
RAS++: REPRESENTING HYBRID REUSE ASSETS FOR MDE AS A

SERVICE

Fábio Paulo Basso

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia de Sistemas e

Computação, COPPE, da Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Doutor em

Engenharia de Sistemas e Computação.

Orientador: Toacy Cavalcante de Oliveira

Rio de Janeiro

Setembro de 2017



RAS++: REPRESENTING HYBRID REUSE ASSETS FOR MDE AS A

SERVICE

Fábio Paulo Basso

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Toacy Cavalcante de Oliveira, D.Sc.

Prof. Cláudia Maria Lima Werner, D.Sc.

Prof. Geraldo Zimbrão da Silva, D.Sc.

Prof. Elisa Yumi Nakagawa, D.Sc.

Prof. Leandro Buss Becker, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

SETEMBRO DE 2017



Basso, Fábio Paulo

RAS++: Representing Hybrid Reuse Assets for MDE

as a Service/Fábio Paulo Basso. – Rio de Janeiro:

UFRJ/COPPE, 2017.

XVI, 239 p.: il.; 29, 7cm.

Orientador: Toacy Cavalcante de Oliveira

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2017.

Referências  ibliográficasB :  p. 198–228.
1. Model-Driven Engineering. 2. Reusable Asset. 3.

Pivot Language. 4. MDE as a Service. 5. MDE Settings.

I. Oliveira, Toacy Cavalcante de. II. Universidade Federal

do Rio de Janeiro, COPPE, Programa de Engenharia de

Sistemas e Computação. III. T́ıtulo.

iii



Para Raquel.

iv



Agradecimentos

Em primeiro lugar, à minha famı́lia pelo apoio, amor e incentivo neste peŕıodo em

que estive distante. Em especial à minha esposa, Raquel, que sempre me deu apoio

e foi crucial para a conclusão desse trabalho. À minha mãe, Maria Beatriz Basso, e

meu pai, Irani Paulo Basso, pela eterna preocupação com meu bem-estar mesmo de

longe e às minhas irmãs Paula e Ćıntia.

Ao meu orientador, professor Toacy Cavalcante Oliveira, que sempre esteve pre-

sente e comprometido com a qualidade desse trabalho.

À professora Cláudia Werner, que foi a maior incentivadora e contribuidora dessa

pesquisa. Obrigado por me auxiliar na condução da tese, dedicando tempo para re-

uniões e revisões de material escrito, que por fim resultaram nessa tese de doutorado.

Aos professores Leandro Buss Becker, Rafael Zancan Frantz, Fabŕıcia Rooz-

Frantz e Kleinner Farias por contribuirem na execução de estudos e divulgação dos

resultados desse trabalho.

Ao CNPq e CAPES, pelo apoio financeiro (processo 141792/2014-0) durante o

doutorado.

v



Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

RAS++: REPRESENTANDO ATIVOS DE REÚSO HÍBRIDOS PARA MDE

COMO UM SERVIÇO

Fábio Paulo Basso

Setembro/2017

Orientador: Toacy Cavalcante de Oliveira

Programa: Engenharia de Sistemas e Computação

Artefatos relacionados à Engenharia Dirigida por Modelos (MDE), tais como

transformações de modelo, Linguagens Espećıficas de Domı́nio (DSLs) e ferramentas

de modelagem ou refinamento, têm sido propostos na literatura visando aumentar

a qualidade de produtos derivados de atividades da Engenharia de Software. Estes

artefatos são introduzidos em configurações de ńıvel técnico, incluindo DSLs e outras

formas para se representar cadeias de ferramentas. Uma introdução bem sucedida

de MDE em contextos alvos inclui a realização de fases de integração, que estabe-

lecem cadeias de ferramentas customizadas. Esta customização tem sido realizada

por engenheiros de software no então chamado“MDE como um Serviço”, onde novas

oportunidades para o estabelecimento de cadeias de ferramentas estão dispońıveis

em repositórios de ativos por meio de cenários de coopetição (colaboração entre

empresas competidoras). Coopetição beneficia ĺıderes de um mercado assim como

seus competidores, podendo auxiliar na promoção do MDE em um futuro próximo.

Para tanto, é necessária uma representação comum/h́ıbrida para ativos e cadeias

de ferramentas, o que representa uma limitação no estado da arte atual. Ao in-

cluir propriedades h́ıbridas, uma representação comum simplificaria a integração

de cenários para coopetição no MDE, permitindo a transformação automática de

uma caracteŕıstica estrutural de um cenário para outro. Assim, essa tese propõe

RAS++, uma nova linguagem de representação para ativos h́ıbridos. Os resulta-

dos dessa pesquisa indicam que RAS++ é representativa o suficiente para apoiar

implementações de “MDE como um Serviço” nos cenários de coopetição avaliados.

vi



Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

RAS++: REPRESENTING HYBRID REUSE ASSETS FOR MDE AS A

SERVICE

Fábio Paulo Basso

September/2017

Advisor: Toacy Cavalcante de Oliveira

Department: Computer Science and Systems Engineering

Artifacts associated with Model-Driven Engineering (MDE) such as model trans-

formations, Domain Specific Languages (DSL), and modeling or refinement tools

have been proposed in the literature as a mean to increase the quality in products

derived from activities of Software Engineering. These artifacts are introduced in

technical-level settings, including DSLs adopted by model transformation engines,

software project workspaces, and other ways to represent tool chains. In technical

terms, a successful MDE introduction in target contexts includes the execution of in-

tegration phases that establish customized tool chains. This customization has been

performed by software engineers in the called“MDE as a Service”, where new oppor-

tunities for tool chain are available in asset repositories through coopetition scenarios

(collaboration between competing companies). Coopetition benefits market leaders

and their competitors and may help promoting MDE adoption. This way, it is nec-

essary a common/hybrid representation for assets and tool chain, which represents a

limitation in the state of the art. By including properties from MDE Artifact repos-

itories and tool chain representations, a common representation would simplify the

integration of scenarios for coopetition in MDE, allowing automatic transformation

of structural features from a scenario to another one. Thus, we proposed RAS++,

a new representation language for hybrid assets. Our research results indicate that

RAS++ is representative enough to support implementations of MDE as a Service

in evaluated coopetition scenarios.

vii



Index

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Theoretical Foundation 15

2.1 Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Model-Driven Architecture . . . . . . . . . . . . . . . . . . . . 16

2.1.2 MDE Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Domain Specific Languages for System Engineering . . . . . . 19

2.1.4 Lifecycle for Transformations . . . . . . . . . . . . . . . . . . 20

2.1.5 Tool Chain Approaches . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Asset Specifications . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Coopetition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 MDE Artifact Repositories . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Software Ecosystems . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Reuse Mechanisms in Tool Chains . . . . . . . . . . . . . . . . 27

2.3.2 Tool Chain in Process Engineering . . . . . . . . . . . . . . . 29

2.3.3 Anything as Service . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Extensions for Asset Specification Languages . . . . . . . . . . 30

viii



2.3.5 Software Ecosystems . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.6 Reference Architectures . . . . . . . . . . . . . . . . . . . . . 32

2.3.7 Infrastructures Sharing MDE Artifacts . . . . . . . . . . . . . 32

2.3.8 Pivotal Representations in MDE . . . . . . . . . . . . . . . . . 33

2.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 MDE as a Service 35

3.1 Methodological Concerns . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Implementation Concerns . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Cooperation and Competition Concerns . . . . . . . . . . . . . . . . . 52

3.3.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Representation Concerns . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 RAS++ 64

4.1 Asset Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Mapping Study . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Asset Specification Languages . . . . . . . . . . . . . . . . . . 67

4.1.3 RAS++ Metamodel . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Asset Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Deriving Criteria for Qualified Data . . . . . . . . . . . . . . . 86

4.2.2 Analyzing Asset Specifications in Coopetition Scenarios . . . . 94

4.2.3 RAS++ Metamodel and Exemplification . . . . . . . . . . . . 102

4.2.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Asset Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ix



4.3.1 Mapping Study . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.2 RAS++ Metamodel . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.3 Representation of Assets . . . . . . . . . . . . . . . . . . . . . 118

4.3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Assessments 126

5.1 Mining ReMoDD Repository . . . . . . . . . . . . . . . . . . . . . . . 126

5.1.1 Evaluation 1 - Representation of Explicit Contextual Data . . 129

5.1.2 Evaluation 2 - Representation of Explicit Technical Data . . . 141

5.1.3 Evaluation 3 - Mining MDE Artifact Hidden Data . . . . . . . 148

5.1.4 Evaluation 4 - Mining MDE Settings Hidden Data . . . . . . . 154

5.1.5 Evaluation 5 - Grouping Studies . . . . . . . . . . . . . . . . . 160

5.1.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2 Combinatorial Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.2.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.3 Comparison Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.3.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.4 Thought Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.4.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.4.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6 Conclusions 190

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.2.2 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.2.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 196

References 198

x



A Complementary Material 229

A.1 Highlights of the Academic Trajectory . . . . . . . . . . . . . . . . . 229

A.1.1 Communications . . . . . . . . . . . . . . . . . . . . . . . . . 229

A.1.2 Research Cooperation . . . . . . . . . . . . . . . . . . . . . . 229

A.1.3 Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.2 Follow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

A.2.1 Ongoing Works . . . . . . . . . . . . . . . . . . . . . . . . . . 233

A.2.2 Considerations for Future Implementations . . . . . . . . . . . 235

A.3 A Personal Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 238

xi



List of Figures

1.1 Emergent scenario for MDE as a Service . . . . . . . . . . . . . . . . 8

1.2 Application of our research methodology . . . . . . . . . . . . . . . . 10

2.1 Abstraction levels in the MDA . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Different MDE implementations considering model to code . . . . . . 18

2.3 Model transformation lifecycle concepts . . . . . . . . . . . . . . . . . 19

2.4 Mapping and Transformation of a Model in a PIM View to a PSM

View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Methodological concerns affecting implementation of MDE as a Service 36

3.2 A model layer annotated with ORM Profile. . . . . . . . . . . . . . . 45

3.3 Method with integrated transformations. . . . . . . . . . . . . . . . . 45

3.4 Illustration of possible coopetition scenarios in MDEaaS . . . . . . . 56

3.5 Three preliminary phases investigated in this thesis. . . . . . . . . . . 59

4.1 The role of assets to a KB for MDE Artifacts. . . . . . . . . . . . . . 65

4.2 Research method to derive common properties in RAS++. . . . . . . 66

4.3 Main metaclasses from RAS to represent descriptive data. . . . . . . 67

4.4 Metaclasses from AMS . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Classification of the same toolbox with AMS and RAS. . . . . . . . . 70

4.6 Content and instruction associated with the technical solution called

FOMDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Metaclasses from RAS to represent activities. . . . . . . . . . . . . . 73

4.8 RAS++ DSL overview . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Extensibility mechanisms in RAS++ . . . . . . . . . . . . . . . . . . 75

4.10 RAS++ DSL in support for Specification phase. . . . . . . . . . . . . 76

4.11 Metaclasses for artifacts and resource locators. . . . . . . . . . . . . . 77

4.12 Properties from standard RAS replaced by metaclasses. . . . . . . . . 79

4.13 A repository describing assets and properties in RAS++ . . . . . . . 80

4.14 Asset describing the FOMDA Toolbox (Part I) . . . . . . . . . . . . . 81

4.15 Asset describing the FOMDA Toolbox (Part II) . . . . . . . . . . . . 82

4.16 Asset describing the FOMDA Toolbox (Part III) . . . . . . . . . . . . 82

xii



4.17 Association of roles into activities for artifacts . . . . . . . . . . . . . 83

4.18 Decision making in the Acquisition phase. . . . . . . . . . . . . . . . 85

4.19 The process adopted to derive criteria . . . . . . . . . . . . . . . . . . 87

4.20 Assets with structural features for description allowed in RAS. . . . . 90

4.21 Revisiting assets from a toolbox called FOMDA. . . . . . . . . . . . . 95

4.22 Desirable coopetition in MDE as a Service. . . . . . . . . . . . . . . . 99

4.23 Assets representing DSLs . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.24 RAS++ metaclasses in support for classification schema. . . . . . . . 102

4.25 UML constraints in descriptive representations. . . . . . . . . . . . . 104

4.26 Classification groups for criteria C1 and C2. . . . . . . . . . . . . . . 105

4.27 Elements for MDE Settings considered in this mapping study . . . . . 107

4.28 Metaclasses for typing MDE Parameter. . . . . . . . . . . . . . . . . 111

4.29 Metaclasses for model transformation components. . . . . . . . . . . . 112

4.30 RAS++ metamodel to specify abstractions for MDE artifacts. . . . . 112

4.31 RAS++ meta-definition and meta-meta-definition. . . . . . . . . . . . 115

4.32 OCL invariants applied in MDE Artifacts. . . . . . . . . . . . . . . . 116

4.33 RAS++ extensions to support toolbox abstractions. . . . . . . . . . . 118

4.34 Essential settings conform to the FOMDA DSL. . . . . . . . . . . . . 119

4.35 Representing MDE Settings . . . . . . . . . . . . . . . . . . . . . . . 121

4.36 Representing abstractions for models . . . . . . . . . . . . . . . . . . 122

4.37 Assets representing DSLs . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.38 Representing some design toolboxes with RAS++. . . . . . . . . . . . 124

5.1 ReMoDD - Quantitative analysis of classification groups. . . . . . . . 133

5.2 Screenshot of ReMoDD assets designed conforms to RAS++ . . . . . 134

5.3 ReMoDD - Quantitative analysis of artifact development context. . . 136

5.4 ReMoDD - Quantitative analysis of artifact types. . . . . . . . . . . . 136

5.5 ReMoDD - Quantitative analysis of system/software domains. . . . . 137

5.6 ReMoDD - Quantitative analysis of lifecycle phases. . . . . . . . . . . 138

5.7 ReMoDD - Quantitative analysis of DSLs. . . . . . . . . . . . . . . . 143

5.8 ReMoDD - Quantitative analysis of technicalities for tool chain. . . . 144

5.9 ReMoDD - Quantitative analysis of candidate assets for tool chain. . 144

5.10 ReMoDD - Quantitative analysis of UML. . . . . . . . . . . . . . . . 145

5.11 ReMoDD - Quantitative analysis of DSLs. . . . . . . . . . . . . . . . 146

5.12 MDE Artifacts from three of ReMoDD’ assets. . . . . . . . . . . . . . 150

5.13 Serializations used by MDE Artifacts. . . . . . . . . . . . . . . . . . . 152

5.14 Data expressed externally to assets used by MDE Artifacts. . . . . . 153

5.15 All the technical details extracted from the hidden data. . . . . . . . 153

5.16 Instances of Metadefinition. . . . . . . . . . . . . . . . . . . . . . . . 154

xiii



5.17 Instances of MetaMetadefinition. . . . . . . . . . . . . . . . . . . . . 155

5.18 Quantitative analysis of required tools. . . . . . . . . . . . . . . . . . 156

5.19 Technicalities from asset A06 represented with RAS++ . . . . . . . . 159

5.20 Raise and fall of the component repository ReMoDD. . . . . . . . . . 161

5.21 Desirable scenario for coopetition in MDE as a Service. . . . . . . . . 164

5.22 Development effort by year for connectors before 2012. . . . . . . . . 167

5.23 Development effort by year for connectors from 2013 until march 2015.168

5.24 Development effort by year for asset connectors. . . . . . . . . . . . . 169

5.25 Development effort by year for all the connectors. . . . . . . . . . . . 170

5.26 Validation of asset representations. . . . . . . . . . . . . . . . . . . . 183

5.27 Issues for integration found in hybrid assets. . . . . . . . . . . . . . . 184

5.28 Integration effort tendency in tool chain for the next 10 years. . . . . 188

A.1 Analysis of scientific production . . . . . . . . . . . . . . . . . . . . . 231

xiv



List of Tables

1.1 Contributions focused on tool chain contexts . . . . . . . . . . . . . . 12

1.2 Characterization studies for MDE as a Service . . . . . . . . . . . . 12

1.3 Assessment perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Contributions focused on assets . . . . . . . . . . . . . . . . . . . . . 13

1.5 Background discussing possible RAS++ assessments . . . . . . . . . 13

1.6 Mapping studies for RAS++ conception . . . . . . . . . . . . . . . . 14

2.1 Four definitions for model . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Studies for characterization of MDE as a Service . . . . . . . . . . . 37

3.2 Mapping studies for opportunities in MDE as a Service . . . . . . . . 60

3.3 Selected studies for tool chain published until 2012 . . . . . . . . . . 61

3.4 Selected studies for tool chain published after 2012 . . . . . . . . . . 62

3.5 Selected studies with structural features for assets . . . . . . . . . . . 63

4.1 Comparing 26 properties from RAS, AMS and RAS++ . . . . . . . . 84

4.2 Organization of our studies for criteria formulation and for implemen-

tation of RAS++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Assets shared in ReMoDD between 2011 and 2016 (Part I) . . . . . . 128

5.2 Assets shared in ReMoDD between 2011 and 2016 (Part II) . . . . . 129

5.3 Representation of explicit contextual information . . . . . . . . . . . 130

5.4 Qualitative analysis of descriptor groups found in ReMoDD . . . . . . 132

5.5 Counting of representations for each asset by RAS++ Metaclass . . . 135

5.6 Representation of explicit technical information . . . . . . . . . . . . 142

5.7 Mining non-explicit data from MDE Artifacts . . . . . . . . . . . . . 149

5.8 Technical representations for each asset by RAS++ Metaclass . . . . 151

5.9 Mapping studies for RAS++ conception . . . . . . . . . . . . . . . . 163

5.10 Mathematical evaluation goal of the motivated scenario . . . . . . . . 165

5.11 Ad-hoc mapping of toolboxes for tool chain before 2012 . . . . . . . . 166

5.12 Mapping of toolboxes for tool chain after 2012 . . . . . . . . . . . . . 167

5.13 Mapping of infrastructures for assets . . . . . . . . . . . . . . . . . . 169

xv



5.14 Studies in tool chain used for comparison with RAS++ . . . . . . . . 172

5.15 Compared asset specifications/repositories . . . . . . . . . . . . . . . 173

5.16 Mapping studies with properties from MDE Artifacts and Settings . . 173

5.17 Property table 1: asset representations . . . . . . . . . . . . . . . . . 174

5.18 Property table 2: software component assets . . . . . . . . . . . . . . 174

5.19 Property table 3: model transformation intents (MTI) . . . . . . . . . 175

5.20 Property table 4: Hybrid properties from representations for OO and

RDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.21 Hybrid toolboxes used for comparison with RAS++ . . . . . . . . . . 176

5.22 Property table 5: Model-Driven Service Instantiation (MDSI) . . . . 177

5.23 Property table 6: Artifact Typing in MDE (MDE-AT) . . . . . . . . 178

5.24 Property table 7: Model Transformation Chain (MTC) . . . . . . . . 179

5.25 Property table 8: Component Model for MDE (CMMDE) . . . . . . 179

5.26 Contributions with representations used for scenarios 5 and 6 . . . . . 180

5.27 Property table 9: Pivotal Representations . . . . . . . . . . . . . . . 181

5.28 Property table 10: MDE & Software Dev. Processes (MDE-SDP) . . 181

5.29 Thought experiment goal of the motivated scenario . . . . . . . . . . 183

6.1 Mapping studies for RAS++ conception . . . . . . . . . . . . . . . . 197

A.1 Means of communication . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.3 Technical reports for RAS++ tool support . . . . . . . . . . . . . . . 234

xvi



Chapter 1

Introduction

The only sure way to avoid making

mistakes is to have no new ideas.

Albert Einstein

1.1 Context

Software systems are becoming more complex. The number of functionalities re-

quested by clients has increased as well as the complexity to develop them; systems

are built from other systems or including legacy code and are distributed over di-

verse sites and platforms. These challenges require specific approaches, which often

involve domain-specific knowledge and solutions. However, based on the experience

obtained from several domains and projects, some solutions may bring benefits to

the complex software development.

MDE is an approach built on widespread techniques in Software Engineering,

which presents the following main characteristics: (1) uses models in all the phases

of software development to improve understanding; (2) raises the abstraction level of

software system specifications, hiding platform-specific details; (3) develops Domain-

Specific Languages (DSLs) and frameworks to suit a domain; and (4) applies trans-

formations to automate repetitive activities and improve product quality derived

from Software Engineering (e.g., source code, libraries, processes, etc.) (MO-

HAGHEGHI, 2008). In other words, MDE proposes representation of diverse Soft-

ware Engineering’s artifacts through modeling and tool support.

MDE is sometimes used as synonymous of Model-Driven Development

(MDD) (KÖNEMANN et al., 2009; MONTEIRO et al., 2014b; SELIC, 2006;

TORCHIANO et al., 2013). However, while MDD takes advantage of models to code

generation, MDE uses models in diverse contexts and to different intents in Software

Engineering (SOMMERVILLE, 2010). For example, MDE includes practical appli-

1



cations for system engineering (BECKER et al., 2002; SELIC and RUMBAUGH,

1998; SELIC, 2005) and method engineering (BECKER et al., 2007; HEBIG and

BENDRAOU, 2014; MACIEL et al., 2013). In this thesis, the term MDE is adopted

to refer to mechanisms, techniques, or approaches using models and automation.

Additionally, MDE has been used to support software systems development in

both academia (ARANEGA et al., 2012a; BATORY et al., 2013b; LUCAS et al.,

2017; MACIEL et al., 2013) and industry (CAPILLA et al., 2014; HUTCHINSON

et al., 2011; LIEBEL et al., 2014; MOHAGHEGHI et al., 2009, 2013; MONTEIRO

et al., 2014b; TORCHIANO et al., 2013; WHITTLE et al., 2015). Among the

benefits credited to MDE, MOHAGHEGHI and DEHLEN (2008) highlight the fol-

lowing: Shortened development time and increased productivity; improved software

quality; automation through generation of code and other artifacts; provision of

a common framework for software development across the company and lifecycle

phases; maintenance and evolution; improved communication and information shar-

ing among stakeholders. MDE is especially interesting for scenarios involving sys-

tems that should be made available on multiple platforms (SELIC, 2005, 2014). MO-

HAGHEGHI et al. (2013) go beyond and also expose the criteria that led companies

to adopt MDE. Such criteria involve the abstraction level that hides details, com-

municating with non-technical staff, as well as model-based simulation, execution,

and test.

However, developing software systems with MDE is not trivial. It requires

an automated process, including transformation scripts that connects MDE re-

sources, such as refinement tools (BATORY et al., 2013b) and model-based op-

erations (ROSE et al., 2013). MOHAGHEGHI et al. (2013) claim that required

expertise and high costs affecting the development of this automated process repre-

sent an issue for MDE adoption, making it unfeasible for small contexts of software

development.

MDE introduction in a target context involves integration phases to establish

a customized tool chain (MOHAGHEGHI et al., 2013) and the use of some reuse

tools (KUSEL et al., 2015; OLIVEIRA et al., 2011), which instantiate this chain for

specific needs. In addition, MDE adoption involves end-users contexts (WHITTLE

et al., 2015) as well as inter-organizational contexts (BOSCH, 2009). In this way,

the creation or instantiation of tool chains implies in connecting two systems (end-

points) to interoperate (AHO et al., 2009; BIEHL et al., 2014; BRUNELIÈRE et al.,

2010; ELAASAR and NEAL, 2013; ZHANG, 2015).

Since interoperability ranges many aspects in Software Engineering (BIEHL

et al., 2014; FRANTZ and CORCHUELO, 2012; MOTTA et al., 2017; YIE et al.,

2012; ZHANG and MOLLER-PEDERSEN, 2013), there is no common definition

restricting the use of the term Tool Chain. For example, it has been discussed

2



as synonymous for Model Transformation Chain (MTC) (ETIEN et al., 2013). In

order to clearly set up the scope under investigation, we adopted the definitions

from (HEBIG, 2014) and (ZAKHEIM, 2017) as follows.

According to HEBIG (2014), tool chain is an MDE Setting, a term defined as:

“the set of manual, semi-automated, and automated activities that

are employed during development, the set of artifacts that are consumed

or produced by these activities, the set of languages used to describe the

artifacts, as well as the set of tools that allow the editing of used languages

or that implement automated activities.”

According to ZAKHEIM (2017), establishing tool chains is:

“not a purely technical challenge ... In fact, it’s more of a business

problem. While there are a couple of choices one can make in selecting

the technical integration infrastructure (integration via APIs or at the

database layer), the real challenges have more to do with the friction

caused by the dissimilarities among these tools and how to overcome them

in order to effect a flawless integration.”

In this thesis, we embraced the aforementioned definitions to base our proposal.

Next, we discuss on the motivation of the research.

1.2 Motivation

Software engineers know how to connect MDE resources. For example, the state of

the practice has integrated tools for MDE (MOHAGHEGHI et al., 2013; TORCHI-

ANO et al., 2013), connecting model transformations (LÚCIO et al., 2014), as

well as tools built on Domain Specific Modeling Languages (DSMLs) (KELLY and

TOLVANEN, 2008) or Domain Specific Languages (DSLs) (VOELTER, 2009). Tool

chains are also available in MDD-based processes (KÖNEMANN et al., 2009; MON-

TEIRO et al., 2014b), mapping to code features found in underlying implemen-

tation frameworks (KURTEV et al., 2006). There are also ad-hoc approaches for

tool chains (AHO et al., 2009), developing connectors in Java to support tasks of

automated software design (BATORY et al., 2013a,b).

WHITTLE et al. (2015) claim that software companies adopting MDE request

customizations in processes and tools. This implies in delivering instantiated tool

chain artifacts, which include the generation of some format adopted for execution,

such as XML files with process definitions (LUCAS et al., 2017), configuration files

supporting execution of model transformation chains (ARANEGA et al., 2012a),

3



service specifications for tools on the web (BIEHL et al., 2014), and model transfor-

mations (KUSEL et al., 2015).

In order to add flexibility for tool chain instantiation in target contexts, the

state of the art proposed integration of reuse concepts in tool chain representa-

tion languages. DSLs supporting model transformation chains allow the repre-

sentation of execution chains and compositions (VANHOOFF et al., 2006), which

must be well-formed in valid sequences (YIE et al., 2012). Well-known concepts

related to tool chain include model weaving (JOUAULT et al., 2010), Software

Product Lines (SPL) (ARANEGA et al., 2012a), Component-Based Development

(CBD) (VALE et al., 2016), and tool support built on principles of Generative Pro-

gramming (GP) (BASSO et al., 2013a).

Currently, MDE Artifacts are tied to representations associated with archi-

tectures, platforms, and processes (HEBIG and BENDRAOU, 2014). According

to FRANCE et al. (2006), MDE Artifacts are UML diagrams, drawings, Java pro-

grams, method descriptions, test cases, metamodels, toolboxes, system or process

models, model transformations, DSLs or model refinement tools. In other words,

MDE Artifacts include any resource found in a regular tool chain (ZHANG and

MOLLER-PEDERSEN, 2013).

Among many problems that still surround tool chain (LIEBEL et al., 2014), it

is possible to highlight the lack of foundations involving preliminary phases to tool

chain. The state of the practice knows how to integrate tools but misses founda-

tions for analysis of artifacts/tools (SMOLANDER et al., 2017; ZAKHEIM, 2017).

For example, current theory and practice related to tool chain are limited when

we consider implementation of an emergent scenario in which unfamiliar artifacts

are requested for inclusion in inter-organizational contexts (BOSCH, 2013, 2009).

This scenario requires representation of descriptive information for classification,

decision making and assessment of MDE Artifacts before applying any tool chain

mechanism (ZAKHEIM, 2017).

Thereby, aiming at transforming implicit knowledge to explicit information, re-

cent research has been motivating the representation of technicalities and descrip-

tive information in assets through repositories for MDE Artifacts (COMBEMALE

et al., 2014; FRANCE et al., 2007; GORP and GREFEN, 2012; JACOBSON et al.,

2012; ROCCO et al., 2015). An asset is a data pack describing artifacts shared in

repositories (AMS, 2014; OMG, 2005). According to modern ecosystem reposito-

ries (AXELSSON et al., 2014; BADAMPUDI et al., 2016; SANTOS et al., 2016),

assets characterize a possible solution for enabling cooperation and competition, a

combination that has been referred as coopetition in business scenarios (RITALA

et al., 2014). In this sense, assets need to be discovered, understood and compared

with other assets.

4



Coopetition has been implemented by companies like Amazon (PALMQUIST,

2014) and represents a long term goal in MDE research (COMBEMALE et al., 2014;

GORP and GREFEN, 2012; ROCCO et al., 2015). RITALA et al. (2014) define a

scenario for coopetition as:

Coopetition (collaboration between competing firms) is a phenomenon

that has recently captured a great deal of attention due to its increasing

relevance to business practice.

The interest on assets as means to promote coopetition may be observed in

the literature through reports related to integration services (ZAKHEIM, 2017),

and through software companies that are building their portfolios on modern asset

technologies. Currently, 91 world wide organizations1 supervise and develop asset

specifications based on Open Service for Lifecycle Collaboration (OSLC) (ELAASAR

and NEAL, 2013; ZHANG and MOLLER-PEDERSEN, 2013), a specification built

on asset concepts (BASSO et al., 2016c).

Some companies have implemented coopetition through common representations

for their business models built on services. Meanwhile, the MDE community has

not still done the same. Despite the advances already achieved by the MDE com-

munity, there are still many open questions (MUSSBACHER et al., 2014). Some

contributions pointed out contextual, technical, and educational issues that hamper

MDE in practice (PETRE, 2013; WHITTLE et al., 2015). However, this scenario

surrounding services for MDE is not well understood, needing characterization.

1.3 Problem Definition

As stated in Section 1.2, implementations of services for MDE are still not well

understood and characterized, thus presenting the following issues.

Software engineering services for MDE are of interest of a community from the

view point of business (LÚCIO et al., 2014; MONTEIRO et al., 2014a). Such services

could introduce MDE resources in target contexts through reuse techniques. In

this way, a given resource could be applied in the context of different companies,

characterizing an inter-organizational reuse scenario. However, a common sense from

industrial surveys and reports in the area (MONTEIRO et al., 2014a; WHITTLE

et al., 2015) is that MDE resources require customization before being introduced

in a target context. KUSEL et al. (2015) concluded from a systematic literature

review that reuse in the context of MDE research is still immature, notably lacking

relevant and evaluated approaches.

1OSLC - <http://open-services.net/organizations/> (last access on September 1st, 2017)

5



In order to improve understanding on services for MDE, important experiences

from the past should not be ignored (MONTEIRO et al., 2014a; TORCHIANO et al.,

2013). According to MOHAGHEGHI et al. (2013), past experiences on introducing

MDE in target contexts should be reported through longitudinal studies (RUNESON

and HÖST, 2008). These studies would allow obtaining a better understanding of

this scenario and to prospect improvements in the future. Therefore, the body of

knowledge on services for MDE needs more studies and related contributions are

welcome (MUSSBACHER et al., 2014).

Among many reasons why coopetition is not a reality in MDE busi-

ness (JAKUMEIT et al., 2014), the lack of a common representation deserves at-

tention (BASSO et al., 2015a; BASSO, 2016). However, it is not clear in the lit-

erature which information should be represented in the context of tool chain and

assets (BASSO et al., 2017a). These different contexts present structural features

that are still not integrated in existing representation languages for assets or chains,

characterizing a limitation in the state of the art that hampers integration initia-

tives (SMOLANDER et al., 2017; ZAKHEIM, 2017).

According to RITALA et al. (2014), coopetition through services requires a com-

mon language. Then, a good foundation starts by finding common properties to

represent assets and tool chain (JAKUMEIT et al., 2014). Since assets need to

be discovered, understood and compared with other assets, this common represen-

tation should consider properties from two different worlds: repositories and tool

chain. Thus, another issue is the lack of mapping studies discussing properties from

assets that should be used in services for MDE.

Currently, there is no common representation language for services in MDE.

Such a language should increment the state of the art with more representative and

non-ambiguous concepts in structural features of assets. This is also a challenge and

requires mappings of existing contributions in the area with a grouping study, e.g.,

following the protocol defined by RUNESON and HÖST (2008).

As consequence, the current scenario is unconnected, making hard, if not impossi-

ble, the implementation of coopetition for services in MDE. For example, currently

software engineers may use at least five options of repositories supporting assets

for MDE Artifacts (COMBEMALE et al., 2014; FRANCE et al., 2007; GORP and

GREFEN, 2012; JACOBSON et al., 2012; ROCCO et al., 2015), all of them adopting

different types of asset representations. Moreover, in an integration process, arti-

facts from selected assets are manually inserted in a tool chain, which has at least

60 different representation options. Therefore, due to the expressive number of inte-

gration possibilities, another issue related to implementation of coopetition in MDE

is the high cost involved to develop transformations/connectors (MOHAGHEGHI

et al., 2013).

6



Finally, this diversity (or hybridization) of asset representations implies in great

manual effort for integration: A quadratic combinatorial explosion for converting

different representations (BASSO, 2015).

1.4 Research Rationale

Goals for this research are derived from the problems stated in Section 1.3 and

are structured in general and specific ones. Our general research goal consists on

proposing a common representation language for assets in the context of MDE, as

well as contributing with studies of characterization on services for MDE, which we

have called “MDE as a Service”. Next, we present our specific research goals.

1.4.1 Research Goals

Goal 1: Enhancing knowledge about MDE as a Service in intra and inter-

organizational contexts. We intent to contribute to such goal by building foun-

dations for this complex reuse scenario under the term “MDE as a Service” (or

MDEaaS), as illustrates Figure 1.1. This way, software engineers visualize business

opportunities for creating tool chains (region 2 of the figure) and instantiating them

for specific requests from customers (region 3). In order to improve understand-

ing on services for MDE, we will report our past experiences from the industry on

introducing MDE in target contexts through longitudinal studies, as recommended

by RUNESON and HÖST (2008). Moreover, we will present new research to identify

relevant aspects related to implementations of MDE as a Service. Thus, our studies

may contribute to clarify this research area still poorly understood.

Goal 2: Providing analysis of tool chain and asset representations. To

this objective, we intent to analyze MDE toolboxes supporting tool chain in MDE

as a Service scenarios as well as repositories sharing MDE assets. As a result, we

will have a mapping study linking existing contributions in the area to applicability

issues in practice. In addition, we intent to identify relevant concepts used in tool

support that help software engineers to introduce MDE Artifacts in target contexts

through MDE Settings (HEBIG, 2014).

Goal 3: Providing a common representation language that enables to

capture MDE Artifacts and Settings in asset specifications. In this direc-

tion, an open question is which properties should be included in this language? The

lack of a classification for existing MDE Toolboxes supporting assets and tool chain

makes difficult the comparison and discovery of properties in approaches. Besides,

there are many toolboxes with equivalent concepts (ambiguity issue). The discov-

ery of common properties would allow us to construct the representation language

7



Figure 1.1: Emergent scenario for MDE as a Service

RAS++ without ambiguous metaclasses and properties. Currently, two specifica-

tions are available to represent assets: Reusable Asset Specification (RAS) (OMG,

2005), an OMG standard, and Asset Management Specification (AMS) (AMS, 2014),

an OSLC standard. In this direction, because these specifications are standards, we

advocate the need of a common representation language built on RAS and AMS

properties.

Goal 4: Analyzing benefits and drawbacks related to RAS++ (our

common representation language). Even though some studies compare one or

other concept in the software engineering discipline, little has been done to create a

broader view on options available to implement similar approaches to RAS++, using

different concepts or properties (overlapping and complementarity issue). Thus, our

goal here is to provide an analysis of benefits and drawbacks associated with RAS++

in a scenario of coopetition, including discussions related to services, assets, pivot

(or pivotal) representations, and tool chain in MDE.

To this end, we have organized our research as described in the following sections.

1.4.2 Research Questions

The research questions for this thesis are derived from the problems mentioned in

Section 1.3 and goals stated in Section 1.4.1, establishing directions and scope of

8



investigation.

Goal 1: Enhancing knowledge about MDE as a Service in intra and

inter-organizational contexts.

• Q1: Which are the relevant aspects to be concerned with in implementations

of MDE as a Service?

Goal 2: Providing analysis of tool chain and asset representations.

• Q2: Which are the relevant aspects to be concerned with in the integration of

MDE Artifacts and Settings in the context of MDE as a Service?

• Q3: Which are the opportunities for coopetition in the context of MDE as a

Service?

• Q4: Which studies should we select for evaluation of a common representation

language in the context of MDE as a Service?

Goal 3: Providing a common representation language that enables to

capture MDE Artifacts and Settings in asset specifications.

• Q5: Which are the properties required in RAS++ in the context of MDE as

a Service for asset representation?

• Q6: Is RAS++ representative to play the role of a common language for the

assets available in the ReMoDD repository?

Goal 4: Analyzing benefits and drawbacks related to RAS++ (our

common representation language).

• Q7: Which is the effort required to implement coopetition in the context of

MDE as a Service?

• Q8: Is RAS++ representative to play the role of a common language for tool

chain and assets in the context of MDE as a Service?

• Q9: Why adopt RAS++ in future implementations of MDE as a Service?

These research questions are concerned with conceptual foundations for repre-

sentation of information rather than tool support and implementation of business

strategies for MDE as a Service. The aspects under investigation are longitudinal

studies of characterization, analysis of properties and case studies for evaluation of

representativeness. In the next section, we describe our research methodology and

our objectives as milestones.

9



Figure 1.2: Application of our research methodology

1.4.3 Research Methodology

We adapted the methodology suggested by PEFFERS et al. (2007), starting with

an initial investigation about problem definition (Section 1.3), research goals (Sec-

tion 1.4.1) and research questions (Section 1.4.2). Figure 1.2 presents the stages

composing our research methodology, where each activity is a complete execution

of the Peffers’s method composed of: 1) Identify the problem and define the objec-

tives of the solutions; 2) Design and development of the solution; 3) Implementa-

tion/demonstration; 4) Evaluation; and 5) Communication.

Our research idea emerged from disciplines of software reuse. In these disciples,

some issues, such as the limitations of the Reusable Asset Specification (OMG,

2005) for representation of hybrid assets, the lack of platforms for collaboration and

competition in MDE, limitations in reuse approaches supporting tool chain, and the

need for a common representation language, were raised, originating in the outline

of this research.

The initial investigation was conducted based on our previous experience in three

main areas of knowledge:

1. An ad-hoc literature review on web application engineering approaches. The

result was quite interesting because this research topic has already been im-

plemented in previous initiative for MDE as a Service (BASSO et al., 2012).

We then mined a software repository, extracting data sets from three software

projects on the development of information systems with MDE;

2. An ad-hoc literature review on component repositories and assets. Initially,

research collaborators (Toacy and Cláudia) recommended an investigation of

RAS standard (OMG, 2005), a specification language usually adopted to rep-

resent semantics to software components. After that, it was analyzed a global

reuse scenario for MDE, where it was possible to extract characteristics of

10



assets and carry out the first studies based on toy examples (BASSO et al.,

2013b,c);

3. An ad-hoc literature review on reuse and instantiation of model transformation

and tool chains. The result was interesting because this research topic has

already been investigated in the author’s Master’s dissertation (BASSO et al.,

2006).

At this stage, a big set of technical contributions were consulted, as well as rele-

vant state of the practice research or proposals. This material was helpful to establish

the review’s scope and comparison features discussed in each of our publications.

Based on such information, we started a series of studies discussing innovations from

our previous experiences in terms of tool support, methodology, research challenges

and positions that could contribute to the body of knowledge in MDE.

After communicating our first proposal for assets (BASSO et al., 2013b,c), we

realized that should report challenges associated with previous industrial experiences

on the implementation of MDE as a Service. We then analyzed and exposed these

challenges in publications shown in Tables 1.1 and 1.2. These publications provide

foundations for MDE as a Service considering evaluation perspectives described in

Table 1.3. Except TC05 and TC06, that are new studies, the data set was generated

between 2006 and 2011 in real scenarios of software projects. These projects were

mined, extracting data sets through the Eclipse Metrics Plugin2.

We achieved our first goal by characterizing MDE as a Service through contri-

butions shown in Tables 1.4, 1.1 and, specially in 1.2, where we discussed issues

related with collaboration. In parallel, in order to achieve Goals 2 and 3, we used

the body of knowledge derived from previous studies to start our main contribution:

the RAS++ DSL. Table 1.4 shows publications derived from our study focused in

asset specification languages. Except AS06, other five contributions adopted weak

assessments (see column 2).

In order to reduce this bias, we planned a controlled experiment (RUNESON and

HÖST, 2008) to be executed in a real setting: the MDArte project (MONTEIRO

et al., 2014b). However, the project was discontinued and its teams dissolved. We did

not find another group with the required technical knowledge working on real MDE

as a Service projects, we agreed that it would not be worth to run this experiment

with other focal group. Since then, we adopted a new evaluation strategy based on

analytical studies for Mining Software Repositories (MSR) (D’AMBROS et al., 2008)

and structured mapping studies (RUNESON and HÖST, 2008). This strategy was

considered adequate in four events shown in Table 1.5: A Doctoral Symposium, two

Workshops and Student Research Competition. In these events, we discussed about

2Eclipse Metrics - <http://metrics.sourceforge.net/> (last access on September 1st, 2017)

11



evaluation goals and presented some preliminary results of RAS++, our proposal

for a common representation language.

Table 1.1: Contributions focused on tool chain contexts
LEGEND [MSR = Mining Software Repository]

Id Reference Title Where?

TC01
BASSO et al. (2012)

Towards a Web Modeling Environment for a Model Driven Engineering
Approach

BW-MDD

TC02
BASSO et al. (2014d) Assisted Tasks to Generate Pre-prototypes for Web Information Systems ICEIS

TC03
BASSO et al. (2014f)

Study on Combining Model-Driven Engineering and Scrum to Produce
Web Information Systems

ICEIS

TC04
BASSO et al. (2014e)

Generative Adaptation of Model Transformation Assets: Experiences,
Lessons and Drawbacks

SAC

TC05
BASSO et al. (2014c)

Extending JUnit 4 with Java Annotations and Reflection to Test Variant
Model Transformation Assets

SAC

TC06
PAULON et al. (2014)

Wireless Sensor Network UML Profile to Support Model-Driven
Development

INDIN

Id
Assessment

Type

Research

Method

Artifact Dev.

Contexts

Assessment

Perspectives

Representation

Languages

TC01
Experience Report Descriptive Industry P03, P05, P08, P09 WCT

TC02
Case Study/Team Descriptive Industry P02, P04, P09 MockupToME DSLs

TC03
Case Study/Team Descriptive Industry P01, P03, P04 MockupToME DSLs

TC04
Case Study/MSR Descriptive Industry P03, P04, P05, P06 FOMDA DSL

TC05
Benchmark Study Improving Academy P02, P04, P05, P09 FOMDA DSL

TC06
Action research Improving Academy P03, P05, P09 FOMDA DSL

Table 1.2: Characterization studies for MDE as a Service
Id Reference Title Where?

CS01
BASSO et al. (2014a) Supporting Large Scale Model Transformation Reuse ACM SIGPLAN Notices

CS02
BASSO et al. (2015b)

Combining MDE and Scrum on the Rapid Prototyping of
Web Information Systems

IJWET

CS03
BASSO et al. (2016d) Automated Design of Multi-layered Web Information Systems JSS

CS04
BASSO et al. (2017a) Building the Foundations for “MDE as Service” IET Software

Id
Assessment

Type

Research

Method

Artifact Dev.

Contexts

Assessment

Perspectives

Representation

Languages

CS01
Longitudinal Study Descriptive Industry P03, P05, P08, P09 FOMDA DSL

CS02
Case Study/Team Explanatory Industry P01, P03, P04 MockupToME DSLs

CS03
Longitudinal Study Explanatory Industry & Academy P01, P02, P03, P04, P08 MockupToME DSLs

CS04
Longitudinal Study Explanatory Industry & Academy P03, P04, P05, P07, P08 FOMDA DSL

In order to answer questions 2-4 from Goal 2, we restructured our unique map-

ping study from the qualification exam, conducting five new structured mappings,

shown in Table 1.6. Only the first of these mappings is included in this document.

These mappings have not been submitted for publication since they are still under

improvement or revision.

These mappings provided new data for analysis. Then, we applied a selective

coding process (PANDIT, 1996) to obtain common properties for RAS++. In this

way, we achieved partially the Goal 3 with answers for Q5 and Q6, discussed along

the next chapters. To answer Q7, we conducted a case study on mining ReMoDD

repository (FRANCE et al., 2007). Finally, data extracted from these five mappings

were also applied to answer research questions Q8-Q12 along this thesis, allowing us

to achieve Goal 4.

12



Table 1.3: Assessment perspectives
Id

Assessment

Perspective

Description

P01
Time-scale
feasibility

Includes benchmark tests for tool chain, measuring the time-scale required by end-users to
perform MDE-based tasks. The time-scale includes contexts found in primary studies
considering feedback from teams while implementing some software requirement.

P02
Intra-
Organizational
Context

Evaluates whether a specific software project, developed in a unique company, presents
issues for introduction of some MDE resource. These are primary studies presenting results
not generalizable for different companies.

P03
Inter-
Organizational
Context

Considers how well a set of MDE Artifacts and Settings match needs from different
company contexts. This study is also characterized by grouping a set of primary studies,
building foundations for reuse among companies.

P04 Tool Chain Usage
Evaluates whether a certain sequence of integrated tools is adequate for requests from a
specific context. These are primary or secondary studies evaluating performance of teams
on the execution of integrated and automated software development tasks.

P05 Tool Usage

Considers how well a tool for design, refinement, transformation and tool chain
instantiation, performs some tasks conducted by some MDE practitioner. These primary
studies, therefore, consider isolated tools, differently from tool chain feasibility that
considers them all integrated.

P06 Pivotal Feasibility
Includes analytical studies by comparing structural features from representation languages.
These are primary studies and aim at evaluating the quality attribute “representativeness”.
It is considered an adequate perspective for evaluation of main contribution.

P07
Business
Feasibility

Considers the economic feasibility for execution of specialized software engineering services
for MDE, a research topic not clearly discussed by the literature. These are secondary
studies whose knowledge is built on primary studies for MDE and entrepreneurship.

P08
Methodological
Usage

Evaluates how well end-users accept some methodology based on MDE in a tool chain
context. This includes primary studies considering different roles using a methodology in a
running process. We focused in identifying learning-curve issues and improvement points in
a method-level for tool chain.

P09
Reuse Mechanism
Usage

Includes evaluation of reuse mechanism used on the development, adaptation and
integration of MDE resources in tool chains. These are primary studies concerned in
evaluations for MDE Resource customizations.

P10
Reuse Cost
Characterization

This is recently considered. BECKER et al. (2007) state that it is possible to characterize
reuse approaches with four cost dimensions: (1) complexity of the reuse situation, (2)
repetition rate of the reuse situation, (3) cost of preparation, and (4) cost of utilization.

All these initiatives enabled us to evaluate the quality attribute for representa-

tiveness of RAS++ in support for future implementations for MDE as a Service.

Table 1.4: Contributions focused on assets
LEGEND [MSR = Mining Software Repository]

Id Reference Title Where?

AS01
BASSO et al. (2013c)

How do You Execute Reuse Tasks Among Tools? A RAS Based Approach
to Interoperate Reuse Assistants

SEKE

AS02
BASSO et al. (2013b) A Common Representation for Reuse Assistants ICSR

AS03
BASSO et al. (2014b)

Towards Facilities to Introduce Solutions for MDE in Development
Environments with Reusable Assets

IRI

AS04
BASSO et al. (2016c)

Analysis of Asset Specification Languages for Representation of
Descriptive Data from MDE Artifacts

CENTERIS

AS05
BASSO et al. (2017b) Automated Approach for Asset Integration in Eclipse IDE JSOS@ICSE

AS06
BASSO et al. (2017c) Revisiting Criteria for Description of MDE Artifacts JSOS@ICSE

Id
Assessment

Type

Research

Method

Development

Contexts

Assessment

Perspectives
Tool Chain Scenario

AS01
Analytical Study Improving Academy P08

RAS++, RDL, FOMDA DSL and
Brechó

AS02
Toy Example Improving Academy P03, P06, P09

RAS++, MokupToME DSL,
MAVEN and Eclipse Update-site

AS03
Toy Example Improving Academy P03, P04, P06, P09

RAS++, MokupToME DSL and
Eclipse IDE (Mylyn + ANT)

AS04
Analytical Study Exploratory Academy P06

Representations for SPL tools in
RAS and AMS

AS05
Toy Example Improving Academy

P03, P04, P06,
P08, P09

RAS++, ReMoDD Artifacts and
Eclipse IDE (Mylyn + ANT)

AS06
Case Study/MSR Improving Academy P06

RAS++, MokupToME DSL and
ReMoDD Artifacts

Table 1.5: Background discussing possible RAS++ assessments
Id Reference Title Where?

PP01
BASSO (2015)

A Proposal for a Common Representation Language for
MDE Artifacts and Settings

Doctoral Symposium - STAF

PP02
BASSO et al. (2015a) A Summary of Challenges for “MDE as Service” Workshop - WDES

PP03
BASSO et al. (2016b) Criteria for Description of MDE Artifacts Workshop - WDES

PP04
BASSO (2016)

Student Research Abstract: MDE as Service, Overview
and Research Progress

Student Research Competition - SAC

13



Table 1.6: Mapping studies for RAS++ conception
Id Title Available at

M01 Characterizing the “MDE as Service” Research Agenda Section 3.2
M02 Semantic Properties of Software Components prisma.cos.ufrj.br/wct/ms02.pdf

M03 Intents from Asset Platforms and Their Properties prisma.cos.ufrj.br/wct/ms03.pdf

M04 MDE Settings Intents and Their Properties prisma.cos.ufrj.br/wct/ms04.pdf

M05 Diversity of MDE Toolboxes and Their Uncommon Properties prisma.cos.ufrj.br/wct/ms05.pdf

M06 A Criteria for Representation of Technicalities from MDE Settings and Toolboxes prisma.cos.ufrj.br/wct/ms06.pdf

Id Review Type Research Protocol Sources

M01 Structured Mapping Study Snowballing Researchgate

M02 Ad-hoc Mapping Study Key-wording ACM, Researchgate
M03 Ad-hoc Mapping Study Multi-vocal Multiple voices
M04 Structured Mapping Study Key-wording Scopus, Researchgate
M05 Structured Mapping Study Snowballing Scopus, Researchgate
M06 Structured Mapping Study Coding Previous mappings

1.5 Thesis Organization

This thesis is organized in six chapters and one appendix with the following struc-

ture:

Chapter 1 - Contextualizes and motivates this research, pointing out to the

problems and the proposed goals. The research methodology is also introduced.

Chapter 2 - Presents the theoretical foundation with general contributions in the

area associated with MDE, tool chain, and assets.

Chapter 3 - Characterizes MDE as a Service and introduces our proposal built

on three preliminary phases for tool chain and assets that guided the conception of

RAS++.

Chapter 4 - Presents RAS++, our core contribution for representation of hybrid

assets in coopetition scenarios for MDE as a Service.

Chapter 5 - Details four assessments composed by one case study on mining the

ReMoDD repository and three analytical studies.

Chapter 6 - Outlines conclusions considering the goals and research questions.

Appendix A - Highlights the academic trajectory, summarizes some future works

and closes this thesis with a personal position about the business opportunity in

MDE as a Service, with perspectives to research and practice.

14

prisma.cos.ufrj.br/wct/ms02.pdf
prisma.cos.ufrj.br/wct/ms03.pdf
prisma.cos.ufrj.br/wct/ms04.pdf
prisma.cos.ufrj.br/wct/ms05.pdf
prisma.cos.ufrj.br/wct/ms06.pdf


Chapter 2

Theoretical Foundation

In the middle of difficulty lies

opportunity.

Albert Einstein

Model Driven Engineering (MDE) is an approach that considers models as first

class citizens in software development (WHITTLE et al., 2015). Typical artifacts in

MDE (termed as MDE Artifacts) often include models, metamodels, model trans-

formations, model managers, and domain-specific models. This chapter presents

some fundamentals for MDE and Assets organized as follows. Section 2.1 presents

some chaining mechanisms adopted for execution of model-based operations, Sec-

tion 2.2 summarizes background information for assets, Section 2.3 discusses related

works and Section 2.4 concludes this chapter.

2.1 Model-Driven Engineering

Approaches for MDE cope with complexity of software by using models.

To SCHMIDT (2006), MDE has reduced the gap between solution and problem

domains with abstract concepts that belong to the captured aspect of the object

under study. Considering models as first class entities, which by the way are the

main artifacts throughout the entire development process, a model can be used to

support different engineering tasks. Many definitions for what model means are

found in the literature. For example, Table 2.1 presents three definitions for models.

Models, therefore, are abstractions that allow software engineers to focus on the

relevant aspects of a problem domain while ignoring details that are irrelevant.

According to SOMMERVILLE (2010), MDE includes approaches for software

development using models as abstractions for the systems solution domain (SELIC,

2006) and those using models as abstractions for processes (POLGÁR et al., 2009).

MDE is also associated with the use of automatic transformations from a model

15



specification to the solution domain. In the following, it is described the main

concepts involved on the creation and execution of MDE approaches.

Table 2.1: Four definitions for model
Author Definition Year

(ROTHENBERG, 1989)
claims that for computer-related systems, a
model is an abstraction from reality since it
can not represent all the aspects of reality.

1989

(MILLER and
MUKERJI, 2003)

“A model of a system is a description or
specification of that system and its environment
for some certain purpose. A model is often
presented as a combination of drawings and
text.”

2003

(BÉZIVIN, 2005)

“A model is a simplification of a system built
with an intended goal in mind. The model
should be able to answer questions in place of
the actual system.”

2005

(BATORY et al., 2013b)
“We use ... (2) relational databases to express
models”

2013

2.1.1 Model-Driven Architecture

Behind MDE is the idea to raise the level of abstraction of the overall develop-

ment process, to capture systems or processes as a collection of reusable models.

Model-Driven Architecture (KLEPPE et al., 2003) is an approach to realize MDE.

It was proposed by the Object Management Group (OMG) and relies on their stan-

dard modeling and transformation languages to generate models, code and text

from model specifications. In this approach, UML (BOOCH et al., 2005) is the

recommended language to represent the models, QVT (KLEPPE et al., 2003) is the

recommended language to write model-to-model transformations, and MOF Model

to Text (OMG, 2008) is the language used to generate text/code.

Through inter-related views, this approach promotes the execution of tasks for

modeling, refinement and transformations in interoperable design toolboxes. MDA

toolboxes are connected through serializations in up to six versions for XML Meta-

data Interchange (XMI) (KLEPPE et al., 2003).

Toolboxes can be complementary and competitors in these inter-related views.

In this sense, Figure 2.1 shows views as different abstraction levels and their relation-

ship for toolbox collaboration. Three levels of abstraction are suggested by MDA:

Computation-Independent Model (CIM), Platform-Independent Model (PIM), and

Platform-Specific Model (PSM).

The highest level of abstraction is implemented by toolboxes concerned in

computation-independent model. Particular business domain models are described

16



Platform-Specific Model

Executable Code

Platform-Independent Model

Computation-Independent Model

Figure 2.1: Abstraction levels in the MDA
(FRANTZ and CORCHUELO, 2012).

in this level of representation of software requirements. For this reason, specific in-

formation technology should not be represented in models in a CIM view. Software

engineers shall use languages close to the abstractions of domain models (FERNAN-

DES et al., 2011), such as a Features Model (FM) (CZARNECKI, 2005).

In a second level of representation, toolboxes focusing in platform-independent

models can refine a computation-independent model into application model in-

stances (AZANZA et al., 2010). At this level of abstraction, models are refined

to describe the operations, structure, and behavior of a software system (BÉZIVIN

et al., 2004). Models shall remain without mappings to the underlining technol-

ogy, and can be reused several times to generate different platform-specific mod-

els (KLEPPE et al., 2003; KURTEV et al., 2006).

Toolboxes supporting platform-specific models promote mappings from platform-

independent models to implementation details (KELLY and TOLVANEN, 2008).

This allows the generation of executable code, the final result from a transformation

process in system engineering.

2.1.2 MDE Settings

According to HEBIG et al. (2013), the definition of MDE Settings characterizes

MDE as part of many contexts in Software Engineering, from artifacts that repre-

sent a unique system model, to others that integrate multiple and heterogeneous

17



artifacts. For this reason, MDE is everywhere, promoting modeling in all phases

of a Software Development Process (SDP) (KENT, 2002). For example, from a

perspective of systems engineering (SOMMERVILLE, 2010), in the analysis phase,

system models are usually general and with no information that can lead to a techni-

cal solution (SCHMIDT, 2006). In the following phases, system models are enriched

with annotations containing details necessary to obtain the technical solution (ELK-

OUTBI et al., 2006). These enriched system models can be used to enable automatic

generation of source code (FRANCE and BIEMAN, 2001).

In order to illustrate how complex model-based approach can be, this section dis-

cusses a scenario of system engineering. In this scenario, model abstractions should

represent enough details (i.e., annotations) allowing their use as input for model

transformations, which by the way are performed with MDE Toolboxes classified

as model transformation engines (JAKUMEIT et al., 2014). Model transformation

allows the generation of other models and, rich source-code using some toolboxes

that can be characterized partially or entirely by elements shown in Figure 2.2. Fi-

nally, code is generated, refined by developers and compiled, resulting in working

application pieces.

Figure 2.2: Different MDE implementations considering model to code
Credit: GREENFIELD and SHORT (2003).

To reach this point in a MDE-based process, many toolboxes and activities (man-

ual, automatic or guided) are needed, adding extra complexity for the software de-

velopment in comparison to a non-automatic approaches (BATORY et al., 2013a).

For example, only after rigorous refinement of models, software engineers can use

transformations for code generation (OMG, 2008), allowing the transformation of

abstractions represented in models to complete source code in many programming

languages (KELLY and TOLVANEN, 2008).

Models are independent abstractions from code specificity (KENT, 2002). In

order to meet the needs of a new target platform, a system model must be anno-

tated with non-functional requirements (such as implementation details) that are

different from one application to an other. Platform-specific details in models can

18



Figure 2.3: Model transformation lifecycle concepts

be generalized as MDE Setting (HEBIG, 2014), which determines platform’s charac-

teristics that demand specificity in code. MDE Settings are used by MDE Toolboxes

for integration of model-based tasks including design, refinement and transforma-

tion. Moreover, MDE Settings are models too, and are typically constructed as

DSLs (HEBIG, 2014).

2.1.3 Domain Specific Languages for System Engineering

According to BÉZIVIN (2005), the term “model” is dependent from the context

in which it is applied. In system engineering, a model is the abstraction of sys-

tem requirements. In this case, it is also called application model. Different types

of systems may require different representation languages. This is the reason why

the design of web information systems (SOUZA et al., 2007) and embedded sys-

tems (BECKER et al., 2002) implies the use of different Domain Specific Languages

(DSLs) (VOELTER, 2009). Two main approaches are used to develop a DSL: Based

on concepts for Domain-Specific Modeling Languages (DSML)(KELLY and TOLVA-

NEN, 2008), also known as heavy-weight approach, and on UML Profiles (KLEPPE

et al., 2003), known as light-weight approach.

The literature of the area presents lots of DSLs for specific domains (FORWARD

et al., 2012). For example, some UML Profiles have been proposed to design web

information systems (BLANKENHORN, 2004; KRAUS, 2007) and others to design

embedded systems such as SPTP (OMG, 2002) and MARTE (OMG, 2013). These

profiles are UML extensions used by software engineers to decorate model elements

19



with stereotypes and tagged values, providing application semantics in models.

In traditional software development approaches, software applications are manu-

ally programmed to run in specific target platforms. In order to create such applica-

tions independently of target platforms and using less manual effort from developers,

some software companies are adopting code-generation techniques for MDA (BLOIS

et al., 2009; KLEPPE et al., 2003; MONTEIRO et al., 2014a). For example, in a

MDA-based process a model, in general, represents elements using UML (BOOCH

et al., 2005) or other languages whose metamodel is based on the Meta Object Fa-

cilities (MOF) (OMG, 2008). MDA’ views (CIM, PIM and PSM) are semantically

helpful to manage tasks of model refinement in levels of details, such as those illus-

trated in Figure 2.1, but in a concrete instance for tool chain shown in Figure 2.3.

In this sense, a concrete tool chain should include a modern MDE Toolbox that

supports Software Product Lines (SPL) (KANG et al., 1990, 1998) in a CIM view.

Many toolboxes support for software product lines (THÜM et al., 2014), allowing

the generation of software products (models and code) based on variability and

commonality found in an application domain (FERNANDES et al., 2011). This

example makes use of a “pattern language” (BATORY et al., 2008) to generate do-

main independent products (e.g., embedded systems or web information systems) in

conformity with UML.

Batory claimed that the implementation of SPL and Model-Driven Development

(MDD), or MDSPL, requires the use of heterogeneous model transformations be-

cause more than one DSL is used in a MDSPL lifecycle (BATORY et al., 2008). For

example, the transformation of a domain model from a CIM view to another model

in a PIM view (the Domain Model Instance) does not require the use of an het-

erogeneous transformation, while the other requires. Since “model 2” of Figure 2.3

is still in conformity with UML, a transformation from “model 1” to “model 2” is

defined as an endogenous transformation (i.e., that makes use of the same meta-

model). In the PIM’2 view, the Domain Model Instance is transformed to: a) model

3, conforms to the Web DSL; b) model 4, conforms to Desktop DSL; and c) model 5,

conforms to Mobile DSL. This management of heterogeneity can, therefore, also be

mapped to constructors of DSLs. Thus, approaches for MDE Settings do not follow

strictly the nomenclature defined by MDA neither are obligated to adopt UML as

unique design language.

2.1.4 Lifecycle for Transformations

Since 2000, development effort has been directed to create DSLs and different model

transformation (MT) engines (JAKUMEIT et al., 2014). In 2003, Czarnecki et

al. made a classification of transformation proposals (CZARNECKI and HELSEN,

20



2003), dividing approaches in two categories: Model-to-Code (M2C) and Model-to-

Model (M2M). In M2C transformations, the goal is to generate code directly from

models or templates. In M2M transformations, the objective is to transform the

input model into another model. Authors claim that several model transforma-

tions are necessary to generate system code, and such transformations are managed

through tool support (BÉZIVIN et al., 2004).

