

INCIDENT ROUTING: TEXT CLASSIFICATION, FEATURE SELECTION,

IMBALANCED DATASETS, AND CONCEPT DRIFT IN INCIDENT TICKET

MANAGEMENT

Matheus Correia Ferreira

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia de

Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

título de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Geraldo Bonorino Xexéo

Rio de Janeiro

Dezembro de 2017

INCIDENT ROUTING: TEXT CLASSIFICATION, FEATURE SELECTION,

IMBALANCED DATASETS, AND CONCEPT DRIFT IN INCIDENT TICKET

MANAGEMENT

Matheus Correia Ferreira

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM

CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Geraldo Bonorino Xexéo, D.Sc.

Prof. Geraldo Zimbrão da Silva, D.Sc.

Prof. Leandro Guimarães Marques Alvim, D.Sc.

RIO DE JANEIRO, RJ - BRASIL

DEZEMBRO DE 2017

iii

Ferreira, Matheus Correia

Incident Routing: Text Classification, Feature

Selection, Imbalanced Datasets, and Concept Drift in

Incident Ticket Management / Matheus Correia Ferreira. –

Rio de Janeiro: UFRJ/COPPE, 2017.

XIII, 144 p.: il.; 29,7 cm.

Orientador: Geraldo Bonorino Xexéo

Dissertação (mestrado) – UFRJ/ COPPE/ Programa de

Engenharia de Sistemas e Computação, 2017.

Referências Bibliográficas: p. 127-132.

1. Text Classification. 2. Feature Selection. 3.

Imbalanced Datasets. 4. Concept Drift. 5. Incident

Management. I. Xexéo, Geraldo Bonorino II. Universidade

Federal do Rio de Janeiro, COPPE, Programa de

Engenharia de Sistemas e Computação. III. Título.

iv

Acknowledgements

To my parents, Gloria and Luis, for raising me and teaching me the value of hard

work and dedication; to my sister, Juliana; and to my family as a whole, for the healthy,

loving, and supportive environment they have maintained through my life

To Fernanda and Patrícia, great masters in Computer Science and non-official

advisors ever since before I started this research, for their ideas, help, and advice.

 To my friends, for the moments of leisure they provided me with during these two

years, and more, especially to: Andressa, Carina, Duda, Felipe, Isabel, Iuri, Malena,

Marcelle, Marina, Mariana, Rafael, Renan, Sara, and William.

 To my students and former students, some of which have grown into great friends;

through their admiration during all these years, they have done for me more than they

could possibly ever know. Thanks to all, and especially to: Ana Eduarda, Jayana, Júlia,

Larissa, Letícia, Luana, Maria Eduarda, Maria Julia, Marcela, Natália, and Nathalia. You

are all incredibly talented, and whatever your definition of success may be, I will always

be rooting for you with total confidence that you will get there. Get out there and rock the

world.

 To my classmates with whom I worked during this course, especially to Anderson,

Pedro, and Rosangela; and to Jones and Max, who collaborated with this research.

 To the teachers I came into contact with at UFRJ, the knowledge they transmitted

was certainly invaluable to this work. Thanks to Filipe, Jano, Nathália, Pedreira, and

Zimbrão. To all the teachers I have had during my life. And a special thanks to my advisor

during this research, Geraldo Xexéo, for the ideas, time, patience, and meetings.

 To the people from work that made it easier to conciliate my professional and

academic lives during this course: Anderson, Erico, Fábio, Lia, Marcos, and Michel.

 Finally, to those who, while not essential to this work, certainly made the journey

far more pleasant: to Shigeru Miyamoto, for creating some pretty awesome games; and

to various musical masters, especially to Bob Dylan, for spitting out punchlines and

wisdom at a faster rate than anybody is able to consume; to Bruce Springsteen, for singing

about characters who were born to lose but that always feel like they are going to win; to

Joe Strummer, for fighting relentlessly; to Neil Young, for doing whatever he wants

whenever he pleases in whichever way he sees fit; and to Tom Waits, for being Tom

Waits.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

ROTEAMENTO DE INCIDENTES: CLASSIFICAÇÃO DE TEXTO, SELEÇÃO DE

ATRIBUTOS, DATASETS DESBALANCEADOS, E CONCEPT DRIFT EM

GESTÃO DE TICKETS DE INCIDENTES

Matheus Correia Ferreira

Dezembro/2017

Orientadores: Geraldo Bonorino Xexéo

Programa: Engenharia de Sistemas e Computação

Ao mesmo tempo em que a economia mundial entrou em um período onde

serviços, não produtos, são o foco dos negócios, a tecnologia também avançou. Serviços

de tecnologia da informação existem na interseção destas correntes, e a importância deles

é clara dado o número de serviços disponíveis em plataformas eletrônicas. Companhias

dependem deles para entregar valor aos seus clientes; governos os usam para prover

serviços essenciais para a população; e usuários desfrutam dos mesmos para

entretenimento, compras, e outras atividades. Provedores de serviços de TI têm o desafio

de manter a infraestrutura tecnológica que suporta estes serviços. Uma vez que o mundo

se tornou dependente de sistemas de TI, a queda de qualidade ou indisponibilidade destes

não são boas para os negócios. Assim, a solução eficiente dos incidentes que causam estes

problemas é um dos aspectos críticos da gestão de serviços de TI. Buscando reduzir a

carga de trabalho envolvida no gerenciamento de incidentes, um sistema que designa

incidentes registrados para as áreas que têm a expertise para resolvê-los é criado e testado

com incidentes reais coletados de uma empresa brasileira provedora de serviços de TI.

Para isto, técnicas de classificação automática de texto, e problemas de maldição da

dimensionalidade e datasets desbalanceados são analisados. Além disso, concept drift,

que ocorre conforme a distribuição dos dados muda com o tempo, também é tratado com

um algoritmo tradicional da área e um grupo de ensembles propostos que trazem melhores

resultados na redução da carga de trabalho e acurácia de classificação.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

INCIDENT ROUTING: TEXT CLASSIFICATION, FEATURE SELECTION,

IMBALANCED DATASETS, AND CONCEPT DRIFT IN INCIDENT TICKET

MANAGEMENT

Matheus Correia Ferreira

December/2017

Advisors: Geraldo Bonorino Xexéo

Department: Systems and Computer Engineering

While the world’s economy has entered a period where services, not products, are

the focus of businesses, technology has also advanced. Information technology services

exist in the intersection of these two currents and their importance is clear given the

number of services that are available on numerous electronic platforms. Companies

depend on those applications to deliver value to customers; governments use them to

provide the population with essential services; and many users rely on them for

entertainment, shopping, and other activities. IT service providers must contend with the

challenge of keeping the technological infrastructure that supports services running. As

the world has grown to be dependent on IT systems, the downtime or drop in quality of

such services is bad for business. Therefore, the efficient solving of the incidents that

cause those problems is one of the critical aspects of IT service management. In this work,

with the goal of reducing the workload involved in the management of incidents, a system

that automatically assigns registered incidents to the areas that have the expertise to solve

them is designed and tested with real-life incidents collected from a Brazilian IT service

provider. To do so, techniques related to automatic text classification are employed, and

problems related to the curse of dimensionality and imbalanced datasets are approached.

Moreover, concept drift, which occurs as the data distribution of tickets changes overtime,

is also handled via a traditional algorithm of the area and a group of proposed ensembles

that bring better results in terms of workload reduction and classification accuracy.

vii

Summary

List of Figures .. ix

List of Tables ... x

List of Formulas ... xiii

Chapter 1 Introduction .. 1

1.1 Contextualization ... 1

1.2 Goals .. 5

1.3 Organization .. 6

Chapter 2 Problem Definition ... 8

2.1 Information Technology Service Management ... 8

2.2 Information Technology Infrastructure Library .. 11

2.3 Incident Management and Service Desk ... 13

2.4 Case Study ... 17

Chapter 3 Incident Routing – Components ... 21

3.1 Text Transformation .. 21

3.1.1 Term Frequency and Variations .. 21

3.1.2 Word2Vec ... 23

3.2 Text Classification ... 25

3.2.1 Decision Tree .. 27

3.2.2 Random Forest .. 29

3.2.3 Naïve Bayes .. 30

3.2.4 Nearest Neighbors ... 32

3.2.5 Neural Network ... 34

3.2.6 Stochastic Gradient Descent ... 37

3.2.7 Support Vector Machine ... 39

3.2.8 Bagging and Bosting ... 42

3.3 Feature Selection ... 44

3.4 Imbalanced Datasets .. 47

3.5 Concept Drift ... 51

3.5.1 FLORA Algorithm .. 54

viii

3.5.2 Proposed Ensembles.. 56

Chapter 4 Related Works .. 60

4.1 Incident Ticket Management ... 60

4.2 Treatment of Concept Drift .. 63

Chapter 5 Experimental Evaluation ... 66

5.1 Dataset ... 66

5.2 Evaluation Means .. 67

5.2.1 F1 Score .. 67

5.2.2 Confusion Matrix .. 68

5.2.3 Forwarding Cost .. 69

5.3 Classification Refinement ... 70

5.3.1 Methodology ... 70

5.3.2 Experiment I – Text Transformation and Classification 71

5.3.3 Experiment II – Feature Selection ... 82

5.3.4 Experiment III – Imbalanced Data (Data Level Solution) 88

5.3.5 Experiment IV – Imbalanced Data (Ensemble Solution) 97

5.3.6 Experiment V – Testing Dataset ... 104

5.4 Concept Drift Treatment .. 110

5.4.1 Methodology ... 110

5.4.2 Experiment VI – Concept Drift ... 112

Chapter 6 Conclusions and Future Works .. 122

6.1 Conclusions ... 122

6.2 Future Works ... 125

References.. 127

Appendix A – Experiment VI (Details)... 133

ix

List of Figures

Figure 1 – ITIL Lifecycle ... 12

Figure 2 – ITIL Incident Management Process .. 16

Figure 3 – Manual Ticket Forwarding Process .. 18

Figure 4 – Tree of Proposed Classifiers ... 19

Figure 5 – Examples of Word2Vec Representations ... 24

Figure 6 – The Learning Problem .. 26

Figure 7 – Decision Tree Example ... 28

Figure 8 – Sampling With Replacement... 30

Figure 9 – Nearest Neighbors Example .. 33

Figure 10 – Feed-Forward Neural Network ... 35

Figure 11 – Weights x Error Curve .. 38

Figure 12 – Linearly Inseparable Data vs. Linearly Separable Data 39

Figure 13 – Smaller Margin vs. Bigger Margin ... 40

Figure 14 – SVM Illustration ... 41

Figure 15 – SMOTE, Edited Nearest Neighbors, and Tomek Links 50

Figure 16 – The Learning Problem With Concept Drift .. 52

Figure 17 – Types of Concept Drift ... 53

Figure 18 – FLORA Algorithm .. 55

Figure 19 – Automatic Ticket Forwarding Process .. 70

Figure 20 – 5-Fold Cross-Validation (First Iteration) .. 71

Figure 21 – Visual Summary (Results Of Experiment I) ... 81

Figure 22 – L0 vs. Non L0 (Experiment II – Feature Selection).................................... 83

Figure 23 – L1 vs. L2 (Experiment II – Feature Selection) ... 84

Figure 24 – L0 (Experiment II – Feature Selection) .. 85

Figure 25 – L1 (Experiment II – Feature Selection) .. 85

Figure 26 – L2 (Experiment II – Feature Selection) .. 86

Figure 27 – L2 (Experiment II – Feature Selection – Detailed View) 87

Figure 28 – Monthly Performance Of Classification Trees ... 112

x

List of Tables

Table 1 – Service Desk Levels and Specialized Teams ... 19

Table 2 – Term Frequency Example .. 22

Table 3 – Improved Fisher’s Discriminant Ratio Example .. 46

Table 4 – General Dataset Information .. 66

Table 5 – Confusion Matrix Example .. 68

Table 6 – Configuration of Text Transformation Approaches 72

Table 7 – Configuration of Text Classification Approaches .. 72

Table 8 – L0 vs. Non L0 (Experiment I – Overall Results) ... 73

Table 9 – L0 vs. Non L0 (Experiment I – Best Results – TF / RF) 73

Table 10 – L1 vs. L2 (Experiment I – Overall Results) ... 74

Table 11 – L1 vs. L2 (Experiment I – Best Results – TF / RF) 74

Table 12 – L1 vs. L2 (Average F1 Score For All Classifiers – Class L1) 75

Table 13 – L0 (Experiment I – Overall Results) .. 75

Table 14 – L0 (Experiment I – Best Results – TF-IDF / SVM) 75

Table 15 – L0 (Average F1 Score For All Classifiers – All Classes) 76

Table 16 – L1 (Experiment I – Overall Results) .. 76

Table 17 – L1 (Experiment I – Best Results – TF-LOG / SVM) 77

Table 18 – L1 (Average F1 Score For All Classifiers – Job and Operation Classes) 77

Table 19 – L2 (Experiment I – Overall Results) .. 78

Table 20 – L2 (Experiment I – Best Results – TF / NN) ... 78

Table 21 – Average Of Weighted F1 Score (Text Transformation Techniques) 79

Table 22 – Average Of Weighted F1 Score (Classification Techniques) 79

Table 23 – L0 (Experiment I – W2V / SVM) .. 80

Table 24 – L1 (Experiment I – W2V / SVM) .. 80

Table 25 – IFDR Scores At 25% For All Classifiers ... 88

Table 26 – L0 vs. Non L0 (Experiment III – Overall Results) 90

Table 27 – L0 vs. Non L0 (Experiment III – Best Results – SMOTE-TL) 90

Table 28 – L1 vs. L2 (Experiment III – Overall Results)... 91

Table 29 – L1 vs. L2 (Experiment III – Best Results – SMOTE) 92

Table 30 – L0 (Experiment III – Overall Results).. 92

xi

Table 31 – L0 (Experiment III – Best Results – SMOTE) ... 93

Table 32 – L1 (Experiment III – Overall Results).. 94

Table 33 – L1 (Experiment III – Best Results – SMOTE) ... 95

Table 34 – L2 (Experiment III – Overall Results).. 95

Table 35 – L2 (Experiment III – Best Results – ROS) ... 96

Table 36 – L0 vs. Non L0 (Experiment IV – Overall Results) 98

Table 37 – L0 vs. Non L0 (Experiment IV – Best Results – SMOTE-TL / Boosting) .. 99

Table 38 – L1 vs. L2 (Experiment IV – Overall Results) .. 99

Table 39 – L1 vs. L2 (Experiment IV – Best Results – SMOTE / Boosting) 100

Table 40 – L0 (Experiment IV – Overall Results) ... 100

Table 41 – L0 (Experiment IV – Best Results – SMOTE / Bagging) 101

Table 42 – L1 (Experiment IV – Overall Results) ... 102

Table 43 – L1 (Experiment IV – Best Results – SMOTE / Boosting) 102

Table 44 – L2 (Experiment IV – Overall Results) ... 103

Table 45 – L2 (Experiment IV – Best Results – ROS / Bagging) 103

Table 46 – F1 Scores (Experiments I-IV) .. 105

Table 47 – Testing Dataset Results .. 108

Table 48 – Confusion Matrix (DB – L0) .. 109

Table 49 – Confusion Matrix (DB – Ll) ... 109

Table 50 – Monthly Performance Ranking Of Classification Trees 113

Table 51 – 9-Month Performance Ranking Of Classification Trees Per Classifier 115

Table 52 – 9-Month Performance Ranking Of Classification Trees Per Class I 116

Table 53 – 9-Month Performance Ranking Of Classification Trees Per Class II 117

Table 54 – 9-Month Performance Ranking Of Classification Trees Per Class III 118

Table 55 – 9-Month Performance Ranking Of Classification Trees Per Class IV 119

Table 56 – 9-Month Overall Performance Ranking Of Classification Trees 120

Table 57 – Monthly Ranking Of Classification Trees I (Details) 133

Table 58 – Monthly Ranking Of Classification Trees II (Details) 134

Table 59 - Monthly Ranking Of Classification Trees III (Details) 135

Table 60 – Ranking Of Classification Trees Per Classifier I (Details) 136

Table 61 – Ranking Of Classification Trees Per Classifier II (Details) 137

Table 62 – Ranking Of Classification Trees Per Class I (Details) 138

Table 63 – Ranking Of Classification Trees Per Class II (Details) 139

xii

Table 64 – Ranking Of Classification Trees Per Class III (Details) 140

Table 65 – Ranking Of Classification Trees Per Class IV (Details) 141

Table 66 – Ranking Of Classification Trees Per Class V (Details).............................. 142

Table 67 – Ranking Of Classification Trees Per Class VI (Details) 143

Table 68 – Ranking Of Classification Trees Per Class VII (Details) 144

xiii

List of Formulas

Formula 1 – Term Frequency - Inverse Term Frequency .. 22

Formula 2 – Logarithmic Term Frequency .. 22

Formula 3 – Fractional Term Frequency .. 23

Formula 4 – Bayes’ Theorem ... 31

Formula 5 – Minkowski Distance .. 33

Formula 6 – Rectifier Function .. 35

Formula 7 – Backpropagation Error for Nodes in Output Layer 36

Formula 8 – Backpropagation Error for Nodes in Hidden Layer 36

Formula 9 – Adjustment of Weights in the Backpropagation Algorithm 36

Formula 10 – Vector of Attributes ... 37

Formula 11 – Vector of Weights .. 37

Formula 12 – Classification Outcome .. 37

Formula 13 – Separating SVM Hyperplane ... 40

Formula 14 – Margin Hyperplane 1 ... 40

Formula 15 – Margin Hyperplane 2 ... 41

Formula 16 – SVM Classification .. 41

Formula 17 – Weight Calculation of Correctly Classified Records 43

Formula 18 – Vote Weight Calculation .. 43

Formula 19 – Improved Fisher’s Discriminant Ratio ... 45

Formula 20 – F1 Score ... 67

1

Chapter 1

Introduction

1.1 Contextualization

As technology advances and permeates all layers of society, the role of

Information Technology (IT) grows for companies, governments, and the general

population alike. In the business field, private companies in the United States spend over

half of their invested money on IT (MARRONE et al., 2014). In the public sector,

meanwhile, governments have, in recent years, been increasing their online presence and

the extent of services they offer through that channel; in a research conducted by the

United Nation’s Department of Economic and Social Affairs, out of the 193 nations

recognized by the organization, 101 allow their citizens to create personal online accounts,

73 support the submission of income taxes over the Internet, and 60 execute the process

of registering a business through virtual means (UNITED NATIONS, 2014). At the other

end of the spectrum, where users lie, it has been reported that 92% of US adults own a

mobile phone of some kind, while 73% of that same group have either laptop or desktop

computers, and 45% have tablets (ANDERSON, 2015).

 Concurrently with the widening of the grasp of IT, the world has globally entered

a period in which services have become the economy’s main driving force. Not only are

they the largest source of employment in both developed and developing countries, but

services also constitute the largest share of GDP in most nations around the globe

(DAHLGAARD-PARK, 2015). This post-industrial scenario has been dubbed the service

economy, and it has differed from the goods-production economy of the industrial society

through three criteria (ZHOU, 2015). For starters, the biggest portion of the working force

is engaged in service activities such as trade, finance, transportation, health care, research,

entertainment, and others rather than in tasks whose focus is sheer production, like

manufacturing and agriculture; additionally, professionals and knowledge have gained

prominence over non-specialized individuals and manual power. As a consequence,

companies involved in the service economy tend not to see products as the only assets

2

they deliver to customers; the focus, instead, shifts from producing goods and features to

creating value and positive experiences (OSTERWALDER et al., 2014).

In the intersection between the growth of information technology and the rise of

the service economy, IT services appear. Given they exist in the overlapping area of these

two phenomena, IT services are rather valuable in the world’s current state, and since the

tools used to access them (computers, cellphones, and tablets) are in the hands and homes

of many, they are widely used. Retailers, such as Amazon and Walmart, execute many

online sales transactions; in fact, eight-in-ten Americans are online shoppers (SMITH;

ANDERSON, 2016). Banks and other financial institutions allow their customers to

perform various types of operations via electronic devices, and such a method of finance

managing has become so popular that while the number of people who visit their

respective local bank branches diminishes the payments done via apps soar (JONES,

2016). Enterprises as Google, Apple, and Microsoft offer users the opportunity to store

personal files (pictures, music, documents, etc.) on external servers located inside data

centers maintained by those companies; and cloud storage is so vastly used that, in 2016,

it surpassed file-sharing as the largest source of upstream traffic (that is, data that flows

from computers to the network) during peak period on North American fixed access

networks (SANDVINE, 2016). Streaming services like Netflix, Youtube, Spotify, and

Steam hold vast catalogs of videos, music, and games that can be accessed by customers

using different platforms, and the streaming of audio and video accounts for 71% of

evening network traffic in North America (SANDVINE, 2016). Companies across

multiple areas of the economy employ electronic tools and applications to produce and

deliver value to their customers. And governments around the planet make essential

services available to their citizens on the Internet.

