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IDENTIFICANDO PARLAMENTARES INFLUENTES USANDO PROPRIEDADES 

TOPOLÓGICAS EM UMA REDE DE COVOTAÇÃO 

 

 

Marcelo Granja Nunes 

 

Dezembro/2017 

 

Orientador: Geraldo Zimbrão da Silva 

 

Programa: Engenharia de Sistemas e Computação 

 
Este trabalho propõe investigar se é possível identificar parlamentares 

influentes usando apenas informações de resultados das votações. Dados oriundos 

das sessões de votação da plenária da Câmara dos Deputados do Brasil durante o 

ano de 2015 foram usados para criar uma rede de co-votação. Nessa rede, vértices 

representam parlamentares e arestas ponderadas representam a semelhança entre 

parlamentares quanto ao seu comportamento de voto. Uma lista de deputados 

influentes elaborada por um grupo de pesquisa em ciência política foi utilizada como 

referência.  

Inicialmente, explorou-se ranquear os deputados conforme diferentes conceitos 

de centralidade de rede. Em seguida, essas diferentes propriedades topológicas foram 

utilizadas de maneira conjunta como atributos para alimentar algoritmos de 

classificação. Os resultados indicaram que, segundo a métrica da precisão média 

observada ao longo da curva de precisão-recuperação, esse método desempenhou 

quase 3 vezes melhor que o esperado caso se montasse uma lista de parlamentes 

influentes de maneira aleatória. Isso sugere que os resultados de votações 

parlamentares codificam informações relativas ao grau de influência dos 

congressistas.  
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This works proposes to investigate whether influent members of the parliament 

can be identified solely by using voting results. Data from voting sessions in the plenary 

of the Brazilian House of Representatives during the year of 2015 were used to create 

a co-voting network. In this network, vertices are congressmen and weighted edges 

represent pairwise similarity between congressmen regarding their voting behavior. 

Ground truth data about most influential congressmen were obtained from a report 

prepared by a political science think tank.  

Initially, congressmen were ranked according to different centrality metrics. 

Afterwards, those topological proprieties were combined by using them as input 

features to feed classification algorithms. Results indicate that, as measure by the 

average precision over the precision-recall curve, this method performed almost 3 

times better than what would be expected if influent congress were selected by random 

chance. This suggests that information regarding congressmen influence is encoded 

into voting results. 
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1 INTRODUCTION 
 

This first chapter introduces the motivation for this dissertation and exposes 

the problem faced. Afterward, the objectives are explained and also provides a guide of 

the following chapters 

1.1 Motivation 
 

In most democratic societies, the main area of daily politics is the parliament. 

This political environment is ruled by a complex phenomenon in which its 

understanding is a theme of public interest due to its representative mission. 

Consequentially, in the interest of promoting transparency and accountability, as well 

as to stimulate citizen participation, considerable media and academic efforts were 

invested into clarify and communicate congregational activities to the overall public. 

In Brazil, there are some organizations dedicated to the task abovementioned. 

Those range from public media companies such as TV Senado and TV Câmara, to 

private media companies such as Globo and Record that have dedicated sections - 

e.g. Congresso em Foco - both in printed media and on television channels. Outside 

main media, there are academic groups such as Casa das Garças (associated to PUC-

Rio) dedicated to the theme. Finally, there are think tanks linked to political parties such 

as Fundação Perseu Abramo (associated to the Workers Party) and Instituto Teotônio 

Vilela (associated to the Social-Democratic Party). Arguably, the most established of 

those is Department for Parliamentary Advisory (DIAP) [Departamento Intersindical de 

Assessoria Parlamentar]. DIAP was created in 1983 with the initial purpose of providing 

parliament support for labor unions. Over time, the scope of its activities grew as it 

started to publish regular briefings about the Brazilian national political environment.  

Currently, DIAP most known publication is the Cabeças do Congresso report 

(Heads of Congress, in direct translation). It is published every four years and provides 

an in-depth analysis of the profile of the most influential congressmen elected for the 

Brazilian National Congress. Its short list of most influential politicians in the Congress 

is widely considered a trustworthy source and often used among researchers, 

journalists and lobbyists.  

Despite the richness of the information provided by this in-depth report, writing 
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them require long working hours from individuals with expert knowledge, 

consequentially, these reports are substantially expensive to produce. Thus, their 

scope is limited to high profile parliaments, leaving out parliaments of smaller states or 

subnational parliaments.  

Those publications can provide a considerable boost to citizen awareness and 

participation, as well as institutional transparency and accountability. Therefore, I 

believe that the investigation of scalable alternatives is a valuable research agenda, 

helping to produce at least some insights from these reports.  

1.2 Objective 
 

The objective of this dissertation is to investigate whether it is possible to 

identify the most influent congressmen without the use of expert knowledge. To do so, 

it proposes a methodology based on empirical data from the voting session outcomes. 

To the best of my knowledge, this is the first study to try to identify influential members 

within parliaments using quantitative methods.  

A congregational network will be built using a vector-based data regarding 

voting outcomes of each congressman on each voting session. In this network, vertices 

are congressmen and edges reflect pairwise congressmen distance concerning their 

voting behavior. An initial exploratory analysis of this co-votation network was 

performed to make better sense of the data. It was initially proposed multiple rankings 

based on different concepts of network centrality in isolation. Afterwards, a more 

complex model was proposed by combining multiple centralities as input features for 

classification algorithms. Those proposed model were then validated against a ground 

truth source. 

I implemented the proposed methodology using data for the Brazilian House of 

Representatives elected in 2014 and considering the voting sessions during the year of 

2015. Ground truth data about the most influential congressmen were obtained using 

well-established reports from a reputable think tank. 

1.3 Dissertation structure 
 

This dissertation is divided into six chapters. This first chapter provides an 

introduction the problem, which is identifying influential members in voting pools.  The 

second one provides a literature review on the uses of complex networks and machine 
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learning in political sciences. It outlines some of the most seminal works and its 

findings. In addition, it is also identified the limitations in the current state of knowledge 

and discusses on how this work may fill some of this gap.  

The third chapter intends to provide readers an understanding of concepts in 

complex networks and machine learning used in this work, such as algorithms for 

supervised classification and network metrics.  

The fourth chapter details the methodology used while approaching the 

problem. It describes the datasets used, how data was preprocessed, which machine 

learning algorithms were used, how they were trained and how the model was 

validated.  

The fifth chapter outlines the results obtained, interprets them and discusses 

what are the accomplishments and shortfalls of proposed methodology. Finally, the 

sixth chapter contains a brief conclusion and provides suggestions for future works.  

 

  



   

 

4 

 

2 LITERATURE REVIEW 

2.1 Networks and political science 
 

There is a long-lasting notion that power is an intrinsically relational 

phenomenon: it rises from the capacity that one actor has to affect other actors. 

Nevertheless, according to Lazer (2011), the use of Network Science by political 

scientists is fairly recent. On the other hand, sociology, communications, medicine, and 

anthropology have adopted this framework much earlier. Moreno's work (1934) 

pioneered the network approach and lead the expansion in the number of studies 

published in this field, commonly called sociometry, during the following decades.  

Two groundbreaking works on network diffusion were published bringing much 

attention to the field. The first was Milgram (1967) who conducted a famous experiment 

that demonstrated that social networks had small average distance among its 

members, the so-called “small world” phenomenon. Later, Granovette (1973) published 

his work demonstrating the importance of weak social ties, i.e. ties connecting people 

who loosely connected, but belonged to different communities. This paper became was 

very influential and was the most cited network-related paper in social sciences 

according to Lazer (2011). 

After the 1970s, the conceptual foundations of literature in the field were 

relatively mature, and authors started to tackle quantitative aspects of networks. Across 

different academic communities, two network-related ideas gained large traction during 

this period. First, the concept of social capital, an then, a generation of physicists who 

joined the social network communities contributed with two major findings: the 

discovery of scale-independence in networks by Barabási & Albert (1999), and the 

simple mechanisms in the model proposed by Watts & Strogatz (1998) that lead 

networks with the small world propriety. 

For this dissertation, those works are also highly important since they deal 

with how diffusion mechanisms operate in fields as different as innovation diffusion or 

epidemiology. In particular, those works highlighted how weak links could led to the 

small-world propriety, they demonstrated that most connections that an individual have 

are within a small, highly connected cluster of peers. However, a small proportion of 

them connect to distant individuals, quickly accelerating diffusion across the network. 

Such “long-haul” links have a disproportional importance within the network. Those 

differences of importance among nodes and link led research on social influence can 
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be strongly related to the concept of network centrality. 

A prime example of this was written by Padgett & Ansell (1993) for a network 

of marriage and trade among traditional Florencian families during the Renascence. 

This work makes a compelling argument that the most influential family, the Medici, 

ascended to power after a successful campaign building connection with other families. 

Those connections were not more numerous than the ones build by other families, but 

were carefully crafted to connect families that otherwise would be disconnected. Thus, 

the Medici family built themselves as the main intermediary for transactions across 

those groups. 

Similarly, to the case of the Florencian networks, the object of this work is to 

verify whether the influence of congregational representatives can be observed solely 

from the outcome of the plenary voting sessions. To the best of my knowledge, this is 

the first study to try to identify influential members within parliaments. To accomplish 

this, a congressional similarity network will be build connecting congressmen. 

There is a significant amount of quantitative analysis of parliaments that is not 

necessarily related to the network approach. A couple studies have focused on using 

dimensionality reduction techniques on roll call voting datasets to identify structures 

within parliaments such as clusters of like-minded politicians or to describe politicians 

using a low dimensionally space representing ideology. Others have attempted to 

predict national elections results or issue voting considering the nature of the subject. 

Some papers focused on longitudinal aspects of those structures such as shifting 

political alliances or ideological consistency over time.    

 Most empirical works investigated parliaments using roll call votes as their data 

source. Other dataset commonly used were social media, opinion polls and datasets 

from voting advice applications, websites on which politicians and citizens can reveal 

their opinions regarding political issues to create a match between both parties 

according to their political similarity. 

A common approach used by works studying roll call votes is to build a 

network in which vertices are congressmen and weighted edges represent voting 

similarity. Poole (2007) explored the longitudinal aspects of this network within one 

congress cohort to verified how consistent individual congressmen were across time. 

Waugh et al. (2009) ranked congressmen by their network centrality and used network 

modularity to track polarization changes across different cohorts of the American 
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Congress. They also studied how modularity could be used to predict reelection for 

party political leadership, and found that periods of medium modularity are more likely 

to lead to changes in existing leadership.  

Dal Maso et al. (2014) computed the importance of a deputy within a coalition 

by how much modularity the network would lose if that deputy diverged from its 

community and moved to the farthest community. Based on this metric, they 

characterize the heterogeneity of the government coalition and account each political 

party contribution to the stability of the Italian government over time. 

Porter et al. (2007) built a network of committees and sub committees within 

U.S. house of representatives where nodes were committees and edges were 

weighted by common membership among committees. After doing a Single Value 

Decomposition on roll call votes of congressmen, they also did a hierarchical clustering 

of those committees and sub committees to determine its degree of political ideology.  

MacOn et al. (2012) studied the voting network of the United Nations General 

Assembly using different network construction techniques and compared how each of 

those formulations handled community detection. 

In additional to roll call voting, congressmen may also support a legal project 

by cosponsoring it, i.e. signing his or her name to a proposal that has been introduced 

for consideration. Zhang et al. (2008) built a co-sponsorship network to investigate a 

similar question done by Porter et al. (2007), regarding congressmen membership 

among the network committees. This same work also calculated co-sponsorship 

network modularity to verify how polarization changes across different cohorts of the 

American Congress, similarly to the work done by Waugh et al. (2009). 