Figure 2.4: Mapping and Transformation of a Model in a PIM View to a PSM View

Instead of using only one transformation directly from a model to code, the lit-

erature suggests the use of several transformations (MENS and GORP, 2006). Fig-

ure 2.2 shows three possible implementations to transform a model to code and also

to reverse code to model (known as round-trip engineering (HAILPERN and TARR,

2006)). Early implementations have followed the structure shown in Figure 2.2 (a).

In this structure, a model is converted to code using a tool that operates for a spe-

cific platform, and reverse engineering converts the code to model. In Figure 2.2 (b),

concepts for frameworks and pattern languages are added, allowing code generation

considering core assets in a target context. FERNANDES et al. (2011) exemplified

a MDE implementation through software product lines, which shows the use of a

pattern language to generate products independent from domains (e.g., embedded

systems or web information systems). Batory claimed that the implementation of

Figure 2.2 (c) requires the use of heterogeneous model transformations because more

than one DSL is used in a MDE lifecycle (BATORY et al., 2008). Figure 2.2 (c)

shows a possible implementation of modern MDE tools, which enables a tool chain

approach independent from frameworks and languages.

In order to provide semantics for model transformations in multi-levels, some

authors recommend the use of a fourth view called Platform Description/Domain

Model (PDM) (BASSO et al., 2006; WILLINK, 2003), as illustrated in Figure 2.4

(B). A PDM contains mainly characteristics of available platforms (e.g., operation

systems, application programming interfaces, libraries, frameworks, codification pat-

terns, and others). It also can present any semantic that can be associated with a

model transformation. To transform a PIM into a PSM, for example, it is necessary

to identify platforms that can make this refinement. In 2006, we presented an ap-

21



proach to combine characteristics from PDM with model transformations (BASSO

et al., 2006), adding flexibility in model transformation processes through Feature

Model (FM) (CZARNECKI and HELSEN, 2003; KANG et al., 1990).

A possible implementation of a complete tool chain approach is illustrated in

Figure 2.3. Several DSLs proposed in the literature are based on software product

lines reuse mechanisms, allowing the specification of models in a CIM view and

transformation to a PIM view. Following related works can be mentioned: (BENA-

VIDES et al., 2010; FERNANDES et al., 2011; KANG et al., 1998; VÖLTER and

VISSER, 2011).

In addition to software product line approaches, a multi-level development ap-

proach also considers model refinement with heterogeneous metamodels, as illus-

trated in Figure 2.3 by two levels of PIMs. In level PIM 2, many DSLs allow

generating GUI models for information systems. Examples are DSLs proposed

by (KAVALDJIAN, 2007; KRAUS, 2007; NUNES and SCHWABE, 2006; VAN-

DERDONCKT, 2005). This way, multi-level modeling needs adaptations on MDE

Settings (e.g., connected model transformation and tools in chains) for a more

heterogeneous scenario (e.g., to combine components from textual DSLs such as

ATL (BÉZIVIN, 2005) with compiled Java components).

2.1.5 Tool Chain Approaches

Some works implement both SPL and MDE. In (BATORY et al., 2008), authors

introduced an approach called “model deltas” as a possible implementation for

Model-Driven SPL (MDSPL). MDSPL approaches are based on the megamodel

concept (MARIE FAVRE and NGUYEN, 2004), which requires modeling of every-

thing (variability in domains, in transformations and any other resource used in the

transformation process) in a unique big model. A megamodel simplifies the rep-

resentation and management of variability (MARIE FAVRE and NGUYEN, 2004;

VIGNAGA et al., 2013), but its use is limited in inter-organizational contexts, where

model transformation components are used in different domains and adapted for dif-

ferent needs in target companies. Instead of using a megamodel, we have proposed

adaptations in model transformation chains, which have presented positive results

in practice considering reuse in inter-organizational contexts (BASSO et al., 2013a,

2017a). A negative aspect of this proposal its higher complexity than MDSPL,

requiring adaptations that consider features from cross-domains (e.g., reusable com-

ponents between model transformations for web information systems and wireless

sensor networks).

Batory discussed important concepts for hybrid representations of model-based

operations (BATORY et al., 2008). In regard to model transformations as applied

22



in MDSPL, two main classifications exist: Endogenous versus Heterogeneous. En-

dogenous transformations are used in software product lines and make use of the

same metamodel (e.g., the input “domain model” and the output “domain model

instance”). Heterogeneous model transformations are more complex and need veri-

fication in a chain of model-based operations. This is illustrated in the bottom-part

of Figure 2.3, where some heterogeneous transformations are executed after the gen-

eration of a domain model instance. Transformations are also classified according

to its complexity for MDSPL: more complex transformations make use of “ad-hoc

algorithms” and less complex ones make use of “built-in algorithms” and “generic

algorithms”. Heterogeneous transformations make use of many “ad-hoc algorithms”,

that may be in conformance with more than one metamodel, may simply be pro-

grammed in Java.

Representations for MDE Settings enable the execution of automated design

approaches (BATORY et al., 2013b; HEBIG, 2014) independently from frameworks

and languages, allowing the management of model transformations as components

in an execution sequence. For example, Figure 2.3 shows arrows indicating flows of

execution that chain model-to-model and model-to-code transformations. A concrete

example is introduced by LEVENDOVSZKY et al. (2005), which presented the

Visual Modeling and Transformation System (VTMS) as a solution for chaining

several transformations that generate refined models conforming to different views.

His work is limited to an unique metamodel (i.e., views are models represented with

UML), thus restricted to MDA Settings (UML, XMI and OCL standards).

For managing of orchestration of heterogeneous meta-metamodels, other contri-

butions are dedicated to check consistency. CAPLAT and SOURROUILLE (2005)

highlighted that the real issue is to accomplish mappings from one language to an-

other (i.e., to link and validate model, metamodels and transformations). First ap-

proaches for MDE Settings presented limitations to implement a more heterogeneous

tool chain. Modern tools supporting reuse mechanisms have been adopting valida-

tion techniques, such as (YIE et al., 2012), using different representations/settings.

Thus, these techniques remit to specific settings that need to be analyzed in this

work.

It is important to mention that tool chain is not an issue observed only in MDE

context. In this sense, ZAKHEIM (2017) presents the following issues associated

with tool chain in general contexts:

An unintegrated software development and delivery toolchain creates

bottlenecks, drains productivity, impedes collaboration and inhibits project

visibility. Integration of the toolchain may seem like a straight forward

undertaking, but it is much more difficult than it appears initially. While

most endpoint tools have APIs, they are insufficient for integrating to

23



other tools because they: were not designed for this kind of integration,

are often poorly documented and often change when a new version is

released. Some of the most challenging aspects of integrating these tools

include understanding how practitioners use these tools and resolving

the conflicts among the tools that prevent this flow of work. Managing

the performance impact, testing and going maintenance of an integrated

toolchain becomes exponentially more difficult the more endpoints are

added. (ZAKHEIM, 2017)

ZAKHEIM (2017) also states that business issues rather than technical are

currently affecting the success of tool chain approaches. In this sense, next, we

introduce the business concept for coopetition, presenting assets as modern and

complementary elements in support for implementations of tool chain in MDE.

2.2 Assets

The literature is rich in toolboxes that support tool chain instantiation, modeling,

refinement, and transformation tools. However, putting these toolboxes to work

together is always a difficult experience (MOHAGHEGHI et al., 2013). As the leader

of the company Tasktop, which focuses on the integration of software development

tools, ZAKHEIM (2017) concludes that the lack of semantics of tools is a problem

hampering their work.

A common concept for introducing the semantics for artifacts is the asset. An

asset is anything that provides reuse and value through reference (links), cataloged

with standardized taxonomies, described by a set of properties and owning zero or

more specifications about artifacts. The Gartner Group, an important organization

that evaluates industrial practices in Software Engineering, has conducted a sur-

vey of companies stating that the assets are considered essential to their business

(GARTNER, 2013). Assets are, therefore, relevant to the current reuse scenario.

Through ad-hoc reviews, we find in the literature of the area the subject “asset”

discussed in four different perspectives. Thus, this section presents the following

concepts related to assets: asset specifications, coopetition, repositories and software

ecosystems.

2.2.1 Asset Specifications

A possible solution for publishing and downloading artifact content in a repository

is by asset specifications (OMG, 2005). According to the Asset Management Spec-

ification (AMS) (AMS, 2014), a resource is anything that provides reuse and value

through a reference, cataloged with taxonomies, described by a set of properties,

24



and having zero or more data for artifacts (AMS, 2014). Assets have been adopted

to describe software components (HONG-MIN et al., 2009), application and domain

models (PARK et al., 2007) and, more recently, tools shared in the cloud in the

context of MDE (ELAASAR and NEAL, 2013). DOS SANTOS and WERNER

(2010) claims that assets are important to play a key role between reusable artifacts

(asset consumers) and service providers/repositories (asset providers).

The OMG (Object Management Group) promotes a standard for asset repre-

sentation called Reusable Asset Specification (RAS) (OMG, 2005). This standard

allows classifying, cataloging, and instructing the reuse of software artifacts in ar-

bitrary reuse repositories, such as Rational Asset Manager (MADSEN, 2008) and

OpenCom (HONG-MIN et al., 2010). The data provided in reusable assets allow

one to specify, store, retrieve various artifacts used in the software engineering pro-

cess. The objective of the asset producer is therefore to detail data associated with

artifacts, such as instructional information on how to adapt and deploy a set of

artifacts in production environments.

2.2.2 Coopetition

Future implementations in MDE as a Service can benefit from promoting compe-

tition promoted through web services (OSLC, 2017b). In this section, we present

some initiatives that are gaining attention in this matter.

Cooperation and competition appear to be conflicting terms, but practice proves

otherwise. The case of Amazon.com is a good example of cooperation and compe-

tition (RITALA et al., 2014). Since this company opened its own online store for

third-party sellers (competitors), new business transactions increased 20 percent of

its North American sales between 2002 and 2010 and other 35 percent of sales in

2013. RITALA et al. (2014) claims that:

“Coopetition (collaboration between competing firms) is a phe-

nomenon that has recently captured a great deal of attention due to its

increasing relevance to business practice.”

BOUNCKEN et al. (2015) define coopetition as:

“Coopetition describes an interorganizational relationship that com-

bines “cooperation” and “competition”.

RITALA et al. (2014) report three distinct coopetition-based business models

implemented at Amazon.com. The second model “(2) Services and Web Services”

is what interests us since it is feasible for implementation in MDE as a Service.

Services and Web Services remit to the definition of a common representation for

25



products commercialized by Amazon. These products are represented as asset in

the Amazons’ cloud, which are connected with external competitors through web

service implementations (RITALA et al., 2014).

2.2.3 MDE Artifact Repositories

Aware of this trend for coopetition (BOUNCKEN et al., 2015; RITALA et al., 2014),

some authors suggest the use of an underlying infrastructure that promotes the reuse

of MDE artifacts through assets (COMBEMALE et al., 2015a; MUSSBACHER

et al., 2014). In this direction, some options for global asset repositories concerning

MDE Artifacts have been in operation since 2006 (FRANCE et al., 2006). ReMoDD

is a repository for MDE that can be used to solve the problem of reuse and sharing

of MDE Artifacts for free (FRANCE et al., 2007). An initiative called SEMAT

focuses on reusable methods (JACOBSON et al., 2012) represented with an OMG’s

standard called Essence (OMG, 2015). GEMOC (COMBEMALE et al., 2014) is

another option. Finally, recent underlying infrastructures represent technical aspects

for MDE Artifacts in repositories that support collaboration (MENGERINK et al.,

2016; ROCCO et al., 2015).

2.2.4 Software Ecosystems

Assets have also been suggested as essential in Software Ecosystems (SECO) AX-

ELSSON et al. (2014); SANTOS and WERNER (2012). At SECO platforms, assets

are typically analyzed from a three-dimensional perspective (technical, business,

and social). Although limited to use in the context of MDE artifacts, some mapping

studies for SECO are also considering elements for decision making (AXELSSON

et al., 2014; MANIKAS, 2016; MANIKAS and HANSEN, 2013).

Some platforms for Software Ecosystems propose support for competition

through negotiation (AXELSSON et al., 2014; BADAMPUDI et al., 2016; DOS

SANTOS et al., 2013; SANTOS et al., 2016). These platforms enable interactions

between asset providers and consumers. SANTOS et al. (2016) present a distribution

channel as a possible solution for trading assets in global and corporate component

markets, which is also valid in the context of the MDE. According to BADAMPUDI

et al. (2016), assets are critical to decision making of software components and com-

prise the following reuse scenarios: 1) in-house, i.e., considering intra-organizational

contexts, and; 2) inter-organizational scenarios, i.e., including Components-of-the-

Shelf (COTS), Open Source Software (OSS), or outsourcing.

26



2.3 Related Works

In this section, we highlight the main related works in scenarios of MDE as a Service.

In order to capture the basic terminology concerned with services, assets, pivot (or

pivotal) representations, we performed an ad-hoc technical literature review using

the researchgate.net engine as data source. Besides, we selected some contributions

for tool chain discussed previously, organizing this section is organized as follows.

Section 2.3.1 discusses proposals for model transformation chain and reuse mecha-

nisms. Section 2.3.2 reports on recent advances from proposals for representation of

tool chain in MDE. Section 2.3.3 presents some approaches for services and assets.

Section 2.3.4 highlights main extensions for asset specifications and Section 2.3.5

presents studies for assets used in software ecosystems. Section 2.3.6 establishes the

relation of our work with reference architectures and Section 2.3.7 exposes MDE

repositories as important players for assets in coopetition scenarios for MDE as a

Service. Finally, Section 2.3.8 encloses with related works for pivotal representation

languages in MDE.

2.3.1 Reuse Mechanisms in Tool Chains

Reuse mechanisms for tool chain are related with the toolbox built on the FOMDA

DSL (BASSO et al., 2013a, 2014c,e), a representation language that we have used to

build foundations for MDE as a Service through characterization studies (BASSO

et al., 2014a, 2015b, 2016d, 2017a). Thus, below we describe related works to this

topic.

Aiming to generate Model Transformation Chains (MTCs) used by MDE tools

for execution of model transformations, some proposals allow designing transfor-

mation compositions in high-level of abstraction to then generate specific scripts.

VANHOOFF et al. (2006) proposed a MTC modeling language using target plat-

forms as part of architectural designs. Target platform and transformations are

composed using UML activity diagrams in a similar solution as we did in previous

contributions, using a UML Profile (BASSO et al., 2006). These proposals were

complemented by WAGELAAR (2006) who proposed a composition of black-box

model transformations and by ETIEN et al. (2012) who suggested the use of het-

erogeneous model transformations developed with different metamodels. Although

Etien’s and Vanhooff’s proposals are interesting, they do not support transformation

chain executions considering target platform variants, meaning that chains must be

manually changed when a different set of transformations is necessary.

Another recent contribution supporting execution of MTCs is presented

by VARA et al. (2014), which considers the trace promoted by model transfor-

mations but does not consider variability in these transformations. In opposite,

27



FODMA DSL does not consider traceability, but its tool chain representations con-

sider the existence of two types of runtime-based adaptations: the first one interprets

a model specification for tool chain and the second one integrates variants directly

into scripts.

Some recent proposals have applied similar reuse techniques through generative

approaches. ARANEGA et al. (2012a) uses the Feature Model to assemble transfor-

mation components (e.g., white-box model transformations, fragmented algorithms

or transformation rules, diverse configuration files, etc) using Software Product Line

(SPL) tools. However, despite techniques for SPL are applicable in diverse compo-

nent types, adaptations in tool chains must also consider valid compositions among

artifacts. While ARANEGA et al. (2012a) and ETIEN et al. (2012) seem to move

in this direction, so far, only FOMDA DSL and Bentõ DSL (CUADRADO et al.,

2014) consider the use of Feature Model with verified components.

The toolbox built on the FOMDA DSL is the only one that validates the con-

structors from three different techniques (SPL, MTC, and Component-Based De-

velopment - CBD) at design and runtime. Thus, compositions are checked dur-

ing the design of a domain model for MTC, while in (ARANEGA et al., 2012a;

CUADRADO et al., 2014; ETIEN et al., 2012; YIE et al., 2012) they are checked

only after the generation of a concrete model transformation chain/script. In com-

parison to (ARANEGA et al., 2012a), FOMDA DSL toolbox saves time in detecting

inconsistencies in the design of components. Considering consistency in transforma-

tion composition, GUY et al. (2012) and YIE et al. (2012) suggested that valid

compositions must be ensured with parameter types. For example, IO parameters

are checked during the design of a model transformation chain, validating rules such

as metamodel and data types (e.g., EMF-based metamodels compatibility), trans-

formation languages (e.g., ATL and QVT transformations), etc. Moreover, it is also

important to consider that model transformation components can evolve. In this

regard, LOPEZ-HERREJON et al. (2010) presented a proposal to automatically

control co-evolution of models, metamodels, and transformations from a tool chain.

Although co-evolution is an important technique related to adaptations in MDE Ar-

tifacts, it is not managed in FOMDA DSL toolbox neither in any toolbox developed

in support for RAS++.

FOMDA DSL is complementary to RAS++. It contains an integrated toolbox

for construction of tool chains, consisting of an approach for integration, likewise

previously discussed contributions. On the other hand, RAS++ is for preliminary

phases to integration, using a rich set of structures to describe assets. Thus, these

two types of DSLs are complementary.

28



2.3.2 Tool Chain in Process Engineering

This section describes related work in tool chain supporting process engineering.

LAHTINEN et al. (2006) propose to guide the refinement of UML models by

assisting the creation of object diagrams based on a class diagram used as input.

They used the MADE platform (HAMMOUDA, 2005), that is based on a UML

profile to specify MDD tasks. RAS++ presents similar resources (BASSO et al.,

2014b).

Other integration approaches are for process specifications, or Process Modeling

Languages (PMLs). POLGÁR et al. (2009) proposed a framework to chain transfor-

mations by chaining tools through a reuse process defined with SPEM, a similar ap-

proach for tool chain such as proposed by MACIEL et al. (2013). OLIVEIRA et al.

(2011) assist some tasks to instantiate object oriented frameworks using BPMN, in-

cremented recently for inclusion of workflow elements (LUCAS et al., 2017). Besides,

many other works that use model transformation engines to execute transformation

processes are discussed in (BASSO et al., 2013a).

Approaches for integration of MDE Artifacts and Settings in process models are

used in a late phase of tool chain unlike RAS++, which is useful in preliminary

phases. Our contribution focuses on phases Specification, Acquisition and Transfor-

mation, which are little understood in the literature and practice on tool chain (ZA-

KHEIM, 2017). MDE assets are agnostics to the software development process

model, process modeling language, MDE Toolbox and integrated development envi-

ronment. Existing works consider all these elements integrated (e.g., ETIEN et al.

(2012); MACIEL et al. (2013); YIE et al. (2012)), whereas in a coopetition scenario

as implementation for MDE as a Service these elements need to be managed inde-

pendently. In order to promote reuse of assets for different contexts (i.e., considering

different formats/solutions used to integrate MDE tasks), we first extracted from the

literature requirements for a common representation language. Such a language is

imperative for execution of preliminary phases and represents the main contribution

of this thesis.

2.3.3 Anything as Service

Although little related, there is a soft connection between our work and some ap-

proaches for anything related to services. Service-oriented product lines (CASTEL-

LUCCIA and BOFFOLI, 2014) are approaches for management of variability in arti-

facts built on concepts of Service-Oriented Architecture (SOA). These contributions

have little relation with RAS++, being complementary. There is also a difference

in terms of general goals: MDE as a Service aims at providing software engineering

services for customization of MDE Artifacts, while approaches for service-oriented

29



product lines focus on reuse of service components shared on the web.

Typically, works related to RAS exemplify scenarios where assets promote reuse

through a well formed documentation. It is the case of ELGEDAWY (2009), who

proposed a RAS extension to describe SOA components, and PARK et al. (2007)

that detail component interfaces. The goal of these works is to make reusable assets

for web services. Properties introduced in RAS++ did not consider other elements

than those necessary for MDE Artifacts and Settings. This means that for represen-

tation of SOA components, asset profiles described by ELGEDAWY (2009); PARK

et al. (2007) must be included using one of two options in RAS++: UML Profiles

or RAS Profiles.

This is not the case for federation of resources. In this sense, a research in

evidence is “MDE Resources as Service” (BASCIANI et al., 2014b), focused on im-

plementation technologies for Software-as-Service (SaaS) inside MDE repositories.

SaaS allows to publish and download resources to/from repositories through modern

APIs for services, such as REST API (ROCCO et al., 2015). Investigated reposito-

ries are more general and, therefore, RAS++ considers other elements for artifact

federation (local path, URLs, MAVEN proxies, OSLC proxies) instead of a unique

SaaS technology. Thus, in representational terms, RAS++ is more representative

than the proposal of BASCIANI et al. (2014b).

2.3.4 Extensions for Asset Specification Languages

RAS++ is built on service concepts in asset-level, as required by the standards

RAS (OMG, 2005) and AMS (AMS, 2014). The RAS standard is older and defines

a format for web services, allowing access to component-based repositories. The

AMS standard defines a format for accessing clouds, including modern definitions

such as REST API and Resource Description Framework (RDF). RAS++ is built

on RAS and AMS standards, but so far none of the prototypes that we have devel-

oped support the execution of services such as query mechanism. For this reason,

prototypes for RAS++ are in level of DSL and not in implementation-level of web

services, that run with RAS or AMS protocols. For such purpose, software engineers

should transform RAS++ representations to RAS or AMS specifications.

Concerning representativeness from asset specification languages, we can mention

some extensions for RAS that represent technical and descriptive information: SOA

components (ELGEDAWY, 2009; PARK et al., 2007), feedback from users (HADJI

et al., 2008), component software license (HONG-MIN et al., 2009) and stan-

dard taxonomies. Other proposals (BIEHL et al., 2014; ZHANG and MOLLER-

PEDERSEN, 2014) are more similar to integration languages whose specifications

can be transformed to AMS (AMS, 2014), which is a standard behind the Open

30



Services for Lifecycle Collaboration (OSLC) (OSLC, 2017a). These extensions can

also be applied to summarize information of some technical data for MDE. How-

ever, they are used by software components or tools shared on the cloud, thus not

properly designed to represent technical information associated with MDE Artifacts

and Settings.

Anyway, some of these contributions can also be used in preliminary phases,

but closer to integration. Considering chained execution of tasks integrated in tar-

get environments like Eclipse IDE, BIEHL et al. (2014) proposed TIL, a domain

specific language to specify integration among tools. Besides, integration adapters

based on TIL are used to generate OSLC specifications used to integrate diverse as-

sets found in software development scenarios. ZHANG and MOLLER-PEDERSEN

(2014) proposed to detail artifacts and roles in the context of tool integration, also

applying mappings to OSLC specifications. Clearly, the authors are also moving to-

wards detailing assets in preliminary phases. However, our contribution is singular

because we have considered specificity from MDE tool chains and also quality of the

descriptive information, which is superficially discussed by aforementioned works.

2.3.5 Software Ecosystems

Other contributions related to assets propose better descriptions concerning business

issues in perspectives for software ecosystem (SECO) (AXELSSON et al., 2014;

BADAMPUDI et al., 2016; DOS SANTOS et al., 2013; SANTOS et al., 2016). These

descriptions are possible only on asset platforms, therefore, not through DSL or a

common representation. In this regard, BADAMPUDI et al. (2016) propose reused

dimensions for ecosystems, including the assets as an important player for decision

making in a reuse approach called GRADE. RAS++ allows the representation of the

information suggested in GRADE. However, our assessments are focused in technical

information, thus making a direct transition from the GRADE phases to the decision

making: Assets and Environment.

SANTOS et al. (2016) present a distribution channel as a possible solution for

the negotiation of assets in global and corporate component markets, which is valid

in the context of MDE as a Service. With this intention, the authors have promoted

the use of three perspectives in the SECO platforms (LIMA et al., 2016) represent-

ing assets mapped to describe: socio-technical and business opportunities. These

contributions influenced the criteria established for qualified descriptive data at the

Acquisition phase. To our best knowledge, in terms of DSL, only RAS++ match

these recommendations relevant for decision making from the point of view of tech-

nical, business and social actors on the representation of assets for MDE Artifacts

and Settings.

31



2.3.6 Reference Architectures

Some related works (MARTINEZ-FERNANDEZ et al., 2015; NAKAGAWA et al.,

2015) suggest reference architectures as a common representation for instantiation

of MDE Artifacts such as system models, system code, interfaces to Web Services,

and other applications that can be built on a unique conceptual model. For example,

NAKAGAWA et al. (2015) suggested reference architectures as a way to promote

the connection of concepts to representations for systems-of-systems (NETO et al.,

2014), which is ultimately used for web services definitions that connects heteroge-

neous systems.

Reference architectures can defined to instruct the integration of diverse types of

assets in MDE as a Service as well, complementing asset specifications. Reference

architectures supporting MDE as a Service could be structured as RAS++ assets

as well. Moreover, since heterogeneous services are the key to interoperate asset

information in MDE as a Service and are part of reference architectures, we believe

that a more general reference architecture could guide the implementation of specific

web services that connects heterogeneous sources in a coopetition scenario with the

common representation in RAS++.

Reference architectures, if we had found some in the literature, would be very

useful and spared effort to achieve common RAS++ properties. The process for

achieving these properties in the reference architectures is the same adopted in

this thesis: the execution of coding protocols for clustering. Therefore, the use of

reference architectures in support for MDE as a Service is an interesting open topic

for investigation.

2.3.7 Infrastructures Sharing MDE Artifacts

In 2006, Boehm argued that to compete, adapt, and survive, software development

companies will depend on the ability to integrate some systems into global reuse

scenarios made of Systems of Systems (SoS) (BOEHM, 2006). In 2014, Fuggetta

highlighted a trend for cooperative systems that assist software engineering tasks

in diverse software development phases (FUGGETTA and NITTO, 2014), thus in

integrated processes. This trend is of interest for the MDE context (HEBIG and

BENDRAOU, 2014), and in special of interest of MDE as a Service. Industry is

requesting some facilities to introduce MDE-based solutions in practice (WHITTLE

et al., 2015), such as more compatible systems (LIEBEL et al., 2014) and qualified

information (MUSSBACHER et al., 2014). Therefore, besides SECO (DOS SAN-

TOS et al., 2013) and reuse repositories (COMBEMALE et al., 2014; FRANCE

et al., 2007; JACOBSON et al., 2012; ROCCO et al., 2015), contributions for inter-

operation of SoS (MOTTA et al., 2017) are important for execution of preliminary

32



phases for integration.

Some efforts to achieve interpolations between SoS and SECOs presented simi-

larities and differences (JERONIMO JR. and WERNER, 2015): the former includes

business prospects, while the latter is quite technical. From a personal opinion, SoS

is more at the OSLC (OSLC, 2017b) implementation level, including services and

interfaces, rather than on a descriptive level of SECO. Contributions to SoS were

also discussed in the context of MDE (NETO et al., 2014). For example, design and

refinement tools are MDE Artifacts considered as systems (FRANCE et al., 2006), as

well as some DSLs with an associated plugin or tool support (COMBEMALE et al.,

2014). The integration of these systems occurs through the MDE Settings (HEBIG

et al., 2013), which are executable compositions of model transformations (HEBIG,

2014). Last but not least, model transformations are also systems (BATORY et al.,

2008).

These approaches are discussing the same problem with different representa-

tional focus, some considering more important technical aspects and others stating

the importance of descriptive data. In this way, representations found in SoS-based

repositories are related works (CORREIA et al., 2016; NAKAGAWA et al., 2015).

Its focus is on a reuse scope also implemented by the MDE repositories (COMBE-

MALE et al., 2014; FRANCE et al., 2007; JACOBSON et al., 2012; ROCCO et al.,

2015) and by the SECO platforms (DOS SANTOS et al., 2013), but addressing

more technical issues than others related to decision making. Although limited to a

few MDE configurations, compared to the above-mentioned repositories, we found

that MDEForge (BASCIANI et al., 2014b) provides representations that best match

some of the tool chain components exemplified in this thesis. However, because of

the nature of shared MDE artifacts (some share DSLs, other model transformations,

other systems, etc.), adopting a unique repository in MDE as a Service is unlikely.

Thus, each infrastructure presents opportunities for reuse and should be considered

in competitive scenarios in MDE as a Service.

Our long-term research effort is to integrate them all through a common rep-

resentation, starting with the specificity of MDE. For this reason, we consider the

RAS ++ metadata as a super-set of all those infrastructures that support global

reuse. RAS++ could map representations found in these infrastructures, but first

we need to perform an appropriate assessment for each of them, as we did in the

ReMoDD repository (FRANCE et al., 2007).

2.3.8 Pivotal Representations in MDE

Considering the four reuse phases introduced by KRUEGER (1992), bellow we in-

clude comparison with “pivotal” representation languages for MDE Artifacts and

33



Settings.

To the best of our knowledge, RAS ++ is the unique DSL integrating con-

cepts from assets and tool chains for pivoting repositories and development envi-

ronments (BASSO et al., 2017b). The state of the art in pivot languages for MDE

is focused on: 1) Architectural Description Languages (ADL) supporting model

transformations (SYRIANI et al., 2015), which bridge known languages such as At-

las Transformation Language (ATL) (BÉZIVIN, 2005) and Epsilon Transformation

Language (ETL) (KOLOVOS et al., 208) in a common representation; 2) Reuse

mechanisms built on Component-Based Development (CBD) concepts (HERMER-

SCHMIDT et al., 2013); 3) Reuse of model transformations built on common con-

cepts (CUADRADO et al., 2014); and 4) common constructors for ADLs in the level

of DSLs (DI RUSCIO et al., 2012).

Existing representations for assets or tool chains are limited to play a pivotal role

required in the MDE as a Service: 1) due to its specificity for concepts and reuse

mechanisms specific to the MDE Settings (BASCIANI et al., 2014b; BASSO et al.,

2014e; CUADRADO et al., 2014; HEBIG et al., 2012; JOUAULT et al., 2010; MAS-

CARENHAS et al., 2013; POLGÁR et al., 2009; YIE et al., 2012); 2) due to the

specificity of reuse mechanisms of MDE Artifacts when associated with structural

features from a repository (BIEHL et al., 2014; CRIADO et al., 2015; ELAASAR

and NEAL, 2013; GARCÉS et al., 2014; LÚCIO et al., 2014; VIGNAGA et al.,

2013; ZHANG and MOLLER-PEDERSEN, 2014), and; 3) due to the fact that

these representations do not match because they are in different formats, includ-

ing database structures in repositories (BASCIANI et al., 2014a; FRANCE et al.,

2007), XML (MONTEIRO et al., 2014a), code (VÖELTER and GROHER, 2007),

textual (OLIVEIRA et al., 2011) or graphical DSLs (VIGNAGA et al., 2013).

Thus, our contribution is singular since RAS++ groups a greater number of

structural features needed in future implementations for MDE as a Service.

2.4 Final Remarks

This chapter summarized essential concepts for the follow-up of this thesis. The

next chapter is a complement, discussing these concepts as important for implemen-

tation of an emerging scenario for Software Engineering called MDE as a Service

(MDEaaS), i.e., a business opportunity characterized by requests from application-

independent contexts for customizations in MDE Artifacts. In response for the

increasing interest of some professionals in this opportunity and due to the absence

of studies establishing reuse foundations for this scenario, a summary of our charac-

terizations for MDE as a Service is presented with the intent to introduce our main

contribution: RAS++.

34



Chapter 3

MDE as a Service

The only real valuable thing is

intuition.

Albert Einstein

This chapter presents our contributions to the foundation of MDE as a Ser-

vice (MDEaaS) through a summary of four longitudinal studies and six structured

reviews of type mapping study, organized in sections as follows: Section 3.1 intro-

duces the contexts of the longitudinal studies, presenting methodological concerns

for implementations of MDE as a Service. Section 3.2 highlights current research

effort considering diversity in MDE Artifacts and Settings extracted from a mapping

study with implementation concerns. Complementary mappings are summarized in

Section 3.4 exposing our concerns for cooperation and competition in the context of

MDE as a Service. Section 3.4 presents our concerns for the conception of a common

representation language for assets, and Section 3.4.4 encloses this chapter with final

remarks for conception of RAS++.

3.1 Methodological Concerns

This section discusses experiences from previous implementations of MDE as a Ser-

vice. As illustrated in Figure 3.1, resources developed for MDE (e.g., model trans-

formations, DSLs and tools) are applied in different contexts. MDE as a Service

was implemented through the company Adapit, founded in 2007 and supported for

three years by a business incubator, hosted in one of the biggest scientific and tech-

nological parks in Brazil. Through Adapit, MDE resources were introduced in five

software projects, three of them developed by teams from Adapit (context of box 1

in the figure) and two out of them by teams from other start-ups (context of box 2

in the figure).

35



Figure 3.1: Methodological concerns affecting implementation of MDE as a Service

Between 2008 and 2010, Adapit planned and developed an approach for auto-

mated design. It includes a tool called MockupToME and other DSLs in a method-

ology called MockupToME Method (BASSO et al., 2016d). It is the result of three

years of industrial innovation, planned exclusively for the application of MDE in

target software projects for web information system. In 2010, it was implemented a

feasibility study for MDE as a Service, by introducing this new method to other start-

up, referred as “Company A”, thus characterizing a scenario for inter-organizational

reuse (BASSO et al., 2017a).

Differently from Adapit, Company A adopts Scrum (MOE et al., 2010) as the ref-

erence model for the software development process and has some preferences for tool

support different from those used by Adapit teams. Likewise, MDE resources were

adapted for the target context using a set of toolboxes for tool chain (BASSO et al.,

2014a), analyzing issues associated with this specific reference model in combination

with MDE (BASSO et al., 2015b).

3.1.1 Goal

We aim at reporting methodological concerns for implementation of MDE as a Ser-

vice, thus investigating the following research question: Q1: Which are the rel-

evant aspects to be concerned with in implementations of MDE as a

Service?

3.1.2 Research Method

We conducted a new longitudinal study by extracting data from two studies (C02

and C04) shown in Table 3.1. These studies are selected because they highlight

our concerns for implementations of MDE as a Service less tied to technical issues.

Besides, all these studies use data derived from real settings, highlighting many

issues affecting acceptance of MDE tools and methods in industrial contexts as well

36



as some experiences that gave good results. However, since our goal is to report on

methodological concerns rather than toolbox concerns, we selected only information

that is not dependent from tool demonstration, thus excluding technical concerns

discussed in studies C01 and C03.

Table 3.1: Studies for characterization of MDE as a Service
Id Reference Title Challenge Focus Where?

C01 BASSO et al. (2014a)
Supporting Large Scale Model
Transformation Reuse

Reuse Mechanisms
ACM SIGPLAN
Notices

C02 BASSO et al. (2015b)
Combining MDE and Scrum on the Rapid
Prototyping of Web Information Systems

Integration in
SDP/Teams

IJWET

C03 BASSO et al. (2016d)
Automated Design of Multi-layered Web
Information Systems

Tool Chain
Implementations

JSS

C04 BASSO et al. (2017a)
Building the Foundations for “MDE as
Service”

Inter-Organizational
Reuse

IET Software

For more detail, the following content is found in each study:

• C01 - presents a report about customizations introduced in model transfor-

mation components in support for the development of three web information

system projects;

• C02 - introduces challenges for integration of MDE Toolboxes in agile software

processes;

• C03 - details the MockupToME Method, an automated design approach for

web information systems assisted by MDE Toolboxes, i.e., it is shown the final

result from a long tool chain configuration process, and;

• C04 - provides foundations for MDE as a Service through toolboxes built in

our research group.

3.1.3 Analysis

This section provides answers for the research question Q1: Which are the rel-

evant aspects to be concerned with in implementations of MDE as a

Service?

Lack of studies combining MDE and arbitrary reference models for

software development process in practice. The body of knowledge concerning

practical issues in implementation of MDE as a Service is poorly discussed (BASSO

et al., 2014a, 2015b, 2016d, 2017a; BRAMBILLA and FRATERNALI, 2014; MO-

HAGHEGHI et al., 2009, 2013; MONTEIRO et al., 2014a,b). This finding corrob-

orates with HEBIG and BENDRAOU (2014), who claimed that future studies in

Software Engineering should evaluate the impact that introduction of MDE causes

on reference process models in general, in special evaluating the daily practice of

teams. Thus, our analysis concludes that tool chain in MDE involving reference

models is an open topic for research.

37



The literature of the area lacks information on how to introduce MDE

in specific contexts. Although many works are essential to understand threats

that involve MDE adoption (HUTCHINSON et al., 2011; PETRE, 2013; WHITTLE

et al., 2015), they only present a superficial analysis of the problems. A limitation

of these studies is the lack of focus on specific application domain, such as web

information systems or embedded systems. The quick development of prototypes

could be useful in these domains. Thus, in order to better understand issues that

hamper MDE adoption in industry, empirical studies should be directed for specific

contexts.

Which are the incompatibilities in terms of tool between MDE and

Agile? The subjectivity of the information available in the literature of the area

makes very hard to understand whether a model-based tool is incompatible with

agility principles. Most of information that we have found related to Agile princi-

ples resembles general recommendations of software development, which is not useful

for one who needs to use existing MDE resources in the context of a Scrum-based

software project. Several assumptions have to be defined, which is a difficult de-

cision for the service provider, since no one knows exactly how to deal with these

approaches together. In (BASSO et al., 2015b), we have invested big effort to under-

stand incompatibilities between MDE and Scrum and at the end of our analysis we

have realized that the unique relevant issue to the combination of these approaches

is the need of Sprints with short timescale. Our analysis concludes that the body

of knowledge for decision making in this matter is poor, thus implementations for

MDE as a Service are ad-hoc.

Which are the requirements for “agile tools” in the context of MDE?

Which design tools are more suitable for agile teams? In which contexts? With

which goals? These questions should be explored in empirical studies conducted in

industry. The literature presents several proposals for MDE and rapid application

prototyping, but no criteria that could help Software Engineers to choose the best

option for agile contexts is provided. This limitation makes very difficult to match

the theory related to Agile Methods and MDE with practice needs of industry. As

a result of the lack of requirements for agile tools, the decision making process on

which tools and tasks to include in a defined process for a target company is still

ad-hoc.

The “good” and “bad” on the combination of MDE and Agile should

be associated with a context. In our view, answers for questions like the above

ones cannot be generalized to all companies, processes and team configurations. To

be valuable for the Software Engineering practice, they have to be answered for

each specific context (e.g., big, small or start-up companies, teams with different

configurations, etc). Accordingly, we have reported in our previous contributions

38



(BASSO et al., 2014a, 2016d, 2017a) the importance of target context for choosing

a suitable DSL to start the MDE-based process. Therefore, instead of making gen-

eral assumptions on the applicability of a process model, methodologies and tools,

Software Engineers should direct their observations for specific contexts.

A step back regarding to the representation of workflows in the

FOMDA DSL: a domain specific language for representation of MDE Settings

proposed in 2006 in the author’s Master’s dissertation (BASSO, 2006). FOMDA

DSL was tested and improved in industrial settings until 2011 (BASSO et al., 2014a,

2017a), allowing software engineers to instantiate tool chains through representations

of four concepts: software product lines, model transformation chain, component

based development and adaptive test cases. In the older version (2006), we thought

that the use of a workflow designed with the FOMDA UML Profile (BASSO et al.,

2006, 2007) would be a good representation for tool chain components. However,

due to the complexity required for designing of a cross-application domain model,

the practice suggested the opposite. The specificity of MDE components implies on

the use of several UML annotations, which is bad for the understanding of a work-

flow due to the design pollution. In other words, with the FOMDA UML Profile

it seems that the essence of workflow representation has been lost in detriment of

a more technical-level representation. Thus, we did not include workflows in recent

versions of FOMDA DSL after 2009 (BASSO et al., 2009).

A research direction for integration with Software Development Pro-

cesses (SDP). One of our goals with the FOMDA UML Profile was to represent

the specificity of MDE resources in SDPs. This has been performed by some other

researches in the area (MACIEL et al., 2013), which conclude that the inclusion of

representations for model, metamodels, and transformations in a process modeling

language called SPEM is good from the point of view of process engineers. How-

ever, our experiences with the FOMDA UML Profile, with similar representation

of workflows, suggest the opposite. Besides, we have been noticing that MDE re-

sources are agnostic to SDPs. These divergent positions raise two questions that

should be investigated: 1) Whether the integration of technical-level information in

process modeling languages is good for reuse? 2) Due to issues previously discussed,

which implied in a step back for the inclusion of our technicalities in workflows, an

extension of a process modeling language is good for the practice?

For instance, we are considering a less intrusive approach for introducing

automatically MDE resources in SDPs specifications through tailoring rules for

BPMN (PILLAT et al., 2015).

39



3.1.4 Final Remarks

Through these four characterization studies, we present a contribution for the theory

and practice in implementation for MDE as a Service. However, all these reported

issues are from previous practices, thus could be related only with a personal perspec-

tive of this scenario. In order to remove this bias, we executed structured reviews,

summarized latter in Section 3.4, to find out whether other reports are concerned

with the same issues in implementations of this opportunity. Next, we present a

structured review of type mapping study discussing this scenario.

3.2 Implementation Concerns

MDE achieved a certain maturity in practice and research (MUSSBACHER et al.,

2014; WHITTLE et al., 2015), leading software engineers to the development of sev-

eral tools, languages and methodologies for specific needs (PETRE, 2013). Although

the advances, tool chain remains a challenge. MOHAGHEGHI et al. (2013) claim

that:

“developing a MDE tool chain requires high expertise and an invest-

ment of effort since no platform works “out-of-the-box”... Model-driven

engineering has not been an out-of-the-box solution for any of the cases

discussed in this paper... This fact is both the strength and the weakness

of the MDE approach: developing the environment requires high exper-

tise and is costly, which does not pay off for small or single projects.

However, once such a development environment is created, it has the po-

tential to be easier to use than generic modelling tools and to save effort

by automation.”

This is a bit surprising coming from authors who reportedly have been using

tools built on Model-Driven Architecture (MDA) (KLEPPE et al., 2003) standard

and Eclipse Modeling Framework (EMF) (STEINBERG et al., 2008) ecosystems.

Paradoxically, they should not observe these tool chain problems because they use

an interoperable set of tools, but they did have an issue with integration. Since we

have been observing the same issues (BASSO et al., 2016d, 2017a), an open question

is why integration is so hard (ZAKHEIM, 2017)?

In this section, we want to understand what affects representations of tool chain,

i.e., why MDE has not been an out-of-the-box solution. For example, in the study

that culminated into this section, it is concluded that an integrated reuse mech-

anism and approach for the management of cross-application domains is essential

to a successful implementation of MDEaaS (BASSO et al., 2017a). However, some

limitations imposed difficulties for the business feasibility, thus opening window for

40



substantial new contributions in the area. For example, current tool chains are more

like an orchestration of several systems for MDE (AHO et al., 2009; BATORY et al.,

2013b; HEBIG and BENDRAOU, 2014; LAFI et al., 2011; VARA et al., 2014) than

the use of a unique tool support (GRUHN, 2002; LININGTON, 2005; WASSER-

MAN, 1990). This change of paradigm is observed in first contributions (ANDER-

SSON and HST, 2008; BECKER et al., 2002; SOUZA et al., 2007; STARY, 2000;

STOCQ and VANDERDONCKT, 2004), where a model is designed with a unique

design language and transformed by a unique script for model transformation. In

current approaches, one can observe that MDE-based processes need to orchestrate

several tools with some (semi-)automatic Software Engineering (SE) tasks that as-

sociate systems for MDE (BATORY et al., 2013b; HEBIG and BENDRAOU, 2014;

VARA et al., 2014).

The interest in tool chain research has increased in recent years (AHO et al.,

2009; BIEHL et al., 2014; BRUNELIÈRE et al., 2010; ELAASAR and NEAL, 2013;

FRANTZ and CORCHUELO, 2012; ZHANG, 2015). Despite the interest, we lack

characterization of the area. A first threat is that the execution of an approach for

tool chain may include many toolboxes. Besides, the context of system engineering,

as the one experienced at Adapit and discussed in Section 3.1, is not unique that

can be target of an implementation of MDE as a Service. However, many other

tasks performed through MDE Toolboxes are also important, such as those under

the umbrella of process engineering (PILLAT et al., 2015).

In this direction, we advocate the need for characterization to conduct our anal-

ysis in MDE as a Service, as well as to highlight contributions in the state of the

art for tool chain. For that, we organized our research as described in the following

subsections.

3.2.1 Goal

In order to provide an analysis of the current scenario for implementation of coope-

tition in MDE as a Service, our goal is to find what affects a MDE tool chain

instantiation. In other words, we want to identify the possible MDE Artifacts and

Settings to be used in instances of tool chain as well as what is considered in this

scenario for tool chain in Software Engineering research. In this direction, we con-

ducted a structured review of type mapping study to answer the following research

question:

Q2: Which are the relevant aspects to be concerned with in integration

of MDE Artifacts and Settings in the context of MDE as a Service?

41



3.2.2 Research Method

To achieve this goal, we performed a structured review of type mapping study using

a snowballing protocol (PETERSEN et al., 2008). This mapping study counts on

a total of 108 researchers registered in researchgate.net, whose publications have

been monitored by us since March 2012. In the following, we describe the result of

our findings.

3.2.3 Analysis

This section answers Q2: Which are the relevant aspects to be concerned

with in the integration of MDE Artifacts and Settings in the context of

MDE as a Service?. Next, we describe some of the main terms used by tool chain

approaches.

Standard Transformation Lifecycles

Standard transformation lifecycles are found in approaches for management of trans-

formation lifecycles built on standard tool chain constructors. For example, these

lifecycles include the MDA (KLEPPE et al., 2003), common approach adopted for

model transformation lifecycle management. It was proposed in 2001 by the Object-

Management Group (OMG) in order to standardize model-based approaches. MDA

is an initiative to help software engineers in the management of software develop-

ment complexity using models at higher levels of abstraction. It can be understood

as a“guideline” for the construction of MDE-based processes from some technologies

classified as standards, such as XMI, OCL and UML. It does not define explicitly

the diagrams that should be used and neither the required transformations among

the three different kinds of models that it defines as views: Computational Inde-

pendent Model (CIM), Platform Independent Model (PIM), and Platform Specific

Model (PSM).

Eclipse Modeling Framework (EMF) (STEINBERG et al., 2008) is a toolbox for

metamodeling. Model transformation lifecycles built on EMF include DSLs inter-

operable through XMI. Since these DSLs are represented in Ecore metamodels, they

can also be composed (FARIAS, 2010). These are well established standards for

metamodeling and tool chains typically does not offer threats for coopetition. For

example, EMF includes a kernel of tools called Model Development Tools (MDT)

project1, which is an ecosystem of Eclipse plugins that can be easily instantiated

in a tool chain. This is a success case in the area enabling coopetition through a

common platform.

1MDT <https://eclipse.org/modeling/mdt/>

42

researchgate.net


However, to all rules there are exceptions. Industry adopts several constructors

for MDE Artifacts and Settings (COMBEMALE et al., 2014; LIEBEL et al., 2014;

MUSSBACHER et al., 2014; WHITTLE et al., 2015), imposing threats for the

implementation of coopetition in the area. In the following section, we discuss this

heterogeneous and hybrid alternatives.

Hybrid Transformation Lifecycles

Hybrid transformation lifecycles characterize heterogeneous constructions of tool

chains in MDE-based processes. For example, including diverse types of model trans-

formations (LÚCIO et al., 2014) and settings non-standard or ad-hoc approaches for

tool chain that manages model-based operations with simple solutions for model-

ing, such as databases (BATORY et al., 2013b), JSON (IZQUIERDO and CABOT,

2013), and even Excel Spreadsheets (CUNHA et al., 2016; RESCHENHOFER and

MATTHES, 2015). Differently, MDA and EMF lifecycles are restricted to adopt

their standards in tool chains for MDE.

The following features characterize existing contributions in transformation life-

cycles composed of:

1. Models represented with different levels of abstraction according to differ-

ent metamodels (VOELTER, 2009) and technologies that support platform-

dependent implementation levels (e.g., Java annotations (BASSO et al.,

2014c), Eclipse Java development tools (JDT) (TURNER and CHAE, 2010)

and database perspectives (BATORY et al., 2013b; QUERCINI and REY-

NAUD, 2013));

2. Models can be in conformity with Abstract Syntax Trees (AST) (HEIJSTEK

et al., 2011), such as exemplified in (FORWARD et al., 2012; OLIVEIRA

et al., 2011). Thus, textual meta-generators (NEUBAUER et al., 2015) such

as ANTLR 2 and XText 3, are characterized as meta-definitions;

3. Meta-definitions (known as tools for construction of metamodels) are models

too and can be expressed with diverse technologies. For example, those il-

lustrated in level PIM’2 of Figure 2.3 characterize meta-metamodels built on

EMF (STEINBERG et al., 2008), AToM3 (DE LARA and VANGHELUWE,

2002) and Meta-Edit+ (KELLY and TOLVANEN, 2008). Other exotic ap-

proaches for meta-definitions include entity-relationship from database per-

spectives (BATORY et al., 2013b), native JDT-based meta-models (BASSO

2ANTLR- <http://www.antlr.org/>
3XText- <https://eclipse.org/Xtext/>

43



et al., 2014c) and XML Schemas (e.g., those used for construction of DSLs

such as UsiXML4 and BPMNt (PILLAT et al., 2015));

4. Model transformation components and sub-components built in diverse types

of the aforementioned meta-definitions (LÚCIO et al., 2014); and

5. Toolboxes of any nature that can be used in a MDE context (ELAASAR and

NEAL, 2013; ZHANG and MOLLER-PEDERSEN, 2014).

These different perspectives for MDE Artifacts and Settings are threats for inte-

gration in tool chain.

MDE Artifacts in Hybrid Transformation Lifecycles

The best definition we have found in the literature to express how diverse and hybrid

are MDE Artifacts is presented by France:

“A simple artifact is the smallest unit of information ... a set of

tightly coupled elements ... Examples of simple artifacts are UML class

descriptions, UML relationships, Java programs, metamodels, test cases,

and method descriptions. Each artifact has a type that contains metadata

about the artifact and that specifies the kinds of manipulations that can

be carried out on the artifact. The kinds of manipulations supported

by an artifact can be described in terms of an interface that specifies

allowable operations in terms of their signatures and constraints on their

behavior... An artifact type can also specify data integrity and access

control rules that are applicable to all artifacts of the type. ” (FRANCE

et al., 2006)

According to the aforementioned definition, a tool chain is a complex MDE Arti-

fact. It is also characterized as an automated process (LIEBEL et al., 2014), where

stakeholders make use of some toolboxes and models in different software develop-

ment phases. For this reason, tool chains for MDE are even more complex to rep-

resent than those for Application Lifecycle Management (ALM) tools (ZAKHEIM,

2017; ZHANG and MOLLER-PEDERSEN, 2013).

For example, assume a request for chaining the unique model transformation il-

lustrated in Figure 3.2, where from a model “Model 1” one should generate a model

“Model 2”. These models are artifacts for system engineering with elements an-

notated for Object-Relational Mapping (ORM) (BURKE and MONSON-HAEFEL,

2006), an important concept for data persistence used in the development of informa-

tion systems. Assume that a tool for applying ORM in class diagrams is integrated

4UsiXML-<http://www.usixml.org/>

44



Figure 3.2: A model layer annotated with ORM Profile.

Figure 3.3: Method with integrated transformations.

to the task “G: Apply UML Profiles” of the method shown in Figure 3.3 (2) and

this method should be integrated in an activity called “Develop Solution Increment”

from the process model shown in Figure 3.3 (1). In this simple example, a software

engineer needs to chain at least three tools:

1. for execution of script developed with ETL (JOUAULT et al., 2010);

2. for execution of method represented in SPEM (MACIEL et al., 2013), and;

3. for enactment of process represented in EPF Composer (STEINBERG et al.,

2008).

Therefore, even considering the integration of a simple transformation task, abil-

ity for acknowledging and representing technicalities in three program execution

mechanisms and/or languages is necessary.

The practice related to tool chain usually considers tools non-based on MDE (ZA-

KHEIM, 2017). ZAKHEIM (2017) claims that software engineers know how to

chain tools, but it is still a hard task even when using the best option in tool sup-

port. In MDE, the conclusion is the same (LIEBEL et al., 2014). For example,

it is possible to chain tools using model transformation engines (BÉZIVIN, 2005),

45



such as the Epsilon Eclipse plugin (KOLOVOS et al., 208). This is the most com-

mon approach (KUSEL et al., 2015). In this sense, due to the use of well formed

sequences of model, metamodel and transformations, the most appropriate term is

Model Transformation Chain (MTC) (ETIEN et al., 2012), a particular case of tool

chain.

However, it is important to highlight that there is no “silver bullet” in tool

chain. For example, some approaches proposed the use of software process

specifications (MACIEL et al., 2013) and execution of model transformations

through Process-Centered Software Engineering Environments (PSEEs) (GRUHN,

2002), which have been observed recently as a way to automate MDE-based pro-

cesses (POLGÁR et al., 2009). MATINNEJAD and RAMSIN (2012) surveyed bene-

fits and drawbacks of PSEEs and reasoned that, although many free and commercial

solutions exist, few cases of adoption in industry are reported. Earlier, GRUHN

(2002) pointed to PSEEs as a solution to several execution environments, used to

automate small parts of the software process, by a single environment. Although

this high availability of tool support for tool chain, instead of modern tools proposed

by the literature, BATORY et al. (2013b) concluded that some software engineer-

ing students still prefer to use an Integrated Development Environment (IDE) for

tool chain. This suggests the lack of agreement of tool chain representations. This

way, ZAKHEIM (2017) suggests that software engineers should make explicit data

for integration, in order to facilitate identification of the most appropriate integra-

tion tool.

General Purposes MDE Toolboxes

Below we discuss some elements associated with the adoption of miscellaneous tool-

boxes that aim at providing facilities for introducing MDE Artifacts in target con-

texts.

Maturity in toolboxes supporting MDE tool chain. Some challenges for

MDE tool chain were introduced in 2002 by MELLOR (2002), who highlighted the

importance of extensible model tool chains to reach model-based approaches. He

claimed that an appropriately specified kernel for MDE would enable an increasingly

powerful chain of tools including:

“Model builders. Providing graphical input of models; Model ver-

ifiers. Interpreting a model with real values so users can determine

whether the behavior is correct; Model compilers. Compiling models

onto diverse platforms; Model debuggers. Executing compiled code so

developers see the code compiled from the model in action; Model an-

alyzers. Finding paths through the models and unreachable states; and

46



Model testers. Generating and running test cases for models.” (MEL-

LOR, 2002)

However, this definition is over-dated, requiring a panoramic view on topics that

need to be investigated in tool chain research.

Wide availability of toolboxes for construction of MDE Artifacts as

“model management tools” (MUSSBACHER et al., 2014). Several tools

have been proposed along the years to help developers in producing resources for

MDE (e.g., model transformations, models, metamodels and APIs), some surveyed

by JAKUMEIT et al. (2014). Current MDE tools are based on well established con-

cepts for transformation and metamodeling (KELLY and TOLVANEN, 2008) and

most of them are implemented with Eclipse Modeling Framework (EMF) (STEIN-

BERG et al., 2008). Model transformation languages such as ATL (BÉZIVIN, 2005),

QVT5 and ETL (KOLOVOS et al., 2006) are available in MDT to support the de-

velopment and execution of model-to-model transformations. Others such as MOF

to Text (OMG, 2008) and MOF Script6 are available in MDT to support the devel-

opment and execution of model-to-code transformations.

Wide availability of toolboxes for generation of DSLs (meta-

generators). Most of UML tools have support for UML Profiles, where this lan-

guage is extended with tags and stereotypes to add a different semantic to the anno-

tated model element. Because UML Profile extensions are conservative, the meta-

model remains the same. On the other hand, Domain Specific Modeling Languages

(DSMLs) (KELLY and TOLVANEN, 2008) provide a new metamodel that can be

generated with Eclipse Modeling Framework (EMF) (STEINBERG et al., 2008)

or other approaches for metamodeling such as MetaEdit+ (TOLVANEN, 2016),

AToM3 (DE LARA and VANGHELUWE, 2002), Obeo Designer (KOUHEN et al.,

2012) and Microsoft DLS Tools (COOK et al., 2007).

Diverse contexts are adopting hybrid metamodels/DSL in hybrid

transformation lifecycles. Much of the MDE research effort is directed to

development of DSLs and tool support to manage model transformation tasks.

In summary, most researches focused on: 1) proposing diverse modeling lan-

guages (BÉZIVIN, 2005), techniques and methodologies to represent abstractions

(e.g., textual and graphical DSLs, UML Profiles) from specific (SELIC, 2005) or

general domains (BATORY et al., 2008); 2) proposing mapping from model rep-

resentations to other specifications (BECKER et al., 2002), such as BRAMBILLA

and FRATERNALI (2014) that reported an industrial practice in which BPMN

flows (using a DSL to represent business models) are mapped to graphic interface

5QVT <http://www.omg.org/docs/ptc/05-11-01.pdf>
6MOFScript <http://eclipse.org/gmt/mofscript/>

47



flows conforming to WebML (another DSL); 3) demonstrating how models are gen-

erated and refined in views through model-to-model transformations (BÉZIVIN,

2005; KOLOVOS et al., 208), how models are used to generate source-code for tar-

get platforms through mappings (BECKER et al., 2002)); 4) developing “model

management tools” (JAKUMEIT et al., 2014) and; 5) development of underlying

frameworks (VARA et al., 2014), whose concepts are usually associated with the

term MTC (VANHOOFF et al., 2006), offer support for execution of model trans-

formations developed with more than one language (YIE et al., 2012) and allow

composition of model-based operations (ETIEN et al., 2013).

Toolboxes for Management of Evolution

We can mention the following modern toolboxes providing model-based operation

support for evolution of models, metamodels, transformations and tool chains:

Support for co-evolution of model, metamodel and model transforma-

tion components. Few contributions have considered a solution for co-evolution

of model transformations, application models and metamodels (CORRÊA et al.,

2013; LOPEZ-HERREJON et al., 2010; ROSE et al., 2013). In these contributions,

as a metamodel evolves, transformations and application models are automatically

changed.

Refactoring of model transformation components. Refactoring of model

transformations is inevitable (ALVES et al., 2006; HOLDSCHICK, 2012; WIMMER

et al., 2012), since implementation technologies evolve in industrial contexts. In or-

der to quickly adapt model transformation resources for new requests, refactoring of

model transformations allows to introduce automatic changes in code/specifications

of transformation components. Heterogeneity in these languages also limits existing

refactoring approaches.

Traceability of models, meta-models and model transformations. To

trace artifacts is important for the maintenance and evolution of software (BRAM-

BILLA and FRATERNALI, 2014). Recent contributions in tool support allow to

trace generated artifacts through the execution of transformations (VARA et al.,

2014).

Model transformation reuse. Modern model transformation engines support

languages able to manage dynamic execution based on variability (KUSEL et al.,

2015).

Model transformation generation. Modern model transformation engines

support languages able to represent common concepts from model transformation

languages (CUADRADO et al., 2014) for generation of transformations in specific

formats.

Model composition. There are several mechanisms and techniques for model

48



composition, regardless of which model, e.g., for process (MAGDALENO et al.,

2015) or for architectural representations of software (FARIAS, 2010). Therefore,

research in this topic is mature in theory and practice (GONÇALES et al., 2015).

Toolboxes for Process Engineering

A target context for introduction of MDE may be a process. Below we describe

three main research topics under investigation in process engineering and MDE.

MDE Toolboxes can be used in any phase of a software development

process. Several DSLs and tools have been proposed to support different intents: 1)

Loniewski et al. surveyed MDE-based techniques to assist requirement engineering

tasks (LONIEWSKI et al., 2010); 2) AKYILDIZ et al. (2002); YICK et al. (2008)

surveyed the development of wireless sensor networks, which include some design

tools used in SDP tasks after requirement elicitation such as “design the solution”

and“develop solution increment”; 3) Other authors suggested specific tools to design

web information systems in preliminary phases of requirement elicitation (MOLINA

et al., 2012; RISTIĆ et al., 2012) and; 4) BENAVIDES et al. (2010), BERGER

et al. (2013), CAPILLA et al. (2014) and THÜM et al. (2014) summarized some

solutions for product companies, used in requirement management based on concepts

of software product lines, which is a type of model-based approach independent from

the application domain.

Several SDP reference models are available for executing MDE-based

operations. In order to combine MDE and Agile Methods, some reference models

(or process frameworks) such as Agile Model Driven Architecture (AMDA) (AM-

BLER, 2015) and Feature Driven Development (FDD) (CHOWDHURY and HUDA,

2011) have been proposed and applied for software development. Some interesting

works combining Scrum and MDE can also be mentioned, such as from KULKA-

RNI et al. (2011), which proposed a new SDP called Meta-Sprint, and ZHANG and

PATEL (2011), which proposed the Agile MDD. Thus, for an initiative towards the

implementation of “MDE as a Service”, several reference models for SDP could re-

quire the integration of also several MDE Artifacts, as suggests some of our previous

experiences (BASSO et al., 2015b, 2016d).

Industrial contexts present variability in relation to SDP reference

models. Some software process models followed by companies impose difficul-

ties to introduce MDE Artifacts in target contexts (HEBIG and BENDRAOU,

2014). WHITTLE et al. (2015) claimed that instead of using a unique SDP ref-

erence model to conduct a MDE-based process, demands from the industry present

specific contexts, including the use of diverse SDPs and team skills that can present

threats to MDE adoption. These factors influence the acceptance of tools for mod-

eling and model transformation (HEBIG and BENDRAOU, 2014; PETRE, 2013),

49



for example. Thus, some industrial contexts require integration and adaptation of

arbitrary resources for MDE (tasks, tools and DSLs) into enterprise specific SDPs,

which can result in inconsistencies (FUGGETTA and NITTO, 2014). HEBIG and

BENDRAOU (2014) claim that future studies in Software Engineering should eval-

uate the impact that introduction of MDE causes on reference process models in

general. Based on these works, a software project conducted with a Scrum-based

framework can impose threats to the introduction of MDE, as well as MDE can

impose threats to the software project execution.