In those cases, and in some others as well, the systems that allow consumers to

perform those activities rely on the underlying technological infrastructure (such as

servers, routers, and others) that supports them. The poor maintenance or management of

that infrastructure can cause undesirable occurrences – which can range from punctual

errors and service slowdowns to complete unavailability – to take place. Within the scope

of an economic setting of high competition and where, thanks to the Internet, users can

freely choose from an expansive deck of options regardless of the IT service in question,

and considering the complexity of the technological environments which exist behind

3

most IT services, cost-effective service delivery and support are essential (ZHOU et al.,

2015).

Infrastructure-related problems can cause unsatisfied and frustrated customers to

stop paying or consuming what is provided by one company and migrate to rival

platforms. Therefore, it becomes key to find ways to both reduce the rates with which

those issues appear and to quickly act upon them when they occur so that their effects are

either minimal or unperceived, for, due to the world’s considerable reliance on technology,

service downtime is negatively perceived: it affects businesses, causes users to be

unhappy, and can decrease the quality of the image of a company when compared to that

of its competitors.

With the goal of establishing a series of practices to guarantee that IT services

deliver value to the business, ITIL (Information Technology Infrastructure Library) was

created (ITIL, 2011). In order to align what the company aims to perform with its

technological infrastructure (in other words, its business needs) with the IT services it

will implement, the library contains a body of knowledge that maps out the entire iterative

life cycle of such a product; consequently, it is broken into five distinct pieces that define

processes and functions that, if deployed correctly, will help IT companies achieve their

goals and deliver quality services to customers. The parts that make up ITIL mirror the

different phases a service goes through, following the path from the definition of the

strategies that surround it (Service Strategy); going through its creation (Service Design),

construction and deployment (Service Transition), and delivery (Service Operation); and

maintaining a constant cycle of continuous improvement after the service is already in

place (Continual Service Improvement).

Research on the usage of ITIL (IDEN; EIKEBROKK, 2013) reveals that managers

and companies adopt it in order to improve: operational efficiency, focus on service

delivery, the alignment between business and IT, service quality, and customer

satisfaction. In particular, an exploratory study (POLLARD; CATER-STEEL, 2009)

conducted with Australian and American companies that had successfully implemented

ITIL showed the trigger towards that transition came from crises that took place due to

failures in their infrastructure.

ITIL provides the knowledge to achieve the goal of avoiding, or reducing,

infrastructural crises in one of its volumes: Service Operation, which establishes

processes and functions that work towards delivering to customers the agreed levels of

4

service. Within the scope of the management of a company’s technological infrastructure,

incidents are defined as unexpected events that can cause the services that are supported

by it to suffer losses in quality (ITIL, 2011). Inside Service Operation, incidents are

handled by the Incident Management process and the Service Desk function. The former

defines a series of steps for detecting, recording, classifying, and managing the incident

throughout its life cycle. Meanwhile, the latter serves as the entry point for all incidents.

service desk members are, therefore, contacted by users who are experiencing problems.

Following that, it is the responsibility of the service desk to create an incident ticket by

logging the issue into a system and describing the symptoms of the reported incident; and

to either try to solve the ticket or choose to direct it to other areas (or service desk levels)

when the incident proves to be too complex, requiring treatment by a more specialized

team.

Due to how critical incidents are in the context of IT services, many applications

exist or have been proposed to tackle the tasks that constitute Incident Management to

make it more efficient. Automatic incident detection is done through system monitoring

software (ZHOU et al., 2015), which registers anomalous behaviors in the infrastructure

and reports technical warnings regarding issues that may be happening. The next step,

which is that of making sure that the incident tickets be directed to the technical

departments that are capable of solving them, has been approached through the use of text

analysis and automatic classification approaches (MOHARRERI et al., 2016b). Finally,

the process of ticket resolution has been optimized through systems that recommend

potential solutions according to the issue that is being reported (ZHOU et al., 2015),

applications that analyze the text contained within tickets to verify how likely it is that

they are correlated to one another (SALAH et al., 2016), the reduction of the number of

tickets that are created via the identification of repeating patterns (JAN et al., 2015), the

estimation of the resolution time (MOHARRERI et al., 2016a), and the prediction of the

workload of each ticket (KIKUCHI, 2015).

The work presented here is filed into the second category; that is, it addresses the

process of analyzing the issue that has been registered and sending the ticket that holds

its information towards the area that is best-suited to solve it. Depending on how a

company is structured and on how it customizes the practices established by ITIL in order

to better fit its reality, incident tickets can be solved by a large number of different

departments. For instance, in some cases, teams may be grouped according to the level of

5

expertise required to deal with the tickets; as such, the first level of the service desk will

be tasked with the easier issues, forwarding incidents that are harder to solve to the levels

below it. In other cases, teams may be arranged by technical specialization; as such, for

example, incidents related to network matters are handled by one group whereas incidents

regarding database-level problems fall into the care of another team.

Regardless of structural approaches to service desk construction, though, the task

of analyzing what has been logged into the ticket and identifying the team responsible for

taking care of it represents a workload of varying weight that sometimes entails

communication with the specialized areas and requires some height of technical and

organizational knowledge. Systems that seek to address the problem of ticket forwarding,

as a result, target the reduction or elimination of that workload through the automation of

that process, which is in the hands of the teams involved in Incident Management and

that are a part of the Service Desk function as described by ITIL.

In order to propose such a system, called Incident Routing, this work presents and

investigates the real-life case of a large Brazilian IT service provider that adheres to the

ITIL practices. The group of incident tickets that was obtained is employed in the analysis

of the problem of incident classification through two different perspectives (one that does

not take time-related changes in the data distribution into account and one that does);

moreover, in the construction of the system via those two distinct views, techniques and

problems belonging to the fields of automatic text analysis and classification are explored.

1.2 Goals

With Incident Routing, the objective is to reduce the workload of the Incident

Management process and Service Desk function of a Brazilian IT Service Provider. That

goal is achieved by analyzing the text inserted into incident tickets and automatically

routing each of them (via classification algorithms) to one of the areas responsible for

solving these issues. In order to report the gains obtained with the insertion of Incident

Routing into the process, a comparison is made between the manual ticket-forwarding

procedure that is currently in place and the automatic system itself. The difference is

measured with a metric that seeks to represent the time and workload involved in the

analysis process of each ticket.

6

Dubbed forwarding cost (MENEZES, 2009), the metric – in its introductory work

– was defined as being a tool that makes it possible to quantify the effort spent in the

manual forwarding of the tickets as well as the impact that an incorrect classification done

by the automatic system can have on the process, representing the time and workload

necessary to, after an incident is sent to the wrong team, relocate it to the appropriate

department.

Throughout the work, text analysis and classification approaches (as well as

techniques used to solve specific problems related to the two areas) are evaluated. The

best ones are chosen and employed in the construction of a multi-leveled classification

tree that mirrors the structure of the company’s service desk. The different obtained

configurations of the classification tree are then tested over a separate set of tickets and

their performances are compared with the use of forwarding cost.

1.3 Organization

The work is divided into 6 chapters. Chapter 2 details the context in which the

analyzed problem exists. It begins with the introduction of general concepts of

Information Technology Service Management; proceeds into the realm of ITIL, the most

widely known body of knowledge that is employed by companies to deal with issues in

that area; discusses the two aspects of that library (Incident Management and Service

Desk) that are most intricately connected to the problem that is approached in this work;

and dissects the real-life scenario from which the data used in the experiments was

acquired and that, therefore, guided the construction of the Incident Routing system.

Chapter 3 describes the problems and techniques that were used in the

construction of Incident Routing and whose definition is, consequently, necessary to

understand the system itself as well as the experiments developed in this work. Firstly,

text transformation approaches (which turn texts into formats that are understandable by

computers) are explained; subsequently, text classification algorithms that act upon the

transformed text are detailed; finally, problems pertaining to those areas and that exist in

the scenario and dataset being studied, as well as some approaches used to solve them,

are exposed. The problems in question are those of Feature Selection, Imbalanced

Datasets, and Concept Drift.

7

Chapter 4 discusses related works. The section is divided into two pieces as to

represent the two perspectives of the ticket forwarding problem that are approached in

this work. The first part looks into works that aimed to automatize aspects of the Incident

Management process of ITIL. Meanwhile, the second part looks specifically towards the

Concept Drift problem, detailing how it occurs in numerous areas in which artificial

intelligence and classification are used.

Chapter 5 presents the dataset that was obtained, the evaluation means that were

used, and the experiments the were performed. In the first set of experiments, the best

approaches to text transformation, text classification, feature selection, and dealing with

imbalanced datasets are chosen and then applied to a new set of tickets. The second set

of experiments, on the other hand, is dedicated to concept drift, which is treated via both

a traditional algorithm of the area as well as ensembles that are proposed in this work.

Chapter 6, finally, shows the conclusions reached in the two sets of experiments,

reporting the gains that were obtained, and points towards possible future works.

8

Chapter 2

Problem Definition

2.1 Information Technology Service Management

As defined by ITIL (ITIL, 2011), a service is “a means of delivering value to

customers by facilitating outcomes customers want to achieve without the ownership of

specific costs and risks”. In other words, customers want the tools to reach their goals

without having to worry about the underlying network of practices, processes, people,

and problems that are involved in the act of constructing those services, deploying them,

and maintaining their operation. The concept of a service as well as the need to manage

it predate information technology itself, as its origins can be traced to traditional

businesses such as airlines, banks, hotels, and phone companies (ITIL, 2011). However,

as the world has shifted from processes executed with physical documents and sheets of

paper to activities performed via electronic devices and the applications they house, IT

services have spread through all areas of the economy, which have become reliant on

computers and smartphones. As a consequence, the need for the development of service

management practices especially dedicated to the information technology field appeared.

 The traditional businesses in which the idea of a service was born are, like many

others, dependent on IT services. Airlines and hotels use systems and websites to book

flights and rooms respectively; banks provide their clients with a big assortment of

financial services that can be accessed from pretty much anywhere, as transfers,

payments, and investments can be done with the click of a button; and phone companies

register calls and manage their customers’ accounts through electronic means. If the

systems that allow those companies to perform those activities experience problems, the

business will suffer and clients may go looking, in the competition, for what they seek.

 Such a dependency can cause a negative chain reaction. Businesses know that if

their systems, which support the services they provide, do not work as smoothly as

possible, there is a chance they will lose customers. Given that, in recent years, many

firms have adopted outsourcing as a way to govern their IT operations (BAHLI;

RIVARD, 2017), those businesses will, then, look for IT service providers that prove

9

themselves to be capable of delivering and supporting those systems with quality,

avoiding issues such as slowdowns and periods of unavailability.

 Naturally, considerable efforts have been made in the IT field in order to develop

sets of practices and strategies that aim to allow IT service providers to better manage

their assets so they can deliver value to their customers. As examples of those initiatives,

it is possible to mention:

 Control Objectives for Information and related Technology (COBIT): A

methodology that is focused on the business, oriented by processes, based on

controls, and driven by metrics that seeks to control and manage the risks and

vulnerability of IT by ensuring that the enterprise’s IT becomes an extension of

the company’s strategies and objectives (LAINHART IV, 2000).

 Service-Oriented Architecture (SOA): An architectural style that is to be used

in the construction of software so that the different individual functionalities of

applications are seen and managed as standalone services, allowing for quick re-

use of distinct software pieces, fast reaction to business changes, simpler

infrastructural management, and a clearer alignment between the strategy of the

IT service provider and the applications it supports (ERL, 2005).

 The Open Group Architecture Framework (TOGAF): A framework to the

construction of an organization-wide architecture that maps the relationship

between the building blocks of systems. Modeling is done in layers that represent

the infrastructure, the applications, and the business. Therefore, it is possible to

visualize how applications sustain business processes and which elements of the

IT infrastructure are connected to each system and business process (HAREN,

2011).

 IT services are built on infrastructure (servers, storage units, network equipment,

among others) that is rather complex, and as the deck of services provided by an

organization increases, so does the intricacy of the web of elements it stands on. If

services are not to be disrupted, the supporting infrastructure must be closely managed:

changes and updates must be planned so that they are carried out in an orderly manner

that reduces risks; moreover, when failures occur, they need to be recorded, analyzed, and

10

treated with efficiency and care (JOHNSON, 2007). Therein lies the need for Information

Technology Service Management (ITSM) practices.

 ITSM is an approach to IT operations that puts an emphasis on IT services,

customers, the maintenance of appropriate service levels and quality, and the handling of

daily activities of the IT function through clear processes; consequently managing IT as

a service (IDEN; EIKEBROKK, 2013). The clearest definition to the general structure

that defines Information Technology Service Management comes through the

international standard ISO/IEC 20000 (VAN SELM, 2009).

 According to the norm, services differ from products due to the fact they are:

 Highly tangible, as they cannot be touched or weighed.

 Produced and consumed at the same time, as they cannot be stored.

 Variable, as human beings (whose behavior shows a lot of variability) are usually

involved in their delivery.

 Measurable only after they have been delivered, as they cannot be assessed before

they are put in place.

 Dependent on the user during the production cycle, as they are constructed with

the customer’s input.

 Moreover, the norm describes quality management principles that must guide the

delivery of IT services. These principles are:

 Customer focus, for organizations depend on them

 Leadership, for leaders establish unity and direction.

 Involvement of people, for they are the essence of the organization

 Process approach, for managing activities as processes leads to results being

achieved more effectively.

 Continual improvement, for increasing consumer satisfaction should be a

permanent objective of the organization.

 Factual approach to decision making, for effective decisions are based upon

accurate information.

 Mutually beneficial supplier relationships, for an organization and its suppliers

are interdependent.

11

 System approach to management, for understanding the relationship between

processes is essential.

 ITSM, therefore, seeks to manage all processes that are involved in the delivery

of IT services so that quality is achieved and results are constantly improved. Such a goal

is reached through the four-step Deming Cycle, which is a widely used framework to the

management and control of businesses, and that dictates a continuous process of plan (that

is, establishing the objectives and thinking about how to reach them), do (which marks

the execution of the plan), check (the comparison of the obtained results with the reached

results), and act (the performing of corrections and adjustments).

2.2 Information Technology Infrastructure Library

The creation of the Information Technology Infrastructure Library (ITIL) actually

precedes that of the international standard ISO/IEC 20000 that establishes the framework

for service management inside information technology companies. ITIL was born out of

an initiative from the United Kingdom government, which was looking to compile the

practices employed by leading organizations in the management of their IT services. In

its current format, the core of the body of knowledge it contains is organized over five

publications that represent a lifecycle guiding IT services all the way from their inception

to their delivery and continuous improvement. Figure 1 – ITIL Lifecycle shows the

service management lifecycle as presented in ITIL v3 (ITIL, 2011).

 Service Strategy, located in the center of the lifecycle, helps organizations view

IT services and their management in a strategical way. As such, it focuses on identifying

opportunities, setting goals as well as expectations, and preparing companies to the costs,

risks, and operational actions that are involved in the process of maintaining IT services

and the infrastructure that supports them. Through Service Strategy, therefore,

organizations must define which services to offer, how to deliver value, how to define

service quality, how to manage their resources, and how to plan their investments.

 Service Design is the step that turns what has been planned during Service

Strategy into actual service assets. That way, it needs to make sure professionals keep the

business needs in mind when creating the services and guarantee they use the

recommended practices. Services need to be designed within time and cost constraints,

12

delivered on time, and supported by an infrastructure that will be able to handle the load

of users and accesses it will be subjected to. In order to achieve that, Service Design

outlines processes to document plans, policies, architecture, and training; create services

that are reliable, maintainable, serviceable, continuous, and that have the availability and

performance customers expect from them; and ensure information is secure and suppliers

that are essential to the service are well-managed.

Figure 1 – ITIL Lifecycle

Service Transition deals with the management of the process of taking a service

that is either new or that has been altered in the Service Design phase to a productive

environment, where it will become available to be consumed by customers. Essentially,

it intends to assure that changes that are executed on the IT infrastructure – as it gets

prepared to receive services that are coming out of the Service Design step – be performed

in an organized and controlled manner. Additionally, Service Transition includes the

validation and testing of services, the maintenance of a record of all infrastructure items

and their configurations, and the planning of how the transition of the services will be

carried out.

13

 Service Operation, meanwhile, takes care of day-to-day activities that are

necessary to keep the IT infrastructure – and, as a consequence, the services it supports –

running as smoothly as possible. The tasks necessary to accomplish that goal involve

monitoring the infrastructure and dealing with low-risk changes of minimal impact,

requests to give users access to services, and events that may occur.

 Finally, Continual Service Improvement, which surrounds all previous lifecycle

phases, is related to the Act step of the Deming Cycle; that is, it concerns new actions that

come to be through the analysis of the outcomes of the four aforementioned steps. It is

via Continual Service Improvement that all processes that belong to the previous

categories are refined, allowing companies to perform incremental improvements in

service quality, operational efficiency, and business continuity (ITIL, 2011).

 All of the five pieces of the ITIL lifecycle are further divided into smaller units

that cover the details of how IT services can be managed. Among those units, the two that

are most important are processes and functions, which are defined as follows:

 Process: An enclosed system that receives inputs (such as data, information, and

knowledge), alters those assets via a series of activities, and produces a desired

outcome. A process is measurable, responds to precise events, and has specific

results that are delivered to a customer.

 Function: One or more units within an organization that execute a specific work

and are, therefore, responsible for certain results. Functions and the professionals

found within them take on the roles that handle the processes as well as the

activities within them.

 The system proposed in this work, Incident Routing, exists within the context of

the Service Operation lifecycle phase. More specifically, its goal is to bring more

efficiency, via the reduction of the workload, to the Incident Management process; this

process, in turn, requires the work of the Service Desk function.

2.3 Incident Management and Service Desk

Incidents are unexpected events that reduce the quality of services or cause

interruptions. Moreover, the ITIL definition of incidents also includes events that have

14

the potential to cause such issues. As such, for example, a database that is being more

accessed than expected and is getting dangerously close to the upper threshold of its

supported load qualifies as an incident even if it is not affecting the service’s performance.

 The goal of the Incident Management process is, then, to handle those types of

events as quickly as possible in order to minimize negative effects on the operation of the

services, or avoid them altogether, and restore the infrastructure to its normal state. By

doing so, companies will guarantee that the best levels of service quality and availability

are maintained, something that is rather important not only from a business image

perspective, but also from a financial point of view, as contracts between IT service

providers and their customers usually present a Service Level Agreement (SLA), which

specifies the quality standards and availability time that a service must have. If SLAs are

not respected, providers may have to deal with fees that are written onto the contracts.

 For that reason, a company’s Incident Management must keep in mind the time

limitations that surround the solving of an incident, look for ways to define specific

procedures to handle incidents that are judged to be more serious, and define different

incident models so that issues that are logged can be treated differently according to the

type of problem they report. In a general way, however, ITIL defines generic activities

that make up the Incident Management process. Figure 2 – ITIL Incident Management

Process shows the information flow between them as adapted from ITIL v3 (ITIL, 2011).

The Incident Management process can be started in many ways: users, technical

personnel, or management can report issues; monitoring software may emit warnings;

and so forth. Once incidents are pointed out, the following procedure is followed:

 Incident Identification: As, ideally, incidents need to be resolved before they

impact services, a strong monitoring process must be put in place so that incidents

are identified quickly. Without identification, incidents cannot be treated.

 Incident Logging: After identification, incidents need to be registered. Essential

information that needs to recorded includes description, symptoms, impact,

priority, among others. In this step, the incident ticket is created.

 Incident Categorization: In order to maintain a certain level of control over what

types of incidents have been occurring, as well as making it possible to forward

them to specialized technicians, incidents are categorized. Following this step, if

the reported incidents are labeled as mere service requests, which do not have the

15

potential to disrupt services, they are removed from the Incident Management

flow and treated separately.

 Incident Prioritization: Assigning a priority to an incident can determine how it

will be handled by support tools and staff. In general, incident priority is

calculated by taking into account their impact and urgency. If incidents are

considered to be critical, it is possible to treat them separately through an

exclusive flow.

 Initial Diagnosis: During the diagnosis step, the analyst handling the incident –

ideally while in contact with the source that has reported the issue – can dive

further into the matter in order to get more details about what is happening so that

such information is added to the incident ticket, which may help down the line

when the incident is being solved. Following the diagnosis, if the professional

registering the incident feels they are unable to solve it, they can escalate it to

other more specialized teams.

 Investigation and Diagnosis: To solve the incident, it is necessary to investigate

and diagnose what has occurred.

 Resolution and Recovery: A resolution is identified, applied, and tested; after

that, the normal state of the service is recovered. It is important that information

regarding these procedures be logged into the ticket so that a full history of the

incidents is kept.