Twitter data was used by Peng et al. (2014) to observe interactions among 

American congressmen to investigate homophily effect within this network, i.e. the 

preference that nodes have to establish links to other nodes that are similar to them. 

Data from voting advice applications was analyzed by (Hansen & Rasmussen, 

2013) who applied Single Value Decomposition to identify singular vectors and verify 

how cohesive candidates within a political parties were. Etter et al. (2014), used a 

similar methodology on two datasets, one containing candidates’ opinions expressed 

before the elections and another with their actual votes casted by elected members of 

Swiss parliament. Then, they used politician position in a space of singular vector to 
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verify how consistent elected congressmen were when compared to their position while 

running as candidates.  

Within the Brazilian context, Baptista (2015) developed a model to identify 

when congressmen deviated from its original group regarding his voting behavior. Their 

methodology was based on deviance from ideal points according to spacial vote 

theory, a methodology that measures the position of politician within a political 

continuum.  

Another group of studies attempted to predict the results of elections. For 

example, sentiment analysis on Twitter data were used by Tumasjan et al. (2010) and 

Sang & Bos (2012) to predict the results of national elections in Germany and 

Netherlands. 

Outside the strict domain of political science, Takes & Heemskerk (2016) did an 

extensive study of a global network of corporate control. He did so by building a 

network of firms as nodes and edges representing shared directors between these 

firms. Afterward, using the concept of centrality he identified the importance of firms 

and their participation into the network using two concepts developed in his work: 

centrality persistence and centrality ranking dominance. The former is a measure of the 

persistence of a partition centrality in the full network, while the second indicates 

whether a partition is more dominant at the top or the bottom of the centrality ranking.  

Finally, advances in natural language processing stimulated some works 

applying it to predicted voting outcome for a legal project based on its text. Gerrish & 

Blei (2012)used labeled latent Dirichlet allocation and item response theory to develop 

a model. Sim et al. (2013) did a related work in which they build a domain-informed 

Bayesian Hidden Markov Model to infer the proportions of ideologies using candidates 

speeches. Gu et al. (2014) built a topic-factorized ideal point estimation model by 

modeling the ideal points of legislators and bills for each legal project topic.  

2.2 The context: The Brazilian Parliament 

 
In Brazil, the parliament is divided into two chambers. The lower chamber is 

the House of Representatives and the higher chamber is the Senate. Every law project 

must have its text approved by both chambers before it sanctioned by the Republic 

President, the maximum representative of the Executive power. Parliament members 

are affiliated to parties and must represent their home states. 
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The House of Representatives is composed by 513 deputies with four-year 

mandates. The number of deputies belonging to a given state is roughly proportional to 

its population (There are an upper and a lower bound of how many deputies a state 

can have. Consequentially, the smallest states have eight deputies, while the largest 

state, São Paulo, has 70 deputies). On the other hand, the Senate is composed of 81 

senators elected for 8 years mandates. Each Brazilian state is represented by exactly 

three senators.  

The number of parliament member related to each political party is 

unconstrained. Even though there are cases of acting congressional representative 

that doesn’t belong to any party, they usually belong to one. The election for both 

chambers is placed every four years. However, while all the seats in the House of 

Deputies are change during an election, only a fraction of the seats in the Senate is 

changed (one seat per state on a given election and two seats per state in the following 

election). In both houses, reelection is a common phenomenon and it is allowed 

without any restriction. During the last election in 2014, 274 of the elected deputies 

(53,4% of the total) were reelected. Attendance to the national elections is mandatory 

for every Brazilian between ages 18 and 65 (although many don’t voting since fees for 

absents are small). Voting is optional for those aged between 16 and 18 and those 

over 65 years old.  

Both the House of Representatives and Senate have several thematic 

committees with a limited number of parliament members. Those committees debate 

and draft proposals of legal projects that after being approved by those committees 

proceed to be evaluated by the plenary of each chamber, the general assemblies that 

unite all the members of that chamber. In this dissertation, I will focus on the activity of 

the House of the Representatives plenary. This decision was made since the number 

of members in the House of Representatives is large and with a rich diversity of profiles 

among its members. Additionally, the restriction of the analysis to the plenary simplifies 

this work, since it unites all those actors in the same context and prevents the 

additional complexity of having to compare deputies that are not acting on the same 

context, i.e. deputies belonging to different committees.  

Legal projects can be clustered into different types: Medida Provisória 

(express law enacted by the executive that expires after 30 days unless approved by 

the congress), Ordinary Law, Complementary Law, and Constitutional Amendment. For 

most legal projects, a project is approved if it reaches the minimum quorum of at least 
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50% of the valid votes (not including no-shows). Exceptions to this rule are 

complementary laws that require at least 50% of the available number of votes in the 

house (including non-shows). Also, constitutional amendments require bills to be voted 

twice on each chamber and to have at least 60% of the available votes on each voting 

session. For the 69 legal projects voted in 2015, 19 were medidas provisórias 

(temporary presidential orders), 25 were ordinary laws, 10 were complementary laws 

and 14 were constitutional amendments. 

The possible outcomes for each congressional representative position are: 

yes, no, no-show, abstention, and obstruction. While the yes, no and no-show positions 

have obvious meaning, the abstention and obstruction positions require further 

explanation. A congressional representative can avoid making a clear signal to the 

public regarding whether his position on a legal project by using those two options. If 

voting an abstention, one still helps the proposition by providing quorum. On the other 

hand, a non-shown can be damaging to the proposition by removing quorum. However, 

by voting an abstention a congressman can still contributes to legal project by helping 

the voting session achieve the required minimum quorum to approve it, 50% for most 

legal projects and 60% for constitutional amendments. Finally, obstruction can only be 

called by the leader of a party and results in the withdrawal of members of that party 

from the voting session. This appeal is usually used as a final resource by parties that 

are strongly against the proposed legal project in question. 
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3 THEORETICAL FUNDAMENTS 
 

This work will rely upon two frameworks, the first one is Machine learning and 

the second one is about Network Theory. This chapter provides the readers a 

conceptual understanding of these themes in order to provide the foundation for the 

methodology section. 

3.1 Machine learning 
 

This subsection presents the theoretical tools used in machine learning. It 

starts by providing some basic terminology, followed by a presentation of the main 

metrics used to quantify network structures and finally discuss some of the relevant  

patterns observed across many examples of real-world networks. 

3.1.1 Machine learning types 
 

Machine learning is the field of computing that aims to develop computational 

methods capable to do activities without explicit human programming. They do this by 

relying on their accumulated experience, i.e. its available data. Due to this, machine 

learning algorithms are fairly generic and can be used on several problems after 

adapting the algorithms to the problem domain Christiano Silva & Zhao (2016).  

Machine learning algorithms are usually divided into three categories that 

reflect the type of feedback the algorithm receives. In ascending order of feedback 

presence, these types are: unsupervised learning, reinforcement learning and 

supervised learning. 

In unsupervised learning, no feedback at all is provided. In reinforcement 

learning, the algorithm receives feedback whether its output has made a positive or 

negative contribution towards reaching its goal. Finally, in supervised learning, the 

algorithm has explicit information regarding what is the desired output for each input 

and it is expected that the algorithm can identify patterns using this data. 

Those divisions may not be so evident. For example, semi-supervised learning 

deals with problems for which some instances of the available data provide feedback, 

while other instances do not. This lack of feedback may be due to actual lack of 

information, or even due to noise. Therefore, in practice instead of being a dichotomy 

concept, there is a continuum ranging from unsupervised learning up to supervised 
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learning (Russell & Norvig, 2009).  

In supervised learning, feedback is provided by labels associated to each data 

items. Producing these labels is an expensive, time-consuming, and prone to errors 

procedure that is commonly done by humans. Therefore, in most domains, labeled 

data is scarce while in comparison to the abundance of unlabeled one. Still, the 

presence of labeled data is fundamental to the development of high performance 

supervised learning algorithm in the first place which them leads to insights about the 

problem. Afterwards, those insights may lead to the application of unsupervised 

algorithms on the wider unlabeled data with successful results. 

Examples of some of those methods can be seen on Figure 1 and Figure 2. 

Figure 1 exemplifies a clustering task, i.e. defining groups in which the included data 

items (represented by white circles) are similar to each other, while different data items 

belong to different groups. Again, by being an unsupervised method, this group 

allocation occurs without having any ground truth information. On the other hand, in 

Figure 2, is an example of a classification task. The model was build using a set of 

labeled data items (represented by circles). Later, the model was applied to infer the 

label of new data items (represented by white triangles). 

 

Figure 1: Example of unsupervised learning. 
 

 

Figure 2: Example of supervised learning. 
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Since the methods used in this dissertation are mainly supervised, the rest of 

this section will focus on detailing those algorithms and some of the techniques 

associated to them. 

3.1.2 Practical machine learning 
 

This section outlines practical advice provided by Bishop (2006) and 

Domingos (2012) for approaching prediction modeling by machine learning. It involves 

the following steps:  

1. Exploratory data analysis 

Stage dedicated to understand the overall structure of dataset. It involves 

checking statistical summaries for variables, e.g. mean, range, and plotting variables 

against each other to check for clusters, correlations and outliers. 

2. Preprocessing the data 

Subsequently, the process of cleaning or transforming the data starts. It is 

often mentioned that this is the most time-consuming process. Tasks in this step 

include: merging separated datasets and reshaping them, handling missing data, 

taking transformations of variables, removing outliers. 

3. Construction the model 

This stage is executed interactively and is composed of three sub stages that 

are highly interconnected: Feature engineering, model training and model evaluation. 

3a. Feature Engineering 

Feature Engineering is perhaps the most critical and creative task in predictive 

modeling. In many problems, the datasets available has few useful features readily 

available, e.g. image and audio analysis, while in others there are too many features 

that are not relevant. Therefore, it is important to consider technics to extract useful 

features or that reduce the number of unimportant features. 

3b. Train model 

This task involves the actual training of the model. For classification tasks, the 

most common models are: Logistic Regression, Support Vector Machine, K-nearest 
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neighbors, Naïve Bayes, Decision Tree, Neural Networks and ensemble methods such 

as Random forest and Random Forests. 

Almost every model requires choosing some sort of parameters, known as 

hyper-parameters. Therefore, in addition to deciding which model to train, one must 

also decide how to calibrate these hyper-parameters. 

3c. Evaluate model 

The models need to be evaluated regarding their ability to generalize its 

results into additional data. This requires an external evolution known as cross-

validation that computes the error rate for model predictions applied to data items that 

were not used for training. 

4. Select best model. 

Since there is a significant number of design choices required while building 

predictive models, some sort of feedback is required to decide which design is more 

appropriate. In addition, the purpose of a model is to be able to generalize data inputs 

outside its training experience. Both problems can be solved by using an empirical 

procedure, known as cross-validation. 

The simplest form of cross-validation is to randomly split the dataset into two 

parts, one part is called training dataset, while the other part is called testing dataset. 

The model should be trained using the training dataset, while the testing dataset must 

be set apart and only be used after the model is built, in order to measure its 

generalization capability. 

A more complex form is the k-fold cross-validation. On this method, the 

original dataset is randomly partitioned into k parts, also known as folds, of equal size. 

A total of k models a built by keeping a single different partition on each model being 

used as testing dataset on each of them. The idea is that for each model, the training 

dataset and the testing dataset are disjoint data. 