Adaptation in SDP specifications. JOHNSON et al. (2012) claim that meta

theories for software engineering are necessary in order to understand the common-

alities and differences among software development practices. This knowledge can

be instantiated in software processes represented with Essence, a new OMG spec-

ification for software process. DOS SANTOS ROCHA and FANTINATO (2013)

surveyed some proposals for method engineering based on product line techniques

which adapt process components for diverse contexts in software development com-

panies. These proposals are also called Software Process Lines (SPrL) (OLIVEIRA

JUNIOR et al., 2013), implemented with tools such as vSPEM (MARTINEZ-RUIZ

et al., 2011). Other tool support closer to composition through model-to-model

transformations are based on tailoring rules such as BPMNt (PILLAT et al., 2015)

and CASPER (ALEGRÍA et al., 2011), or heavy-weight implementations through

EPF composer (KROLL and MACISAAC, 2006).

Toolboxes for MDE Artifact Engineering

The literature of the area lacks a mapping of representations for MDE Toolboxes

in artifact engineering, characterizing a relevant topic for research and practice in

MDE.

Fragmentation and Composition of MDE Artifacts. For companies that

need to tailor model transformations for different software projects (legacy and mod-

ern), managing implementation variability in code generators or model-to-model

transformations is crucial to the business. This would allow to generate new func-

tionalities as increments for legacy systems (HEBIG, 2014), using model transforma-

tions for old-fashioned technologies, and developing new ones with modern technolo-

gies. Features Model (FM) (KANG et al., 1990) is used in practice to automatically

cut and merge pieces of the model transformations, a practice known as factoriza-

tion (ARANEGA et al., 2012a). Therefore, it is a good solution to adapt this type

of model transformation component.

Variability in MDE Settings and Model Transformations. These con-

cepts were explored in 2012 in model transformation chains (ARANEGA et al.,

2012a), in 2013 (HEBIG et al., 2013) and 2014 (CUADRADO et al., 2014) consid-

50



ering concepts of Component Based Development (CBD). Currently, the widely used

notation to formally specify variability is the Features Model (FM) (THÜM et al.,

2014). Also referred in regards to transformation components as PDM - Platform

Domain Model (TEKINERDOĞAN et al., 2005), Features Model is useful to de-

fine system characteristics (functional, architectural, technological, mixed, etc.) of a

particular domain. Moreover, it is also possible to use feature relationships to con-

figure variability and commonality in dynamic execution environments. Thus, the

Features Model can be used to specify variability required in model transformations

and tool chains.

Semantics for Model Transformation. In order to provide semantics for

model transformations, some authors recommend classifications (LÚCIO et al.,

2014) and use of a fourth view for transformation description (WILLINK, 2003).

MDE Settings, therefore, can also present any semantics associated with a model

transformation component. For example, to transform a PIM into a PSM, it is

necessary to identify characteristics such as APIs and design patterns that will de-

fine which component should be used in a model transformation lyfecycle. These

characteristics are MDE Settings, associated with arrows in Figure 2.3, allowing the

management of a lifecycle through DSLs constructed with metamodels that support

semantics and syntax for selection of components.

Generation of Target Representations for MDE Settings. A possible

solution for integration of model-based operations in contexts is to generate a set-

ting (BASSO et al., 2014e; OLIVEIRA et al., 2011). Aiming at generating a set-

ting to support the execution of consecutive model transformations, several pro-

posals (ALVAREZ and CASALLAS, 2013; ARANEGA et al., 2012a,b; ASZTALOS

et al., 2011; BASCIANI et al., 2014b; BENDRAOU et al., 2008; BIEHL et al.,

2014; CASTELLANOS et al., 2014; CUADRADO et al., 2014; ETIEN et al., 2012;

KÜSTER et al., 2009; LUCAS et al., 2017; LÚCIO et al., 2013; POLGÁR et al.,

2009; ROYCHOUDHURY et al., 2011; VANHOOFF et al., 2006; YIE et al., 2012;

ZHANG and MOLLER-PEDERSEN, 2013) tackled issues associated with represen-

tation for tool chain. This allows one representing settings through DSLs developed

with different intents.

3.2.4 Final Remarks

The state of the art presents many MDE Artifact as options for implementation of

MDE-based processes. Some artifacts are complementary and others are overlap-

ping, thus configuring coopetition opportunities in scenarios for MDE as a Service.

Next, we present some opportunities for coopetition and limitations in our previous

work to meet the new needs introduced by this new scenario in the context of MDE

51



as a Service.

3.3 Cooperation and Competition Concerns

The importance of tool chain approaches for the software development was recently

discussed by FUGGETTA and NITTO (2014), highlighting a trend for cooperative

systems that assist Software Engineering (SE) tasks in diverse software development

phases. They agreed that MDE is an important paradigm to accomplish this trend.

Previously, BOEHM (2006) also highlighted the need of research in this direction,

arguing that to compete, adapt, and survive, software development companies will

depend on the ability to integrate some systems into global reuse scenarios made of

Systems of Systems (SOS) (NETO et al., 2014). Although a big effort is invested

in this matter, 11 years later, ZAKHEIM (2017) claims that it is still observable a

difficulty to make this view of the future a reality in industry, thus leaving room for

substantial improvement.

This trend is of special interest for the MDE context (HEBIG and BENDRAOU,

2014; MUSSBACHER et al., 2014). However, as observed in Section 3.2, a first issue

to apply this vision for tool chain is that MDE is immerse on a chaos of possibil-

ities (MUSSBACHER et al., 2014). This includes technical options to implement

a MDE-based process as well as methodological and ideological concerns (PETRE,

2013). Usually, things do not match semantically and syntactically (LIEBEL et al.,

2014). Companies change their practices, processes and underlying implementation

architectures, imposing threats for coopetition in the area. For this reason, MO-

HAGHEGHI et al. (2013) claim that there is no “out-of-the-box” solution in MDE,

which makes costly a process to instantiate tool chains.

3.3.1 Goal

We believe that coopetition is the key to reduce cost in MDE as a Service, as illus-

trated in Figure 3.1 (A). In other words, we can collaborate and compete by analyz-

ing the best third-party options for MDE Artifact to introduce in inter-organizational

contexts. This way, the following research question is investigated: Q3: Which are

the opportunities for coopetition in the context of MDE as a Service?

3.3.2 Research Method

In order to answer this question, we first conducted an ad-hoc literature review.

Then we conducted five structured mapping studies, extracting from these studies

a set of works in the context of coopetition. First we present a panoramic view

of this scenario, where resources developed for MDE (e.g., model transformations,

52



DSLs and transformation tools) are introduced in different contexts. This is not

easy and requires a set of techniques and tool support for reuse that makes the

configuration of resources for MDE flexible. An analysis of the target context is

carried out, highlighting which resources for MDE are used in the development of

a specific software project, e.g., selecting an appropriate DSL to be used in the

development of web information systems. It is also important to consider the know

how of teams to support the design and development tasks, which may imply on

the use of different frameworks, processes and technologies. In a second moment,

we exposed some opportunities that we found from platforms for MDE Artifacts.

3.3.3 Analysis

In MDE as a Service, software engineers need to find the right options for each

context (WHITTLE et al., 2015). Its execution involves an analysis of which artifacts

fit the technical requirements of the contexts, as well as which artifacts are feasible

in “philosophical” or “social” matters. For example, in our experiences (BASSO

et al., 2015b), principles of agile teams influence the adoption of MDE tools and

vice-versa. WHITTLE et al. (2015) has the same conclusion, which means that it

is important to consider social elements from software development contexts before

establishing tool chains. Since high-costs involved in this process (MOHAGHEGHI

et al., 2013) cannot be ignored in MDE as a Service, the business feasibility must

be considered too (BASSO et al., 2017a).

For these reasons, we stated that MDE as a Service can be considered from

the perspective of software ecosystems (SECO) (BOSCH, 2009), integrating these

knowledge areas. To Jansen et al., a SECO is a unit of business where a com-

mon technological platform for services and software allows to connect resources,

information and artifacts (JANSEN et al., 2009). Although ecosystems gained at-

tention from research in recent years (BOSCH, 2009; DOS SANTOS et al., 2013;

FUGGETTA and NITTO, 2014), existing work does not identify issues and op-

portunities for the implementation of cooperation and competition (coopetition) in

MDE as a Service.

According to RITALA et al. (2014), coopetition benefits the leader of a market

and its concurrent, promoting increases in sales in the case of Amazon.com. Al-

though coopetition is an interesting topic for investigation in the business world, so

far, the MDE community has ignored the implementation of approaches for coope-

tition. Meanwhile, approaches for MDE as a Service (MOHAGHEGHI et al., 2013;

MONTEIRO et al., 2014a) could benefit from coopetition, which highlights the rel-

evance of software ecosystems research and systems-of-systems to the MDE context.

53



Competition Concerns

Considering competition concerns, this section answers Q3: Which are the op-

portunities for coopetition in the context of MDE as a Service?

For implementation of coopetition in MDE as a Service, a requirement is to

deal with resources for MDE reused in an inter-organizational level (i.e., used

by one or more software development companies) (RITALA et al., 2014). We

have implemented inter-organizational reuse for MDE Artifacts with the FOMDA

DSL (BASSO et al., 2017a), as illustrates Figure 3.4. In order to add flexibility on

the generation of adapted tool chains, FOMDA DSL (Figure 3.4.3) is built on con-

cepts for Software Product Line (SPL) and, according to STRUBER and SCHULZ

(2016), is one of the options for tool chain representation in the state of the art.

Instances of tool chains generated for specific context (Figure 3.4.4) are executed by

WCT, a toolbox that includes some elements in support for execution of adaptive

model transformations, represented as models in conformity with FOMDA DSL. Fi-

nally, these models for tool chain are stored in a local repository (Figure 3.4.2), thus

characterizing all the platform used by our previous experiences in implementation

of MDE as a Service.

Although FOMDA DSL was essential in adapting tool chains for specific soft-

ware projects, so far, we were unable to implement coopetition in MDE as a Service

by means of this representation language. For example, in BASSO et al. (2014e)

we conducted a case study by transforming representations in conformity with the

FOMDA DSL to representations in conformity with AndroMDA engine7, which is

adopted by the MDArte project (MONTEIRO et al., 2014b) as the core model trans-

formation engine. In the end of this study, we concluded that generative techniques,

as transformations, is benefited from cooperation between companies by means of

automated integration. This study also introduced a new issue for coopetition: a

combinatorial explosion. Due to different representations adopted by each possible

combination for transformation, it is necessary to bring the information in accor-

dance with FOMDA DSL to other proposals. Thus, we reasoned that a common

representation language would reduce the number of combinations to a linear issue

rather than quadratic.

Another issue that we noticed is the lack of elements that could promote coope-

tition in this scenario. For this reason, BOSCH (2009) makes a distinction between

Software Ecosystems and regular Software Product Lines approaches, claiming that

when a SPL extends the organizational boundary (i.e., intra-organizational), then a

SECO is established to manage inter-organizational resources.

In order to understand why the state of the art in integration is limited for

7AndroMDA - <https://www.andromda.org/> (last access on September 1st, 2017)

54



coopetition, Figure 3.4 illustrates two scenarios for implementation of MDE as a

Service:

1. Current scenario - Homogeneous - In (2 to 4) is an illustration of implementa-

tion considering homogeneous representations for MDE Artifacts and Settings

(the state of the art);

2. Coopetition scenario - Heterogeneous - Some other implementation options are

illustrated in the borders (5 to 7).

This scenario therefore characterizes MDE Resources introduced for inter-

organizational. Surveys on the MDE adoption have been reporting that several

challenges still hamper these initiatives (AGNER et al., 2013; WHITTLE et al.,

2013). For example, as illustrated in Figure 3.1, the diversity of representations tied

to MDE resources, as found in requests in this scenario for MDE as a Service and

discussed previously in a mapping study, imposes difficulties for tool integration.

In this regard, the implementation of coopetition requires collaboration among

different representations outside of the box (Figure 3.4.5, 6 and 7). For these com-

plex scenarios, the success is dependent on software engineer’s ability to understand

what used when configuring tool chains for specific demands, which change in each

target context (WHITTLE et al., 2015). Currently, this implies on the develop-

ment of new tool chains, toolboxes, DSLs, transformations, and other resources in

a quadratic combinatorial explosion. Alternatively, MDE resources may also be

searched from free repositories (BASSO, 2015) and/or acquired from a third party

stakeholder/company (competitor or collaborator) (DOS SANTOS et al., 2013),

but this would require a common representation built on services (RITALA et al.,

2014). This adds an extra challenge for tool chain because resources developed by

third party are not unknown in a first moment. ZAKHEIM (2017) claims that this

integration issue is more related with a business concern involving semantics for

artifacts rather than tool support.

Our analysis concludes that we need a common representation in level of assets,

as those perspectives promoted by SECO (BOSCH, 2009; SANTOS et al., 2016).

Assets should also included structural features for tool chain, such as those used

in FOMDA DSL (BASSO et al., 2013a). Otherwise, coopetition will remain a non

observable practice and costly in terms of implementation of integrators/connectors

in MDE as a Service scenarios.

Cooperation Concerns

Considering cooperation concerns, this section answers Q3: Which are the op-

portunities for coopetition in the context of MDE as a Service?

55



Figure 3.4: Illustration of possible coopetition scenarios in MDEaaS

The following main initiatives for MDE Ecosystems configure opportunities for

coopetition in the context of MDE as a Service: the Repository for Model-Driven

Development (ReMoDD) (FRANCE et al., 2007), Sharing Hosted Autonomous Re-

search Environments8 (SHARE) (GORP and MAZANEK, 2011), Globalization of

Domain Specific Language (GEMOC) (COMBEMALE et al., 2014), and Software

Engineering Methods and Theory (SEMAT) (JACOBSON et al., 2012). Researchers

associated with these platforms are making an effort to build a basis of reusable MDE

Artifacts that should not be ignored.

MDE Knowledge Base (KB). ReMoDD (FRANCE et al., 2007) is a reposi-

tory that shares some didactic material for MDE published in some conferences such

as MODELS, ECMFA, etc. Most information is available in documents, papers, tu-

torials, models, metamodels and transformations. In (MUSSBACHER et al., 2014),

the authors claimed that this KB will centralize good practices, but that the lack

of critical mass imposes difficulties since we have no habit to share information in

the area. ReMoDD, therefore, is a repository in operation that can be important to

help in reducing the learning curve, an issue that we have observed when introducing

MDE in target contexts.

Globalization of DSLs. In order to share resources for MDE, it is important

to ensure that eventual compositions in MTCs are valid. The GEMOC initiative

is an effort to ensure that technicalities from MDE will be interchangeable in prac-

tice (COMBEMALE et al., 2014). In other words, GEMOC will enable a collabora-

tive scenario for MDE considering heterogeneous inter-organizational contexts. This

is important for MDE as a Service, since GEMOC can help in reducing the costs

8SHARE - http://is.ieis.tue.nl/staff/pvgorp/share/

56



to introduce MDE in practice. Our analysis concludes that GEMOC is focused in

DSLs issues, thus characterizing coopetition opportunities for design and refinement

tools.

Knowledge Base for Processes. SEMAT (JOHNSON et al., 2012) is an

initiative to provide a knowledge base in Software Engineering related to process

models. This is important because some companies target for MDE adoption have

not defined their SDP, making costly the analysis of the target context. SEMAT

can help in reducing costs through information about processes. Besides, SEMAT

uses Essence (OMG, 2015) as a core representation language, which can be used in

the context of MDE to automatically integrate technical resources for MDE with

target process models represented with Essence. Our analysis concludes that SE-

MAT platform is important for coopetition opportunities in terms of representations

for processes, which can be instantiated for requests from target contexts for tool

chain in scenarios that need automation of processes with Business Process Manage-

ment Systems (BPMS) (PILLAT et al., 2013) or with a Process-Centered Software

Engineering Environment (PSEE) (MACIEL et al., 2013).

MDE Forge. ROCCO et al. (2015) claim that MDEForge is a repository for

MDE Artifacts such as tools, models, metamodels and transformations. Recent con-

tributions associated with MDEForge include: 1) automatic chaining of model trans-

formations (BASCIANI et al., 2014b); 2) cloud computing implementations (BAS-

CIANI et al., 2014a); 3) repository implementations for evolution of models, meta-

models and transformations (ROCCO et al., 2014), and; 4) collaborative model-

ing (ROCCO et al., 2016), or modeling as service. Our analysis concludes that

MDEForge is focused in model transformation issues, thus characterizing coopeti-

tion opportunities for this type of component.

SHARE. GORP and GREFEN (2012) claim that SHARE is a negotiation plat-

form for MDE Toolboxes, thus with structural features supporting business trans-

actions. Many conferences such as ASE, ECMFA, MODELS, OOPSLA and ICSE

recommend the use of SHARE as a platform for tool paper research. This way,

SHARE owns many options in tool support for download, some free and other with

commercial issues. Our analysis concludes that SHARE characterizes coopetition

opportunities in terms of MDE Toolboxes.

3.3.4 Final Remarks

Since reuse allows to reduce costs (KRUEGER, 1992), a global reuse scenario im-

plemented through cooperation and competition could be important for execution

of MDE as a Service. This scenario is recently referenced to as coopetition (AX-

ELSSON et al., 2014; PALMQUIST, 2014). Implementing coopetition in MDE as

57



a Service is a long-term goal. This could open opportunities for new business, re-

ducing costs throughout cooperation in assets for MDE. However, this scenario is

still impracticable due to some reasons such as immaturity in processes as well as

limitations in tool support for coopetition.

In summary, we found the following opportunities for coopetition that shall be

instigated along the next chapters: ReMoDD is sharing diverse MDE Artifacts, SE-

MAT is sharing methods and process models (JACOBSON et al., 2012), GEMOC

is sharing DSLs (COMBEMALE et al., 2015a), MDEForge is sharing model trans-

formations (ROCCO et al., 2016) and SHARE is a business platform promoting the

access of Toolboxes (GORP and GREFEN, 2012). These are, therefore, comple-

mentary repositories that classify opportunities for coopetition in the area.

Finally, in order to promote coopetition on a perspective of ecosystems, MDE

researchers and practitioners could: 1) investigate the applicability of approaches

for software ecosystems to promote the reuse of MDE Artifacts, thus helping in the

MDE adoption; 2) propose and develop platforms as services for MDE Ecosystems,

e.g., finding the requirements for the integration of OSLC (OSLC, 2017a) in this

scenario; 3) propose approaches for a network of collaborative services, connecting

people, processes, tools and companies on the support for coopetition in MDE as a

Service, and; 4) investigate a common representation to enable coopetition through

services.

3.4 Representation Concerns

The research community agrees that MDE is in its infancy (MUSSBACHER et al.,

2014), thus this is the right moment to build foundations for future implementations

through cooperation and coopetition (COMBEMALE et al., 2014). Coopetition

requires a common representation (RITALA et al., 2014), an open issue in the MDE

research. As shown in Figure 3.5, to contribute to this question, we suggest three

preliminary phases for the chain of tools that must be met by this language (BASSO

et al., 2013b,c). In the absence of studies concerning preliminary phases for tool

chain, this research conceptualized these phases with an ad-hoc strategy, built on

our experiences. For this reason, we are not evaluating whether they are complete

or methodologically correct for implementation of coopetition. Instead, we are using

these phases to find which properties should be considered in RAS++. Thereby, the

following phases are considered in our research:

Phase 1 - Asset Specification intends to introduce to asset providers a

common asset representation format that will be persisted later in a repository

of his/her choice. Thus, this common format must consider structural features of

repositories and asset specification languages.

58



Figure 3.5: Three preliminary phases investigated in this thesis.

Phase 2 - Asset Acquisition intends to provide the means of representation

for the asset consumers to compare the information of more than one asset. Thus,

this common format should support elements for decision-making.

Phase 3 - Asset Transformation intends to provide the means of representa-

tion for the “asset integrator” to integrate the asset content (MDE Artifacts and

Settings) into a tool chain. Thus, the integrator should be able to automatically

transform the asset content into a target representation language for tool chain,

such as FOMDA DSL, TIL (BIEHL et al., 2014) and etc.

3.4.1 Goal

As illustrates Figure 3.5, the specification phase requires properties found in repos-

itory structures, while the Transformation is related with technicalities used with

integration toolboxes. In this sense, this section aims at answer the following re-

search question: Q4: Which studies should we select for evaluation of a

common representation language in the context of MDE as a Service?

3.4.2 Research Method

In order to find out common properties for a pivotal representation language, we

conducted six structured reviews of type mapping studies, as shown in Table 3.2.

In this sense, suppose that this common format we are looking for is defined by

“P”, MDE Artifacts are defined by structural features found in asset representations

and structural features for tool chain define some integration language for MDE

59



Artifacts and Settings. Our goal in proposing RAS++ is to connect MDE Artifacts

stored in any of these structural features with a common format “P”. Latter, “P” is

transformed for a representation adopted in a tool chain or asset specification.

Properties introduced in RAS++ are results of an extensive and systematic anal-

ysis performed for each phase illustrated in Figure 3.5. Six contributions shown in

Table 3.2 are mapping studies by which we extracted properties used in the RAS++

metamodel: M01 characterizes this research topic with challenges extracted from

the literature for implementation of MDE as a Service; M02 analyzes semantic prop-

erties and structural features found in asset representations for software components;

M03 reports some structural features from asset platforms, classifying their intents

and properties in support for coopetition; M04 analyzes existing contributions that

support reuse mechanisms for tool chain built on MDE Settings concepts; M05

provides a list of different types of MDE Toolboxes, and; M06 intersects previous

mappings with a grouping study (RUNESON and HÖST, 2008).

Table 3.2: Mapping studies for opportunities in MDE as a Service
Id Title Available at

M01 Characterizing the “MDE as Service” Research Agenda Section 3.2
M02 Semantic Properties of Software Components prisma.cos.ufrj.br/wct/ms02.pdf

M03 Intents from Asset Platforms and Their Properties prisma.cos.ufrj.br/wct/ms03.pdf

M04 MDE Settings Intents and Their Properties prisma.cos.ufrj.br/wct/ms04.pdf

M05 Diversity of MDE Toolboxes and Their Uncommon Properties prisma.cos.ufrj.br/wct/ms05.pdf

M06 A Criteria for Representation of Technicalities from MDE Settings and Toolboxes prisma.cos.ufrj.br/wct/ms06.pdf

Id Review Type
Research Protocol

Sources

M01 Structured Mapping Study Snowballing Researchgate
M02 Ad-hoc Mapping Study Key-wording ACM, Researchgate
M03 Ad-hoc Mapping Study Multi-vocal Multiple voices
M04 Structured Mapping Study Key-wording Scopus, Researchgate
M05 Structured Mapping Study Snowballing Scopus, Researchgate
M06 Structured Mapping Study Coding Previous mappings

3.4.3 Analysis

In our analysis of data from ad-hoc literature review, we considered 20 representa-

tions, as shown in Table 3.3. These publications are classified in tool chain contexts,

as shown in the right-side of Figure 3.5, thus presenting some structural feature

supporting integration. Table 3.4 shows 20 additional references published between

2013 and march 2015, also classified in tool chain context.

In the context of assets, Table 3.5 presents 29 references. These papers proposed

a sort of structural features for classification of artifacts in repositories, as illustrates

the left-part of Figure 3.5.

Our analysis concludes that the 69 selected studies represent a suitable popu-

lation for the execution of our studies, i.e., for evaluation of RAS++ in terms of

representativeness. The suitability of this population considers different intents and

properties found in 40 representation of structural features for tool chain instantia-

tion, extracted from studies M04 to M06, as well as 29 types of asset representations

60

prisma.cos.ufrj.br/wct/ms02.pdf
prisma.cos.ufrj.br/wct/ms03.pdf
prisma.cos.ufrj.br/wct/ms04.pdf
prisma.cos.ufrj.br/wct/ms05.pdf
prisma.cos.ufrj.br/wct/ms06.pdf


Table 3.3: Selected studies for tool chain published until 2012
Id Paper Year

S01
G. van Boas. From the workfloor: Developing workflow for the generative model transformer. In 2nd
OOPSLA Workshop on Generative Techniques in the context of Model Driven Architecture, 2005.

2005

S02
B. Tekinerdogan, S. Bilir, and C. Abatlevi. Integrating platform selection rules in the model driven
architecture approach. In Proceedings of the 2003 European conference on Model Driven Architecture:
foundations and Applications, MDAFA’03, pages 159-173, 2005.

2005

S03
J. P. Almeida, R. Dijkman, M. Sinderen, and L. F. Pires. Platform-independent modelling in mda:
Supporting abstract platforms. In Model Driven Architecture Foundations and Applications, MDAFA’05,
pages 174-188, 2005.

2005

S04
D. Wagelaar. Blackbox composition of model transformations using domain-specific modelling languages.
In Proceedings of the ECMDA Composition of Model Transformations Workshop, pages 15-19, 2006.

2006

S05
B. Vanhooff, D. Ayed, and Y. Berbers. A framework for transformation chain development processes. In
Proceedings of the ECMDA Composition of Model Transformations Workshop, pages 3-8, 2006.

2006

S06
B. Vanhooff, S. V. Baelen, A. Hovsepyan, W. Joosen, and Y. Berbers. Towards a transformation chain
modeling language. In Proceedings of the 6th international conference on Embedded Computer Systems:
architectures, Modeling, and Simulation, SAMOS’06, pages 39-48, 2006.

2006

S07
F. P. Basso, L. B. Becker, and T. C. Oliveira. Using the fomda approach to support object-oriented
real-time systems development. In Object and Component-Oriented Real-Time Distributed Computing,
2006. ISORC 2006. pages 374-381, 2006.

2006

S08
M. Völter and I. Groher. Handling variability in model transformations and generators. In Proceedings of
the 7th OOPSLA Workshop on Domain-Specific Modeling, DSM’07, 2007.

2007

S09
J. Steel, J.M. Jézéquel, On model typing, Software & Systems Modeling 6 (4) (2007) 401-413, ISSN
1619-1366.

2007

S10
R. Bendraou, P. Desfray, M. Gervais, A. Muller MDA Tool Components: a proposal for packaging
know-how in model driven development .Software & Systems Modeling, 7, 3, 329-343, 2009.

2009

S11
S. Trujillo, A. Zubizarreta, X. Mendialdua, and J. de Sosa. Feature-oriented refinement of models,
metamodels and model transformations. In Proceedings of the First International Workshop on
Feature-Oriented Software Development, FOSD’09, pages 87-94, 2009.

2009

S12
J. M. Kuster, T. Gschwind, and O. Zimmermann. Incremental development of model transformation chains
using auto mated testing. In Model Driven Engineering Languages and Systems, MODELS’09, pages
733-747, 2009.

2009

S13
A. Etien, A. Muller, T. Legrand, and X. Blanc. Combining independent model transformations. In
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC’10, pages 2237-2243, 2010.

2010

S14
M. Azanza, D. Batory, O. Diaz, and S. Trujillo. Domain-specific composition of model deltas. In Theory
and Practice of Model Transformations, volume 6142 of Lecture Notes in Computer Science, pages 16-30,
2010.

2010

S15
J. S. Cuadrado, E. Guerra, and J. Lara. Generic model transformations: Write once, reuse everywhere. In
Theory and Practice of Model Transformations. 6707:62-77, 2011.

2011

S16
M. Asztalos, E. Syriani, M. Wimmer, and M. Kessentini. Simplifying model transformation chains by rule
composition. In J. Dingel and A. Solberg, editors, Models in Software Engineering, volume 6627 of Lecture
Notes in Computer Science, pages 293-307. Springer Berlin Heidelberg, 2011.

2011

S17
A. Yie, R. Casallas, D. Deridder, and D. Wagelaar. Realizing model transformation chain interoperability.
Software & Systems Modeling, 11(1):55-75, 2012.

2012

S18
P. Quyet-Thang and A. Beugnard. Automatic adaptation of transformations based on type graph with
multiplicity. In Software Engineering and Advanced Applications (SEAA), 2012 38th EUROMICRO
Conference on, pages 170-174, 2012.

2012

S19
A. Etien, V. Aranega, X. Blanc, and R. F. Paige. Chaining model transformations. In Proceedings of the
First Workshop on the Analysis of Model Transformations, AMT’12, pages 9-14, 2012.

2012

S20
V. Aranega, A. Etien, and S. Mosser. Using feature models to tame the complexity of model transformation
engineering. In ACM/IEEE 15th International Conference on Model Driven Engineering Languages and
Systems MODELS 2012, 2012.

2012

proposing different structural features extracted from studies M01 to M03. More-

over, it should be noted that, through them, we extracted structural features for

a common representation language: asset representations found in studies shown

in Table 3.5 and tool chain representations found in studies shown in Tables 3.3

and 3.4.

3.4.4 Final Remarks

These 69 contributions from the aforementioned tables present structural features

that can be used in one or another context of a scenario for coopetition in MDE as

a Service. This means that one contribution can represent well for part, but not all,

the illustrated scenario in Figure 3.5. Due to the lack of a common/pivotal represen-

tation language, such contexts are not properly connected in existing contributions

for representations. In a coopetition scenario, this will imply in a manual effort for

integration, which is costly (MOHAGHEGHI et al., 2013).

61



Table 3.4: Selected studies for tool chain published after 2012
Id Paper Year

S21
R. Hebig, H. Giese, F. Stallmann, A. Seibel, On the Complex Nature of MDE Evolution. Proceedings of
Model Driven Engineering Languages and Systems, MODELS 2013, 436-453, 2013.

2013

S22
A. Vignaga, F. Jouault, M. C. Bastarrica, H. Bruneliere, Typing artifacts in megamodeling. Software &
Systems Modeling 12 (1) (2013) 105-119, ISSN 1619-1366.

2013

S23
E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, O. M. dos Santos, Engineering model transformations
with transML. Software & System Modeling 12 (3) (2013) 555-577.

2013

S24
F. P. Basso, R. M. Pillat, T. C. Oliveira, L. B. Becker, Supporting Large Scale Model Transformation Reuse.
International Conference on Generative Programming: Concepts & Experiences. GPCE’13, 169-178, 2013.

2013

S25
C. Alvarez, R. Casallas, MTC Flow: A Tool to Design, Develop and Deploy Model Transformation Chains.
Workshop on ACadeMics Tooling with Eclipse, ACME’13, ISBN 978-1-4503-2036-8, 7:1-7:9, 2013.

2013

S26
A. Etien, A. Muller, T. Legrand, R. F. Paige, Localized model transformations for building large-scale
transformations. Software & Systems Modeling (2013) 1-25 ISSN 1619-1366.

2013

S27
F. P. Basso, C. M. L. Werner, R. M. Pillat, T. C. Oliveira, A Common Representation for Reuse Assistants.
13th International Conference on Software Reuse, ICSR’13, 283-288, 2013.

2013

S28
A. F. M. Mascarenhas, A. Andrade, R. P. Maciel, MTP: Model Transformation Profile. Software
Components, Architectures and Reuse (SBCARS), 109-118, 2013.

2013

S29
L. Rose, E. Guerra, J. Lara, A. Etien, D. Kolovos, R. Kolovos, Genericity for model management
operations. Software & Systems Modeling 12 (1) (2013) 201-219.

2013

S30
V. O. Costa, J. M. B. O. Junior, L. G. P. Murta, Semantic Conflicts Detection in Model-driven
Engineering. International Conference on Software Engineering and Knowledge, 2013., 2145 656-661, 2013.

2013

S31
J. S. Cuadrado, E. Guerra, J. D. Lara, A Component Model for Model Transformations. IEEE Transactions
on Software Engineering 40 (11) (2014) 1042-1060.

2014

S32
J. S. Cuadrado, E. Guerra, J. D. Lara, M. Biehl, J. El-Khoury, F. Loiret, M. Torngren, On the modeling
and generation of service-oriented tool chains. Software & Systems Modeling 13 (2) (2014) 461-480, ISSN
1619-1366.

2014

S33
F. P. Basso, C. M. L.Werner, T. C. Oliveira. Towards Facilities to Introduce Solutions for MDE in
Development Environments with Reusable Assets. International Conference on Information Reuse and
Integration, IRI’14, 195-202, 2014.

2014

S34
J. Vara, V. Bollati, A. Jimenez, E. Marcos, Dealing with Traceability in the MDD of Model
Transformations. Transactions on Software Engineering 40 (6) (2014) 555-583.

2014

S35
K. Garces, J. M. Vara, F. Jouault, E. Marcos, Adapting transformations to metamodel changes via external
transformation composition. Software & Systems Modeling 13 (2) (2014) 789-806, ISSN 1619-1366.

2014

S36
F. P. Basso, T. C. Oliveira, K. Farias, Extending JUnit 4 with Java Annotations and Reflection to Test
Variant Model Transformation Assets. Symposium On Applied Computing, SAC’14, 1601-1608, 2014.

2014

S37
F. P. Basso, R. M. Pillat, T. C. Oliveira, M. D. D. Fabro, Generative Adaptation of Model Transformation
Assets: Experiences, Lessons and Drawbacks. Symposium On Applied Computing, SAC’14, 1027-1034,
2014.

2014

S38
L. A. Rahim, J. Whittle, A survey of approaches for verifying model transformations. Software & System
Modeling 14 (2) (2015) 1003-1028.

2015

S39
E. Syriani, H. Vangheluwe, B. LaShomb, T-Core: a framework for custom-built model transformation
engines. Software & Systems Modeling 14 (3) (2015) 1215-1243.

2015

S40
J. S. Cuadrado, E. Guerra, J. de Lara, Reusable Model Transformation Components with bentõ.
International Conference on Theory and Practice of Model Transformations, ICMT 2015, 59-65, 2015.

2015

62



Table 3.5: Selected studies with structural features for assets
Id Paper Year

S41 RAS Reusable Asset Specification Version 2.2 November 2005. Av. at <http://www.omg.org/spec/RAS/>. 2005

S42
G. ELIAS, M. SCHUENCK, Y. NEGÓCIO, X-ARM: an asset representation model for component
repository systems. Proceedings of the 2006 ACM symposium on Applied computing, SAC’06, pp.
1690-1694.

2006

S43
S. PARK, S. PARK, V. SUGUMARAN, Extending reusable asset specification to improve software reuse.
Proceedings of the 2007 ACM symposium on Applied computing, SAC’07, pp. 1473-1478.

2007

S44
R. FRANCE, J. BIEMAN, B. CHENG, 2007, Repository for Model Driven Development (ReMoDD).
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 4364 LNCS, pp. 311-317.

2007

S45
H. B. HADJI, K. SU-KYOUNG, C. HO-JIN, A Representation Model for Reusable Assets to Support User
Context. IEEE International Symposium on Service-Oriented System Engineering, SOSE’08, pp. 91-96.

2008

S46
I. ELGEDAWY, 2009, Reusable SOA Assets Identification Using E-Business Patterns. World Conference on
Services-II, 2009. SERVICES-2’09. pp. 33-40.

2009

S47
R. Hong-min, Y. Zhi-ying, Z. Jing-zhou, Design and Implementation of RAS-Based Open Source Software
Repository. Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009. FSKD’09.,
vol. 2, 219-223, 2009.

2009

S48 Asset Management Specification. Av. at <http://open-services.net/wiki/asset-management/> 2009

S49
R. P. DOS SANTOS, C. WERNER, 2010, Analyzing the Concept of Components in the Brechó-VCM
Approach through a Sociotechnical and Software Reuse Management Perspective. Software Components,
Architectures and Reuse (SBCARS), 2010 Fourth Brazilian Symposium on, pp. 21-30.

2010

S50
M. Wimmer, S. Martinez, F. Jouault, J. Cabot, A Catalogue of Refactorings for Model-to-Model
Transformations. Journal of Object Technology 11 (2) (2012) 2:1-40, ISSN 1660-1769.

2012

S51
W. Zhang, B. Moller-Pedersen, M. Biehl, A Light-weight Tool Integration Approach - From a Tool
Integration Model to OSLC Integration Services. International Conference on Software Engineering and
Applications, ICSOFT’12, 137-146, 2012.

2012

S52
Z. Weiqing, V. Leilde, B. Moller-Pedersen, J. Champeau, C. Guychard, Towards Tool Integration through
Artifacts and Roles. Software Engineering Conference (APSEC), 2012 19th Asia-Pacific, 603-613, 2012.

2012

S53
P. V. Gorp, Paul W. P. J. Grefen, Supporting the internet-based evaluation of research software with cloud
infrastructure. Software and System Modeling. (11), 1, pp 11-28. 2012

2012

S54
A. Vignaga, F. Jouault, M. C. Bastarrica, H. Bruneliere, Typing artifacts in megamodeling. Software &
Systems Modeling 12 (1) (2013) 105-119, ISSN 1619-1366.

2013

S55
N. Tran, A. Ganser, H. Lichter, Multi Back-Ends for a Model Library Abstraction Layer. Computational
Science and Its Applications, vol. 7973 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
160-174, 2013.

2013

S56
W. Zhang, B. Moller-Pedersen, Establishing tool chains above the service cloud with integration models.
IEEE 20th International Conference on Web Services, ICWS 2040 2013, 372-379, 2013.

2013

S57
M. Elaasar, A. Neal, Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study.
Model Driven Engineering Languages and Systems, MODELS’13, 154-169, 2013.

2013

S58
F. P. Basso, C. M. L. Werner, R. M. Pillat, T. C. Oliveira, A Common Representation for Reuse Assistants.
13th International Conference on Software Reuse, ICSR’13, 283-288, 2013.

2013

S59
R. P. DOS SANTOS, M. G. P. ESTEVES, G. DE S. FREITAS, et al., Software Ecosystems Comprehension
and Evolution. Social Networking, v. 3, n. 2 (Feb), pp. 108-118. 2013

2013

S60
B. Combemale, J. Deantoni, B. Baudry, R. France, J.M. Jézéquel, J. Gray, Globalizing Modeling
Languages. IEEE Computer, Institute of Electrical and Electronics Engineer 47 (6) (2014) 68-71.

2014

S61
L. Lucio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. M. Selim, E. Syriani, M. Wimmer, Model
transformation intents and their properties. Software & Systems Modeling (2014) 1-38, ISSN 1619-1366.

2014

S62
F. Basciani, D. D. Ruscio, L. Iovino, A. Pierantonio, Automated Chaining of Model Transformations with
Incompatible Metamodels. Model-Driven Engineering Languages and Systems, 602-618, 2014.

2014

S63
F. Basciani, J. D. Rocco, D. D. Ruscio, A. D. Salle, L. Iovino, A. Pierantonio, MDEForge: An extensible
Web-based modeling platform. Workshop on Model-Driven Engineering on and for the Cloud, CloudMDE
2014, 66-75, 2014.

2014

S64
W. Zhang, B. Moller-Pedersen, Modeling of tool integration resources with OSLC support. Model-Driven
Engineering and Software Development, MODELSWARD, 99-110, 2014

2014

S65
J. D. Rocco, D. D. Ruscio, L. Iovino, A. Pierantonio, Collaborative Repositories in Model-Driven
Engineering. IEEE Software 32 (3) (2015) 28-34.

2015

S66
J. Criado, S. Martinez, L. Iribarne, J. Cabot, Enabling the reuse of stored model transformations through
annotations. International Conference on Model Transformations, 1-15, 2015.

2015

S67
W. Zhang, Tool Integration by Models, Not Only by Metamodels - Applying Modeling to Tool Integration.
Model-Driven Engineering and Software Development, MODELSWARD, 461-469, 2015.

2015

S68
D. BADAMPUDI, C. WOHLIN, K. PETERSEN, Software component decision-making: In-house, OSS,
COTS or outsourcing - A systematic literature review. Journal of Systems and Software, v. 121, pp. 105 -
124. 2016

2015

S69
T. LIMA, R. P. DOS SANTOS, J. OLIVEIRA, et al., The importance of socio-technical resources for
software ecosystems management. Journal of Innovation in Digital Ecosystems, v. 3, n. 2, pp. 98 - 113.
2016

2015

63



Chapter 4

RAS++

Everything must be made as simple

as possible. But not simpler.

Albert Einstein

As result from a process that extracted structural features from analytical stud-

ies and literature mappings discussed in previous chapters, this chapter presents a

new asset specification language called RAS++. This way, in order to reach com-

mon properties, we investigate an open question: Q5: Which are the properties

required in RAS++ in the context of MDE as a Service for asset repre-

sentation?

Next, we depict common properties found in three preliminary phases for tool

chain: Specification is presented in Section 4.1, Section 4.2 represents assets for

Acquisition and assets for Transformation are depicted in Section 4.3.

4.1 Asset Specification

The need for coopetition in MDE is recent (COMBEMALE et al., 2014; MUSS-

BACHER et al., 2014). Authors claim that a repository is necessary for asset con-

sumers to easily find and comprehend what is necessary to introduce artifacts in

practice. However, not much is understood about the requirements for the imple-

mentation of coopetition in MDE. For this reason, COMBEMALE et al. (2014)

claimed that currently they have more questions than answers in this matter.

As illustrated in Figure 4.1, our goal is to build a representation language to

be used together with Knowledge Bases (KB)/repositories (COMBEMALE et al.,

2014; FRANCE et al., 2007; GORP and MAZANEK, 2011; JACOBSON et al., 2012;

ROCCO et al., 2016). Clearly, these proposals present possibilities for implementa-

tion of coopetition in MDE as a Service, but they are unconnected. A common rep-

resentation language for MDE could connect clients with many platforms in support

64



Figure 4.1: The role of assets to a KB for MDE Artifacts.

for MDE Artifacts, but we miss this language and its requirements. In definition,

the closer in the state of the art from the conception of this type of language are two

asset specifications: Reusable Asset Specification (RAS) (OMG, 2005) and Asset

Management Specification (AMS) (AMS, 2014). Asset specifications are acknowl-

edged for years to play the role of a pivot between clients and repositories. In this

sense, we investigate in this chapter the requirements from assets specifications to

support the Specification phase through an analytical study.

The presentation of this phase is organized as follows. Section 4.1.1 exposes

the analytical study with demonstrations presented in Section 4.1.2. This analysis

provided some limitations used for the conception of RAS++, which is depicted in

Section 4.1.3. Finally, conclusions are discussed in Section 4.1.4.

4.1.1 Mapping Study

In the following, we describe the conception of RAS++ in support for the Specifi-

cation phase. So far, the acknowledged role of a pivotal representation language is

to allow automatically publish and download the information independently from a

database structure adopted to store the artifacts. It also must represent descriptive

information associated with artifacts in a structured and common format. However,

the conception of a new representation language for coopetition in MDE as a Service

is far more complex and need specific analysis about the properties from these spec-

ifications. For example, due to possibility of wrong constructions for MDE Artifacts

and Settings, RAS++ must avoid ambiguities, be representative and in the same

way not allow wrong representations.

Goal

In order to answer the more general research question Q5, our study is subdivided

in five sub-questions. This section answers the first one: Q5.1) Which properties

are required in RAS++ to support coopetition in the Specification phase?

65



Figure 4.2: Research method to derive common properties in RAS++.

Research Method

This question needs the execution of an analysis of these repositories and asset

specifications. However, to the best of our knowledge, there is no research method

instructing how to derive a common representation language. For this reason, our

research approach is quite ad-hoc in this chapter, but it includes some empirical

steps shown in Figure 4.2.

In order to answer Q5.1, we first conducted an ad-hoc literature review about

assets along three software reuse disciplines. We concluded that RAS and AMS are

the standard definitions for assets and are on the top of repositories, selecting them

as basis for construction of RAS++. The second step is the conception of RAS++

in the first version of DSL, which was tested with a proof of concept

We then conducted an analytical study, comparing RAS and AMS (BASSO et al.,

2016a) through a case study on the representation of some toolboxes for Software

Product Lines (SPL) (THÜM et al., 2014), found in the literature of the area, as asset

models. These toolboxes are used in practice, achieving a mature level of adoption

in some organizations (BERGER et al., 2013; CAPILLA et al., 2014). Besides, SPL

toolboxes (BERGER et al., 2013) and Dynamic SPL toolboxes (CAPILLA et al.,

2014) are considered as MDE Artifacts, too (FRANCE et al., 2006).

Property Selection Criteria

Since RAS++ is a result of a long process of analysis of properties for assets found in

repositories for software components, MDE repositories and asset specification lan-

guages, a criteria for inclusion of metaclasses and properties is needed. We adopted

the following criteria in the final version of RAS++:

1. The more representative metaclass is used in RAS++;

2. In case of a tie, the following priority is used: metaclasses from UML (used as

basis to support light-weight extensibility), metaclasses from RAS and meta-

classes from AMS;

3. In case of conceptual ambiguities for representation of the same data using

different metaclasses, we selected the metaclass that better describes the con-

cepts;

66



Figure 4.3: Main metaclasses from RAS to represent descriptive data.

4. In case of hierarchical ambiguities, i.e., equivalent properties found in class

hierarchies of RAS++, the property of sub-classes is removed, and;

5. To keep the originality and focus in our contribution, we did not include other

extensions proposed for RAS or AMS in RAS++, thus removing them (in-

cluding the RAS Component Profile) from the first RAS++ version.

We also revisited and refined metaclasses and properties introduced in RAS++

along four years. For example, some ambiguities have been found when introducing

properties in RAS++ in support for the Transformation phase, so we revisited the

Specification phase to remove them. In order to determine which metalass is more

representative for the Specification phase, we considered the following descriptive

data for MDE Artifacts: 1) catalog information used for searching DSLs based

on standard data; 2) instructive information about how to use and adapt existing

components and; 3) descriptive information for one to decide the best option for

DSLs, that best meets a specific need in a software development context.

4.1.2 Asset Specification Languages

Reusable Asset Specification

RAS is an OMG standard to classify, catalog, and instruct the reuse of software ar-

tifacts in reuse repositories (OMG, 2005). RAS provides meta-classes shown in Fig-

ure 4.3 to detail instructive information associated with artifacts, used by end-users

to learn about what should be adapted in existing software artifacts for different

needs in software projects (ELGEDAWY, 2009).

Figure 4.1 exemplifies an asset for a scenario where RAS specifications are cur-

rently used: to describe information on how to reuse some software component.

67



The asset exemplifies some information used to detail artifacts that compose two

domain models used by a model transformation engine to produce information sys-

tems through model transformations. These domain models are used to generate

code for many information systems. Moreover, the content of the asset (the element

Solution) is the target of a technical solution for MDE, which adapts the artifacts

for specific target platforms (e.g., to generate code for different Java APIs) (BASSO

et al., 2013a).

In order to promote the reuse of these two software artifacts in future software

development projects, it is necessary to provide adequate information used in specific

moments in a reuse process (KRUEGER, 1992; OMG, 2005). This way, Figure 4.1

shows that an asset structures descriptive information that can be used at different

moments in between acquisitions from repositories to the integration of the artifacts

in target software projects. For example, part of the information provided in an

asset can be used for cataloging and searching in a repository (see Classification)

and another part for end-users to learn (see Usage) how to adapt and integrate the

asset content (see the artifacts in the Solution structure) in a target software project.

Thus, this structure is important to localize the correct information according to

reuse steps (KRUEGER, 1992).

Asset Management Specification

Another option to specify an asset is AMS, an industrial specification (AMS, 2014) to

catalog tools that help in software engineering tasks (ELAASAR and NEAL, 2013).

AMS is part of Open Services for Lifecycle Collaboration (OSLC) (OSLC, 2017a),

an industry specification that allows to chain tools through asset specifications and

web services. In other words, tools that have integration interfaces used for exe-

cution support (starting points) specified in OSLC are integrated (ELAASAR and

NEAL, 2013). OSLC facilitates the chaining of software engineering tasks assisted

by tools, since interfaces are specified in a common format. Substantially, for the

problem motivated in this work, AMS allows to represent descriptive information in

a standard format that follows the metamodel shown in Figure 4.4.

Conceptual Demonstration

In the following, we summarized our comparison of RAS and AMS (BASSO et al.,

2016a). Currently, end-users have no access to information about Toolboxes for

SPL without performing an extensive study in papers, web pages and tutorials. A

negative point is that there is no summarized information that can be crossed to

make decisions.

Catalog and Description

68



Figure 4.4: Metaclasses from AMS

RAS and AMS provide an element for classification, which can receive infor-

mation about many contexts in which the asset is applied. This information is

exemplified in the asset shown in Figure 4.5 (A), represented in AMS. Figure 4.5

(B) shows an asset specified with the standard RAS. Assets describe the FOMDA

DSL, a solution to design and adapt model transformation chains, exemplified as

the artifacts in Figure 4.1.

AMS is restricted for keyword search. However, more than keyword-based search

is needed. Hence, the example shown in Figure 4.1 adds two new elements: descrip-

tor groups and free form values, only available in RAS. Descriptors groups are used

to add structured textual information to better describe a context associated with

an asset.

Both specifications provide a mean to contextualize technical solutions for MDE,

i.e., to provide a classification and description. However, only in RAS it is possible

to represent rich and structured textual content. Examples of other works that

increment descriptions about assets are found in (ELGEDAWY, 2009; HADJI et al.,

2008; HONG-MIN et al., 2009; PARK et al., 2007), which extend these meta-data

to add standard taxonomies to classify specific types of software components. Thus,

it is possible to explore these structures to provide taxonomies to better classify and

catalog technical solutions for MDE.

69



Figure 4.5: Classification of the same toolbox with AMS and RAS.

Artifacts

Artifacts represented with RAS and AMS are mere links to physical artifacts,

called as artifact media resource in OSLC. In addition, RAS also allows packing

artifacts in compressed files and AMS allows retrieving artifacts through calls for

web services. In a coopetition scenario for MDE as a Service, we considered that

artifacts are distributed among several repositories that can be based on RAS (a

70



lot of information is still represented with RAS) or OSLC (there is a tendency to

represent assets with AMS). For our purposes it is important that artifacts can

be retrieved through proxies such as OSGI and MAVEN or class for web services.

In the case of artifacts described by AMS, this information is specified with an

RDF/XML described in OSLC. The RAS meta-class, namely Artifact, does not

allow the representation of such important information.

Relationships

In many cases, assets must establish relationships. So, it is important to define

dependency relationships between data expressed in assets. Figure 4.5 (B) exem-

plifies this situation in which FOMDA DSL depends on another asset called Plugin

ATL-FOMDA. This is an API which makes an integration with a known model

transformation engine called ATL (BÉZIVIN, 2005), used to execute model trans-

formation written in ATL language. This engine could be also represented as an

asset, which means that, through dependencies, it is possible to establish traces

between many assets and MDE Artifacts.

Dependencies among artifacts, among assets and artifacts are also allowed in

both specifications. However, we found that dependencies are more expressive in

AMS because they provide information about service providers (repositories), while

in RAS the dependencies are assumed to be established in assets from the same

repository. This is a difference that enables AMS specifications to associate assets

from many repositories on the web, while RAS limits the use for “in-company” solu-

tions. Thus, this property is important for implementation of coopetition considering

the diversity of repositories in support for MDE Artifacts.

Content Figure 4.1 exemplified the Solution structure, the content-part of an

asset, which is usually applied to describe software artifacts (e.g., models, compo-

nents, source code). Artifacts can also represent semantics from MDE Artifacts, as

illustrates Figure 4.6. In this case, an asset can have information associated with

artifacts such as configuration files, APIs and libraries, binaries and scripts, services

and model transformations, among others. Besides, these solutions also provide ac-

tivities in support for Software Engineering tasks (BATORY et al., 2013b). There-

fore, it is important to abstract the data associated with operations and artifacts

that a given solution offers for end-users.

The specifications allow to represent artifacts and tasks (this one only in RAS),

but with a very limited set of meta-classes.

Instructions

As illustrated in Figure 4.1, in assets that describe reusable artifacts for software

components it is common to associate instruction for reuse. However, it is not so

obvious what should be represented as instruction in an asset for a technical solution

for MDE, such as tools and model transformations. Tools and transformations need

71



Figure 4.6: Content and instruction associated with the technical solution called
FOMDA.

to be adapted (WHITTLE et al., 2013) and they also provide activities in support for

Software Engineering tasks (BASSO et al., 2014b). Thus, it is needed to configure

a set of libraries, components and files.

Figure 4.6 illustrates some of the elements provided in RAS to support such an

instructive information. In order to give to this tool a different way to work, an

artifact can receive descriptive information about variability points that highlight in

a tool the main features that can be changed. For example, model transformation

assets that configure FOMDA DSL in Figure 4.6 can be configured to support run-

time or generative adaptations over those artifacts detailed in Figure 4.1. This is a

benefit that allows end-users to understand how a tool works and how to change it.

The instruction on how to proceed to apply an adaptation is specified in activities

inside the Usage structure shown in Figure 4.7, which illustrates the additional

metaclasses from RAS not found in AMS. In this case, activities must associate a

variability point binding to indicate that it is intended to support a given variability

point from some artifact. Moreover, activities in RAS can receive data about the

“Role” enabled to perform a given task. Thus, with this information, it is answered

how one can use the solution.

With RAS it is possible to instruct the necessary adaptations in resources through

activities. Diverse activities such as how to and guidelines can be represented with

instances of Activity. In addition, an activity can have many variability point bind-

ings, meaning that they are instructing exclusively adaptations needed in assets.

Thus, the metaclasses Activity and VariabilityPointBinding are used to guide the

end-user towards adaptations in artifacts.

72



Figure 4.7: Metaclasses from RAS to represent activities.

4.1.3 RAS++ Metamodel

This section answers the research questionQ5.1) Which properties are required

in RAS++ to support coopetition in the Specification phase? We found

that, to match these specifications, all their properties are relevant. This requires

merging in RAS++ the properties found in RAS and AMS. The RAS++ meta-

model, therefore, is built on properties from both RAS and AMS, as illustrated in

Figure 4.10.

RAS++ Overview

Figure 4.8 shows structural features from RAS++: In (A) and (B) are metaclasses

from RAS in conformity with the meta-levels described in (C). RAS++ merges

features from RAS and AMS in EMF models. In the following, some extensions for

RAS are presented, thus making RAS++ a super-set of RAS and AMS.

Figure 4.8 (A) and (B) show two metaclasses that are central for an asset rep-

resentation language: Artifact and Asset. Associated with assets and artifacts

there are many other metaclasses that aim at specifying semantics for classification,

description, context, types, etc.

Figure 4.8 (A) shows that artifacts also allow the representation of sub-artifacts,

variability points and artifact type, important data to represent MDE Artifacts. In

addition, Figure 4.8 (B) shows that assets allow the representation of information for

version, state and creation date, thus mixing information generated by a repository

for management of assets and information provided by the software engineer for the

description of a set of artifacts.

73



Figure 4.8: RAS++ DSL overview

Extensibility Mechanisms

Figure 4.9 shows metaclasses extracted from RAS and UML to allow extensibility

in RAS++. First of all, each metaclass in RAS++ extends either NamedElement or

Element. For this reason, our representation language allows two types of extensi-

bility: 1) Through RAS Profiles; 2) Through UML Profiles.

The standard RAS definition allows the creation of new representations with the

use of profiles. These extensions are heavyweight, which means that software engi-

neers must change the definition of the XML schema of RAS. Differently, RAS++

is a DSL in conformity with EMF, which means that heavyweight extensions need

the generation of a new version of RAS++ Eclipse plug-in. This approach is posi-

74



Figure 4.9: Extensibility mechanisms in RAS++

tive to keep the core language separate from profiles. As illustrated in Figure 4.9,

extensions through profiles include metaclasses Profile and RelatedProfile.

A big difference between the standard RAS and RAS++ is that our language

extends also a simplified UML metamodel. For example, the metaclass Artifact

and Asset shown in Figure 4.8 (B) and (C) extends NamedElement, a metaclass

from UML included as a package in RAS++. Besides, each metaclass from RAS++

extends at least the Element metaclass, that owns associations with TaggedValue,

Stereotype, Comment and Constraint.

By enhancing UML, it is possible to specify annotations as instances of Stereo-

types and TaggedValue in each model element. This allows to extend asset rep-

resentations based on well accepted lightweight mechanisms. The extension mech-

anism through RAS Profiles is a heavyweight approach. It is more difficult since it

needs the inclusion of a new package in the ECORE model of RAS++, or extension

through a new plug-in, each one needing recompilation of the metamodel library.

Thus, lightweight mechanisms are simpler.

Applying Property Selection Criteria

This section reports some changes and differences between RAS++ and the meta-

models from RAS and AMS. Since these representations are proposed to implement

repository based reuse, this section is quite technical, since it requires from the

reader a certain experience in previous specification languages. The term Specifica-

tion used to characterize this chapter suggests this technical effort: it is needed to

75



Figure 4.10: RAS++ DSL in support for Specification phase.

match specifications in a common sense.

For instance, RAS++ is built initially on a RAS metamodel. This required

changes along these years to remove ambiguity introduced in artifact representations

by considering a merge with AMS. Thus, as illustrates Figure 4.11, we removed from

the metaclass Artifact the following properties: diggestName, diggestValue, and

type (or ArtifactType in version 1 of RAS++).

Inspired by AMS success, we included in RAS++ some structures to allow the

representation of artifacts in different locations. This allows the use of RAS++

to instantiate cloud repositories built on AMS, as discussed in an ongoing work1.

1Ongoing work: Federation of COTS for MDE With a Pivotal Representation Language

76



Figure 4.11: Metaclasses for artifacts and resource locators.

The removed properties are now represented with specific metaclasses: diggest-

Name is replace by a property name available in the metaclass NamedElement (from

the UML); diggestValue is replaced by a metaclass called Resource and; access-

Rigths is replaced by the metaclass License.

For artifact federation, RAS++ includes new metaclasses not exactly as those

found in AMS and RAS, but that are a common sense in representations of assets:

DownloadInfo, DeployInfo and Path. In the following, we present these changes

and increments. The RAS documentation suggests to pack physical files, referenced

in artifacts, as a zip file together with a MANIFEST file. MANIFEST is an XML

document that represents the information exemplified in this document with asset

models. Repositories unpack this zip file and store its content into databases and

vice-verse. Therefore, because the standard RAS always considers a unique reposi-

tory, the reference for physical files is made with absolute or with relative paths.

This is a dated mechanism for artifact federation, but RAS++ still allows its

usage. In other words, the current scenario needs the federation of artifacts in

distributed repositories2. For example, for approaches that adopt the AndroMDA

toolbox as a model transformation engine (MONTEIRO et al., 2014a), a set of

prisma.cos.ufrj.br/wct/tr04.pdf
2Federation- <https://wiki.openstack.org/wiki/Inter Cloud Resource Federation>

77

prisma.cos.ufrj.br/wct/tr04.pdf


libraries associated are stored in a repository that allows remote download through

the MAVEN tool3. Other approaches store and instantiate MDE toolboxes on the

cloud (BASCIANI et al., 2014a), thus needing federation of resources through the

REST API4.

Other changes include: This is inspired in the AMS definition of the concepts of

resource that references other resources in different service providers.

1. Artifact now extends Resource, a metaclasses extracted from AMS, with proper-

ties for locators/proxies for physical files external to the repository whose assets are

stored;

2. The property descriptor from Resource (a metaclass from the AMS) is as textual

property where a script for “deployment descriptor” can be inserted. Deployment

descriptors should be represented with instances of DeployInfo;

3. The association with ResourceType allows classifying artifacts. We adopted this

nomenclature and not Type as recommended in AMS, because Type is used in the

short UML metamodel included in RAS++ to represent data types, classes and etc.

4. The unique way to represent artifact types is through instances of ResourceType,

which must be inserted into instances of Repository. In standard RAS, a textual

property called type is used, allowing mistakes and ambiguities when classifying ar-

tifacts. Thus, this definition standardizes artifact classification in RAS++, reducing

mistakes;

5. The association of resources with RepositoryRef allows to link repositories where

artifacts are stored, and;

6. Through associations with DownloadInfo and DeployInfo, a resource is composed

by an information of download and deploy/installation.

The metaclass DownloadInfo represents where the physical file associated with

the artifact is located. Three properties provide detailed information to allow the

download of a file: 1) the property provided is used by references for MAVEN repos-

itories and a value assigned for “true”means that the file should not be downloaded;

2) the association with the metaclass Path allows to represent the complete URI

of the physical file; and 3) the property pkgKind allows to represent the semantics

of access for specific types of repositories. This way, literals from the enumeration

PackagingKind represent:

1. LINKED WITH MAVEN, to download the referenced file using the Maven tool;

2. REFERENCE TO URL, to download a file shared on the web for public access;

3Apache Maven - Av. at <http://maven.apache.org/> At 15/03/2016.
4REST API Tutorial - <http://www.restapitutorial.com/> At 15/03/2016.

78



Figure 4.12: Properties from standard RAS replaced by metaclasses.

3. LINKED WITH OSLC, to download a resource from an OSLC service provider;

4. LINKED WITH UPDATESITE, the reference is an Eclipse plug-in and should be

installed instead of downloaded;

5. LINKED WITH RESTAPI, the resource is downloaded using the REST API;

6. LINKED WITH MODREP, the resource is stored in a model repository, needing a

specific API to connect and download the content.

The metaclassDeployInfo represents where the physical file must be deployed in a

development environment. For example, libraries can be deployed in a specific folder

called“libs”, models used by model transformations are placed in a folder called“res”

and model transformation test cases in a build path called “tests”. The name of the

folder is represented with an instance of Path. For folders that stores libraries that

must be placed in build-paths, e.g., the “lib” folder, the property buildPath must

be set to true. Besides, for resources such as source code that must be placed in

default build-paths such as “src”, the property packedApp must be set to true.

Figure 4.12 presents some changes in comparison to the standard RAS meta-

model. The property accessRights is removed from the inside of ras::Artifact

and is replaced by an association with License. License is also possible to be as-

signed by assets, in association between ReusableAsset and License. Properties

from ras::Activity were removed and replaced by associations with Role and

TaskType.