 Incident Closure: After it is verified that the applied resolution has actually

solved the incident and that users are happy with the results achieved to the point

where they agree the incident has been solved, the ticket needs to be closed. In

this step, professionals handling the ticket can also verify if the categorization was

done correctly and make sure the whole history of the incident has been registered.

 As a whole, these Incident Management steps are performed by the Service Desk

function. There are many different ways of structuring service desks (ITIL, 2011), so it is

natural that organizations build that function in manners that best suit their general

operational composition. Service desks can be local when they are positioned close to the

community or infrastructure they are responsible for; they can be centralized when all of

their professionals are located in the same place, sometimes far away from the users that

are reporting the incidents; they can be virtual when, through the use of technology, a

16

service desk that is broken into geographically distributed pieces appears to users as a

centralized unity; and they can follow the Sun, when they are structured in such a way

that there are service desk units across the globe, with incidents always being forwarded

to the ones found in countries that are on the standard working hours, ensuring – therefore

– a 24-hour coverage.

Figure 2 – ITIL Incident Management Process

 Furthermore, service desks can be grouped either into skill levels or specialization,

or even through the use of a mix of both approaches. If skill levels are used to construct

service desks, the first level – the one responsible for receiving calls and incidents – will

handle the simpler-to-resolve issues; if the incident in question proves to be too difficult

for the professionals on the service desk’s entry point, it can be forwarded to lower levels

until it reaches analysts with the appropriate expertise to solve them. If specialization is

17

used, on the other hand, the step of the Incident Management process that categorizes the

event can determine to which group of specialists it will be forwarded.

2.4 Case Study

The incident tickets analyzed in this work belong to a Brazilian IT service provider

with multiple customers that, in turn, serve a considerable portion of the nation’s

population. The infrastructure supporting these services is spread across the country in

multiple data centers. As it implements ITIL, the company has both an Incident

Management process and a Service Desk function in place, each adapted from the general

outline described in the body of knowledge.

The Service Desk function is broken into units allocated to each of the data centers

as to work within proximity of the technological infrastructure they must take care of.

Additionally, instead of being broken down into levels responsible for resolving incidents

of different heights of complexity, the service desk is grouped by specialization; as such,

tickets are routed through the function’s structure according to the nature of the incident

they describe. For example, network-related incidents, such as connection issues, are

handled by one team, whereas faults in operational systems are sent to another group.

 In the current scenario, for the case of the incident tickets that were used in the

experiment, a single team centralizes the creation of the tickets and their forwarding to

the areas that have the technical ability as well as the responsibility to solve them. In

general, these tickets are opened due to three triggers: warnings from infrastructure-

monitoring software, external calls from customers that are experiencing problems, and

internal requests made by the company’s own employees, covering by such means the

Incident Identification step of the Incident Management process.

 This centralized team, then, uses a system to fill up information about incidents

(performing the initial diagnosis, logging, and prioritization); after that, via a dropdown

list and usually following an initial analysis of the issue, which may entail further

investigation of the event and communication with other areas and analysts, the

professional logging the incident forwards the ticket to the area that, according to their

evaluation, is better suited to act on the matter (marking the execution of the Incident

Categorization step). The process proceeds with the investigation, diagnosis, and

resolution of the incident; the recovery of the service; and the closure of the ticket as done

18

by the technical team that received it. In case the categorization of the incident is done

incorrectly, it is the task of the specialized analysts to return the ticket to the team

responsible for its initial reception and forwarding so that it can be correctly assigned.

 Figure 3 shows an overview of the implemented process; in particular, it looks at

the procedures of the Service Desk function by focusing on the piece of the process this

work seeks to automatize in order to improve the efficiency with which Incident

Management is performed: the forwarding of the tickets.

Figure 3 – Manual Ticket Forwarding Process

Despite the fact that, in practical terms, the company’s service desk is not divided

into multiple levels (featuring only a team that is responsible for sending tickets to

specialized groups), a segmentation of the specialist teams into levels exists in theory. In

this work, that theoretical division is taken into account in order to build a structure of

classifiers that will direct the tickets to the target areas.

Not only will such a tree materialize a multi-level service desk setup that does not

currently exist in the company, but it will also make it easier for the classification

algorithms that will be used to accurately classify the incident records. That happens

because, in total, there are 13 specialized teams; a division of those groups into levels

will, consequently, avoid that a single classifier be required to learn patterns for 13 ticket

categories. The theoretical organization of levels and the existing specialized teams are

shown in Table 1.

19

Table 1 – Service Desk Levels and Specialized Teams

Level Specialized Team

Level 0 (L0)

Cloud

External Network

Incident Management

Production Support

Level 1 (L1)

Backup

Control

Job

Monitoring

Operation

Level 2 (L2)

Application

Database

Internal Network

Platform

Seeking to replicate that structure in the ticket classification that will be done,

Incident Routing will focus on the development of a classification tree, as seen in Figure

4.

Figure 4 – Tree of Proposed Classifiers

20

The tree is composed of five classifiers:

 L0 vs. Non L0: It is the point on which all tickets arrive and start their routing

journey. It will differ between tickets of Level 0 and those of Level 1 and Level 2

(Non L0).

 L1 vs. L2: It will receive tickets labeled as Non L0 by classifier L0 vs. Non L0

and determine whether they belong to Level 1 or Level 2.

 L0: It will receive tickets labeled as L0 by classifier L0 vs. Non L0 and determine

to which technical team of Level 0 they belong to.

 L1: It will receive tickets labeled as L1 by classifier L1 vs. L2 and determine to

which technical team of Level 1 they belong to.

 L2: It will receive tickets labeled as L2 by classifier L1 vs. L2 and determine to

which technical team of Level 2 they belong to.

21

Chapter 3

Incident Routing – Components

3.1 Text Transformation

The essence of Incident Routing is removing, from the hands of human agents,

the process of analyzing the text of the incident and figuring out the area to which the

ticket must be sent. That process is to be done by the system itself, which will look into

what has been written in order to, then, categorize the ticket. The automation of such a

task through the use of computers is achieved in two steps, the first of which is text

transformation.

 Text transformation is the conversion of the content of a textual document so that

it can be recognized by a computer, allowing the machine to process and classify it (LAN

et al., 2009). In the experiments that were done to investigate the best ways to categorize

incident tickets, text was transformed into numerical vectors by vector space models,

where each dimension of the vector corresponds to a term in the text; and one word

embedding technique, where words are mapped to vectors.

3.1.1 Term Frequency and Variations

Term Frequency (TF) and its variations (ROELLEKE, 2013) come from the

Information Retrieval (IR) field, which aims to recover information from relevant sources

so that it can be employed according to one’s needs.

 With Term Frequency, terms that appear in the text become the dimensions of the

vector that will work as the representation of a document (in the case of this work, a

ticket). The value that is assigned to each dimension is the number of instances of the

term that appear in the text. In order to illustrate how Term Frequency works, Table 2

exemplifies how two tickets (which are not real, given their content cannot be displayed

for security reasons) are mapped into vectors through Term Frequency. For normalization

purposes, the term counts can be divided by the total number of terms in the document;

in the implementation used, however, normalization was not done.

22

Tickets:

“Unable to access main page. Page error.”

“Unable to log into the system.”

Table 2 – Term Frequency Example

Ticket

ID
unable to access main page error log into the system

1 1 1 1 1 2 1 0 0 0 0

2 1 1 0 0 0 0 1 1 1 1

In addition to TF, three of its variations were also tested: Term Frequency –

Inverse Term Frequency (TF-IDF); Logarithmic Term Frequency (TF-LOG); and

Fractional Term Frequency (TF-FRAC). In common between these three strategies is how

they all start by doing the what TF does; in other words, they first count how many times

terms appear in each document of the corpus that is being analyzed. What differs them is

the operation that follows that procedure.

 TF-IDF takes into consideration how frequent the term is in the rest of the

documents; with that, terms that are bound to be frequent all over the set of documents,

such as articles and prepositions, as well as words that are common in the domains the

corpus includes, are weighted as to diminish their importance. In that case, therefore, TF

is multiplied by IDF, which, for a given term t, is calculated by Formula 1.

𝑖𝑑𝑓(𝑡𝑒𝑟𝑚) = log (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑊𝑖𝑡ℎ 𝑇𝑒𝑟𝑚
)

Formula 1 – Term Frequency - Inverse Term Frequency

With TF-LOG, meanwhile, the first occurrence of a term in a document counts in

full while subsequent appearances count progressively less, with the second instance of a

term in a document counting in half, the third instance counting as one-third, and so forth

(ROELLEKE, 2013). TF-LOG for a given term t in a document d is defined by Formula

2.

𝑡𝑓𝑙𝑜𝑔(𝑡𝑒𝑟𝑚) = log(1 − 𝑡𝑓)

Formula 2 – Logarithmic Term Frequency

23

Finally, the TF-FRAC approach does the same as TF-LOG: it diminishes the

weight of occurrences of a term following the first one. That is achieved, as seen in

Formula 3, by dividing the value of TF by itself plus an adjustable constant K. In the

implementation used, K was set to 1.

𝑡𝑓𝑓𝑟𝑎𝑐(𝑡𝑒𝑟𝑚) =
𝑡𝑓

𝑡𝑓 + 𝐾

Formula 3 – Fractional Term Frequency

3.1.2 Word2Vec

Created by a team of researchers at Google, Word2Vec (W2V) distinguishes itself

from the classical models of text transformation that stem from TF due to how it does not

view words as atomic units represented by indices that cannot be differentiated from one

another (MIKOLOV et al., 2013b). By turning all words into mere dimensions of a vector,

TF loses the semantic value the terms carry, as all of them become word counts: their

meanings cannot be compared and the similarity between words cannot be estimated.

 Word2Vec uses neural networks that analyze the content of a corpus in order to

build a language model in which every word is represented by a vector that carries

semantic value. That way, words that have similar meanings will be shown as similar

vectors; due to that, CEOs and the companies they manage, countries and their capitals,

verbs in the infinitive and gerund forms, the singular and plural forms of nouns, and other

associations will also be captured by vector representations. Due to that, relationships

between the terms can be extracted via arithmetic operations: for example, the

representation of the word “queen” can be recovered from the representations of “king” ,

“man” and “woman”.

 In order to achieve that, Word2Vec takes into consideration the context in which

words tend to appear in the text from which it learns its language model, such context is

marked by the words that both precede and follow the appearance of the term in the text.

Figure 5, adapted from a work that shows vector-space word representations capture

meaningful syntactic and semantic value (MIKOLOV et al., 2013c), illustrates the kinds

of relations between words the Word2Vec approach can yield.

24

Figure 5 – Examples of Word2Vec Representations

Due to its ability to capture the essence of words, Word2Vec has been used in

tasks such as the search for word analogies (for example, to seek what term that is to

“Japan” as “Paris” is to “France”); the calculation of the similarity between terms; and

the identification of named entities, i.e., people, companies, brands, products, and others

(PENNINGTON et al., 2014). It has, however, also been employed in works dealing with

text classification (LILLEBERG et al., 2015). In that area in particular, Word2Vec is a

good alternative to TF and its peers because it translates documents into vectors with a

lower number of dimensions.

 While in the former approaches a vector representing a document is as big as the

total number of words found in the corpus being analyzed (as each term represents a

dimension); in the latter, all words become vectors of predetermined configurable

dimensions, with the work in which Word2Vec is introduced (MIKOLOV et al., 2013b)

dealing with vectors whose dimensions range from 50 to 640. And given texts can be

represented by the element-wise aggregation of the vectors of its words, such as via

addition (MIKOLOV et al., 2013b), the entire corpus can have its dimensionality reduced

to that level.

25

 It is important to highlight that pre-trained models for English – such as GloVe

(PENNINGTON et al., 2014), which was trained on the Wikipedia database – and

Portuguese – such as NILC-Embeddings (HARTMANN et al., 2017) – that yield vector

representations for words in those languages individually exist. However, given the

corpus of the incident tickets presents a mixture of Portuguese and English, the model

was trained on the training corpus itself; that is vector representations of the words were

learned based on the tickets. The Word2Vec implementation used was that of the Gensim

(REHUREK; SOJKA, 2010) Python package.

3.2 Text Classification

Text classification, or text categorization, is the task of automatically classifying

natural language documents that are unlabeled (that is, it is not known to which class they

belong) into a predefined set of semantic categories (LAN et al., 2009). After the text of

said documents has been transformed, text classification is done by feeding that data into

machine learning algorithms. Machine learning has been defined as an intersection

between Computer Science and Statistics that tries to give computers the power to

program themselves by inferring from available data and learning patterns in order to

solve problems with a certain level of reliability (MITCHELL, 2006).

 In general, machine learning problems can be separated into two groups:

supervised learning and unsupervised learning. In supervised learning, the data that is

given to the algorithms contains both an input and an output; whereas in unsupervised

learning, the data does not feature any information regarding the output.

 In a sentiment classification problem where computers are trained to identify

whether a text is positive or negative (PANG et al., 2002), for example, a supervised

learning approach would require a dataset with documents (the input) and the sentiment

expressed in them (the output). If the documents are available but the output is not, it is

possible to group those that are similar into different categories via unsupervised learning

techniques such as clustering (STEINBACH et al., 2000); those categories, however, will

be unlabeled. As such, unsupervised learning is a task of spontaneously finding patterns

and structure in input data (ABU-MOSTAFA et al., 2012) rather than looking to file them

into predetermined classes.

26

 Since this work involves identifying to which of the 13 specialized teams inside a

company an incident ticket must be sent, and given labeled tickets are available (as

incidents that are solved by a particular area are automatically tagged as belonging to that

group), the problem approached falls into supervised learning.

 Figure 6, adapted from the “Learning from Data” book (ABU-MOSTAFA et al.,

2012), shows the basic setup of the learning problem in the supervised scenario, breaking

it up into distinct components.

Figure 6 – The Learning Problem

Firstly, there is an unknown target function. This function is the ideal result of the

machine learning algorithm, as it perfectly transforms the input into the output. Therefore,

if a computer were capable of capturing it, it would be able to correctly classify all of the

data. Such a target function, however, is unknown and remains so through the duration of

the problem. The training examples that are available are fed into the algorithm; they are

generated by the target function and are used by the algorithm to try to approximate the

function as well as possible. With the training examples, the algorithm navigates through

a hypothesis set, which is a group of candidate formulas; this process of navigation is

done by picking a formula, applying it to the labeled training data, verifying the error

metric, and either choosing the picked hypothesis as the final one or executing a procedure

to select another hypothesis that will supposedly bring better results (that is, a smaller

error rate). When the algorithm produces a final hypothesis, the training process is

concluded and the picked formula can be used to classify new data that has yet to be

labeled.

27

 The hypothesis set and the learning algorithm are referred to informally as the

learning model (ABU-MOSTAFA et al., 2012). In the construction of Incident Routing,

7 popular machine learning models were tested:

 Decision Tree;

 Naive Bayes;

 Nearest Neighbors;

 Neural Network;

 Random Forest;

 Stochastic Gradient Descent;

 Support Vector Machines.

 Additionally to those models, the ensemble methods bagging and boosting were

also employed in experiments to deal with class imbalance problems. The implementation

that was used for all of the models was that of the Python Scikit-learn package

(PEDREGOSA et al., 2011). The learning models were tested in their standard

configuration; no changes or refinements were done to their predefined parameters. Their

descriptions, as presented in this work, are (except when noted) based on those found in

the “Data Mining: Concepts and Techniques” book (HAN et al., 2011).

3.2.1 Decision Tree

Decision trees are a popular kind of classifier, with generally good performance,

whose inner workings are easy to understand given they are based on simple decisions

made according to attributes of the items being analyzed. They are made up of the

following components:

 Root node: The initial node where all of the labeled data that is being used for the

training process (that is, the finding of the final hypothesis) is placed.

 Internal node: Represents a test that is done on an attribute of the data. The goal

of the tests performed by internal nodes is to separate the different classes of the

dataset. As the tree’s root node performs a test, it is also considered an internal

node.

28

 Branch: Branches are responsible for holding the outcome of the tests executed

by internal nodes.

 Leaf node: Leaf nodes are special branches, as they are the final components of

a decision tree and represent a specific class. In basic decision tree algorithms,

trees usually stop being constructed when all items in a leaf node belong to the

same class; if that does not happen, majority voting is executed and the class

associated with the leaf node is that of most of the items. After the construction

of the tree is done (the training phase), the classification of new incoming records

is determined by the leaf node they fall into.

 Figure 7 illustrates how decision trees work towards the classification of data.

Leaf nodes are represented as circles, while internal nodes are shown as rectangles.

Figure 7 – Decision Tree Example

In the example, the decision tree is learning how to determine whether someone’s

auto insurance will be inexpensive, have an average value, or be expensive according to

the attributes that are found in the data. Decision trees can be binary, if all tests that are

performed lead to two outcomes (two branches); or nonbinary, if internal nodes can

produce more than two branches. The one shown in the image is of the nonbinary kind.

The trick to decision trees rests in how they choose to divide the data. The records

being classified can have hundreds of attributes; in fact, the ones from the dataset used in

29

this work reach into the thousands. Therefore, decision trees need to identify what are the

features that best differ items from a class from those of another class. In the case of the

implementation used in this work, that measure is the Gini Index. That measure, which

only considers binary splits, evaluates all possible divisions that can be made with each

attribute, choosing the division that generates the sets with least impurity, meaning the

smallest value of the Gini Index. Minimum impurity is achieved when all items inside a

split have the same labels. That happens because impurity is calculated by the probability

that items with specific labels be misclassified if their class is chosen according to the

distribution of classes in the split. Therefore, if all records inside a subset are of the same

class, misclassifications will not occur.

 In cases where the dataset is very large and decision trees are constructed until all

leaf nodes have items of the same class, they can become too complex and overfit the

data, which can lead to worse predictive performance as such a detailed level of

construction can mean the model has memorized the data (with its outliers and noise)

instead of learning patterns from it. To counter that problem, trees can pruned either by

prepruning approaches that stop their construction earlier by limiting attributes such as

the depth of the tree, or by postpruning techniques that remove subtrees and turn them

into branches. The increasing of a tree’s performance via pruning, though, goes through

choosing the best way to do so, as pruning a tree ineffectively can lead to worse

generalization (MURTHY, 1998). As such, the decision trees used in the classification of

incident tickets were left unpruned.

3.2.2 Random Forest

A random forest is a type of ensemble classification method. Instead of working

with the construction of a single model, ensembles combine numerous learning models

in an attempt to improve the quality of the achieved classification. These models, whose

results are aggregated to yield the final classification output, are called base classifiers;

they are constructed using subdivisions (or subsets) of the original dataset. Ensembles

tend to produce better results than single classifiers, because while classifiers that work

alone will make categorization errors just by choosing the wrong class, ensembles only

make mistakes when the majority of the base classifiers that come together to form them

misclassify a record.

30

Random forests receive such a name because they are made up of multiple

decision trees. The random forest employed in Incident Routing consists of 10 base

estimators (in other words, 10 decision trees). Those trees are constructed with random

subsamples of the original training dataset, and the subsamples have the same number of

items as the training dataset; that is, if the full training dataset has 100 records, the

subsample of each tree will also have 100 records.

The randomness of the subsets and the way they differ from one another stems

from how the sampling is done: with replacement. That sampling scheme means that once

an item from the full set is randomly chosen and taken inside the subset, it is also placed

back into the full set. That means that there may be repeated records in the subsets, and

that even though they all have the same number of items as the full set, they are not equal.

Figure 8 illustrates how the sampling scheme works, with two different 6-item subsets

being constructed out of a full set that also has 6 items.

Figure 8 – Sampling With Replacement

Furthermore, as it was the case with the decision tree algorithm, the Gini Index is

used in the choice of the best split inside each node of the tree, estimating how impure

the sets produced in the filtering by a specific value of a certain attribute will be and

choosing the best possible binary division.

3.2.3 Naïve Bayes

Naive Bayes is a type of Bayesian classifier that can statistically predict how likely

it is that a record belongs to a certain class. They are often used in text classification tasks

as a baseline because they are fast and easy to implement (RENNIE et al., 2003); such a

speed, however, comes from the fact they assume that, given a certain class, the effect of

31

an attribute value on that class is independent of the values of the other attributes. For

example, if one desired to estimate the probability of a patient having a heart attack, a

Naive Bayes classifier would look at the attributes of “age” and “weight” as contributing

independently to the development of that disease, ignoring any correlation that may exist

between them. That assumption has negative effects on its classification results and is

what makes those classifiers earn the adjective “naïve”.

