presented a load balancing alternative based on closed-loop con-

troller for scenarios in which servers receive requests from different applications and

not all of them is subject to the same load balancer. This kind of scenario prompts

for the utilization of feedback measurement for effectively assessing the availability

of resources on the servers, and hence a feedback controller is useful.

In particular, in our scenario low priority requests traverse our load balancer

while high priority demands can suddenly arrive directly at the servers. So the load

balancer keeps CPU utilization arising from low priority requests within a specified

target and also distributes the load among the servers.

We propose a simple integral controller and its tuning, based on simple models

and intuitive reasoning about the scenario. An integral controller requires only one

parameter and is very easy to operate if the tuning needs to be changed. Moreover,

it is sufficient for our main goal which is to keep the CPU utilization due to low

priority requests within a budget.

A real implementation of the controller has been developed and used to evaluate

two different scenarios that illustrate that typical load balancing policies, such as

Round Robin, are not appropriate in this context. In contrast, the proposed mecha-

nism was shown to successfully adapt to dynamic changes to high priority demands,

reducing or increasing the load imposed by low priority requests, meeting the target

CPU utilization.

The control-based load-balancing algorithm we propose works for servers with

different processing power and CPU utilization targets. The results demonstrate

how the controllers can operate equally for those heterogeneous scenarios if the

proper parameter is tuned.

In the scenario with heterogeneous servers, the balancer does not consider the

time a request would take to be processed by a server when deciding which server

should receive it. We showed through an experiment that if part of the requests from

a client go to a significantly slower server, a bottleneck can arise and the requests

36

may take longer than they would if only the faster server processed them. In that

sense, the balancer we propose is not optimal.

In the specific scenario considered, CPU utilization was measured by a one-

minute moving average and thus the controller response had timing parameters

of the same order. In some situations, a one-minute time constant may not be

sufficient, but that is not a limitation of the proposed load balancing mechanism.

If CPU utilization is measured using a smaller time-window, then it is possible

to obtain a controller with faster response using the same design we proposed, by

simply properly adjusting the time constants. If it is not possible to measure the

variable to be controlled faster and there is a need for faster response times, the

same feedback mechanism we proposed could be used more sophisticated control

algorithms.

7.1 Future work

The development we have shown along with the results and discussions naturally

lead to some improvements and future work:

1. Auto-tuning: as the design of the controller used by the balancer needs tuning

the value of some constants, a possible future work is to automatically deter-

mine these constants using an on-line regression with recursive least squares

for example, establishing a relationship between the variation of measured

feedback values to the variation of the control signal.

2. Service time prediction: another improvement which can be made is to evalu-

ate the time a request would take to be processed by each server given their

current CPU resources availability and consider it when choosing which server

should receive it. This would help solve the expected problem illustrated by

the last experiment in chapter 6.

3. Priority Queue: an improvement can be made to the queuing policy so that

the requests have different priorities. This modification could be used jointly

with the modification above, so that higher priorities requests can be serviced

faster.

37

Bibliography

[1] PATEL, P., BANSAL, D., YUAN, L., et al. “Ananta: cloud scale load balanc-

ing”. In: ACM SIGCOMM Computer Communication Review, v. 43, pp.

207–218. ACM, 2013.

[2] GANDHI, R., LIU, H. H., HU, Y. C., et al. “Duet: Cloud scale load balancing

with hardware and software”, ACM SIGCOMM Computer Communica-

tion Review, v. 44, n. 4, pp. 27–38, 2015.

[3] LU, Y., XIE, Q., KLIOT, G., et al. “Join-Idle-Queue: A novel load balancing al-

gorithm for dynamically scalable web services”, Performance Evaluation,

v. 68, n. 11, pp. 1056–1071, 2011.

[4] ALI-ELDIN, A., TORDSSON, J., ELMROTH, E. “An adaptive hybrid elasticity

controller for cloud infrastructures”. In: 2012 IEEE Network Operations

and Management Symposium, pp. 204–212. IEEE, 2012.

[5] PAPADOPOULOS, A. V., KLEIN, C., MAGGIO, M., et al. “Control-based

load-balancing techniques: Analysis and performance evaluation via a

randomized optimization approach”, Control Engineering Practice, v. 52,

pp. 24–34, 2016.