These changes are positive to reduce the number of redundant data that we

observed along representations of assets. Besides, by making these properties meta-

classes that extend uml2::NamedElement, we are allowing their extensions with

lightweight UML mechanisms. Once common representations are found and the

metamodel changed, the second version of RAS++ was generated without ambigu-

79



Figure 4.13: A repository describing assets and properties in RAS++

ous properties. Therefore, RAS++ fits well for representation of asset data conforms

two industrial initiatives: RAS and AMS.

Demonstration in RAS++

Following some tips for representations of software components (PALUDO et al.,

2011), we applied RAS++ on the representation of a toolbox called Feature-Oriented

Model Driven Architecture. Figure 4.13.A exemplifies a model designed conforms

to RAS++. It is our practice to start with the representation of the model with

an instance of Repository. This instance represents data for connection with some

repository. This means that all the content is already stored or will be stored in

the described repository. For example, the representation in lines 1 and 2 allows

automatic connections with a model repository called CDO (Figure 4.13.B), which

is hosted in port 2036. Thereby, these representations are not only documentation:

in a proof of concept (BASSO et al., 2014b), we could automatically publish asset

representations shown in lines 3 and 4 in a relational database. This tool support is

complementary to this thesis, thus non appropriately evaluated and detailed. As a

long term goal, with new advances in tool support, we hope to extend this possibility

in integrations with MDE repositories such as ReMoDD, SEMAT and GEMOC.

In order to demonstrate the application of concepts introduced in Figure 4.12,

Figure 4.13.A shows two instances of Role and one of License (lines 6-8). Roles

and licenses are managed by an instance of Repository, reducing the possibility

for introducing redundant data. In RAS, this data is replied in each artifact and

asset, while in RAS++ this data is provided through associations, as illustrated in

80



Figure 4.14: Asset describing the FOMDA Toolbox (Part I)

Figure 4.13.C.

Figure 4.14 shows RAS++ properties applied to represent an asset from our re-

search group: the FOMDA Toolbox. Since there is no guideline for representation

of assets describing toolboxes, we used 19 structures suggested in (PALUDO et al.,

2011). These structures are for the description of software components, thus charac-

terizing our asset as “Component Reuse” (instance of Context in line 1). Lines (2,

4, 5, 7, 9, 11-14, 16, 18 and 19) demonstrates that, through instances of Decrip-

torGroup, it is possible to represent 12 structures from the 19 suggested, detailing

each one with textual information allowed in instances of FreeFormValue (lines 3,

6, 8, 10, 15 and 17).

The other seven structures suggested in (PALUDO et al., 2011) are represented

with other metaclasses: Figure 4.15 presents descriptions for solution, and Fig-

ure 4.16 for usage. These metaclasses follow the RAS standard, discussed in details

previously, and match completely the needs discussed by Paludo. For example, Fig-

ure 4.15 shows details represented in instances of Artifact5 in lines 1, 6, 14, 16

and 17. The first artifact is a “Java Library”. It is physically stored in a MAVEN

repository, shown in line 3, and must be deployed in a relative path “

5Model is an instance of Artifact discussed in the Transformation phase

81



Figure 4.15: Asset describing the FOMDA Toolbox (Part II)

Figure 4.16: Asset describing the FOMDA Toolbox (Part III)

libs”. This is possible by using resource locators composed by instances of Don-

wloadInfo (lines 2, 7 and 15) and DeployInfo (lines 4 and 9).

82



Figure 4.17: Association of roles into activities for artifacts

Figure 4.17 shows a screen-shot of a dialog available in our tool support for

representation of RAS++ assets. In this case, we are associating the role “Trans-

formation Engineer” into the activity “How must this toolbox be deployed?”. This

association establishes the following semantics: this role is responsible for execution

of the activity“How must this toolbox be deployed?”. This activity is also associated

with a variability point shown in Figure 4.16 (line 5) through an instance of Vari-

abilityPointBinding (line 11). Semantically, this means that the “Transformation

Engineer” should customize the artifact “Model - cross-application domain model for

information systems” shown in line 1. This rich semantic allowed by RAS is one of

the reasons why we selected it as basis for contributions of RAS++.

4.1.4 Final Remarks

Table 4.1 compares general properties from RAS, AMS, and RAS++. In order

to match the needs in MDE as a Service, as well as modernize RAS to novelties

available in AMS (e.g., artifact federation), RAS++ merges these specifications.

As can be observed, RAS++ is more representative than the other two, which is

a point in favor to enable interchange of data as a pivot. We demonstrated in

this chapter the representation of an asset describing an isolated toolbox. This

is limited considering our motivation: tool chain, a contribution that we depicted

later. Moreover, the implementation of coopetiton in MDE as a Service requires

more than matching these asset specifications. Therefore, the next chapter presents

our consideration regarding the quality of the descriptive information by depicting

83



Table 4.1: Comparing 26 properties from RAS, AMS and RAS++

Property RAS AMS RAS++ Property RAS AMS RAS++

1. Representation format XML RDF XMI 14. License Yes No Yes
2. Asset Relationships Yes Yes Yes 15. Version Yes No Yes
3. Represent Any Artifact Yes Yes Yes 16. Services Yes Yes Yes
4. Artifact Federation L D D 17. Repository/Service Provider No Yes Yes
5. Light-weight Extensibility No No Yes 18. Variability Point Yes No Yes
6. Asset Profile Yes No Yes 19. Variability Point Binding Yes No Yes
7. Descriptor group Yes No Yes 20. Activity Parameter Yes No Yes
8. Classification Yes Yes Yes 21. Artifact Activity Yes No Yes
9. Free form value Yes Yes Yes 22. Activity Yes No Yes
10. Context Yes No Yes 23. Resource Type No Yes Yes
11. Classification Schema Yes No Yes 24. Deploy Info No No Yes
12. Node Descriptor Yes No Yes 25. Download Info No No Yes
13. Free Form Descriptor Yes No Yes 26. Path/URI/URL Yes Yes Yes

an important preliminary phase for tool chain: the Acquisition.

4.2 Asset Acquisition

Previous sections presented common properties in support for the Specification

phase, shown in Figure 4.18 (A). In this sense, it was exemplified an asset describing a

toolbox using structures recommended from software component context (PALUDO

et al., 2011), as illustrates Figure 4.18.B. In this sense, an open question is: would

these structures, suggested on the reuse of software components (PALUDO et al.,

2011), be adequate to take good decision about the acquisition of some assets shared

in the context of MDE as a Service? Some works suggested limitations for decision

making in the state of the art (AXELSSON et al., 2014; BADAMPUDI et al., 2016)

since there is no criteria for comparison of MDE Artifacts in the Acquisition phase.

Therefore, the answer to the aforementioned question is no.

Recent studies agree that finding the right options for specific needs is a requisite

for better introducing MDE Artifacts in target software projects (COMBEMALE

et al., 2014). In this direction, similarly as in tool chain integration (BATORY et al.,

2013b), the success of MDE as a Service in a coopetition scenario relies on finding

the right options for specific requests from target contexts (MUSSBACHER et al.,

2014). This is an issue for decision making, lacking a solution that helps software

engineers in a preliminary phase for tool chain (BIEHL et al., 2014), as motivated

recently (ZAKHEIM, 2017).

In a previous work, we found that this need resembles to the descriptive infor-

mation represented in a structure that allows analytical and computational com-

parisons (BASSO et al., 2016b). Repositories proposed several ways for providing

descriptive data. However, we missed an appropriate representation for the criteria

found for the specificity of MDE Artifacts and Settings (HEBIG et al., 2013), thus

opening a call for action (BASSO et al., 2015a) towards integration of some prin-

84



Figure 4.18: Decision making in the Acquisition phase.

ciples from Software Ecosystem (SECO) (SANTOS and WERNER, 2012) with the

MDE specificity (MDE Ecosystems).

In the research topic “Acquisition”, SECO platforms have been proposing mech-

anisms for negotiation (MANIKAS, 2016; MENGERINK et al., 2016; OSLC, 2017b;

SANTOS et al., 2016). These platforms are very important for enabling coopetition,

where asset consumers interact with asset producers in a business environment. Al-

though business and negotiation are critical for implementation of coopetition, we

are investigating a more fundamental issue: the lack of qualified data in assets ham-

pers the execution of the Acquisition phase. Thus, we believe that the best SECO

platform will not be so effective if assets are not represented with quality.

This section is organized as follows: Section 4.2.1 presents the research method

employed to derive criteria for representation of asset, established in support for

coopetition. Section 4.2.2 presents an analytical study on the application of the

established criteria to understand benefits and limitations from asset specifications.

Section 4.2.3 introduces the RAS++ metamodel and an example of representation

for validation of descriptive data from assets. Section 4.2.4 summarizes our conclu-

sions.

85



4.2.1 Deriving Criteria for Qualified Data

We investigated whether assets represent a good alternative to be used in this pre-

liminary phase of tool chain for MDE Artifacts and Settings. Likewise, we found

that the problem for using assets in MDE repositories is twofold: 1) we miss criteria

to represent this qualified data with enough semantic potential to support reuse of

MDE Artifacts globally, and; 2) we miss the support for reuse trough an appropriate

representation language mapped for such criteria. In other words, the literature of

the area is limited in terms of representations used independently from a specific

repository vendor and the proposed representation languages for assets do not cap-

ture the data reported as relevant for decision making along the selection of MDE

Artifacts from repositories.

Goal

Our main goal is to answer the research question: Q5.2): What is suggested in

the literature as quality attributes for representation of assets? Our goal

is to provide a list of properties for representation of qualified data in assets. Since

many structures are available in repositories such as ReMoDD and SEMAT, this list

should be used as a quality criteria rather than as a structure for representation.

Our goal in this section, therefore, is to derive a criteria for representation of

assets. Our motivation is that MDE assets as the one shown in Figure 4.18 (B) are

currently specified following an ad-hoc strategy, thus hampering the reuse in global

scale and making less feasible the implementation of coopetition in a near future.

Research Method

In order to answer the first research question, we executed four ad-hoc literature

reviews and five mapping studies (MARTINEZ-FERNANDEZ et al., 2015), as de-

scribed in Table 4.2. After extracting criteria for representation, we executed an

analytical study (YIN, 2003), thus answering the second research question.

Execution

This section is contextualized in the research process shown in Figure 4.19 that

organizes our contributions associated with RAS++ in five states. The contributions

are listed in Table 4.2. Our criteria is derived in state 3, which means that we

conducted many preliminary studies: from a research idea in state 0, we derived

some technical contributions for MDE Artifacts and Assets in state 1, resulting

in a central issue (state 1.4); then, we divided two lines of research, from 2.1 to

2.3 to find descriptive data and from 2.4 to 2.6 to find technical data; state 4 is

86



Figure 4.19: The process adopted to derive criteria

therefore characterized by a clustering study executed with a coding protocol from

mapping studies 2.4 to 2.6. State 5 is reached through the clustering studies in

4 and 3, resulting in contributions for RAS++. State 3 is therefore characterized

by a second clustering study from 2.1 to 2.3, resulting in a set of elements for the

description of MDE Artifacts.

After state 2, we reasoned that these analytical and mapping studies are limited

to the material published in search engines. So, we acknowledge the existence of

other data sources not found in keyword search. For example, to reach better trust

in state 3, we missed from studies 2.1 to 2.6 properties that could be used for

decision making in an asset selection process, as previously motivated. Then we

conducted a multivocal literature review (OGAWA and MALEN, 1991), which is

mainly characterized by the inclusion of material not available in search engines.

This section therefore extends a previous work (BASSO et al., 2016b) by including

new sources of data and revisiting data extracted previously in state 2.3. Hereafter,

we found that the subject of research is new, needing another approach for data

elicitation.

The study 2.3, executed through a multivocal research mapping6, adopts the

following procedure:

• searched in books about reuse in global scale for MDE (COMBEMALE et al.,

2015b), design patterns (GAMMA et al., 1995) and empirical software engineer-

ing (HUTCHINSON et al., 2011);

• searched in contributions scoping mapping studies for software ecosystems (AXELS-

SON et al., 2014);

• searched in papers on management of model-based operations (KUSEL et al., 2015);

6Multivocal - A multivocal research considers other source of data besides key-wording in search-
ing engines like Scopus.

87



Table 4.2: Organization of our studies for criteria formulation and for implementa-
tion of RAS++

State Summarized references

0 How do you Execute Reuse Tasks Among Tools? A RAS Based Approach to Interoperate Reuse Assis-
tants

1.1 A Common Representation for Reuse Assistants
1.2 Supporting Large Scale Model Transformation Reuse
1.3 Towards Facilities to Introduce Solutions for MDE in Development Environments with Reusable Assets
1.4 A Proposal for a Common Representation Language for MDE Artifacts and Settings
2.1 Analysis of Asset Specification Languages for Representation of Descriptive Data from MDE Artifacts
2.2 Semantic Properties of Software Components: A Systematic Mapping Study
2.3 Intents from Asset Platforms and Their Properties: A Multivocal Mapping Study
2.4 Characterizing the “MDE as Service” Research Agenda
2.5 Diversity of MDE Toolboxes and Their Uncommon Properties
2.6 MDE Setting Intents and Their Properties: A Systematic Mapping Study
3 Criteria for Description of MDE Artifacts
4 Criteria for Representation of Technicalities from MDE Artifacts
5.1 Extending RAS to Better Describe MDE Artifacts (see Chapter 4.1)
5.2 Extending RAS to Represent MDE Artifacts and Their Settings (see Chapter 4.3)
5.3 This Doctoral Thesis

• in technical reports from industry such as from Tasktop tool chain teams (KER-

STEN, 2013; ZAKHEIM, 2017), Gartner Group evaluating assets (GARTNER,

2013), OSLC partners discussing about assets for application lifecycle manage-

ment (OSLC, 2017b); and

• looked for calls for contributions (tool demo) from conferences related to MDE

(MODELS, ECMFA, SPLC, GPCE, SLE, etc.) and in more general conferences

(ASE, ICSE, OOPSLA) to understand the criteria considered by reviewers to decide

whether a tool is relevant.

Through the mappings 2.1 and 2.2, it was found quality attributes for assets

focused in Component-Based Software Development (CBSD) (HONG-MIN et al.,

2010), but with no significant differences from attributes presented by (PALUDO

et al., 2011). In addition, studies 2.3 to 2.6 resulted in data recommended for

selection of toolboxes considering business, social and technical perspectives. This

analytical process took five years, resulting in properties relevant for decision making

in MDE as a Service scenarios.

Analysis

This emerging field scoped in MDE as a Service is both broad and diverse, so it is

difficult for practitioners to understand how to analyze adoption opportunities and

for researchers to reach inter-relations between toolboxes used in different phases

for tool chain. Likewise, quality attributes derived from well formed/structured

and detailed descriptions are the way to facilitate decision making about the as-

set that best meets a customer’s expectations (BADAMPUDI et al., 2016). For

88



example, Figure 4.20 illustrates four assets with descriptive data. So far, it is not

acknowledged which criteria should be considered for these representations, imply-

ing in ad-hoc strategies for description. In this sense, this section consider some

quality attributes discussed by the literature of the area by means of representation

criteria, thus answering Q5.2: What is suggested in the literature as quality

attributes for representation of assets?

Figure 4.20 shows side-by-side four assets in the context of SPL. For didactic

purposes, these assets describe toolboxes found in our research group as follows: A)

an asset describing FOMDA Toolbox (BASSO et al., 2013a); B) an asset describing

UML-FI Toolbox (OLIVEIRA et al., 2011); C) an asset describing Odyssey-Arch

Toolbox (FERNANDES et al., 2011), and; D) an asset describing artifacts for model

transformations in support for the MockupToME Toolbox (BASSO et al., 2016d).

Toolboxes are contextualized as supporting MDE features.

General quality attributes for description of assets are clearness, synthesizing

power, unambiguity, correctness, structural power, completeness and traceability of

dependencies, which can be internal to a repository or external. In the following, we

present criteria important for asset producers to ensure that these quality attributes

are satisfied.

C1 - Presentation Features

A presentation latter should synthesize presentation data since this is the first

information read by asset consumers. The following questions help asset producer

to apply such attributes in asset descriptions: 1.1) What is the solution? 1.2) How

to use it? 1.3) Who can use it? 1.4) Known uses? It is also important to save asset

consumers time when analyzing assets, including the following considerations: 1.5)

What the solution is not? 1.6) When avoid/reject it? 1.7) Who should avoid it?

1.8) Which are the known incompatibilities?

C2 - Usage Features

Questions recommended by empirical engineering are important to establish com-

parisons between competitor MDE Artifacts, such as:

• 2.1) Requirements - Which are the minimum requirements to use an ar-

tifact? One should include data about team configuration, members’ skills

(social and technical) which the artifact have been used successfully, the re-

quired knowledge from end-users about domain specific languages, with which

software process, which phases of software development, and so on.

• 2.2) Round-up data - Which are the pre, and post-conditions to use it?

Which are the benefits and drawbacks? dos and don’ts, pros and cons.

• 2.3) Success and unsuccessful stories, reporting which are the evidences

that support the solution and in which boundary conditions?

89



Figure 4.20: Assets with structural features for description allowed in RAS.

90



• 2.4) General considerations - software component reuse use to describe

reuse opportunities through the following questions: Which is the license

rights? Which are the asset dependencies? Which are the reuse opportunities

already established? Which reuse opportunities are expected in the future?

C3 - Well-formedness Features

It is needed to take care with textual data of type “Free Form” (FRANCE et al.,

2006). In this sense, this criteria focuses in the correctness and unambiguity at-

tributes. Well formed texts are possible of verification from two different perspec-

tives: from the asset provider and from the repository maintainer.

• The following quality attributes help asset providers to keep the “well-

formedness” in asset classification: 3.1) Unambiguity - the information

represented textually should not be repeated along classifications and sub-

classifications. 3.2) Correctness - for immutable values, it is expected that

a “free form value” is identical to a set of possible values provided by the

repository.

• It is also responsibility from repository maintainers to keep well-formedness

rules in support for descriptive data. This way, the following questions should

be considered by repository maintainers: 3.3) Standard taxonomy - Is

the information for cataloging based in standard taxonomy from the artifact

domain? Is this taxonomy representative? Is this taxonomy designed in an

empirical investigation? 3.4) Data dictionary - Is this standard taxonomy

represented as data dictionary in the repository?

C4 - Business Features

It is important to provide data about business opportunities (AXELSSON et al.,

2014) and asset perspectives (GARTNER, 2013). In this sense, following properties

should be represented in a business perspective:

• 4.1) Deployment efforts, including the learning curve and the Return on

Investment (ROI) (WHITTLE et al., 2015).

• 4.2) Cost properties could consider the structure (development cost, prod-

uct cost, operating cost and information cost) AXELSSON et al. (2014).

• 4.3) Feedback from users (HADJI et al., 2008) classified according to cus-

tomer segments (broader customer reach, improved customer feedback and

customer differentiation) (AXELSSON et al., 2014), including free form de-

scriptions represented in user groups and social networks (LIMA et al., 2016).

91



• 4.4) Actors associated with the artifact (manufacturer, supplier, content

provider, communication provider, service operator, add-on developer, owner,

end user, regulatory agency, information broker) (AXELSSON et al., 2014).

• 4.5) Business opportunity links (customer segments, value proposition,

channels, customer relationships, revenue streams, key resources, key activities

and key partners) (AXELSSON et al., 2014).

• 4.6) Asset lifetime stage - The relevance for the asset lifecycle phase (requi-

sition, procurement, deployment, maintenance and retirement) (GARTNER,

2013).

• 4.7) The goals for artifacts such as future evolutions, integrations, probable

deprecations.

C5 - Clustering Features

The creation of descriptor groups (OMG, 2005) should obey some classification

from the literature. In this sense, it is important to consider structural contexts

adopted for description purpose, including well formed constructors for groups, val-

ues, categories and sub-categories. We found the following approaches in structural

features for assets:

• 5.1) Application contexts - This structural feature is widely used in rep-

resentations of assets, but it also is dependent from an application domain.

Typically, application contexts suggests the inclusion of phases of software

development, which is broad and diverse in Software Engineering discipline.

Thus, we found taxonomy for application contexts that can structure elements

for:

– 5.1.1) General software artifact development contexts (FRANCE et al.,

2007);

– 5.1.2) Application Lifecycle Management (ALM) (JOHNSON et al.,

2012; ZAKHEIM, 2017);

– 5.1.3) User contexts for software components (HADJI et al., 2008;

PALUDO et al., 2011);

– 5.1.4) Model transformation contexts (LÚCIO et al., 2014; MENS and

GORP, 2006);

– 5.1.5) MDE-based process contexts (CZARNECKI and HELSEN, 2003;

KLEPPE et al., 2003);

– 5.1.6) Programming language contexts (SHAN and HUA, 2006);

92



– 5.1.7) Analysis strategies that classify SPL Toolboxes (THÜM et al.,

2014);

– 5.1.8) Industrial adoption issues on MDE tool contexts (WHITTLE

et al., 2015);

– 5.1.9) MDE knowledge representation contexts (BATORY et al., 2013a;

DA SILVA, 2015)

– 5.1.10) Tool demo/research environment contexts (GORP and

MAZANEK, 2011), and;

– 5.1.11) Tool chain tasks (BATORY et al., 2013b; LIEBEL et al., 2014).

• 5.2) Warnings and highlights - Structured data that draws the user’s

attention to critical points for the use of shared artifacts, such as abstractions

that make clear when an MDE Artifact needs adaptation before introduction

in a target context (BATORY et al., 2013b).

• 5.3) Asset and artifact relationships - competing or cooperative assets

should be related (AXELSSON et al., 2014; BADAMPUDI et al., 2016), pro-

viding structures for textual information for decision making (business, tech-

nical and social perspectives) (SANTOS et al., 2016).

• 5.4) Domain specific structure - Association of a descriptive structure with

a domain/context, such as repository the case for MDE Artifacts (FRANCE

et al., 2007) that considers a structure better mapped than other built to

support CBSD (PALUDO et al., 2011).

• 5.5) Structured assessments - Structuring textual empirical data that

provide evaluation of application/usage of shared artifacts (RUNESON and

HÖST, 2008), such as type (Case Study, Survey, Experiment and Action Re-

search), research methodologies (Exploratory, Descriptive, Explanatory and

Improving), among other definitions (NETO et al., 2008).

• 5.6) Structured quality model - Descriptions built on model proposed

for internal and external quality (ISO/IEC, 2011) such as Functionality, Us-

ability, Efficiency, and Maintainability, and others for the specificity of MDE

toolboxes (MOHAGHEGHI and AAGEDAL, 2007).

• 5.7) Pattern catalog - Many researches (ELGEDAWY, 2009; HAM-

MOUDA, 2005; HEBIG et al., 2012; LANO and RAHIMI, 2014; LANO et al.,

2017; PALUDO et al., 2011; TRAN et al., 2011) consider important structur-

ing asset representations based on patterns (GAMMA et al., 1995).

93



C6 - Integration Features in MDE

This criteria is derived exclusively in support for MDE Artifacts. Thus, it is es-

sential to represent elements supporting quality attributes completeness and trace-

ability of dependencies, such as:

• 6.1) Integration instruction - Typical MDE Artifacts will need instruc-

tions for introduction in target contexts (LIEBEL et al., 2014). Is clear the

instructive information, such as how to integrate and use artifacts in contexts?

• 6.2) Target platform - The target platform associated with transformations

for model-to-text/model-to-code/code-to-model (KLEPPE et al., 2003).

• 6.3) Artifact intents - asset providers should provide intents of artifacts

(model, metamodels, transformations and tools) on in integration context.

For example, describe the type of the model transformation by its intentions

and properties (LÚCIO et al., 2014).

• 6.4) Toolbox and dependencies - For MDE Toolboxes this includes meta-

models and the meta-model framework (COMBEMALE et al., 2014), as well

as the design languages associated with each model transformation, such as

UML Profiles, or Graphical DSL, or Textual DSL (KELLY and TOLVANEN,

2008). For general toolboxes (ZAKHEIM, 2017) this includes representing

artifacts for web services, component interfaces, WSDL, serialization formats.

• 6.5) Building blocks and chains - Model transformation components, con-

nectors, bindings and parameter matching (YIE et al., 2012), integration in-

terfaces/ports (BIEHL et al., 2014), proxies for resources (ZAKHEIM, 2017).

• 6.6) Variability points - describing adaptation needs in components, domain

specific languages and tools (OMG, 2005), and;

• 6.7) Supporting material - installation procedures, examples, how to,

guidelines, integration procedures, libraries, scripts, rules, and others.

4.2.2 Analyzing Asset Specifications in Coopetition Scenar-

ios

As demonstrated previously through an analysis of the state of the art about struc-

tural features found in asset proposals, implementation of coopetition in MDE as a

Service is complex and needs data for decision making. In this sense, this section

considers a new study: an analysis of metaclasses from RAS and AMS in support

for the aforementioned criteria for qualified data.

94



Figure 4.21: Revisiting assets from a toolbox called FOMDA.

Goal

Our main goal is to answer the research question:

• Q5.3) Whether RAS and AMS fulfill the needs for structural features

from the criteria?

• Q5.4) Which research gaps need to be investigated for the conception

of this language for this emergent reuse scenario?

We investigate whether RAS and AMS can represent the required information

in coopetition scenarios. Based on previous criteria, we analyzed benefits and lim-

itations in RAS and AMS, introducing some requirements for a “pivotal language”

and associating specific research gaps in the area.

Research Method

We present an analytical study on the feasibility of the current technological support

for a pivotal representation language for MDE through demonstration. We revis-

ited a previous work in comparing RAS and AMS (BASSO et al., 2016c), which

represented 37 assets, applying the identified criteria. This criteria considers each

representation language, thus using two DSLs generated with the Eclipse EMF il-

lustrated in Figure 4.21.

Analysis

This section answers Q5.3) Whether RAS and AMS fulfill the needs for

structural features from the criteria?

In summary, we found that both specifications provide structural features for

cataloging information. Thy also can link to resources (e.g., APIs, binaries, model

95



transformations, etc.) through artifact abstractions, as required by existing pro-

posals (ReMoDD, GEMOC, SEMAT, MDEForge . . . ). However, RAS also adds

extra-information in comparison to AMS regarding flexibility for representation of

hybrid structural features, as observed in this mapping, through metaclasses such

as Context, ClassificationSchema and FreeFormDescriptor.

Benefits

In the following, we discuss the results of our analysis with regards to their

associated benefits:

1. Structured descriptive information- A visible benefit is the clarity of the

information provided in reusable assets due to its structure;

2. Abstraction of a real physical content- It is important to notice that for

AMS and RAS specifications, the content (e.g., an artifact or a task) is just

a meta-information that describes the real data. For example, an artifact is

a link to a physical file stored in some place through URLs. This means that

assets can be downloaded just for the sake of understanding what it is, before

deciding to use the associated content;

3. Interchange of information- Both specifications allow to serialize infor-

mation in XML, which can be used to post an asset into a repository or to

download it. This is important if we consider that different software engi-

neers will use different repositories to store their assets, requiring a common

representation protocol;

4. Independence from a KB/repository vendor- Another advantage in

specifying information in assets is that it is independent from a repository

vendor. In the case of artifacts described by AMS, this information is speci-

fied with RDF/XML, for which open-source tools to post and download are

already available under the Apache license. Thus, one can change the service

provider that hosts the asset without losing information;

5. Distributed information in KBs- Assets can be stored in several reposito-

ries, enabling a distributed knowledge base for MDE resources. This is possible

through dependence links proposed by AMS, which contain information about

the target repository; and

6. Applicable to describe many MDE resources- Asset specifications can

be used to describe any other component used in MDE context, such as any

technical solution or even techniques and didactic materials for Software En-

gineering in general. Some initiatives are using assets specified with AMS to

96



describe tools provided on the cloud such as database management systems,

application servers and custom applications.

Limitations

The following limitations are found in RAS and AMS in support for criteria:

1. Lack of structured information to abstract artifacts associated with

technical solutions for MDE - Important information usually associated

with it, such as the metamodel and the serialization language, should be ex-

pressed in an appropriate structure. This would benefit proposals for adapta-

tion in artifacts considering variability in target software projects, for example;

and

2. Lack of meta-classes to represent artifacts and tasks in more

technical-level- It is important to include in assets also the information asso-

ciated with model transformations and tool chains. Asset specifications have

no structural support for this type of information associated with model-based

components/tasks. Thus, these languages should extend the common use for

search and retrieval information in repositories to enable the integration of

MDE resources in target specifications for execution.

Research Gaps Considering Structural Features

We found some research gaps for conception of a Pivotal Representation Lan-

guage considering descriptive data. Thus, this Section is focused in descriptive data

and answers part of Q5.4) Which research gaps need to be investigated for

the conception of this language for this emergent reuse scenario?

Specifications provide rich structures to describe MDE artifacts that

are currently represented in some repositories. Both specifications present

some differences and overlapping in classification information, used by repositories to

catalog and retrieve artifacts associated with the described DSLs for MDE. We rea-

soned that RAS owns more meta-information than AMS, such as descriptor groups,

free form values (i.e., long texts) and instructive information (i.e., activities). How-

ever, structures for descriptive information can be improved.

Both specifications have some limitations for MDE Artifacts that ham-

per their use in this context. Accordingly, it is possible to use the default

versions of these languages, but acknowledging their limitations. Neither RAS nor

AMS are ready to represent the technical data from MDE artifacts such as set-

tings/relationships between models, metamodels and transformations. RAS and

AMS lack more technical-level information associated with components from MDE-

based processes. This means that the data associated with artifacts and activities

97



are only descriptive, thus needing adequate structures to represent semantics for

model transformations.

Structural features are well tailored for description but not well tai-

lored for technicalities from MDE Artifacts. RAS and AMS are general

specifications, allowing classification with any data, thus well tailored for structural

features found in criteria, except for C6. We miss adequate structures for represen-

tation of MDE artifacts.

Research Gaps Considering Coopetition

In the following, we present research gaps for conception of a Pivotal Represen-

tation Language considering coopetition in MDE as a Service.

This section complements the above answers with research gaps from a tech-

nical perspective regards to the representation of MDE Artifacts and Settings.

Likewise, several proposals for connection MDE artifacts have emerged as DSLs

for MDE Settings (HEBIG, 2014). Examples are contributions for model trans-

formation chain (ETIEN et al., 2013), component model for model transforma-

tion (CUADRADO et al., 2015) and other concepts for processes (MACIEL et al.,

2013) and reuse (BASSO et al., 2013a). However, few is acknowledged about require-

ments for representations of disconnected artifacts, shared and reused independently

from processes and components. Thus, one has to consider that in a coopetition sce-

nario illustrated in Figure 4.22, MDE artifacts are not acknowledged “a priori” by

reusers, thus needing extra information discussed in this chapter as criteria.

In this sense, a pivotal language should also be used in different scopes for reuse:

1) The first is for asset producers to specify the information in a common represen-

tation, packing and storing it into an arbitrary repository; 2) In a second scope, a

client acquires these packages by searching the repository (automatically or through

a web front end), comparing each information associated with artifacts to decide the

more adequate option for a specific context of MDE; and 3) In a third scope, the

content of the selected packages is introduced/connected with a specific language,

e.g., into a tool chain approach.

The first scope is supported by management operations from repositories. The

third scope is supported by DSLs for MDE Settings and tool support for execution

of components, chains and reuse operations. In the middle there is a vacuum in

the state of the art that hampers the advent of a global reuse scenario: there is

no standard representation for description and technicalities associated with MDE

Artifacts and their Settings. A first issue is that the lack of requirements makes

the procedure for standardization of this information impossible. Therefore, finding

these requirements is critical for the progress of research in the area.

We found some, discussed as research gaps for long-term investigations as follows:

For the first scope: For the best of our understanding, in general, important

98



Figure 4.22: Desirable coopetition in MDE as a Service.

information associated with these artifacts is not shared in repositories for MDE,

opening window for the following contributions focused in criteria C6: A)Variability

points and instructions are relevant, thus structures from these repositories could

be incremented; B) The state of the practice in MDE adopts several repositories to

store their physical files, thus a relevant question is whether a KB for MDE should

stores only information associated with artifacts (the focus of a pivotal language)

instead of physical files (the focus of repositories)? C) Artifacts should be federated

between several possible locations, but the state of the art is limited in this regard,

thus open a question on which representations are needed in a KB and/or a pivotal

language to manage federated assets and artifacts as currently presented?

For the third scope: The lack of structural features in asset specifications for

technical data implies in a manual the effort to publish, search and download these

artifacts from repositories: D) We found indispensable a core representation, thus

needing an investigation on what is common between Artifacts and DSLs for MDE

Settings? E) This lack also needs a manual connection of artifacts in some target

representations, thus an open question is whether is possible to do it automatically

through a pivotal representation? and F) not everything can be automated, instruc-

99



tive data and technical data is not well linked in RAS, end-users would benefit from

active assistance to connect artifacts with settings, thus it is important to evalu-

ate whether the instructive data represented in assets is useful to assist a manual

connection?

For the second scope: In 2007, researchers reported that the lack of critical

mass is an issue for the advent of a KB for MDE (FRANCE et al., 2007). This issue is

still a research gap (ROCCO et al., 2015). We believe that facilities in tool support

can help us to surpass this issue. Thus, open questions include: G) Whether a

pivotal language and associated tool support help on the automatic upload of data

from MDE Artifacts and their Settings? H) Would this tool support benefit to

introduce Artifacts and Settings in target contexts? I) MDE Artifacts have been

represented in MDE Setting by highly technical stakeholders, thus an open question

is which structural features proposed in the literature is suitable to represent the

required data in a pivotal language? and finally J) Which benefits and drawbacks

from a common representation for the state of the practice?

Lessons Learned

In this section we revisited conclusions from previous study (BASSO et al., 2016a)

and provide lessons learned for the execution of Acquisition phase. These lessons are

based on assets represented along this thesis, which have been demonstrated in our

first experiences (BASSO et al., 2014b) with the intent to simulate an implementa-

tion for this phase. In other words, asset consumers have to compare these assets

by analyzing their descriptive data. So our lessons are tacked based on previous

analysis of criteria, in our previous ad-hoc strategy to represent assets and in our

effort to define common representation in RAS++.

As suggests the references associated with criteria C6, artifacts represented in

assets are hybrid. Asset representations adopted by each platform discussed in each

reference are hybrid too. This means that structural features for describing assets

are dependent from artifact domains. For example, SECO platforms consider some

structural features non considered by MDE repositories and vice-verse. This means

that a common representation language must be flexible to represent these structural

features too.

Due to these differences, Section 4.2.1 did not provide specific details for rep-

resentations in each domain. Instead, we provided general properties that can be

used in any context, but we defined criteria C6 on the specificity of MDE to be

explored in next RAS++ metaclasses. Figure 4.23 show an example of these meta-

classes for representation of data following the criteria C6. These metaclasses are

depicted latter in Section 4.3. Lines 1 and 5 shows two instances of Repository,

the first repreenting a local repository and the second a global. This means that

100



Figure 4.23: Assets representing DSLs

assets in lines 3 and 4 are locally federated while others found in lines 7, 13, 22-25

are federated globally in the GEMOC repository.

Structural features in RAS++ matched the representational criteria suggested

by the literature of the area. So far so good, but along these years, we proposed in-

crements in properties and metaclasses for RAS++ to detail classification structures

shown in Figure 4.20, in new metaclasses that support classification. Example of

these metaclasses are Technology and Applicability shown in Figure 4.23, lines

16 and 17. This smell bad because each repository proposes their own structural

features in terms of descriptor groups for classifications. As a negative result of

introducing in RAS++ metaclasses for classification, we ended-up in year 2016 with

metamodel composed by more than 80 metaclasses for specific classifications.

Since a big metamodel should be avoided (STRITTMATTER and HEINRICH,

2016), we decided to avoid the introduction of specific classifications as metaclasses

101



Figure 4.24: RAS++ metaclasses in support for classification schema.

in RAS++. This created an issue to fit RAS++ into the criteria C3“Well-formedness

Features”. The next section show how we fixed this issue.

4.2.3 RAS++ Metamodel and Exemplification

In order to demonstrate the flexibility of RAS++ to represent assets conform to

the presented criteria, in this section we revisited the RAS++ metamodel, pre-

senting metaclasses not yet discussed. Figure 4.24 shows metaclasses available for

representation of structured descriptive data (structural features). At the top-part,

metaclasses extracted from UML2 include: Element, NamedElement, Constraint,

TaggedValue and Stereotype. At the bottom-part, metaclasses extracted from

RAS include: Profile, ClassificationSchema, FreeFormDescriptor, FreeForm-

Value, Context and DescriptorGroup.

As exemplified in the Specification phase, descriptor groups allows the represen-

102



tation of descriptive properties in classifications of assets. Descriptor groups are

composed by free form values, which represent leaf values for classifications. The

asset provider can use any value he/she wants in free form values. However, some

of the structural features presented through criteria need a uniform representation

(correct). For example, cost properties (AXELSSON et al., 2014) must consider one

of the following values: development cost, product cost, operating cost and infor-

mation cost. Any different value reduces the quality of the asset representation.

At a first glance, this seems to be a borderline issue. However, since RAS++ aims

at pivoting repository representations, a wrong representation imply in violation of

well-formedness rules implemented by repositories. Thus, well-formedness rules must

be represented in assets.

The novelty is that RAS++ allows the representation of these rules, therefore

matching the criteria C3.2 and C3.4. In this sense, a descriptor group (instance of

DescriptorGroup) must be in conformity with an instance of FreeFormDescriptor.

In a short definition, a descriptor group follows the rules from a free form descriptor.

In the same way, instances of Context follows the rules defined in a classification

schema (instances of ClassificationSchema).

Through associations between these metaclasses, it is possible to formally vali-

date structural features for description of assets. Moreover, since any RAS++ meta-

class extends at least Element, all the objects/elements may associate instances of

Constraint, TaggedValue and Stereotype. This allows the representation of OCL

rules as instances of Constraint inside each asset element. This is an important

characteristic from RAS++, not allowed in AMS and RAS, thus allowing a program

to check whether an asset representation is valid.

Figure 4.25 presents the same example used for the Specification phase. The

goal is to validate the representation resultant in Figure 4.25.A, which describes an

asset using free form values, to be published in a component repository (Repo01)

that uses the structural features from (PALUDO et al., 2011). Thus, this asset is

structured conforms to Repo01.

Figure 4.25.B shows our representation of structural features from Repo01. In

line 1 it is represented a classification schema called“Software Component”, which is

latter associated with the instance of Context shown in Figure 4.25.A, line 1. This

context, therefore, follows the rules from the classification schema.

Figure 4.25.A, line 5, shows an instance of DescriptorGroup titled as“type”that

is associated with an instance of FreeFormDescriptor shown in Figure 4.25.B, line

2. This group follows the rules defined on the associated descriptor: 1) the possible

values are introduced in Figure 4.25.B, lines 4-7 and; 2) structural/representation

rules are defined in line 3 with an instance of Constraint.

Figure 4.25.C shows properties from this constraint: at the top-part an OCL rule

103



Figure 4.25: UML constraints in descriptive representations.

is expressed as “context DescriptorGroup inv: self.freeFormValues() = 1”. This rule

can be checked by any OCL tool and semantically means that the associated descrip-

tor group (“Type”) must have one and only one instance of FreeFormValue. Possible

values for the descriptor group “Type” are “Creational”, “Behavioural”, “Structural”

and “System”. They are inserted in the association called “Constrained Element”

with the help of the illustrated the dialog box.

Figure 4.26 demonstrates that RAS++ is well tailored for representation of prop-

erties from our criteria qualified data. Elements from criteria “C1 - Presentation

Features” and “C2 - Usage Features” are used and organized as compositions of clas-

sification schemes, free form descriptors and free form values. Thus, this example

shows how flexible RAS++ is to structure descriptive data from different classifica-

tions (A and B) found in different repositories.

4.2.4 Final Remarks

In this section, it was presented an analysis of the state of the art in asset repre-

sentation. specifically, we analyzed proposals representing decision making data in

assets, the so called qualified data. These proposals do not follow the same struc-

tural features in descriptor groups. This is natural, since they are built considering

specific application and business domains. However, this scenario presents hybrid

asset representations.

Hybrid asset representations make harder the implementation of coopetition in

104



Figure 4.26: Classification groups for criteria C1 and C2.

these heterogeneous scenarios. The integration of these scenarios is our long term

goal. For instance, we observed that these hybrid representations of structural fea-

tures can be represented in RAS++ as well. Our study suggests that, with a re-

duced number of metaclasses, RAS++ maps structural features adopted by all the

discussed/surveyed proposals, thus a feasible language to bridge repositories such as

ReMoDD, GEMOC and SEMAT.

Contrarily to our previous observations (BASSO et al., 2016c), this new analy-

sis and demonstration suggest that new extensions in RAS++ for domain-specific

classifications are no longer necessary. For this reason, we did not introduce new

extensions in RAS++ for the Acquisition phase. On the contrary, we removed a

set of metaclasses introduced before (BASSO et al., 2013b, 2014b) in support for

classifications on the MDE domain. Thus, our contribution is twofold: an analysis

of criteria for qualified assets and a cleaning in RAS++.

We also demonstrated alternatives for validating structural features for descrip-

tion of assets. Through a small set of metaclasses, asset providers are allowed to

represent constraints in descriptor groups. As result, it is possible to map rules

for validation of representations of free form values, which allow constructions for

classification of any nature. This is not fully allowed in RAS, neither partially in

AMS, thus a contribution from RAS++.

We have demonstrated the use of OCL rules represented in design-time of as-

sets. This possibility makes RAS++ well tailored to represent structural features or

descriptor groups independently from rules from a repository.

Finally, we conclude that RAS++ can represent all the introduced criteria, ex-

cept for one: C6. Criteria 6 demands representations for properties from MDE

Artifacts and Settings. Thus, the next chapter details new metaclasses in support

105



for technicalities required by C6, such as tool chain.

4.3 Asset Transformation

The conception of a common representation language in a technical-level is not a

simple task. First of all, it requires technical knowledge and experience from the

researcher to determine common abstractions that can be represented with unam-

biguous properties. In this process, we had to consider properties from different

representation languages for assets, MDE Artifacts and Settings, which are diverse,

hybrid, ambiguous and not yet properly mapped by the literature of the area. In or-

der to support future implementations in MDE as a Service through this language,

several meetings were carried out with research collaborators to find out what is

feasible to introduce in RAS++. Our aim is to report on this effort, deriving the

metamodel we proposed for representation in asset some technicalities associated

with MDE.

In this sense, it is important to consider properties from modern toolboxes for

MDE, which are built on domain specific languages (CUADRADO et al., 2014;

LEMOS and MASIERO, 2011; SYRIANI et al., 2015) for representation of MDE

Artifacts and Settings (HEBIG, 2014) (MDE components). Due to the intro-

duction of new design languages for systems and processes (JOUAULT et al.,

2010), as well as to the evolution in technologies used in underlying implemen-

tation frameworks (HEBIG and BENDRAOU, 2014), components such as MDE

Artifacts and their Settings are often analyzed to fit to the context of a target

software project (BASSO et al., 2016d). A decision about the use of these com-

ponents is therefore dependent from the needs of stakeholder working in compa-

nies/contexts (WHITTLE et al., 2015), i.e., depends from an asset consumer (AX-

ELSSON et al., 2014). This means that in the last phase, technical properties from

MDE Artifacts and Settings should be considered. Therefore, in order to support

the Transformation phase, it was introduced new RAS++ extensions.

This section is organized as follows. Section 4.3.1 summarizes our mapping study

by which we extracted common properties from tool chain approaches. Section 4.3.2

presents other extensions for the RAS++ metamodel. Finally, Section 4.3.3 demon-

strates the use of RAS++ in the same problem domain discussed along the previous

chapters, and Section 4.3.4 encloses this chapter with final remarks.

4.3.1 Mapping Study

A limitation in the literature is the lack of studies exploring the state-of-the-art

in MDE Settings (BASSO et al., 2017a). For instance, several tools have been

106



Figure 4.27: Elements for MDE Settings considered in this mapping study

proposed as a way to help software engineers to introduce MDE artifacts in tar-

get contexts independently from a model transformation language. Such tools are

built based on many concepts introduced in software engineering ranging features

such as integration, services, orchestration, consistency, semantics and execution of

artifacts/resources associated with models and transformations.

Goal

Our goal is to extract relevant properties from approaches for tool chain for inclusion

in RAS++. In this sense, the following question motivates this mapping study:

Q5.5: Which are the properties required in RAS++ in the context of

MDE as a Service for tool chain representation?

Research Method

In order to reach the MDE Settings intents and their properties, we conducted a

structured review of type mapping study (PETERSEN et al., 2008). As illustrates

Figure 4.27, in this study we are investigating which are the representations available

in some representation languages that seamlessly link tasks, tool support, compo-

nents and DSLs. The overall study is presented in a technical report7.

7MDE Settings Intents and Their Properties - prisma.cos.ufrj.br/wct/ms04.pdf

107

prisma.cos.ufrj.br/wct/ms04.pdf


Analysis

This section reports on our answer toQ6: Which are the properties required in

RAS++ in the context of MDE as a Service for tool chain representation?

General properties include following component taxonomy that is not adequate

for representation through descriptor groups and classifications in RAS++:

Semantics for MDE, such as associate descriptive information with transfor-

mations.

Chain of endogenous model transformations, which means the usage of

the same metamodel associated with models generated through refinements;

Chain of exogenous model transformations, which means the usage of

more than one metamodel associated with models generated through model-to-

model transformations;

Chain of built-in model transformations characterizes approaches that en-

able insertions, in run-time of a tool chain, of small programs (algorithms/model

operations).

Structural features for components include:

Component properties such as Input and Output (IO) parameters, associated

scripts or programs for execution of model-based operations.

Atomic component is indivisible, which means that a component cannot be

expanded into sub-components. A component is also called as task or activity in

tool chain approaches that consider integrations with process modeling languages.

This is an ambiguity in the area. Thus, in RAS++ they all are called as component.

Composite component is the opposite. It is also defined as sub-process, sub-

activity and sub-routine in tool chain approaches. In RAS++ these properties are

called composite components.

Component fragment is an artifact derived from fragmentation, usually per-

formed with the assistance of a software product line toolbox.

Approaches for MDE Settings represent execution flow using different ap-

proaches. We selected the following execution-flow properties:

Execution Index, used in component-based approaches, represents the se-

quence of executions for sub-components inside another component.

Transitions and workflows are used in process-based approaches. Workflow

representation is included in our previous works in RAS++ (BASSO et al., 2014b),

but it is out of the scope in this thesis.

Parallelism or commutativity is the representation that two or more compo-

nents can be executed in paralell.

Tool chains are represented as a sequence of inputs and output in parame-

ter matching approaches. This way, IO Typing characterizes properties such as

108



parameters (see metaclasses “BasicDataType” and “ModelType” from the Wires*

metamodel) (RIVERA et al., 2009) or the metaclass “Binding” in the Bentõ

DSL (CUADRADO et al., 2014). Model typing is also called as model subtyp-

ing (GUY et al., 2012)) and allows to apply techniques for consistency check in IO

bindings used in co-evolution of model, metamodels and transformations.

In the following, we classify approaches for parameter matching whose properties

are considered for inclusion in RAS++.

Datatype classifies approaches that represent in IO parameters from compo-

nents primitive types such as String, Date, etc. Wagelaar considered black-box

compositions of model transformations whose parameters are checked considering a

native data-type (i.e., the Java data-type) (WAGELAAR, 2006).

Metatype is the class specified in a meta-model and it is manipulated by model

transformation rules (AZANZA et al., 2010). In other words, model transforma-

tion tasks (also called as operations and rules) can be orchestrated according to IO

parameters that owns information about meta-type. This means that the check of

validity in bindings must consider types that inherit from other types in a meta-

model.

Interface is a variation from Datatype. Rose et al. considered the bind be-

tween IO transformation parameters by comparing two definitions of an UML inter-

face (ROSE et al., 2013)

Artifact Typing characterizes approaches that add typing for general artifacts

(e.g., define an artifact as a library, models, test case, APIs, tutorials, etc) (HONG-

MIN et al., 2009; VIGNAGA et al., 2013; ZHANG and MOLLER-PEDERSEN,

2014).

Depending on the IO Typing, MDE Artifacts can be assigned to parameters

through bindings. Binding is the ability to connect artifacts into a MDE Setting.

For example, assigning values to IO parameters from components such as an input

model. The following properties are found in binging and are included in RAS++:

Meta definitions include metadata conceptions for model, metamodel, and

metametamodels. This is a requirement for any approach for integration in tool

chain through MDE Settings.

Integration Filter and Ports control the heterogeneity in tool support with

toolboxes supporting model-driven tool integration (BIEHL et al., 2014). Integration

filter is the equivalent to a transformation component and ports are equivalent to

transformation parameters. Thus, we removed this ambiguity, keeping in RAS++

the name transformation component and parameter as a common definition.

Serializations are adopted by toolboxes to export models in different formats.

Interface specification is the representation of artifacts in support for web

services.

109



Finally, Toolboxes are abstractions for systems, no matter which system. They

include interface specifications and serialization formats, are composed by compo-

nents and by all the aforementioned structural features and properties. Therefore,

a representation of toolbox considers low and high-level properties.

4.3.2 RAS++ Metamodel

Based on properties found in integration approaches for MDE Artifacts and Settings,

we proposed new metaclasses in RAS++. This section presents what we found as

common between MDE Artifacts and Settings.

MDE Settings

Figure 4.28 presents part of the RAS++ metamodel with the possible types that can

be used in a model transformation parameter (instance of metaclass Transforma-

tionIO shown in Figure 4.29). Instances of Repository and Asset own instances of

the UML metaclass Type. Instances of Type are used as references in instances of the

UML metaclasses Property and Parameter, shown in Figure 4.29. Therefore, the

association between Property and Type allows to represent in RAS++ the same se-

mantics from the dependency stereotyped with «conforms to» in the FOMDA DSL,

associating an instance of Metadefinition, or data types that are usually repre-

sented in parameters of model transformation rules or operations (BASSO et al.,

2014e).

We found in DSL for MDE Settings some similar concepts such as

task/component and sub-process/sub-component in approaches for MTC, CMMT

and MDE-SDP. These elements are also of interest for a common representation lan-

guage, but they need an unification in RAS++. Our proposal is a unified concept

by artifact for model transformation of type “atomic” and “composed”. Transforma-

tions are instances of MDEArtifact. Atomic components are represented in RAS++

as an instance from the metaclass AtomicTransformationArtifact.

Model transformation chains, processes and composed components are repre-

sented with instances of ComposedTransformationArtifact shown in Figure 4.29.

The literature states that, in compositions of model transformations, it is impor-

tant to inform if the nested artifacts are sequential. Sequential elements must be

integrated to MDE Settings following a sequence defined by the property index.

Another important concept introduced by MDE Settings is the commutativity, i.e.,

when sub-artifacts are commutative for the implementation of the parent artifact.

This information is also important for the role “Transformation”, when these arti-

facts are integrated to DSLs for MDE Settings.

Representations for software processes, i.e., in DSLs for MDE-SDP and MDE-PP,

110



Figure 4.28: Metaclasses for typing MDE Parameter.

adopt concepts for artifacts. This concept is similar to those adopted in DSLs for

MTC and HOT (pin and parameter), for CMMT (interface) and for MDI (port). The

concept of artifacts from DSLs for MDE-SDP and MDE-PP is very different from the

concepts of artifacts from assets. This needs a uniformity in RAS++ also in terms of

conceptualization. Artifacts in RAS, AMS and RAS++ must not be confused with

the aforementioned concepts. Thus, we proposed a unique representation for this

concept through the metaclass TransformationParameter, keeping the concept of

Artifact as found in pivotal representation languages.

We also added relationships to metaclasses related with semantics for MDE arti-

facts. For example, by representing instances of ContextRef in MDE artifacts, it is

possible to reference a context described by the asset. References for the semantics

for classification shown in Figure 4.29 are represented in associations with meta-

classes Context and ContextRef. This allows to provide rich descriptive information

directly in instances of MDEArtifact and also through associations between Atom-

icTransformationArtifact with ContextRef. Moreover, an instance of Artifact

allows the representation of instances of ArtifactContext. Finally, semantics for

MDA views are expressed in properties from the metaclass AtomicTransformation-

Artifact, such as the property intention whose possible values are defined in the

111



Figure 4.29: Metaclasses for model transformation components.

Figure 4.30: RAS++ metamodel to specify abstractions for MDE artifacts.

literature as standard taxonomy for model transformation intentions (LÚCIO et al.,

2014).

112



MDE Artifacts and Types

As shown in Figure 4.30, the metaclasses ModelType and MDEArtifact are asso-

ciated with the metaclass ResourceAbstraction. This allows the representation

of details about artifacts and model types as common representations in DSLs for

MDE Settings. Instances of ResourceAbstraction are used to represent: 1) the

metamodel associated with the resource through an association with Metadefini-

tion; 2) the serialization language (e.g., XMI, XML, etc) used to import and export

the resource through an instance of SerializationLanguage; and 3) the Language

associated with the artifact, such as for software artifacts of type source code the

language Java or for components for web services the language SOAP. The first two

associations are specific for MDE Artifacts, while the third association is for software

components in general.

Model typing is a good solution to detect incompatibilities in the second reuse

scope. However, we also experienced issues regarding the serialization of XMI, which

is exported differently by some UML design tools. This way, we introduced in

the metaclass SerializationLanguage the properties version, exporter and ex-

porterVersion. This information is structured and descriptive, used by reusers for

decision making, thus not precessed by programs such as model checkers.

Another element introduced is for detail in which format is the model repre-

sented. It is acknowledged that in MDE the use of XMI is common. However,

new proposals for serialization are adopting also representations in RDF and JSON.

This way, we introduced in the metaclass SerializationLanguage the classification

of the type of serialization, as literals from the enumeration SerializationLan-

guageType. Through the serialization language it is possible to acknowledge this

important requirement for the execution of a model transformation engine. Thus,

if necessary, the software engineer can search and download a model transformation

with the intent of serializing the data (LÚCIO et al., 2014) for a format supported

by the adopted engine.

Besides model typing, which is important for the representation of MDE Settings,

artifacts such as models and transformation components can associate instances of

ResourceAbstraction. Figure 4.30 shows that instances of ResourceAbstrac-

tion associate one instance of Metadefinition, which associates one instance of

MetaMetadefinition. These relationships are important to represent with which

model compiler an artifact is built. For example, some model transformation compo-

nents of type model-to-model are constructed with model transformation languages

such as ATL or ETL. These are model compilers constructed with metamodels that

are built with meta-meta-facilities such as language generators including EMF and

grammars such as Abstract Syntax Tree (AST). In special for model transformation

113



components that need chains IO, the information for resource abstraction allows the

correct use of model types in parameters such as to constrain the use of MetaType

or DataType. This is discussed in Section 4.3.2 with OCL invariants.

Metadefinition and MetaMetadefinition

The options for representation of resource abstractions are shown in Figure 4.31 in a

metamodel-part for MDE Artifacts associated with the concepts of meta-definition

and meta-meta-definition. The common use in MDE Settings is to represent an

instance of Metamodel associated with an instance of MetamodelGenerator, used

to apply validations of consistency in parameter matching (ETIEN et al., 2012) and

recommendations (BASCIANI et al., 2014b). However, recent works are also includ-

ing models in conformity with JSON (IZQUIERDO and CABOT, 2013) and also

ad-hoc DSLs whose models are in the format of XML, such as graphical user inter-

faces and forms represent with tools such as the Graphical Designer from Netbeans

IDE8. Besides, in our motivating scenario, some DSLs are built on top of others,

requiring the representation of artifacts as composition of DSLs.

Our proposal is to organize these concepts common from DSLs for MDE Settings

in MDE artifacts. Figure 4.31 provides details about metaclass Metadefinition.

This is a type of MDE Artifact that provides meta definitions about DSLs. Im-

plementations include: 1) Native, is the default option (does not need explicit

representation) and classifies MDE Artifacts that are built without any support for

meta-modeling, such as model transformation components developed with Java; 2)

AdHocDSL, which represents design languages constructed without the support for

meta-modeling, but differently from the first option, are represented in some way in

a class diagram or Entity-Relationship (ER); 3) Grammar that classifies design lan-

guages constructed based on Abstract Syntax Tree (AST) resulting in textual DSLs;

4) XMLSchema, which classifies some DSLs based on XML such as UsiXML9; 5) Meta-

model that classifies the most common DSLs; 6) UMLProfile, which extends Meta-

model to define conservative extensions; and 7) ComposedMetamodel that references

one or more metamodels developed/generated independently, such as EMF-based

metamodels that extends other ecore files in a heavy-weight approach for extension.

Each instance of Metadefinition references one instance of MetaMetadefini-

tion. The dependencies illustrated in Figure 4.31 indicates which instances must

be associated. Instances of MetaMetadefinition include: 1) Language, which is

any language that can be associated with instances of Native Metadefinition; 2)

DTD, which is used in meta definitions based on XMLSchema; 3) ER is a way that

some ad-hoc DSLs have been created; and 4) Instances of MetaMetamodel, which

8http://www.netbeans.org/
9UsiXML-<http://www.usixml.org/>

114



Figure 4.31: RAS++ meta-definition and meta-meta-definition.

are constructed from principles of meta-meta modeling.

Instances of MetaMetamodel are more restrict in the literature than those for

Metadefinition. In other words, the number of options for tools for meta-meta-

modeling is lower than the number for meta-modeling. This way, they can be rep-

resented with enumerations shown in the bottom-part of Figure 4.31. Instances of

MetaMetamodel include: 1) ProfileGenerator, which includes UML design tools

(some are described in the enumeration ProfileGen); 2) MetamodelGenerator that

includes tools for generation of DSLs described in the enumeration MetamodelGen

such as EMF and MetaEdit; and 3) Abstract syntax tree generators as instances

of ASTGenerator, which can be performed with the tools listed in the enumeration

ASTGen.

115



Figure 4.32: OCL invariants applied in MDE Artifacts.

OCL Invariants

Artifacts in the standard RAS can be composed by other artifacts. This is good

because model transformation chains are artifacts composed by transformation ar-

tifacts. However, atomic artifacts cannot be composed by other transformation

artifacts, allowing inconsistencies in representations. In order to ensure that only

valid compositions are possible for MDE Artifacts and Settings, Figure 4.32 presents

OCL. Thus, through RAS++ and OCL invariants, it is possible to bridge the in-

formation found in MDE Artifacts and Settings with a more appropriate pivotal

language than RAS.

From line 6 to 11, invariants refer to instances of Artifact from model transfor-

mation components shown in Figure 4.29: a) Line 6, ensures that instances of Atom-

icTransformationArtifact are composed only by instances of Transformation-

116



ArtifactFrag; b) Line 8, ensures that instances of TransformationArtifactFrag

are not composed by other artifacts. Instances of Model have the same invariant;

and c) Line 10, ensures that instances of ComposedTransformationArtifact are

composed only by instances of AtomicTransformationArtifact.

From line 12 to 22, invariants are specific to constraint compositions between

instances of Metadefinition and MetaMetadefinition, shown in Figure 4.31, as

follows: a) Line 12, ensures that if an instance of XMLSchema is used as meta-

facility, then DTD is used as meta-meta-facility; b) Line 13, ensures that instances

of Metamodel references a MetaMetamodel instance; c) Line 15, ensures that DSLs

constructed with a grammar references an instance of ASTGenerator; d) Line 17,

ensures that a UML profile makes a reference for the UML tool as a meta-meta-

model; e) Line 19, ensures that instances of AdHocDSL make reference for an instance

of ER; and f) Line 21, ensures that instances of Nativemake reference for an instance

of Language, such as Java, C++ or other that is used for the development of black-

box model transformations.

The invariant in line 23 ensures that types associated with TransformationIO

are represented conforming to the level of the artifact in a MDE Setting. This is

possible due to the following rule: instances of MetaType are used only with in-

stances of AtomicTransformationArtifact. In the same way, instances different

from MetaType are used in IO when the artifacts are instances of ModelTransfor-

mationFrag (e.g., rules and operations from transformations).

Line 29 ensures that a connector between instances of TransformationIO does

not link IO inconsistently: a) Line 30, ensures that a parameter does not connect

to itself; b) Line 31, ensures that connectors are not established between IO from

the same artifact; and c) Line 32, ensures the connection between an input and an

output, which is based on the property direction from the metaclass Parameter

from the short UML metamodel.

Toolbox

As recently suggested as limitations for execution of preliminary phases for tool

chain, ZAKHEIM (2017) claims the need for highlighting all the artifacts needed in

integration processes. So, the last extensions are designed in support for toolbox

representations, as shown in Figure 4.33. A toolbox is an instance of Artifact and

is composed by instances of ChannelAdapterSpecification10. The metaclass In-

terfaceSpecification allows to represent adapter components for remote method

invocation, usually accessed through native implementations such as Java RMI.

The metaclass WDSL is for representation of artifacts of type adapter web service and

10EIP - http://www.enterpriseintegrationpatterns.com/patterns/messaging/ChannelAdapter.html

117

http://www.enterpriseintegrationpatterns.com/patterns /messaging/ChannelAdapter.html


Figure 4.33: RAS++ extensions to support toolbox abstractions.

RESTService is used for representation of artifacts for remote method invocation as

adapter built on the REST API. These artifacts have been proposed in the literature

as components for tools, including some representation in RAS found in Component

and WSDL Profiles.

Our novelty is the metaclass ToolAbstraction, which allows associations of

tool components built on MDE specificity, as well as the insertion of: 1) artifacts

with integration specifications (FRANTZ and CORCHUELO, 2012) represented as

instances of IntegrationSpecification; 2) artifacts as model transformations rep-

resented as instances of AtomicTransformationArtifact; 3) serialization formats

represented as instances of Serialization and, 4) entity relationship models rep-

resented as instances of ER.

This is a mean to promote facilities in preliminary phases for tool chain (ZA-

KHEIM, 2017), thus highlighting what asset consumers should look at in terms of

artifacts when performing tool chain integrations.

4.3.3 Representation of Assets

Figure 4.34 shows a MTC represented in the component-level with the FOMDA

DSL. This is our motivating example, used along this chapter to illustrate the

application of RAS++ concepts. This example is extracted from MockupToME

Method (BASSO et al., 2016d), whose artifacts for transformations assist the devel-

opment of web information systems.