 Bayesian classifiers are filed into such a group because they are based on Bayes’

theorem. As depicted by Formula 4, Bayes’ theorem aims to calculate P(H|X); in a

classification problem, that formula can be explained as the probability that a record with

the attributes X belongs to a given class (an affirmation represented by H). More

specifically, as a fictional example based on the incident tickets of this work, it describes

how likely it would be that a ticket containing the terms “internet” and “connection”

belonged of the “Internal Network” class.

𝑃(𝐻|𝑋) =
𝑃(𝑋|𝐻) 𝑃(𝐻)

𝑃(𝑋)

Formula 4 – Bayes’ Theorem

To reach that result, Bayes’ theorem uses: P(X|H), called posterior probability,

which is the probability that a ticket X has the terms “internet” and “connection” given it

is of the “Internal Network” class; P(H), called prior probability of H, which is the

probability a ticket is of the “Internal Network” class regardless of the terms it contains;

and P(X), called prior probability of X, which is the probability that a ticket from the

dataset has the terms “internet” and “connection”.

 For one record X, therefore, the Naive Bayes classifier works by estimating

P(H|X) for all classes of the dataset and labeling it as being from the category it is most

likely to belong to. P(X) is the same for all classes; as a consequence, the classifier looks

to maximize the two other terms of the equation: P(X|H) and P(H). The computational

gains of the Naive Bayes algorithm and its naiveté come into play in P(X|H). For datasets

where records have a lot of attributes, such as is usually the case of text classification

problems due to the lengthy vectors produced by Term Frequency and its variations,

computing P(X|H) for all classes and all attributes would be too computationally

expensive if there was no assumption made on their independence.

32

 However, as correlation between attributes is ignored, for a ticket with terms

“internet” (X1) and “connection” (X2), P(X|H) can be simply calculated by multiplying

P(X1|H) and P(X2|H), which are – respectively – the probability that a ticket has the term

“internet” given it is of the “Internal Network” class, and the probability that a ticket has

the term “connection” given it is of the “Internal Network” class.

3.2.4 Nearest Neighbors

Differently from the other classification algorithms used in Incident Routing, a

nearest neighbors classifier is a lazy learner. Lazy learners oppose eager learners because

while the latter work with the training dataset of labeled data to produce a model that

approximates the target function generating the examples, the former do not. Lazy

learners delay the work. Firstly, they store all of the training data; it is only when the new

unlabeled examples arrive that a lazy learner will look for a way to categorize it. On the

negative side, as rather than coming up with a clean function they keep the data, lazy

learners require plenty of storage; on a brighter note, they support incremental learning

without any need for adaptation.

 Incremental learning entails the update of the final hypothesis obtained by the

classifier when new data arrives and is correctly labeled; given lazy learners do not work

towards the building of a hypothesis, there is no updating to be done: all they have to

manage is the storing of yet another data point.

 Nearest neighbors classifiers work by representing each record inside a space of

N dimensions, where N is the number of attributes of the training dataset items. For a text

classification task, that means the algorithm will potentially be working with thousands

of dimensions, each one representing a term in the text. When an unlabeled item arrives,

the nearest neighbors classifier: places it in the space; identifies the labeled points that are

the closest to it; and conducts a voting between those points, which – naturally – vote for

the class they belong to. The most-voted class is assigned to the new point.

 Figure 9 gives an example of a classification problem where a nearest neighbors

classifier is trying to predict whether a customer that goes into a bank searching for credit

will have their request approved or not. One axis represents the value of the age attribute;

the other represents the value of the customer’s income. Green circles are customers who

33

have had their credit requests approved, while red circles show customers who have had

their requests denied. The black dot shows the new customer whose fate is undecided.

Figure 9 – Nearest Neighbors Example

Parameters of nearest neighbors classifiers include how many neighbors will be

considered in the voting and what distance metric will be used to evaluate which ones are

closest to the new item. In the experiments performed in this work, 5 neighbors were

considered; and the distance metric employed was the Minkowski distance

(CUNNINGHAM; DELANY, 2007), defined by Formula 5, with p=2 (which makes it

equivalent to the Euclidean distance), and where xi and yi are the attributes of points X

and Y.

(∑ |𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

)

1/𝑝

Formula 5 – Minkowski Distance

The calculation of the distance between a new point and all other previously stored

labeled items can cause nearest neighbors classifiers to be extremely slow in terms of

classification, as all points need to be tested so that the closest ones can be discovered.

The number of necessary comparisons can be diminished, however, by storing the tuples

in search trees, using partial distance calculations (where only a subset of the attributes is

34

considered and if the distance exceeds a threshold the comparison is stopped), or editing

the stored tuples. That last process is called pruning, and it eliminates records that prove

useless for classification; therefore, it can also positively affect the storage issue that can

plague nearest neighbors algorithms.

3.2.5 Neural Network

Neural networks receive such a name due to an analogy that is made between the

structure of the learning model and the general way in which brain cells work. Neurons

are processing units that transmit information between themselves via synapses. Likewise,

in a neural network, there are small processing units that receive information, process it,

and send it forward to other units through connections that have weights associated with

them.

On the negative side, neural networks: tend to have lengthy training times, as they

take a while to converge to a final hypothesis; require the setting of numerous parameters,

such as the topology of their construction, that are better adjusted through empirical

evaluations; and, differently from other machine learning algorithms such as decision

trees and nearest neighbors, it is hard to interpret the knowledge they acquire given the

nodes that make them up work like black boxes. On the positive side, they have been used

successfully in numerous fields due to their ability to: deal with noisy data, which occurs

when items with similar or equal inputs lead to different outputs; achieve good results

with continuous-valued inputs and outputs; and handle situations where the relationship

between the classes whose patterns they must learn and the attributes of the dataset is not

clearly understood.

The neural network used in this work is of the feed-forward type and learns

patterns via the backpropagation algorithm. Feed-forward neural networks are dubbed as

so because they do not feature cycles: the information their units process is always sent

forward. Figure 10 exemplifies how such networks are formed, consisting of an input

layer, one or more hidden layers, and an output layer. In the image, it is possible to see a

fully connected network; that is, each of the units of one layer sends its output to each of

the units of the next layer.

 Inputs (which are the attributes of a specific record) are placed in the nodes of the

input layer. These values are sent forward to the hidden layer after being weighted. The

35

nodes of the hidden layer receive the weighted inputs, sum them, apply a specific

activation function on the resulting value, and send it forward. Given the number of

hidden layers is adjustable, that process is repeated until a final value, which – in the case

of classification problem – represents a class, reaches the output layer.

Figure 10 – Feed-Forward Neural Network

If the classification is to be done within two classes, the output layer will only

feature a unit (with 0 representing a class, and 1 representing another). If the classification

is to be done within more classes, the number of units in the output layer will be the same

as the number of classes; therefore, the resulting class of a record will be that whose

output unit produces a value equal to 1.

Despite the ability to use many hidden layers, one is usually considered to be

enough in practice. The one employed in Incident Routing, for example, features one

hidden layer equipped with one hundred nodes. The activation function used by the nodes

was the rectifier, expressed in Formula 6.

𝑓(𝑥) = max (0, 𝑥)

Formula 6 – Rectifier Function

36

 Given the activation function is fixed, in order to learn Feed-Forward neural

networks rely on the weights employed in the transformation of the values as they

navigate between layers. Such weights are adjusted through the backpropagation

algorithm. After a tuple is processed by the network and its class (or numerical value, in

the case where numbers and not classes are being predicted) is returned, the algorithm

compares the outcome with the value it was meant to return. For each tuple that is

processed, the value of the weights is modified so that the desired value (the actual label

of the class) is returned. Such a process is done from the output layer to the input layer;

in other words, the adjustment is done backwards. The training stops if one of three

conditions is met: the percentage of misclassified tuples falls below a specific threshold;

the value of the adjustment of the weights falls below a specific threshold; or the entire

training dataset has been run through the neural network a certain specified number of

times (200, in the case of the used implementation). For a node in the final layer, the error

is calculated by Formula 7, where Oj is the output of the unit and Tj is the expected result.

𝐸𝑟𝑟𝑜𝑟𝑗 = 𝑂𝑗 (1 − 𝑂𝑗) (𝑇𝑗 − 𝑂𝑗)

Formula 7 – Backpropagation Error for Nodes in Output Layer

For nodes in the hidden layers, the error is calculated by Formula 8. In that case,

the errors (Errork) of the nodes that belong to the next layer and that receive the output

of the node in question are multiplied by the weight of the connection that leads to each

of them, represented by Wjk. Once again, Oj represents the output of the node.

𝐸𝑟𝑟𝑜𝑟𝑗 = 𝑂𝑗 (1 − 𝑂𝑗) ∑ 𝐸𝑟𝑟𝑜𝑟𝑘𝑊𝑗𝑘

𝑘

Formula 8 – Backpropagation Error for Nodes in Hidden Layer

Finally, the weight of the link connecting a node from the previous layer i with a

node of the current layer j is updated by Formula 9, where Oi is the output from the node

of the previous layer and l is the network’s learning rate. In the implementation employed,

the initial learning rate was set up to 0.001. As the neural network learns, though, that

rate is updated through the Gradient Descent method Adam (KINGMA; BA, 2014).

∆𝑤𝑖𝑗 = (𝑙)𝐸𝑟𝑟𝑜𝑟𝑗𝑂𝑖

Formula 9 – Adjustment of Weights in the Backpropagation Algorithm

37

3.2.6 Stochastic Gradient Descent

Suppose that, as shown by Formula 10, each record of the dataset (Xk) is

represented by a vector where each component (xn) is an attribute of the record; in the

case of an incident ticket transformed with Term Frequency, those components would be

the number of times a certain word appears in the text.

𝑋𝑘 = (𝑥0, 𝑥1, … , 𝑥𝑛)

Formula 10 – Vector of Attributes

At the same time, as shown by Formula 11, consider W to be a vector where each

component (wn) is a weight.

𝑊 = (𝑤0, 𝑤1, … , 𝑤𝑛)

Formula 11 – Vector of Weights

 Suppose, then, that the result of the classification of a specific item is given by the

sum of the multiplication of each weight and its corresponding attribute, as seen in

Formula 12.

𝑓(𝑥) = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖 =0

Formula 12 – Classification Outcome

 For a given set of weights, therefore, by passing all different records of the dataset

through Formula 12, classification labels will be produced for all of them. These labels

can then be compared to the actual expected labels and the error corresponding to the set

of weights can be calculated. Such a relation between weights and classification error can

be better visualized in Figure 11, where a chart displays the resulting curve.

As described in the “Learning from Data” book (ABU-MOSTAFA et al., 2012),

a learning model that employs the gradient descent looks to find the set of weights that,

when multiplied by the values of the attributes, will produce the smallest error. In other

words, the goal of the gradient descent is to find the weights that correspond to the lowest

point of the curve (the lowest error). To do so, weights are initialized randomly, the error

is computed, its derivative (that is, its gradient, which corresponds to the slope of that

point) is calculated, and the weights are updated in the descending direction of the slope

according to a specified learning rate (which determines how big of a step in the

descending direction the algorithm will take).

38

Figure 11 – Weights x Error Curve

One of the problems of the gradient descent approach is that, for very large

datasets, calculating the total error of a set of weights considering all items can be costly

in terms of time. That variation is called batch gradient descent, and is opposed by the

stochastic gradient descent, which was the algorithm used in Incident Routing. In the

stochastic gradient descent method, the error (and the gradient of the point) is calculated

for only one item that is randomly (or stochastically) picked, therefore considerably

decreasing the time it takes for the weights to be updated and the time it takes the

algorithm to go down the slope. As the change in the weights happens based only on a

single point rather than on the entire dataset, the fluctuations that occur are somewhat

random; however, as data points are chosen stochastically and many iterations are

performed, these fluctuations even out and the weights, on average, proceed in the right

direction of the curve (ABU-MOSTAFA et al., 2012).

Another question that surrounds gradient descent algorithms is the determination

of when to stop the learning process. Many different stopping criteria can be used for that

task, including: reaching a point where the gradient is equal to 0 (that is, the region of the

curve is flat); and having the error or change in error fall below a specific threshold. These

last two approaches are, however, better suited for the batch gradient descent technique,

as in the stochastic mode the error available in each iteration is only that of a record,

consequently not being representative of what is happening in the entire dataset.

Meanwhile, stopping on a flat region does not necessarily mean a minimum point in the

curve has been reached.

39

That is why in the implementation of the stochastic gradient descent that was used

in the experiments, another stopping criterion was considered: the number of iterations,

which was set to five times the size of the dataset.

3.2.7 Support Vector Machine

Support vector machines (SVMs) work towards finding a boundary that will

perfectly separate data points of one class from those of another. If the items of the dataset

only have two attributes, as the ones shown in Figure 12, that hyperplane will be a 1-

dimensional line; if they have three attributes, the boundary will be a 2-dimensional plane;

and so forth. If the points, as those on the right-hand side of Figure 12, are linearly

inseparable, which means they cannot be separated by a surface in their original

dimension, the SVM algorithm can, through a nonlinear transformation, map the points

into a higher dimension in which they can be separated.

 However, if the SVM algorithm is linear, such as is the case of the implementation

employed in the experiments executed in this work, such a transformation is not done and

the method will, instead, look for a separating hyperplane that will minimize the error by

taking into consideration how distant the misclassified points are to the area of their target

region.

Figure 12 – Linearly Inseparable Data vs. Linearly Separable Data

If the data can in fact be separated, whether it is in their original dimension or in

a higher one that is reached after a non-linear transformation, there is an infinite amount

of hyperplanes that can be used to achieve perfect separation. Support vector machines

40

do not look for any hyperplane, though. As a machine learning algorithm, it wants to find

a way to learn with the available data so that future records that are yet to be labeled are

classified in the best way possible. Due to that, it looks for a special hyperplane: the one

that will be the furthest apart from the data points of both classes that are the closest to it.

It does so by minimizing the hinge loss, which is a loss function.

Those marginal points are called support vectors, because they are used to support

the definition of the separating hyperplane. Meanwhile, the distance between those

vectors is called the margin. Therefore, SVMs look for the support vectors that will

maximize the margin that separates both classes. Figure 13 illustrates how SVMs work,

with the support vectors chosen to form the hyperplane being highlighted in blue. On the

left-hand side, the support vectors that are picked do not produce an ideal margin, for

there is another hyperplane, the one on the right-hand side, that maximizes the margin

between the two groups of data points.

Figure 13 – Smaller Margin vs. Bigger Margin

A hyperplane that separates a set of training data points X is defined by Formula

13, where W is a vector of weights.

𝑊 ∙ 𝑋 = 0

Formula 13 – Separating SVM Hyperplane

With that in mind, the hyperplanes that determine the margins (the ones that touch

the support vectors of choice) can be defined by Formula 14 and Formula 15.

𝑊 ∙ 𝑋 = 1

Formula 14 – Margin Hyperplane 1

41

𝑊 ∙ 𝑋 = −1

Formula 15 – Margin Hyperplane 2

As a consequence, given an incoming data point that needs to be labeled, and

supposing such a data point has two attributes x0 and x1, its classification will be given by

Formula 16.

𝑥0 𝑤0 + 𝑥1 𝑤1

Formula 16 – SVM Classification

If the value produced is higher than 0, the data point will be above the separating

hyperplane and will belong to the class grouped in that area. If the value produced is lower

than 0, the data point will be below the separating hyperplane and will belong to the other

class being evaluated. All the main components of the SVM classifier, including distance

d, which needs to be maximized, are show in Figure 14.

Figure 14 – SVM Illustration

Differently from the other classification algorithms used in Incident Routing,

SVMs have the inherent characteristic of only being able to differ between two classes,

as the hyperplanes they seek to uncover divide the n-dimensional space into two regions.

Algorithms of that sort, however, can be adapted to be used when more than two classes

are in play (as is the case of some of the classification groups that will be tackled during

the experiment sections of this work). These adaptations are achieved through two

approaches known as one-versus-all (OVA) and all-versus-all (AVA).

42

 In OVA, considering a problem where n classes exist, n binary classifiers are

trained. Suppose, therefore, that a ticket needs to be assigned to one of the three following

groups: Application, Database, and Network. The three classifiers constructed will, then,

be: Application vs. All (Database and Network); Database vs. All (Application and

Network), and Network vs. All (Application and Database). When an unlabeled ticket

arrives, it is sent to the three classifiers, which will – in turn – return the class they think

the ticket belongs to. The class that will be assigned to the ticket will be the one that

receives the biggest amount of votes. If the Application vs. All classifier considers the

ticket to be a part of the “All” class, then both Network and Database get a vote.

 In AVA, on the other hand, for n given classes,
𝑛 (𝑛−1)

2
 binary classifiers are built.

Then, if the classes Application, Database, and Network are, once more, the targets, three

classifiers will be used considering all possible combinations of the three classes; that is,

the classifiers will be: Database vs. Application, Database vs. Network, and Application

vs. Network. Again, in the arrival of a new ticket that needs to be classified, it is sent to

all constructed classifiers, which then vote to determine the class that will be assigned to

the ticket.

 The SVM classifiers used in the experiments of this work, for classification

scenarios that included more than two classes, were built with the OVA approach.

3.2.8 Bagging and Bosting

Bagging (BREIMAN, 1996) and Boosting (FREUND; SCHAPIRE, 1995), like

decision trees, are ensemble methods. That means that, in an attempt to improve the

performance of a single classifier that labors on its own, they work by combining the

results of numerous base classifiers that are constructed with different subsets of the

training dataset. Differently from random forests, though, they do not necessarily have to

be made up of decision trees; bagging and boosting can be employed to form groups and

aggregate the votes of any classification algorithm.

 For a training dataset with n items, bagging creates k (10, in the case of the

implementation that was used) random subsets of n records. The items of the subsets are

drawn with replacement (items that are chosen are not removed from the pool of

selection); therefore, repeated samples can be acquired and put into the same subset. Each

one of these subsets is used, then, in the training process of an instance of the classifier

43

that is being used in the bagging. After the training is done and the models are constructed,

when a new unlabeled record arrives all of the classifiers vote in order to determine which

class will be assigned to that item.

 Boosting, meanwhile, starts by training a single classifier that works on the entire

training dataset. After the training is done, weights are assigned to the records; those that

have been misclassified by the initial classifier receive a larger weight so that subsequent

classifiers that are created be more careful with data that is being incorrectly labeled. Like

it happens in the case of bagging, after the training of all instances is done, new records

are classified through voting; unlike bagging, though, the weight of the votes is not equal.

 The variation of boosting used in the experiments of Incident Routing was

AdaBoost (ZHU et al., 2009), which is a popular boosting algorithm. In AdaBoost, all

records start with the same attached weight. For a training dataset with n items, n records

are drawn – once more with replacement – and that subset is used in the training of a

model. Records that are correctly classified have their weights decreased; records that are

not correctly classified have their weights increased. If ten base classifiers are to be used,

that process is repeated ten times; if, however, the error rate of a classifier exceeds 0.5, it

is thrown out and a new subset is drawn so that a better classifier is created. That error

rate is calculated by summing the weights of all misclassified tuples, and it is taken into

consideration when the weights of the correctly classified records are being updated, as

shown in Formula 17.

𝑁𝑒𝑤 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 (
𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

1 − 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟
)

Formula 17 – Weight Calculation of Correctly Classified Records

 Following the update of only the weights of correctly classified records, all of the

weights are normalized by multiplying them by the sum of the old weights. That is how

while the weight of correctly classified items decreases, the weight of incorrectly

classified items increases. When it comes to the voting, the error rate of each classifier

plays a part in the weighing of its vote, which is determined by Formula 18. The smaller

the error rate of a classifier is, the more its vote will count.

𝑉𝑜𝑡𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 = log (
1 − 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟
)

Formula 18 – Vote Weight Calculation

44

3.3 Feature Selection

One of the major characteristics and difficulties of text classification as a whole is

the inborn high dimensionality of the feature space (YANG; PEDERSEN, 1997). As text

is processed by the text transformation techniques, the data that is being treated results in

vectors that – depending on the corpus – can have tens of thousands of dimensions, each

representing a term that exists in the set of texts. Word2Vec does diminish that issue to

some degree, as it generates vectors of a fixed size for each word, which can then be

aggregated element-wise in order to represent sentences, paragraphs, and documents.

When it comes to Term Frequency and its variations, though, large corpora that

contain a lot of words will generate lengthy vectors whose high dimensionality will

burden classifiers.

A naïve Bayes algorithm will have to calculate probabilities for thousands of terms;

a decision tree and a random forest will need to analyze thousands of attributes when

performing the split; a neural network will have thousands of nodes in its input layer,

which will cause each node in the hidden layer to receive thousands of weighted values;

support vector machines and the gradient descent method will perform their respective

optimizations in an extremely elevated number of dimensions, having to find the best

value for thousands of weights; and the lazy learner nearest neighbors will calculate

distances between points in a number of dimensions that will be equal to the number of

attributes.