The parameter k is usually set to 5 or 10, but when little data is available one 

may consider the extreme case where k = n, a situation known as leave-one-out cross 

validation. While this leads to a better use of the available data, this is often infeasible 

on large datasets due to time needed. 
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3.1.3 Performance metrics 
 

There are several definitions for performance metrics, but this section will 

focus only on the ones related to classification tasks. 

On classifications problems in which a data item can only have a single label, 

the confusion matrix is a useful tool to evaluate the performance of an algorithm. For 

problem with m classes, then the confusion matrix would be squared matrix with size m 

x m. Each data item is added to the matrix by its column from the predicted class, while 

the data row would represent the actual class. Table 1 demonstrates an example of a 

confusion matrix for a problem with only two classes.  

Table 1: Confusion matrix for binary classification. 

 Actual Positive Actual Negative 

Predicted Positive True Positive (TP) False Positive (FP) 

Predicted Negative False Negative (FN) True Negative (TN) 

 

The confusion matrix is often summarized using single value metrics. The 

most popular of them is the accuracy, i.e. the fraction of data instances that were 

correctly classified. Formally defined as: 

         
     

           
 

Even though the concept of accuracy is very intuitive, it is not the most 

adequate in many cases. Some classification problems possess very unbalanced 

classes, i.e. the number of instances in one class may be much greater than the 

number of instances in other ones. In this case, a naive method that predicts every 

data instance as belonging to the dominating class can have a high accuracy score 

while not being useful.  

Therefore, additional metrics are required. The confusion matrix provides 

more performance metrics that can be computed to handle problems with unbalanced 

classes such as the precision, recall and F-1 metrics. 

Precision is the fraction of the instances classified as positive and that were 

indeed positive. Formally: 
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Recall is the fraction of the positive instances that were correctly classified as 

so. It is also called as the True Positive Rate. Formally, it is defined as: 

                        
  

     
 

Both metrics range from 0 to 1 and, in most prediction systems, there is a 

tradeoff between precision and recall. A system may be calibrated to improve its 

precision score, but it does so at expensive of is recall score and vice versa. Therefore, 

it is important to have a criterion to decide an optimum point.  

This tradeoff can be commonly seen in the Precision-Recall Curve as the one 

exemplified in Figure 3.  

 

Figure 3: Example of the precision-recall curve. 
 

Finally, F-beta is an approach that attempts to combine precision and recall 

into a single metric whose value ranges from 0 to 1. It is defined as: 

   (    )
                

(            )        
 

The parameter   is adjusted to decide how to priorize between precision and 

recall. In most cases, beta is set as 1, leaving both metrics with equal importance. 

Another important tool for the models’ evaluation is the Receiver Operating 

Characteristic Curve, also known as the ROC curve. This curve is plotted based on two 
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other error metrics obtained from the confusion matrix: the True positive rate and the 

false positive rate. 

The true positive rate, also known as sensitivity, is defined similarly to the 

recall metric, the probability of detection of a positive instance. On the other hand, the 

false positive rate, also known as False Discovery Rate, is the probability of negative 

instance is considered positive. Therefore, it is formally defined as: 

                  
  

     
 

The ROC curve is plotted with the false positive rate in the x axis and the true 

positive rate in the y axis similar to the example on Figure 4.  

 

Figure 4: Example of the receiver operating characteristic curve. 
 

Similar to the tradeoff between precision and recall, true positive rate and false 

positive rate are inversely related metrics. A popular metric to mediate the tradeoff 

between them is to compute the area under the ROC curve, also as known as AUROC, 

whose value varies between 0 and 1, will 1 being perfect classification. Hosmer& 

Lemeshow (2004) defined evaluation criteria for interpreting the quality of the results of 

the AUROC as shown in Table 2. 
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Table 2: Interpretation of AUROC values. 

AUROC Value 

0.5 |– 0.7 No discrimination 

0.7 |– 0.8 Acceptable discrimination 

0.8 |– 0.9 Excellent discrimination 

 0.9 |– 1.0 Exceptional discrimination 

 

The Precision-Recall and the ROC curve are connected in a way that the 

curve for a given model is superior in the ROC curve if, and only if, it is also superior in 

the precision-recall curve. However, as pointed out by Davis & Goadrich (2006), for 

highly skewed dataset, the precision-recall curve provides a more informative picture of 

a performance model. 

3.1.4 K-Nearest neighbors 
 

The k-nearest neighbor’s method is an extension of a lookup table in which 

the predicted class for a data instance is based on a plurality of votes from the k 

nearest data instances. Therefore, the k-nearest algorithm is nonparametric model 

since the model cannot be summarized by a set of parameters of fixed size.  

The main parameters to be adjusted in this model are: the value of k, the 

distance function, and the voting weights to each of the k selected instances. The first 

metric, k, must be in an optimal point since setting the value of k too low leads to 

overfitting the data, while setting it too high underfits it.  

Regarding the distance function, the most popular approach is to use simple 

Euclidean distance voting weights. Although more complex function can be used to 

account for variation among features, such as Mahalanobis distance. The main 

recommendation on this issue is to normalize data to keep them in the same scale and 

prevent a few large-scale features from contributing disproportionally to the overall 

distance. 
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Finally, regarding voting weights, it is usual to have instances with the same 

weight while keeping k an odd number to prevent draws. Another popular approach is 

to weight instances proportionally to their closeness. 

In low-dimensional spaces k-nearest neighbors with abundance of data tend 

to perform well. However, the in high-dimensional spaces the curse of dimensionality 

quickly decreases the density of instances in the space. Another disadvantage of this 

method is that is executed in linear time, making it unfit for application that requires 

high scalability (Russell & Norvig, 2009). 

3.1.5 Decision trees 
 

On this section introduces the concept of decision trees and discuss some of 

its properties. Later, it presents how its learning algorithm works and how ensemble 

methods can be used to build committees using the Random forest algorithm. 

3.1.5.1 Decision tree structure and proprieties 
 

Decision trees are hierarchical structures for decision making that resemble 

the way human make decisions. Despite its simplicity, decision trees have been 

successfully applied to a wide range of problems classification (Kotsiantis & Zaharakis, 

2007).  

An example of a decision tree can be seen on Figure 5. The node in tree can 

be decision nodes or leaf nodes. An instance initiates on the root node of the tree and it 

is subjected to if-else conditions on decision nodes until it reaches a leaf node.  

 

Figure 5: Example of a decision tree. 
 

Consequentially, in the case of binomial classification, a decision tree with n 
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decision nodes divides itself into n+1 partitions and assigns a probability to instances in 

each partition to belong to a given class, as shown in Figure where data instances 

within regions *      +in which each of them has a probability of being part of a class 

given by *       +.  

 

Figure 6: Example of partition of the input space for a decision tree. 
 

One of the most remarkable propriety of decision trees is that it is a white box 

model. This is particularly important for many applications subjected to legal restrictions 

that requires algorithms to be able to be inspected by humans (Kotsiantis, 2013). 

Also, most decision trees algorithms are versatile in a way that they can be 

used on categorical data with no need to do previous encoding into numerical data. 

This is a contrast, since most algorithms are usually specialized in analyzing datasets 

that have only one type of variable. 

Additionally, decision trees can be robust towards missing data. According to 

Hastie et al. (2011), there are two ways to handle such cases. 1) Consider a missing 

input as a new category and treat if differently from situation where the information is 

available. 2) Rank surrogate variables that are highly correlated with the missing one. 

This way, if the main variable is not available, it uses the next best available variable as 

a proxy. 

On the other hand, decision trees also have challenges. They are susceptible 

to data fragmentation, i.e. having too few data instances on leaf nodes. These over-

complex trees usually do not generalize well to new instances. However, using 

ensemble methods of simple trees with a low depth or a minimum number of instances 

on each leaf node can avoid this problem. 
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Also, decision trees are unstable to small variations in the data that might lead 

to the creation of a completely different tree. Again, this problem can be mitigated by 

using ensemble methods. Finally, on problems with imbalanced classes, it is 

recommended to balance the dataset to avoid biased trees. 

3.1.5.2 Learning a decision tree 
 

The CART (Classification and Regression Trees), created by Breiman et al. 

(1984) is one of the most widely adopted algorithm and will be used here to better 

understand decision tree learning. 

In a classification decision tree, where a node m represents a region    with 

   sample, the proportion of class k data instances in this node is: 

 ̂  ( )  
 

  
∑  (    )

     

 

The classification of data instances in this node would follow a majority rule. 

A decision tree learning algorithm must find the optimal partitioning such that 

values of     and    minimize a given error metric.  Laurent (1976) discovered that 

finding the optimal partition of data is a NP-complete problem. Therefore algorithms to 

find global optimization are impractical. A common approach to work around this is to 

use a recursive greedy strategy.  

The algorithm starts with all available data instances and finds the variable 

that optimizes the first partition. Therefore, four variables must be found, the split 

variable   , the split threshold or split subset (respectively, for the case a numerical or 

a categorical split variable), and the outcome values for the left and right branches of 

the tree. 

The quality of the split is measured using an error metric. For classifications 

tasks, the most common metrics are: misclassification rate, cross-entropy and the Gini 

index. They are formally defined by Hastie et al. (2011) as: 

Misclassification error: 
 

  
∑  (    ( ))     ̂  ( )     

 

Gini index: ∑  ̂   ̂        ∑  ̂  (   ̂  )
 
    

Cross-entropy:  ∑  ̂      ̂  
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Despite having their origins on different fields, those metrics are reasonably 

conceptually similar by measuring the impurity of a node. Since Gini and cross-entropy 

is differentiable, they are usually preferred for using a numerical optimization. An 

example of the curve for those measures can be seen on Figure 7. On this figure, the 

horizontal axis is the percentage of data instances belonging to class 1. In all metrics, 

the maximum impurity is when the node has an equal number of instances from both 

classes.  

 

 

Figure 7: Example of impurity metric curves for binary classification. 
 

The solution for a classification tree would mainly deal with finding the split 

variable and its threshold. Considering Gini index as the error metric, this can be 

formulated as:  

{          }        
    

,      
   

∑  ̂  (   ̂  )

     

        
   

∑  ̂  (   ̂  )

     

 

For a numerical or categorical variable with q distinct values, the variable can 

be split in q - 1 possible ways. However, unsortable categorical variables must be split 

considering subsets of it. Searching a variable of such type can be computationally 

expensive if the number of categories q is large, leading it to have        possible 

partitions. In addition to this, according to Loh (2011), those categorical variables may 

became overrepresented in the model. 

Overall, it is computationally viable to do a strong approach and explore every 

possibility to find the optimal partition. After finding it, the algorithm must be recursively 

applied to each of the leaf of the newly constructed node, until some given stop criteria 
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is met.  

Engineering the stop criteria is an important modeling decision since it greatly 

helps preventing overfitting the model. The most common criteria are limiting the depth 

of the tree or limiting how few data instances can be a terminal leaf. Another popular 

approach is splitting a node only if the quality of this division is above a certain 

threshold (Murphy, 2012). 

Given the greedy nature of the decision model, an end criterion may 

prematurely prevent tree growth. For example, a low-quality node partition may 

generate two regions on which high quality partitions can be found. Therefore, it is a 

common approach to grow an overly complex tree with a loose criteria and afterwards 

prune the tree (Kotsiantis & Zaharakis, 2007). 