The model transformation component called “Generate Entities” is of type en-

dogenous. It allows the generation of an adapted UML model. The resultant model

118



Figure 4.34: Essential settings conform to the FOMDA DSL.

is input for the second component called “Generate Mockup”, which is exogenous

(endogenous=false). This second component allows the generation of models in

conformity with MockupToME DSL (BASSO et al., 2016d). In RAS++ these com-

ponents are instances of AtomicTransformationArtifact.

As a common representation found in the literature, MDE Artifacts owns param-

eters that are typed. While parameter types are used by software programs to check

consistency (ETIEN et al., 2012) and to recommend compositions through searches

in repositories (BASCIANI et al., 2014b), other information associated with com-

ponents is for semantics purposes such as transformation view, classification and

intents. Figure 4.34 shows two artifacts stereotyped as «Metamodel» that are used

for parameter typing in MDE. For example, the first input parameter called “in1:

UML 2” is associated with a “Type” that links to the metatype “MM1: UML2”.

The composition of these artifacts classifies a MDE Setting. This setting is repre-

sented as an artifact called “From UML to MockupToME MTC”, a MTC composed

by atomic artifacts. In RAS++, this MTC is instance of ComposedTransforma-

tionArtifact. These artifacts are organized in sequence, which imply in RAS++

in setting the property sequential from an instance of AtomicTransformation-

Artifact for true. Moreover, the exemplified composition is not commutative

(i.e., commutative=false), thus internal components are not substitutable inside

the MTC.

As motivated in this chapter, a goal from some researches is to share these

artifacts on the web through the globalization of DSLs. Artifacts in conformity with

the FOMDA DSL are not adequate to be shared in knowledge bases because they are

not in the format of repositories for MDE Artifacts proposed in the literature (e.g.,

119



MDEForge, GMOC or ReMoDD). Moreover, in order to avoid the combinatorial

explosion that would occur in transformations between MDE Settings DSLs, these

MDE Artifacts must be represented with a pivotal language. This is demonstrated

in the following.

Running Example

Figure 4.35 shows an asset that represents the information from the FOMDA DSL

with RAS++. The Asset “MockupToME to Develop CRUD”associates information

about a set of model transformation artifacts. The exemplified assets present some

artifacts such as metamodels, libraries, model transformation chains and other ar-

tifacts such as libraries that are associated with these specifications. We will not

demonstrate the representation of semantics for classification and profile, illustrated

in lines 2 and 3, because these elements are well explored by our previous works.

We focused in representations for MDE Artifacts and Settings, which belong to the

Solution structure shown in line 4.

Data associated with MDE Artifacts and Settings are represented between lines

8 and 17. Differently, a regular artifact (conforms to the default RAS Profile) is

illustrated in Line 5 with the available structure for semantics (classification and

artifact typing) shown in lines 6 and 7. The information between lines 8 and 17 is

the semantics and syntax for two model transformation components inside a MTC.

For example, the component called “Generate Entities” is represented in RAS++

with an instance from the metaclass AtomicTransformationArtifact in line 9. The

component shown in line 12 is the second component in the sequence (index=2) and,

differently from the “Generate Entities”, can be adapted (see the variability point in

line 13). This semantics for adaptation provided in line 13 is instructive, a useful

element for highlighting a need for component integration before use, as exemplified

by our previous contribution (BASSO et al., 2014b).

Atomic artifacts shown in lines 9 and 12 own typed parameters. As in FOMDA

DSL, parameters shown in lines 10, 11 and 14 link to the metamodel “UML 2”,

while the parameter shown in line 15 links the MockupToME DSL metamodel. The

input parameter shown in line 14 has a connector referencing the output parameter

shown in line 11. Finally, semantics for classification are represented in lines 16-17,

connecting information from MDE Artifacts and Settings with information needed

in repositories for classification.

Figure 4.36 illustrates the representation of data associated with instances of

ResourceAbstraction. The first asset illustrated between lines 1 and 11 shows two

models in lines 5 and 9. Each model is constructed with a different metamodel: M1 is

constructed with a UML Profile called ORM Profile and M2 with a composed model

called MockupToME DSL. Moreover, M1 is serialized in a specific format shown in

120



Figure 4.35: Representing MDE Settings

line 8, while M2 is assumed to use the default exporter associated with the corre-

sponding meta-meta-model generator “[EMF]”, whose representation is illustrated

in Figure 4.37.

Resource abstractions are also used in associations with MDE Settings. The sec-

ond asset shown in Figure 4.36 complements the previous example by detailing the

constructors associated with the artifacts instances of AtomicTransformationAr-

tifact. The abstraction associated with the MTC in line 16 links the FOMDA DSL

metamodel with the artifact “From UML to MockupToME MTC”. The abstraction

shown in line 19 indicates that the artifact “Generate CRUD” is built with a native

language “JAVA”.

This information is used for contextualization purposes in a pivotal representa-

tion language. However, it is useful for the first and second scopes for reuse, when

applied in MDE Settings DSLs and tools. For example, the exemplified setting can

be used to check consistency in compositions of MTCs (YIE et al., 2012), as well

as in automatic recommendations of transformations (ROCCO et al., 2015). The

information shown in Figure 4.36, line 8, is only descriptive. However, we acknowl-

edge from practice that even in the same format of XMI, UML tools usually do

not export models in the same format, implying in interoperability issues, which

are only detected too late at runtime. Therefore, even if not used for computation

121



Figure 4.36: Representing abstractions for models

purposes, semantics associated with models and transformations are relevant for

decision making.

Finally, the standard RAS allows to represent other semantics associated with

artifacts (e.g., examples, tutorials, documentation, etc). Although RAS allows to

represent nested artifacts, as those exemplified between lines 14 and 22 for compo-

nents and sub-components, we consider that it is important to correctly structure

these elements conforming to MDE Settings. Likewise, the OCL rules embedded

in our tool support for asset design help software engineers to represent well struc-

tured settings, avoiding wrong constructors for artifacts. Thus, this demonstration

allows to conclude that RAS++ is better structured and representative for a pivotal

language for MDE as a Service than RAS.

122



Figure 4.37: Assets representing DSLs

DSLs and Meta-Metamodels

This section expands the running example for the representation of assets considering

a complete solution for system engineering of information systems. Likewise, the

exemplified MDE Setting is a piece of the lifecycle of MockupToME Method, which

is more complex and allows to represent all the concepts introduced in RAS++ DSL.

This method includes the following resources that should be represented in assets:

10 UML Profiles, 12 DSLs generated with the Eclipse EMF (3 are represented as

instances of Metamodel and 9 as ComposedMetamodel), 343 MDE Artifacts, 152

libraries that support the execution of model-based tasks and 11 documents that are

used by teams such as tutorials. For more information, a technical definition presents

the configured method (BASSO et al., 2016d) and adopted for the development of

a real web information system.

Figure 4.37 shows some assets that represent data associated with DSLs used in

MockupToMEMethod. From line 1 to 6 information associated with the asset“UML

DSL”is presented, which represents data from the following artifacts: “UML Plugin”,

which encapsulates information from jars from UML2/MDT accessed through an

123



Figure 4.38: Representing some design toolboxes with RAS++.

update-site; and the “Metamodel UML2” that encapsulates information from the

“uml2.ecore” file. The asset shown between lines 10 and 15 shows information from

the MockupToME DSL. Line 14 shows a reference from the composed metamodel

for the UML 2 metamodel, as required to configure the scenario of GUI DSLs from

the MockupToME Method. Other assets from lines 16 to 19 classify other DSLs

used in this method, thus complementing our case study for the representation of

assets.

Toolboxes

Figure 4.38 shows some toolboxes represented conforms to RAS++. MATLAB for

example, is composed by many design tools. Since artifacts can be composed, an

a toolbox is an artifact in RAS++, one can insert any artifact in toolboxes. For

example, lines 16-18 shows three meta definitions found in this toolbox. Lines 19

and 20 exemplify two channel adapter represented as serialization formats. These

channels are available in MATLAB to persist models designed with the Simulink

tool: SLX and MDL. Design tools typically provide channel adapters as serializations

for input and output. This type of channel particular of MDE Toolboxes are only

possible for representation in RAS++, therefore a contribution in comparison to

AMS and RAS.

It is also important to mention that information about channel adapters is con-

sidered useful for integration purposes in many research areas such as: 1) Model

transformation chain (YIE et al., 2012) and model tool chain (LIEBEL et al., 2014);

2) service oriented tool integration (BIEHL et al., 2014); 3) Messaging channel

APIs (FRANTZ and CORCHUELO, 2012) and; 4) Application Lifecycle Manage-

ment (ALM) tools (ZAKHEIM, 2017).

Moreover, design tools have been shared in repositories including: MDE-

Forge (ROCCO et al., 2015), ReMoDD (FRANCE et al., 2007) and SHARE (GORP

and MAZANEK, 2011). In this sense, the representation of toolboxes in assets be-

comes essential for a common representation language built on asset concepts.

124



4.3.4 Final Remarks

We have represented a total of 43 assets that classify artifacts associated with the

MockupToME Method (BASSO et al., 2016d). Five assets are for classification of

models generated with the MockupToME Method. These assets are represented sim-

ilarly to those shown in Figure 4.36, line 1 to 11. For DSLs, 22 assets are represented,

each one considering one metamodel with keywords for search and instructions for

use. They are represented similarly to those illustrated in Figure 4.37. Other 16

assets were represented considering artifacts and settings for model transformation

components, as those illustrated in Figure 4.35. Finally, two instances of repositories

are represented, dividing these assets in a local and global knowledge base.

These assets classify artifacts, resulting in a total of: 152 Java libraries with re-

source locators for EMBEDDED AS FILE and LINKED WITH MAVEN, 343 in-

stances of AtomicTransformationComponent and MTRule, 11 documents/tutorials,

22 metamodels (.ecore files) plus 22 plugins (a pack of .jar files as LINKED WITH -

UPDATESITE). The core information from these artifacts was automatically gen-

erated with the help of our tool prototype, which will be presented elsewhere. Thus,

our effort was to correct the generated specifications, divide artifacts in appropriate

assets and provide descriptive semantics that are not possible to be generated.

Our conclusion is that RAS++ is representative to operate as a pivotal language

for MDE Artifacts and Settings for internal issues. Complemented by our tool sup-

port, which helps software engineers on the representation of assets, we also conclude

about the feasibility in terms of representativeness for implementation of coopeti-

tion in MDE as a Service. Therefore, based on the generality of RAS++ and the

specificity introduced in support for MDE Artifacts and Settings, we demonstrated

that the introduced concepts have applicability and contribution for the motivated

scenario.

The next chapter provide evaluations considering issues in coopetition scenarios.

125



Chapter 5

Assessments

Truth is what stands the test of

experience.

Albert Einstein

Previous chapter considered the representation of reusable assets from our re-

search group. In order to evaluate whether RAS++ fits to the motivated scenario,

which is bound by artifacts shared in global repositories such as SEMAT (JACOB-

SON et al., 2012), GEMOC (COMBEMALE et al., 2014) and ReMoDD (FRANCE

et al., 2007), this chapter presents four complementary assessments: Section 5.1 de-

picts the first assessment, considering 81 asset representations by mining data from

a real global repository for MDE; Sections 5.2, 5.3 and 5.4 details three analytical

studies for the motivated scenario.

5.1 Mining ReMoDD Repository

This section considers a case study on mining reusable assets from the Re-

MoDD (FRANCE et al., 2007) repository <www.cs.colostate.edu/remodd/v1/>,

registered between 2011 and 2016, and answers the following research question: Q6:

Is RAS++ representative to play the role of a common language for the

assets available in the ReMoDD repository?

We selected ReMoDD repository and not GEMOC (COMBEMALE et al., 2014)

because the last one stores artifacts in ReMoDD. SEMAT (JACOBSON et al.,

2012) is not considered for evaluation because it contains only artifacts for process

engineering, which is out of the scope of the current version of RAS++. MDE-

Forge (ROCCO et al., 2015) is not considered because the web platform was in-

operative until the end of 2016. SHARE (GORP and MAZANEK, 2011) is not

considered because it was found recently in our mappings. Besides, ReMoDD is a

repository of MDE assets that has been widely disseminated by experts associated

126



with some important conferences, such as MODELS, SPLC, ASE, GPCE, among

others. Currently, it shares a total of 81 assets described in Table 5.1 and Table 5.2.

This repository has emerged as reference for sharing information about design

tools, including download links and reference web-pages, as well as physical files for

models derived from case study, metamodels, transformations and others. Due to

its goal of promoting a global reuse scenario, ReMoDD contains a diversity of MDE

artifacts that can be integrated into a software project developed with the support

of MDE resources (i.e., in an arbitrary tool chain). In other words, its artifacts can

be used to evaluate the representations suggested in the phases Specification, Acqui-

sition and Transformation of RAS++. ReMoDD is, therefore, the best candidate

for evaluation of the RAS++ representativeness considering hybrid representations.

Four types of assessment studies are described by Empirical Software Engineer-

ing: Case Study, Survey, Experiment and Action Research. Our evaluations consid-

ered only two types: Case Study and Action Research, the last one adopted for just

two of our studies. RUNESON and HÖST (2008) states that case studies scope well

organized studies in the field to small toy examples (proof-of-concepts), so different

taxonomies should be adopted for characterization. The term case study is also used

to describe a field study and observational study.

To RUNESON and HÖST (2008), such studies can be characterized by using

one or more types of research methodologies:

“Exploratory-finding out what is happening, seeking new insights

and generating ideas and hypotheses for new research; Descriptive-

portraying a situation or phenomenon; Explanatory-seeking an expla-

nation of a situation or a problem, mostly but not necessary in the form

of a causal relationship; Improving-trying to improve a certain aspect

of the studied phenomenon.” (RUNESON and HÖST, 2008)

We divided this case study in five different evaluations, focusing in a specific

preliminary phase for tool chain and using different research protocols:

1. Section 5.1.1 presents an evaluation of assets for the Specification phase trough

an Exploratory study, which is used in the next evaluations.

2. Section 5.1.2 presents a Descriptive study of explicit data in ReMoDD for

the Transformation phase, without our intervention in representations.

3. Section 5.1.3 highlights our findings concerning implicit data associated with

technicalities for the Transformation phase in a Descriptive study, per-

formed without our interventions.

127



Table 5.1: Assets shared in ReMoDD between 2011 and 2016 (Part I)
As-

set
Asset Name

Year

A01 Automated Provisioning of Customized Cloud Service Stacks 2015

A02 OpenCompare case study 2015

A03 UML Models Generated and Derived for Evaluating aToucan 2014

A04 Renarrating Metalanguage Integration 2014

A05 Toward a Megamodeling Approaches Overview 2014

A06
Integrating modeling and programming languages - The case of Java and fUML (case
study models)

2014

A07 uml-profile-store 2014

A08 OpenStack Model 2014

A09 Class diagram of OpenNebula 2014

A10 How Could Ancient Romans Know About UML Statecharts? 2014

A11
Modeling the Architecture and Design of the Crisis Management System Product Line
Using SimPL

2013

A12
Modeling Specification for bCMS Product Line using Feature Model, Component Family
Model and UML

2013

A13 Modeling Crisis Management System with the Restricted Use Case Modeling Approach 2013

A14 Modeling Car Crash Management with KAOS 2013

A15 RELAX/SysML/KAOS 2013

A16 CMA@RE SysMLKaosVersionRemodd.pdf 2013

A17 Coloured Petri Net Model of the bCMS system using CPN Tools 2013

A18 Behavior as-is and to-be and Goal-Belief models 2013

A19 bCMS Case Study: FAMILIAR 2013

A20 Requirements Modeling in SEAM: The Example of a Car Crash Management System 2013

A21
Using AMoDE-RT and DERAF to specify a Crisis Management System – Complete
Model Description

2013

A22 Complete Goal-Belief 2013

A23 Witness Goal-Belief 2013

A24 Behavior to-be 2013

A25 Behavior as-is 2013

A26 URML Model of bCMS (HTML Export) 2013

A27 MontiArcAutomaton BumperBot Models 2013

A28 Webmail MTS model 2013

A29 Webmail Example Specification 2013

A30 Multi-models to aid Decision Making in Enterprises 2013

A31 SensApp DSML composition case study: From Sensors to Visualization Dashboards 2013

A32 Railroad Crossing Management System 2013

A33 Applying BPMN on bCMS 2013

A34 UML-UseCaseDiagram-AssessmentForm(post-workshop) 2012

A35 A Catalog of UML Model Transformations 2012

A36 Updated Activity Theory bCMS Model Description for CMA-2012 2012

A37 Umple submission for Comparing Modeling Artifacts workship at Models 2012 2012

A38 Concern-Driven Development with AoURN and RAM 2012

A39 Models for bCMS using AspectSM 2012

A40 Intentional Requirements Engineering 2012

A41 The VCL Model of the Barbados Crisis Management System 2012

A42 bCMS in LEAP 2012

A43 Modeling with Adapt Cases 2012

A44 CMA12 - CMS Domain- i* - Group 6 2012

A45
Aspect-Oriented Modeling for Performance Evaluation with UML+MARTE, LQN, and
CSM

2012

A46 UML-RT to kiltera model transformation and examples 2012

A47 SAM Metamodel in Ecore format + OCL well-formedness rules 2012

A48
HRC (Heterogeneous Rich Components) Metamodel in Ecore format + OCL
Well-formedness rules

2012

A49 RBAC metamodel in Ecore format + OCL Well-formedness rules 2012

128



Table 5.2: Assets shared in ReMoDD between 2011 and 2016 (Part II)
As-

set
Name

Year

A50 ER 2 RE Metamodel in Ecore format + OCL well-formedness rules 2012

A51 Declarative Workflow Metamodel in Ecore format + OCL Well-formedness rules 2012

A52 CPFSTool Metamodel in Ecore format + OCL well-formedness rules 2012

A53 SAD3 Metamodel + OCL Well-formedness rules 2012

A54 B Language Metamodel in Ecore format + OCL well-formedness rules 2012

A55 OMG Common Warehouse Metamodel in Ecore format + OCL well-formedness rules 2012

A56 OMG Diagram Definition metamodels + OCL well-formedness rules 2012

A57
CORBA Component Model Specification Metamodels in Ecore format + OCL
well-formedness rules

2012

A58 OCL specification metamodels in Ecore format + well-formedness rules specified in OCL 2012

A59 MOF 2.0 Metamodels in Ecore format + OCL well-formedness rules 2012

A60 UML 2.2 Packages in Ecore format + OCL well-formedness rules 2012

A61 Comparison Criteria for bCMS Models of CMA Workshop 2012

A62 bCMS - Requirements Definition 2012

A63 Activity Theory Comparison Criteria - Dec 2011 version of criteria 2011

A64 Reusable Aspect Models for the bCMS Case Study 2011

A65 Activity Theory Models for the bCMS Case Study - CMA@MODELS2011 2011

A66 bCMS case study models for OO-SPL approach 2011

A67 bCMS-SPL case study: A proposition based on the Cloud Component Approach. 2011

A68 Model Driven Service Engineering applied to bCMS 2011

A69 bCMS Case Study: AoURN 2011

A70 DT4BP to TimedCaaFWrk model transformation 2011

A71 UML Class Diagram Patterns 2011

A72 AoURN and RAM models of the Crisis Management System 2011

A73 DT4BP - Meta-Model 2011

A74 DT4BP - Syntactic Definition 2011

A75 TimedCaaFWrk - Coordinated Atomic Actions Meta-Model 2011

A76 Elevator Control System 2011

A77 Video Conferencing System 2011

A78 Models of the ODP specification of the PhoneMob system 2011

A79 MOBIES Powertrain Models 2011

A80 NewCarCrashSPL 2011

A81 CMS:Lassy:REACT SPL Feature Model and Feature Mapping 2011

4. Section 5.1.4 evaluates representations for transformation components by min-

ing hidden data from research papers associated with assets.

5. Finally, Section 5.1.5 groups previous studies to reach out new analysis and

conclusions with an Explanatory study.

5.1.1 Evaluation 1 - Representation of Explicit Contextual

Data

According to Whittle et al., “Finding the right problem is crucial” for applying MDE

in the industry (WHITTLE et al., 2015). The authors claim that there is little infor-

mation regarding best practices and tools recommended for each end-user context.

A first look in ReMoDD repository shows that descriptive information is packed

in hybrid assets, stored in a database populated by researchers and practitioners

of MDE (FRANCE et al., 2007). An hybrid asset represents data associated with

129



MDE Artifacts of different natures (e.g., built on different languages and tools and

with different intents) and are shared by different sources (individual, organization,

research groups). For example, an asset can be composed of models, process tasks,

APIs and libraries, binaries and tools, model transformations, etc (FRANCE et al.,

2006). Therefore, this class of assets are supposed to be represented in ReMoDD.

In this thesis, we expanded the application of reusable assets concepts, usually ap-

plied to software artifacts (e.g., models, components, source code, etc.) (WERNER

et al., 2009), to hybrid assets that can be represented with RAS++ in at least three

preliminary phases for tool chain. The Specification phase introduced the RAS++

metamodel with extensions for the RAS metamodel, unifying representational con-

cepts also from AMS. In this phase, MDE specialists specify many reusable assets

for classification with data for federation, thus focusing in details for classification,

search and retrieval.

Goal

Our main goal in this study is to evaluate the quality of the information from

ReMoDD in terms of hybrid assets focusing in the Specification phase. We wanted

to evaluate whether RAS++ is representative for ReMoDD assets. In affirmative

case, this would suggest the relevance of metaclasses available for the execution of

Specification phase, thus providing index for validity.

Table 5.3: Representation of explicit contextual information
Analyze The amount of descriptive data introduced in Assets for MDE

Artifacts

With the purpose of Characterizing

Regarding Hybrid classifications for MDE

From the viewpoint of Researcher and domain expert

In the context of A global reuse repository for MDE Assets, i.e., ReMoDD.

The specific goal is shown in Table 5.3. The first asset representation problem

we address concerns the classifications adopted by ReMoDD. We want to answer

the following questions:

• Q1 - What are the classification groups associated with assets in ReMoDD?

Our objective is to map the classifications adopted by the repository.

• Q2 - Is RAS++ able to represent classifications from ReMoDD? Our objective

is to evaluate the representativeness of RAS++ for MDE assets.

• Q3 - Which assets from ReMoDD are associated with an industrial context and

with an academic context? The objective is to categorize industrial and aca-

demic endeavors. Since ReMoDD is not a platform for asset negotiation and,

130



because companies adopting MDE usually consider their resources extremely

sensitive and confidential (a business differential), we suspect that industry is

not actively participating in this initiative.

• Q4 - What constitutes MDE Artifacts referenced in assets from ReMoDD?

MDE Resources and software development contexts/scenarios used in Re-

MoDD may not be representative of those occurring in other realistic MDE

settings. Different software development processes, domains and organizations

may lead to different needs from MDE Resources. Thus, our objective is to

reach what is available for asset customers.

• Q5 - Concerning intents for use in a software development project, what con-

stitutes data from assets in ReMoDD? The goal is to map some assets for

future process engineering purposes. Due to the focus of this thesis, we inten-

tionally removed from RAS++ elements added in support for representations

found in a mapping of contributions for process engineering. However, it is our

long term goal to reintroduce these representations, thus needing a mapping.

• Q6 - Concerning technicalities from MDE Artifacts, what constitutes data from

assets in ReMoDD? Our objective is to understand whether some technical

information is provided for selection of artifacts as well as on the quality of

this data.

Research Method

In order to classify assets, we adopted metrics for descriptive statistics analysis us-

ing qualitative and quantitative data. Our population, or focus group, is composed

by 81 assets, thus representing the amount of elements shared by ReMoDD. More-

over, RUNESON and HÖST (2008) conducted a descriptive survey from Mining

Software Repositories (MSR) (D’AMBROS et al., 2008), used as basis for the ex-

ecution of this study. So, we adapted his empirical procedure on mining of the

ReMoDD repository, following the evaluation plan composed by:

1. The first step to mine data from repositories is to define a Data modeling,

which in the MSR protocol is defined as a common representation for software

artifacts. In our case, this data modeling is an asset representation. For the

data modeling we used the recent version of the generated DSL through the

RAS++ metamodel.

2. The second step is called Data retrieval and processing. We used our generated

Eclipse Plugin for representation of all the 81 Assets extracted from ReMoDD

database. We focused exclusively on the manual representation of descriptive

131



data discussed in the Specification phase. We, therefore, applied the criteria for

classification (as recommended by RAS and AMS), resulting in representations

as the one shown in Figure 5.2.

3. The last step is Data analysis, which is characterized by the analysis of modeled

data. Thus, we have extracted quantitative and qualitative attributes based

on explicit data associated with assets to identify how hybrid they are.

Analysis

We present our analysis according to the research questions of the evaluation as

follows.

Q1 - What are the classification groups associated with assets in Re-

MoDD?

Figure 5.1 presents six possible classifications of representations in ReMoDD.

Classifications are divided in groups and detailed in items, as presented in Table 5.4.

Table 5.4: Qualitative analysis of descriptor groups found in ReMoDD
Descriptor Group Description Usage Value

Artifact Development
Contexts

The asset provider points out the usage/production
contexts

Mandatory Prefixed

Artifact Types
The asset provider itemizes the types/nature of
artifacts, describing the asset as encapsulating model,
metamodel, and other artifact types

Mandatory Prefixed

Required Tool
The asset provider informs in items which tools are
needed for use/adoption of shared artifacts

Optional Free Form

Programming
/Modelling
Languages

The asset provider represents which programming
languages or modelling languages are used for purposes
of production/processing of the shared artifacts

Optional Free Form

Modelling Languages
/Notations

The asset provider describes modeling
languages/DSLs/notations used to produce the
artifacts, i.e., considering that these artifacts are models

Optional Free Form

Lifecycle Phases
The asset provider represents in which phases of a
lifecycle the artifacts are relevant

Optional Free Form

Software /System
Domains

The asset provider itemizes software or system domains
from the shared artifacts

Optional Free Form

Keywords A general group used for keyword search purposes Optional Free Form

More than one descriptive item can be used in any of eight classification groups.

Except for groups Artifact Development Contexts and Artifact Types, the other

ones are optional. This means that asset providers can share MDE Artifacts with-

out any extra description. We grouped Artifact Types in with the following prefixed

possibilities: Metamodel/Profile, Model, Model Transformation, Tool, Methodol-

ogy/Technique/Process, Case study, Lecture/Tutorial/Training, Requirements Doc-

ument, Pattern Catalog and Assessment. Artifact Development Contexts are pre-

fixed in: Industry, Academia, Research Project, Workshop/Focus Group and Chal-

lenge Problem/Competition.

132



Figure 5.1: ReMoDD - Quantitative analysis of classification groups.

From these 81 assets, we found that: 1) Only 27 assets represent information

on tools that are required to use/adopt the shared artifacts; 2) Information about

programming/modelling languages is found only in 42 assets and about modelling

languages/notations in 51. An issue found here is ambiguity. Since it is not possible

to understand the difference between these two groups, we found that much of the

descriptive information is repeated in both classifications from these assets; 3) A

total of 48 assets map information about in which lifecycle phases they are relevant

and; 4) More than half, i.e., 45 assets, point out exactly for which software/system

domains they are relevant.

Q2 - Is RAS++ able to represent classifications from ReMoDD?

Through these groups we represented 81 assets using five RAS++ metaclasses,

see Table 5.5. Figure 5.2 shows the classification for the first asset {A01}: “Auto-

mated Provisioning of Customized Cloud Service Stacks”. In order to characterize

a group of classifications, and in conformity with the RAS++ metamodel, we rep-

resented instances of DescriptorGroup and instances of FreeFormValue to itemize

the descriptive data in each group. It is important to mention that such metaclasses

were extracted from RAS, not requiring extensions.

Each asset is inserted into an instance of Repository or ServiceProvider.

133



Figure 5.2: Screenshot of ReMoDD assets designed conforms to RAS++

Assets and artifacts contains independent URLs for resource locators represented as

instance of Resource, a metaclass extracted from AMS. In AMS, artifacts and assets

are instances of Resource. A simple asset selected to exemplify the representation of

resource locators is shown in the bottom-part of Figure 5.2. A resource locator is an

instance of DownloadInfo, describing the protocol for downloading if any, and Path,

representing a link. The asset {A47} is more complex since it is composed by the

following resource locator data (sum of instances of DownloadInfo and Path): one

pair for the asset itself (instance of ReusableAsset); 28 pairs for representation of

28 inner artifacts (instances of Artifact).

It is possible to have more instances of Path than DownloadInfo, but not the

opposite. For example, assets A13, A30 and A40, present more instances of Path

than of DownloadInfo. In this case, besides locators for artifacts and asset, they

provided simple links (instances of Path) for tool support.

The representation of assets allowed us to answer affirmatively to the question

Q2. In other words, in the phase Specification, RAS++ matches the needs from

134



Table 5.5: Counting of representations for each asset by RAS++ Metaclass
LEGEND [Asset = Asset, DescriptorGroup = DG, FreeFormValue = FFV, Artifact=ART, DownloadInfo = DI, Path = Path]

Asset DG FFV ART DI Path Asset DG FFV ART DI Path

A01 6 18 1 2 2 A02 6 9 1 2 2

A03 8 13 1 2 2 A04 8 14 1 2 2

A05 8 18 1 2 2 A06 8 19 2 3 3

A07 8 15 1 2 2 A08 7 7 1 2 2

A09 6 7 1 2 2 A10 4 9 1 2 2

A11 8 15 1 2 2 A12 8 21 1 2 2

A13 7 13 1 2 3 A14 6 8 1 2 2

A15 8 15 2 3 4 A16 5 6 1 2 2

A17 8 14 2 3 3 A18 7 17 1 2 2

A19 8 13 2 3 3 A20 7 16 1 2 2

A21 7 16 2 3 3 A22 7 8 1 2 2

A23 6 8 1 2 2 A24 7 9 1 2 2

A25 6 9 1 2 2 A26 8 13 3 4 4

A27 7 11 3 4 4 A28 5 5 1 2 2

A29 5 6 1 2 2 A30 7 11 1 2 5

A31 3 3 1 2 2 A32 5 7 2 3 3

A33 4 8 1 2 2 A34 3 3 1 2 2

A35 6 6 1 2 2 A36 5 8 1 2 2

A37 5 7 7 8 8 A38 7 14 1 2 2

A39 5 5 1 2 2 A40 8 9 2 3 5

A41 8 11 1 2 2 A42 7 9 1 2 2

A43 4 7 1 2 2 A44 7 9 1 2 2

A45 6 17 1 2 2 A46 8 27 2 3 3

A47 2 2 28 29 29 A48 2 2 5 6 6

A49 2 2 5 6 6 A50 2 2 3 4 4

A51 2 2 4 5 5 A52 2 2 3 4 4

A53 2 2 3 4 4 A54 2 2 2 3 3

A55 2 2 22 23 23 A56 2 2 6 7 7

A57 2 2 4 5 5 A58 2 2 4 5 5

A59 2 2 6 7 7 A60 5 6 1 2 2

A61 3 9 1 2 2 A62 5 11 1 2 2

A63 5 8 1 2 2 A64 6 7 2 3 3

A65 5 11 2 3 3 A66 8 11 2 3 3

A67 7 14 1 2 2 A68 6 13 1 2 2

A69 7 13 1 2 2 A70 6 8 1 2 2

A71 5 15 1 2 2 A72 3 4 19 20 20

A73 3 4 1 2 2 A74 2 2 1 2 2

A75 3 3 1 2 2 A76 2 2 4 5 5

A77 2 2 8 9 9 A78 3 4 1 2 2

A79 4 6 39 40 40 A80 4 4 2 3 3

A81 2 3 1 2 2 - - - - - -

ReMoDD repository.

Q3 - Which assets from ReMoDD are associated with an industrial

context and with an academic context?

Figure 5.3 shows our analysis of 111 descriptive data focused on the group “Ar-

tifact Development Context” from 81 assets. Some assets associate more than one

artifact development context. We can highlight that from 81 assets, only 4 of them

(5%) are from an industrial endeavors {A01, A13, A74 and A79} and 77 assets

135



Figure 5.3: ReMoDD - Quantitative analysis of artifact development context.

Figure 5.4: ReMoDD - Quantitative analysis of artifact types.

are from academic endeavors (95%). Therefore, all the effort to promote global reuse

through ReMoDD has no meaningful inclusion from the industry.

It is important to mention that the inclusion of industry was a primary goal

of the ReMoDD proposal: “We aim to collect and make available MDD artifacts

from industry, academia, and other public domain sources (e.g., artifacts produced

by open-source projects)” (FRANCE et al., 2006). This suggests that, although the

research has been motivating the inclusion from industry, available data in ReMoDD

presents a hard truth that challenges future business implementation in MDE as a

Service: industrial participation is not a reality in state of the practice. Therefore, in

order to align new initiatives for MDE that also target industrial participation such

as GEMOC (COMBEMALE et al., 2014), MDEForge (ROCCO et al., 2015) and

SEMAT (JACOBSON et al., 2012), an effort to understand the lack of cooperation

from industry is important.

Q4 - What constitute MDE Artifacts referenced in assets from Re-

MoDD?

In order to answer Q4, we considered information about the nature of artifacts

(their types, constructors and associated tools) shared in this repository. Figure 5.4

136



Figure 5.5: ReMoDD - Quantitative analysis of system/software domains.

shows a graph quantifying 107 descriptive items for the group “Artifacts Types”.

Through this classification, we found that many MDE Artifacts reflect what has

been used in realistic MDE Settings found in the literature. Asset consumers may

include these artifacts (i.e., Model, Metamodel/Profile, Model Transformation and

Tool) in an integration approach. For example, a model transformation chain or

an automated software development process may include artifacts referenced by

most assets (69%): 74 occurrences. Besides, 32 occurrences (31%) are descriptive

data suggesting didactic material for execution of some tool chain approach (i.e.,

Methodology/Technique/Process, Case study, Lecture/Tutorial/Training, Require-

ments Document and Pattern Catalog). We conclude that artifacts configure real-

istic data, built from different sources and natures, thus providing opportunities for

reuse and integration in tool chains.

Q5 - Concerning intents for use in a software development project,

what constitutes data from assets in ReMoDD?

In order to answer this research question, we provided detailed analysis for two

descriptor groups that characterize hybrid assets: System/Software Domains and

Lifecycle Phases. Aligning data from the software domain and the lifecyle phase, it

is possible to infer whether some artifacts are relevant for inclusion in a MDE-based

software project. Therefore, concerning Q5, the following data suggest the use of

hybrid assets in ReMoDD:

• 48 assets divided in eight different lifecycles for software development, as shown

in Figure 5.6;

137



Figure 5.6: ReMoDD - Quantitative analysis of lifecycle phases.

• 45 assets divided in 13 system/software domains, as shown in Figure 5.5. Two

classifications are used in more than one software engineering discipline (Soft-

ware Product Lines and Crisis Management System) and the others usually

relate to the discipline Analysis and Design.

Figure 5.6 shows 87 occurrences for software development lifecycle phase found in

48 assets. These occurrences highlight which lifecyle phase the content of an asset is

relevant and they seem to be extracted from a software development process model,

such as OpenUP <http://epf.eclipse.org/wikis/openup/>. In this sense, assets as-

sociated with the group Software Development Process/Phases provide support for

process engineering, while the other groups suggest the relevance of assets for a

specific phase. This information suggests that assets have diverse applications in

many phases from a software development context, thus attempting to help the ex-

ecution of more than one software engineering discipline. This finding is important

in the motivated MDE as a Service scenario because some assets can cooperate, i.e.,

can be used together to assist a MDE-based software process, while others can be

competitors in a specific phase.

We found that asset providers have little criteria when classifying MDE Artifacts.

For example, classifications of Software/Application Domain and Lifecycle Phase are

very useful for decision making in a selection process. Their usage on assets could

be interesting for a tool chain specialist to decide whether some asset is relevant or

not for a specific need in a software project. However, we found ambiguities in the

provided data.

Q6 - Concerning technicalities from MDE Artifacts, what constitutes

138



data from assets in ReMoDD?

In this section we focused in an analysis of data that could be used by a technical

stakeholder searching for information related with model, metamodel, transforma-

tion, design/refinement/transformation tool. This question is relevant to understand

whether some classification is provided for supporting the selection of artifacts of

different natures.

Figure 5.5 shows 59 occurrences from 45 assets concerning the group “Sys-

tem/Software Domains”. We found that this group is represented with ambiguous

data. For this reason, we filtered and divided them between 13 well-defined classifi-

cations. This information is relevant for a preliminary phase of tool chain in MDE.

For example, concerning a software development context from Adapit, as discussed

in Section 3.1, it possible to mention that 12 assets from 81 are relevant (right-

on-the-target) for consideration in an eventual integration: those associated with

the value “Enterprise/Business/Information Systems”, including {A07, A18, A20,

A22, A23, A24, A25, A26, A40, A42, A78 and A80}. However, the data

is still very abstract to understand whether shared artifacts are really relevant for

a specific need in a software development context, thus needing in-depth analysis

after a list is returned by the search engine.

Conclusions

We found ReMoDD’s classification groups well tailored for MDE Artifacts, but

two are ambiguous: Programming/Modelling Languages and Modelling Lan-

guages/Notations. However, it is possible to understand the purpose and application

of shared artifacts. This is one of the goals of this repository and, from our point-

of-view, it is accomplished. Most information that should be explicit in repository

structures is available as physical files in documents, papers and tutorials, which re-

quires long time for asset consumers to find and analyze adequate options for MDE

Artifacts.Therefore, some recent classifications are proposed for describing types of

model transformations (CRIADO et al., 2015; CZARNECKI and HELSEN, 2003;

DA SILVA, 2015; LÚCIO et al., 2014; WHITTLE et al., 2015) and could complement

the demonstrated group descriptors as well.

So far, ReMoDD failed to attract data from industry. We found that there is

an expressive number of assets shared by academic endeavors (77), but an inexpres-

sive number shared by industrial endeavors (4). FRANCE et al. (2007) originally

proposed ReMoDD with the goal to connect these two endeavors, where opportu-

nities for reuse could be played by collaborators and competitors in model-driven

development (FRANCE et al., 2006). As suggest the data shared between 2011 and

2015, this goal is not reached along four years effort. This is quite surprising since

one third of ReMoDD collaborators are from industry: Microsoft Research, USA;

139



Siemens Corporate Research, Worldwide; Deere & Company, USA; Tecknowledge,

USA; Eaton Innovation Center, Worldwide; IBM, Canada; Motorola, Worldwide.

Thus, an open question is why has ReMoDD failed to attract industry interest?

Recent research has been motivating the implementation of coopetition, also

through repositories, as a possible solution to attract industrial interest. For exam-

ple, some in software ecosystems (SECOs) perspectives (BADAMPUDI et al., 2016;

DOS SANTOS et al., 2013) and others in collaboration for MDE (ROCCO et al.,

2015, 2016) have been claiming that reuse repositories such as ReMoDD are not an

adequate platform for collaboration, cooperation and competition. These contribu-

tions have been considered by us to elaborate representations from the “Acquisition”

phase. Thus, they may help to answer this open question in the next evaluations.

Representations for assets adopted by ReMoDD are less representative than those

found in RAS (HONG-MIN et al., 2009) and component reuse repositories (DOS

SANTOS and WERNER, 2010): 1) Artifacts are mere links for downloading physi-

cal files, while in RAS they can be annotated with semantics for context and other

descriptive data independently from the asset data; 2) While in RAS the meta-

class RelatedAsset allows the representation of important data that characterizes

whether some asset is complementary of competitive for an arbitrary tool chain,

ReMoDD provides no way to represent relationships between assets; 3) There is

no activity that supports the reuse of artifacts in ReMoDD, while in RAS these

activities are well structured for usage and adaptation before the introduction in a

target context (e.g., a tool chain). Such representations are highlighted as benefit

for component reuse in some studies (DOS SANTOS and WERNER, 2010; ELIAS

et al., 2006; OMG, 2005). However, they could not be evaluated in this study. This

means that RAS++, through the metaclasses ArtifactActivity, Activity, Vari-

abilityPoint,VariabilityPointBinding, and others, is more representative than

ReMoDD, thus matching the representational needs.

Although the original proposal for ReMoDD is to represent assets for model-

driven development, we found that assets are not restricted for systems engineering.

This way, ReMoDD can be classified as a Knowledge Base for MDE in a more general

term (SELIC, 2014): as resources for Model-Based Development (MBD).

The knowledge built in this repository lacks modernization for recent ad-

vances found in literature. For example, recent contributions built on

AMS/OSLC (ELAASAR and NEAL, 2013; ROCCO et al., 2015) allow establishing

asset relationships through clouds and local repositories, which is called federa-

tion (BADAMPUDI et al., 2016). Due to this limitation, ReMoDD artifacts are

stored locally, without the support for resource locators across repositories. This

limitation from ReMoDD hampered our evaluation on the diversity of represen-

tations for artifact federation, which means that RAS++, through the metaclass

140



DownloadInfo, is more representative than ReMoDD.

We considered the group of classifications proposed in ReMoDD very useful for

searching assets mapped for some MDE Artifact specificity, such as values adopted

in group Artifact Development Context. However, we found that there is important

hidden knowledge inside artifacts shared in ReMoDD, or available in some associated

publication, that should be represented in assets. This way, we have identified three

open questions related to ReMoDD that should be investigated by this thesis:

• Are these classifications adequate for execution of the Acquisition phase? We

believe that classifications are too superficial in comparison with data recom-

mended for decision making (BADAMPUDI et al., 2016).

• Are these classifications and artifacts adequate for the representation of tech-

nicalities found in the Transformation phase? Classifications are general and

have no purpose as pivotal representation, thus opening a window for detailing

technicalities associated with MDE Artifacts and Settings in RAS++.

• In terms of integration/tool chain, are the shared artifacts adequate for execu-

tion of Transformation phase? We have found possible tool chain approaches

to be used in integration, thus candidate for data transformations.

This study allowed us to conclude about the representativeness of RAS++ from

explicit data available in the state of the practice for MDE: ReMoDD repository.

Abstractions included in RAS++ for the Specification phase are suitable for the data

provided by this repository, matching all the representational needs. In this study

we found a considerable diversity in languages used to build models, metamodels

and transformations, developed in support for some software development contexts.

ReMoDD is, therefore, rich in hybrid reusable assets.

5.1.2 Evaluation 2 - Representation of Explicit Technical

Data

In this study we aim to mine the technical information associated with the 81 assets

of the RemoDD repository. In the following, we describe the protocol of this study.

Goal

Our main goal in this study is to evaluate the quality of information in terms of

technical aspects for the execution of the Transformation phase. Assets should be

found in repositories such as ReMoDD without the concern of integration itself. In

any case, we suspect that the asset providers represent components used in a tool

141



chain approach with a kind of technical information allowed by ReMoDD. In the

affirmative case of availability of these data, this would suggest the relevance of the

artifacts available for integration, providing index of validity and selection of focus

groups in this repository.

Table 5.6: Representation of explicit technical information
Analyze The amount of descriptive data introduced in Assets for MDE

Artifacts

With the purpose of Characterizing

Regarding Technicalities for MDE

From the viewpoint of Researcher and domain expert

In the context of A global reuse repository for MDE Assets, i.e., ReMoDD.

• Q1 - Which technicalities are found in assets?

• Q2 - Which assets are candidate for a tool chain approach?

Research Method

Our population, or focus group, is composed by 81 assets, thus representing the

amount of elements shared by ReMoDD. Thus, we applied the same protocol as in

the previous study, but now focusing on the extraction of technical data.

Analysis

This sections reports our analysis of Q1 - Which technicalities are found in

assets?

Figure 5.7 shows 66 occurrences within 41 assets representing semantics for the

“Programming/Modeling Languages” group. These occurrences are divided into 38

languages. UML is the most used for the representation of artifacts (13 for UML plus

4 for UML2). However, this data changes when considering the other ambiguous

group “Modeling Languages/Notations”.

With regard to 41 assets of the group “Programming/Modeling Languages”, Fig-

ure 5.8 shows four references to the classification of “Toolboxes/Frameworks ” and

15 occurrences for classification “Model Transformation Languages”. These are de-

scriptive data that give semantics to the MDE resource types, which we also con-

sider as good candidates for integration into an MDE-based software development

project/process.

Figure 5.9 presents data on diversity in notations and modeling languages, show-

ing options that can configure a hybrid scenario in MDE. We found 48 assets divided

into: 27 assets semantically connected with only one “programming/modeling lan-

guage”, not covering the definition of a tool chain (BATORY et al., 2013b); 21

142



Figure 5.7: ReMoDD - Quantitative analysis of DSLs.

143



Figure 5.8: ReMoDD - Quantitative analysis of technicalities for tool chain.

Figure 5.9: ReMoDD - Quantitative analysis of candidate assets for tool chain.

resources suggesting the use of two or more Tools/DSLs, therefore candidates for

tool chains.

Although it is not an objective of this study to represent in-depth information on

tool chain relationships, the explicit data of these 21 assets have semantics suggesting

a possible integration: six tool chains composed of two languages, as suggested by

the descriptive data of assets {A06, A07, A17, A29, A43, A79}; nine tool chains

composed of three languages, as suggested by the data collected from assets {A05,

A12, A15, A16, A30, A32, A39, A40 and A60}; four tool chains composed

of four languages, as suggested by assets {A10, A21, A38, A46}; a tool chain

of asset {A45} using five languages and; a tool chain of asset {A27} using seven

languages.

Of the 27 assets analyzed using only one programming/modeling language, we

find 22 that explicitly refer to the use of UML: {A03, A05, A06, A07, A08,

A09, A10, A11, A12, A21, A29, A35, A38, A39, A43, A45, A46, A60,

144



Figure 5.10: ReMoDD - Quantitative analysis of UML.

A66, A68, A71 and A72}. These assets are analyzed in Figure 5.10 considering

which diagram/notation is used. Five assets provide only reference to the use of

UML/Profile, not describing which notation is used, while 17 explain the adopted

notation through taxonomy. We can highlight the use of the class diagram nota-

tion, with 12 occurrences of 17 possible. These data are in line with the results

of industrial research on the UML adoption (AGNER et al., 2013; HUTCHINSON

et al., 2011; PETRE, 2013): the class diagram is most commonly used among UML

notations.

Figure 5.11 shows the number of occurrences for semantics of DSLs, that is,

semantics that do not include UML usage. In this sense, it is possible to notice

that six assets refer Ecore as a modeling language for classes instead of UML, which

means that Ecore has been used to represent architectural models of systems (not

metamodels). This is an interesting finding because in (PETRE, 2013) it is reported

that most companies use some modeling tool to represent the class diagram only.

Similarly, as shown in Figure 5.10, the UML class diagram is most commonly used

notation.

Q2 - Which assets are candidate for a tool chain approach?

ReMoDD repository is relevant to research and practice in MDE. However, in our

previous survey we lacked an analysis of explicit information that could be used in

technical decision making, involving tool chain contexts. So, to answer Q2 - Which

assets are candidate for a tool chain approach?, we have refined our initial analysis

to find out the reuse opportunities.

To this end, we review previously extracted data in a new analysis for data

triangulation (RUNESON and HÖST, 2008), clustering data from descriptor

groups “Required Tool”, “Programming/Modeling Languages” and “Modeling Lan-

guages/Notations”. We then quantify the occurrences for domain-specific languages

145



Figure 5.11: ReMoDD - Quantitative analysis of DSLs.

146



and/or tools by exporting models in some open format between (XML, JSON, Text)

and/or programming languages used for the development of model transformations.

In the end, we draw the following conclusions.

Figure 5.9 shows 48 assets as candidates to incorporate some kind of tool chain.

From these assets, it is noticed that most use a homogeneous set of DSLs and tools

for model representation (27 items), while the semantics of 21 of them suggests to

consider a heterogeneous scenario. Of the 27 assets that consider a single represen-

tation language, 22 items have semantics associating them with UML. Even though

strictly considering the use of UML, these 22 assets have hybrid notations composed

of the following semantics:

• Eight assets highlight the use of more than one UML notation: five assets use

two UML notations {A06, A10, A38, A46 and A68}; one asset is using

three UML notations {A66}, and; two assets are using four UML notations

{A03 and A45};

• Eight assets jointly use UML and other DSLs, as shown in Figure 5.11:

A05, including MegaF and MegaL; A12, including Feature Model and Com-

ponent Family Model; A21, including MARTE, DERAF and JPDD; A29, in-

cluding FLTL; A38, including User Requirements Notation, Reusable As-

pect Models (RAM), and Aspect-oriented User Requirements Notation;

A39, including AspectSM and MARTE; A45, including Core Scenario Model,

Layered Queueing Network, MARTE and SoaML, and; A46, including pi-

calculus, kiltera and UML-RT.

We also analyze the use of UML in the context of System/Software Domains,

represented only in 14 assets, as follows: four covering the Model Transformation

domain {A03, A05, A35, A45 and A46}; two covering the Crisis Management

System domain {A11, A12}; for covering the Software Product Line (SPL) domain

{A12 and A66}; four covering the Internet/Web-based/Cloud Software domain

{A07, A08, A09 and A29}; {A06} covering the System Software domain; two

covering the Reactive System domain {A38 and A46}; {A45} covering the Ser-

vice Oriented Architecture (SOA) systems {A45}, and; {A46} covering two other

domains (Embedded Software and Real-time embedded systems).

Final Remarks

We extracted 81 artifacts available for use in REMoDD between 2011 and 2016,

representing them as resources and extracting quantitative data on resources asso-

ciated with tool support. We found that data associated with assets do not support

structural features of tool chains. There are some links to tool support, but not

147



a structured representation used in integration. The technical aspects for decision

making are represented, but at a semantic level that can not be processed by trans-

formations that aim to promote automatic integration.

It was not found assets for the domain of information systems that reports the

use of UML. This finding is consistent with PETRE (2013), suggesting that UML

has some resistance to this context. For example, Figure 5.5 shows that at least 12

items have artifacts designed with DSLs not built into UML Profiles.

Every asset is represented independently by sharing MDE Artifacts of different

types and purposes, as shown in Figures 5.4 and 5.6. Models are built using different

languages, as shown in Figures 5.7, 5.10 and 5.11. Figure 5.8 shows that at least

five languages are used in the development of model transformations and some tools

/ frameworks are required for their execution. Therefore, ReMoDD contains hybrid

assets.

Small descriptions relevant to technical decision-making in chain of tools are

also found. As Figure 5.11 illustrates, design tools are created using different meta-

generators, such as EMF (Ecore notations), or simply developed manually, such

as some in Java {A08, A12, A17, A19, A33}, or C++ {A08}, or other pro-

gramming language. This relationship (for example, models and transformations

constructed in metamodels) is not explicit, requiring knowledge and hard work to

discover these important details for the integration. Based on our previous experi-

ences in integrating design tools developed without the support of a meta-generator,

models are typically imported and exported in different formats (XMI, JSON, text

files). Due to the need to develop transformations of models classified by LÚCIO

et al. (2014) as Serialization Intention, this adds a lot of extra effort to integrators.

5.1.3 Evaluation 3 - Mining MDE Artifact Hidden Data

This case study is focused on mining MDE Artifacts of the 81 assets, thus needing to

discover the expert’s technical knowledge. Through this mining, we hope to discover

technical aspects associated with these artifacts, such as models, metamodels and

transformations.

Goal

As our previous studies have pointed out that the technical structural features of

MDE Artifacts are not detailed in ReMoDD, our objective here is to represent this

hidden/non-explicit data. We want to evaluate whether the hidden data found

in MDE Artifacts can be represented with RAS++. If so, this would suggest the

relevance of the available metaclasses for the execution of the Transformation phase,

providing a validity index.

148



Table 5.7: Mining non-explicit data from MDE Artifacts
Analyze The amount of technical data associated with MDE Artifacts

With the purpose of Characterizing

Regarding Hybrid classifications for MDE

From the viewpoint of Researcher and domain expert

In the context of A global reuse repository for MDE Assets, i.e., ReMoDD.

The specific goal is shown in Table 5.7. The third asset representation problem

we address concerns the representation of technical aspects using structural features

proposed in RAS++ for MDE Artifacts. We want to represent hidden data in

ReMoDD to answer the following questions:

• Q1 - What are the MDE artifacts referenced in ReMoDD repository assets?

Our goal is to identify which artifacts the research community is sharing in

ReMoDD.

• Q2 - Is RAS++ able to represent the hidden data of MDE artifacts from the

ReMoDD repository? Our goal is to evaluate the representativeness of RAS

++ for MDE Artifacts.

• Q3 - How many occurrences for technical metaclasses (e.g., those inheriting

MDEArtifact) are found? This quantification of metaclasses would allow us

to understand if RAS++ is relevant for the representation of technicalities of

MDE artifacts.

Research Method

In order to answer aforementioned research questions, we have adopted metrics for

descriptive statistics analysis using qualitative and quantitative data. Our popu-

lation, or focus group, is composed by 81 assets, thus representing the amount of

elements shared by ReMoDD. Moreover, RUNESON and HÖST (2008) have con-

ducted a descriptive survey from Mining Software Repositories (MSR) (D’AMBROS

et al., 2008), used as basis for the execution of this study. So, we adapted their em-

pirical procedure on mining the ReMoDD repository, following the evaluation plan

composed by:

1. We used the recent version of the generated DSL for representation of MDE

Artifacts, thus starting the first step called Data modeling based on a previous

representation for assets.

2. For the step Data retrieval and processing we passed by all the 81 Assets

previously represented. We found artifacts represented as Zip and leaf exten-

sions. We mined the content hidden inside Zip files, such as the one shown in

149



Figure 5.12: MDE Artifacts from three of ReMoDD’ assets.

Figure 5.12 line 9. We considered for analysis only data non associated with

examples or descriptions. In other words, we ignored the processing of artifacts

for documentation or demonstration (txt, pdf, doc, gif, jpeg, spreadsheet), as

the one shown in Figure 5.12 line 10.

3. The Data analysis step is characterized by the analysis of modeled data. Only

metadata associated with MDE Artifacts are considered, as those shown in

Figure 5.12 between lines 1 and 8. Through this data type, we have extracted

quantitative attributes.

Analysis

Q1 - What are the MDE artifacts referenced in ReMoDD repository

assets?

We found 20 assets with leaf extensions that indicated their nature as MDE

Artifacts: {A37, A47, A48, A49, A50, A51, A52, A53, A54, A55, A56, A57,

A58, A59, A70, A73, A75, A76, A77 and A79}. It is important to mention

that ReMoDD represents such artifacts as any other for documentation, thus not

properly representing the specificity of MDE. Because the artifact metadata cannot

be automatically mined, this data type is considered hidden. We found 15 assets

with hidden data inside ZIP files: {A01, A02, A03, A06, A07, A08, A11, A17,

150



A19, A27, A30, A34, A46, A60 and A62} . Therefore, our analysis include 35

assets.

Q2 - Is RAS++ able to represent the hidden data of MDE artifacts

from the ReMoDD repository?

Table 5.8 shows instances of artifacts represented for each of 35 analyzed assets.

Not so surprisingly, we found a unique instance of TransformationComponent and

another from Toolbox in two different assets A46 and A70. The low interest in

sharing for free this type of artifact suggests that asset providers may consider these

artifacts as some business differential. This remind us from a recent position from

Jan Bosch at ICSE 2017: there is no good will in free assets shared by industry.

From this point of view we conclude that, if there is no gain for asset providers in

sharing assets, then their interest in ReMoDD reduces as well.

Table 5.8: Technical representations for each asset by RAS++ Metaclass
LEGEND [Asset = Asset, Metafacility = MM, Model = MO, Toolbox = TB, Transformation Component = TC, MDE Artifact=MA]

Asset MM MO TB TC MA Asset MM MO TB TC MA

A01 4 0 0 0 0 A02 5 5 0 0 0

A03 0 16 0 0 0 A06 0 6 0 0 0

A07 19 0 0 0 0 A08 0 1 0 0 0

A11 0 1 0 0 0 A17 0 1 0 0 0

A19 0 9 0 0 0 A27 0 6 0 0 0

A30 0 3 0 0 0 A34 0 1 0 0 0

A37 0 6 0 0 0 A46 0 0 1 0 0

A47 1 1 0 0 26 A48 1 1 0 0 2

A49 1 1 0 0 2 A50 1 1 0 0 1

A51 2 1 0 0 1 A52 1 1 0 0 1

A53 1 1 0 0 1 A54 1 1 0 0 0

A55 1 1 0 0 20 A56 2 2 0 0 2

A57 2 2 0 0 0 A58 2 2 0 0 0

A59 2 2 0 0 2 A60 13 0 0 0 13

A62 0 3 0 0 6 A70 0 0 0 1 0

A73 1 0 0 0 0 A75 1 0 0 0 0

A76 0 1 0 0 0 A77 0 4 0 0 0

A79 0 18 0 0 0 - - - - - -

Artifacts as instances of Metadefinition, Model and MDEArtifact, the last one

used to represent OCL and other scripts, are abundant. Instances of Metadefini-

tion are constructors for DSLs, totalizing 61 artifacts distributed in 19 assets: A01,

A02, A07, A47-A60, A73, A75. We found 107 artifacts as instances of Model, which

demonstrates that, indeed, ReMoDD has been used for academic purposes.

Instances of Model must be associated with instances of SerializationLan-

guage, as illustrates Figure 5.12, line 4. We did not find models serialized in JSON,

JMI and RDF, but we found serialization in Binary, Plain text, XML and XMI.

This way, Figure 5.13 shows our analysis of 23 different exporters associated with

107 models.

151



Figure 5.13: Serializations used by MDE Artifacts.

As Figure 5.14 demonstrates, RAS++ is able to represent the technical data

about Toolboxes that ReMoDD does not represent. These are structural data used

by integration tools and can be used in the Transformation phase, using automatic

integration mechanisms. As suggests ZAKHEIM (2017), hidden technical knowledge

is a threat to integration in a tool chain environment. Differently from ReMoDD,

RAS++ exposes the hidden knowledge about structural feature from MDE Artifacts

including metamodels, toolboxes and dependencies. This, therefore, is a benefit

found in RAS++ but not in the ReMoDD repository, which means that for a feasible

coopetition implementation (i.e., a less costly approach for integration), ReMoDD

needs to be reconstructed.

The last research question from this third mining study is: Q3 - How many

occurrences for technical metaclasses (e.g., those inheriting MDEArti-

fact) are found? We answer this question by analyzing data about the number of

representations as an instance of AtomicTransformationArtifact, MDEArtifact,

MetaDefinition, MetaMetadefinition, and Toolbox. The results are shown in

Figures 5.15, 5.16 and 5.17.

Figure 5.15 highlights internal representations, whose content we find directly

(looking inside the contents of the shared artifacts), and external representations,

which are semantic links to tools that we had to look for on the web. For example,

Figure 5.18 shows classifications represented in the previously mined assets. For

artifacts within an asset containing one of these semantics, we went beyond the

repository to describe the associated tool, thus representing one or more Toolbox

instances. This effort demonstrates how difficult it is for an integrator to perform

a reuse of shared artifacts in global repositories. Since the information required

152



Figure 5.14: Data expressed externally to assets used by MDE Artifacts.

Figure 5.15: All the technical details extracted from the hidden data.

153



Figure 5.16: Instances of Metadefinition.

for integration is not there, asset integrators need to mine information at multiple

points on the web, which is expensive and tiresome.

As demonstrated by our analysis of Figures 5.16 and 5.17, RAS ++ allows us to

represent all the technical information of various types of MDE artifacts. However,

we did not find in the physical artifacts (files) anything suggesting instances of ER

and ComposedMetamodel, which are probably rarer cases in the tool chain.

Final Remarks

This study provides an important index of validity of RAS++. Our quantitative

analysis demonstrates that metaclasses introduced into asset representations are

indeed relevant. As a conclusion, we can highlight that RAS++ is representative for

the third Goal from this thesis. Finally, asset providers can detail technical elements

of MDE artifacts, used in tool chain approaches, which is not allowed in ReMoDD.

5.1.4 Evaluation 4 - Mining MDE Settings Hidden Data

Figure 5.18 displays the mining data describing tool dependencies through classi-

fication found in 27 of 81 assets. This information is purely descriptive and says

nothing more than the name of a tool. Consequently, the asset classification data

can not be mapped to representations adopted by the integration approaches/tool

chain nor are they clear about the technical versions and details used by the in-

tegrator (ZAKHEIM, 2017). This is a problem that we are trying to correct with

other technical representations in RAS++. In this way, the previous study allowed

to select a focus group to properly evaluate the metaclasses of RAS++. Next, we

describe a case study on the mining of six assets of these 27 assets in the context of

154



Figure 5.17: Instances of MetaMetadefinition.

Figure 5.18.

Goal

Since the previous study pointed to the existence of only one artifact of the trans-

formation component type in the entire ReMoDD repository, our objective now is to

find hidden information that suggests the relevance of the metaclasses introduced to

represent transformation components: AtomicTransformationArtifact. This case

study aims to extract implicit technical knowledge from the ReMoDD repository on

MDE components. We believe that more information is possible for representation

than those that we represented previously.

Research Method

We selected a sample from the first six records found in this repository. Previously

we identified candidate assets that could support some sort of tool chain. Then

we selected the following for mining hidden knowledge: {A06, A07}, using two

different languages; {A40 and A60}, using three different languages; {A45} using

five languages, and; {A27} using seven languages.

This group is now used to validate technical representations introduced in

RAS++, allowing us to test the Transformation phase with the research questions.

In this sense, we mined the hidden data from assets using the following mining steps:

1. Step 1 - Extract metadata from artifacts included in assets, representing it in

assets conforming to RAS++.

155



Figure 5.18: Quantitative analysis of required tools.

156



2. Step 2 - Extract metadata from links for tool support, if any, representing it

in assets conforming to RAS++.

3. Step 3 - Since each asset in ReMoDD can be associated with a paper available

in DBLP, the third step is to read the associated paper (if any), extracting

metadata from settings and representing it in assets conforming to RAS++.