The problem of high dimensionality is common in text classification. A corpus of

tweets used for sentiment analysis (ROSENTHAL et al., 2015) contained 17,152 distinct

terms spread through 7,460 messages. Meanwhile, another set of texts, in this case of

Rotten Tomatoes movie reviews (PANG; LEE, 2005) that was used for the same goal of

identifying the sentiment (positive or negative) in the text presented 21,384 distinct terms

in 10,662 analyses. In the collection of incident tickets used in this work, that problem

also appears.

High dimensionality is treated through feature selection methods, which have two

main benefits (SHARMA; DEY, 2012). The first one is how classifiers that work with

fewer attributes (that is, in a space of lower dimensionality) deal with fewer parameters,

therefore being able to converge faster. The second one comes in terms of accuracy, as –

in managing fewer attributes – classifiers tend to better identify the ones responsible for

45

distinguishing between different classes. As a consequence, feature selection can – in a

smaller amount of time – bring results that are as good as, or even better than, those

obtained with classifications done with the full set of attributes, and in some cases it might

even reduce the effects of overfitting (TANG et al., 2014).

 Given how common the problem of high dimensionality is in the domain of text

classification, and due to the numerous benefits feature selection can bring, many

researches and surveys comparing different approaches have been conducted in the field

(TANG et al., 2014) (CHANDRASHEKAR; SAHIN, 2014). Among the most popular

feature selection methods, one can cite Log Likelihood Ratio (DUNNING, 1993) and

Chi-Squared Test (MANNING et al, 1999). Particularly, for this work on incident tickets,

we implement Improved Fisher’s Discriminant Ratio (WANG et al., 2011), which in its

introductory paper obtained good results when applied to a sentiment analysis problem.

 All of the mentioned feature selection methods, however, use the same basis.

Randomly selecting a certain amount of features so that classifiers have less variables to

deal with would be potentially non-productive, given valuable terms that could be used

to differ one class from another could end up being lost. That is why Log Likelihood

Ratio, Chi-Squared Test, and Improved Fisher’s Discriminant Ratio attempt to identify

which terms are more significant for a given class.

 In particular, Improved Fisher’s Discriminant Ratio achieves that goal via

Formula 19.

𝐹(𝑡𝑘) =
𝐸(𝑡𝑘|𝑃) − 𝐸(𝑡𝑘|𝑁)2

𝐷(𝑡𝑘|𝑃) + 𝐷(𝑡𝑘|𝑁)

Formula 19 – Improved Fisher’s Discriminant Ratio

 The term being analyzed is represented by tk. 𝐸(𝑡𝑘|𝑃) and 𝐸(𝑡𝑘|𝑁) are the

conditional averages of tk in relation to the classes P and N. Finally, 𝐷(𝑡𝑘|𝑃) and 𝐷(𝑡𝑘|𝑁)

are the conditional variances of tk in relation to the classes P and N.

 The result of the formula is that the bigger the average number of appearances of

a term inside the documents of a class is in relation to the average number of appearances

of that term inside the documents of another class, the bigger the value for Improved

Fisher’s Discriminant Ratio will be. At the same time, the variances at the bottom of the

fraction indicate that the smaller the difference between the appearance of a term inside

46

the documents of the classes is in relation to the average, the bigger the value for

Improved Fisher’s Discriminant Ratio will be.

 Consider, for example, in a sentiment analysis problem, the terms “good” and

“bad”. When the importance of the term “good” is being analyzed for the class “positive”,

it is likely the average of its appearance in that class will be much higher than its

appearance in the class “negative”. The opposite applies to the term “bad”. Therefore, the

value in the numerator will tend to be quite high. At the same time, given it is likely the

terms “bad” and “good” are quite evenly spread through the items of both classes (that is,

they will show up with a certain regularity), the variances will tend to be low, further

increasing the value of the numerator.

 The result achieved in the feature selection as done via Improved Fisher’s

Discriminant Ratio is displayed in Table 3. Supposing the classification of tickets is being

done for three classes (Application, Database, and Network), the importance of each term

(its Improved Fisher’s Discriminant Ratio) will be calculated for all classes in the one-

versus-all format, which means P and N will be:

 Application vs. Not Application (Database and Network);

 Database vs. Not Database (Application and Network);

 Network vs. Not Network (Application and Database).

Three scores for each term will then be yielded. As shown in Table 3, the one that

will be considered for feature selection will be the biggest one. Therefore, by ordering

terms according to their maximum score, it is possible to select only a certain amount of

the ones that are most useful for the differentiation between classes, allowing for the

dimensionality of the vectors to be reduced, for classifiers to work with less variables and

converge faster, and for terms that are not relevant for classification to be ignored.

Table 3 – Improved Fisher’s Discriminant Ratio Example

Term Application Database Network Maximum

term1 0.56 0.98 0.32 0.98

term2 0.12 0.71 0.76 0.76

Improved Fisher’s Discriminant Ratio was introduced in two variations: binary

and frequency. In the first, it is only taken into account whether the term exists in the text

47

(1) or not (0); in the second approach, meanwhile, the number of appearances of the term

in the text is counted. Both approaches will be tested in this work.

3.4 Imbalanced Datasets

Just like high dimensionality, imbalanced datasets can have negative effects on

text classification. Class imbalance refers to cases where one class is highly represented

in the dataset when compared to others; such a distribution can cause classifiers to become

biased (WANG; YAO, 2012), accurately making predictions for samples of the majority

class while failing to have good enough results for the minority categories. Such a

phenomenon occurs because, in order to adjust the hypothesis and reduce

misclassifications, classifiers use error metrics. Therefore, using a hypothesis that

performs very well when it comes to the majority samples while failing to appropriately

learn the patterns of minority classes has positive effects on those metrics (GALAR et al.,

2012). Moreover, a low number of examples from one class may also mean there is just

not enough information available for any sort of clear differing pattern between the

classes to be discovered by the algorithms. The solving of the problem of imbalanced

data, thereby, is the obtaining of a classifier that is able to learn how to properly classify

items from both minority and majority classes.

 Imbalanced data occurs in various domains in which machine learning is applied.

Imbalance of the ratio of 10,000 to 1 has been reported in problems of fraud detection

(CHAWLA et al., 2002); and the issue has also appeared in oil-spill detection through

satellite images (CHAWLA et al., 2002), credit scoring (BROWN, 2012), medical

diagnosis (MAZUROWSKI et al., 2008), and face recognition (LIU; CHEN, 2005). The

problem of incident ticket forwarding explored in this work also features an imbalanced

dataset, albeit not to the degree of the 10,000 to 1 rate encountered in fraud detection,

where normal financial transactions far outnumber fraudulent ones.

 Due to the widespread nature of the problem, many approaches for dealing with

imbalanced data have been proposed. They can be grouped into three categories

(FERNÁNDEZ et al., 2013):

 Data Level Solutions: In this case, the goal is to either eliminate samples of the

majority class, or create or replicate samples of the minority class. As a

48

consequence, a dataset that is originally imbalanced can be artificially made to be

more balanced.

 Algorithmic Level Solutions: Here, the adaptation is not performed on the data,

but on the classification algorithms. They are changed in order to give more focus

to the minority class.

 Cost-Sensitive Solutions: Through this approach, algorithms are forced to pay

more attention to minority classes because higher misclassification costs are

applied to their samples.

 Data level solutions have the advantage of being versatile (FERNÁNDEZ et al.,

2013). Given they act upon the very basis on which classifiers are constructed (the data),

rather than on the algorithms themselves, they can be applied to the dataset and

subsequently be tested with different algorithms and mixed with other approaches.

Additionally, if a classifier to deal with the data has already been picked, numerous data

level solutions can be tested in order to try to improve the classification performance once

it is noticed the algorithms are performing poorly on imbalanced data.

 These data level solutions are further divided into three groups of techniques:

oversampling, undersampling, and hybrid methods. In oversampling, samples of the

minority classes are either replicated or synthetically created through different

approaches. In undersampling, samples of the majority classes are selected and

eliminated. Finally, in hybrid methods, a combination of oversampling and

undersampling occurs.

 Historically, oversampling techniques have obtained better results than

undersampling and hybrid methods (BARUA et al., 2014). It is believed that this

advantage occurs because undersampling causes data that can be valuable to the learning

of patterns from the majority class to be ignored, therefore negatively impacting

classification (YAP et al., 2014). The superior performance of these methods was attested

in a study (BATISTA et al., 2004) in which ten data level solutions (belonging to all

categories) were applied to fifteen imbalanced datasets. For all of the 15 datasets, the best

result was obtained by one of the following four methods:

 Random Oversampling, an oversampling technique;

 SMOTE (CHAWLA et al., 2002), an oversampling technique;

49

 SMOTE-ENN (BATISTA et al., 2004), a hybrid technique;

 SMOTE-Tomek Links (BATISTA et al., 2003), a hybrid technique.

 Random oversampling is the most straightforward approach of the group. It

randomly selects, with replacement, samples from the minority classes and replicates

them. The replication is done until the number of items in the minority classes is equal to

that of the majority class.

 SMOTE (Synthetic Minority Over-sampling Technique) operates in the feature

space. It creates synthetic samples by selecting points of the minority class, identifying

the k nearest neighbors to that point that are also of the minority class, and creating a new

example at a random part of the line segment that connects two data points. The value k

(the amount of nearest neighbors to be considered) is calculated according to the rate of

oversampling that needs to be done for the minority classes to have the same amount of

samples as the majority class. Mathematically, new points are created through the

following operations: the difference between the vectors that represent the data points of

two nearest neighbors is calculated; that difference is multiplied by a random number

between 0 and 1; the result is added to the data point that is under consideration.

 The hybrid technique SMOTE-ENN, meanwhile, combines SMOTE (an

oversampling algorithm) with ENN (which stands for Edited Nearest Neighbors and is an

undersampling approach). ENN works by eliminating all points (independently of

whether they are from the minority or majority class) that are misclassified by its three

nearest neighbors. Differently from a traditional nearest neighbors approach, though, the

votes of the neighbors are not counted equally: they are weighted according to how distant

they are from the point that is being analyzed. The closer it is, the more weight its vote

will carry. That weight is given by the inverse of the distance. Once more, the techniques

SMOTE and ENN are applied until the number of points of all classes is the same.

 At last, the hybrid approach SMOTE-Tomek Links employs SMOTE and the

undersampling technique Tomek Links. Tomek Links (TOMEK, 1976) occur when two

points of different classes are the nearest neighbors to each other. If two examples form

a Tomek Link, they are either noise or borderline samples (BATISTA et al., 2004).

Differently from the ENN technique, Tomek Links (when used for undersampling rather

than for data cleaning, which is an area where they can also be employed) only eliminate

50

samples from the majority class. SMOTE and Tomek Links are performed in conjunction

until the number of items of all classes is equal.

 Due to the outcomes obtained by these oversampling and hybrid methods in the

study (BATISTA et al., 2004) that used them in multiple imbalanced datasets, they were

chosen to be applied to the imbalanced dataset of incident tickets of this work. The

implementations used were those of the Imbalanced Learn Python package (LEMAITRE

et al., 2017). Figure 15 presents an illustration of SMOTE, ENN, and Tomek Links. Blue

data points are the ones being created (in the case of SMOTE) and eliminated (in the case

of ENN and Tomek Links).

Figure 15 – SMOTE, Edited Nearest Neighbors, and Tomek Links

Additionally to the data level, algorithmic, and cost-sensitive solutions to

imbalanced datasets, recent works show that ensembles have achieved good results in

classifying data that is imbalanced (GALAR et al., 2012) (BARUA et al., 2014).

Bagging stood out when matched up with undersampling and oversampling

techniques, especially SMOTE (GALAR et al., 2012). Boosting, meanwhile, especially

in its AdaBoosting variation, performed well without data balancing (WANG; YAO,

2012), which can be attributed to the fact boosting works by giving more weight to

misclassified records so that subsequent instances of trained classifiers pay more attention

to data that is not being correctly labeled. As such, boosting qualifies as a cost-sensitive

solution for dealing with imbalanced datasets. Another study indicated that, with data

balancing, boosting was able to improve the performance of four tested oversampling

techniques (BARUA et al., 2014).

 Given those evidences, besides the selected data balancing approaches (Random

Oversampling, SMOTE, SMOTE-ENN, and SMOTE-Tomek Links), boosting and

bagging were also tested in Incident Routing as solutions to deal with the class-imbalance

problem.

51

3.5 Concept Drift

Concept drift happens in non-stationary environments, in which data distribution

can change over time (GAMA et al., 2014). In e-commerce applications, for example,

concept drift means the preference of customers can change as time passes; in the field of

weather prediction, the rules may vary according to the season (TSYMBAL, 2004); and

in the case of users who are following an online stream of news, their interests can mutate

with the passing of hours, days, weeks, and months (GAMA et al., 2014).

 If such changes are not somehow taken into account by classifiers, they may end

up learning with data that is no longer representative of the distribution that is currently

in place. In the example of e-commerce applications, suppose there is a recommender

system (RESNICK; VARIAN, 1997) that is making recommendations to users regarding

items they may be interested in. Such recommendations are made by taking into account

items they have either bought or visited; the system looks to those items, checks other

users who have visited those pages, evaluates what those users have bought or visited,

and sends these purchased or viewed items as recommendations to the target user.

 In that scenario, concept drift can come into play, for example, in changes that

occur in the user’s life. Suppose that one month ago that user lived with his parents, and

his purchases gravitated around entertainment items such as games, music, and movies.

But now that user has moved out and has drifted his focus towards furniture and

appliances. Recommending new games, therefore, may not be as interesting and valuable

for the system (and the user) as it used to be; and the recommendation of a dinner table,

something the user would unlikely be interested in just a few days in the past, may be

preferable.

 As a consequence, the system needs to adapt to that change. Although there are

records that indicate the user visited and bought many entertainment-related items in the

past, considering them when it comes to calculating recommendations may no longer be

a good idea; perhaps it would be better to ignore, or give less weight to, those page visits

and product purchases and focus, instead, on their recent behavior of taking a look at new

pieces of furniture and ordering appliances.

 In general concept drift occurs due to change in variables surrounding the

analyzed problem (TSYMBAL, 2004), such as the user moving out in the case of a

recommender system of an e-commerce page. As, in many occasions, such contexts are

52

not mapped to the features that are fed into the algorithm, these contexts are called

“hidden contexts”, which makes the detection and treatment of concept drift in real-world

applications a tough task. For the e-commerce store, that means there is no information

in its system that indicates something in the life of the user has changed; yet, it must find

a way to react to the concept drift.

Figure 16 – The Learning Problem With Concept Drift

 By looking back to the learning problem, as presented in the “Learning from Data”

book (ABU-MOSTAFA et al., 2012), concept drift means that the target function the

machine learning algorithm is trying to approximate changes as time moves on, as it is

influenced by changes in the environment in which it exists. As, in the case of a

supervised learning problem, machine learning algorithms learn from data, the data that

is being used in the learning may not be the product of the function in its current state.

Figure 16, which adds a concept drift variable to the learning problem image adapted

from the “Learning from Data” book, illustrates that issue.

In Figure 16, affected by hidden contexts, the target function changes two times.

As, by using the attributes it has for each record it needs to classify, the classifier does

not know the target function it is trying to approximate has changed, it continues to use

training records that were produced by past unknown target functions. Given the

53

classifier’s objective is to diminish error by getting as close as possible to the current

unknown target function, considering training examples of previous functions when

finding patterns in the data is not helpful.

 Take the supervised learning problem of spam-filtering (SHEU et al., 2017), in

which concept drifts are known to occur. The goal is to separate incoming e-mails into

two classes (spam or not-spam), and the attributes sent to the classifiers so they can learn

what is and what is not a spam are the terms found in the e-mail (nothing in the used set

of features indicates changes in the context of the target function). Spam creators,

however, do react to spam filters and try to overcome them by changing the patterns

employed in the production of spam. Classifiers, therefore, need to find ways to adapt to

those new patterns, and old patterns produced before the current spam-creation function

was in place may not be useful for classification.

 A recent survey in the area of concept drift (GAMA et al., 2014) presented four

distinct ways in which the phenomenon can occur. Figure 17, which is adapted from that

work, shows those types of concept drift.

Figure 17 – Types of Concept Drift

Hence, concept drifts can be sudden (one day the user of a music-streaming

platform abruptly develops a taste for rock and abandons the pop genre they used to

listen); incremental (that user slowly moves from pop to rock by slowly adding rock songs

to their playlist until a point in which they completely drop the former style); gradual

(before completely leaving pop behind, the user alternates streaks of rock-listening days

with days when they go back to pop); or reoccurring (where periods that lean towards

rock and pop keep on coming and going).

 For incident tickets, concept drift can come into play in many ways. Firstly, as the

technology supporting the IT services changes, applications are replaced, database

features are introduced, and all layers of the IT infrastructure are updated, the features (in

other words, the terms) present in the tickets may be altered as well. Technology that once

indicated a ticket may pertain to an area may no longer be used; systems that were

frequently used may be replaced by other applications with different names; and given

54

the fast-changing nature of the technological scenario in which IT infrastructure exists,

new terms may appear with a certain frequency.

 Secondly, changes can also happen regarding the employees of the area

responsible for creating the tickets. Different employees have different writing styles and

find distinct ways to present the nature of the incidents they are reporting. As time passes,

and employees retire, leave the company, or start working in a new area, the team that

works as the centralized entry point for tickets and that is responsible for logging the

information into the system may change entirely. Moreover, as management changes,

shifts in the writing style or pattern of the tickets can also occur, as ticket-writing practices

may be put in place to better control the quality of what is reported to the specialized

areas.

 Finally, tickets that are created during a specific time-window may be closely

related to one another or have their origins traced to the same event (SALAH et al., 2016).

When new applications or new technologies are deployed, or when an update of those

items occurs, the amount of tickets related to them may increase.

 For those reasons, which are hidden contexts because they exist outside the

attributes (the terms in the tickets) used for ticket classification in Incident Routing, the

treatment of the concept drift problem may bring better classification performance than

in scenarios in which it is not treated.

3.5.1 FLORA Algorithm

Adaptive learning is the name given to a series of techniques used to update

predictive models during their operation in order to allow them to react to concept drift

(GAMA et al., 2014). Since the dynamically changing environments that affect target

functions and make them drift are common in numerous areas (ZLIOBAITĖ, 2010),

various different solutions have been proposed. One of the first systems developed for

handling that problem was the FLORA family of algorithms (WIDMER; KUBAT, 1996).

 As shown in Figure 18, which is adapted from the work that introduced the

FLORA family of algorithms (WIDMER; KUBAT, 1996), the original FLORA algorithm

works with a learning window of fixed size n. Only examples that are inside the window

are considered in the building of the predictive model; examples that are outside it are

ignored. At predetermined time steps, the window moves forward and the model is

55

reconstructed (that is, a new final hypothesis that approximates the target function is

found by taking into account only the data that is inside the window).

Figure 18 – FLORA Algorithm

 The challenge of that approach lies in how long the window needs to be (GAMA

et al., 2014). If the window is too big, it will react more slowly to changes in the unknown

target function; at the same time, if the data distribution is going through an extended

period of stability (in other words, no significant concept drift has occurred), longer

windows will tend to perform better. Shorter windows, conversely, reflect changes in the

unknown target function more quickly; however, they will tend to perform worse when

the data distribution has been stable for a period that is longer than the window size that

is being used.

 The FLORA algorithm has a few variations: FLORA2, for example, works with

an adaptive and variable time window; FLORA3 focuses on handling reoccurring concept

drifts; and FLORA4 deals with noisy data. Likewise, many of the techniques used when

concept drift is taken into consideration try to detect changes to either adapt their learning

windows; or alter the weights of the items, in cases where the approaches instead of

ignoring older data – such as FLORA does – use all of the available examples in the

learning but give less importance to the older ones.

 In the experiments performed for the purpose of this work, though, the aim was to

treat concept drift in the domain of incident tickets while observing how training windows

of varying size behave on the dataset in order to not only verify if concept drift does

indeed happen in the area but also evaluate if shorter training windows are beneficial to

classification performance. As such, the original FLORA algorithm was chosen.

56

3.5.2 Proposed Ensembles

In Incident Routing, the windows of the FLORA algorithm will be set up in the

scale of months. That is, for the classification of the tickets of a given month, one tree of

classifiers (as the one see in Figure 4) will be trained only with the records of the previous

month; another tree of classifiers will be trained with the records of the previous two

months; and so forth. As they are trained with data from distinct periods, they will produce

distinct final hypotheses, which will – in turn – differ in their performance.

 Given, however, that both shorter and longer windows have their own advantages

and disadvantages; under the light of the treatment of concept drift, this work aims to

improve the performance of the individual models that learn with windows of varied size

by aggregating their results. Such a task is achieved by the creation of ensembles, which

produce predictions that are known to be better than those of a classifier that works on its

own (LÖFSTRÖM, 2015).