The pruning stage is also a greedy strategy interaction, starting at leaf nodes 

and proceeding to the tree complexity, using some regularization. Regularization is the 

process of optimizing a model by not only minimizing its training error, but also 

introducing a model complexity penalty. It can be formulated as in the equation below. 

  ( )   ( )   | | 

 Where  ( ) is the error term for all data instances that are in the training 

dataset, | | is the complexity metric for the tree, e.g. the number of nodes, or the depth 

of the tree.   is a regularization parameter that adjusts how much the optimization 

model focus on reducing training error vs. reducing tree complexity. Determining the 

optimal value for these parameters is usually done using some sort of cross-

validations, e.g. k-folding. 

3.1.5.3 Other decision tree algorithms 

 
Many learning algorithms have been proposed as decision trees. The first one 

was the AID, proposed by Morgan & Sonquist (1963), later, the CART (Classification 

and Regression Trees) by Breiman et al. (1984) and the C4.5 model by Quinlan (1993) 

were published with large adoption on practical applications. Those later models were 

very similar to each other, but they differ in some aspects, since C4.5 does not 

supports numerical target variables. On the other hand, the C4.5 enables multiple 

partitioning in the decision node instead of the usual partition seen in CART algorithms. 

As previously mentioned, using of unordered categorical variables with many 
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categories leads to over representing them. Some new algorithms are designed to 

avoid this bias as pointed out by a literature reviews done by Loh (2011). Those 

algorithms are: CRUISE, GUIDE, and QUEST. On this paper will focus on explaining 

the CART algorithm since an optimized version of is implemented on SciKit-Learn and 

will be used. 

3.1.5.4 Models using tree committees 
 

To mitigate the high variance observed in decision trees models, it is common 

to create committees with many decision trees, each one created with a subsample of 

the dataset. The individual prediction models that belong to this committer are 

combined following a set of rules to form the final prediction. There are two paradigms 

on how to build embedded models: parallel and sequential.  

An example of a parallel model is Bagging, a short name for Bootstrap 

aggregation, it was created by Breiman (1996). A variation of this procedure is known 

as Random Forests, created by Breiman (2001). Random forests sample isn’t only a 

subset of the dataset, but also has each decision tree built from only a sampled subset 

of the input features. This allows this algorithm to build a large collection of de-

correlated trees Hastie et al. (2011). 

An example of a sequential model is the popular AdaBoosting algorithm, 

which was first introduced in Freund& Schapire (1996) and became one of the most 

widely used models. Later, the Gradient Boosting was developed in Friedman 

(2001).Gradient Boosting is applicable to both classification and regression problems 

by using any differentiable loss function. Unlike Random Forests, on Gradient 

Boosting, each tree model is built using the error obtained by the previous tree in order 

to adjust the weight of its data instances.  

Among those models, random forest is most likely the most popular since its 

implementation is easily deployable in distributed systems. Additionally, its 

performance is comparable to gradient boosting despite requiring very little tuning. 

The algorithm for random forest as presented by Hastie et al. (2011): 

1. For b = 1 to B 

a. Collect a sample from the dataset with size N 
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b. Recursively grow a tree similarly to the algorithm shown in the 

previous section. However, for each split node, randomly 

subsample p input features among the m input features as 

splitting candidates. 

2. Output trees *  + 
  

The optimum values of B and p is usually chosen empirically, although a good 

initial approximation for p is   √ .  While predicting, each tree casts a single class 

vote. The final decision made by the overall committee is done by using majority voting 

among individual votes. 

Committees of trees are known to provide high performance classifiers both 

with low variance and bias. However, the price paid while in contrast to single decision 

trees is the lack of clear interpretability. 

3.2 Network theory 
 

This subsection presents the theoretical tools used to describe and analyze 

networks. It starts by providing some basic terminology, followed by a presentation of 

the main metrics used to quantify network structures and finally discuss some of 

relevant  

patterns observed across many examples of real-world networks. 

3.2.1 Formal definition of graph 
 

A graph G, is defined as an ordered pair (   ) where V is a non-empty set of 

vertices and E is a set of edges connecting the vertices such as  *(   )       +. 

This formal definition is mostly used across mathematical literature, however, 

depending on the source, the terminology may be different. In graph theory, the 

preferred words are graph, vertex and edge. In network science, on the other hand, the 

word networks, node and link are preferred NEWMAN (2010). In this work will give 

preference to the second terminology. 

For example, Figure 8 is a network with 6 vertices and 7 edges. While vertices 

have simple names, edges have composite names indicating the source and the 

destination vertices. Therefore, edges in Figure 8 are named (1,2), (1,5), (2,3), (2,4), 
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(3,4), (3,5), and (3,6).  

` 

Figure 8: Network example. 
 

Edges have many nuances across different networks. In some cases, the 

relationship between two entities may not be mutual, i.e. entity    may be lead to entity 

  , but entity    may not lead to entity   . This led to the conceptualization of directed 

edges. Network with directed edge are called directed networks or digraphs.  

Some networks, called multigraphs may contain many edges, called 

multiedges, connecting the same pair of vertices. Also, some networks have self-loop, 

i.e. edges where the source the destination vertices are the same. An example of both 

can be seen on Figure 9. 

` 

Figure 9: Network example with multiedges and self-loops. 
 

Additionally to the complexity of its topological structure, real-world  networks 

have a large heterogeneity in the capacity or intensity of its edges, as reminded by 

Barrat et al. (2004). Therefore, it is important to model more than just the presence or 

absence of connections within a network. This led to conceptualizing weighted 

networks, i.e. networks in which its edges have weights that reflect the strength of that 

edge. 
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An example of a weighted, directed network is a city road map in which each 

vertex is an intersection and the edges indicates streets connecting those intersections. 

Edge direction indicated permitted driving directions and edge weights represent 

distances. Additionally, since two or more different streets may connect the same 

intersections, multigraphs may be used to represent such cases. 

3.2.2 Network representation 
 

Adjacency matrices are a mathematically convenient representation to 

networks. A network with | | vertices is represented by a squared matrix, A with order 

| |.     is 1 if the edge connecting vertex i to vertex j is present and 0 if the edge is 

absent. For example, the adjacency network for the example in Figure 9 is shown 

below.  

  

(

  
 

   
   
   

   
   
   

   
   
   

   
   
   )

  
 

 

Note that for undirected networks, the adjacency matrix is symmetric, i.e.    

   , while this usually is not true for directed networks. If the network is a multigraph, 

    reflects the number of edges connecting vertex    to vertex   , self-loops in 

undirected network, however, and requires additional attention. Since each edge in an 

undirected self-loop connects to the same vertex twice, each self-looping edge should 

be counted as 2. 

For a weighted network, the adjacency matrix is called a weighted matrix A, it 

is defined as        , where      is the weight of the edge connection going from    to 

  . This way, edges not-contained in the network are represented with a zero, while 

every existing edge must have      . An example of a weighted network can be seen 

on Figure 10. 
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) 

Figure 10: Example of a weighted network and its adjacency matrix. 

 

In some cases, useful network analysis tools are available only to unweight 

networks. In those cases, some adaptations may allow applying standard techniques 

for unweighted graphs into cases with weighted networks. The most common 

adaptations involve mapping the weight matrix of the weighted network into an 

adjacency network.  

The simplest way to do this operation is to use a threshold function, so that 

only weights larger than a threshold value are derived 1 (and 0 if below the threshold). 

Also, as pointed out by Newman (2004), in many cases weighted networks can be 

analyzed using a simple mapping from its original format to the format of an 

unweighted multigraph. 

As a final note, adjacency matrices are not the only available representation of 

networks. Most real-world networks have many vertices and comparatively few edges. 

This leads to the presence of many zeros in its adjacency matrices. The proportion of 

zeros in an adjacency matrix is known as sparseness. Therefore, the adjacency matrix 

for most real-world networks is an inefficient form to storage network in terms of 

computer memory.  

A better representation in this case would be to use a list of edges. Thus, the 

representation would be through a list of tuples, where each tuple contains the source 

vertex, the destination vertex and, optionally, the weight of the edge. 

3.2.3 Network metrics 
 

Networks can be better understood by observing some key metrics. This 

section will define some metrics that are considered the concepts of connectivity and 

centrality. 
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3.2.3.1 Connectivity 
 

Two vertices are adjacent if there is an edge connecting them. For example, in 

Figure 10, A and B are adjacent, but C and D are not. Note that on digraphs it is 

possible that vertices A are adjacent to B, but the opposite may not be true. 

Furthermore, the neighborhood of a vertex   ,  ( ), is the set of all notes that are at 

adjacent to   . Formally,   ( )  *  (   )   +. 

An important global metric is the degree of the connectivity in a network. 

Conceptually, this simply is the fraction of the possible edges that are present into the 

network. Formally, it is defined as: 

 ( )  ∑    

   ( )

 

The value of the connectivity of network must range between 0 and 1. The 

formal definition of whether a network is considered dense of not relies on concepts of 

theoretical networks, which are not described in this short introduction to the topic. 

According to Newman (2004),with those theoretical networks it is possible to infer the 

connectivity of the networks as its number of vertices tends towards infinity. In these 

cases, a network is considered dense if its connectivity tends to a constant as the size 

of the networks tends towards the infinite. On the other hand, the network is considered 

sparse if the connectivity tends to zeros as the size of the networks tends towards the 

infinite 

3.2.3.2 Path 
 

Path is an ordered sequence of edges that visits distinct vertices (except 

possibly the first and last in case of the closed path, in which case the path is known as 

a cycle). For directed networks, each edge traveling by a path must be used in its 

correct direction. For undirected networks, edges can travel in both directions. 

Additionally, the length of a path is defined as the number of edges traveled it.  

3.2.3.3 Components 
 

A vertex v is reachable from vertex u if there is one path departing from u and 

heading to v. A network is connected if, for every vertex in this network, this vertex is 

reachable from any other vertex. In case this does not occur, the network is partitioned 
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into sub networks known as connected components. Each connected component is a 

connected network on itself and does not have any connection with another connected 

component. For directed networks, the definition of connected components is further 

detailed into segments, weakly connected components and strongly connected 

components. In the former case, edge direction is ignored and the network is treated as 

an undirected network. In the latter case, edge direction is considered.  A common 

pattern across many real-world networks is that the size of the largest component, 

known as gigantic component, is a large fraction of the size of the entire network. 

3.2.3.4 Shortest path 
 

The shortest path between two vertices in a graph, also known as geodesic 

path, is a path of vertices that travels from the source vertex to the destination one, 

passing by the minimum number of edges among those two vertices.   

For a weighted graph, the definition of shortest path is similar, but instead of 

minimizing the absolute number of paths, what is minimized is the sum of the weights 

along the travelled edges. In both cases, there may be more than one shortest path 

between two nodes if distances travelled along the proposed paths are the same. 

 

3.2.3.5 Degree and strength 
 

The degree of a vertex u is  ( )   ( ), i.e. the number of edges it has. On 

digraphs, degrees can be further calculated as in-degree and out-degree, by 

respectively considering only the number of vertices that have edges with destination 

or source in the vertex u. 

The degree concept was extended to weighted networks by Barrat et al. 

(2004). In this case, it is defined as the total sum of the weighted edge connecting the 

vertex. For a vertex u, the strength is: 

 ( )  ∑    

   ( )

 

The use of this definition also allows expanding the concepts of in-degrees 

and out-degree for weighted networks, creating the concepts of in-strength and out-
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strength. 

Vertex degree and strength are a local metrics in the sense that it depends on 

the vertex itself and its neighbors. Still, the network-wide aggregation of this metric can 

be meaningful. Such aggregation is known as average network degree and strength. 