Analysis

Step 1

Figure 5.19 shows the result from mining the internal content of artifact fuml-

extlib-examples.zip, which is divided in two folders: Folder 1 - Mail and Folder

2 - Petstore. It was found six models inside these folders, but with zero meta-

definitions (metamodels) shared. This is due to the assumption of authors that these

models are represented in UML design tools, thus in conformity with the UML2

metamodel. This assumption should be avoided when representing reusable assets

to be used by inter-organizational contexts because the existence of many design

tools for UML makes the exported models dependent from specific meta-definitions

and exporters. For example, we found an issue for integration of these models in a

tool chain: the need for specific tools.

Step 2

This issue is not easily noticed in Asset A06 because, theoretically, models are

in conformity with the UML2 metamodel, thus interoperable by nature. However,

after visualizing the internal content of these models, we found that those from

Folder 1 are exported differently from those available in Folder 2. Besides, after

an extensive search on the web for the associated tool exporters, we concluded about

the use of two different meta-metamodels: one used to export models in Folder 1

conforms to UML2/MDT (EMF 2.4) and other used to export models in Folder 2

conforms to the OMG’s MOF Exporter (4.0).

Since a software engineer needs to use a specific importer tool to process each

model type in a model-based task (i.e., in a tool chain), this implicit/tacit technical

knowledge is always an issue for integration (BATORY et al., 2013a). This knowl-

edge should be explicit to facilitate the execution of an integration approach (ZA-

KHEIM, 2017). As demonstrated in Figure 5.19, a tacit knowledge, used for inte-

gration, is now explicit with the representation of Asset A06 in conformity with the

RAS++ metamodel. For example, instances of ResourceAbstraction associate an

instance of SerializationLanguage, shown in Figure 5.19.

Step 3

The third step is to read the paper associated with the asset to extract the infor-

mation about the transformation components. This is a time-consuming step and

157



demonstrates the effort required today for an integrator to decide whether a given

asset can be integrated into a tool chain. As shown in Figure 5.19, the execution of

this step results in the representations of components shown after line 19.

The ReMoDD repository does not allow the representation of these structures.

Through mining, we realized that the 27 assets, which suggested some tool chain

representation through classification, in fact do. However, these representations that

should be explicit are hidden in documents, which require hours of research to make

a decision.

The lack of technical-level information in ReMoDD demonstrates that this repos-

itory is not well suited for tool chain needs. This could be a threat to our proposal.

However, we have analyzed this limitation in ReMoDD as another reason to have

a common representation language. This is because we realize through our mining

that Toolboxes, associated with assets through classifications, have been shared in

another repository called SHARE (GORP and GREFEN, 2012). There is no con-

nection between these repositories today, which makes the knowledge distributed

and disconnected.

RAS++ can bridge these different repositories in coopetition scenarios. In this

sense, MOHAGHEGHI et al. (2009) claimed that establishing a bridge for the gap

between technical and non-expert stakeholders is a key for success of MDE. This

requires a link of the previously discussed descriptive information with technicalities.

This issue is also observed by Tasktop’ teams, where tool integration initiatives with

software development processes (ZAKHEIM, 2017) missed qualified data for the exe-

cution of a preliminary phase for tool chain (extract hidden knowledge about tools).

The author states that business stakeholders need such information, such as tool

goals and purposes, business opportunities, and others; while technical stakeholders

need information about tool versions, their serializations, and so on.

Final Remarks

In a coopetition scenario implemented through ReMoDD, descriptive data associ-

ated MDE Artifacts demand analysis of the internal content of shared artifacts. In

other words, the information for a technical usage is not available explicitly: a tacit

knowledge issue, called also as dark knowledge in (BATORY et al., 2013a). For this

reason, data provided in assets from ReMoDD are considered useless for automatic

integration purposes. For example, in the end of preliminary phases for tool chain,

this limitation in ReMoDD would make integration of MDE Artifacts a manual task.

This is an issue observed in other approaches used before integration (SMOLANDER

et al., 2017; ZAKHEIM, 2017), thus not a particular case of ReMoDD.

Moreover, by mining the hidden knowledge from these assets, we demon-

strate that RAS++ is representing data useful for automatic integration. Thus,

158



Figure 5.19: Technicalities from asset A06 represented with RAS++

159



RAS++ contributes with relevant foundations for representation in support for pre-

liminary phases in tool chain, as recently motivated by other researchers in the

area (SMOLANDER et al., 2017; ZAKHEIM, 2017).

5.1.5 Evaluation 5 - Grouping Studies

This section presents the application of triangulation for the data mined from Re-

MoDD in previous primary studies. For instance, publications associated with Re-

MoDD include the following benefits for MDE artifacts: (i) support artifact use

through services, (ii) facilitate artifact discovery and understanding, and (iii) foster

artifact systematic reuse.

Goal

Evaluate whether these benefits are really observed through the collected data.

Thus, we aim at answering the following research questions:

• RQ 1 - Which of previous benefits are observed in ReMoDD?

• RQ 2 - Is ReMoDD ready for coopetition in MDE as a Service?

Method

We applied a data triangulation considering previous studies, including a recently

published one that also considers a study on criteria for quality of the descriptive

data (BASSO et al., 2017c).

Analysis

RQ 1 - Which of previous benefits are observed in ReMoDD?

We found that the data shared in ReMoDD lack many reuse information by

business specialists and technical stakeholders. In other words, through the data

provided in this repository, it is not possible to understand the business opportunities

from these artifacts neither it is possible to extract the tool expert knowledge needed

to build tool chains. Due to the missed information, benefits (ii) and (iii) are not

noticed in practice, which answers RQ 1.

RQ 2 - Is ReMoDD ready for coopetition in MDE as a Service?

Although providing access through web services, this repository is limited in

terms of representation for decision making. For this reason, ReMoDD is not ready

for enabling implementation of coopetition in MDE as a Service.

This observation may explain the fall of ReMoDD, as illustrated in Figure 5.20.

Between 2011 and 2014, researchers have been categorically motivated the publi-

cation of assets through important conferences in the area such as ASE, Models,

160



Figure 5.20: Raise and fall of the component repository ReMoDD.

ECMFA, and others. However, through the mined date from assets, we noticed a

big fall of interest from 2015, until the end of adoption of ReMoDD in 2016. Thus,

an open questions is: why?

Conclusion

In order to fit the needs, we therefore motivated increments in ReMoDD. MDE as-

set providers and consumers can benefit from representations with a better qualified

descriptive data, which add semantics to such artifacts, thus promoting their adop-

tion in global scale. Thus, to be effective, repositories such as ReMoDD needs: 1)

the insertion of a more descriptive data besides keywords; 2) also provide to end-

users, better structures for specification of data suggested in criteria for description

of MDE Artifacts, and 3) information in technical-level that serves for automatic

integration purposes.

So far, as a community that aims at promoting coopetition in the area, we

made some mistakes, as can be observed by the raise and fall of the ReMoDD

repository shown in Figure 5.20. It is important to notice that, although we have

not found assets registered in the year 2016, ReMoDD is not dead since five new

assets were registered by August, 2017. In this sense, we believe that the low quality

of information found in assets shared in ReMoDD justifies its fall. Besides, the lack

of interest from asset consumers may be related also with the academic intent from

ReMoDD. Anyway, RAS++ is prepared to support richer data found in proposals

that have been used in practices of MDE as a Service, thus introducing foundations

in support for coopetition that are not observed in the ReMoDD initiative.

161



5.1.6 Threats to Validity

This evaluation is subject to four main threats:

Internal Validity: The trust on the correctness of the provided information for

assets is an uncontrolled (not measured) factor. Besides, we have used asset data

from the ReMoDD philosophy, a global repository that is feed with MDE Artifacts

mostly shared for didactic purposes, not exactly for tool chain purposes. Even so,

these threats do not represent issues for the validity of the performed study, since

they do not affect our analysis.

External validity is about establishing the domain to which a study’s findings

can be generalized. A common criticism regarding case studies is the impossibility

of generalizing results obtained from a single case. However, for YIN (2003), “case

studies are generalizable to theoretical propositions and not to populations or uni-

verses”. That is to say, the results from this study represent issues related to the

use of classification groups that were encountered in the repository under study, and

which we therefore expect would be encountered in other sources that are similar

to this one (asset repositories), in particular with respect to the hybrid nature of

MDE Artifacts. Since the quality of the provided information is dependent from the

asset provider, our difficulty to comprehend the shared artifacts do not represent

an issue that will always occur in any asset repository built on specifications such

as RAS and AMS. Furthermore, this is not a study of the full potential of a reuse

repository, but a study of the practical use of representations allowed in RAS++

and how they match the needs from a global repository that actually uses assets in

its reuse mechanisms.

Construct validity: This threat relates to representation of assets for non-

realistic scenarios, or data provided by the researcher, or data considering a unique

software development context. It makes the representation of assets less reliable.

This is not an issue for this study since assets found in ReMoDD are from realistic

scenarios, elaborated by several asset providers, from different software development

contexts.

Conclusion validity: A low statistical power threat is included when the low

number of population is collected. This is not our case because we mined 81 assets,

thus an expressive number that characterizes an adequate statistical power. Due

to the low diversity in representations for federation is not considered (i.e., all the

federation is internal to ReMoDD), this could introduce noise in our conclusions.

For this reason, we have not included in our conclusions statistical analysis for

federation. Regarding confidentiality threats, the literature of the area on reporting

the development of MDE Artifacts usually considers these elements confidential.

This is not an issue for this study since there is no confidentiality in the assets

162



shared in ReMoDD. The employed statistical methods and sample size choices are

adequate to evaluate the representativeness of RAS++. Thus, the focus group of

assets provides valid data for drawing conclusions.

5.2 Combinatorial Proof

Previous studies presented a focus group of languages used in tool chain scenarios. In

order to demonstrate the relevance of a pivotal representation language for MDE as

a Service, this section extends previous analytical comparisons with a combinatorial

proof by analyzing the development effort of connectors that should be used in the

Transformation phase.

We analyzed three sets of representations that could be introduced in a coope-

tition scenario for MDE as a Service shown in Figure 5.21. The integration of

these representations at the end of the Transformation phase implies on the devel-

opment of connectors. Our intent is to simulate temporal data, i.e., quantifying

implementation possibilities found in the state of the art, by measuring the effort

for development of connectors through an analysis of three sets of data:

1. Analysis from data collected in an ad-hoc literature review (BASSO et al.,

2013a), which reports approaches for tool chain proposed between 2005 and

2012.

2. Analysis of data between 2013 and march 2015, collected in

a literature mapping for the qualification exam, available at

prisma.cos.ufrj.br/wct/eqmap1.pf.

3. Analysis for the future, using data extracted from three of our recent mapping

studies shown in Table 5.9.

Table 5.9: Mapping studies for RAS++ conception
Id Title Available at

M01 Semantic Properties of Software Components prisma.cos.ufrj.br/wct/ms02.pdf

M02 Intents from Asset Platforms and Their Properties prisma.cos.ufrj.br/wct/ms03.pdf

M03 MDE Settings Intents and Their Properties prisma.cos.ufrj.br/wct/ms04.pdf

This study considers the relevance of RAS++ in support for all the three phases

discussed previously. Every one would need a sort of conversion from a RAS++

model (see Figure 5.21.3) to a target representation: For a tool chain, as illustrates

Figure 5.21.2, or for an asset repository illustrated in Figure 5.21.1.

We opted for the term “converter” or “conversion” for a general application of

generative techniques, rather than “transformation” that is more restrictive for a

phase with the same name. Likewise, a converter can be programmed: as a black-

box Java class that queries a database and generates a target representation; as a

163

prisma.cos.ufrj.br/wct/eqmap1.pf
prisma.cos.ufrj.br/wct/ms02.pdf
prisma.cos.ufrj.br/wct/ms03.pdf
prisma.cos.ufrj.br/wct/ms04.pdf


Figure 5.21: Desirable scenario for coopetition in MDE as a Service.

model-to-model transformation developed with ATL (BÉZIVIN, 2005); as a bind-

ing for reuse of ATL code developed in Bentõ DSL (CUADRADO et al., 2014) or

a framework such as T-Core (SYRIANI et al., 2015), as a dynamic content gener-

ator with Velocity templates, etc. This definition includes, therefore, all possible

representations found in a coopetition scenario from Figure 5.21.

This study is organized as follows. Section 5.2.1 presents our study goal and

Section 5.2.2 the adopted research method. Section 5.2.3 depicts the analysis and

Section 5.2.4 draws conclusions.

5.2.1 Goal

It is not our intent the development of connectors, but due to the absence of a com-

mon representation language, we need to understand the scale of costs for implemen-

tation of coopetition in MDE as a Service through a quantification of connectors.

Due to this diversity of languages, we believe that without a common representa-

tion language, the development of connectors for the complex motivated scenario

would be impracticable. However, we still do not acknowledge how impracticable or

164



complex it is, thus characterizing an interesting topic for investigation.

As shown in Table 5.10, our goal is to find out numbers that lead us to conclude

whether RAS++ is important for reducing this complexity that we are prospecting

for integration. In this sense, we aim at answering the research question: Q7:

Which is the effort required to implement coopetition in the context of

MDE as a Service? This question is divided in two sub-questions: Q7.1: Which

is the current effort? and Q7.2: Which is the effort with RAS++?

Table 5.10: Mathematical evaluation goal of the motivated scenario
Analyze The amount of DSLs introduced after 2015 in support for

integration

For the purpose of Characterizing

Regarding Scenarios for coopetition in MDE as a Service

From the viewpoint of Researcher

In the context of Development costs for connectors.

5.2.2 Research Method

We first applied a data triangulation from literature mappings, diving representa-

tions in three groups. Our first impression is that, as more languages are introduced

into the problem, more effort is needed for the development of connectors. After

searching the literature on machine translation (AIGNER and ZIEGLER, 1998), we

find out a mathematical answer that describes this scenario: a quadratic combina-

torial explosion for the development of connectors. It is an equation that describes

this issue, as follows:

Quadratic, C =
N(N − 1)

2

In this sense, let C be the number of possible converters and N be the number of

representation languages (DSLs for MDE Settings and/or repository metamodels)

found in the scenario shown in Figure 5.21. Through this formula, it is possible

to reach the effort needed for integration between all the possible representations

inserted into a coopetition scenario. This equation allows to formulate a premise:

following the current state of the art of research that does not present a pivotal

language, software engineers would fall in the issue of the quadratic combinatorial

explosion.

For pivot language, we used the following definition:

“A pivot language, sometimes also called a bridge language, is an ar-

tificial or natural language used as an intermediary language for trans-

lation between many different languages - to translate between any pair

165



of languages “A” and “B”, one translates “A” to the pivot language “P”,

then from “P” to “B”. Using a pivot language avoids the combinatorial

explosion of having translators across every combination of the supported

languages, as the number of combinations of language is linear, rather

than quadratic - one need only know the language “A” and the pivot lan-

guage “P” (and someone else the language “B” and the pivot “P”), rather

than needing a different translator for every possible combination of “A”

and “B”. ” (KRIPPENDORFF, 2010)

In order to confirm this premise, we extracted proposals for representation lan-

guages. Then, we have applied an analysis of the number of connectors required in

each moment of this research, demonstrating this combinatorial issue. Likewise, the

literature states that it is possible to avoid combinatorial issues through a pivotal

language, reducing the combinations for a linear problem described by the equation

bellow.

Linear, C = N − 1

In the next sections, we apply these equations to analyze the effort for integrating

a group of representations.

5.2.3 Analysis

In our analysis of data from ad-hoc literature review, we considered 20 representa-

tions for tool chain, as shown in Table 5.11. These representations are classified in

reuse scope 2, as shown in Figure 5.21, thus scoping some tool mechanism in support

for tool chain integration.

Table 5.11: Ad-hoc mapping of toolboxes for tool chain before 2012
Id Paper Year

S01 From the workfloor: Developing workflow for the generative model transformer. 2005
S02 Integrating platform selection rules in the model driven architecture approach. 2005
S03 Platform-independent modelling in mda: Supporting abstract platforms. 2005
S04 Blackbox composition of model transformations using domain-specific modelling languages. 2006

S05 A framework for transformation chain development processes. 2006
S06 Towards a transformation chain modeling language. 2006
S07 Using the fomda approach to support object-oriented real-time systems development. 2006
S08 Handling variability in model transformations and generators. 2007
S09 On model typing 2007

S10 MDA Tool Components: a proposal for packaging know-how in model driven development 2009
S11 Feature-oriented refinement of models, metamodels and model transformations. 2009
S12 Incremental development of model transformation chains using auto mated testing. 2009
S13 Combining independent model transformations. 2010

S14 Domain-specific composition of model deltas. 2010
S15 Generic model transformations: Write once, reuse everywhere. 2011
S16 Simplifying model transformation chains by rule composition. 2011
S17 Realizing model transformation chain interoperability. 2012
S18 Automatic adaptation of transformations based on type graph with multiplicity. 2012

S19 Chaining model transformations. 2012
S20 Using feature models to tame the complexity of model transformation engineering. 2012

Figure 5.22 shows a graph comparing development effort for connectors, by year,

before 2012. For the year 2005, we found just three proposals for representation of

166



Figure 5.22: Development effort by year for connectors before 2012.

MDE Settings. For this reason, differences between a combinatorial explosion and a

linear combinatorial solution are not evident. Along the years, more representations

are proposed, thus increasing the effort for integration since each representation

must be combined with each other.

Table 5.12: Mapping of toolboxes for tool chain after 2012
Id Paper Year

S21 On the Complex Nature of MDE Evolution 2013

S22 Typing artifacts in megamodeling 2013
S23 Engineering model transformations with transML 2013
S24 Supporting Large Scale Model Transformation Reuse 2013
S25 MTC Flow: A Tool to Design, Develop and Deploy Model Transformation Chains 2013

S26 Localized model transformations for building large-scale transformations 2013
S27 A Common Representation for Reuse Assistants 2013
S28 MTP: Model Transformation Profile 2013
S29 Genericity for model management operations 2013
S30 Semantic Conflicts Detection in Model-driven Engineering 2013

S31 A Component Model for Model Transformations 2014
S32 On the modeling and generation of service-oriented tool chains 2014
S33 Towards Facilities to Introduce Solutions for MDE in Development Environments with Reusable Assets 2014
S34 Dealing with Traceability in the MDD of Model Transformations 2014

S35 Adapting transformations to metamodel changes via external transformation composition 2014
S36 Extending JUnit 4 with Java Annotations and Reflection to Test Variant Model Transformation Assets 2014
S37 Generative Adaptation of Model Transformation Assets: Experiences, Lessons and Drawbacks 2014
S38 A survey of approaches for verifying model transformations 2015
S39 T-Core: a framework for custom-built model transformation engines 2015

S40 Reusable Model Transformation Components with bentõ 2015

Table 5.12 shows 20 more references found between 2013 and march 2015, also

classified in reuse scope 2 of Figure 5.21. The difference is that these ones are more

modern. Figure 5.23 presents an analysis of development effort by year, considering

only these recent proposals and ignoring the past representations for MDE Settings.

This way, 20 new representations are found in the current scenario for coopetition,

which means that some compete and other cooperate in a MDE-based process.

Table 5.13 presents 29 papers proposing a sort of representations classified in

167



Figure 5.23: Development effort by year for connectors from 2013 until march 2015.

reuse scope 1 of Figure 5.21, from 2005 until the present, which considered the

storage of some MDE Artifact in assets, repositories or platforms. Figure 5.24 shows

that, even if we ignore all the previous representations languages, a combinatorial

explosion issue is also observed in coopetition of MDE Artifacts shared by these

infrastructures. In this case, we are ignoring whether the infrastructure can represent

MDE Settings or not, as demand the previous representations.

Figure 5.25 presents our analysis of effort for integration of all these representa-

tions in a coopetition scenario.

Q7.1: Which is the current effort?

Currently, we would need a total of 2.346 connectors for integration performed

without a common representation language.

Q7.2: Which is the effort with RAS++?

The same coopetition scenario implemented with RAS++ would demand 68

connectors. Through RAS++, Software Engineers are now allowed to integrate these

and other representations with less effort for development of converters. Likewise,

they still need to develop these converters, but in the order of N-1 instead of (N*(N-

1))/2. Therefore, through a combinatorial proof, we found a new index suggesting

a benefit associated with RAS++: it reduces effort in integration.

168



Figure 5.24: Development effort by year for asset connectors.

Table 5.13: Mapping of infrastructures for assets
Id Paper Year

S41 RAS Reusable Asset Specification Version 2.2 November 2005 2005
S42 X-ARM: an asset representation model for component repository systems. 2006
S43 Extending reusable asset specification to improve software reuse. 2007
S44 Repository for Model Driven Development (ReMoDD). 2007
S45 A Representation Model for Reusable Assets to Support User Context. 2008
S46 Reusable SOA Assets Identification Using E-Business Patterns. 2009
S47 Design and Implementation of RAS-Based Open Source Software Repository 2009
S48 Asset Management Specification. 2009

S49
Analyzing the Concept of Components in the Brechó-VCM Approach through a Sociotechnical and
Software Reuse Management Perspective.

2010

S50 A Catalogue of Refactorings for Model-to-Model Transformations 2012

S51 A Light-weight Tool Integration Approach - From a Tool Integration Model to OSLC Integration Services. 2012
S52 Towards Tool Integration through Artifacts and Roles 2012
S53 Supporting the internet-based evaluation of research software with cloud infrastructure 2012
S54 Typing artifacts in megamodeling 2013
S55 Multi Back-Ends for a Model Library Abstraction Layer 2013
S56 Establishing tool chains above the service cloud with integration models 2013
S57 Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study 2013
S58 A Common Representation for Reuse Assistants 2013
S59 Software Ecosystems Comprehension and Evolution 2013

S60 Globalizing Modeling Languages 2014
S61 Model transformation intents and their properties 2014
S62 Automated Chaining of Model Transformations with Incompatible Metamodels 2014
S63 MDEForge: An extensible Web-based modeling platform 2014
S64 Modeling of tool integration resources with OSLC support 2014
S65 Collaborative Repositories in Model-Driven Engineering 2015
S66 Enabling the reuse of stored model transformations through annotations 2015
S67 Tool Integration by Models, Not Only by Metamodels - Applying Modeling to Tool Integration 2015
S68 Software component decision-making: In-house, OSS, COTS or outsourcing - A systematic literature review 2015

S69 The importance of socio-technical resources for software ecosystems management 2015

5.2.4 Conclusion

Our analysis of the state of the art shows that, if coopetition in MDE as a Ser-

vice is indeed something to be implemented in future, this is the right moment to

build foundations in support. For instance, since other IT market segments have

reported an increase in business (PALMQUIST, 2014), we are assuming that asset

coopetition could benefit MDE practitioners as well, extending initiatives for MDE

as a Service (BRAMBILLA and FRATERNALI, 2014; BRIAND et al., 2012; MON-

TEIRO et al., 2014a,b) towards global cooperation. In this sense, the advent of

a pivotal language would simplify this cooperation by, for example, promoting an

169



Figure 5.25: Development effort by year for all the connectors.

interchange of data represented with FOMDA DSL (BASSO et al., 2013a), which

is focused in orchestration and adaptation of model transformation components to

other DSLs, such as TIL (BIEHL et al., 2014), focused in MDE tool integration

features.

For some reasons that are still not clear, the state of the art and practice are

incapable of implementing coopetition in the large. We found that the complexity

of this scenario and the lack of a common representation language are some of these

reasons. Considering possibilities found in the scenario shown in Figure 5.21, existing

representation languages are limited to be elected as pivotal. The selection of one

or other would imply in loss of information across conversions, which is called a bad

pivotal choice (KRIPPENDORFF, 2010). Thus, as more representative a language

is, the more qualified it is for conversions.

This study suggests that this combinatorial issue should be discussed by the lit-

erature of the area. For example, so far, Software Engineers have presented benefits

that could be promoted through modern repositories (COMBEMALE et al., 2014;

CORREIA et al., 2016; LIMA et al., 2016; ROCCO et al., 2015; SANTOS et al.,

2016). However, considering the full scenario (big picture), they have been neglect-

ing the effort needed by end-users to integrate shared artifacts in target contexts.

This is because, at least in Software Engineering, words such as collaboration, coop-

eration and competition demand the management of assets external to a repository

(i.e., federation) (AXELSSON et al., 2014; BADAMPUDI et al., 2016). Connections

between different infrastructures for assets imply in an integration issue (ZAKHEIM,

2017), thus making the term “pivotal” a required discussion topic.

As a contribution to this research area, we presented such a discussion. In this

170



study, we considered an analysis of this effort, but limited to tool chain contexts.

This means that other contexts for integration should be discussed in the future

as well. Our conclusion is that, currently, the state of the art presents an issue

in the form of a quadratic explosion combination that probably is present in other

integration contexts for coopetition: it increases year after year, thus becoming

unmanageable in a long-term perspective, so this issue should be explored right

now.

Our analysis also suggests a relationship between effort for integration and the

number of representations. For example, we found that without a common represen-

tation, the development of a new repository adds more complexity for integration,

thus making coopetition harder to implement along the years. This is somehow

paradoxical because the current research is proposing more repositories and tool

chain representations as solutions. However, this is also making integration harder.

As consequence, due to the large amount of representations, coopetiton in MDE as

a Service is becoming less feasible along the years. Thus, as a possible solution,

pivotal languages like RAS++, AMS and RAS tend to bridge these representations

in a linear combination rather than quadratic.

Finally, it is important to mention that RAS++ is a pivotal representation lan-

guage. This way, a last conclusion through the analyzed data is an increase of the

feasibility for implementation of competition in MDE as a Service, which is im-

portant to find the basis and promote initiatives in this direction. Due to costs

of developing each connector, the analyzed data suggest that the implementation

of coopetition is too much expensive to take the risk when performed without an

adequate pivot language. Since the development would consume 2,9% of the effort

for connection of 69 representations (68 in comparison to 2.346), integrations built

on RAS++ are more feasible for implementation. Thus, RAS++ is important to

foster coopetition initiatives in the future.

5.3 Comparison Studies

This section presents comparative analytical studies evaluating the quality attribute

“representativeness” from RAS++. In order to highlight representativeness from

RAS++, we present 10 property tables comparing competing toolboxes within some

representational focus. These studies consider, therefore, a comparison of proper-

ties introduced for Specification and Transformation phases in RAS++ with other

approaches that could be selected as pivotal for the development of connectors.

This study is organized as follows. Section 5.3.1 presents our study goal and

Section 5.3.2 the adopted research method. Section 5.3.3 depicts the analysis and

Section 5.3.4 draws conclusions.

171



5.3.1 Goal

Our goal is to compare properties found in support for assets, MDE Artifacts and

Settings, through the following research question: Q8: Is RAS++ representative

to play the role of a common language for tool chain and assets in the

context of MDE as a Service?

Understanding properties from hybrid toolboxes is an important requirement for

evaluation of the quality attribute “representativeness” of RAS++.

5.3.2 Research Method

In order to evaluate representativeness, we selected 12 representations for tool chain,

shown as papers in Table 5.14, and six representations for assets shown Table 5.15.

These papers are derived from four recent mapping studies shown in Table 5.16.

Based on these papers, it was constructed 10 property tables with structural features

from these representations. These property tables demonstrate complementarity and

overlapping in toolboxes that are inserted in the context of RAS++. For example,

in the mapping M03, we characterized these toolboxes in different intents for MDE

as a Service, so that they can be inserted as competitors and cooperators in different

scenarios. Therefore, since these properties are discovered in four primary mapping

studies, in this study, we just applied them as a template for comparisons.

Table 5.14: Studies in tool chain used for comparison with RAS++

Study Paper Title Year

TC01 (GUOJIE and BAOLIN, 2009) An Encapsulation Structure and Description Specifica-
tion for Application Level Software Components

2009

TC02 (PALUDO et al., 2011) Applying pattern structures to document and reuse
components in component-based software engineering
environments

2011

TC03 (LÚCIO et al., 2014) Model transformation intents and their properties 2014
TC04 (CRIADO et al., 2015) Enabling the reuse of stored model transformations

through annotations
2015

TC05 (BIEHL et al., 2014) On the modeling and generation of service-oriented tool
chains

2014

TC06 (ZHANG and MOLLER-
PEDERSEN, 2014)

Modeling of tool integration resources with OSLC sup-
port

2014

TC07 (VIGNAGA et al., 2013) Typing artifacts in megamodeling 2013

TC08 (GARCÉS et al., 2014) Adapting transformations to metamodel changes via
external transformation composition

2014

TC09 (YIE et al., 2012) Realizing Model Transformation Chain interoperability 2012
TC10 (ETIEN et al., 2012) Chaining model transformations 2012
TC11 (BASSO et al., 2014e) Generative Adaptation of Model Transformation As-

sets: Experiences, Lessons and Drawbacks
2014

TC12 (CUADRADO et al., 2014) A Component Model for Model Transformations 2014

172



Table 5.15: Compared asset specifications/repositories

Study Documentation Year

A01 Reusable Asset Specification Version 2.2 Av. at www.omg.org/spec/RAS/ 2005
A02 Asset Management Specification. Av. at open-services.net/wiki/asset-management/ 2016
A03 ReMoDD - The Repository for Model Driven Development Av. at

http://www.cs.colostate.edu/remodd/v1/repository/

2016

A04 MDE Forge Av. at http://www.mdeforge.org/ 2017
A05 SEMAT (Software Engineering Method and Theory) Av. at http://semat.org/ and

Essence (OMG, 2015)
2017

A06 ReuseECOS: An Approach to Support Global Software Development Through Software Ecosys-
tems (SANTOS and WERNER, 2012)

2017

5.3.3 Analysis

Properties introduced in RAS++ are relevant in specific scenarios for coopetition

in MDE as a Service. This means that some properties can be relevant for repre-

sentations found in one scenario and irrelevant for others. This section presents six

scenarios for comparison, each one introducing different properties: 1-Asset Specifi-

cations; 2-Component Representations; 3-OO and Database Representations; 4-Tool

Chain Representations; 5-Pivotal Representations, and 6-Software Process Integra-

tion.

Scenario 1-Asset Specifications

Table 5.16: Mapping studies with properties from MDE Artifacts and Settings
Id Title Available at

M01
Semantic Properties of Software Components prisma.cos.ufrj.br/wct/ms02.pdf

M02
Intents from Asset Platforms and Their Properties prisma.cos.ufrj.br/wct/ms03.pdf

M03
MDE Settings Intents and Their Properties prisma.cos.ufrj.br/wct/ms04.pdf

M04
Diversity of MDE Toolboxes and Their Uncommon Properties prisma.cos.ufrj.br/wct/ms05.pdf

Table 5.17 compares toolboxes/representations for assets described in Table 5.15.

In order to fit the needs in MDE, as well as modernize RAS to novelties available

in AMS (e.g., artifact federation), RAS++ presents considerable contributions to

bridge all these specifications and repositories recently proposed for adoption.

Scenario 2-Component Representations

General Software Components

Table 5.18 shows RAS++ in comparison to approaches for software component

classifications. It is possible to notice that different approaches emphasize different

needs for representation. For example, TC01 emphasizes representation of technical-

ities for components, while TC02 emphasizes the quality for descriptive information

173

www.omg.org/spec/RAS/
open-services.net/wiki/asset-management/
http://www.cs.colostate.edu/remodd/v1/repository/
http://www.mdeforge.org/
http://semat.org/
prisma.cos.ufrj.br/wct/ms02.pdf
prisma.cos.ufrj.br/wct/ms03.pdf
prisma.cos.ufrj.br/wct/ms04.pdf
prisma.cos.ufrj.br/wct/ms05.pdf


Table 5.17: Property table 1: asset representations

LEGEND [Distributed=D, Local=L], [SECO = Software Ecosystem]

Property A01 A02 A03 A04 A05 A06 RAS++

1. Is/Use Some Specification Yes Yes No No Yes No Yes
2. Represent Any Artifact Yes Yes Yes Yes No Yes Yes
3. Instructive Reuse Data Yes No No No No Yes Yes
4. Artifact Federation L D L D L D D
5. Light-weight Extensibility No No No Yes No No Yes
6. Asset Profile Yes No No No No No Yes
7. Descriptor group Yes No Yes No No Yes Yes
8. Classification Yes Yes Yes Yes Yes Yes Yes
9. Free form Yes Yes Yes Yes Yes Yes Yes
10. Context Yes No No No Yes Yes Yes
11. License Yes No No No No Yes Yes
12. User feedback No No Yes No Yes Yes Yes
13. Represent some MDE Settings No No No Yes Yes No Yes
14. OCL Rules in Metamodel-Level No No No No Yes No Yes
15. Web Services Access Yes Yes No Yes No Yes Yes
16. SECO perspectives No No No No No Yes Yes

Table 5.18: Property table 2: software component assets

LEGEND [Variability Point=VP] [Create, Read, Update, Delete = CRUD]

Property TC01 TC02 RAS ReMoDD RAS++

1. Interface specification Yes Yes Yes No Yes
2. Datatype Yes No No No Yes
3. IO constraints Yes No No No Yes
4. Component chain Yes No No No Yes
5. Form/CRUD specificity Yes Yes No No No
6. Light-weight Extensibility No No No No Yes
7. Quality for descriptive information No Yes No No Yes
8. Artifact VP & VP Binding Yes Yes Yes No Yes
9. Asset VP & VP Binding No No No No Yes

through structures that organize decision making features. Meanwhile, RAS++

considers both perspectives for representation, including criteria for quality in de-

scriptive information as an ongoing work for the Acquisition phase (BASSO et al.,

2017c). Therefore, RAS++ is representative for coopetition scenarios for software

components.

Model Transformation Intents

In a similar way, software components demand appropriate classifications, some

contributions for model transformation intents have emerged as a way to classify

these MDE Artifacts in repositories with standard taxonomy too. Model Transfor-

mation Intents (MTI), allowing a classification of some MDE resources through

properties for taxonomy in the area. These works are related to repositories and aim

at promoting the collaboration in MDE through the globalization of MDE Artifacts.

Thus, similar to software component reuse through assets, the focus of MTI is in

descriptive information.

Table 5.19 shows two approaches for MTI. In comparison to CRIADO et al.

(2015), which proposed structures for classification of modules/pieces that com-

174



Table 5.19: Property table 3: model transformation intents (MTI)

LEGEND [Detailed=D], [Flexible=F], [S=Superficial]

Property TC03 TC04 RAS++

1. Semantics for MDA Views Yes Yes Yes
2. Classification of MT Intentions Yes No Yes
3. Transformation Properties S D D + F
4. Consistency in Semantics No No No
5. MDE Artifacts & Settings S S D
6. Structured Descriptive Data S S D
7. Light-weight Extensibility No No Yes
8. Scenario 1 No No Yes

pose a transformation (different rules) with annotations, RAS++ is limited to the

representation of instances of TransformationArtifactFrag. However, through

extensibility mechanisms, it is possible to represent annotated pieces of a transfor-

mation as well. Thus, we conclude that RAS++ is representative for pivoting MTI

approaches.

Scenario 3-OO and Database Representations

RAS++ can be characterized as an Architectural Description Language (ADL) for

Object-Oriented (OO) and Relational Database Perspective (RDP) representations.

It was not our initial intent to introduce a new ADL for OO and RDP. However, we

found contributions from ADLs for O.O. and RDP in tool chain approaches, which

required descriptions for MDE Artifacts with properties from these two develop-

ment concepts. As suggests our mining of ReMoDD repository, the distinction of

components built in support for one or other development paradigm is important

for decision making. Thus, this is the reason why we inserted these properties in

RAS++.

The result is an hybrid representation for these two distinct concepts, as shown

in a comparison from Table 5.20. RAS++ matches properties from some of the

more important representations used in four toolboxes presented in Table 5.21. We

selected UML, Ecore, JDT, BrM (Conceptual, Logic and Physic models) and RDP

(only Physic model) for demonstration because they show how hybrid a tool chain

can be in terms of artifact typing. For example, when analyzing RDP, we considered

all the reported toolboxes discussed by BATORY et al. (2013b). In this paper,

Batory reports success on the use of RDP with MDE, where model transformations

are built on Java programs and database queries, thus introducing RDP in the

context of tool chain integration. This demonstrates that artifact typing in RAS++

is relevant for representations in whatever is considered in the literature as “models”.

Therefore, by using RAS++, one can use OO or RDP properties in tool chains and,

additionally, properties from MDE Artifact Types.

175



Table 5.20: Property table 4: Hybrid properties from representations for OO and
RDP

Property UML Ecore JDT BrM RDP RAS++

1. Package (OO) Yes Yes Yes No Yes Yes
2. Interface (OO) Yes Yes Yes No Yes Yes
3. Datatype (OO and RDP) Yes Yes Yes Yes Yes Yes
4. Operation (OO) Yes Yes Yes No Yes Yes
5. Class (OO) Yes Yes Yes No Yes Yes
6. Property (OO and RDP) Yes Yes Yes Yes Yes Yes
7. Table (RDP) No No No Yes Yes Yes
8. View (RDP) No No No Yes Yes Yes
9. Index and Constraints (RDP) No No No Yes Yes Yes
10. Enumeration (OO and RDP) No Yes Yes No Yes Yes
11. Inheritance (OO and RDP) Yes Yes Yes Yes Yes Yes
12. Realization (OO) Yes Yes Yes No Yes Yes
13. Dependency (OO) Yes Yes No No No Yes
14. Association (OO and RDP) Yes Yes No Yes Yes Yes

Table 5.21: Hybrid toolboxes used for comparison with RAS++

Study Paper Title Year

UML www.omg.org/spec/UML/2.5/ Unified Modeling Language Version 2.5 2015
Ecore www.eclipse.org/ecoretools/ Eclipse Ecore Tools 2017
JDT www.eclipse.org/jdt/ Eclipse Java development tools (JDT) 2017
BrM brmodeloweb.ufsc.br BR-Modelo Web 2017
RDP (BATORY et al., 2013b) Teaching Model Driven Engineering from a Rela-

tional Database Perspective
2013

It is important to notice that these hybrid properties are not only important for

tool chain representations. For example, an ongoing work is replacing UML from the

core implementation in RDL tool support (LUCAS et al., 2017; OLIVEIRA et al.,

2011). This is allowing us to apply reuse processes independently from the represen-

tation language adopted for representation of Object Oriented Frameworks (OOF).

Through this study, our goal is to simplify the reuse scenario in OOF Instantiation

(or OOFI). This is possible by using RAS++ as the core representation in Reuse

Tool (OLIVEIRA et al., 2011), and by applying converters from RAS++ to other

representations such as UML, Ecore, Eclipse JDT, and others.

Scenario 4-Tool Chain Representations

Since tool chain representation languages are built on some of the previous prop-

erties, this section makes use of previous Scenarios to demonstrate some hybrid

approaches for tool chain. In the following, we compare RAS++ with the state

of the art resultant from literature reviews for tool chain approaches, as shown in

Table 5.14.

Model-Driven Service Instantiation (MDSI)

The scenario for MDE adoption is heterogeneous and requires the use of sev-

eral tools not based on models. Model-Driven Service Integration (MDSI) classi-

176

www.omg.org/spec/UML/2.5/
www.eclipse.org/ecoretools/
www.eclipse.org/jdt/
brmodeloweb.ufsc.br


Table 5.22: Property table 5: Model-Driven Service Instantiation (MDSI)

Property TC05 TC06 RAS++

1. Filters (MT components) Yes Yes Yes
2. Ports (Parameters in RAS++) Yes No Yes
3. Artifact Ontology No Yes No
4. MDE Settings No No Yes
5. Any Type of Artifact No Yes Yes
6. Artifact Federation No Yes Yes
7. Light-weight Extensibility No No Yes
8. Scenario 1 No No Yes
9. Scenario 2 No Yes Yes
10. Scenario 3 - OO No No Yes
11. Scenario 3 - RDP No No Yes

fies MDE Settings aiming at supporting the integration of MDE Artifacts through

ports (BIEHL et al., 2014) and filters (ZHANG, 2015). In some proposals for

MDSI, MDE Settings are also embedded with concepts for Software as Services

(SaaS) (BASCIANI et al., 2014a), which allow the automatic access to MDE Arti-

facts on the cloud. These proposals are complementary to MTI because they consider

techniques for integration of tools, while DSLs in the first classification only consider

the catalog of MDE Artifacts. The scenario for MDE adoption is heterogeneous and

also requires the use of several tools not based on models. An effective solution is to

integrate these tools in MDE Settings (tool chain (AHO et al., 2009)) through a DSL

for tool adapters. Related with these concepts, instantiation of tools through Soft-

ware as Service (SaaS) (BIEHL et al., 2011, 2014; ROCCO et al., 2015; WEIQING

et al., 2012; ZHANG and MOLLER-PEDERSEN, 2013; ZHANG et al., 2012) gained

attention in recent years. Aforementioned works propose the transformation from

MDE Settings to specifications based on the Open Services for Lifecycle Collabo-

ration (OSLC) (ELAASAR and NEAL, 2013), thus enabling the representation of

MDE Settings in the cloud and instantiation through service connectors.

Table 5.22 compares three approaches for MDSI. In this sense, RAS++ use the

term “parameter” instead of “port” to represent IO and “transformation component”

of “component” instead of “filter” to represent some data transformation. In compar-

ison with MDSI representations, such as TIL (BIEHL et al., 2014), RAS++ is more

expressive. On the other hand, authors in (ZHANG and MOLLER-PEDERSEN,

2014) argue that artifact ontology is fundamental for classifying MDE resources. We

credited this need for a repository/service provider, thus not included in RAS++.

Artifact Typing

Artifact Typing in MDE (MDE-AT) classifies approaches that allow the represen-

tation of artifacts in a technical-level (VIGNAGA et al., 2013) for consistency check.

The intent of artifact typing is to provide data to handle valid compositions through

parameter matching (YIE et al., 2012), as well as check validity in the co-evolution

177



Table 5.23: Property table 6: Artifact Typing in MDE (MDE-AT)

LEGEND [Detailed=D], [Flexible=F], [S=Superficial]

Property TC07 TC08 RAS++

1. Megamodel Yes No Yes
2. MetaMetamodel Yes Yes Yes
3. Metamodel Yes Yes Yes
4. Ad-hoc MetaDefiniton No No Yes
5. Model Yes Yes Yes
6. Component No No Yes
7. Transformation Component Yes Yes Yes
8. MDE Settings S S D
9. Toolbox Yes Yes Yes
10. Abstraction for Serialization No No Yes
11. Light-weight Extensibility No No Yes
12. Scenario 1 No No Yes
13. Scenario 2 No No Yes
14. Scenario 3 - OO No No Yes
15. Scenario 3 - RDP No No Yes

of properties such as models, metamodels and transformations (VIGNAGA et al.,

2013).

Approaches for artifact typing, as illustrated in Table 5.23, have a similar goal to

asset specifications. Existing proposals for MDE-AT are less rich in terms of repre-

sentation of MDE Settings than the extensions that we have presented in RAS++.

Moreover, RAS++ is based on concepts of assets, which means that reuse struc-

tures discussed in Table 5.17 increment existing approaches for MDE-AT for the

globalization of information.

Model Transformation Chain

Model Transformation Chain (MTC) is the most common classification and al-

lows the representation of semantics for multi-lifecycle. This classification includes

DSLs that represent properties for model transformations and metamodels in a ver-

ifiable execution order (BASCIANI et al., 2014b; YIE et al., 2012) and model weav-

ing (JOUAULT et al., 2010).

The main goal of approaches for MTC is to check consistency in substitutions

made in a representation of model-based operations. Table 5.24 compares RAS++

with two recent proposals for MTC, which propose the implementation of reuse

mechanisms, out of the scope of a pivotal representation language. Thus, in terms

of representativeness, RAS++ is well mapped for concepts needed in DSLs for MTC,

in addition to representing a bigger diversity of data for scenarios 1, 2 and 3.

Component Models for MDE

Approaches for Component Model for MDE (CMMDE) intent to represent

tool chains through reusable components, including properties for components, sub-

components, connectors (BASSO et al., 2014e; CUADRADO et al., 2014) and also

properties for software product lines implementations (ARANEGA et al., 2012a).

Toolboxes in support for CMMDE allow the adaptation of components with concepts

178



Table 5.24: Property table 7: Model Transformation Chain (MTC)

Property TC09 TC10 RAS++

1. Parameter Matching (Execution) Yes Yes No
2. Substitutability (Execution) Yes No No
3. Parameter Matching (Representation) Yes Yes Yes
4. Substitutability (Representation) Yes No Yes
5. Matching/Repository Rules No Yes No
6. Heterogeneous Parameter Typing No No Yes
7. Light-weight Extensibility No Yes Yes
8. Scenario 1 No No Yes
9. Scenario 2 No No Yes
10. Scenario 3 - OO No No Yes
11. Scenario 3 - RDP No No Yes

Table 5.25: Property table 8: Component Model for MDE (CMMDE)

Property TC11 TC12 RAS++

1. Runtime/Dynamic Adaptation Yes Yes Yes
2. Fragmentation & Composition Yes No Yes
3. Feature Model Yes Yes No
4. Sub-typing No Yes No
5. Instruction for Reuse No No Yes
6. Light-weight Extensibility Yes No Yes
7. Scenario 1 No No Yes
8. Scenario 2 Yes Yes Yes
8. Scenario 3 - OO Yes Yes Yes
9. Scenario 3 - RDP No No Yes

for software factories.

Table 5.25 shows FOMDA DSL (TC11) and Bentõ DSL (TC12) in comparison

to RAS++. The first two lines show two reuse mechanisms implemented by these

DSLs not supported in our work. In terms of representation, Bentõ DSL is limited

to the execution of Feature Relationship of type XOR, while in the current format

of RAS++ the Feature Model cannot be represented. Instead, our DSL has a more

generic purpose in reuse, including instruction based on Variability Points and Usage

Tasks through reusable assets. Considering that the bindings are reuse mechanisms

out of the scope of a pivotal language, sub-typing that is used in Bentõ DSL is not

included in RAS++. If needed, sub-typing can be represented as an individual arti-

fact using extensibility mechanisms in RAS++. Thus, in our analysis, the absence

of sub-typing in RAS++ does not compromise the aspect of representation of MDE

Artifacts & Settings.

Scenario 5-Pivotal Representations

Except for the definition, few related representations are found in toolboxes for

Higher-Order Transformation (HOT) shown in Table 5.26. This definition

includes two types of works: for execution (GORP et al., 2009) and for adapta-

tion/reuse of model transformations. This way, we considered only the represen-

179



tational elements from those proposing binding specifications in orchestrations of

model-based operations in higher-level than ATL, such as VIATRA2 (HORVÁTH

et al., 2006) and others (BASCIANI et al., 2014a; CUADRADO et al., 2014). Sim-

ilarly as in MTCs, HOT includes elements usually specified in textual DSLs for

chaining of model-based operations.

Table 5.26: Contributions with representations used for scenarios 5 and 6

Study Paper Title Year

TC13 (HORVÁTH et al., 2006) Automatic generation of platform-specific transformation 2006
TC14 (BASCIANI et al., 2014b) Automated Chaining of Model Transformations with In-

compatible Metamodels
2014

TC15 (POLGÁR et al., 2009) Model-based Integration, Execution and Certification of
Development Tool-chains

2009

TC16 (MACIEL et al., 2013) Supporting model-driven development using a process-
centered software engineering environment

2013

TC17 (LUCAS et al., 2017) CollabRDL: A language to coordinate collaborative reuse 2017

Table 5.27 shows RAS++ in comparison to pivotal representation approaches

built on HOT concepts. As differential, HOT approaches are used for automatic

generation of model transformations based on meta-data (metamodel). This reuse

mechanism illustrated in Line 1 is very interesting, but it is out of the scope of

RAS++, thus a limitation. Our justification is that HOT is a research topic more

related to tool support for model transformation languages and barely related to the

conceptual role of a pivotal language for MDE Artifacts & Settings.

Scenario 6-Software Process Integration

Although representations for process engineering are not included in this thesis,

neither in RAS++, this scenario for tool chain is used for comparison. Properties

here discussed align next representations to be introduced by our research group in

RAS++. Table 5.28 compares RAS++ with approaches for integration of MDE Ar-

tifacts into Process Modeling Languages (PMLs) or Software Development Process

(SDP): MDE-SDP. Line 1 shows a first difference: RAS++ is for representation, not

for execution. Existing approaches, including (VARA et al., 2014), allows the trace

of artifacts along execution. Our DSL has a more general purpose than to represent

SDPs. Anyway, in (BASSO et al., 2014b) and prisma.cos.ufrj.br/wct/tr07.pdf,

we introduced in RAS++ workflow elements as an ongoing work. Thus, in terms of

representativeness, RAS++ can be used to represent MDE-SDP as well.

5.3.4 Conclusions

Based on our previous characterization studies for tool chain contributions, this

chapter puts them side-by-side to evaluate “representativeness”. In this sense, we

180

prisma.cos.ufrj.br/wct/tr07.pdf


Table 5.27: Property table 9: Pivotal Representations

Property TC13 TC14 RAS++

1. Conceptual Representation of MTs Yes Yes No
2. Semantics & Syntax for MTC Yes Yes Yes
3. General MDE Artifacts & Settings No No Yes
4. Light-weight Extensibility Yes Yes Yes
5. Scenario 1 No No Yes
8. Scenario 2 No No Yes
7. Scenario 3 - OO No No Yes
8. Scenario 3 - RDP No No Yes

Table 5.28: Property table 10: MDE & Software Dev. Processes (MDE-SDP)

Property TC15 TC16 TC17 RAS++

1. General artifacts Yes Yes Yes Yes
2. Workflow elements Yes Yes Yes Yes
3. MDE Artifact Typing Yes Yes No Yes
4. Instruction for Reuse No No Yes Yes
5. Pattern Classification No No No Yes
6. Light-weight Extensibility Yes Yes No Yes
7. Reuse actions No No Yes No
8. Scenario 1 No No No Yes
9. Scenario 2 No No No Yes
10. Scenario 3 - OO No No Yes Yes
11. Scenario 3 - RDP No No No Yes

presented six scenarios for coopetition in MDE as a Service, arranging such contri-

butions in specific intents for tool chain. Each scenario presents toolboxes allowing

integration of MDE Artifacts in some contexts, where a context can be a target

representation language, or a development environment, or a repository/database

model. Then, inside each scenario, a property table is shown and compares at least

two toolboxes competing for adoption. Into the tool chain context and outside the

boundaries of each scenario, toolboxes can cooperate. Thus, some toolboxes are

complementary to help Software Engineers in integration processes for MDE.

So far, integration is considered feasible by researchers/developers of such tool-

boxes, but always considering the homogeneity for representation of data from their

own set of tool support. There is no support to integrate them all in a coopetition

scenario. Since previous chapter demonstrated that manual integration is costly,

automated integration through a pivot is an interesting solution. This requires the

selection of a pivot language to be used by converters.

In this sense, a wrong choice can imply in a undesired side-effect: loss of data

when applying automatic integration mechanisms. Representations from the stat-

of-art, presented here as a set of toolboxes and properties, are not representative

enough to be selected as pivot for conversions. This means that they can work

well for part, but not all, the 10 demonstrated intents in tool chain for MDE. In

this sense, RAS++ is more adequate since it is more representative than the other

181



options.

KRIPPENDORFF (2010) goes further and claims that “The disadvantage of a

pivot language is that each step of re-translation introduces possible mistakes and

ambiguities.”. Mistakes and ambiguities must be avoided in future implementations

of coopetition in MDE as a Service. A feasible solution is validate asset constructs,

as illustrates Figure 5.26, one of the advantages in building a pivot language as a

DSL generated with EMF (STEINBERG et al., 2008).

In this sense, we found that the following elements, discussed in details in the

Transformation phase, contribute for reducing mistakes and ambiguities inherent

from conversions built on a pivot language: 1) Well-formedness rules, expressed in

OCL constraints, allows validating objects built on RAS++ metaclasses; 2) The

grouping of common, but ambiguous properties (e.g., Filters versus Transforma-

tion Components, Ports versus Transformation Parameters, Parameter Types and

Artifact Types, and others), and; 3) Specific metaclasses for MDE Artifacts and

Settings with constructors found in real settings for tool chain. These are benefits

not found in asset-related contributions, thus points in favor to RAS++ in future

implementations of coopetition in MDE as a Service.

Finally, we conclude that RAS++ contains properties considered important by

many tool chain contributions. For this reason, it is more representative than tool-

boxes for integration. Thus, Software Engineers will minimize loss of data derived

from the execution of automatic conversions when selecting RAS++ as a pivot.

5.4 Thought Experiment

This section presents final remarks considering an analysis for approaches that also

could promote coopetition in MDE as a Service. For instance, this scenario is too

complex for evaluation through case studies, which would exceed, by a large amount,

the time available in a unique PhD. Thus, our best alternative to compare alterna-

tives is through a thought experiment (YEATES, 2004).

This study is organized as follows. Section 5.4.1 presents the study goal and

Section 5.4.2 the adopted research method. Section 5.4.3 depicts the analysis and

Section 5.4.4 draws conclusions.

5.4.1 Goal

Our goal is to reach some reasons why RAS++ should be considered in future imple-

mentations of coopetition, as describes Table 5.29. Our general research question is

Q9: Why adopt RAS++ in future implementations of MDE as a Service?

Likewise, we search answers to the following specific research questions:

182



Figure 5.26: Validation of asset representations.

• RQ1 - Why not simplify the scenario by using a unique MDE repository?

• RQ2 - Are we able to, by using the simplest scenario as possible, automatically

integrate assets for MDE into a tool chain?

• RQ3 - Is the use of model-to-model transformations, applied directly between

different MDE Settings, the best way for automatic integration?

• RQ4 - Why manual integration is not an interesting solution for implementa-

tion of coopetition in MDE as a Service?

• RQ5 - Why haven’t you elected a pivotal language from the state of the art?

• RQ6 - Without a common representation language, what is the consequence

for future implementations of coopetition in MDE as a Service?

Table 5.29: Thought experiment goal of the motivated scenario
Analyze The scenario for coopetition in MDE as a Service

For the purpose of Characterizing

Regarding Challenges for implementation

From the viewpoint of Researcher

In the context of Development costs for connectors.

183



Figure 5.27: Issues for integration found in hybrid assets.

5.4.2 Research Method

We applied a thought experiment (BROWN and FEHIGE, 2017). According

to YEATES (2004), a thought experiment is the way to perform a structured process

of intellectual deliberation, speculating about potential consequences or antecedents

of some specifiable problem domain. Thus, we present our findings built upon pre-

vious experiences, assessments and mappings from the literature by exercising what

is also expected from a PhD student: the logical thinking.

5.4.3 Analysis

In order to answer these questions, Figure 5.27 shows four different scenarios that we

have been considering for execution of though experiment. These scenarios range a

simple integration issue to more complex ones, thus reflecting the current challenges

for implementation of coopetition in MDE as a Service.

RQ1 - Why not simplify the scenario by using a unique MDE reposi-

tory? Because a unique repository/platform will not reduce the difficulty for

implementation. The usage of a unique repository (or MDE platform) is suggested

as a possible a way to obtain collaboration in MDE (ROCCO et al., 2015). Since

ReMoDD (FRANCE et al., 2007) was proposed with such intent too, and based

on the ReMoDD experience after the data mining discussed in previous sections,

we conclude that the state of the practice will not make a big effort to promote a

unique infrastructure in support for assets. For example, considering the simplest

scenario for coopetition illustrated in Figure 5.27 (A), which considers ReMoDD

as the unique platform for assets, an implementation for MDE as a Service could

184



take place right now. Besides, differently from Amazon that is a leader in terms

of platform for bookstore (RITALA et al., 2014), we have no leadership in terms

of MDE repository that plays the role of a platform where coopetition takes place

like Amazon web services. Thus, the practice shows us that simplify the scenario by

electing a unique repository is not the solution neither is this under consideration

by research community.

RQ2 - Are we able to, by using the simplest scenario as possible,

automatically integrate assets for MDE into a tool chain? Considering the

simplest scenario for our implementation, assume that FOMDA DSL is used for

integration of tool chains. For us, this is the ideal scenario since we are experts

in this language and associated tool support. In this scenario, Software Engineers

analyze Artifacts shared in ReMoDD, as illustrated in Figure 5.27 (A.1), acquire and

introduce some in tool chains built on a unique format (FOMDA DSL), as illustrated

in Figure 5.27 (A.2). This sequence of actions seems to be easy to implement, as we

have first proposed in (BASSO et al., 2013c). However, we have found that even in

this simplest scenario, it is still not possible to apply automatic integration of MDE

Artifacts into the FOMDA DSL, since artifacts in ReMoDD are hybrid. Thus, due

to the lack of a common representation in ReMoDD for technicalities needed in

FOMDA DSL, this implies in manual effort along executions of three preliminary

phases for tool chain.

ReMoDD does not represent technicalities needed in FOMDA DSL, but we found

that MDEForge (ROCCO et al., 2016) allows the representation of some. For this

reason, MDEForge is best tailored for MDE Artifacts and Settings than ReMoDD.

In this case, a partial integration is possible, but not without loosing information.

An alternative would be electing a more representative language as pivot for trans-

formations (CUADRADO et al., 2014), resulting in RQ3.

RQ3 - Is the use of model-to-model transformations, applied directly

between different MDE Settings, the best way for automatic integration?

The answer is no, because the real scenario is too much heterogeneous, im-

plying in loss of information too.

The scenario shown in Figure 5.27 (B) reflects the reality that we found in terms

of heterogeneity. In (1) many options for repositories (e.g., SEMAT, ReMoDD,

GEMOC, and others, such as Eclipse MDT and the embryonic MDEForge) are

available. In (2) many representations for MDE Settings are also available. In this

regard, it is needed to consider that: a) MDE Artifacts are always tied to specific

representations from reuse and execution mechanisms (1 or 2), and b) properties

from representation languages are not the same.

In an hybrid reuse scenario like this, implemented without a common representa-

tion language, an automatic integration would demand manual conversions from all

185



the possible representations for artifacts. Therefore, a second issue for coopetition

in implementation of MDE as a Service is that, currently, too many hybrid repre-

sentations are available, making direct conversions less feasible as more and more

representations are included in the problem domain.

RQ4 - Why manual integration is not an interesting solution for im-

plementation of coopetition in MDE as a Service? If the usage of direct

conversions is somehow not feasible, manual transformations are even worst for

integration. So, the simple answer is: due to reuse costs involved, manual

integration in this scenario is not the ideal. In this sense, a manual effort for

conversion between representations for MDE Artifacts and their Settings will imply

in extra reuse costs (BECKER et al., 2007). A possible solution to reduce reuse costs

is by implementing a reuse mechanism that connects this hybrid reuse scenario with

an homogeneous local reuse scenario. This is not possible because, currently, the

reuse opportunities are distributed in many repositories. Another solution would

be automatic conversion between different representations for MDE Artifacts and

Settings, presented before, which can be implemented though model-to-model trans-

formations (BÉZIVIN, 2005), but too many transformations are needed to integrate

all possible representations. This issue tends to increase in complexity when a new

representation is added into the coopetition scenario.

RQ5 - Why haven’t you elected a pivotal language from the state of

the art? In previous experiences (BASSO et al., 2014e), we found that electing a

pivotal language does not reduce the complexity for integration because

languages in the state of the art are not representative enough. For exam-

ple, Figure 5.27 (C) illustrates the last implementation alternative. In this scenario,

coopetition is assisted through the execution of bi-directional model-to-model trans-

formations by electing a pivot (one of the options). In this case, it is needed the

development of connectors for all the possible representations with the selected pivot.

As discussed earlier, this is a better solution than a manual integration approach.

However, the lack of an expressive representation language in the state of the art

implies in loss of information across conversions, thus a undesirable consequence for

automatic integration.

Besides, even when applied with model transformation reuse concepts (KUSEL

et al., 2015), model-to-model transformations do not cover the handcrafted represen-

tations for MDE Artifacts & Settings. For example, in a previous case study (BASSO

et al., 2014e), we observed that bi-directional transformations with modern model

transformation engines are not always applicable, such in conversions from FOMDA

DSL to settings in AndroMDA (MONTEIRO et al., 2014a) that are represented in

XML1. In this case, for each domain model represented in FOMDA DSL, we devel-

1AndroMDA web page <http://andromda.sourceforge.net/>

186



oped four model transformations to integrate MDE Artifacts in settings distributed

in four XML representations. Thus, the real scenario presents too many possible

combinations, exploding the number of model transformations to a bigger number

than found in a quadratic combinatorial explosion.

RQ6 - Without a common representation language, what is the conse-

quence for future implementations of coopetition in MDE as a Service?

The consequence is an increasing difficulty for implementation of coopetition in MDE

as a Service, since we are falling in a quadratic combinatorial explosion is-

sue. This means that even recent proposals for model transformation reuse, such as

Bentõ DSL (CUADRADO et al., 2014) that is focused in generating model-to-model

transformations from higher-level concepts, has a delimited scope for conversion and

does not cover the reuse of settings tied to artifacts. Meanwhile, many other settings

are reported to be represented in database structures (BASCIANI et al., 2014b), tex-

tual files (HORVÁTH et al., 2006), code (VÖELTER and GROHER, 2007), Excel

Spreadsheets (RESCHENHOFER and MATTHES, 2015). These are relevant rep-

resentations associated with MDE Artifacts that, in the context of a future MDE

platform (COMBEMALE et al., 2014), need a common format for reuse in global

scale.

Hence, the absence of a common format would imply on the development of

many converters for integrating architectural representations of these settings. For

example, in a worst case scenario (i.e., using ad-hoc representations for settings),

the implementation of MDE as a Service would imply in combinatorial explosion

for conversions: i.e., needing the development of at least (N*(N-1))/2 converters,

where N is the number of representation formats.

5.4.4 Conclusions

It is difficult to reach common representations in a big scenario without incurring

in basics. For example, in order to be non restricted to specific MDE Artifacts, Re-

MoDD adopted only classifications to represent assets (FRANCE et al., 2007). As

an undesired result, ReMoDD’s assets are impossible to be used by conversions to

allow the automatic integration of asset content into tool chain representations. An

alternative that could help to reduce the number of combinations is the advent of

a more representative and common Knowledge Base (KB) (MUSSBACHER et al.,

2014). A KB has been pursued by the MDE community since 2007 with the Re-

MoDD and, more recently, by the initiate GEMOC (COMBEMALE et al., 2014).