[6] DÜRANGO, J., DELLKRANTZ, M., MAGGIO, M., et al. “Control-theoretical

load-balancing for cloud applications with brownout”. In: 53rd IEEE Con-

ference on Decision and Control, pp. 5320–5327. IEEE, 2014.

[7] SHAW, S. B., SINGH, A. “A survey on scheduling and load balancing tech-

niques in cloud computing environment”. In: Computer and Communica-

tion Technology (ICCCT), 2014 International Conference on, pp. 87–95.

IEEE, 2014.

[8] AL NUAIMI, K., MOHAMED, N., AL NUAIMI, M., et al. “A survey of load

balancing in cloud computing: Challenges and algorithms”. In: Network

Cloud Computing and Applications (NCCA), 2012 Second Symposium on,

pp. 137–142. IEEE, 2012.

38

[9] REN, X., LIN, R., ZOU, H. “A dynamic load balancing strategy for cloud com-

puting platform based on exponential smoothing forecast”. In: 2011 IEEE

International Conference on Cloud Computing and Intelligence Systems,

pp. 220–224. IEEE, 2011.

[10] DUTREILH, X., MOREAU, A., MALENFANT, J., et al. “From data cen-

ter resource allocation to control theory and back”. In: 2010 IEEE 3rd

International Conference on Cloud Computing, pp. 410–417. IEEE, 2010.

[11] LIM, H. C., BABU, S., CHASE, J. S. “Automated control for elastic stor-

age”. In: Proceedings of the 7th international conference on Autonomic

computing, pp. 1–10. ACM, 2010.

[12] LEONTIOU, N., DECHOUNIOTIS, D., DENAZIS, S. “Adaptive admission

control of distributed cloud services”. In: 2010 International Conference

on Network and Service Management, pp. 318–321. IEEE, 2010.

[13] XIONG, P., WANG, Z., MALKOWSKI, S., et al. “Economical and robust pro-

visioning of n-tier cloud workloads: A multi-level control approach”. In:

Distributed Computing Systems (ICDCS), 2011 31st International Con-

ference on, pp. 571–580. IEEE, 2011.

[14] ASHRAF, A., BYHOLM, B., LEHTINEN, J., et al. “Feedback control al-

gorithms to deploy and scale multiple web applications per virtual ma-

chine”. In: 2012 38th Euromicro Conference on Software Engineering and

Advanced Applications, pp. 431–438. IEEE, 2012.

[15] AL-SHISHTAWY, A., VLASSOV, V. “Elastman: autonomic elasticity man-

ager for cloud-based key-value stores”. In: Proceedings of the 22nd inter-

national symposium on High-performance parallel and distributed comput-

ing, pp. 115–116. ACM, 2013.

[16] ZHU, Q., AGRAWAL, G. “Resource provisioning with budget constraints for

adaptive applications in cloud environments”. In: Proceedings of the 19th

ACM International Symposium on High Performance Distributed Com-

puting, pp. 304–307. ACM, 2010.

[17] BEREKMERI, M., SERRANO, D., BOUCHENAK, S., et al. “Feedback Au-

tonomic Provisioning for Guaranteeing Performance in MapReduce Sys-

tems”, IEEE Transactions on Cloud Computing, 2016.

39

	List of Figures
	List of Tables
	Introduction
	Problem Formulation and Objectives
	Load balancing
	Flow Control

	Related Work
	Load Balancing
	Static Algorithms
	Dynamic Algorithms

	Dynamic Resource Provisioning

	Proposed Load-balancer
	Balancing mechanism
	Controller
	Modeling and Tuning

	Deployment in Real Scenario
	Architecture
	Servers
	Wire-Protocol
	RESTful interface
	Clients
	Proxy
	Communication Pattern
	Controller
	Feedback Metrics
	Integral Wind-Up

	Results and Discussion
	Comparison with Round Robin for Homogeneous Servers
	Infinite load scenario
	Limited load scenario

	Results for Heterogeneous Servers
	Different CPU Utilization Targets
	Different CPU Processing Power

	Conclusions
	Future work

	Bibliography