 In the creation of these ensembles, each classifier of the tree shown in Figure 4

will be made up of multiple classifiers (each learning with a specific window). The class

to which a ticket belongs to will be determined through different voting schemes that will

take into account the results obtained from all learning windows.

 In the field of adaptive learning, the use of ensembles is not uncommon; their

deployment is usually attached to the notion that, during a concept drift, data is generated

from a combined distribution that mixes elements of the original target function with

elements of the new target function that will be the destination of the concept drift

(GAMA et al., 2014). As a whole, concept drift ensembles have been arranged into three

general groups (GAMA et al., 2014):

 Dynamic Combination: In which base learners are trained in advance and the

rules establishing the combination of their results are dynamically changed to

respond to changes in the environment.

 Continuous Update: In which the learners are either retrained online or in batch

mode using the new data.

 Structural Update: In which new learners are added to the ensemble while

poorly performing ones are removed.

57

 The ensembles proposed in this work belong to the first two categories. All of

them are of the continuous update type; in all cases, the classifiers that compose them

receive continuous updates executed in batch: as a new month comes, the window of each

classifier moves one month forward so tickets from the latest month are taken into account

in the construction of the predictive models while those of the month that has fallen out

of the window are ignored.

Meanwhile, only some of them are of the dynamic combination type. The

combination rules that define their voting schemes are dynamic, changing according to

the recent performance of the classifiers

 The proposed ensembles that belong only to the continuous update group are:

 Unweighted Voting: The class predicted by each classifier counts as one vote,

regardless of the size of its window and its recent performance.

 Weighted by Shortest Window: The shorter the learning window of the

classifier is, the more weight will be given to its vote.

 Weighted by Longest Window: The longer the learning window of the classifier

is, the more weight will be given to its vote.

 The remaining three ensemble strategies have the weights of the votes of the

classifiers that form them altered according to their performance on the previous month.

Therefore, not only are they continuously updated, but the strategy used for the

combination of their results is dynamic.

 These next three proposed ensembles require that a ticket be classified not only

by the tree of ensembles itself (where each of the five classifiers of Figure 4 is made up

of classifiers that learn with different windows) but by individual trees where all five

classifiers work with a specific learning window. In all cases, the ticket will be forwarded

to the area indicated by the tree of ensembles. However, the individual trees where all

five classifiers work with a certain learning window (in one tree, all classifiers learn with

one month; in another, all classifiers learn with two months; etc.) are required so that the

performance of the windows can be evaluated individually, which – in turn – allows the

weighting of the votes in the tree of ensembles. These three ensemble strategies are:

58

 Weighted Monthly: In this ensemble if, for example, the tree that trained with

only one month was the one that had the best performance during the previous

month, for all classifiers of the tree of ensembles, the classifier that considers only

one month of the data in its training will have the most significant vote. Therefore,

for all five classifiers that form the tree of ensembles, the weight of the votes is

the same. The weight of the votes is given by the performance ranking of the

individual trees in the previous month: the better the performance, the larger the

weight.

 Weighted by Classifier Accuracy: In this ensemble, for all five classifiers that

form the tree of ensembles, the weight of the votes is different. That happens

because the performance is evaluated by the accuracy obtained by the individual

trees on each classifier that forms the tree seen in Figure 4. If, for example, the

individual tree that only employed one month in its learning step had the best

performance in terms of accuracy for classifier L0 vs. Non L0, its vote will have

the largest weight for that classifier; at the same time, if that individual one-month

tree had the worst performance in terms of accuracy for classifier L1 vs. L2, its

vote will have the smallest weight for that classifier. The weight of the votes is

given by the performance ranking in the previous month: the better the

performance, the larger the weight.

 Weighted by Classifier Total: This ensemble works similarly to the Weighted

by Classifier Accuracy strategy; the difference, as the name implies, is that the

metric that determines the weight given to the votes of the classifiers that make

up the ensembles is the total of correctly classified tickets obtained by the

individual tree for that classifier, and not the accuracy. The weight of the votes is

given by the performance ranking in the previous month: the better the

performance, the larger the weight.

The difference in the use of the metrics accuracy and total of correctly classified

records stems from how the classifiers proposed for Incident Routing work as a tree. For

a classifier that works on its own, that is, in the case of the dataset used for Incident

Routing, for a classifier that tries to learn patterns for thirteen classes, those metrics would

produce the same rank. In other words, if a classifier that works with a one-month window

has the best accuracy it will also be the one that correctly classifies the biggest amount of

tickets. In a tree structure, however, that does not hold, and the ranks can differ.

59

 That happens because, for example, the number of incident tickets that reaches

classifier L2 depends on the performance of classifiers L0 vs. Non L0 and L1 vs. L2.

Consider, for example, a tree of classifiers learning from data of the previous month

(called K1) and a tree of classifiers learning from data of the previous two months (called

K2). Suppose that the classifier L2 in K1 receives 100 records, while the classifier L2 in

K2 receives 200 records.

 If L2 in K1 correctly classifies all records, it will have 100% accuracy and 100

correctly classified records. If L2 in K2 has an 80% accuracy – that is, lower than the one

from L2 in K1 – it will have correctly classified 160 records. The ranks, therefore, differ:

while, for classifier L2, K1 performed better in terms of accuracy, K2 did better in terms

of the total of correctly classified records. As such, in the case of a tree structure as the

one from the experiment, the approaches Weighted by Classifier Accuracy and Weighted

by Classifier Total differ from one another.

 Finally, for all five ensembles that involve weighted voting, the weighting scheme

is simple. Given a number N of classifiers of varying windows, the weight of the votes is

inversely proportional to the rank. For example, if 7 classifiers are involved, as is the case

in the experiments, the vote of the top-ranked classifier will be worth 7 points; the vote

of the second-ranked classifier will be worth 6 points; and that proceeds until the vote of

the last-ranked classifier, which is worth 1 point.

60

Chapter 4

Related Works

4.1 Incident Ticket Management

Because of the importance of IT service providing and the critical nature that

infrastructure failures can have if not treated in an efficient way, as they can cause vital

applications and technological resources to be inoperative for long periods of time (hence

affecting business negatively), many studies have tackled the matter of incident-ticket

handling.

As service desks are usually divided into teams that are formed according to their

level of expertise, when new incident tickets arrive, a decision must be made regarding

which level will treat them. One work (PALSHIKAR et al., 2012) used statistics-based

algorithms to execute right-shifts or left-shifts with the tickets. A right-shift is the sending

of a ticket from a team with a lower level of expertise to a team with a higher level of

expertise (that is, the ticket is moving down in the structure of the service desk); and a

left-shift is the opposite. Such shifts may occur due to a number of reasons. Firstly, and

intricately connected with ITIL’s proposed service desk architecture, shifts can be related

to the tickets' own level of difficulty; after all, tickets that are harder to deal with and

cannot be resolved by the expertise of the current level need to be escalated. Finally, shifts

can also happen due to reasons that are external to the service desk, such as costs (as a

less experienced team is less expensive, and should therefore be focused on less critical

tickets) or time (as a more experienced team will solve tickets much faster than a less

experienced one).

Likewise, another work (MOHARRERI et al., 2016b) set out with the goal of

improving key ITIL metrics that look to measure service-providing quality. In that

research, the metrics that were targeted for improvement were: Mean-Time-To-Resolve,

which evaluates the average time it takes for incidents to be resolved after they have been

initially reported; Service Level Compliance, which indicates the percentage with which

Service Level Agreements are being respected; and Mean-Steps-To-Resolve, a metric

that counts how many times a ticket has been forwarded between service desk areas

61

before being closed. To reach that goal, the research treats the problem of routing the

incident tickets through a Collective Expert Network (CEN). A CEN is defined as the

network of experts the ticket goes through before being closed; as so, differently from the

tickets used in this work, which are sent to an area and closed, tickets used in that research

move between areas. Therefore, the research looks for a way to recommend the

appropriate sequence of experts that must treat every ticket. In order to do so, it builds a

two-level classification framework. In the first level, it determines the paths through the

Collective Expert Network that are most commonly used (such a task is performed via

Process Mining techniques that show the path followed by each ticket and produce

statistics on their behavior). After narrowing down on the most common paths, in the

second level of the classification framework it uses text processing and machine learning

techniques to, first, extract data from the ticket and, then, determine which one of the

most commonly used paths the ticket will need to take in order for the problem it describes

to be solved on time.

In the same area of Expert Networks, with the use of TF and a probabilistic model

to recommend reliable routes for new tickets, researchers (MIAO et al., 2012) attempted

to minimize the expected number of steps a ticket takes to reach the correct level. Their

proposed model, called Optimized Network Model (ONM), uses maximum likelihood

estimation to calculate, for each node of the Collective Expert Network, the most reliable

transfers according to the content within the ticket. With that, for each new ticket, it is

able to evaluate all possible routes to resolvers and estimate the one that will be more

optimal. By succeeding in doing so, the work avoids the bouncing around of tickets, as

different specialized areas struggle to find out who is actually responsible for taking care

of the incident. In critical scenarios, such events may be rather problematic in the keeping

of the agreed service levels; with reliable routing, not only is that issue diminished, but

the time it takes for tickets to be resolved is also minimized.

While most research in the area of incident ticket handling focuses on the

recommendation of transfers between experts so tickets are treated efficiently enough to

preserve the agreed service levels, there has been some research (MOHARRERI et al.,

2016a) focusing on estimating the time it will take for a ticket to be solved, since that is

a ticket characteristic that is closely related to the meeting of service agreement levels.

Similarly, another study (KIKUCHI, 2015) used TF-IDF and machine learning to solve

one of the biggest issues regarding incident management: the balanced allocation of

62

incident tickets among the professionals who are responsible for treating them; as it

attempts to identify the workload that will be necessary to treat each ticket according to

the update history of similar incident records. The article seeks to solve that problem

because, as it states, efficient incident handling is important due to how it reduces system

management costs and achieves efficient incident management. The workload of each

ticket is estimated through its update history. Tickets that have already been solved are

labelled as one of two categories: easy or hard, the differentiation between both is done

by a predetermined threshold in the number of updates. The text of tickets is transformed

via TF-IDF and the Naïve Bayes algorithm is used to learn both classes; then, new tickets

are analyzed by the learned predictive model, which indicates whether they are more

likely to be easy or hard. With the tickets’ workloads automatically estimated, it is

possible to manage them with more certainty; in addition, the effort spent in analyzing

the ticket and trying to determine how hard it will be to solve it is eliminated.

TF and machine learning are also used in a work (BOGOJESKA et al., 2014)

where a multiclassification problem with incident tickets was explored. In it, tickets were

classified into five distinct types according to the issues they were related to: server

unavailable, disk, performance, non-actionable, and other.

Given the considerable amount of incident tickets that are generated due to both

the automatic monitoring of IT infrastructure and the quantity of users that are interacting

with the systems it supports and experiencing problems, many tickets share resolutions

that are either similar or identical. For that reason, one article (ZHOU et al., 2015)

developed a framework that includes text processing and machine learning to recommend

resolutions to incoming tickets. Given how different words are used to describe similar

problems, a feature adaptation algorithm was also employed to identify these words and

consider them as a single entity.

In order to deal with the same issue of the high volume of tickets service desks

need to take care of, another article (JAN et al., 2015) used text processing and clustering

to group tickets according to their causes, so that it can be viable to identify repeating

patterns as well as pain points that, if treated more carefully, could end up reducing the

amount of tickets that is being generated. In order to do so, the article builds a framework

in which it extracts keywords from the text of tickets opened by users, groups them into

clusters, and then allows analysts to use a search mechanism to better understand them.

63

To try to improve the work of the service desk, one research (SALAH et al., 2016)

uses the correlation between the tickets as metric to group several of them together. Many

tickets are sometimes created for one incident, given one infrastructure issue can affect a

lot of users, who will then report it to the service desk. The experiment, then, attempts to

automatically summarize the information the tickets related to the same incident into just

one, therefore avoiding redundancy and unnecessary extra work.

Finally, this work is closely related to another thesis (MENEZES, 2009)

developed with the goal of routing incident tickets through the service desk of another

Brazilian company with a vast array of information technology services, which are

essential for its business. In that thesis, text transformation and classification techniques

were evaluated so that the best ones could be chosen to rout tickets through a three-level

service desk. The thesis reported a decrease in the total workload of 85%; that result was

based on the proposed forwarding cost metric, which will also be employed in this work

to evaluate how Incident Routing will bring gains to the service desk that is being studied.

4.2 Treatment of Concept Drift

Two recent surveys that explored the problem of concept drift and mapped the

current state of its surrounding research (ZLIOBAITĖ et al., 2010) (GAMA et al., 2014)

organized works that deal with real life problems that present concept drift into four

groups:

 Monitoring and Control;

 Decision Making;

 Artificial Intelligence;

 Personal Assistance and Information.

Monitoring and control applications treat the detection of anomalous behavior in

various areas, from the internet and other telecommunication channels to financial

services; decision making involves predictive tasks that help a company’s management

define tactical and strategic paths to be taken; artificial intelligence englobes moving and

stationary systems that need to adapt to changes in the environment in which they operate;

and personal assistance and information solutions, a category under which this work is

64

filed, is concerned with recommender systems and the classification of information (be it

textual or not) into different bins.

In monitoring and control scenarios, concept drift has been studied in the online

mass flow prediction of an industrial boiler (PECHENIZKIY et al., 2010), which

improves the boiler’s control; shifts in context happen when boiler operators are changed,

as the operation process is not standardized, or when the fuel that is used presents

alterations in quality and type. Other monitoring and control scenarios include intrusion

detection (LANE; BRODLEY, 1999), the identification of unauthorized use of mobile

terminals by monitoring the behavior and environment of the current user and then

matching those with the behavior and the environment of the legitimate user (MAZHELIS;

PUURONEN, 2007), and the evaluation of financial transactions to check if they are

fraudulent (BOLTON; HAND, 2002). In these settings, concept drift appears in how

those trying to break into these systems change their behavior and look for new strategies

once they realize the effectiveness of their old approaches has been nullified due to

advances in the security features protecting those systems.

Electric power generation presents two examples of how the consideration of

concept drift can lead to stronger decision making systems: smart grids, for example,

which use data collected from sensors to provide electricity to customers in more efficient

ways can forecast consumption patterns (ALBERG; LAST, 2017) (which may change

due to factors such as the weather) so that companies from the sector can plan their

resources and balance supply and demand; additionally, and with the same goals, the

power generated by wind parks can be predicted according to the ever-changing

characteristics of the wind (BESSA et al., 2010). Outside of that sector, concept drift in

decision making also appears in bankruptcy prediction (where shifts from normal to crisis

conditions are considered) (SUNG; CHANG; LEE, 1999), biometric recognition systems

that take physiological changes into account (POH et al., 2009), and the treatment of

patients (BLACK; HICKEY, 2004), which needs to consider changing factors such as the

stage of the disease’s progression and the resistance of pathologies to antibiotics

(TSYMBAL et al, 2006).

In artificial intelligence (AI) systems, meanwhile, changes in context have

appeared in research that tries to make the AI in digital games adapt to the actions of

players (COWLEY; CHARLES, 2016); as well as self-driving cars (BOJARSKI, 2016),

smart homes (DINATA; HARDIAN, 2014), and robots (HAASDIJK et al., 2014), which

65

have to learn how to react to the ever-changing conditions of the environment that

surrounds them.

Regarding personal assistance and information solutions, more specifically the

text-analysis subarea into which this work fits, adaptive learners have been used in spam

detection (SHEU et al., 2017), as spammers are constantly trying to find ways to change

both the text and presentation of their e-mails in order to overcome spam filters; the

recommendation of new product features via the analysis of feedback found on social

networks (MIRTALAIE et al., 2017); the categorization of tweets into distinct topics in

order to evaluate trending subjects (LIFNA; VIJAYALAKSHMI, 2015), which is

achieved via learning models based on sliding windows such as the ones used in this work;

and sentiment analysis (GUERRA et al., 2014), where one of the major problems in

treating concept drift, and an issue that is also present in many other domains within text-

analysis, arises from how in order to update the classifier the recent data needs to be

correctly labeled.

In the field explored here (incident ticket management), such a problem is

minimized due to how new tickets are automatically and accurately labeled as they are

solved by a specific technical area. With that, they can be instantly fed into the classifiers,

which learn with updated data.

66

Chapter 5

Experimental Evaluation

 The experimental evaluation done in this work is divided into two parts. In the

first one, the classification of the tickets is refined via the selection of the best methods

for text transformation, text classification, feature selection, and treatment of imbalanced

datasets. In the second one, with the use of a base classifier, the presence of concept drift

in the field of incident ticket management is evaluated. Before going into the experiments,

though, common points between both are discussed: the general format of the dataset, and

the evaluation metrics that were used.

5.1 Dataset

The dataset used in the experiment was obtained through the collection of closed

incident tickets. For each set of experiments, however, the period of collection and,

consequently, the number of acquired tickets was different.

Table 4 – General Dataset Information

Experiment Period of Collection Number of Tickets

Classification Refinement 04/24/2016 – 04/24/2017 38,933

Concept Drift 04/24/2016 – 07/24/2017 50,755

The collected incident tickets featured the fields: incident identification,

description, summary, symptom, affected configuration item, opening date, closing date,

priority, and area. For the purpose of the experiment, the description and summary fields

(as well as, naturally, the ID of the tickets and the area that solved them) were considered.

That choice was made because upon the opening of the incident (which is the moment

when it must be forwarded to the responsible area) the fields symptom, affected

configuration item, and priority are not mandatory; therefore, the information they

contain may have been filled up after the tickets were sent to their respective areas.

These two fields are freely filled up by the area responsible for creating and

forwarding the tickets; given they are written in the users’ language and also contain

67

copied error messages, their text features a mixture of Portuguese and English terms.

Before the text transformation and other procedures were executed, that text was treated

through the following procedures:

 Removal of numbers;

 Removal of server names;

 Removal of punctuation;

 Conversion of all terms to lower case;

 Removal of stop words from the English and Portuguese languages.

 It is worth noting that not all incident tickets are relevant for the training of all

classifiers. For example, a ticket assigned to the Application team (which is a part of

Level 2) holds no learning value for the L0 and L1 classifiers; similarly, a ticket handled

by the Cloud team (which is a part of Level 0) is not to be used in the learning process of

the L1 vs. L2 classifier. As such, before being fed to each classifier, the training dataset

was filtered so that only relevant tickets be used in the learning. Due to that, the only

classifier trained with the whole dataset was L0 vs. Non L0; as the classifier that lies on

the root of the classification tree of Figure 4, it is the entry point for all tickets that are

being forwarded and must therefore learn patterns for all of them in order to differentiate

those of Level 0 from those that are Non Level 0 (that is, Level 1 and Level 2).

5.2 Evaluation Means

5.2.1 F1 Score

The F1 score is a commonly used metric for model selection (HAN et al., 2011);

in other words, the choosing of the best classifier for a given problem. The metric is a

combination of precision and recall via the harmonic mean, as shown in Formula 20.

𝐹1 = 2 (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
)

Formula 20 – F1 Score

68

 The precision measures the exactness of the classifier. Its value corresponds to the

percentage of items that have been labeled as belonging to a class that are actually part of

that class. A value of precision that equals 1 (its maximum), then, means that every item

the classifier identified as belonging to a class was indeed a part of it. For example, if a

classifier working to distinguish between classes Application and Database labels 100

records as Database, but only 50 of those are right, its precision for that class will be 50%.

 The recall, meanwhile, measures the completeness of the classifier. Its value

corresponds to the percentage of items that belong to a class and that were correctly

labeled as so; it shows how many of the items of each class were recovered. A value of

recall that equals 1 (its maximum), then, means that the classifier correctly labeled all

items of all classes. For example, if a classifier, once more, is working to distinguish

between classes Application and Database and out of the 100 database records it only

labels 30 as so, its recall for that class will be 30%.

5.2.2 Confusion Matrix

A confusion matrix (HAN et al., 2011) allows the detailed visualization of a

classifier’s behavior. It shows, through totalized quantities, how items from each of the

evaluated classes are being classified. Table 5 shows an example of what a confusion

matrix looks like for a classifier working to separate tickets between classes Application,

Database, and Network.

Table 5 – Confusion Matrix Example

 Application Database Network

Application 25 2 3

Database 5 12 4

Network 7 6 50

Each row represents the items of a class; each column shows how those items have

been classified. In the first row, for example, it is possible to see 25 Application tickets

have been correctly labeled; while 2 of them were classified as being of the Database

category and 3 were classified as being Network tickets. The main diagonal of the

confusion matrix (which is highlighted in bold), therefore, shows the number of correctly

classified records for each class.