SEMAT (JOHNSON et al., 2012) is another example, an initiative that is creating

a KB in Software Engineering using the Essence (OMG, 2015) as a core/pivotal rep-

resentation language. SEMAT is limited for specifications of methods, it is out of

187



Figure 5.28: Integration effort tendency in tool chain for the next 10 years.

the scope in this thesis and it cannot be used to represent data from MDE Artifacts

and Settings. GEMOC, on the other hand, is mirroring on the SEMAT, but keeping

focus on the MDE Artifacts, which is more directed for collaboration in the MDE as

a Service. Although we considered GEMOC proposal important to centralize assets

for MDE better than currently is observed in ReMoDD, GEMOC is also limited to

play the role of a pivotal language in a coopetition scenario for MDE as a Service.

In this point of our analysis, we make a parallel to the study presented in pre-

vious chapter. Figure 5.28 shows a tendency for development of connectors with

a perspective for the next 10 years. Our conclusion is that, so far and except for

RAS++, there is no adequate language for pivoting the 69 representations found

in our literature mappings. Without an appropriate language, one could fall in a

quadratic combinatorial issue, where these 69 representations would imply in 2.346

combinations to enable coopetition today. In 10 years from now, this effort increases

to more than 11.000 combinations. This is a considerable effort for development that

hampers initiatives currently and certainly will hamper in the future. We found that

this number of combinations is not currently feasible. Therefore, the necessary ef-

fort for development of connectors without a pivotal language would scare away

cooperation initiatives.

Another parallel is to our characterization studies (BASSO et al., 2015b,

2016d, 2017a). Considering that the development of model transformation is

costly (HUTCHINSON et al., 2011), one should avoid this issue whenever possi-

ble. For example, along four years (BASSO et al., 2014a) Adapit team developed

less than 400 model transformations in a local implementation for MDE as a Service,

i.e., without any integration issue derived from coopetition scenarios. Based on the

188



analyzed tendency, coopetition is out of consideration for implementation. On the

other hand, an integration supported by 68 connectors allowed by RAS++ is en-

couraging, as well as the tendency for a linear combination observed in Figure 5.28,

which is stable as new representations are introduced into the integration issue.

So ... Why adopt RAS++? One should adopt RAS++ because it reduces

the problem to a linear combinatorial problem, thus more manageable and feasible

in terms of integration for tool chain. As illustrates Figure 5.27 (C), connectors are

essential for coopetition, presenting a lower cost for integration than in manual effort

for representation of tool chains (BASSO et al., 2014e; CUADRADO et al., 2014).

However, due to the heterogeneity of scenario, a direct conversion between candi-

date representations is not the ideal. Instead, a common representation language

(RAS++) simplifies this implementation, as illustrates Figure 5.27 (D).

A final consideration is that, for other representations than tool chain, Software

Engineers would need to evolve RAS++. Our contribution is limited and similar

endeavors should consider other scenarios and representations.

189



Chapter 6

Conclusions

I believe in intuitions and

inspirations...I sometimes FEEL

that I am right. I do not KNOW

that I am.

Albert Einstein

6.1 Summary

MDE Artifacts are produced for diverse intents, such as reuse in intra and inter-

organizational contexts. Some MDE Artifacts are shared globally with intents to

share knowledge or to support new business opportunities through cooperation and

competition (coopetition). In order to be used in software projects or processes,

these artifacts are typically configured in chain of tool, or tool chains. Despite a

large availability of tool support, the literature agrees that it is always very dif-

ficult to integrate these artifacts into a tool chain. Recent evidence suggests the

need for preliminary work/phases on tool chain that, in addition to technical in-

formation associated with MDE Artifacts, should consider descriptive information.

However, there is no material in the literature reporting on what information should

be represented. Thus, requirements for execution of these preliminary phases are not

properly introduced by the current literature, thus characterizing an open research

topic for investigation.

In this sense, research on the MDE adoption has reported that several challenges

still hinder the delivery of a tool chain. It is acknowledged that, in a building pro-

cess for tool chain, Software Engineers perform tasks such as classifying, selecting,

adapting, and introducing MDE Artifacts through chains that fit to the requests

from target contexts. In this sense, target contexts can be software projects, teams,

companies, technologies, and others. Since a tool chain is considered as a final

190



product in this thesis, our contributions are for supporting earlier phases. There-

fore, we characterized three preliminary phases to the definition of the tool chain:

Specification, Acquisition and Transformation.

As our main contribution, we built a common representation language for the

execution of these phases: the RAS++. This language is result of a mapping of

metaclasses and properties found in many representations adopted in scenarios sim-

ilar to MDE as a Service. To the Specification phase, we considered properties from

two asset specification languages: RAS and AMS, thus mapping requirements for

representation of MDE Artifacts in modern repositories. To the Acquisition phase,

we have considered data for decision making from different sources, thus mapping

properties that bring coopetiton in MDE as a Service including classifications for

MDE Artifacts and in representations adopted in SECO approaches, with benefits

and drawbacks discussed in Section 6.2.2. The last phase is called Transformation

and allows the representation of technical data for tool chain in assets, with an

analysis of representativeness discussed in Section 6.2.4.

Through these phases, we have successfully tested RAS++ in real settings: two

scenarios by mining homemade assets and one global reuse scenario by mining Re-

MoDD repository. With this, we conclude that RAS++ is representative and rel-

evant for one MDE repository proposed by experts in the area. Besides, to reach

relevant metaclasses and properties in RAS++, an extensive research mapping was

carried out. To the Transformation phase, for example, we had to consider diverse

tool chain representations adopting hybrid reuse mechanisms. We found that MDE

Artifacts are connected through representations/DSLs characterized by MDE Set-

tings. In some sort of tool support, reuse mechanisms for tool chain allow you to

specify hybrid properties such as chains of transformations and their components,

processes and their tasks, ports and interfaces of integration, as well as variability

associated with models, metamodels and transformations. Therefore, RAS++ was

built over data extracted from reliable data sources.

By using MDE Settings, a reuse or integration mechanism implements operations

for introducing artifacts in target contexts. Reaching common representations in this

matter required a big effort for mapping of common technical properties and intents

from tool support. For example, such operations also depend on the intentions of

those mechanisms, which means that they can cooperate in a tool chain instantiation

process. Some proposals for tool support aim at assisting the specification and

adaptation of software development process models, others in the reuse of model

transformations, some in the consistency check in the integration of more than one

DSL in a chain of transformations, among other intentions. These tools can be

divided in two field of studies: system engineering and process engineering. Due to

the focus of this thesis, the last field of research is not considered in our mapping.

191



We also found that, currently, existing tool chain initiatives neglect preliminary

approaches in the literature of the area. We found only recently research positions

claiming the importance of analysis of descriptive information in addition to the

technical information adopted in tool chain reuse mechanisms. Technical data as-

sociated with the artifacts and their configurations are also critical to succeed, thus

needing a link between technical and descriptive data. This link is missed in the

literature, which could be supported by a common representation. However, asset

representations are too much general and MDE Setting DSLs are too limited to

be used as a common representation language. Thus, we proposed a connection be-

tween these two ways to represent data associated with MDE Artifacts, with benefits

discussed in Section 6.2.2.

Our proposal simplifies the execution of preliminary phases for tool chain.

Though preliminary studies, we found that the diversity of representations for tech-

nicalities and description of MDE Artifacts hamper the use of automatic techniques

for tool chain (i.e., the use of model transformations). This is because too many

transformation are needed to integrate all the investigated scenario. This may be

a reasonable explanation why Software Engineers take manual approaches to inte-

gration. As a contribution to this issue, a pivotal or common language like RAS++

allows the use of automatic techniques through model transformations. RAS++ can

represent data from various MDE Artifacts found in the repositories and the vari-

ous representations for MDE Settings used in reuse mechanisms for the tool chain.

Therefore, RAS++ is characterized as a pivotal language, reducing a quadratic com-

binatorial issue for integration into a linear issue, as discussed in Section 6.2.2.

We introduced concepts in reusable assets that are mapped to many proposals for

MDE Artifacts and Settings found in the literature. This makes our contribution

different from all the other known representation languages proposed in software

engineering. We conclude that RAS++ is representative for the hybrid assets, as

motivated in this thesis. Existing languages are less representative for our long term

goal in MDE as a Service: implement coopetition. Thus, the operational definition

for a common representation language reflects the true meaning of the theoretical

concept from hybrid representations here discussed.

6.2 Discussions

6.2.1 Contributions

Our main contributions are:

• Evidences suggesting the need of a common/pivotal representation

language. These evidences are exclusive contributions from this thesis, thus

192



not found in the current literature.

• A new DSL called RAS++. This language promotes some benefits not

allowed by other DSLs and proposals discussed in the Related Works section.

• Characterization of MDE as a Service. Our publications discussing MDE

s Service allows: 1) A better understanding of issues hampering the introduc-

tion of MDE in contexts of start-up companies; 2) A better understanding of

reuse mechanisms that gave good results in implementation initiatives, and;

3) Benefits and drawbacks found in practice.

Our secondary contributions include:

• Experience reports. This research is constructed based on an insight dis-

cussed in three software reuse disciplines, in 2012, uttered by prof. Cláudia

Werner. In the occasions, some issues for introduction of MDE in software

development companies have been reported. In the absence of reports in the

literature, a contribution derived from this thesis is a set of experience reports

for challenges in conducting real MDE-based software processes.

• Mined data. In order to evidence these issues, it was mined different elements

from five real MDE-based software projects developed in three companies that

used a specific tool support for implementation of MDE as a Service. Besides,

it was mined data from the ReMoDD repository. These studies not only proved

that MDE as a Service is a real scenario as provided data for future analysis.

• Development of new tools in support for RAS++: 1) A prototype to

deploy the content of assets in DSLs to MDE Settings and to Eclipse IDE;

2) A prototype for automatic retrieval of metadata in reusable assets, and; 3)

A prototype with features for publishing and downloading assets to/from a

global repository conforms to RAS.

• Small advance in integration of RAS++ with an integration lan-

guage from our research group (RDL). Properties introduced in RAS++

in support for the Transformation phase are not restricted for tool chain sce-

narios. In this sense, we started some tests for use of RAS++ as a common

representation language in representations of object oriented assets. So far, it

is possible to integrate RAS++ with RDL (OLIVEIRA et al., 2011), allowing

RDL an independence of representation languages for OO programs (UML,

Ecore, Source Code, JDT, and others). Thus, besides tool chain, we tested

RAS++ as a pivotal language on the top of reuse processes for Object Oriented

Framework Instantiation (OOFI) (LUCAS et al., 2017).

193



• Improvements in previous tool support. It was possible to improve three

tools developed before this PhD: WCT, FOMDA DSL and MockupToME.

6.2.2 Benefits

RAS++ can foment new initiatives through some benefits associated with a pivotal

representation. This language must connect two reuse scopes: 1) abstractions of

MDE Artifacts and also their physical content are stored in database structures.

These structures are representations found in the literature as metamodels, thus

belonging to a set of languages “A”; 2) the state of the practice that presents several

DSLs for MDE Settings, generalized as a set of languages“B”. These languages allow

to introduce integrated artifacts in target context for adoption in, what we defined

as, a first reuse scope of MDE artifacts.

In a third reuse scope, RAS++ complements the state of the art by connecting

MDE Artifacts and with MDE Settings with the following benefits:

Unification of Representational Concepts

Representational concepts from consumers and providers of MDE Arti-

facts and Settings. The state of the art presents contributions that are associated

with repositories or with execution of model-based operations. Abstracting these

representations for a level of assets allows to manage this scenario with data used

by consumers and providers of artifacts. Besides, bringing assets into a design issue

instead of database structures makes the development of tool support easier. This

is because we can now use several other tool support in MDE, managing represen-

tational issues in models. Thus, we cannot impose limits for contributions that will

come up from this work.

Coopetition through a common language. The execution of any coopetition

scenario requires a common language shared by companies/professionals (RITALA

et al., 2014). There is no common language for coopetition in MDE as a Service. For

example, the representation of MDE Artifacts is usually associated with a setting,

which are limited to consider elements from assets discussed for Specification and

Acquisition. This makes the artifact dependent on a specific representation and, in

the same way, hampers the usage of a MDE Setting DSL as a common language.

Instead, a common representation language would allow a coopetition through com-

mon properties from different DSLs, thus scaling the usage of MDE Artifacts &

Settings in at least three phases: Specification, Acquisition and Transformation.

Generality for structural features. Because these phases are classified in

the MDE context, RAS++ should be capable of representing abstractions for MDE

194



from all these types of artifacts as well. This is demonstrated through asset repre-

sentations used along this thesis.

Independence from a repository vendor. Another advantage in specifying

information in assets is that it is independent from a repository vendor. In addition

to RAS and AMS, RAS++ supports both representations of assets. Thus, one can

change the service provider that hosts the artifacts without losing asset information.

Applicable to describe almost every type of MDE Artifact currently

stored in repositories/clouds. In our analysis of possibilities for integration, we

found that asset specifications can be used to describe any other component used in

MDE platforms, reuse repositories, service providers, the SEMAT knowledge base,

and others. One can consider for representation any technical solution (system) non

strictly for MDE, or even techniques and didactic materials for Software Engineering

in general. Some initiatives are using assets specified with AMS to describe tools

provided on the cloud such as database management systems, application servers

and custom applications. This is a benefit that can promote the implementation of

coopetition in MDE as a Service in the future.

Reduction for a Linear Combinatorial Issue

The current theory claims that a pivotal language“P”can enable integration between

different representations. For example, between “A” and “B”, with “A” being a tool

chain representation and “B” a transformation component representation. Thus, by

means of “P=RAS++”, the integration in a tool chain can occur by means of few

automatic transformations, since the different representations are integrated in a

common format “P”.

Due to common concepts, RAS++ allows to convert representations from a set

of languages “A” to a pivotal “P”, and then from “P” to another set “B”. According

to the current computational theory1, a pivotal “P” would avoid this issue with a

linear combination (N-1), rather than quadratic (N*(N-1))/2. Likewise, instead of

transforming directly from “A” to “B”, as found in the current stage of practice, we

propose reusers to develop model transformations from “A” and “B” to “P”.

6.2.3 Limitations

Since the evaluation in this thesis focused on ReMoDD resources, it is not possi-

ble to conclude on the feasibility of RAS++ for software ecosystem platforms and

other repositories. We believe that RAS++ is feasible regardless of the platform

used. However, unless we test our proposal in such scenarios, feasibility remains a

limitation.

1https://en.wikipedia.org/wiki/Pivot language

195



Another limitation of this thesis is that we are assuming that the metaclasses

for descriptor groups from the standard RAS are representative for search and com-

parison of assets in Acquisition phase. In a previous work, we claimed that a better

structure for descriptive information could benefit reusers for comparison of as-

sets (BASSO et al., 2016a), which is important for decision making in a coopetition

scenario for MDE as a Service. In new studies, we found properties for decision

making to be used in Acquisition phase (BASSO et al., 2017c), requiring now a

new investigation to the following open question: are these descriptive properties

better represented using existing classification mechanisms from RAS or using new

structures for RAS++?

To answer this open question, an empirical evaluation with an appropriate focus

group is needed. Due to this limitation in our study, representations for the Acqui-

sition phase are not included in this thesis, thus opening window for improvement

in future works.

We also started developing some integrations with repositories, but we suspended

them to focus on theory rather than on an engineering solution. For example, fo-

cusing on conceptualization of a common representation language instead of de-

velopment and evaluation of tool support and web services. Thus, future works

should overcome this limitation by enhancing and evaluating tool support, inte-

grating RAS++ with ReuseECOS repository (SANTOS and WERNER, 2012) (a

software ecosystem platform).

6.2.4 Threats to Validity

A threat to validity relies in our literature reviews shown in Table 6.1, which are

structured mappings. They should not be confused with systematic literature re-

views neither with systematic mapping studies, which include more than one re-

searcher in the overall process of analysis. Since a unique researcher decided which

property should be inserted in RAS++, this is an important threat to validity for

the entire contribution. Our rationale for executing structured mappings is that

so far we have had difficulties in bringing together researchers at the round table.

The difficulties are mainly due to the necessary technical level and the few sched-

ules available for the application of systematic mappings. To remove this bias, we

brought in three researchers into the follow-up of this research, now requiring a

re-execution of our studies with a systematic mapping protocol.

196



Table 6.1: Mapping studies for RAS++ conception
Id Title Available at

M01 Characterizing the “MDE as Service” Research Agenda prisma.cos.ufrj.br/wct/ms01.pdf

M02 Semantic Properties of Software Components prisma.cos.ufrj.br/wct/ms02.pdf

M03 Intents from Asset Platforms and Their Properties prisma.cos.ufrj.br/wct/ms03.pdf

M04 MDE Settings Intents and Their Properties prisma.cos.ufrj.br/wct/ms04.pdf

M05 Diversity of MDE Toolboxes and Their Uncommon Properties prisma.cos.ufrj.br/wct/ms05.pdf

M06 A Criteria for Representation of Technicalities from MDE Settings and Toolboxes prisma.cos.ufrj.br/wct/ms06.pdf

Id Review Type Research Protocol Reviewers Sources

M01 Structured Mapping Study Snowballing 1 Researchgate
M02 Ad-hoc Mapping Study Key-wording 1 ACM, Researchgate
M03 Ad-hoc Mapping Study Multi-vocal 1 Multiple voices

M04 Structured Mapping Study Key-wording 1 Scopus, Researchgate
M05 Structured Mapping Study Snowballing 1 Scopus, Researchgate
M06 Structured Mapping Study Coding 1 Previous mappings

197

prisma.cos.ufrj.br/wct/ms01.pdf
prisma.cos.ufrj.br/wct/ms02.pdf
prisma.cos.ufrj.br/wct/ms03.pdf
prisma.cos.ufrj.br/wct/ms04.pdf
prisma.cos.ufrj.br/wct/ms05.pdf
prisma.cos.ufrj.br/wct/ms06.pdf


References

AGNER, L. T. W., SOARES, I. W., STADZISZ, P. C., et al., 2013, “A Brazilian

Survey on UML and Model-driven Practices for Embedded Software De-

velopment”, J. Syst. Softw., v. 86, n. 4 (abr.). doi: 10.1016/j.jss.2012.11.

023.

AHO, P., MÄKI, M., PAKKALA, D., et al., 2009, “MDA-based tool chain for

web services development”. In: 4th Workshop on Emerging Web Services

Technology, WEWST ’09, pp. 11–18. ISBN: 978-1-60558-776-9. doi: 10.

1145/1645406.1645409.

AIGNER, M., ZIEGLER, G. M., 1998, Proofs from THE BOOK. Berlin, Heidel-

berg, Springer-Verlag.

AKYILDIZ, I. F., SU, W., SANKARASUBRAMANIAM, Y., et al., 2002,“Wireless

sensor networks: a survey”, Comput. Netw., v. 38 (March), pp. 393–422.

doi: 10.1016/S1389-1286(01)00302-4.

ALEGRÍA, J. A. H., BASTARRICA, M. C., QUISPE, A., et al., 2011, “An MDE

Approach to Software Process Tailoring”. In: 2011 International Confer-

ence on Software and Systems Process, ICSSP ’11, pp. 43–52.

ALVAREZ, C., CASALLAS, R., 2013, “MTC Flow: A Tool to Design, Develop

and Deploy Model Transformation Chains”. In: Workshop on ACadeMics

Tooling with Eclipse, ACME ’13, pp. 7:1–7:9. ISBN: 978-1-4503-2036-8.

doi: 10.1145/2491279.2491286.

ALVES, V., GHEYI, R., MASSONI, T., et al., 2006, “Refactoring Product Lines”.

In: 5th International Conference on Generative Programming and Compo-

nent Engineering, GPCE ’06, pp. 201–210. doi: 10.1145/1173706.1173737.

AMBLER, S. W., 2015, Approaches to Agile Model Driven Development

(AMDD). Technical report, Agile Modeling. Available at:

<http://www.agilemodeling.com/essays/amddApproaches.htm>.

198

http://www.agilemodeling.com/essays/amddApproaches.htm


AMS, 2014, 2014. “Asset Management Specification. Av. at <http://open-

services.net/wiki/asset-management/OSLC-Asset-Management-2.0-

Specification/>”. .

ANDERSSON, P., HST, M., 2008, “UML and SystemC - A Comparison and Map-

ping Rules for Automatic Code Generation”. In: Embedded Systems Spec-

ification and Design Languages, v. 10, pp. 199–209.

ARANEGA, V., ETIEN, A., MOSSER, S., 2012a, “Using Feature Model to Build

Model Transformation Chains”. In: 15th International Conference on

Model Driven Engineering Languages and Systems, MODELS’12, pp. 562–

578, a.

ARANEGA, V., ETIEN, A., MOSSER, S., 2012b, “Using Feature Model to

Build Model Transformation Chains”. In: Model Driven Engineer-

ing Languages and Systems, v. 7590, Lecture Notes in Computer

Science, Springer Berlin Heidelberg, pp. 562–578, b. ISBN: 978-

3-642-33665-2. doi: 10.1007/978-3-642-33666-9 36. Available at:

<http://dx.doi.org/10.1007/978-3-642-33666-9_36>.

ASZTALOS, M., SYRIANI, E., WIMMER, M., et al., 2011, “Simplifying Model

Transformation Chains by Rule Composition”. In: Dingel, J., Solberg,

A. (Eds.), Models in Software Engineering, v. 6627, Lecture Notes in

Computer Science, pp. 293–307. Springer Berlin Heidelberg. ISBN:

978-3-642-21209-3. doi: 10.1007/978-3-642-21210-9 28. Available at:

<http://dx.doi.org/10.1007/978-3-642-21210-9_28>.

AXELSSON, J., PAPATHEOCHAROUS, E., ANDERSSON, J., 2014, “Character-

istics of software ecosystems for Federated Embedded Systems: A case

study”, Information and Software Technology, v. 56, n. 11, pp. 1457–1475.

Special issue on Software Ecosystems.

AZANZA, M., BATORY, D., DÍAZ, O., et al., 2010,“Domain-Specific Composition

of Model Deltas”. In: 3rd International Conference on Model Transforma-

tions (ICMT 2010), pp. 16–30. ISBN: 978-3-642-13687-0.

BADAMPUDI, D., WOHLIN, C., PETERSEN, K., 2016, “Software component

decision-making: In-house, OSS, {COTS} or outsourcing - A systematic

literature review”, Journal of Systems and Software, v. 121, pp. 105 – 124.

BASCIANI, F., ROCCO, J. D., RUSCIO, D. D., et al., 2014a, “MDEForge: An ex-

tensible Web-based modeling platform”. In: 2nd International Workshop

199

http://dx.doi.org/10.1007/978-3-642-33666-9_36
http://dx.doi.org/10.1007/978-3-642-21210-9_28


on Model-Driven Engineering on and for the Cloud, CloudMDE 2014, pp.

66–75, a.

BASCIANI, F., RUSCIO, D. D., IOVINO, L., et al., 2014b, “Automated Chaining

of Model Transformations with Incompatible Metamodels”. In: Model-

Driven Engineering Languages and Systems, v. 8767, Lecture Notes in

Computer Science, Springer International Publishing, pp. 602–618, b.

ISBN: 978-3-319-11652-5. doi: 10.1007/978-3-319-11653-2 37. Available

at: <http://dx.doi.org/10.1007/978-3-319-11653-2_37>.

BASSO, F. P., PILLAT, R. M., OLIVEIRA, T. C., et al., 2013a, “Supporting Large

Scale Model Transformation Reuse”. In: 12th International Conference on

Generative Programming: Concepts & Experiences., GPCE’13, pp. 169–

178, a.

BASSO, F. P., WERNER, C. M. L., PILLAT, R. M., et al., 2013b, “A Common

Representation for Reuse Assistants”. In: 13th International Conference

on Software Reuse, ICSR’13, pp. 283–288, b.

BASSO, F. P., WERNER, C. M. L., PILLAT, R. M., et al., 2013c, “How do You

Execute Reuse Tasks Among Tools? A RAS Based Approach to Inter-

operate Reuse Assistants”. In: 25th International Conference on Software

Engineering and Knowledge Engineering, pp. 721–726, c. Available at:

<http://index.ksi.edu/conf/seke/2013/cr/243.pdf>.

BASSO, F. P., PILLAT, R. M., OLIVEIRA, T. C., et al., 2014a, “Newsletter -

Supporting Large Scale Model Transformation Reuse”, ACM SIGPLAN

Notices, v. 49, n. 3, pp. 169–178. doi: 10.1145/2637365.2517218.

BASSO, F. P., WERNER, C. M. L., OLIVEIRA, T. C., 2014b, “Towards Facili-

ties to Introduce Solutions for MDE in Development Environments with

Reusable Assets”. In: International Conference on Information Reuse and

Integration, IRI’14, pp. 195–202, b.

BASSO, F. P., WERNER, C. M. L., OLIVEIRA, T. C., 2015a, “A Summary of

Challenges for ”MDE as Service””. In: 9th Workshop on Distributed Soft-

ware Development, Software Ecosystems and Systems-of-Systems, At Belo

Horizonte-MG, Brazil, Volume: 1, WDES’15, pp. 85–88, a.

BASSO, F. P., OLIVEIRA, T. C., WERNER, C. M., et al., 2016a, “Analysis of

Asset Specification Languages for Representation of Descriptive Data from

{MDE} Artifacts”, Procedia Computer Science, v. 100, pp. 221 – 228.

200

http://dx.doi.org/10.1007/978-3-319-11653-2_37
http://index.ksi.edu/conf/seke/2013/cr/243.pdf


BASSO, F. P., WERNER, C. M. L., OLIVEIRA, T. C., et al., 2016b, “Criteria for

Description of MDE Artifacts”. In: X Workshop on Distributed Software

Development, Software Ecosystems and Systems-of-Systems, At Maringá-

PR, Brazil, Volume: 1, WDES’16, pp. 80–84, b.

BASSO, F. P., 2006, Features-Oriented Model-Driven Architecture:

Uma Abordagem para MDD. Master’s thesis. Available at:

<http://meriva.pucrs.br:8080/dspace/handle/10923/1520>.

BASSO, F. P., 2015, “A Proposal for a Common Representation Language

for MDE Artifacts and Settings”. In: Doctoral Symposium at Software

Technologies: Applications and Foundations 2015 Conference (STAF

2015), L’Aquila, Italy, July 20, 2015., pp. 21–31. Available at:

<http://ceur-ws.org/Vol-1499/paper3.pdf>.

BASSO, F. P., 2016, “Student Research Abstract: MDE as Service, Overview and

Research Progress”. In: 31st ACM/SIGAPP Symposium on Applied Com-

puting, SAC’16, pp. 1586–1587.

BASSO, F. P., BECKER, L. B., OLIVEIRA, T. C., 2006, “Using the FOMDA

approach to support object-oriented real-time systems development”. In:

Ninth IEEE International Symposium on Object and Component-Oriented

Real-Time Distributed Computing, ISORC 2006, pp. 374–381. doi: 10.

1109/ISORC.2006.76.

BASSO, F. P., BECKER, L. B., OLIVEIRA, T. C., 2007, “Uma Solução para

Reuso e Manutenção de Transformadores de Modelos Usando a Abor-

dagem FOMDA”. In: Simpósio Brasileiro de Engenharia de Software.

Anais do 21o Simpósio Brasileiro de Engenharia de Software., SBES 2007,

pp. 130–146.

BASSO, F. P., BASSO, R. M. P., OLIVEIRA, T. C., et al., 2009, “FOMDA

ML: A Language to Specify Model Transformers in MDA, Paper In Por-

tuguese(FOMDA ML: Uma Linguagem para Especificação de Transfor-

madores de Modelos na MDA)”. In: Third Rapid Application Development

Workshop, WDRA 2009.

BASSO, F. P., BASSO, R. M. P., OLIVEIRA, T. C., 2012, “Towards a Web Mod-

eling Environment for a Model Driven Engineering Approach”. In: Third

Brazilian Workshop on Model Driven Development, BW-MDD 2012.

BASSO, F. P., OLIVEIRA, T. C., FARIAS, K., 2014c, “Extending JUnit 4 with

Java Annotations and Reflection to Test Variant Model Transformation

201

http://meriva.pucrs.br:8080/dspace/handle/10923/1520
http://ceur-ws.org/Vol-1499/paper3.pdf


Assets”. In: 29th Symposium On Applied Computing, SAC’14, pp. 1601–

1608, c.

BASSO, F. P., PILLAT, R. M., FRANTZ, R. Z., et al., 2014d, “Assisted Tasks to

Generate Pre-prototypes for Web Information Systems”. In: 16th Inter-

national Conference on Enterprise Information Systems., ICEIS’14, pp.

14–25, d.

BASSO, F. P., PILLAT, R. M., OLIVEIRA, T. C., et al., 2014e, “Generative

Adaptation of Model Transformation Assets: Experiences, Lessons and

Drawbacks”. In: 29th Symposium On Applied Computing, SAC’14, pp.

1027–1034, e.

BASSO, F. P., PILLAT, R. M., ROOZ-FRANTZ, F., et al., 2014f, “Study on Com-

bining Model-Driven Engineering and Scrum to Produce Web Information

Systems”. In: 16th International Conference on Enterprise Information

Systems, ICEIS’14, pp. 137–144, f.

BASSO, F. P., PILLAT, R. M., ROOS-FRANTZ, F., et al., 2015b, “Combining

MDE and Scrum on the Rapid Prototyping of Web Information Systems”,

International Journal of Web Engineering and Technology, v. 10, n. 3,

pp. 214–244.

BASSO, F. P., OLIVEIRA, T. C., WERNER, C. M. L., et al., 2016c, “Anal-

ysis of Asset Specification Languages for Representation of Descriptive

Data from MDE Artifacts”. In: International Conference on {ENTER-

prise} Information Systems/International Conference on Project MAN-

agement/International Conference on Health and Social Care Informa-

tion Systems and Technologies, CENTERIS/ProjMAN / {HCist} 2016,

October 5-7, CENTERIS’16, c.

BASSO, F. P., PILLAT, R. M., OLIVEIRA, T. C., et al., 2016d, “Automated

design of multi-layered web information systems”, Journal of Systems and

Software, v. 117, pp. 612 – 637. ISSN: 0164-1212.

BASSO, F. P., OLIVEIRA, T. C., WERNER, C. M., et al., 2017a, “Building the

foundations for ‘MDE as Service”’, IET Software, v. 11 (August), pp. 195–

206(11).

BASSO, F. P., WERNER, C. M. L., DE OLIVEIRA, T. C., 2017b, “Automated

Approach for Asset Integration in Eclipse IDE”. In: 2017 IEEE/ACM

Joint 5th International Workshop on Software Engineering for Systems-

of-Systems and 11th Workshop on Distributed Software Development,

202



Software Ecosystems and Systems-of-Systems, JSOSICSE, Buenos Aires,

Argentina, May 23, 2017, pp. 34–40, b.

BASSO, F. P., WERNER, C. M. L., DE OLIVEIRA, T. C., 2017c, “Revisit-

ing Criteria for Description of MDE Artifacts”. In: 2017 IEEE/ACM

Joint 5th International Workshop on Software Engineering for Systems-

of-Systems and 11th Workshop on Distributed Software Development,

Software Ecosystems and Systems-of-Systems, JSOSICSE, Buenos Aires,

Argentina, May 23, 2017, pp. 27–33, c.

BATORY, D., AZANZA, M., AO SARAIVA, J., 2008, “The Objects and Arrows

of Computational Design”. In: Model Driven Engineering Languages and

Systems, pp. 1–20. doi: 10.1007/978-3-540-87875-9 1.

BATORY, D., GONCALVES, R., MARKER, B., et al., 2013a, “Dark Knowledge

and Graph Grammars in Automated Software Design”. In: Invited Speaker

at Software Language Engineering, SLE’13, pp. 1–18, a. Available at:

<http://www.cs.utexas.edu/ftp/predator/13SLE.pdf>.

BATORY, D., LATIMER, E., AZANZA, M., 2013b, “Teaching Model Driven En-

gineering from a Relational Database Perspective”. In: 16th International

Conference on Model Driven Engineering Languages and Systems, MOD-

ELS’13, pp. 121–137, b. doi: 10.1007/978-3-642-41533-3 8.

BECKER, J., JANIESCH, C., PFEIFFER, D., 2007, “Situational Method Engi-

neering: Fundamentals and Experiences: IFIP WG 8.1 Working Confer-

ence, 12–14 September 2007, Geneva, Switzerland”. cap. Reuse Mech-

anisms in Situational Method Engineering, pp. 79–93, Boston, MA,

Springer US. ISBN: 978-0-387-73947-2.

BECKER, L., HOLTZ, R., PEREIRA, C., 2002, “On mapping RT-UML speci-

fications to RT-Java API: bridging the gap”. In: Object-Oriented Real-

Time Distributed Computing, 2002. (ISORC 2002)., pp. 348–355. doi:

10.1109/ISORC.2002.1003772.

BENAVIDES, D., SEGURA, S., RUIZ-CORTÉS, A., 2010, “Automated analysis

of feature models 20 years later: A literature review”, Inf. Syst., v. 35,

n. 6 (set.), pp. 615–636. ISSN: 0306-4379. doi: 10.1016/j.is.2010.01.001.

BENDRAOU, R., DESFRAY, P., GERVAIS, M.-P., et al., 2008, “MDA Tool

Components: a proposal for packaging know-how in model driven

203

http://www.cs.utexas.edu/ftp/predator/13SLE.pdf


development”, Software & Systems Modeling, v. 7, n. 3, pp. 329–

343. ISSN: 1619-1366. doi: 10.1007/s10270-007-0058-8. Available at:

<http://dx.doi.org/10.1007/s10270-007-0058-8>.

BERGER, T., RUBLACK, R., NAIR, D., et al., 2013, “A survey of variability

modeling in industrial practice”. In: Seventh International Workshop on

Variability Modelling of Software-intensive Systems, VaMoS ’13, pp. 1–7.

doi: 10.1145/2430502.2430513.

BÉZIVIN, J., 2005, “On the unification power of models”, Software and System

Modeling, v. 4, n. 2, pp. 171–188. doi: 10.1007/s10270-005-0079-0.

BÉZIVIN, J., HAMMOUDI, S., LOPES, D., et al., 2004,“Applying MDAApproach

for Web Service Platform”. In: Enterprise Distributed Object Computing

Conference, pp. 58–70. doi: 10.1109/EDOC.2004.10019.

BIEHL, M., EL-KHOURY, J., LOIRET, F., et al., 2011, “A Domain Specific Lan-

guage for Generating Tool Integration Solutions”. In: 4th Workshop on

Model-Driven Tool & Process Integration (MDTPI).

BIEHL, M., EL-KHOURY, J., LOIRET, F., et al., 2014, “On the

modeling and generation of service-oriented tool chains”, Soft-

ware & Systems Modeling, v. 13, n. 2, pp. 461–480. ISSN:

1619-1366. doi: 10.1007/s10270-012-0275-7. Available at:

<http://dx.doi.org/10.1007/s10270-012-0275-7>.

BLANKENHORN, K., 2004, A UML Profile for GUI Layout. Master’s thesis.

Available at: <http://www.bitfolge.de/pubs/thesis/>.

BLOIS, A. P. T., LUMERTZ, P., OLIVEIRA, T. C., 2009, “Quantools: A MDA

transformation approach”, Revista de Informtica Terica e Aplicada (Im-

presso), v. 16, pp. 53–56.

BOEHM, B., 2006, “A View of 20th and 21st Century Software Engineering”. In:

28th International Conference on Software Engineering, ICSE ’06, pp.

12–29. doi: 10.1145/1134285.1134288.

BOOCH, G., RUMBAUGH, J., JACOBSON, I., 2005, The Unified Modeling Lan-

guage User Guide (2nd Edition). Addison-Wesley.

BOSCH, J., 2013, “Achieving Simplicity with the Three-Layer Product Model”,

IEEE Computer, v. 46, n. 11, pp. 34–39.

BOSCH, J., 2009, “From Software Product Lines to Software Ecosystems”. In: 13th

International Software Product Line Conference, SPLC ’09, pp. 111–119.

204

http://dx.doi.org/10.1007/s10270-007-0058-8
http://dx.doi.org/10.1007/s10270-012-0275-7
http://www.bitfolge.de/pubs/thesis/


BOUNCKEN, R. B., GAST, J., KRAUS, S., et al., 2015,“Coopetition: a systematic

review, synthesis, and future research directions”, Review of Managerial

Science, v. 9, n. 3 (Jul), pp. 577–601.

BRAMBILLA, M., FRATERNALI, P., 2014, “Large-scale Model-Driven Engineer-

ing of web user interaction: The WebML and WebRatio experience”,

Science of Computer Programming, v. 89, Part B, pp. 71 – 87. doi:

http://dx.doi.org/10.1016/j.scico.2013.03.010. Special issue on Success

Stories in Model Driven Engineering.

BRIAND, L., FALESSI, D., NEJATI, S., et al., 2012, “Research-based innovation:

A tale of three projects in model-driven engineering”. In: 15th Interna-

tional Conference on Model Driven Engineering Languages and Systems,

v. 7590, MODELS 2012, pp. 793–809.

BROWN, J. R., FEHIGE, Y., 2017, “Thought Experiments”. In: Zalta, E. N. (Ed.),

The Stanford Encyclopedia of Philosophy, summer 2017 ed., Metaphysics

Research Lab, Stanford University.

BRUNELIÈRE, H., CABOT, J., CLASEN, C., et al., 2010, “Towards Model Driven

Tool Interoperability: Bridging Eclipse and Microsoft Modeling Tools”.

In: Modelling Foundations and Applications, v. 6138, Lecture Notes in

Computer Science, pp. 32–47. Springer Berlin Heidelberg. ISBN: 978-3-

642-13594-1.

BURKE, B., MONSON-HAEFEL, R., 2006, Enterprise JavaBeans 3.0: Developing

Enterprise Java Components. O’Reilly.

CAPILLA, R., BOSCH, J., TRINIDAD, P., et al., 2014, “An overview of Dynamic

Software Product Line architectures and techniques: Observations from

research and industry”, Journal of Systems and Software, v. 91, n. 0,

pp. 3–23. doi: http://dx.doi.org/10.1016/j.jss.2013.12.038.

CAPLAT, G., SOURROUILLE, J.-L., 2005, “Model Mapping Using Formalism

Extensions”, IEEE Software, v. 22, n. 2, pp. 44–51. ISSN: 0740-7459. doi:

http://doi.ieeecomputersociety.org/10.1109/MS.2005.45.

CASTELLANOS, C., BORDE, E., PAUTET, L., et al., 2014, “Automatic Produc-

tion of Transformation Chains Using Structural Constraints on Output

Models”. In: Software Engineering and Advanced Applications (SEAA),

2014 40th EUROMICRO Conference on, pp. 158–165, Aug. doi: 10.1109/

SEAA.2014.13.

205



CASTELLUCCIA, D., BOFFOLI, N., 2014, “Service-oriented Product Lines: A

Systematic Mapping Study”, SIGSOFT Softw. Eng. Notes, v. 39, n. 2

(mar.), pp. 1–6.

CHOWDHURY, A. F., HUDA, M. N., 2011, “Comparison Between Adaptive Soft-

ware Development and Feature Driven Development”. In: Computer Sci-

ence and Network Technology (ICCSNT), 2011 International Conference

on, pp. 363–367. doi: 10.1109/ICCSNT.2011.6181977.

COMBEMALE, B., DEANTONI, J., BAUDRY, B., et al., 2014, “Globalizing Mod-

eling Languages”, IEEE Computer, Institute of Electrical and Electronics

Engineers, v. 47, n. 6 (June), pp. 68–71.

COMBEMALE, B., CHENG, B. H., FRANCE, R. B., et al., 2015a, Globalizing

Domain-Specific Languages. International Dagstuhl Seminar, Dagstuhl

Castle, Germany, October 5-10, 2014, Revised Papers. Springer Inter-

national Publishing.

COMBEMALE, B., CHENG, B. H., FRANCE, R. B., et al., 2015b, Globalizing

Domain-Specific Languages. Springer International Publishing.

COOK, S., JONES, G., KENT, S., et al., 2007, Domain-specific Development

with Visual Studio Dsl Tools. Addison-Wesley Professional. ISBN:

9780321398208.

CORRÊA, C., OLIVEIRA, T., WERNER, C., 2013, “Towards Coupled Evolution

of Metamodels, Models, Graph-Based Transformations and Traceability

Links”. In: 25th International Conference on Software Engineering and

Knowledge Engineering, SEKE 2013, Boston, USA, June 27-29 2013, pp.

721–726.

CORREIA, T. P., GUESSI, M., DE OLIVEIRA, L. B. R., et al., 2016, “RARep:

a Reference Architecture Repository”. In: The 28th International Confer-

ence on Software Engineering and Knowledge Engineering, SEKE 2016,

Redwood City, San Francisco Bay, USA, July 1-3, 2016., pp. 363–368.

CRIADO, J., MARTÍNEZ, S., IRIBARNE, L., et al., 2015, “Enabling the reuse

of stored model transformations through annotations”. In: International

Conference on Model Transformations, pp. 1–15, July.

CUADRADO, J. S., GUERRA, E., LARA, J. D., 2014, “A Component Model

for Model Transformations”, IEEE Transactions on Software Engineering,

v. 40, n. 11 (Nov), pp. 1042–1060. doi: 10.1109/TSE.2014.2339852.

206



CUADRADO, J. S., GUERRA, E., DE LARA, J., 2015, “Reusable Model Transfor-

mation Components with bentō”. In: International Conference on Theory

and Practice of Model Transformations, ICMT 2015, pp. 59–65.

CUNHA, J., AO PAULO FERNANDES, J., MARTINS, P., et al., 2016, “Evaluat-

ing refactorings for spreadsheet models”, Journal of Systems and Software,

v. 118, pp. 234 – 250.

CZARNECKI, K., 2005, “Overview of generative software development”. In: 2004

international conference on Unconventional Programming Paradigms,

UPP’04, pp. 326–341.

CZARNECKI, K., HELSEN, S., 2003, “Classification of Model Transformation

Approaches”. In: OOPSLA’03 Workshop on Generative Techniques in

the Context of Model-Driven Architecture.

DA SILVA, A. R., 2015, “Model-driven engineering: A survey supported by the

unified conceptual model”, Computer Languages, Systems & Structures,

v. 43, pp. 139 – 155. ISSN: 1477-8424.

D’AMBROS, M., GALL, H., LANZA, M., et al., 2008, “Analysing Software Repos-

itories to Understand Software Evolution”. In: Software Evolution, pp.

37–67, Berlin, Heidelberg, Springer Berlin Heidelberg.

DE LARA, J., VANGHELUWE, H., 2002, “Using AToM3 as a meta-case tool.” In:

4th International Conference on Enterprise Information Systems (ICEIS),

pp. 642–649.

DI RUSCIO, D., MALAVOLTA, I., MUCCINI, H., et al., 2012, “Model-Driven

Techniques to Enhance Architectural Languages Interoperability”. In:

Fundamental Approaches to Software Engineering, FASE’12, pp. 26–42.

DOS SANTOS, R. P., WERNER, C., 2010, “Analyzing the Concept of Compo-

nents in the Brechó-VCM Approach through a Sociotechnical and Soft-

ware Reuse Management Perspective”. In: Software Components, Archi-

tectures and Reuse (SBCARS), 2010 Fourth Brazilian Symposium on, pp.

21–30. doi: 10.1109/SBCARS.2010.26.

DOS SANTOS, R. P., ESTEVES, M. G. P., DE S. FREITAS, G., et al., 2013,

“Software Ecosystems Comprehension and Evolution”, Social Networking,

v. 3, n. 2 (Feb), pp. 108–118.

207



DOS SANTOS ROCHA, R., FANTINATO, M., 2013, “The use of software product

lines for business process management: A systematic literature review”,

Information and Software Technology, v. 55, n. 8, pp. 1355 – 1373.

ELAASAR, M., NEAL, A., 2013, “Integrating Modeling Tools in the Development

Lifecycle with OSLC: A Case Study”. In: 16th International Conference

on Model Driven Engineering Languages and Systems, MODELS’13, pp.

154–169.

ELGEDAWY, I., 2009, “Reusable SOA Assets Identification Using E-Business Pat-

terns”. In: Services - II, 2009. SERVICES-2 ’09. World Conference on,

pp. 33–40. doi: 10.1109/SERVICES-2.2009.10.

ELIAS, G., SCHUENCK, M., NEGÓCIO, Y., et al., 2006, “X-ARM: an asset

representation model for component repository systems”. In: 2006 ACM

symposium on Applied computing, SAC ’06, pp. 1690–1694. ISBN: 1-

59593-108-2. doi: 10.1145/1141277.1141676.

ELKOUTBI, M., KHRISS, I., KELLER, R. K., 2006, “Automated Pro-

totyping of User Interfaces Based on UML Scenarios”, Auto-

mated Software Engg., v. 13, n. 1 (jan.), pp. 5–40. ISSN:

0928-8910. doi: 10.1007/s10515-006-5465-5. Available at:

<http://dx.doi.org/10.1007/s10515-006-5465-5>.

ETIEN, A., ARANEGA, V., BLANC, X., et al., 2012, “Chaining

model transformations”. In: First Workshop on the Analysis

of Model Transformations, AMT ’12, pp. 9–14. ISBN: 978-

1-4503-1803-7. doi: 10.1145/2432497.2432500. Available at:

<http://doi.acm.org/10.1145/2432497.2432500>.

ETIEN, A., MULLER, A., LEGRAND, T., et al., 2013, “Localized model trans-

formations for building large-scale transformations”, Software & Systems

Modeling, pp. 1–25. ISSN: 1619-1366. doi: 10.1007/s10270-013-0379-8.

FARIAS, K., 2010, “Empirical Evaluation of Effort on Composing Design Models”.

In: 32Nd ACM/IEEE International Conference on Software Engineering

- Volume 2, ICSE ’10, pp. 405–408.

FARIAS, K., GARCIA, A., LUCENA, C., et al., 2014, “Towards a Quality Model

for Model Composition Effort”. In: 29th Symposium On Applied Comput-

ing, SAC’14, pp. 1181–1183.

208

http://dx.doi.org/10.1007/s10515-006-5465-5
http://doi.acm.org/10.1145/2432497.2432500


FERNANDES, P., WERNER, C., TEIXEIRA, E., 2011, “An Approach for Feature

Modeling of Context-Aware Software Product Line”, Journal of Universal

Computer Science, v. 17, n. 5 (mar), pp. 807–829.

FORWARD, A., BADREDDIN, O., LETHBRIDGE, T., et al., 2012,“Model-driven

rapid prototyping with Umple”, Software: Practice and Experience, v. 42,

n. 7, pp. 781–797. doi: 10.1002/spe.1155.

FRANCE, R., BIEMAN, J., CHENG, B., 2007, “Repository for Model Driven De-

velopment (ReMoDD)”. In: Lecture Notes in Computer Science (includ-

ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 4364 LNCS, pp. 311–317.

FRANCE, R., BIEMAN, J., CHENG, B. H., 2006, “CRI Collaborative Project

Report: Repository for Model-Driven Development (ReMoDD)”. In: CRI

of PI Meeting, pp. 27–31.

FRANCE, R. B., BIEMAN, J. M., 2001, “Multi-View Software Evolution: A UML-

based Framework for Evolving Object-Oriented Software”. In: ICSM, pp.

386–395. doi: 10.1109/ICSM.2001.972751.

FRANTZ, R. Z., CORCHUELO, R., 2012, “Guaraná - Enterprise Application DSL

and SDK Method & Tools”, Method & Tools, v. 20, n. 1, pp. 59–64.

FUGGETTA, A., NITTO, E. D., 2014, “Software Process”. In: 36th International

Conference on Software Engineering, ICSE ’14, pp. 1–12. doi: 10.1145/

2593882.2593883.

GAMMA, E., HELM, R., JOHNSON, R., et al., 1995, Design Patterns, Elements

of Reusable Object-Oriented Software. Addison-Wesley.

GARCÉS, K., VARA, J. M., JOUAULT, F., et al., 2014, “Adapting trans-

formations to metamodel changes via external transformation com-

position”, Software & Systems Modeling, v. 13, n. 2, pp. 789–806.

ISSN: 1619-1366. doi: 10.1007/s10270-012-0297-1. Available at:

<http://dx.doi.org/10.1007/s10270-012-0297-1>.

GARTNER, 2013, IT Asset Management: It’s All About Process. Technical report,

Gartner, Inc. Available at: <http://www.gartner.com/imagesrv/media-

products/pdf/provance/provance issue1.pdf>.

GONÇALES, L. J., FARIAS, K., SCHOLL, M., et al., 2015, “Comparison of Design

Models: A Systematic Mapping Study”, International Journal of Software

Engineering and Knowledge Engineering, v. 25, n. 09n10, pp. 1765–1769.

209

http://dx.doi.org/10.1007/s10270-012-0297-1


GORP, P. V., GREFEN, P. W. P. J., 2012, “Supporting the internet-based evalua-

tion of research software with cloud infrastructure”, Software and System

Modeling, v. 11, n. 1, pp. 11–28.

GORP, P. V., MAZANEK, S., 2011, “SHARE: a web portal for creating and shar-

ing executable research papers”, Procedia Computer Science, v. 4, pp. 589

– 597. ISSN: 1877-0509. International Conference on Computational Sci-

ence, ICCS 2011.

GORP, P. V., KELLER, A., JANSSENS, D., 2009, “Transformation Lan-

guage Integration Based on Profiles and Higher Order Transforma-

tions”. In: Software Language Engineering, v. 5452, Lecture Notes in

Computer Science, Springer Berlin Heidelberg, pp. 208–226. ISBN:

978-3-642-00433-9. doi: 10.1007/978-3-642-00434-6 14. Available at:

<http://dx.doi.org/10.1007/978-3-642-00434-6_14>.

GREENFIELD, J., SHORT, K., 2003, “Software Factories: Assembling Applica-

tions with Patterns, Models, Frameworks and Tools”. In: Companion of

the 18th Annual ACM SIGPLAN Conference on Object-oriented Program-

ming, Systems, Languages, and Applications, OOPSLA ’03, pp. 16–27.

ISBN: 1-58113-751-6. doi: 10.1145/949344.949348.

GRUHN, V., 2002, “Process-Centered Software Engineering Environments, A Brief

History and Future Challenges”, Ann. Softw. Eng., v. 14, n. 1-4 (dez.),

pp. 363–382. ISSN: 1022-7091. doi: 10.1023/A:1020522111961.

GUOJIE, J., BAOLIN, Y., 2009, “An Encapsulation Structure and Description

Specification for Application Level Software Components”. In: 2009 In-

ternational Conference on Computer Engineering and Technology, v. 1,

pp. 195–199, Jan.

GUY, C., COMBEMALE, B., DERRIEN, S., et al., 2012, “On Model Subtyping”.

In: Modelling Foundations and Applications, ECMFA 2012, pp. 400–415.

doi: 10.1007/978-3-642-31491-9 30.

HADJI, H. B., SU-KYOUNG, K., HO-JIN, C., 2008, “A Representation Model

for Reusable Assets to Support User Context”. In: IEEE International

Symposium on Service-Oriented System Engineering, SOSE ’08, pp. 91–

96.

HAILPERN, B., TARR, P. L., 2006, “Model-driven development: The good, the

bad, and the ugly”, IBM Systems Journal, v. 45, n. 3, pp. 451–462. doi:

10.1147/sj.453.0451.

210

http://dx.doi.org/10.1007/978-3-642-00434-6_14


HAMMOUDA, I., 2005, “A Tool Infrastructure for Model-Driven Development Us-

ing Aspectual Patterns”. In: Beydeda, S., Book, M., Gruhn, V. (Eds.),

Model-Driven Software Development, pp. 139–178. Springer Berlin Hei-

delberg. ISBN: 978-3-540-25613-7. doi: 10.1007/3-540-28554-7 7.

HEBIG, R., GABRYSIAK, G., GIESE, H., 2012, “Towards patterns for MDE-

related processes to detect and handle changeability risks”. In: Software

and System Process (ICSSP), 2012 International Conference on, pp. 38–

47, June. doi: 10.1109/ICSSP.2012.6225978.

HEBIG, R., GIESE, H., STALLMANN, F., et al., 2013, “On the Complex Nature of

MDE Evolution”. In: Model Driven Engineering Languages and Systems,

MODELS 2013, pp. 436–453. doi: 10.1007/978-3-642-41533-3 27.

HEBIG, R., 2014, Evolution of Model-Driven Engineering Settings in Prac-

tice. PhD thesis, University of Potsdam, June. Available at:

<http://opus.kobv.de/ubp/volltexte/2014/7076/>.

HEBIG, R., BENDRAOU, R., 2014, “On the Need to Study the Impact of Model

Driven Engineering on Software Processes”. In: 2014 International Con-

ference on Software and System Process, ICSSP 2014, pp. 164–168. doi:

10.1145/2600821.2600846.

HEIJSTEK, W., KUHNE, T., CHAUDRON, M., 2011, “Experimental Analysis of

Textual and Graphical Representations for Software Architecture Design”.

In: Empirical Software Engineering and Measurement (ESEM), 2011 In-

ternational Symposium on, pp. 167–176. doi: 10.1109/ESEM.2011.25.

HERMERSCHMIDT, L., HÖLLDOBLER, K., RUMPE, B., et al., 2013, “Gener-

ating Domain-Specific Transformation Languages for Component & Con-

nector Architecture Descriptions”. In: Workshop on Model-Driven Engi-

neering for Component-Based Software Systems, (ModComp)’2015, pp.

18–23.

HOLDSCHICK, H., 2012, “Challenges in the Evolution of Model-based Software

Product Lines in the Automotive Domain”. In: 4th International Work-

shop on Feature-Oriented Software Development, FOSD ’12, pp. 70–73.

doi: 10.1145/2377816.2377826.

HONG-MIN, R., ZHI-YING, Y., JING-ZHOU, Z., 2009, “Design and Implemen-

tation of RAS-Based Open Source Software Repository”. In: Sixth Inter-

national Conference on Fuzzy Systems and Knowledge Discovery, 2009.

FSKD ’09., v. 2, pp. 219–223. doi: 10.1109/FSKD.2009.778.

211

http://opus.kobv.de/ubp/volltexte/2014/7076/


HONG-MIN, R., JIN, L., JING-ZHOU, Z., 2010, “Software asset repository open

framework supporting customizable faceted classification”. In: IEEE In-

ternational Conference on Software Engineering and Service Sciences (IC-

SESS), 16-18 July, 2010, pp. 1–4.

HORVÁTH, Á., VARRÓ, D., VARRÓ, G., 2006, “Automatic generation

of platform-specific transformation”, Info-Communications-Technology,

v. LXI, n. 7, pp. 40–45.

HUTCHINSON, J., WHITTLE, J., ROUNCEFIELD, M., et al., 2011, “Empirical

assessment of MDE in industry”. In: 33rd International Conference on

Software Engineering, ICSE ’11, pp. 471–480. ISBN: 978-1-4503-0445-0.

doi: 10.1145/1985793.1985858.

ISO/IEC, 2011, Systems and software engineering – Systems and soft-

ware Quality Requirements and Evaluation (SQuaRE) – System and

software quality models. Technical report, International Organi-

zation for Standardization - ISO/IEC 25010:2011. Available at:

<https://www.iso.org/standard/35733.html>.

IZQUIERDO, J. L. C., CABOT, J., 2013, “Discovering Implicit Schemas in JSON

Data”. In: 13th International Conference on Web Engineering, ICWE’13,

pp. 68–83.

JACOBSON, I., NG, P.-W., MCMAHON, P. E., et al., 2012, “The Essence of

Software Engineering: The SEMAT Kernel. A Thinking Framework in the

Form of an Actionable Kernel.”ACMQUEUE. Development 9. Networks,

v. 10, n. 10, pp. 1–12.

JAKUMEIT, E., BUCHWALD, S., WAGELAAR, D., et al., 2014, “A survey and

comparison of transformation tools based on the transformation tool con-

test”, Science of Computer Programming, v. 85, Part A, n. 0, pp. 41 – 99.

doi: http://dx.doi.org/10.1016/j.scico.2013.10.009.

JANSEN, S., FINKELSTEIN, A., BRINKKEMPER, S., 2009, “A sense of com-

munity: A research agenda for software ecosystems”. In: Software Engi-

neering - Companion Volume, 2009. ICSE-Companion 2009. 31st Inter-

national Conference on, pp. 187–190. doi: 10.1109/ICSE-COMPANION.

2009.5070978.

JERONIMO JR., H., WERNER, C., 2015,“A Systematic Mapping on the Relations

between Systems-of-Systems and Software Ecosystems”. In: IX Workshop

de Desenvolvimento Distribúıdo de Software, Ecossistemas de Software

212

https://www.iso.org/standard/35733.html


e Sistemas de Sistemas (WDES)/ VI Congresso Brasileiro de Software:

Teoria e Prática, Brazil, Belo Horizonte, september, pp. 65–72.

JOHNSON, P., EKSTEDT, M., JACOBSON, I., 2012, “Where’s the Theory for

Software Engineering?” Software, IEEE, v. 29, n. 5, pp. 96–96. doi:

10.1109/MS.2012.127.

JOUAULT, F., VANHOOFF, B., BRUNELIÈRE, H., et al., 2010, “Inter-DSL co-

ordination support by combining megamodeling and model weaving”. In:

SAC’10, pp. 2011–2018.

KANG, K., COHEN, S., HESS, J., et al., 1990, Feature-Oriented Domain

Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021 ). Soft-

ware Engineering Institute, Carnegie Mellon University. Available at:

<http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm>.

KANG, K. C., KIM, S., LEE, J., et al., 1998, “FORM: A feature-oriented reuse

method with domain-specific reference architectures”, Ann. Softw. Eng.,

v. 5 (jan.), pp. 143–168. ISSN: 1022-7091.

KAVALDJIAN, S., 2007, “A model-driven approach to generating user interfaces”.

In: The 6th Joint Meeting on European software engineering conference

and the ACM SIGSOFT symposium on the foundations of software engi-

neering: companion papers, pp. 603–606. doi: 10.1145/1295014.1295053.

KELLY, S., TOLVANEN, J.-P., 2008, Domain Specific Modeling: Enabling Full

Code Generation. IEEE Computer Society - John Wiley & Sons.

KENT, S., 2002, “Model Driven Engineering”. In: Integrated Formal Methods, pp.

286–298. doi: 10.1007/3-540-47884-1 16.

KERSTEN, M., 2013, Software Lifecycle Integration Architecture. Technical report,

Tasktop. Available at: <http://www.tasktop.com>.

KLEPPE, A., WARMER, J., BAST, W., 2003. “MDA Explained: The Model

Driven Architecture: Practice and Promise”. .

KOLOVOS, D. S., PAIGE, R. F., POLACK, F. A., 2006, “The Epsilon Object

Language (EOL)”. In: Model Driven Architecture Foundations and Appli-

cations, pp. 128–142. doi: 10.1007/11787044 11.

KOLOVOS, D., PAIGE, R., POLACK, F., 208, “The Epsilon Transformation Lan-

guage”. In: International Conference on Model Transformation, ICMT

2008, pp. 46–60.

213

http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm
http://www.tasktop.com


KÖNEMANN, P., KINDLER, E., UNLAND, L., 2009, “Difference-based Model

Synchronization in an Industrial MDD Process”. In: Second European

Workshop on Model Driven Tool and Process Integration, pp. 1–12, Fraun-

hofer Institute for Open Communication Systems.

KOUHEN, A. E., DUMOULIN, C., GERARD, S., et al., 2012, Evaluation

of Modeling Tools Adaptation. Technical report, jan. Available at:

<https://hal.archives-ouvertes.fr/hal-00706701>.

KRAUS, A., 2007, Model Driven Software Engineering for Web Ap-

plications. Av at <http://nbn-resolving.de/urn:nbn:de:bvb:19-

79362>. PhD thesis, July. Available at:

<http://nbn-resolving.de/urn:nbn:de:bvb:19-79362>.

KRIPPENDORFF, K., 2010, ”Combinatorial Explosion”. Web Dictionary of Cy-

bernetics and Systems. PRINCIPIA CYBERNETICA WEB. Retrieved

29 November.

KROLL, P., MACISAAC, B., 2006, Agility and Discipline Made Easy: Practices

from OpenUP and RUP. Addison-Wesley Professional.

KRUEGER, C. W., 1992, “Software reuse”, ACM Comput. Surv., v. 24, n. 2 (jun.),

pp. 131–183. doi: 10.1145/130844.130856.

KULKARNI, V., BARAT, S., RAMTEERTHKAR, U., 2011, “Early experience

with agile methodology in a model-driven approach”. In: Model-Driven

Engineering Languages and Systems, p. 578–590.

KURTEV, I., BÉZIVIN, J., JOUAULT, F., et al., 2006, “Model-based DSL frame-

works”. In: OOPSLA Companion, pp. 602–616. doi: 10.1145/1176617.

1176632.

KUSEL, A., SCHÖNBÖCK, J., WIMMER, M., et al., 2015, “Reuse in model-

to-model transformation languages: are we there yet?” Software &

Systems Modeling, v. 14, n. 2, pp. 537–572. ISSN: 1619-1366. doi:

10.1007/s10270-013-0343-7.

KÜSTER, J. M., GSCHWIND, T., ZIMMERMANN, O., 2009, “Incremental De-

velopment of Model Transformation Chains Using Automated Testing”.

In: Model Driven Engineering Languages and Systems, v. 5795, Lecture

Notes in Computer Science, pp. 733–747. ISBN: 978-3-642-04424-3.

214

https://hal.archives-ouvertes.fr/hal-00706701
http://nbn-resolving.de/urn:nbn:de:bvb:19-79362


LAFI, L., HAMMOUDI, S., FEKI, J., 2011, “Metamodel Matching Techniques

in MDA: Challenge, Issues and Comparison”. In: Model and Data En-

gineering, v. 6918, Lecture Notes in Computer Science, Springer Berlin

Heidelberg, pp. 278–286. doi: 10.1007/978-3-642-24443-8 29.