They are defined as:  ̅  ∑       for unweighted networks and  ̅  ∑      for weighted 

networks. 

3.2.3.6 Clustering coefficient 
 

In many real-world networks, especially social networks, the vertices tend to 

create highly connected clusters. Watts & Strogatz (1998) proposed the clustering 

coefficient for a vertex i, as the degree to which its neighbors form edges among 

themselves. Formally: 

    
 |  |

  (    )
 

Where    is the number of connections among vertex i neighbors and    is the 

degree of the vertex i. In this way,     must be a value ranging from 0 to 1. Similarly to 

the metric degree, the clustering coefficient is a quasi-local measure that can be 

aggregated network-wide. The network-clustering coefficient is defined as: 

   ∑   

   

 

3.2.4 Network centrality 
 

The concept of centrality measure attempts to quantify the importance of a 

vertex within the network. A vast number of centrality metrics were proposed in the 

literature and a summary of the most important ones can be seen in Newman. This 

work will mostly use Strength, Betweenness, Closeness, and PageRank. The following 

section describes one each of them. 

3.2.4.1 Degree 
 

The simplest and most intuitive concept of vertex centrality is to consider its 

degree, or strength. In additional to its simplicity, another advantage of this metric is 
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that it is calculated by using only the neighborhood of each vertex. Therefore, unlike 

other concepts of centrality such as the Betweenness, Closeness and PageRank, 

computing the degree of a single vertex does not requires knowledge of the complete 

network.  

Since different networks have different sizes, it is important to normalize the 

degree when comparing different networks. This is usually done by dividing the degree 

of a vertex by the maximum possible number of edges in order to keep the degree 

range from 0 to 1. 

3.2.4.2 Betweenness 
 

The concept of betweenness was introduced by Freeman (1978). While 

closeness was a centrality metric based on distance, betweenness is based on flow. It 

is closely related to the concept of shortest path. 

The intuition behind it can be better understood considering a scenario of a 

transportation network in which vertices are cities and edges are roads. Consider that 

each city needs to send messages to every other city in a uniform distribution. In this 

case, the betweenness metric measure would be how many messages would pass by 

a given city within a timeframe.  

In the context of political science, a famous case of the importance of 

betweenness centrality was shown by Padgett& Ansell (1993), after building a network 

of marriages among traditional Florecian families during the Renascence. In this 

network, vertices are families and edges are marriages connecting different families. 

This work shown that the Medici family, had a distinct position connecting separated 

clusters of families. Consequentially, they rose to power by becoming main 

intermediary for transactions across those groups. 

The calculation of the betweenness centrality requires the calculation of the 

shortest path between every possible pair of vertices in a network. Once this step is 

done, the betweenness centrality of a vertex v is the fraction of all the possible shortest 

paths in the network that travels along the vertex v (NEWMAN, 2005). Formally, the 

Betweenness    is defined as: 

   ∑ ∑
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Where    
  is 1 if the shortest route between s and t passes throughout vertice 

  and 0 if otherwise. Since it is possible to have multiple minimum paths connecting the 

same pair of vertices, it is important to normalize the equation with the term     which 

is the number of shortest paths from vertices s to t. 

As reminded by Christiano Silva & Zhao (2016), a consequence of this 

definition is that vertices with high betweenness have an important role in the 

communications within the network. In other words, the vertices with high betweenness 

are the ones in which the largest number of messages need to cross throughout it. This 

way, those nodes may either observe the message or charge a fee for its relaying 

service. Finally, the removal of vertices with high betweenness also tends to bring a 

discretionally high impact on the disruption of a communications within the network. In 

real-world situations, of course, not all vertices exchange communications with the 

same frequency, and in most cases, communications do not always take the shortest 

path, due to, for example, political or physical reasons. Also, the assumption that the 

frequency of messages exchange among the vertices is uniform often does not hold. 

3.2.4.3 Closeness 
 

Closeness is a distance related centrality metric, as said Sabidussi (1966) 

when defined the closeness centrality of a vertex v as the inverse of the average 

distance from for all other vertices in the network within its reach.1 Formally, the 

closeness centrality of a vertex  , known as   , is defined as: 

   
   

∑       
 

Where   is every vertex in the network that is reachable from v except itself,   

is the number of vertices in the network, and     is the shortest path from vertex u to 

vertex v. 

In social network context, vertices with high closeness, can message other 

people faster than vertices with lower closeness. Despite being a very intuitive metric, 

in the context of social networks, closeness has some problems. Those networks have 

small world propriety, i.e. the average distance uses logarithmic scale to the number of 

vertices. Consequentially, the range of values for closeness is rather short making it 

 
. 
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hard to distinguish high rank vertices from low rank vertices as pointed by Watts& 

Strogatz (1998).  

For example, in Watts & Strogatz (1998), a network of actors was built using 

data from Internet Movie Database. Vertices were actors and edges were present 

between a pair of actors if they stared in the same movie. The actor with the highest 

centrality is Christopher Lee with 2.41, while the actress with the lowest centrality is 

Leia Zanganeh with 8.66. While those values are clearly distinct, there are other half 

million vertices in the network whose closeness centrality are compressed within this 

narrow range as pointed by Padgett & Ansell (1993) 

3.2.4.4 Eigenvector 
 

Eigenvector, Katz, and PageRank, are a class of centrality metrics that are 

based on recursive centrality Newman (2010). Recursive centrality is akin to an 

extended form of centrality degree in the sense that the more central are the neighbors 

of a vertex v, the more central is the vertex v itself.  Therefore, a vertex may become 

more central by either connecting to lots of other vertices, or by connecting to a few 

vertices that have high centrality Newman, 2004. 

The Eigenvector centrality has the most straightforward definition: The 

Eigenvector centrality of a vertex i, known as    is proportional to the sum of the 

centrality of its neighboring vertices   as in: 

   ∑     
   

 

Where A is the adjacency matrix and    is the centrality of the neighbor vertex 

j. Similar to other recursive centralities metrics, it is a common practice to calculate the 

Eigenvector centrality using successive interactions that provide better estimates. The 

first interaction is: 

 ( )     ( ) 

One calculates  ( ) as linear combinations of the eigenvector    of the 

adjacency matrix A. After some algebraic manipulation and considering the limit case 

when    , the definition becames as first proposed by Bonacich (1987). 
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  ∑     

   

 

Where    is the largest of the eigenvalues of A. 

3.2.4.5 Katz 
 

Eigenvector centrality is successful at achieving the desirable proprieties of 

allowing a vertex to be influent by either having a high number of edges with low rank 

vertices or by having a small number of edges with high rank vertices. Still, it leaves 

some problems when considering directed networks. A vertex has many edges pointing 

towards other vertices but no edge pointing towards it. Therefore, it would have a null 

rank to contribute to its neighbors.  

A solution considered to this issue is to provide a minimum amount of rank to 

each vertex regardless of its connections.  This centrality measure is known as Katz 

centrality and was proposed in 1953 by Katz (1953) formally defined as: 

    ∑     
   

   

Where   and   are positive constants. Like eigenvalue centrality,   is the 

largest eigenvalue of the adjacency matrix while   is the minimum rank that a vertex 

may have. By convention,   has value equal to 1. 

3.2.4.6 PageRank 
 

 Katz centrality leaves one additional opportunity for improvement. If a vertex 

has many edges connecting towards other vertices, its rank is allocated to each 

neighboring vertex regardless of how selective is their endorsement. PageRank 

centrality innovation has the objective to dilute the endorsement provided by a vertex 

proportionally to the number of vertices being targeted by it. Formally, PageRank 

centrality for a vertex   it is defined as: 

    ∑   

   

  

  
      

Where   and   are the same positive constants seen in Katz centrality, and 
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    is the out-degree of the vertex  , i.e. the number of edges, or the sum of the 

weights, that the vertex v has pointing to other vertices. 

 While PageRank is defined for directed networks, some special cases for 

undirected networks occur. In those cases, the results for proportional to the degree of 

the vertices in the graph (Grolmusz, 2012). 

3.2.4.7 Choosing centrality metrics 
 

As a final thought, it must be highlighted that although those centrality metrics 

can be applied to any network, some of them are more appropriate than others since 

each one is based on a different idea. Still, there is little theory base on how to select 

the best centrality metric. It is usually recommended to evaluate the resulting rank of 

such metrics and compare them with a ground truth source which were often built by 

human experts in the domain playing this evaluation role. 

3.3 Network construction techniques 
 

This section describes some network construction techniques. Networks are 

often used to model local relationships between data points and then build global 

structures. Also, framing a problem as network can provides an opportunity to gain 

additional insight about the phenomena being studied by using the tools provided by 

network science. 

Constructing a network involves two steps. First, one chooses the unity of 

analysis for the dataset and defines vertices according to this choice. Second, one 

generates edges across those vertices. Although the first step is straight forward, the 

second stage relies on two critical design decisions: the choice of the similarity function 

and the network formation technique Christiano Silva & Zhao (2016). 

Similarity functions have been employed in several fields such as machine 

learning, information retrieval, pattern matching, and fuzzy logic Russell & Norvig 

(2009). Consequentially, existing literature provides many choices for the decision of 

these functions. While choosing the similarity function, it is important to consider the 

nature of the feature being used to compute similarity. Those data types are: 

Categorical: This type of feature has two or more categories that have no 

hierarchy among them. For example, party affiliation is a category since no party is 
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more important than other and there is a discrete number of them. 

Ordinal: Similar to categorical features but possessing a hierarchy. For 

example, in some surveys the education attainment is collected using the following 

options without high school, high school degree, college degree, postgraduate degree.  

Numerical: Features that are measure in a numerical continuum such as 

income and years of education. 

Given that the focus of this work will be using categorical data, it will focus 

only on similarity metrics for this data type.2 

Two similarity functions were used: Jaccard and a modified version of Jaccard 

to create asymmetric directed edges.  

Jaccard similarity is the most popular similarity function since its introduction 

by Jaccard (1901). One benefit of the Jaccard similarity is that it ignores categories that 

are not present in the data, e.g. congressmen who did no-show on voting sessions. It 

can be defined as: 

        (   )  
|   |

|   |
 

Using Jaccard similarity leads to the creation of an adirectional network. Since 

not all relationships in networks are fully mutual, it is important to not to lose this lack of 

symmetry. Therefore, I modify Jaccard similarity by making the denominator only 

consider the cardinality of the source vertex. This leads to the creation of a directional 

network. 

           (   )  
|   |

| |
 

Finally, in some cases, it is convenient to use the dual of the similarity 

function, the distance (or dissimilarity) function, since many topological metrics, e.g. 

closeness and betweenness, require edge weights to reflect the distance among 

nodes. In these cases, a similarity metric can be converted into a distance one by 

taking its complement, i.e.                      . 

 
2  Arguably, as will be better presented in the methods sections, the data used could be 
considered ordinal since, according do domain experts, there is some hierarchy among the 
possible voting options. 
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4 DATASET AND METHODOLOGY 
 

This chapter provides to the readers a detailed implementation of the present 

methodology and the datasets used on this dissertation, setting ground for the results 

exposed in the next chapter.  

4.1 Datasets 
 

This work used two main databases of public data available: The House of 

Representative voting results during the year of 2015 and the Cabeças do Congresso 

report Queiroz (2015). 

The work is focused on analyzing a single year in order to simplify this first 

attempt to answer its research question.  

4.1.1 House of Representatives voting results 
 

The House of The Representative’s website keeps an API, which registers the 

position of each congressman for every legal project voted into the main plenary of this 

house Brasil (2015). 