69

5.2.3 Forwarding Cost

With the goal of assessing the workload difference between the current scenario

shown in Figure 3 (in which tickets are manually forwarded to one of the 13 specialized

areas), and the implemented solution (in which the routing of the tickets to the areas is

done through the tree of classifiers seen in Figure 4), the forwarding cost metric

(MENEZES, 2009) is used.

The forwarding cost is meant to represent the labor dispensed in the process of

analyzing the ticket (which may entail learning details about it and contacting various

areas in order to determine if they are capable of handling it) and sending it to the

respective group.

Within the manual setting of Figure 3, and assuming no errors occur in the process

(in other words, no tickets are forwarded to the wrong areas and thereby sent back to the

team responsible for assigning them to the specific groups), the forwarding cost of each

ticket is equivalent to 1. The assumption of no errors occurring in the process stems from

how there are, currently, no metrics available regarding the incorrect forwarding of tickets

in the company that serves as this work’s case study. Therefore, in order to measure the

improvements Incident Routing will bring, the comparison that will be made will be

between the automatic proposed setting and a best-case manual scenario where no

mistakes are made.

Within the proposed setup, on the other hand, tickets that are correctly routed by

the classifiers will have a forwarding cost of 0 given no manual labor and analysis efforts

are required, representing a workload gain in the service desk process; meanwhile, tickets

that are incorrectly routed will have a forwarding cost of 2.

As shown in Figure 19, a misclassification will require that the team that receives

the ticket send it back to the routing team (the first forwarding) so that it can, then, be

manually assigned to those who are truly responsible for and capable of taking care of the

issue (the second forwarding).

With these considerations, it will be possible to identify the gain obtained with the

deployment of the ticket routing system.

70

Figure 19 – Automatic Ticket Forwarding Process

5.3 Classification Refinement

5.3.1 Methodology

For the classification refinement experiments, the obtained dataset, consisting of

38,933 tickets collected between 04/24/2016 and 04/24/2017, was divided into two pieces:

80% of its records (31,146 tickets) were used for training; the other 20% of the records

(7,787 tickets) were used for testing, which is presented in Experiment V.

Consequently, during the building of the models and the selection of the best

classification configurations, the testing tickets were not used. Through the first four

experiments, they remained set aside so that the performance of the constructed classifiers

could be evaluated on tickets they had never worked with; consequently replicating a

scenario in which new tickets arrive and the classifiers need to identify their patterns and

send them to the correct specialized teams.

During the first four experiments, when only the training tickets were used, the

method of evaluation employed was the k-fold cross-validation (HAN et al., 2011), where

k was 5.

71

The k-fold cross-validation works by breaking up the training dataset into k

distinct pieces, as shown in Figure 20. The training (that is, the building of the predictive

models) is done by using k-1 of the pieces; the slice of the dataset that is not used for

training is employed as a validation dataset. As so, with models constructed, the items of

that slice are classified, and the results (in terms of the metrics employed, which in the

case of the experiment was the F1 score) is calculated. The k-fold cross-validation repeats

that procedure k times, until all pieces have been used for validation. The returned final

result is the average of all k iterations of the procedure.

Figure 20 – 5-Fold Cross-Validation (First Iteration)

The k-fold cross-validation is a good tool for model selection (ABU-MOSTAFA

et al., 2012) for it brings a reliable estimate of how the learning model being evaluated

will perform when it is moved to a scenario outside of the training sample (either when it

is employed on the test dataset or when it is placed in the real world to face real new data).

5.3.2 Experiment I – Text Transformation and Classification

Experiment I describes the selection of the best text transformation and

classification approaches for each of the five classifiers of the classification tree of Figure

4. As so, for classifiers L0 vs. Non L0; L1 vs. L2; L0; L1; and L2, these approaches will

be evaluated via the 5-fold cross validation and the pair that performs best according to

the reported F1 score will be chosen.

The text transformation techniques that were tested were: Term Frequency (TF);

Term Frequency – Inverse Term Frequency (TF-IDF); Logarithmic Term Frequency (TF-

LOG); Fractional Term Frequency (TF-FRAC); and Word2Vec (W2V).

Meanwhile, the machine learning algorithms that were tasked with text

classification were: Decision Tree (DT), Naïve Bayes (NB), Nearest Neighbors (KNN),

72

Neural Network (NN), Random Forest (RF), Stochastic Gradient Descent (SGD), and

Support Vector Machine (SVM).

Table 6 brings a summary of the configuration details of the text transformation

approaches that were used. In particular, it is worth highlighting that Term Frequency and

its variations were calculated with the use of unigrams (as seen in Table 2); in other words,

terms were considered on their own, and not in combinations of two (bigrams), three

(trigrams), or more.

Table 6 – Configuration of Text Transformation Approaches

 Configuration

TF N-grams Considered: Unigrams

TF-IDF N-grams Considered: Unigrams

TF-LOG N-grams Considered: Unigrams

TF-FRAC
K: 1

N-grams Considered: Unigrams

W2V

Aggregation Method for Word Vectors: Average

Dimensions of Word Vectors: 300

Model: Trained on the Corpus Itself

 Table 7, on the other hand, carries a summary of the configuration details of the

machine learning algorithms used in the experiment.

Table 7 – Configuration of Text Classification Approaches

 Configuration

DT Measure of Split Quality: Gini Index

KNN
Distance Measure: Euclidean Distance

Number of Neighbors Considered: 5

NB -

NN

Activation Function: Rectifier

Number of Hidden Layers: 1

Number of Neurons in Hidden Layer: 100

RF
Measure of Split Quality: Gini Index

Number of Trees: 10

SGD Stopping Criterion: 5 Iterations Through Dataset

SVM
Kernel: Linear

Multiclass Approach: One-Versus-All

73

Classifier L0 vs. Non L0

Table 8 shows, for the L0 vs. Non L0 classifier, the overall results for the thirty-

five combinations of text transformation and text classification techniques. Results

reported are the F1 scores weighted according to the number of records of each class

obtained during the 5-fold cross-validation. The best overall result is highlighted in bold.

Table 8 – L0 vs. Non L0 (Experiment I – Overall Results)

 TF TF-IDF TF-LOG TF-FRAC W2V

DT 0.9593 0.9568 0.9578 0.9571 0.9464

KNN 0.9600 0.9384 0.9588 0.9600 0.9591

NB 0.8840 0.9540 0.9562 0.9221 0.9313

NN 0.9615 0.9600 0.9602 0.9603 0.9593

RF 0.9656 0.9648 0.9637 0.9639 0.9626

SGD 0.9540 0.9616 0.9615 0.9571 0.9383

SVM 0.9565 0.9641 0.9645 0.9625 0.9572

All combinations of transformation techniques and classifiers were able to

separate between tickets of the service desk’s Level 0 and those of Level 1 and Level 2

(Non Level 0) with a good degree of success. With the only negative highlight being the

Naïve Bayes classifier with Term Frequency, which yielded an F1 Score of 0.8840; a

number that albeit not bad is much worse than the results reported by the other

configurations. The best result overall was achieved by the combination TF and RF. The

results of the pair are detailed in Table 9, where it is possible to see the F1 score, precision,

and recall for both classes involved in the classification as well as the total number of

records of each class.

Table 9 – L0 vs. Non L0 (Experiment I – Best Results – TF / RF)

 Precision Recall F1 Score Number of Records

L0 0.9061 0.8704 0.8879 4,832

Non L0 0.9764 0.9834 0.9799 26,314

Average / Total 0.9655 0.9659 0.9656 31,146

 As evidenced by Table 9, the classifier obtained better results in all metrics for the

class that is more represented in the dataset. A question that will be addressed in the third

and fourth experiments.

74

Classifier L1 vs. L2

Table 8 Table 10 shows, for the L1 vs. L2 classifier, the overall results for the

thirty-five combinations of text transformation and text classification techniques. Results

reported are the F1 scores weighted according to the number of records of each class

obtained during the 5-fold cross-validation. The best overall result is highlighted in bold.

Table 10 – L1 vs. L2 (Experiment I – Overall Results)

 TF TF-IDF TF-LOG TF-FRAC W2V

DT 0.9330 0.9307 0.9333 0.9319 0.9152

KNN 0.9353 0.9216 0.9380 0.9366 0.9379

NB 0.8722 0.9273 0.9243 0.8621 0.8344

NN 0.9405 0.9402 0.9398 0.9377 0.9382

RF 0.9415 0.9403 0.9404 0.9405 0.9397

SGD 0.9213 0.9345 0.9340 0.9231 0.8980

SVM 0.9298 0.9380 0.9397 0.9337 0.9261

 As it had happened with the L0 vs. Non L0 classifier, all learning models achieved

good results when separating tickets from Level 1 and Level 2 in terms of the weighted

F1 score. The only instances in which the score fell below 0.9 were with the combinations

of the NB classifier and TF, TF-FRAC, and W2V; and the combination of SGD and W2V.

Once more the best result appeared for TF and RF, and it is detailed in Table 11.

Table 11 – L1 vs. L2 (Experiment I – Best Results – TF / RF)

 Precision Recall F1 Score Number of Records

L1 0.8058 0.6639 0.7280 2,975

L2 0.9581 0.9796 0.9687 23,339

Average / Total 0.9409 0.9439 0.9415 26,314

 Table 11 shows a considerable imbalance between classes L1 and L2; furthermore,

it reveals a disparity in the quality of the classification done for both classes. While the

classifier is easily able to successfully label L2 tickets, it struggles with items belonging

to L1 (the least-represented class). In fact, all classification algorithms had similar issues

with that class. Table 12 shows the average F1 score for all algorithms with all text

transformation techniques in relation to L1, and it is possible to see RFs and NNs stand

out from the crowd, but that even their F1 score is lower that obtained for the L2 class.

75

Table 12 – L1 vs. L2 (Average F1 Score For All Classifiers – Class L1)

 DT KNN NB NN RF SGD SVM

L1 0.6868 0.6857 0.4826 0.7204 0.7207 0.6219 0.6787

Classifier L0

Table 13 shows, for the L0 classifier, the overall results for the thirty-five

combinations of text transformation and text classification techniques. Results reported

are the F1 scores weighted according to the number of records of each class obtained

during the 5-fold cross-validation. The best overall result is highlighted in bold.

Table 13 – L0 (Experiment I – Overall Results)

 TF TF-IDF TF-LOG TF-FRAC W2V

DT 0.9788 0.9805 0.9801 0.9773 0.9498

KNN 0.9092 0.9740 0.9758 0.9574 0.9486

NB 0.9797 0.9595 0.9581 0.8199 0.9122

NN 0.9870 0.9842 0.9875 0.9863 0.9569

RF 0.9696 0.9747 0.9727 0.9737 0.9596

SGD 0.9865 0.9894 0.9880 0.9847 0.9177

SVM 0.9863 0.9898 0.9876 0.9827 0.9332

Differently from what had happened in the binary classification problems of L0

vs. Non L0 and L1 vs. L2, where the combination of TF and RF produced the best results,

for classifier L0, TF-IDF and SVM achieved the best weighted F1 score. It is also possible

to see how the W2V approach, for all classifiers (with the exception of NB) yielded the

worst numbers. Table 14 shows the detailed results of the best combination.

Table 14 – L0 (Experiment I – Best Results – TF-IDF / SVM)

 Precision Recall F1 Score Number of Records

Cloud 1.0 0.8421 0.9143 114

External Network 0.9981 0.9993 0.9987 4,239

Incident Management 0.9106 0.9645 0.9368 338

Production Support 0.9328 0.8865 0.9091 141

Average / Total 0.9901 0.9899 0.9898 4,832

76

Again, there is a level of imbalance between the classes in the dataset, and the

ticket categories that are not well represented have the lowest F1 scores. Contrarily to

what had occurred for the L1 vs. L2 classifier (Table 11), though, the F1 scores for all

classes are greater than 0.9. Such solid results, however, were not common to all

combinations of text transformation techniques and classifiers.

Table 15 presents the average F1 score with all text transformation techniques for

all algorithms in relation to the classes of L0 and it is possible to see how classifiers tend

to struggle with the least represented classes, for while they achieve good results with the

External Network class, the same does not hold for others.

Table 15 – L0 (Average F1 Score For All Classifiers – All Classes)

 DT KNN NB NN RF SGD SVM

Cloud 0.7818 0.6987 0.4360 0.8345 0.7357 0.7445 0.7301

External Network 0.9968 0.9647 0.9787 0.9976 0.9951 0.9955 0.9976

Incident Management 0.8353 0.7262 0.6079 0.8864 0.8321 0.8614 0.8723

Production Support 0.7505 0.6600 0.4940 0.8055 0.7360 0.7577 0.7684

Classifier L1

Table 16 shows, for the L1 classifier, the overall results for the thirty-five

combinations of text transformation and text classification techniques. Results reported

are the F1 scores weighted according to the number of records of each class obtained

during the 5-fold cross-validation. The best overall result is highlighted in bold.

Table 16 – L1 (Experiment I – Overall Results)

 TF TF-IDF TF-LOG TF-FRAC W2V

DT 0.8818 0.8845 0.8798 0.8788 0.8552

KNN 0.8642 0.8573 0.8722 0.8668 0.8610

NB 0.8348 0.8307 0.7639 0.7071 0.7570

NN 0.8954 0.8909 0.8934 0.8919 0.8804

RF 0.8891 0.8763 0.8790 0.8797 0.8817

SGD 0.8649 0.9009 0.9041 0.8805 0.7814

SVM 0.8883 0.9036 0.9065 0.8824 0.8330

Again, SVM is the best classifier. This time, though, its best results occur when

the text that is fed into it has been transformed into vectors by TF-LOG, not TF-IDF. Its

77

F1score is good for all text transformation techniques, with the exception of W2V, whose

score of 0.8330 stands out negatively when compared to the other SVM scores. Aside

from NB and the combination of SGD and W2V, the overall numbers for all combinations

are on a similar level, always standing between 0.86 and 0.91.

Table 17 shows the detailed results of the best combination. As it has been the

case for all classifiers, an imbalance exists between the classes, and the one that is most

represented in the dataset is the class for which the best F1 score appears. A negative

highlight of the L1 classes is found in the numbers for the Job and Operation classes,

whose F1 scores are particularly low when compared to those of others.

Table 17 – L1 (Experiment I – Best Results – TF-LOG / SVM)

 Precision Recall F1 Score Number of Records

Backup 0.9305 0.9564 0.9433 826

Control 0.8103 0.8650 0.8368 163

Job 0.7784 0.6681 0.7195 238

Monitoring 0.9358 0.9557 0.9456 1,602

Operation 0.7500 0.5753 0.6512 146

Average / Total 0.9058 0.9092 0.9065 2,975

 For those two classes, such a phenomenon is not exclusive to the TF-LOG and

SVM combination: it happens for all text transformation techniques and classifiers. Table

18 shows the average F1 score, considering all text transformation approaches, that the

employed classifiers produced for the classes Job and Operation; scores are consistently

low.

Table 18 – L1 (Average F1 Score For All Classifiers – Job and Operation Classes)

 DT KNN NB NN RF SGD SVM

Job 0.6220 0.6199 0.3192 0.6712 0.6210 0.5886 0.6470

Operation 0.5662 0.5048 0.1945 0.6165 0.6158 0.5208 0.5612

Classifier L2

Table 20 shows, for the L2 classifier, the overall results for the thirty-five

combinations of text transformation and text classification techniques. Results reported

are the F1 scores weighted according to the number of records of each class obtained

during the 5-fold cross-validation. The best overall result is highlighted in bold.

78

Table 19 – L2 (Experiment I – Overall Results)

 TF TF-IDF TF-LOG TF-FRAC W2V

DT 0.8451 0.8399 0.8358 0.8338 0.8156

KNN 0.8161 0.7911 0.7905 0.7965 0.8502

NB 0.7757 0.7821 0.7567 0.7319 0.6248

NN 0.8713 0.8643 0.8651 0.8551 0.8649

RF 0.8568 0.8528 0.8559 0.8532 0.8636

SGD 0.8269 0.8521 0.8441 0.8012 0.7654

SVM 0.8535 0.8665 0.8636 0.8449 0.8326

The best combination was, therefore, TF and NN. The detailed view of the

classification done by that combination, which is shown in Table 20, reveals that although

this piece of the dataset has a certain degree of imbalance, as it has been the case for all

of the subsets used for the training of each classifier, the results are more balanced.

Table 20 – L2 (Experiment I – Best Results – TF / NN)

 Precision Recall F1 Score Number of Records

Application 0.8754 0.8941 0.8847 8,952

Database 0.8601 0.8396 0.8497 4,077

Internal Network 0.9116 0.8955 0.9035 1,761

Platform 0.8641 0.8578 0.8609 8,549

Average / Total 0.8713 0.8714 0.8713 23,339

There is no class that appears as a negative highlight, as F1 scores for all of them

fall between 0.84 and 0.91. That more balanced behavior may be attributed to how,

despite the imbalance, all classes are solidly represented: there are over 1,000 tickets for

each one of them. That characteristic is a considerable contrast to the subsets of L0 and

L1, in which a few classes had over 1,000 representatives while others featured ticket

numbers in the low hundreds. Another noticeable distinction of the L2 classifier lies in

how the best F1 score was not reached by the most represented class (Platform), but by

Internal Network, which is the least represented ticket category of the subset.

79

Overview

 With the end of Experiment I, for each of the five classifiers that compose the

classification tree of Incident Routing, the best combination of text transformation and

classification approaches were chosen. Those combinations were:

 L0 vs. Non L0: TF and RF;

 L1 vs. L2: TF and RF;

 L0: TF-IDF and SVM;

 L1: TF-LOG and SVM;

 L2: TF and NN.

 Therefore, classifiers DT, KNN, NB, and SGD; as well as the text transformation

approaches TF-FRAC and W2V were not a part of any winning combination. Table 21

and Table 22 present the average of the weighted F1 score achieved by the text

transformation techniques and the classification algorithms throughout the experiment

(that is, for all five classifiers of the Incident Routing tree). TF-FRAC and, especially,

W2V are negative highlights – albeit by a small margin – among the text transformation

approaches while DT, KNN, NB, and SGD fall slightly below NN, RF, and SVM among

classification algorithms.

Table 21 – Average Of Weighted F1 Score (Text Transformation Techniques)

TF TF-IDF TF-LOG TF-FRAC W2V

0.9107 0.9164 0.9152 0.9009 0.8882

Table 22 – Average Of Weighted F1 Score (Classification Techniques)

DT KNN NB NN RF SGD SVM

0.9135 0.9030 0.8504 0.9268 0.9224 0.9068 0.9210

 W2V, in particular, stood out negatively for classifiers L0 and L1. For instance,

as Table 23 reveals, for L0, the SVM classifier (which was the winning algorithm when

paired up with TF-IDF, as shown in Table 14) went through a considerable drop in

performance when the W2V approach was plugged into it in place of TF-IDF.

80

Table 23 – L0 (Experiment I – W2V / SVM)

 Precision Recall F1 Score Number of Records

Cloud 0.2632 0.0439 0.0752 114

External Network 0.9920 0.9941 0.9930 4,239

Incident Management 0.5820 0.8521 0.6965 338

Production Support 0.5658 0.3050 0.3963 141

Average / Total 0.9342 0.9416 0.9332 4,832

 As it can be seen, the drop in performance is very prominent for the poorly

represented classes. Cloud goes from 0.9143 when TF-IDF and SVM are joined to 0.0752

when W2V is used instead; Incident Management goes from 0.9368 to 0.6965; and

Production Support drops all the way from 0.8669 to 0.3963.

 That pattern reappears for L1, as shown in Table 24. In that case, the best

combination was TF-LOG and SVM (which is shown in Table 17). When TF-LOG is

replaced by W2V, the F1 score goes from 0.8368 to 0.7486 for Control; from 0.7195 to

0.4628 for Job; and from 0.6512 to 0.3846 for Operation.

Table 24 – L1 (Experiment I – W2V / SVM)

 Precision Recall F1 Score Number of Records

Backup 0.9178 0.9189 0.9183 826

Control 0.7005 0.8037 0.7486 163

Job 0.6720 0.3529 0.4628 238

Monitoring 0.8501 0.9413 0.8934 1,602

Operation 0.6452 0.2740 0.3846 146

Average / Total 0.8364 0.8477 0.8330 2,975

 Figure 21 shows a visual summary of the results achieved in Experiment I. The

setup of the classification tree, its classifiers, the chosen text transformation and

classification techniques, and the F1 score for each of its classes are presented.

81

Figure 21 – Visual Summary (Results Of Experiment I)

 Upon the closing of Experiment I, two possible ways through which classification

can be improved present themselves. Firstly, as discussed, there is how the imbalanced

subsets used for the training of each classifier yielded results that are biased towards the

majority classes, as the F1 score for the least represented categories tended to be inferior

in all cases, an effect that was quite clear in all classifiers with the exception of L2.

 Secondly, there is how the employed subsets have an elevated number of attributes.