LAHTINEN, S., PELTONEN, J., HAMMOUDA, I., et al., 2006, “Guided Model

Creation: A Task-Driven Approach”. In: Visual Languages and Human-

Centric Computing, 2006. VL/HCC 2006. IEEE Symposium on, pp. 89–

94. doi: 10.1109/VLHCC.2006.25.

LANO, K., RAHIMI, S. K., 2014, “Model-Transformation Design Patterns”, IEEE

Trans. Software Eng., v. 40, n. 12, pp. 1224–1259.

LANO, K., RAHIMI, S. K., TEHRANI, S. Y., et al., 2017, “A Survey of Model

Transformation Design Pattern Usage”. In: Theory and Practice of Model

Transformation - 10th International Conference, ICMT 2017, Held as

Part of STAF 2017, Marburg, Germany, July 17-18, 2017, pp. 108–118.

LEMOS, O. A. L., MASIERO, P. C., 2011, “A Pointcut-based Coverage Analysis

Approach for Aspect-oriented Programs”, Inf. Sci., v. 181, n. 13 (jul.),

pp. 2721–2746. ISSN: 0020-0255. doi: 10.1016/j.ins.2010.06.003.

LEVENDOVSZKY, T., LENGYEL, L., MEZEI, G., et al., 2005, “A Systematic

Approach to Metamodeling Environments and Model Transformation Sys-

tems in VMTS”, Electron. Notes Theor. Comput. Sci., v. 127, n. 1 (mar.),

pp. 65–75. ISSN: 1571-0661. doi: 10.1016/j.entcs.2004.12.040. Available

at: <http://dx.doi.org/10.1016/j.entcs.2004.12.040>.

LIEBEL, G., MARKO, N., TICHY, M., et al., 2014, “Assessing the State-of-

Practice of Model-Based Engineering in the Embedded Systems Domain”.

In: Model-Driven Engineering Languages and Systems, MODELS’14, pp.

166–182.

LIMA, T., DOS SANTOS, R. P., OLIVEIRA, J., et al., 2016, “The importance of

socio-technical resources for software ecosystems management”, Journal

of Innovation in Digital Ecosystems, v. 3, n. 2, pp. 98 – 113.

LININGTON, P. F., 2005, “Automating support for e-business contracts”, Int.

J. Cooperative Inf. Syst., v. 14, n. 2-3, pp. 77–98. doi: 10.1142/

S0218843005001122.

LONIEWSKI, G., INSFRAN, E., ABRAHAO, S., 2010,“A systematic review of the

use of requirements engineering techniques in model-driven development”.

215

http://dx.doi.org/10.1016/j.entcs.2004.12.040


In: 13th international conference on Model driven engineering languages

and systems: Part II, MODELS’10, pp. 213–227.

LOPEZ-HERREJON, R. E., EGYED, A., TRUJILLO, S., et al., 2010, “Us-

ing Incremental Consistency Management for Conformance Checking in

Feature-Oriented Model-Driven Engineering”. In: VaMoS’10, pp. 93–100.

LUCAS, E. M., OLIVEIRA, T. C., FARIAS, K., et al., 2017, “CollabRDL: A lan-

guage to coordinate collaborative reuse”, Journal of Systems and Software,

v. 131, pp. 505 – 527.

LÚCIO, L., MUSTAFIZ, S., DENIL, J., et al., 2013, “FTG+PM: An In-

tegrated Framework for Investigating Model Transformation Chains”.

In: Khendek, F., Toeroe, M., Gherbi, A., et al. (Eds.), SDL 2013:

Model-Driven Dependability Engineering, v. 7916, Lecture Notes in

Computer Science, Springer Berlin Heidelberg, pp. 182–202. ISBN:

978-3-642-38910-8. doi: 10.1007/978-3-642-38911-5 11. Available at:

<http://dx.doi.org/10.1007/978-3-642-38911-5_11>.

LÚCIO, L., AMRANI, M., DINGEL, J., et al., 2014, “Model transformation intents

and their properties”, Software & Systems Modeling, pp. 1–38. ISSN: 1619-

1366. doi: 10.1007/s10270-014-0429-x.

MACIEL, R. S. P., GOMES, R. A., MAGALHÃES, A. P. F., et al., 2013, “Sup-

porting model-driven development using a process-centered software en-

gineering environment”, Autom. Softw. Eng., v. 20, n. 3, pp. 427–461.

MADSEN, E. V., 2008, Enterprise Requirements Management - using Ra-

tional Asset Manager. PhD thesis, Technical University of Den-

mark, Informatics and Mathematical Modelling, May. Available at:

<http://etd.dtu.dk/thesis/220259/dip08_23.pdf>.

MAGDALENO, A. M., DE OLIVEIRA BARROS, M., WERNER, C. M. L., et al.,

2015, “Collaboration optimization in software process composition”, Jour-

nal of Systems and Software, v. 103, pp. 452–466.

MANIKAS, K., 2016, “Revisiting software ecosystems Research: A longitudinal

literature study”, Journal of Systems and Software, v. 117, pp. 84 – 103.

MANIKAS, K., HANSEN, K. M., 2013, “Software ecosystems - A systematic lit-

erature review”, Journal of Systems and Software, v. 86, n. 5, pp. 1294 –

1306.

216

http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://etd.dtu.dk/thesis/220259/dip08_23.pdf


MARIE FAVRE, J., NGUYEN, T., 2004, “Towards a Megamodel to Model Soft-

ware Evolution through Transformations”. In: SETRA Workshop, Else-

vier ENCTS, pp. 59–74.

MARTINEZ-FERNANDEZ, S., SANTOS, P. S. M. D., AYALA, C. P., et al.,

2015, “Aggregating Empirical Evidence about the Benefits and Draw-

backs of Software Reference Architectures”. In: 2015 ACM/IEEE Interna-

tional Symposium on Empirical Software Engineering and Measurement

(ESEM), pp. 1–10, Oct.

MARTINEZ-RUIZ, T., GARCIA, F., PIATTINI, M., et al., 2011, “Applying AOSE

Concepts to Model Crosscutting Variability in Variant-Rich Processes”.

In: Software Engineering and Advanced Applications (SEAA), 2011 37th

EUROMICRO Conference on, pp. 334–338. doi: 10.1109/SEAA.2011.58.

MASCARENHAS, A. F. M., ANDRADE, A., MACIEL, R. P., 2013, “MTP:

Model Transformation Profile”. In: Software Components, Architectures

and Reuse (SBCARS), 2013 VII Brazilian Symposium on, pp. 109–118,

Sept. doi: 10.1109/SBCARS.2013.22.

MATINNEJAD, R., RAMSIN, R., 2012, “An Analytical Review of Process-

Centered Software Engineering Environments”. In: Engineering of Com-

puter Based Systems (ECBS), pp. 64–73. doi: 10.1109/ECBS.2012.11.

MELLOR, S. J., 2002, “Make Models Be Assets”, Commun. ACM, v. 45, n. 11

(nov.), pp. 76–78. ISSN: 0001-0782. doi: 10.1145/581571.581597. Avail-

able at: <http://doi.acm.org/10.1145/581571.581597>.

MENGERINK, J., SCHIFFELERS, R. R. H., SEREBRENIK, A., et al., 2016,

“DSL/Model Co-Evolution in Industrial EMF-Based MDSE Ecosystems”.

ME@MODELS, pp. 2–7.

MENS, T., GORP, P. V., 2006, “A Taxonomy of Model Transformation”, Electr.

Notes Theor. Comput. Sci., v. 152, pp. 125–142. doi: 10.1016/j.entcs.

2005.10.021.

MILLER, J., MUKERJI, J., 2003. “MDA Guide Version 1.0.1. Av.

at <http://www.omg.org/cgi-bin/doc?omg/03-06-01>”. Available at:

<http://www.omg.org/cgi-bin/doc?omg/03-06-01>.

MOE, N. B., DINGSOYR, T., DYBA, T., 2010, “A teamwork model for under-

standing an agile team: A case study of a Scrum project”, Information

and Software Technology, v. 52, n. 5, pp. 480 – 491.

217

http://doi.acm.org/10.1145/581571.581597
http://www.omg.org/cgi-bin/doc?omg/03-06-01


MOHAGHEGHI, P., AAGEDAL, J., 2007, “Evaluating Quality in Model-Driven

Engineering”. In: International Workshop on Modeling in Software Engi-

neering (MISE’07: ICSE Workshop 2007), pp. 6–6, May.

MOHAGHEGHI, P., 2008, “Evaluating Software Development Methodologies

Based on their Practices and Promises”. In: New Trends in Software

Methodologies, Tools and Techniques, pp. 14–35.

MOHAGHEGHI, P., DEHLEN, V., 2008, “Where Is the Proof? - A Review of Ex-

periences from Applying MDE in Industry”. In: Schieferdecker, I., Hart-

man, A. (Eds.), Model Driven Architecture – Foundations and Applica-

tions: 4th European Conference, ECMDA-FA 2008, Berlin, Germany,

June 9-13, 2008., pp. 432–443, Berlin, Heidelberg, Springer Berlin Hei-

delberg.

MOHAGHEGHI, P., FERNANDEZ, M. A., MARTELL, J. A., et al., 2009, “MDE

Adoption in Industry: Challenges and Success Criteria”. In: Chaudron,

M. R. (Ed.), Models in Software Engineering, v. 5421, Lecture Notes in

Computer Science, Springer Berlin Heidelberg, pp. 54–59. ISBN: 978-3-

642-01647-9. doi: 10.1007/978-3-642-01648-6 6.

MOHAGHEGHI, P., GILANI, W., STEFANESCU, A., et al., 2013, “Where does

model-driven engineering help? Experiences from three industrial cases.”

Software & Systems Modeling, v. 12, n. 3, pp. 619–639. ISSN: 1619-1374.

doi: 10.1007/s10270-011-0219-7.

MOLINA, A. I., GIRALDO, W. J., GALLARDO, J., et al., 2012, “CIAT-GUI: A

MDE-compliant environment for developing Graphical User Interfaces of

information systems”, Advances in Engineering Software, v. 52, pp. 10 –

29.

MONTEIRO, R., ASSUMPCAO PINEL, R., ZIMBRAO, G., et al., 2014a, “The

MDArte experience: Organizational aspects acquired from a successful

partnership between government and academia using model-driven devel-

opment”. In: International Conference on Model-Driven Engineering and

Software Development (MODELSWARD), pp. 575–586, Maya.

MONTEIRO, R., ZIMBRAO, G., MOREIRA DE SOUZA, J., 2014b, “Collabora-

tive evolution process in MDArte: Exchanging solutions for information

systems development among projects”. In: Computer Supported Coopera-

tive Work in Design (CSCWD), 2014 IEEE 18th International Conference

on, pp. 569–574, Mayb. doi: 10.1109/CSCWD.2014.6846907.

218



MOTTA, R. C., DE OLIVEIRA, K. M., TRAVASSOS, G. H., 2017, “Rethinking

Interoperability in Contemporary Software Systems”. In: Joint 5th Inter-

national Workshop on Software Engineering for Systems-of-Systems and

11th Workshop on Distributed Software Development, Software Ecosys-

tems and Systems-of-Systems, JSOS ’17, pp. 9–15.

MUSSBACHER, G., AMYOT, D., BREU, R., et al., 2014, “The Relevance

of Model-Driven Engineering Thirty Years from Now”. In: Model-

Driven Engineering Languages and Systems, pp. 183–200. doi: 10.1007/

978-3-319-11653-2 12.

NAKAGAWA, E. Y., OQUENDO, F., AVGERIOU, P., et al., 2015, “Fore-

word: Towards Reference Architectures for Systems-of-Systems”. In:

3rd IEEE/ACM International Workshop on Software Engineering for

Systems-of-Systems, SESoS 2015, Florence, Italy, May 17, 2015, pp. 1–4.

NETO, A. C. D., SUBRAMANYAN, R., VIEIRA, M., et al., 2008, “Improving

Evidence about Software Technologies: A Look at Model-Based Testing”,

IEEE Software, v. 25, n. 3, pp. 10–13.

NETO, V. V. G., GUESSI, M., OLIVEIRA, L. B. R., et al., 2014, “Investigating the

Model-Driven Development for Systems-of-Systems”. In: ECSAW August

25 - 29, Vienna, Austria, ECSAW’14, pp. –.

NEUBAUER, P., BERGMAYR, A., MAYERHOFER, T., et al., 2015, “XMLText:

From XML Schema to Xtext”. In: 2015 ACM SIGPLAN International

Conference on Software Language Engineering, SLE 2015, pp. 71–76.

NUNES, D. A., SCHWABE, D., 2006, “Rapid prototyping of web applications

combining domain specific languages and model driven design”. In: 6th

international conference on Web engineering, pp. 153–160. doi: 10.1145/

1145581.1145616.

OGAWA, R. T., MALEN, B., 1991, “Towards Rigor in Reviews of Multivocal

Literatures: Applying the Exploratory Case Study Method”, Review of

Educational Research, v. 61, n. 3, pp. 265–286.

OLIVEIRA, T. C., ALENCAR, P., COWAN, D., 2011, “ReuseTool-An extensible

tool support for object-oriented framework reuse”, J. Syst. Softw., v. 84,

n. 12 (dez.), pp. 2234–2252. ISSN: 0164-1212. doi: 10.1016/j.jss.2011.06.

030.

219



OLIVEIRA JUNIOR, E. A., PAZIN, M. G., GIMENES, I. M. S., et al., 2013,

“Product-Focused Software Process Improvement: 14th International

Conference, PROFES 2013, Paphos, Cyprus, June 12-14, 2013.” cap.

SMartySPEM: A SPEM-Based Approach for Variability Management in

Software Process Lines, pp. 169–183, Berlin, Heidelberg, Springer Berlin

Heidelberg.

OMG, 2015, Essence – Kernel and Language for Software Engineering Methods

Version 1.1, SMSC/15-12-02. Technical report, Object Management

Group. Available at: <http://www.omg.org/spec/Essence/1.1/PDF>.

OMG, 2013, UML Profile for MARTE: Modeling and Analysis of Real-Time Em-

bedded Systems. Technical report, Object Management Group. Available

at: <www.omg.org/spec/MARTE/>.

OMG, 2008, MOF Model to Text Transformation Language Version 1.0.

Technical report, Object Management Group. Available at:

<http://www.omg.org/spec/MOFM2T08/1.0/>.

OMG, 2005, RAS Reusable Asset Specification Version 2.2 November 2005. At

September 2017. Technical report, Object Management Group. Available

at: <http://www.omg.org/spec/RAS/>.

OMG, 2002, UML Profile For Schedulability, Performance, And Time.

Technical report, Object Management Group. Available at:

<http://www.omg.org/spec/SPTP/>.

OSLC, 2017a, OSLC Primer Web Page. Technical report, Open

Services for Lifecycle Collaboration, a. Available at:

<open-services.net/resources/tutorials/oslc-primer/>.

OSLC, 2017b, OSLC Articles - OSLC Lifecycle integration inspired by the web.

Technical report, Open Services for Lyfecicle Collaboration, b. Available

at: <http://open-services.net/resources/articles/>.

PALMQUIST, M., 2014, The Amazon Model: If You Can’t Beat ’Em, Work with

’Em. Technical report, Strategy+Business: Corporate Strategies and

News Articles on Global Business, Management, Competition and Mar-

keting. Available at: <https://www.strategy-business.com/blog/The-

Amazon-Model-If-You-Cant-Beat-Em-Work-with-Em?gko=d33d3>.

PALUDO, M., REINEHR, S., MALUCELLI, A., et al., 2011, “Applying pattern

structures to document and reuse components in component-based soft-

220

http://www.omg.org/spec/Essence/1.1/PDF
www.omg.org/spec/MARTE/
http://www.omg.org/spec/MOFM2T08/1.0/
http://www.omg.org/spec/RAS/
http://www.omg.org/spec/SPTP/
open-services.net/resources/tutorials/oslc-primer/
http://open-services.net/resources/articles/


ware engineering environments”. In: 2011 IEEE International Conference

on Information Reuse Integration, pp. 378–383, Aug.

PANDIT, N. R., 1996, The creation of theory: A recent application of the grounded

theory method. The qualitative report, 2(4), 1-14.

PARK, S., PARK, S., SUGUMARAN, V., 2007, “Extending reusable as-

set specification to improve software reuse”. In: 2007 ACM sym-

posium on Applied computing, SAC ’07, pp. 1473–1478. ISBN:

1-59593-480-4. doi: 10.1145/1244002.1244317. Available at:

<http://doi.acm.org/10.1145/1244002.1244317>.

PAULON, A., FROHLICH, A., BECKER, L., et al., 2013, “Model-Driven Develop-

ment of WSN Applications”. In: III Brazilian Symposium on Computing

Systems Engineering (SBESC), At Niterói, RJ, Brazil, pp. 161–166. doi:

10.1109/SBESC.2013.27.

PAULON, A., FROHLICH, A., BECKER, L., et al., 2014, “Wireless Sensor Net-

work UML Profile to Support Model-Driven Development”. In: 12th IEEE

International Conference on Industrial Informatics, At Porto Alegre, RS,

Brazil, INDIN 2014, pp. 227–232. doi: 10.1109/INDIN.2014.6945512.

PEFFERS, K., TUUNANEN, T., ROTHENBERGER, M., et al., 2007, “A De-

sign Science Research Methodology for Information Systems Research”,

J. Manage. Inf. Syst., v. 24, n. 3 (dez.), pp. 45–77. ISSN: 0742-1222. doi:

10.2753/MIS0742-1222240302.

PETERSEN, K., FELDT, R., MUJTABA, S., et al., 2008, “Systematic Mapping

Studies in Software Engineering”. In: 12th International Conference on

Evaluation and Assessment in Software Engineering, EASE’08, pp. 68–

77.

PETRE, M., 2013, “UML in practice”. In: 2013 International Conference on Soft-

ware Engineering, ICSE ’13, pp. 722–731. ISBN: 978-1-4673-3076-3.

PILLAT, R. M., BASSO, F. P., OLIVEIRA, T. C., et al., 2013, “Ensuring consis-

tency of feature-based decisions with a business rule system”. In: Seventh

International Workshop on Variability Modelling of Software-intensive

Systems, VaMoS ’13, pp. 15:1–15:8. ISBN: 978-1-4503-1541-8.

PILLAT, R. M., OLIVEIRA, T. C., ALENCAR, P. S., et al., 2015, “BPMNt: A

BPMN extension for specifying software process tailoring”, Information

and Software Technology, v. 57, n. 0, pp. 95 – 115. doi: http://dx.doi.

org/10.1016/j.infsof.2014.09.004.

221

http://doi.acm.org/10.1145/1244002.1244317


POLGÁR, B., RÁTH, I., SZATMARI, Z., et al., 2009, “Model-based Integration,

Execution and Certification of Development Tool-chains”. In: 2th Work-

shop on Model-Driven Tool & Process Integration (MDTPI), pp. 35–46.

QUERCINI, G., REYNAUD, C., 2013, “Entity discovery and annotation in ta-

bles”. In: 16th International Conference on Extending Database Technol-

ogy, EDBT ’13, pp. 693–704. ISBN: 978-1-4503-1597-5. doi: 10.1145/

2452376.2452457.

RESCHENHOFER, T., MATTHES, F., 2015, “An Empirical Study on Spreadsheet

Shortcomings from an Information Systems Perspective”. In: Business

Information Systems - 18th International Conference, BIS 2015, Poznań,

Poland, June 24-26, 2015, pp. 50–61.

RISTIĆ, S., LUKOVIĆ, I., ALEKSIĆ, S., et al., 2012, “An approach to the spec-

ification of user interface templates for business applications”. In: Fifth

Balkan Conference in Informatics, pp. 124–129. doi: 10.1145/2371316.

2371340.

RITALA, P., GOLNAM, A., WEGMANN, A., 2014, “Coopetition-based business

models: The case of Amazon.com”, Industrial Marketing Management,

v. 43, n. 2, pp. 236 – 249.

RIVERA, J. E., RUIZ-GONZALEZ, D., LOPEZ-ROMERO, F., et al., 2009, “Or-

chestrating ATL model transformations”. In: Eur. Conf. Model. Found.

Appl., pp. 34–46.

ROCCO, J. D., RUSCIO, D. D., IOVINO, L., et al., 2015, “Collaborative Reposito-

ries in Model-Driven Engineering [Software Technology]”, Software, IEEE,

v. 32, n. 3 (May), pp. 28–34. ISSN: 0740-7459. doi: 10.1109/MS.2015.61.

ROCCO, J. D., RUSCIO, D. D., IOVINO, L., et al., 2014, “Dealing with the

Coupled Evolution of Metamodels and Model-to-text Transformations”.

In: International Workshop on Workshop on Models and Evolution,

ME@MODELS, pp. 22–31.

ROCCO, J. D., RUSCIO, D. D., PIERANTONIO, A., et al., 2016, “Using ATL

Transformation Services in the MDEForge Collaborative Modeling Plat-

form”. In: Theory and Practice of Model Transformations - 9th Inter-

national Conference, ICMT 2016, Held as Part of STAF 2016, Vienna,

Austria, July 4-5, 2016, pp. 70–78.

222



ROSE, L., GUERRA, E., LARA, J., et al., 2013,“Genericity for model management

operations”, Software & Systems Modeling, v. 12, n. 1, pp. 201–219. doi:

10.1007/s10270-011-0203-2.

ROTHENBERG, J., 1989, “Artificial Intelligence, Simulation &Amp; Model-

ing”. John Wiley & Sons, Inc., cap. The Nature of Modeling, pp.

75–92, New York, NY, USA. ISBN: 0-471-60599-9. Available at:

<http://dl.acm.org/citation.cfm?id=73119.73122>.

ROYCHOUDHURY, S., GRAY, J., JOUAULT, F., 2011, “A Model-Driven

Framework for Aspect Weaver Construction”. In: Transactions on

Aspect-Oriented Software Development VIII, v. 6580, Lecture Notes

in Computer Science, Springer Berlin Heidelberg, pp. 1–45. ISBN:

978-3-642-22030-2. doi: 10.1007/978-3-642-22031-9 1. Available at:

<http://dx.doi.org/10.1007/978-3-642-22031-9_1>.

RUNESON, P., HÖST, M., 2008, “Guidelines for conducting and reporting case

study research in software engineering”, Empirical Software Engineering,

v. 14, n. 2, pp. 131.

SANTOS, R., WERNER, C., TOSTES, L., et al., 2016, “Supporting negotiation

and socialization for component markets in software ecosystems context”.

In: 2016 XLII Latin American Computing Conference (CLEI), pp. 1–12.

SANTOS, R. P. D., WERNER, C., 2012, “ReuseECOS: An Approach to Support

Global Software Development Through Software Ecosystems”. ICGSEW,

pp. 60–65, Washington, USA. IEEE.

SCHMIDT, D. C., 2006, “Guest Editor’s Introduction: Model-Driven Engineering”,

IEEE Computer, v. 39, n. 2, pp. 25–31. doi: 10.1109/MC.2006.58.

SELIC, B., RUMBAUGH, J., 1998, Using UML for Modelling Complex

Real-Time Systems. Technical report, Rational. Available at:

<www.dcc.ttu.ee/LAP/ISP0011/umlrt.pdf>.

SELIC, B., 2005, “On Software Platforms, Their Modelling with UML 2, and

Platform-Independent Design”. In: 8th IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, ISORC’05, pp. 15–21.

SELIC, B., 2006, “Model-driven development: its essence and opportunities”. In:

Ninth IEEE International Symposium on Object and Component-Oriented

Real-Time Distributed Computing, 2006. ISORC 2006., pp. 7 pp.–. doi:

10.1109/ISORC.2006.54.

223

http://dl.acm.org/citation.cfm?id=73119.73122
http://dx.doi.org/10.1007/978-3-642-22031-9_1
www.dcc.ttu.ee/LAP/ISP0011/umlrt.pdf


SELIC, B., 2014, “Model-Based Software Engineering in Industry:

Revolution, Evolution, or Smoke?” In: Invited Speaker at

International Conference on Industrial Informatics. Av. at

<http://www.fosslc.org/drupal/content/model-based-software-

engineering-industry-revolution-evolution-or-smoke>. At Dec., pp. –.

SHAN, T. C., HUA, W. W., 2006, “Taxonomy of Java Web Application Frame-

works”. In: 2006 IEEE International Conference on e-Business Engineer-

ing (ICEBE 2006), 24-26 October 2006, Shanghai, China, pp. 378–385.

SMOLANDER, K., ROSSI, M., PEKKOLA, S., 2017, “Infrastructures, Integration

and Architecting During and After Digital Transformation”. In: Joint

5th International Workshop on Software Engineering for Systems-of-

Systems and 11th Workshop on Distributed Software Development, Soft-

ware Ecosystems and Systems-of-Systems, JSOS ’17, pp. 23–26.

SOMMERVILLE, I., 2010, Software Engineering (9th Edition). Addison-Wesley.

SOUZA, V. E. S., FALBO, R. D. A., GUIZZARDI, G., 2007, “A UML Profile for

Modeling Framework-based Web Information Systems”. In: 12th Inter-

national Workshop on Exploring Modelling Methods in Systems Analysis

and Design EMMSAD2007, pp. 153–162.

STARY, C., 2000, “Contextual prototyping of user interfaces”. In: 3rd conference

on Designing interactive systems: processes, practices, methods, and tech-

niques, pp. 388–395. doi: 10.1145/347642.347797.

STEINBERG, D., BUDINSKY, F., PATERNOSTRO, M., et al., 2008, EMF:

Eclipse Modeling Framework (2nd Edition). Addison-Wesley Professional.

STOCQ, J., VANDERDONCKT, J., 2004, “A domain model-driven approach

for producing user interfaces to multi-platform information systems”. In:

working conference on Advanced visual interfaces, pp. 395–398. doi:

10.1145/989863.989934.

STRITTMATTER, M., HEINRICH, R., 2016, “Challenges in evolving Metamod-

els”, Softwaretechnik-Trends, v. 36, n. 1.

STRUBER, D., SCHULZ, S., 2016, “A tool environment for managing families of

model transformation rules”. In: 9th International Conference on Graph

Transformation, ICGT 2016 in Memory of Hartmut Ehrig held as part

of Conference on Software Technologies: Applications and Foundations,

STAF 2016; Vienna; Austria; 5 July 2016 through 6 July 2016, v. 9761,

pp. 89–101.

224



SYRIANI, E., VANGHELUWE, H., LASHOMB, B., 2015, “T-Core: a framework

for custom-built model transformation engines”, Software & Systems Mod-

eling, v. 14, n. 3, pp. 1215–1243.

TEKINERDOĞAN, B., BILIR, S., ABATLEVI, C., 2005, “Integrating platform

selection rules in the model driven architecture approach”. In: 2003 Eu-

ropean conference on Model Driven Architecture: foundations and Appli-

cations, MDAFA’03, pp. 159–173. doi: 10.1007/11538097 11.

THÜM, T., APEL, S., KÄSTNER, C., et al., 2014, “A Classification and Survey

of Analysis Strategies for Software Product Lines”, ACM Comput. Surv.,

v. 47, n. 1 (jun.), pp. 6:1–6:45. ISSN: 0360-0300. doi: 10.1145/2580950.

TOLVANEN, J.-P., 2016, “MetaEdit+ for Collaborative Language Engineering and

Language Use (Tool Demo)”. In: 2016 ACM SIGPLAN International

Conference on Software Language Engineering, SLE 2016, pp. 41–45.

TORCHIANO, M., TOMASSETTI, F., RICCA, F., et al., 2013, “Relevance, Bene-

fits, and Problems of Software Modelling and Model Driven techniques-A

Survey in the Italian Industry”, J. Syst. Softw., v. 86, n. 8 (aug), pp. 2110–

2126. ISSN: 0164-1212. doi: 10.1016/j.jss.2013.03.084.

TRAN, H. N., COULETTE, B., TRAN, D. T., et al., 2011, “Automatic Reuse of

Process Patterns in Process Modeling”. In: 26th Symposium On Applied

Computing, SAC’11, pp. 1431–1438.

TURNER, D. A., CHAE, J., 2010, Java Web Programming with Eclipse. CreateS-

pace Independent Publishing Platform.

VALE, T., CRNKOVIC, I., DE ALMEIDA, E. S., et al., 2016, “Twenty-eight

years of component-based software engineering”, Journal of Systems and

Software, v. 111, pp. 128–148.

VANDERDONCKT, J., 2005, “A MDA-compliant environment for developing user

interfaces of information systems”. In: 17th international conference on

Advanced Information Systems Engineering, pp. 16–31. doi: 10.1007/

11431855 2.

VANHOOFF, B., BAELEN, S. V., HOVSEPYAN, A., et al., 2006, “Towards a

transformation chain modeling language”. In: 6th international confer-

ence on Embedded Computer Systems: architectures, Modeling, and Sim-

ulation, SAMOS’06, pp. 39–48. doi: 10.1007/11796435 6.

225



VARA, J., BOLLATI, V., JIMÉNEZ, A., et al., 2014, “Dealing with Traceability

in the MDD of Model Transformations”, Transactions on Software Engi-

neering, v. 40, n. 6, pp. 555–583. doi: 10.1109/TSE.2014.2316132.

VIGNAGA, A., JOUAULT, F., BASTARRICA, M. C., et al., 2013, “Typing ar-

tifacts in megamodeling”, Software & Systems Modeling, v. 12, n. 1,

pp. 105–119. ISSN: 1619-1366. doi: 10.1007/s10270-011-0191-2.

VOELTER, M., 2009, “Best Practices for DSLs and Model-Driven Development”,

Journal of Object Technology, v. 8, n. 6, pp. 79–102.

VÖELTER, M., GROHER, I., 2007, “Handling Variability in Model Transfor-

mations and Generators”. In: Companion to the Annual ACM SIG-

PLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA 2007), pp. 1–8. ACM. Avail-

able at: <http://www.voelter.de/data/workshops/HandlingVariability

InModelTransformations.pdf>.

VÖLTER, M., VISSER, E., 2011, “Product Line Engineering Using Domain-

Specific Languages”. In: Software Product Line Conference (SPLC), 2011

15th International, pp. 70–79. doi: 10.1109/SPLC.2011.25.

WAGELAAR, D., 2006, “Blackbox Composition of Model Transformations us-

ing Domain-Specific Modelling Languages”. In: ECMDA Composition of

Model Transformations Workshop, pp. 15–19.

WASSERMAN, A. I., 1990, “Tool integration in software engineering en-

vironments”. In: Long, F. (Ed.), Software Engineering Environ-

ments, v. 467, Lecture Notes in Computer Science, Springer Berlin

Heidelberg, pp. 137–149. ISBN: 978-3-540-53452-5. Available at:

<http://dx.doi.org/10.1007/3-540-53452-0_38>.

WEIQING, Z., LEILDE, V., MOLLER-PEDERSEN, B., et al., 2012, “Towards

Tool Integration through Artifacts and Roles”. In: Software Engineering

Conference (APSEC), 2012 19th Asia-Pacific, pp. 603–613. doi: 10.1109/

APSEC.2012.45.

WERNER, C., MURTA, L., MARINHO, A., et al., 2009, “Towards a Component

and Service Marketplace with Brechó Library”. In: IADIS International

Conference on WWW/Internet, Rome, Italy, nov. 2009, IADIS’09, pp.

567–574.

226

http://dx.doi.org/10.1007/3-540-53452-0_38


WHITTLE, J., HUTCHINSON, J., ROUNCEFIELD, M., et al., 2013, “Industrial

Adoption of Model-Driven Engineering: Are the Tools Really the Prob-

lem?” In: 16th International Conference on Model Driven Engineering

Languages and Systems, MODELS’13, pp. 1–17.

WHITTLE, J., HUTCHINSON, J., ROUNCEFIELD, M., et al., 2015, “A taxon-

omy of tool-related issues affecting the adoption of model-driven engineer-

ing”, Software & Systems Modeling, pp. 1–19. ISSN: 1619-1374.

WILLINK, E. D., 2003, “UMLX: A graphical transformation language for MDA”.

In: Model-Driven Architecture: Foundations and Applications, pp. 13–24.

WIMMER, M., MARTÍNEZ, S., JOUAULT, F., et al., 2012, “A Catalogue

of Refactorings for Model-to-Model Transformations”, Journal of Ob-

ject Technology, v. 11, n. 2 (ago.), pp. 2:1–40. ISSN: 1660-1769. doi:

10.5381/jot.2012.11.2.a2.

YEATES, L., 2004, Thought Experimentation: A Cogni-

tive Approach. Master’s thesis. Available at:

<https://www.dropbox.com/s/nczwi1vkb7x88qd/TECA.pdf?dl=0>.

YICK, J., MUKHERJEE, B., GHOSAL, D., 2008, “Wireless Sensor Network

Survey”, Comput. Netw., v. 52, n. 12 (ago.), pp. 2292–2330. doi:

10.1016/j.comnet.2008.04.002.

YIE, A., CASALLAS, R., DERIDDER, D., et al., 2012, “Realizing Model Trans-

formation Chain interoperability”, Software & Systems Modeling, v. 11,

n. 1, pp. 55–75. ISSN: 1619-1366. doi: 10.1007/s10270-010-0179-3.

YIN, R., 2003, Case Study Research: Design and Methods. SAGE Publications.

ZAKHEIM, B., 2017, “How Difficult Can It Be to Integrate Software De-

velopment Tools? The Hard Truth”, InfoQ, (January). Available at:

<https://www.infoq.com/articles/tool-integration-hard-truth>.

ZHANG, W., 2015, “Tool Integration by Models, Not Only by Metamodels - Ap-

plying Modeling to Tool Integration”. In: Model-Driven Engineering and

Software Development, MODELSWARD, pp. 461–469.

ZHANG, W., MOLLER-PEDERSEN, B., 2013, “Establishing tool chains above

the service cloud with integration models”. In: IEEE 20th International

Conference on Web Services, ICWS 2013, pp. 372–379.

227

https://www.dropbox.com/s/nczwi1vkb7x88qd/TECA.pdf?dl=0
https://www.infoq.com/articles/tool-integration-hard-truth


ZHANG, W., MOLLER-PEDERSEN, B., 2014, “Modeling of tool integration re-

sources with OSLC support”. In: Model-Driven Engineering and Software

Development (MODELSWARD), 2014 2nd International Conference on,

pp. 99–110, Jan.

ZHANG, W., MOLLER-PEDERSEN, B., BIEHL, M., 2012, “A Light-weight Tool

Integration Approach - From a Tool Integration Model to OSLC Integra-

tion Services.” In: International Conference on Software Engineering and

Applications, ICSOFT’12, pp. 137–146.

ZHANG, Y., PATEL, S., 2011, “Agile Model-Driven Development in Practice”,

Software, IEEE, v. 28, n. 2 (March), pp. 84–91.

228



Appendix A

Complementary Material

What is right is not always popular

and what is popular is not always

right.

Albert Einstein

A.1 Highlights of the Academic Trajectory

A.1.1 Communications

We presented our contributions, all derived from the main research theme MDE as

a Service, in means of communications shown in Table A.1. A total of 25 publica-

tions shown in Table A.2 reports my research effort since the starting of this PhD,

complemented in Figure A.1 with statistical data. Figure A.1.A shows the number

of publications, which are divided into:

1. Oral presentations, as shown in Figure A.1.B. This includes 20 papers (see also

Figure A.1.C), distributed in a Doctoral Symposium, Student Research Com-

petition (SRC), Workshops (only three are national workshops), Conferences

(only one published nationally) and Book Chapters.

2. Periodicals (journals) shown in Figure A.1.D.

Figure A.1.E presents a time-line contextualizing these publications between 2012

and 2017.

A.1.2 Research Cooperation

In order to reach this point of contributions, we collaborated with some researchers

in the area. These collaborations also tend to generate new contributions in RAS++

229



Table A.1: Means of communication
Title Full Title Type Qualis

JCR

BWMDD Brazilian Workshop on Model Driven Development Workshop - -
CENTERIS International Conference on Enterprise Information Systems Conference B3 -

GPCE
International Conference on Generative Programming: Concepts
& Experiences

Conference B2 -

ICEIS International Conference on Enterprise Information Systems Conference B2 -

ICSR International Conference on Software Reuse
Conference &
Book Chapter

B2 -

IET-SW IET Software Journal B1 0.733
INDIN International Conference on Industrial Informatics Conference B1 -
IJWET International Journal of Web Engineering and Technology Journal B1 RG 0.47
IRI International Conference on Information Reuse and Integration Conference B1 -

JSS Journal of Systems and Software Journal A2 1.245
PCS Procedia Computer Science Journal C RG 1.08
SBESC Brazilian Symposium on Computing Systems Engineering Conference B2 -
SAC Symposium on Applied Computing Conference A1 -

SEKE
International Conference on Software Engineering and
Knowledge Engineering

Conference B1 -

SESOS
International Workshop on Software Engineering for
Systems-of-Systems

Workshop B4 -

SIGPLAN ACM SIGPLAN Notices Journal B3 0.621

SRC Symposium on Applied Computing - SRC
Student Res.
Competition

A1 -

STAF-DS Software Technologies: Applications and Foundations
Doctoral
Symposium

- -

VaMoS
International Workshop on Variability Modelling of
Software-intensive Systems

Conference A2 -

WDES
Workshop on Distributed Software Development, Software
Ecosystems and Systems-of-Systems

Workshop B5 -

Table A.2: List of publications
Id Where? Paper Title

First

Author Pages

Reference

P01 BWMDD
Towards a Web Modeling Environment for a Model
Driven Engineering Approach

Yes 8 BASSO et al. (2012)

P02 VaMoS
Ensuring consistency of feature-based decisions with
a business rule system

No 8 PILLAT et al. (2013)

P03 ICSR A Common Representation for Reuse Assistants Yes 6 BASSO et al. (2013b)

P04 SEKE How do You Execute Reuse Tasks Among Tools? Yes 6 BASSO et al. (2013c)
P05 GPCE Supporting Large Scale Model Transformation Reuse Yes 10 BASSO et al. (2013a)
P06 SBESC Model-Driven Development of WSN Applications No 6 PAULON et al. (2013)

P07 SGIPLAN
Newsletter - Supporting Large Scale Model
Transformation Reuse

Yes 10 BASSO et al. (2014a)

P08 ICEIS
Study on Combining Model-Driven Engineering and
Scrum to Produce Web Information Systems

Yes 8 BASSO et al. (2014f)

P09 ICEIS
Assisted Tasks to Generate Pre-prototypes for Web
Information Systems

Yes 8 BASSO et al. (2014d)

P10 SAC
Generative Adaptation of Model Transformation
Assets: Experiences, Lessons and Drawbacks

Yes 8 BASSO et al. (2014e)

P11 SAC
Extending JUnit 4 with Java Annotations and
Reflection to Test Variant Model Transformation
Assets

Yes 8 BASSO et al. (2014c)

P12 SAC
Towards a Quality Model for Model Composition
Effort

No 3 FARIAS et al. (2014)

P13 IRI
Towards Facilities to Introduce Solutions for MDE in
Development Environments with Reusable Assets

Yes 8 BASSO et al. (2014b)

P14 INDIN
Wireless Sensor Network UML Profile to Support
Model-Driven Development

No 6 PAULON et al. (2014)

P15 STAF-DS
A Proposal for a Common Representation Language
for MDE Artifacts and Settings

Yes 10 BASSO (2015)

P16 WDES A Summary of Challenges for “MDE as Service” Yes 4 BASSO et al. (2015a)

P17 IJWET
Combining MDE and Scrum on the Rapid
Prototyping of Web Information Systems

Yes 30 BASSO et al. (2015a)

P18 JSS
Automated design of multi-layered web information
systems

Yes 25 BASSO et al. (2016d)

P19
CEN-
TERIS

Analysis of Asset Specification Languages for
Representation of Descriptive Data from MDE
Artifacts

Yes 8 BASSO et al. (2016c)

P20 PCS
Analysis of Asset Specification Languages for
Representation of Descriptive Data from MDE
Artifacts

Yes 8 BASSO et al. (2016a)

P21 WDES Criteria for Description of MDE Artifacts Yes 4 BASSO et al. (2016b)

P22 SRC
Student Research Abstract: MDE as Service,
Overview and Research Progress

Yes 2 BASSO (2016)

P23 SESOS Revisiting Criteria for Description of MDE Artifacts Yes 7 BASSO et al. (2017c)

P24 SESOS
Automated Approach for Asset Integration in
Eclipse IDE

Yes 7 BASSO et al. (2017b)

P25 IET-SW Building the foundations for “MDE as Service” Yes 11 BASSO et al. (2017a)

and MDE as a Service. Thus, the results from this thesis are also start points for

future researches. In the following we highlight the main initiatives:

I have continuously interacted with researchers from UFRJ to discuss and vali-

date ideas as follows: 1) prof. Dra. Cláudia M. L. Werner; 2) prof. Dr. Toacy C.

230



Figure A.1: Analysis of scientific production

Oliveira; 3) the PHD student Raquel M. Pillat, co-author of experience reports, and

4) with the research groups PRISMA and Reuse Group.

I helped on the research conducted by a Master student (André Ruza Paulon,

UFSC, Advisor Leandro B. Becker) between 2012 and 1014. His dissertation was

presented in December, 2014. It is titled “Desenvolvimento Dirigido a Modelos Para

Redes de Sensores Sem Fio”. My contribution is: 1) configuration of the tool support;

2) mentoring on the use and application of the FOMDA Approach; 3) evaluation

of the conducted activities; and 4) Reporting the results as second author of his

papers.

Recent collaborations derived from a workshop, WDES 2015, and include the

following researchers: 1) Prof. Dr. Rodrigo Pereira dos Santos, from the Universi-

dade Federal do Estado do Rio de Janeiro (Unirio) and; Valdemar Graciano Neto

(UFG), under the supervision of Prof. Dra. Elisa Yumi Nakagawa at Universidade

de São Paulo (USP). We already have one published result. We also conducted

231



meetings and wrote two other materials, to be finished in 2017, scoping the theme

MDE Ecosystems.

Two mapping studies are result from collaborations with the Prof. Dr. Kleinner

Farias from Unisinos. Three characterization studies of MDE as a Service are result

from cooperation with prof. Dr Rafael Z. Frantz and Fabricia Rooz-frantz from

Unijui.

I have also collaborated with international researchers. We are currently collabo-

rating with prof. Vasco Amaral, assistant professor at the Department of Computer

Science group Science and Technology of Programming Section (CTP) of UNL (Uni-

versidade Nova de Lisboa). We already have aligned two papers discussing MDE as

a Service with data mined from software projects. Another collaboration is with the

PhD student at King’s College London under the supervision of Dr. Kevin Lano.

This contact is result from an experience report in combining MDE and Agility, we

made some meetings to discuss issues in MDE as a Service that will be considered on

her thesis. Thus, our contributions have been considered relevant by international

researchers too.

We have two trials of research cooperation that are suspended. I have interacted

for few months with Chessman Corrêa, a PHD student from UFRJ. Chessman has

the ability for discussing MDE in a technical level. I provided some data requested

by him to conduct his research, packing it in a CD. I had also interacted with him in

some meetings. Unfortunately, for personal reasons, he did not complete his PHD.

Besides, aiming at evaluating RAS++ in a real implementation for MDE as a Service

(the MDArte research group), a trial for research cooperation was started in 2015

through prof. Dr. Geraldo Zimbrão da Silva. Due to some reasons, the team was

dissolved and it was not possible to run a planned experiment.

Finally, I have also presented works in conferences where I am not a co-author:

1) Presenting a work from Ivens Portugal (UFRJ) in SEKE 2013; 2) Presenting a

work from Chessman Corrêa (UFRJ) in SEKE 2013; and 3) Presenting a work from

prof. DR. Luis Alvaro Silva (UFSM) in IRI 2014.

A.1.3 Reviews

I have also reviewed some papers, strengthen our research groups in themes as

software reuse and MDE. I co-reviewed three conference papers, one submitted for

the BWMDD 2012, other for the ICSR conference in 2013 and other to SBES in

2017. I co-reviewed three papers from international journals, one related with MDE-

SDP submitted for the J-UCS in 2012, other related with MTCs submitted for the

“Revista Ingenieria e Investigacion” in 2013, and other recently submitted for the

SQJ. I have become also a registered reviewer of JSS, with two complete reviews

232



(2016, 2017).

A.2 Follow-up

As consequence of the lack of explicit technical information about tools, ZAKHEIM

(2017) claims that Software Engineers are still incurring in large costs for integration.

The possibility of execution of automatic transformations before integration could

benefit software engineers by reducing integration costs. This section summarizes

some ongoing and future works that proposes some sort of facility preliminaries to

the state of the art in integration/tool chains.

A.2.1 Ongoing Works

Considering complementary representations for RAS++, Table A.3 presents 6 tech-

nical reports including increments for RAS++. Each report is for different scenarios

in MDE as a Service, introducing toolboxes that have been developed with different

intents in support to preliminary phases for tool chain. Thus, in the following we

present a summary for each report:

T01 - Reusable artifacts/resources for MDE are not wide spread in software

development industry. Aiming at improving its diffusion, the research of the area

recommends the use of at least two reuse approaches: 1) one is motivated in a

global scale for reuse i.e., for inter-organizational contexts, whose mechanism is

always structured on a collaborative repository through assets; 2) a second is adopted

more locally by technicians, usually adopted for managing intra-organizational reuse,

integrating these artifacts in flexible settings for customization. A challenge for

modern reuse tools is to support the diffusion of artifacts using a common format.

Thus, the report T01 introduces RAS++ tool prototypes as a mean to assist this

diffusion.

T02 - This thesis focused in RAS++ as a way to represent assets in a common

format, without attention to features from tool support developed along four years.

In T02, we investigate whether features from tool support is relevant to surpass

an issue pointed out by the literature: artifact repositories have been proposed in

the last 10 years, however the lack of critical mass imposes obstacles for collabora-

tion (ROCCO et al., 2015). Accordingly, as suggest data mined from the ReMoDD

repository, it is observed little interest from academy and industry in sharing their

artifacts. Some recent researches claim that the lack of adequate platforms to sup-

port reuse is one of the reasons (COMBEMALE et al., 2014; CRIADO et al., 2015;

DOS SANTOS et al., 2013; LÚCIO et al., 2014; ROCCO et al., 2016). In this

sense, since the level of technical details in assets requires a considerable effort for

233



representation, the lack of appropriate support for representation may be one of the

reasons for the low interest too. As presented in our analysis of reuse costs, it is ob-

served a big reuse cost for producing reusable assets conforming to RAS++. Thus,

this report presents a possible solution for cost reduction through tool support for

automatic representation of technicalities for assets.

Table A.3: Technical reports for RAS++ tool support
Id Title Available at

T01 Supporting the MDE Diffusion with RAS++ Prototypes prisma.cos.ufrj.br/wct/tr01.pdf

T02 Prototypes for Representation of Artifacts and Settings in RAS++ prisma.cos.ufrj.br/wct/tr02.pdf

T03 Reuse of MDE Artifacts and Settings through RAS++ prisma.cos.ufrj.br/wct/tr03.pdf

T04 Federation of COTS for MDE With a Pivotal Representation Language prisma.cos.ufrj.br/wct/tr04.pdf

T05 Pivoting Process Modeling Languages with RAS++ prisma.cos.ufrj.br/wct/tr05.pdf

T06 RAS++ Method Scoping Preliminary Phases for Tool Chain prisma.cos.ufrj.br/wct/tr06.pdf

T07 Towards Integrating MDE Ecosystems with RAS++ prisma.cos.ufrj.br/wct/tr07.pdf

Id
Assessment

Plan

Research

Method

Artifact Dev.

Contexts

Assessment

Perspectives
Representation Languages

T01 Case Study/MSR Exploratory Academy P03, P04, P09 RAS++
T02 Experiment Exploratory Academy P03, P04, P09 RAS++
T03 Case Study/MSR Exploratory Academy P03, P04, P09 RAS++ and FOMDA DSL
T04 Case Study/MSR Exploratory Academy P03, P04, P09 RAS++
T05 Analytical Study Exploratory Academy P03, P04, P09 RAS++ and PMLs
T06 Experiment Exploratory Academy P03, P04, P09 RAS++
T07 Benchmark Exploratory Academy P03, P04, P09 RAS++

T03 - Reuse of MDE components is handled by at least two reuse scopes: one is

a mechanism introduced in a reuse repository and the other in reuse mechanisms es-

tablished through MDE Artifacts and Settings. These scopes need a bridge, but the

state of the art is unable to make this connection through a general representation

with less coupled components. Through a case study, we have demonstrated that

the scopes are well connectable through the use of model transformations, assist the

conversion from assets represented with RAS++ to FOMDA DSL, a target represen-

tation in MDE Artifacts and Settings adopted in previous implementation of MDE

as a Service. Thus, this study demonstrates the execution of the phase “Transforma-

tion”, allowing the transition of an abstract representation, whit a generic purpose

in MDE as a Service, to a concrete one adopted for tool chain purposes.

T04 - The development of Components-of-the-Shelf (COTS) for MDE Artifacts

has been suggested as a way to reduce costs for the implementation of MDE-based

processes. A difficulty for reusing COTS is that the state of the practice in MDE

adopts several repositories to store these components, imposing difficulties to the

advent of coopetition in the area. Federation is a concept used on cloud computing

that demands the management of information associated with artifacts when stored

in different repositories. This report represents a case study considering federation of

assets represented with RAS++. So far, we observed that RAS++ is representative

for federating MDE artifacts and settings in existing repositories, thus important

for future implementations of coopetition in MDE as a Service.

T05 - Industry found difficulties to adopt MDE in terms of tool chain: it is hard

to integrate third-party MDE Artifacts into their contexts. This report considers

as target context some process model representations. In this study we are auto-

234

prisma.cos.ufrj.br/wct/tr01.pdf
prisma.cos.ufrj.br/wct/tr02.pdf
prisma.cos.ufrj.br/wct/tr03.pdf
prisma.cos.ufrj.br/wct/tr04.pdf
prisma.cos.ufrj.br/wct/tr05.pdf
prisma.cos.ufrj.br/wct/tr06.pdf
prisma.cos.ufrj.br/wct/tr07.pdf


matically introducing, through model transformations (CUADRADO et al., 2014)

and tailoring rules (PILLAT et al., 2015), MDE Artifacts in process models. We,

therefore, are using four supporting tools: one to design reusable assets, other for

generating model-to-model transformations, other for executions of transformations

and another to integrate the generated model-pieces in BPMN models. A case

study has proven to be promising, suggesting that RAS++ promotes some benefits

for process engineering not allowed in state of the art.

T06 - In order to introduce MDE Tools in tool chains, we proposed the use

of at least three phases: 1) Specification - search existing tools on the web, 2) Ac-

quisition - download, analyze and compare tool features, 3) Transformation - adapt

and integrate tools in target software production environments. It is important the

conceptualization of an integrated engineering solution to integrate of these phases.

T06 aims at depicting a methodology and associated engineering solution to intro-

duce tools for MDE in target development environments through reusable assets

represented with RAS++.

T07 - MDE as a Service is an emergent scenario on software development char-

acterized by specialized services for the introduction of MDE in target contexts.

From an ecosystems perspective, resources are analyzed, acquired from repositories,

adapted and integrated in software development environments. This technical report

introduces a pivotal representation language called RAS++, which add the ecosys-

tems perspective in MDE as a Service. It is designed considering data represented

in MDE Ecosystems such as ReMoDD, GEMOC and SEMAT. RAS++ is an exten-

sion for the Reusable Asset Specification (RAS), an OMG standard for components

reuse, and Asset Management Specification (AMS), thus also in conformity with the

standard Open Services for Lifecycle Collaboration (OSLC). Thus, we contribute for

investigation of a new reuse perspective, more general and inter-disciplinary in soft-

ware engineering and MDE.

A.2.2 Considerations for Future Implementations

In order to understand issues and benefits from existing approaches for coopeti-

tion, it is important to classify different technical issues presented by different im-

plementation scenarios. For example, we can mention some technical differences

for implementation of coopetition when implemented through Amazon web service

platform (RITALA et al., 2014) and in MDE as Service: 1) Amazon is a reference,

so there is not need for other platform (a web service interface is the solution for

book sale), while in MDE as Service the platforms are diverse (a web service would

not fix the observed combinatorial issue); 2) properties from Amazon’ assets (prod-

ucts, books, etc.) are well known, while properties from MDE Artifacts and Settings

235



are still not fully mapped (we extracted some from literature mappings focusing in

tool chain), and; 3) we still do now know the best way to cooperate and sale Soft-

ware Engineering services associated with MDE Artifacts, while Amazon is expert

in business models.

In the following, we present our findings in considerations for implementations

of coopetition in the future.

Evolution of RAS++

Considerations in the Specification phase: The literature of the area (COMBE-

MALE et al., 2014) says that we have more questions than answers about the prob-

lematic discussed in this thesis. We agree. In our position, the implementation of

coopetition is more complex than the one reported by (ROCCO et al., 2015) con-

cerning collaboration and even more complex than the use of RAS++. ROCCO et al.

(2015) presented many interesting issues for collaboration in MDE repositories, but

they are restricted to facilities introduced in the level of model management, query

and persistence and technical implementation for acquisition of artifacts through

interfaces for Software-as-Service.

Considerations in the Acquisition phase: RAS++ is in part also motivated

in a context for collaboration, but considering also competition and a conceptual

issue rather than an implementation for a repository. In this sense, we included

studies in RAS++ for mapping the phase “Acquisition”, which relates to platforms

for negotiation and decision making. Negotiation and decision making are essential

elements for coopetition and are not properly discussed by the investigated literature

for MDE. Thus, open questions for future investigation include: 1) whether existing

platforms for ecosystems fulfill the needs of collaborative and competitive services

that require to introduce MDE in target contexts, and 2) what else is important for

implementation of coopetition in MDE as Service than the criteria we have proposed

in phase “Acquisition”?

Considerations in the Transformation phase: Another research gap regards

the inclusion or not of concepts for software product lines, or SPL, in a pivotal lan-

guage. RAS++ was built on metaclasses that are classified as common for tool chain,

which means that some concepts from specific representations for MDE Settings are

not included. For example, Bentõ DSL includes a Feature Model (CUADRADO

et al., 2014). Due to the existence of few proposals suggesting that the integration

of SPL concepts in tool chain are relevant for the context of MDE Settings (only

two, including ours (BASSO et al., 2014e)), we considered SPL as “not essential”

for assets. Thus, while a consensus is not reached, the inclusion of software product

line concepts such as the Feature Model in RAS++ is an open question.

Considerations in our research groups: Properties introduced in RAS++

236



for the Specification and Acquisition phase tend to not present much changes along

years, but this is not true for the Transformation phase. This is because we limited

this thesis in tool chain properties. However, our research group has been working

with many other representation elements that also need integration in some target

context of MDE as Service, but that are ignored by this thesis due to its focus. For

example, it is also interesting to find properties from Object-Oriented Framework

Instantiation (OOFI) (OLIVEIRA et al., 2011), Model-Driven Software Product

Line (MDSPL) (FERNANDES et al., 2011), Aspects (FARIAS, 2010) and other

related with process engineering (MAGDALENO et al., 2015; PILLAT et al., 2015).

We believe that, through an analysis of focus group concerning the Transformation

phase, properties from DSLs proposed by these works can be introduced in RAS++

as well. This would need assessment focused in scenarios for implementation MDE

as Service built on process engineering needs.

Considerations for the research community: Through an extensive map-

ping, we conclude that properties from Specification and Acquisition phases can be

used as is, thus providing foundational properties for integration of other concepts

than tool chain. These properties are built on standards: RAS, an important stan-

dard proposed by the OMG to structure elements for reuse through instructions of

integration and classification of artifacts in repositories, and AMS, a modern indus-

try standard for cloud repositories. This is a good reason for adoption of RAS++.

In order to evaluate its limitations, it is needed a research effort for application of

RAS++ in specific repositories and integration scenarios, thus opening a promising

field of research for the entire research community.

Standardization

A common representation language is a benefit in itself to the research area: 1)

in terms of conceptualization, it organizes several concepts that the literature is

considering important for MDE Artifacts and Settings; 2) in terms of a knowledge

base, it allows new researches to start from a stable notation for representation;

and, 3) in terms of implementation of a global reuse scenario, a pivotal language can

represent essential elements for coopetition in MDE as Service.

Finally, this is the right moment for the research to explore a common represen-

tation language. Reuse opportunities are evident, coopetition is a desirable feature

and the research could investigate requirements for its implementation starting from

the contributions in this thesis.

237



A.3 A Personal Perspective

This thesis introduced coopetition in MDE as a Service as a long-term goal for im-

plementation. This required appropriated characterization, which has been carried

out through many studies reported in this thesis. In order to reach a foundational

language, we analyzed the literature of the area to find out common properties.

This section complements these contributions with highlights for a position about

business opportunity. This position is our last considerations for MDE as a Service,

built on previous experiences in a real industrial initiative.

We have seen initiatives for innovation, successfully deployed in scientific and

technical incubators from Brazil, through companies founded to provide specialized

services for software tests and software quality assurance. These are software engi-

neering topics whose demand for services increased since 2000. Many works have

been reporting that MDE is good for quality, maintenance, and productivity on

software development. Thus, the question is why not specialized services for MDE

in a business perspective?

I had invested four years of my life, between 2007 and 2011, in an implementa-

tion effort for this emerging scenario in a start-up company called Adapit. It was

developed a business plan for MDE as a Service, focusing in start-up contexts as

candidate for introduction of MDE Artifacts and Settings. Along these years, it was

possible to observe that start-up contexts are more interested in producing code as

fast as possible, thus letting attributes from software such as quality and modular-

ization associated with MDE in a second plan. Besides, we noticed that MDE as a

Service has a low demand in comparison to others for testing and quality assurance.

The considered market (software start-ups) was not the ideal for implementation of

MDE as a Service. We have not seen a better moment now either. Thus, currently

it is hard to focus on a business plan for MDE as a Service with a low demand.

One of the reasons that hampered the implementation of this opportunity by

Adapit is the focus to just one market segment for MDE adoption, restricted for

systems engineering for startup software factories. Meanwhile, the market associated

with process engineering seems to be more promising due to the need for certification

in maturity models. For this scenario in MDE as a Service, software engineers are

forced to look for alternatives for improving quality, creating demand for this type

of service. Thus, we conclude that the industry and academy still need to create

needs for scenarios of systems engineering based on MDE, so that new initiatives

prove to potential customers that it is worth the investment in this regard.

Our long-term expectation is to attract more interest for development practices

that include MDE. Meanwhile, toolboxes and methodology are continually improved.

In this sense, it is important to anticipate a reminder to those interested in the im-

238



plementation of MDE as a Service. Although considering prepared to perform these

adaptation services, Adapit company failed to attract an expressive number of soft-

ware houses in the Brazilian market. Others have reported much more success,

but they provide services for contexts that present little or none need for adapta-

tion (BRAMBILLA and FRATERNALI, 2014; MONTEIRO et al., 2014a). This

raises a question whether prospects for MDE adoption are willing to pay the price

for adapting resources?

Few prospects are a barrier to implement MDE as a Service. However, it can

be surpassed by fixing issues for adoption (TORCHIANO et al., 2013; WHITTLE

et al., 2015), such as some for preliminary phases for tool chain that characterize

an important contribution of this thesis. As the search progresses and the interest

for adoption of MDE increases, we believe that new demands for customization of

MDE Artifacts, coopetition and integration, will promote new initiatives for MDE

as a Service soon. Besides, DSLs and technologies evolve over time, which will

inevitably lead to the development of new or adoption of similar toolboxes presented

in previous chapters. Thus, we conclude that contributions from this thesis will

motivate improvements in business, tools and methods for MDE in the near future.

239


	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	Problem Definition
	Research Rationale
	Research Goals
	Research Questions
	Research Methodology

	Thesis Organization

	Theoretical Foundation
	Model-Driven Engineering
	Model-Driven Architecture
	MDE Settings
	Domain Specific Languages for System Engineering
	Lifecycle for Transformations
	Tool Chain Approaches

	Assets
	Asset Specifications
	Coopetition
	MDE Artifact Repositories
	Software Ecosystems

	Related Works
	Reuse Mechanisms in Tool Chains
	Tool Chain in Process Engineering
	Anything as Service
	Extensions for Asset Specification Languages
	Software Ecosystems
	Reference Architectures
	Infrastructures Sharing MDE Artifacts
	Pivotal Representations in MDE

	Final Remarks

	MDE as a Service
	Methodological Concerns
	Goal
	Research Method
	Analysis
	Final Remarks

	Implementation Concerns
	Goal
	Research Method
	Analysis
	Final Remarks

	Cooperation and Competition Concerns
	Goal
	Research Method
	Analysis
	Final Remarks

	Representation Concerns
	Goal
	Research Method
	Analysis
	Final Remarks


	RAS++
	Asset Specification
	Mapping Study
	Asset Specification Languages
	RAS++ Metamodel
	Final Remarks

	Asset Acquisition
	Deriving Criteria for Qualified Data
	Analyzing Asset Specifications in Coopetition Scenarios
	RAS++ Metamodel and Exemplification
	Final Remarks

	Asset Transformation
	Mapping Study
	RAS++ Metamodel
	Representation of Assets
	Final Remarks


	Assessments
	Mining ReMoDD Repository
	Evaluation 1 - Representation of Explicit Contextual Data
	Evaluation 2 - Representation of Explicit Technical Data
	Evaluation 3 - Mining MDE Artifact Hidden Data
	Evaluation 4 - Mining MDE Settings Hidden Data
	Evaluation 5 - Grouping Studies
	Threats to Validity

	Combinatorial Proof
	Goal
	Research Method
	Analysis
	Conclusion

	Comparison Studies
	Goal
	Research Method
	Analysis
	Conclusions

	Thought Experiment
	Goal
	Research Method
	Analysis
	Conclusions


	Conclusions
	Summary
	Discussions
	Contributions
	Benefits
	Limitations
	Threats to Validity


	References
	Complementary Material
	Highlights of the Academic Trajectory
	Communications
	Research Cooperation
	Reviews

	Follow-up
	Ongoing Works
	Considerations for Future Implementations

	A Personal Perspective