Since this API only records voting sessions in the plenary, activities in the 

thematic committees were not consider in this work. Nevertheless, for the year in 

question, 2015, the system presented detailed information on the outcomes of 249 

plenary voting sessions regarding 69 legal projects.  

4.1.2 DIAP report 
 

Our research question is based on the hypothesis that topological 

characteristics of a network can be used to identify the most influential vertices, in this 

case, the congressmen in the House of Representatives. To verify this, one must have 

a ground truth source for information regarding the top influencing congressmen. This 

source was the report Cabeças do Congresso, published by the Inter-Union 

Department for Parliamentary Advisory (DIAP) [Departamento Intersindical de 

Assessoria Parlamentar], Queiroz (2015). Although this report has been published 

since 1994, the list itself has been published by DIAP since 1986.  Thus, it is a 

reasonable source and is often referred by major Brazilian newspapers and academic 

works when conveying political analysis. 
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The core product of the report is an unsorted list of the top 100 most influential 

congressmen. Since the focus will only be on the House of the Representatives and 

the report contains both members of the House of Representatives and members of 

the Senate, data was filtered so that only deputies were considered. For the 2015 

edition, 54 deputies were present in the list of top 100 congressmen. Given that the 

House of Representatives has 513 members, this shortlist represents 10.3% of the 

members of that house. 

The report also contains deeper information about the top 100 congressmen. 

Those congressmen are further subdivided regarding their influence type. There are 24 

congressmen as debaters, 14 known as articulators, 9 policy makers, 7 negotiators and 

opinion makers. I decided to simplify this work by abstaining from using this 

classification of influence type. 

4.2 Methodology 
 

The proposed methodology involves the major objectives:  

1. To build a voting network and perform exploratory data analysis on it.  

2. To identify influential congressmen by ranking of the centrality features. 

3. To identify influential congressmen using classification algorithms.  

Those objectives will be achieved by conducting the tasks shown on Figure 

11, and the tasks will be detailed across the following subsections. 

During this work was done using the Python programming language by Van 

Rossum et al. (2010), and the Pandas library by McKinney (2010) for data 

manipulation. Also, while doing network analysis, I used the Graph Tools library 

created by Peixoto (2014) and for tasks related to machine learning I opted for the 

SciKit-Learn library created by Pedregosa & Varoquaux (2011).  

4.2.1 Data transformation and exploratory data analysis 
 

The first task is to extract the two source datasets: voting results of the 

Brazilian House of Deputies and the Cabeças do Congresso Report. Afterwards, those 

two datasets were merged. 
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Also, since many of the voting congressmen are surrogates and participate 

only in a small fraction of the voting sessions, a minimum attendance threshold was 

established in order to filter the congressmen whose attendance is below this given 

parameter.  

 

Figure 11: Tasks involved in the proposed methodology. 

 

Afterwards, local relationships between congressmen were modeled using a co-

votation network, which is a similarity network composed of vertices, which are 

congressmen, and edges, that reflects pairwise similarity among them regarding their 

voting behavior. While doing this, two similarity functions were experimented on this 

work: the original Jaccard function and a modified asymmetric Jaccard function. 

Jaccard was chosen since it is one of the commonly used similarity function in social 

network. On the other hand, its asymmetric modification, which was defined in the 

theoretical framework, was chosen since it can represent asymmetric relationships and 

lead to the creation of a directional network. Edge weights were also defined as being 

pairwise distance among congressmen, since, as opposed to using similarity since this 

formulation is required in some centrality definitions.  

Since similarity was compute using those two metrics, this leads to the 

creation of two different weighted networks. The adirectional network built using the 

original Jaccard function will be called the Jaccard network. The directional network 
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built using the modified Jaccard function will be called the asymmetric network. I 

preferred not to call the Jaccard network as “symmetric network” in order to avoid 

confusion. Afterwards, I did an exploratory data analysis to describe those networks in 

terms of network metrics, such as: number of vertices, number of edges, maximum 

strength, average strength, minimum strength and average local clustering index. I was 

also interested in the observation of the distribution of voting session attendance and 

voting outcome. 

In the voting dataset, each data category has a number of features, each one 

representing a different voting session. Each voting session has five possible labels: 

yes, no, abstention, no-show, and obstruction. It is important to consider no-shows 

differently since it conveys little information about the position of a congressman 

regarding a legal project. Even more important, the great number of no-show can 

scientifically degrade pairwise similarity among congressmen.  

For example, suppose two congressmen registered as no-show in 80 voting 

session each across an entire year. Also those same congressmen attended 20 

sessions, on which they registered completely opposite votes. If one naively 

considered all labels equally, such congressmen would have behaved similarly in 80% 

of the voting sessions and would be considered highly similar, despite voting in 

opposite directions when they actually casted their votes. Therefore, voting sessions 

where both congressmen fit within the no-show category will not be considered. 

4.2.2 Identifying influential congressmen 
 

Afterwards, I can address to the question of whether topological characteristics 

of a network can often be used to identify the most influential vertices. I am attempting 

to predict the presence or absence of a congressman in DIAP list while abstaining from 

using deeper information contained in the report, such as the type of influence exerted 

by each congressman. 

I attempted to predict the most influential congressmen by using two 

approaches. First, I consider rankings of vertices sorted by different centrality metrics 

that reflect different concepts of centrality. Later, I will experiment a more elaborated 

approach by combining different features as input for classification algorithms. 
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4.2.3 Features 
 

In both approaches, the main hypothesis is that congressmen that are influential 

should have high centrality features. Diverse of centrality metrics were considered: 

strength, betweenness, closeness, and PageRank. On directional networks, the 

strength feature will be replaced by two features: in-strength and out-strength. Also, on 

networks without directions, PageRank will not be used since it is designed to be used 

only on directional networks. Finally, in addition to those topological features, I also 

included congressmen attendance to voting sessions. 

Those topological features were chosen not only because they are the most 

common ones, but mainly because they capture different conceptual definitions of 

centrality. While strength is a centrality metric based on strictly local abundance of 

connections, PageRank are based on recursive abundance of connections. On the 

other hand, closeness is based on network wide distance, and betweenness is based 

on network wide message flow.  

Betweenness and closeness metrics were normalized in to make them easier to 

compare between different networks. Also, PageRank requires inputting a damping 

coefficient, which was set value as 0.85 since this value is the one commonly used. In 

addition to those features previously mentioned, another features not directly related do 

centrality was added: congressmen attendance to voting sessions.  

Finally, since all those features are continuous in their nature, they can be 

inputted into models without further transformation. Still, they were standardized since 

some models such as k-nearest neighbors work better if their different inputs have a 

similar dispersion range. 

4.2.4 Learning algorithms 
 

Afterwards, I used different learning algorithms to verify which one would better 

fit this problem. Two algorithms were attempted: random forest (RF) and k-Nearest 

Neighbors (kNN). Those algorithms reflect different lines of thoughts that could provide 

a reasonable coverage. K-Nearest Neighbors is non-parametric algorithm that requires 

few hypothesis above the dataset, while random forest is a semi-parametric algorithm 

known to provide good performance while requiring little hyper-parameter turning.  

The optimum values for the hyper-parameters on those algorithms were found 
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using cross-validation, i.e. several models were be built with different hyper-parameters 

and the best one was selected after its performance on a dataset with previously 

unseen data instances. 

The random forests algorithm has many parameters, but I am only turning the 

most important ones, the maximum depth of each decision tree, and the number of 

base decision trees. The maximum depth parameter was experimented within the 

range [3, 5, 7], while the number of trees parameter was experimented within the range 

[3, 5, 10, 20]. Usually, the deeper are decision trees, the more complexity are their 

models. A high number of trees can smooth the decision function, avoiding overfitting. I 

chose to use the Gini index as the split quality function, and to subsample in each node 

the squared root of the original number of features available as it is the default option 

on SciKit-Learn.  

On the k-Nearest Neighbor Algorithm, there are three design decisions: k, the 

number of neighbors considered in the model, the distance function, and the weight of 

each neighbor. I decided to use Euclidian distance function, and to experiment the 

parameter k within the range [5, 15, 40, 60]. Small values of k tend to overfit the 

models, while large values of k may lead to underfitting. Also, I will experiment 

weighting data instances in two ways: uniformly and in inverse proportion to their 

distance.  

4.2.5 Evaluation 
 

The data was split as follows: 75% of the data instances into the training 

dataset, while other 25% went into the testing dataset. After splitting them, all variables 

were standardized with a scale built using only data from the training dataset. Within 

the training set, model selection was done using k-folding with k=10. 

While evaluating models, some evaluation metric had to be used to determine 

the best one. Due to the class imbalanced of this problem, I decided not to use 

accuracy. Precision or recall could also be used, but I favored using the area under the 

receiver operating characteristic curves (AUROC). This decision was done since 

precision and recall only considers the score around a specific threshold, missing 

information about the performance if other thresholds were selected.  

Additionally, it was desirable a metric that would allow comparing this result 

with a benchmark. Since there is no previous work investigating on this research 
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question, the benchmark was a naïve model consisting of randomly considering a 

fraction of the deputies as being influential. Given that the House of Representatives 

has 513 members and 53 of them are considered influential, this naïve model randomly 

has average precision 0.103. 
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5 RESULTS 
 

This chapter presents the results obtained, interprets and discusses them. It is 

divided into three subsections: (1) Data transformation and exploratory data analysis; 

(3) Prediction of influential congressmen using ranking of different network centralities; 

(4) Prediction of influential congressmen using multiple centralities as features for 

classification algorithms. 

5.1 Data Transformation and exploratory data analysis 
 

Once the results from the House of Deputies voting sessions and the DIAP 

report were obtained, they were merged. This process was largely manual and suffered 

from two main problems. First, there was not a unique identifier for congressmen. Also, 

several congressmen have different register names in the House of Representatives 

and in the DIAP report. Still, I was able to link them by using a mixture of information 

such as congressman name, political party affiliation and representing region.  

Secondly, and more important, several congressmen left their positions. For 

example, several ministers and secretaries on regional-level are also members of the 

national congress. Brazilian electoral law covers this case by requiring the candidate 

congressman to present an ordered list of three surrogate congressman, to be 

progressively called according to the necessity. Therefore, voting records contain 

several congressmen that are surrogates. Consequentially, the Voting API registers 

601 unique congressmen names across all voting sessions in 2015, more than the 513 

seats available within the House of congress. 

After creating a coherent dataset, the first point of interest was the distribution of 

congressmen attendance across all voting sections. The result can be seen on Figure 

12. 
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Figure 12: Complementary cumulative distribution function of congressman 
attendance to voting sessions. 

 

Results show that the distribution is clearly non-normal. Around 70% of them 

have attended more than 66% of the voting sessions, however, some congressmen 

have very low voting attendance rate. The most likely explanation for the majority these 

extreme cases is that these congressmen are surrogates. Since this surrogates joined 

the Congress later and often only during a short stay, they tend to have attended fewer 

voting sessions. 

Additionally, surrogate congressmen are often not considered while elaborating 

DIAP report. Therefore, to restrict the many problems caused by eventual surrogates 

and elected congressman who seldom participate in the congress, I opted to consider 

only congressmen who have attended to a minimum of 50% of the voting sections, i.e. 

125 sessions. This criterion ended up excluding 115 congressmen, of which only one 

was considered influential.3 

Additionally, I also evaluated how was the distribution of voting outcome during 

the sessions as shown in Figure 13. 

 
3 According to the internal regulation, the President of the House of Representative is unable to 
vote on most sessions. Consequentially, he only participated on one voting session, the one 
which he got himself elected. 
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Figure 13: Complementary cumulative distribution function of congressman 
 by voting option. 

 

It clear that there is a trend towards approving legal projects since congressmen 

are more susceptible to vote yes than no. Absences are extremely rare, and a 

significant fraction of the congressmen has never taken this position. Finally, 

obstructions are also a rare outcome, but a surprisingly present position given how 

unknown is its existence among general public. As a final remark, there are possible 

interpretations of abstention and obstruction. The first means keeping a neutral position 

while helping the proponents of the legal project by providing the minimum quorum to 

conduct the voting section. The latter is limited to party leaders willing to postpone an 

ongoing voting section. 

Afterwards, networks were built to model local relationships among 

congressmen. In this network, vertices are congressmen and edges weights reflect 

pairwise similarity or distance among congressmen regarding their voting behavior. 

Each congressman has a set of legal projects on which he has voted and intersections 

of common positions between congressmen are evaluated. Each edge actually has two 

weights, one of pairwise similarity between congressmen and another one of the 

opposite, i.e. pairwise distance between congressmen. 

In this analysis, two weighted networks were built: A symmetric network built 

using the Jaccard similarity function, which will be called Jaccard network; and an 

asymmetric network built using a modified version of the Jaccard similarity function, 

which will be called asymmetric network.4 This modified version was chosen since it 

allows representing the asymmetric relationships between congressmen, leading to the 

creation of a directional network. In the context of weights as similarity, the higher the 

 
4 I preferred not call the Jaccard network as “symmetric network”, in order to avoid confusion. 
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share of common positions between two congressmen, the higher is their similarity. 

The opposite happens when weights are defined as distances. I developed both 

weights since some features need edges to be defined as similarity, e.g. strength and 

PageRank, while other require them to be defined as distance, e.g. betweenness, 

closeness.  

The distribution of strength across those two networks can be seen in on 

complementary cumulative distribution functions on Figure 14. The axis x is 

congressmen strength and the axis y is congressmen count. On both networks the 

distributions are very similar, a bell shape curve. 

 

Figure 14: Complementary cumulative distribution functions for total strength on 
the asymmetric network (left) and strength on the Jaccard network(right). 

 

The overall connectivity of the resulting networks can be better understood by 

observing summarization metrics shown in Table 3 below for both networks built. 

Those metrics indicate that both networks are reasonably dense.  

Table 3: Networks summary metrics 

 asymmetric Jaccard 

Number of vertices 487 487 

Number of edges 236682 118341 

Maximum (total) strength 595.61 341.18 

Average (total) strength 501.88 304.04 

Minimum (total) strength 374.28 217.68 

Density 0.52 0.62 

Average local clustering index 0.61 0.58 
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Since the asymmetric network is directional, it has twice the number of edges 

the Jaccard network has. The high connectivity in the voting networks suggests that it 

is very unlikely for a congressman not to find a minimum degree of consensus with his 

peers. This happens because congressmen voting options are intrinsically limited: they 

must declare a position when participating on a voting section, which is limited to only 

four options (“yes”, “no”, “abstention” or “obstruction”). However, voting in such limited 

range of options imposes a very low probability for not sharing at least one single 

common vote across all voting sessions. The reasonably high values observed 

clustering coefficient can also be explained from this observation. 

Additionally, unlike the Jaccard network, the relationships in the asymmetric 

network are not fully mutual. It is important to know the level of symmetry of those 

relations. This was done by computing the Pearson correlation between every pair of 

edge connecting from a congressman A to a congressman B with their corresponding 

edge connecting from congressman B to congressman A. As expected, the resulting 

Pearson correlation, 0.75, is high. 

Finally, I was particularly interested into seen histograms and scatter plots that 

may reveal how features interact with each other. Figure 15 shows a mosaic of 

histograms in the main diagonal and pairwise scatter plots between features in the 

asymmetric network. A summary of the correlation among features was calculated 

using Pearson correlation and can be seen on Table 4. 

Table 4: Correlation matrix for features on asymmetric network. 

 Attendance In_strength Out_strength Betweenness Closeness PageRank 

Attendance 1.00 -0.84 0.33 0.11 -0.33 -0.83 

In_strength -0.84 1.00 0.24 -0.11 -0.23 1.00 

Out_strength 0.33 0.24 1.00 0.00 -1.00 0.26 

Betweenness 0.11 -0.11 0.00 1.00 -0.01 -0.11 

Closeness -0.33 -0.23 -1.00 -0.01 1.00 -0.25 

PageRank -0.83 1.00 0.26 -0.11 -0.25 1.00 
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Figure 15: Mosaic of histograms and scatter plots for features on asymmetric 
network 

 

 

Regarding the asymmetric network, the first observation to be made is that 

there is a strong correlation between the In-strength and PageRank. This is expected 

since, for undirected networks or directed networks with many mutual connections, the 

PageRank of vertices tend to be proportional to their degrees as was pointed out by 

Grolmusz(2012). More surprising, there is also a significant correlation between Out-

strength and closeness. Regarding other pair of features, their correlations range from 

weak to modest. This is a useful since uncorrelated features may encode additional 

information. 

Betweenness was particularly uncorrelated and with a distribution highly 

concentrated around zero, with few congressmen having value higher than zero. A 

possible reason for that is that some congressmen may have a tendency to vote with 

the majority of the House of Representatives, and/or register non-show on more 

disputed voting sessions. Since the co-votation networks is close to a complete 

network, two edge hops passing thru those few congressmen can be a shorter path 

than travelling along the edge directly connecting congressmen. Consequentially, those 

congressmen concentrated a disproportional share of the shortest paths in the network 

and, thus, concentrate much of network betweenness.  
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The same analysis was done in the Jaccard network. Its mosaic of histograms 

and pairwise scatter plots can be seen on Figure 16 and Pearson correlations between 

its pairs of features can be seen on Table 5. 

 

Figure 16: Mosaic of histograms and scatter plots for features on Jaccard 
network 

 

Table 5: Correlation matrix for features on Jaccard network. 

 Attendance Strength Betweenness Closeness 

Attendance 1.00 0.25 -0.29 -0.29 

Strength 0.25 1.00 -0.08 -0.97 

Betweenness -0.29 -0.08 1.00 0.14 

Closeness -0.29 -0.97 0.14 1.00 

 

Unlike in the asymmetric network, there is very high correlation among every 

feature pair other than the ones involving attendance and betweenness. This level of 

correlation among these features suggests that there is a significant redundancy 

among them. Although this result was surprising, further research into network science 

literature corroborated it. Li et al. (2015), Meghanathan (2015), Landherr et al. (2010) 

and Valente et al. (2008)investigated correlation among topological features and they 

all found that there it is possible to have significant level of correlation among 

centralities, despite them having very different theoretical foundations and underlying 

centrality concepts. 
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The work of Valente et al. (2008) suggests a reason why the Jaccard network 

suffered this problem more acutely than the asymmetric network. In addition to 

highlighting the how correlated were nine different centrality features across several 

real-world networks, that work also explored the association between centrality 

correlation and four different network properties - density, reciprocity, centralization and 

number of components. 

It was found that certain conditions favor a very high level of correlations among 

topological metrics. Those conditions arise specially on networks with high level of 

reciprocity, i.e. where relationship between nodes is highly mutual. Since Jaccard 

similarity function resulted in non-directional network, it has complete reciprocity on 

every relationship. Despite asymmetric network be a directional network, it also a 

significant level of reciprocity in its relationships as was indicated by the Pearson 

correlation between edges connecting the same pair of congressmen in opposite 

directions. 

5.2 Predicting influential congressmen 
 

Afterwards, I addressed to the question of whether topological characteristics of 

a co-votation network can be used to identify most influential nodes. The Cabeças do 

Congresso by Queiroz, 2015)contains 100 influential congressmen, but only 54 of them 

are deputies and one of them did not vote since he was the president of the House of 

Deputies. Influential congressmen were defined by considering their presence or 

absence in the list and abstained from using deeper information contained in the report, 

such as what type of influence it exerted by each congressman. 

I predicted influential congressmen by using two approaches. The first one was 

considering each topological centrality metric in isolation. Later, those same features 

were combined and used as input features for two classification algorithms. The 

performance those models were evaluated by two metrics, average precision along the 

precision-recall curve and area under the receiver operating characteristic curve.  

Additionally, I wanted to compare this result with a benchmark. Since there is no 

previous work investigating on this research question, the benchmark was results 

excepted if influential deputies were randomly chosen. Since, the House of Deputies 

has 513 members and 53 of them are considered influential, this naïve model randomly 

selects 10.3% of deputies as influential. 
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5.2.1 Isolated feature ranking 
 

I ranked congressmen in descending order for each feature built in the 

previous section – attendance, strength, betweenness, closeness and PageRank. 

Afterwards these ranking were compared with the ground truth.  

Result obtained as measured by the average precision along the precision-

recall curve is shown on Table 6. 

Table 6: Average precision along the precision-recall curve using feature 
ranking. 

  Asymmetric Network Jaccard Network 

Attendance 0.10 0.10 

Strength - 0.22 

In-strength 0.19 - 

Out-strength 0.22 - 

Betweenness 0.11 0.15 

Closeness 0.08 0.08 

PageRank 0.19 - 

 

Overall, both two networks performed similarly while comparing their top 

performing features. Since the benchmark would lead to an average precision equal to 

0.103, many features performed better than what would expect by random guessing. At 

their best features - strength on Jaccard network or out-strength in the asymmetric 

network - the average precision was 0.22, more than twice the result obtained by the 

benchmark. 

Interestingly, unlike the case of Florecian families in Padgett & Ansell (1993), 

betweenness centrality did not perform well. A probable reason for that is that the 

completeness of the co-votation network degenerated this metric by concentrated a 

disproportional share of the shortest paths in the network within a few congressmen, 

while leaving most of them with zero betweeness. 

Results measured by the area under the receiver operating characteristic can 

respectively be seen on Table 7. Similarly to the average precision, the best performing 

feature were strength on Jaccard network or out-strength in the asymmetric network. 
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Overall, the results obtained by Jaccard network as slightly higher than those obtained 

by the asymmetric network.  

Those results can be evaluated was according to the classification of level of 

discriminatory ability proposed by Hosmer & Lemeshow (2004).The top performing 

features, strength on Jaccard network would be considered to have an acceptable level 

of discriminatory ability. 

 

Table 7: Area under the receiver operating characteristic curve using feature 
ranking. 

 Asymmetric Network Jaccard Network 

Attendance 0.45 0.45 

Strength - 0.71 

In-strength 0.68 - 

Out-strength 0.69 - 

Betweenness 0.49 0.55 

Closeness 0.31 0.33 

PageRank 0.68 - 

 

 

 

A further understanding of the performance of this ranking can be seen by 

evaluating the shape of their precision-recall curves which are respectively shown in 

Figure 19 and Figure 20 on the asymmetric and Jaccard networks. In these figures, the 

expected precision obtained by the naïve benchmark is indicated by horizontal dashed 

lines at 0.103. 

On the asymmetric network, it can be seen that the shape of in-strength and 

PageRank curves are similar. Again, this is expected since on directed networks with 

many mutual connections, the PageRank of vertices tend to be proportional to their 

degrees as noted in Grolmusz (2012).  
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Figure 17: Precision-recall curve for prediction using feature ranking  

on the asymmetric network. 

Those two features were able to identify congressman with a precision of 

roughly 20%, significantly better than the naïve benchmark, up to recalling 40% of 

influential congressman. After this threshold, precision still remains above the 

benchmark, but not in a significant way. The curve for the out-strength feature had an 

even better result, but which precision still limited to 25% for most of the curve until 

recalling 60% of congressmen. Attendance and betweenness did not differ from naïve 

benchmark, while closeness is seen below the benchmark.  
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Figure 18: Precision-recall curve for prediction using feature ranking  
on Jaccard network. 

 

 

 

On the Jaccard network, the strength metric was able to identify congressman 

slightly better by having a precision of roughly 25% upon recalling 50% of influential 

congressman. Again, closeness is seen below the benchmark while betweenness 

performance better than the naïve benchmark, but only during a short range. 

Finally, the receiver operating characteristic curve for those ranking models on 

the asymmetric and Jaccard networks can respectively be seen on Figure 19 and 

Figure 20. In these figures, a classifier with no discriminatory ability would score along 

the diagonal dashed line. 
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Figure 19: Receiver operating characteristic curve on the asymmetric network. 

 

 Looking at the receiver operating characteristic curve on both networks, the 

behavior of the closeness rank can be better understood. Since its curve is consistently 

below the dashed line, it seems like it is performing worse what would be expected by 

random chance. This suggests that, against what was expected by common sense, 

closeness ranking should be sorted not in descending order, but in ascending order. 

 



   

 

57 

 

 

Figure 20: Receiver operating characteristic curve on Jaccard network. 

5.2.2 Combining features 
 

After evaluating the ability of each feature to identify leaders when considered 

in isolation, I now investigate whether it is possible to improve results by combing these 

features together and using them as input features feeding classification algorithms. 

Since features on Jaccard network are highly correlated among themselves, 

they are mostly redundant and combining them would not provide much additional 

information. Therefore, I decided to focus this session by applying this approach only to 

the asymmetric network. 

As mentioned in the methodology section, I used two learning algorithms to 

verify which one would better fit this problem. The algorithms attempted were: random 

forest and k-nearest neighbors. K-Nearest Neighbors was selected for being a non-

parametric algorithm that requires few hypotheses above the dataset and performs well 

with reasonably populated datasets with a small number of dimensions. Random forest 

was selected since it is a robust semi-parametric algorithm known to provide good 

performance while requiring little hyper-parameter turning. 

Since all features used are continuous in their nature, they were inputted into 

the model after only a standardization to keep dispersion across different variable on 
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the same scale. The data used to perform this standardization was obtained only from 

the training dataset. Hyper-parameters optimization for each model was done using k-

folding and selecting the model with the best area under the receiver operating 

characteristic curve.  

For the k-nearest neighbors, cross-validation results can be seen on Table 

8.The best performing hyper-parameters was when k=60 and data instances were 

weighted according to their distance.  

Table 8: Cross-validation results on k-nearest neighbors 

K Weigthing AUROC (95% confidence interval) 

5 uniform 0.615 (+/- 0.073) 
5 distance 0.620 (+/- 0.063) 
15 uniform 0.666 (+/- 0.105) 
15 distance 0.689 (+/- 0.110) 
40 uniform 0.724 (+/- 0.086) 
40 distance 0.734 (+/- 0.091) 
60 uniform 0.711 (+/- 0.088) 
60 distance 0.742 (+/- 0.092) 

 

For the random forest, cross-validation results can be seen on Table 9. The 

best performing result was when 20 trees were built with maximum depth of only 3 

levels. 

Table 9: Cross-validation results on random forest. 

Number of trees Maximum depth AUROC (95% confidence interval) 

3 3 0.691 (+/- 0.048) 
5 3 0.692 (+/- 0.046) 

10 3 0.703 (+/- 0.059) 
20 3 0.714 (+/- 0.066) 
3 5 0.579 (+/- 0.123) 
5 5 0.586 (+/- 0.111) 

10 5 0.632 (+/- 0.081) 
20 5 0.657 (+/- 0.053) 
3 7 0.518 (+/- 0.110) 
5 7 0.530 (+/- 0.122) 

10 7 0.553 (+/- 0.135) 
20 7 0.614 (+/- 0.097) 

 

Afterwards, the selected models were then applied to the test dataset in order to 

evaluate their generalization capability. Those results can be seen on Table 10. 
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Table 10: Performance metrics on testing dataset. 

 K-nearest neighbors  Random forest 

Average precision 0.28 0.30 

AUROC 0.72 0.73 

 

In both metrics evaluated, the best result was obtained by the random forest 

model, but closely followed by the k-nearest neighbors. The average precision obtained 

is 0.30, almost 3 times better than results from random guessing, 0.103. Also, this 

result is 36% better than the model previously built – base on congressman ranking 

according to its PageRank metric - which scored an average precision equal to 0.22.  

Regarding the area under receiver operating characteristic curve, the 

performance also improved over isolated ranking features based on the asymmetric 

network. The result obtained, 0.73, would be considered an acceptable level of 

discriminatory ability in the classification proposed by Hosmer & Lemeshow (2004). 

Similar to when evaluating ranking on the previous section, I was interested into 

view the precision-recall curve since it can lead to better understanding model 

performance considering all possible values classification threshold. Additionally, since 

those models provide individual scores for each congressman, verifying the histogram 

of these scores can also be insightful. While evaluating this, I will be focusing on 

analyzing the best performing model, the random forest. 

The histogram of score assigned by the model that a given congressmen can 

be seen below on Figure 21.  

 

Figure 21: Histogram for model confidence that a given congressmen 
 in the testing dataset is influential. 
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Most congressmen have very small scores, indicating the model have high level 

of confidence that they are not influential. Therefore, few congressmen would be 

classified as influential for as threshold in the decision function above 0.1. The way 

how precision and recall is affected as this threshold varies can be seen on the 

precision-recall curves are shown on Figure 22. 

 

Figure 22: Precision-recall curve for results in the testing dataset. 

 

There is clear tradeoff between precision and recall in the curve. Models with a 

high score threshold would flag few congressmen as leaders, keeping a relatively high 

precision, while having a low recall. As the threshold value decreases, the number of 

congressmen flagged as influential increases, increasing the recall at the expense of 

precision. It was relativity easy to identify approximately 50% of the leaders, while 

keeping precision higher than 0.30. However, identifying additional leaders remained a 

difficult task which could not be done without reducing the precision metric.  

Finally, the receiver operating characteristic curve can be seen on Figure 23. In 

comparison with ROC curves obtained by isolated feature ranking, one can see that 

this curve not only has greater area, but has more it is also more regular.  
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Figure 23: Receiver operating characteristic curve for results in the testing 
dataset. 

 

5.2.3 Final remarks 

 

Overall, combining centralities only marginally improved the ability to detect 

influencers. As was previously discussed, while different centrality features can be 

conceptually very different, in network with high level of reciprocity, they are prone to 

be highly correlated, leading to significant level of redundancy among them. While this 

was clearly the case in the Jaccard network, this may also have contributed to small 

gains observed while combining features in the asymmetric network. 

Additionally, approaching the problem with classification algorithms exposed 

here has the major disadvantage of requiring the availability of a source ground truth 

data in order to train the model.  

Further work investigating this topic would benefit by enriching the feature set 

with additional relevant features. This could be done by adding information regarding 

political party affiliation or participation in political coalitions. While political party 

affiliation is public information, participation in a political coalition can be subtle 

information that may require expert knowledge. Nevertheless, this information could be 

included not using explicit ground truth sources but implicitly using community 

detections techniques. 

Regarding this, it would be useful to adapt some of the concepts presented by 

Dal Maso et al. (2014). This work divided congressmen within two groups, roughly 
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defined as government and opposition. Then, it computed the importance of a deputy 

within a group by how much modularity the network would lose if that deputy diverged 

from its home community and defected to other community. Based on this metric, they 

characterize the heterogeneity of government coalitions and accounted each political 

party contribution to the stability of the Italian government over time. 

Another way to incorporate political parties as features would be to compute the 

importance of the party within the context of the house of deputies. In order to achieve 

this, one could apply some of the techniques developed by Takes & Heemskerk 

(2016), whose work partitioned a network of companies according to their nationality 

and developed metrics to a measure how central each partition was. This framework 

could be applied to the domain of legislative politics by considering political parties as 

partitions of the network, which allows using party influence as another feature that can 

help identify influential congressmen. 
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6 CONCLUSION 
 

This work investigated whether it is possible to identify influential 

congressmen solely by using information from the results of legislative voting sessions. 

To the best of my knowledge, this is the first attempt within literature to address this 

research question. The problem was approach by two theoretical frameworks: machine 

learning and complex networks. First, a co-votation network encoding similarity among 

congress members regarding their voting outcomes was built. Afterward, topological 

metrics for each individual in the network were calculated using different concepts of 

centrality. Those metrics were used in an isolated manner to predict influential 

congressman based on its ranking. Afterwards, those topological features were 

combined as input features in for classification algorithms. 

Ranking centralities individually was able to identify influential congress 

significantly better that what would be expected by random chance. Ranking built from 

Out-strength had the best results, 0.22, as measured by their average precision along 

precision-recall curve. This result is twice better than the results expected by random 

chance, 0.103. After combining those different centralities as input features in 

classification algorithms, the average precision along the precision-recall curve was 

further increased to 0.30, almost three times better than the naïve benchmark. 

Nevertheless, the improvement when combining features was not as significant as 

expected since there is a high level of redundancy among them. The work of Valente et 

al. (2008) suggests that this was due to the high level of reciprocity on relationships 

within the co-votation network. Under this condition, centrality metrics became highly 

correlated, despite having very different theoretical foundations and underlying 

centrality concepts.  

Nevertheless, those results obtained are substantially. This suggests that 

information regarding congressmen influences is encoded into parliament voting 

results. Indeed, partial results of this work had already been publish in Bursztyn et al. 

(2016).  

Finally, although this work focused on the context of the Brazilian House of 

Representatives during the year of 2015, it also raises the question of whether similar 

results could be observed in other legislative houses, such as parliaments of smaller 

countries or subnational parliaments.  
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6.1 Future work 
 

There are some limitations present in this job. First, only deputies elected in 

2014 were evaluated. It would be fundamental to corroborate findings if the same 

methodology were applied to deputies elected in 2010 or in previous elections. This 

longitudinal study could also observe how network topology varies across different 

legislative periods. 

 Additionally, the definition of influential congressional representative adopted in 

this work is binary, restricted to provide congressmen information with only two labels, 

influential or not. It would be valuable to have an ordinal ranking of influential leaders. A 

possible way to create this would be to merge the list obtained from Cabeças do 

Congresso report, by Queiroz (2015), with other datasets that also signal congressman 

influence, such as leadership position within thematic subcommittees in the House of 

Representatives.  

Finally, results could be further improved by enriching the dataset with 

additional features. This could be done by adding information regarding political party 

affiliation or participation in political coalitions. While political party affiliation is public 

information, participation in a political coalition can be subtle information that may 

require expert knowledge. Nevertheless, this information could be included not using 

explicit ground truth sources but implicitly using community detections techniques. 

An example such techniques can be seen in the work by Dal Maso et al. (2014) 

which used of community detection techniques on the Italian parliament. That work 

computed the importance of deputies within their community by how much modularity 

the network would lose if that deputy diverged from its home community and defected 

to another community. This and many other additional features could be created by 

encoding affiliation to political parties or political coalitions using other ideas from 

network science.  
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