Given each term in the text of the tickets corresponds to one feature (or dimension) all

chosen algorithms are operating in a high number of dimensions as they seek for the best

hypothesis that fits the training dataset. The number of terms (features) for the subset of

each classifier is:

 L0 vs. Non L0: 20,895.

 L1 vs. L2: 19,205.

 L0: 6,790.

 L1: 5,995.

 L2: 17,597.

 With those questions in mind, subsequent experiments will aim to address the high

dimensionality and imbalanced datasets issues. Given high dimensionality has been

reported to increase the bias of classifiers towards the majority classes (CHAWLA et al.,

82

2002), feature selection will be treated first, as it may potentialize the effects of data

balancing.

5.3.3 Experiment II – Feature Selection

Experiment II involves applying Improved Fisher’s Discriminant Ratio (IFDR) to

all subsets used for the training of the classifiers. That means that for classifier L0 vs.

Non L0, IFDR will be calculated for all terms of the tickets belonging to both classes; the

goal will be to determine how important the term is for the distinction between L0 tickets

and Non L0 tickets. Likewise, for example, when it comes to classifier L2, IFDR will be

calculated for each term for all L2 classes; that is, Application, Database, External

Network and Platform.

As exemplified in Table 3, for any given term, the maximum IFDR score will be

selected. All terms present in the tickets will be ordered according to that maximum score;

with that, it will be possible to select only the terms that are most important for the

differentiation between classes. Given IFDR exists in two variations, binary and

frequency, both were evaluated.

 The tests done in Experiment II consist of the following procedure: for each

classifier (L0 vs. Non L0, L1 vs. L2, L0, L1, and L2), the combination of text

transformation and classification approaches selected during Experiment I is used; the top

N terms (according to one IFDR variation) in each of the five subsets is selected; the 5-

fold cross-validation is performed by considering only the selected terms in the

classification; the results, in terms of the weighted F1 score, are reported.

 In the experiment, the number of selected attributes was varied between the top

1% and the whole set of terms (100%) in steps of 1%. In other words, for each classifier

and IFDR variation, one hundred results are reported. The goal is to select a percentage

of attributes with which the five classifiers perform well in terms of the weighted F1 score

so that they can eventually be applied on the test dataset that has been reserved.

The red dots on the charts represent the point on which the highest F1 Score was

achieved. Although some of the peaks appear towards relatively high percentages, all of

the classifiers (for the two IFDR variations) reach performance levels that are close to the

maximum when smaller percentages of attributes are selected. Moreover, stability in

83

performance (in other words, F1 Score levels that are consistently good) are also achieved

early.

It is worth pointing out that since both tested feature selection variations are very

similar, the difference in their performance is minimal.

Figure 22 – L0 vs. Non L0 (Experiment II – Feature Selection)

Figure 22 shows the results obtained for classifier L0 vs. Non L0 (using the

combination TF and RF). It is possible to notice that a very good F1 score is already

achieved when a meager 1% of the terms (2,089 out of 20,895) is used. Still, between the

1% and 15% marks there is a small but steady increase in performance, which reaches a

certain level of stability after that point.

84

Figure 23 – L1 vs. L2 (Experiment II – Feature Selection)

 Figure 23 reveals a similar pattern for classifier L1 vs. L2 (using the combination

TF and RF). In this case, the peak (reached by the frequency variation of IFDR) comes

sooner, at the 29% mark; but the overall behavior is the same. Through the early

percentages, a steady but slow rise can be seen, which is sustained until the range between

20% and 25%; after that point, via peaks and valleys, the weighted F1 score stays within

a certain good interval that is quite close to the peak, showing – once more – that with a

much lower quantity of attributes it is possible to achieve results that are equal or slightly

better than the ones reached with the full set of terms.

Figure 24 presents the results for classifier L0 (TF-IDF and SVM). As it can be

seen, the peak of performance is reached by the binary variation of IFDR at two points:

68% and 69%. Again, the performance improves through the early percentages and

reaches stability after a point; in this case, the 10% mark.

85

Figure 24 – L0 (Experiment II – Feature Selection)

Figure 25 – L1 (Experiment II – Feature Selection)

86

Figure 25 presents the results for classifier L1 (TF-LOG and SVM). The

performance peak is reached at 20% by the frequency variation of IFDR. Figure 26

presents the results for classifier L2 (TF and NN). The performance peak is reached at

39% by the binary variation of IFDR.

One noteworthy particularity of the behavior of classifier L2 is how the rising

period of its performance is more prominent. At 1% of attributes, its performance for both

IFDR variations is at around 0.75; when its stability comes, at the 25% mark, its

performance has risen to almost 0.875: an increase of almost 0.125. For classifier L0 vs.

Non L0, for example, at 1% its F1 score is already between 0.95 and 0.96, and its peak

comes at below 0.97. For classifier L1 vs. L2, at 1% its performance is at 0.935 and its

peak has an F1 score that is close to 0.945. Classifiers L1 and L2, meanwhile, present

increases of about 0.3 and 0.5, respectively, between their performance at 1% and their

respective peaks.

Therefore, classifier L2 needs a bigger percentage of attributes to achieve peak

performance when compared to its four peers.

Figure 26 – L2 (Experiment II – Feature Selection)

87

 That considerable increase can be attributed to the behavior of classes Application,

Database, and Platform. Figure 27 shows, for classifier L2, the detailed results for the

feature selection done with the binary variation of IFDR. It can be seen that while Internal

Network tickets are, at 1%, classified at a rate that is close to the peak performance of the

class, the same does not apply to the other kinds of tickets of the level. In order to differ

between them and identify them successfully, more attributes are necessary, so the F1

scores for those classes take a while longer to stabilize, which reflects on the aggregated

F1 score shown in Figure 26.

Figure 27 – L2 (Experiment II – Feature Selection – Detailed View)

Due to the positive performance feature selection had, and given the L2 classifier

only stabilized its performance at around the 25% mark, a choice was made to, for each

classifier, use the top 25% best-ranked terms in their respective subsets. The selection of

the IFDR variation to use was made by, for each classifier, looking at the performance of

both methods at that percentage. Table 7 shows the F1 Score at 25% for both IFDR

versions for all classifiers, with the highest values highlighted in bold. Differences were

minimal given the similarity between both approaches.

88

Table 25 – IFDR Scores At 25% For All Classifiers

Classifier Binary IFDR Frequency IFDR Selected Method

L0 vs. Non L0 0.9649 0.9643 Binary IFDR

L1 vs. L2 0.9429 0.9441 Frequency IFDR

L0 0.9891 0.9879 Binary IFDR

L1 0.9052 0.9003 Binary IFDR

L2 0.8674 0.8697 Frequency IFDR

 At the end of Experiment II, then, the selected configuration of each classifier of

Incident Routing’s tree of classifiers was:

 L0 vs. Non L0: TF and RF; Binary IFDR at 25%.

 L1 vs. L2: TF and RF; Frequency IFDR at 25%.

 L0: TF-IDF and SVM; Binary IFDR at 25%.

 L1: TF-LOG and SVM; Binary IFDR at 25%.

 L2: TF and NN; Frequency IFDR at 25%.

 Moreover, the achieved reduction in the number of used attributes in the training

of each classifier was:

 L0 vs. Non L0: From 20,895 to 5,223.

 L1 vs. L2: From 19,205 to 4,801.

 L0: From 6,790 to 1,967.

 L1: From 5,995 to 1,498.

 L2: From 17,597 to 4,399.

5.3.4 Experiment III – Imbalanced Data (Data Level Solution)

Experiment III involves the attempt to solve, through the use of data level

solutions, the data imbalance problem that exists in the subsets used in the training of all

classifiers. Even though classifier L2, differently from the others, did not display signs

that it was being negatively affected by data imbalance – as all its classes are relatively

well-represented and their respective F1 scores in Experiment I were even – data level

89

solutions were nevertheless applied on its dataset in an attempt to achieve performance

gains.

 For all classifiers, the configuration that was used was the one obtained at the end

of Experiment II; that is, the best text transformation technique and classification

algorithm of Experiment I plus the feature selection parameters chosen during

Experiment II. Four data level solutions for class imbalance were tested:

 SMOTE;

 Random Oversampling (ROS);

 SMOTE-Edited Nearest Neighbors (SMOTE-ENN);

 SMOTE-Tomek Links (SMOTE-TL).

 In all four cases, the procedure that was followed was the same. The 5-fold cross-

validation was executed, and for each fold – that is, in every one of its five iterations –

the data-balancing approaches were applied on the four pieces used for training (as shown

in Figure 20); the data contained in the one piece of each iteration that is used for testing

(or validation) was, then, ignored during the data-balancing procedure. After all, given its

data points are meant to simulate tickets the classifier has never seen in order to accurately

evaluate its performance, the data they contain cannot be taken into account by the

balancing algorithms.

 The results of the experiment are reported for each class of the five classifiers.

The F1 scores obtained through all data level solutions are presented as well as their

average as weighted according to the number of records of each class. For comparative

purposes, the F1 scores obtained for all classes on Experiment I are also shown; in those

cases, the scores are those of the best classifiers that were selected at the end of the

experiment. Those scores are denoted by PC, which stands for pure classifiers; in other

words, the classifiers without the feature selection of Experiment II and the data-

balancing of this experiment.

90

Classifier L0 vs. Non L0

Table 26 shows the overall results obtained for classifier L0 vs. Non L0. The best

result for each class is highlighted in bold. And, as far as the F1 score goes, absolutely no

gains are visible. For both classes, the best performance is achieved by the pure classifier

(PC) of Experiment I. At the same time, the use of data balancing techniques brings no

considerable performance losses; ROS has the lowest overall score, but its outcome is

just 0.0075 below that of PC.

Table 26 – L0 vs. Non L0 (Experiment III – Overall Results)

Class PC SMOTE ROS
SMOTE-

ENN

SMOTE-

TL

Number of

Records

L0 0.8879 0.8843 0.8797 0.8673 0.8853 4,832

Non L0 0.9799 0.9794 0.9781 0.9746 0.9796 26,314

Average / Total 0.9655 0.9647 0.9628 0.9580 0.9649 31,146

 For classifier L0 vs. Non L0, the best performance among the data level solutions

employed comes from the hybrid approach SMOTE-TL. By looking at its detailed scores

in Table 27 and once more comparing them with those of the pure classifier (PC) of

Experiment I, a couple of tiny improvements can be seen in the metrics that compose the

F1 score: precision and recall. For the L0 class, there is a gain in precision; for the Non

L0 class, there is a gain in recall. Those gains, however, are minimal, and the

improvements that can be seen are nullified by declines in recall (in the case of the L0

class) and precision (in the case of the Non L0 class), which end up resulting in inferior

F1 scores for both classes. In Table 27, the best results for each metric for each class are

highlighted in bold.

Table 27 – L0 vs. Non L0 (Experiment III – Best Results – SMOTE-TL)

Class

Precision Recall F1
Number of

Records PC
SMOTE-

TL
PC

SMOTE-

TL
PC

SMOTE-

TL

L0 0.9061 0.9093 0.8704 0.8628 0.8879 0.8853 4,832

Non L0 0.9764 0.9751 0.9834 0.9842 0.9799 0.9796 26,314

Average / Total 0.9655 0.9649 0.9659 0.9654 0.9655 0.9649 31,146

91

Classifier L1 vs. L2

Table 28 shows the overall results obtained for classifier L1 vs. L2. The best result

for each class is highlighted in bold. Differently from what happened to classifier L0 vs.

Non L0, there are noticeable (albeit small) gains in the application of data-balancing

algorithms to the subset of classifier L1 vs. L2. Those gains, however, are not universal

among the applied techniques. Both ROS and SMOTE-ENN make the classifier perform

more poorly for both classes; SMOTE and SMOTE-TL, on the other hand, bring

improvements in the F1 score for the least-represented class (L1) while reaching F1 scores

for the most-represented class (L2) that are almost equal to the one that is obtained by the

pure classifier. SMOTE, in particular, increases the F1 score of L1 by more than 0.1,

which causes its overall F1 score be superior to the one of PC.

 For SMOTE-ENN, the big drop in terms of F1 score is caused by a very poor

result in the precision metric for the L1 class. While it is able to bring a great improvement

in terms of recall for that class, which reaches 0.7818, it does so at the cost of the precision

value, which falls down to 0.6310. As such, it is able to recover a much bigger portion of

L1 tickets than its peers; but it achieves that number by labeling quite a few tickets that

are not L1 as belonging to that class, which causes its precision to drop.

Table 28 – L1 vs. L2 (Experiment III – Overall Results)

Class PC SMOTE ROS
SMOTE-

ENN

SMOTE-

TL

Number of

Records

L1 0.7280 0.7391 0.7144 0.6980 0.7347 2,975

L2 0.9687 0.9683 0.9630 0.9561 0.9676 23,339

Average / Total 0.9415 0.9424 0.9349 0.9269 0.9412 26,314

 For classifier L1 vs. L2, the best performance among the data level solutions

employed comes from the oversampling approach SMOTE. By looking at its detailed

scores in Table 29, it can be seen that it reaches superior performance when it comes to

the least-represented class (L1) through an increase in the recall metric that exceeds 0.4;

an improvement that does sacrifice the precision metric to a certain point, but not heavily

enough to significantly harm the F1 score to a degree that makes it smaller than the one

from the pure classifier. Moreover, SMOTE also brings a small gain to the precision

metric of the most-represented class (L2). As so, in the case of classifier L1 vs. L2, the

application of a data-level approach for treating the problem of imbalanced data yielded

92

positive results. In Table 29, the best results for each metric for each class are highlighted

in bold.

Table 29 – L1 vs. L2 (Experiment III – Best Results – SMOTE)

Class
Precision Recall F1 Number of

Records PC SMOTE PC SMOTE PC SMOTE

L1 0.8058 0.7748 0.6639 0.7069 0.7280 0.7391 2,975

L2 0.9581 0.9630 0.9796 0.9737 0.9687 0.9683 23,339

Average / Total 0.9409 0.9418 0.9439 0.9435 0.9415 0.9424 26,314

Classifier L0

Table 30 shows the overall results obtained for classifier L0. The best result for

each class is highlighted in bold. In call cases, the weighted average of the F1 score is

quite similar, with SMOTE obtaining the best overall result by a minimum margin

(0.0001) over the pure classifier of Experiment I. Surprisingly, SMOTE reaches that

result by improving not only the F1 score of the least-represented class (Cloud) by over

0.02, but by also having the best performance for the most-numerous class (External

Network). In the latter case, though, the improvement is far smaller, of only 0.0005, and

that same number is achieved by ROS. For the other less-numerous classes of the dataset

(Incident Management and Production Support), however, neither SMOTE nor any of its

peers is able to overcome the results of PC.

Table 30 – L0 (Experiment III – Overall Results)

Class PC SMOTE ROS
SMOTE-

ENN

SMOTE-

TL

Number of

Records

Cloud 0.9143 0.9371 0.9290 0.9101 0.9152 114

External Network 0.9987 0.9992 0.9992 0.9976 0.8832 4,239

Incident Management 0.9368 0.9321 0.9305 0.9181 0.9259 338

Production Support 0.9091 0.8920 0.8880 0.8924 0.8832 141

Average / Total 0.9898 0.9899 0.9895 0.9870 0.9883 4,832

 For classifier L0, the best performance among the data level solutions employed

comes from the oversampling approach SMOTE. By looking at its detailed scores in

Table 31, the most considerable improvement the data-balancing brings appears in the

recall metric of the Cloud class, which rises from 0.8421 in the case of PC to 0.9211 with

93

the use of SMOTE; an increase which has a positive reflection on the F1 score for that

class even if the perfect precision metric achieved by PC is not matched by SMOTE.

Everywhere else, PC and SMOTE alternate quite a bit in terms of which one reaches the

best performance. For Production Support, SMOTE causes the recall metric to rise, but

the precision drops, as the classifier recovers more tickets than it did without data-

balancing, but achieves that result by labeling more tickets as Production Support even

when they do not belong to that class. For External Network, SMOTE brings a small gain

in precision while maintaining the exact same performance when it comes to recall.

Finally, for Incident Management, the same happens: the precision increases from 0.9106

to 0.9329, but the recall tumbles from 0.9645 to 0.9320. In Table 31, the best results for

each metric for each class are highlighted in bold.

Table 31 – L0 (Experiment III – Best Results – SMOTE)

Class

Precision Recall F1 Number

of

Records PC SMOTE PC SMOTE PC SMOTE

Cloud 1.0 0.9559 0.8421 0.9211 0.9143 0.9371 114

External Network 0.9981 0.9991 0.9993 0.9993 0.9987 0.9992 4,239

Incident Management 0.9106 0.9329 0.9645 0.9320 0.9368 0.9321 338

Production Support 0.9328 0.8857 0.8865 0.9007 0.9091 0.8920 141

Average / Total 0.9901 0.9901 0.9899 0.9899 0.9898 0.9899 4,832

Classifier L1

 Table 32 shows the overall results obtained for classifier L1. The best result for

each class is highlighted in bold. As it happened with classifier L0 vs. Non L0, apart from

a small improvement in the F1 score of class Control when the dataset is processed by the

oversampling approaches SMOTE and ROS, no gains were noticed. In fact, overall, there

is a general drop in performance in relation to the results obtained in Experiment I. For

the Backup class, the difference in F1 score between PC and the best scenario in which a

data level solution for class imbalance is applied (SMOTE-TL) is greater than 0.015. For

the Job class, the gap is also of the same scale; however, in that case, the best-performing

technique is ROS. ROS also outperforms other data-balancing algorithms when it comes

to the Monitoring class, but – once more – it is unable to beat PC, and the distance between

both is of 0.0072. The negative highlight of the set is the Operation class; even though it

94

is the least-represented category of L1, it is the class whose classification performance

suffers the largest fall, going from 0.6512 when it is classified by PC all the way to 0.6037

when SMOTE-TK, the best-performing algorithm for that class, is applied.

 Despite having a very negative result for Operation, SMOTE still overcomes the

other algorithms in relation to the weighted F1 score. Much of that can be attributed to

how regular its performance is across the dataset: it is the best-performing option for

Control tickets, and it reaches scores that are close to the best ones for Backup, Job, and

Monitoring tickets.

Table 32 – L1 (Experiment III – Overall Results)

Class PC SMOTE ROS
SMOTE-

ENN

SMOTE-

TL

Number of

Records

Backup 0.9433 0.9244 0.9167 0.9257 0.9276 826

Control 0.8368 0.8480 0.8419 0.7844 0.8011 163

Job 0.7195 0.6943 0.6958 0.6458 0.6891 238

Monitoring 0.9456 0.9373 0.9384 0.9039 0.9310 1,602

Operation 0.6512 0.5892 0.5808 0.5571 0.6037 146

Average / Total 0.9065 0.8923 0.8901 0.8657 0.8875 2,975

Table 33 displays the detailed performance of SMOTE for the L1 classifier. With

a more granular view, it can be seen how – as a whole – SMOTE improves the precision

metric for most classes by a small margin. However, as precision rises slightly, the

Backup, Job, and Monitoring classes suffer falls in terms of recall. For the Backup class,

the number goes from 0.9564 to 0.9104; for the Job class, the number goes from 0.6661

to 0.6261; and for the Monitoring class, the number goes from 0.9557 to 0.9245.

As a consequence, for those classes, the F1 score achieved by SMOTE is smaller

than that of PC. The only class in which improvements are seen in both precision and

recall is Control; the margins, however, are all very small. For the Operation class, it is

interesting to notice that SMOTE considerably improves recall: from 0.5753 to 0.7877.

The overall F1 score for that class drops, though, because while improving recall,

SMOTE severely harms precision, which goes from 0.7500 to 0.4781, indicating that with

the oversampling executed by SMOTE many tickets that are not part of the Operation

class get labeled as such, and as it throws a bigger amount of tickets into the Operation

bin, the algorithm also recovers a bigger portion of the tickets of that category.

95

Table 33 – L1 (Experiment III – Best Results – SMOTE)

Class
Precision Recall F1 Number of

Records PC SMOTE PC SMOTE PC SMOTE

Backup 0.9305 0.9390 0.9564 0.9104 0.9433 0.9244 826

Control 0.8103 0.8233 0.8650 0.8773 0.8368 0.8480 163

Job 0.7784 0.7818 0.6681 0.6261 0.7195 0.6943 238

Monitoring 0.9358 0.9508 0.9557 0.9245 0.9456 0.9373 1,602

Operation 0.7500 0.4781 0.5753 0.7877 0.6512 0.5892 146

Average / Total 0.9058 0.9038 0.9092 0.8874 0.9065 0.8923 2,975

Classifier L2

Table 34 shows the overall results obtained for classifier L2. The best result for

each class is highlighted in bold. Given that in Experiment I classifier L2 did not present

any signs that it was suffering from performance problems related to class imbalance, it

is not surprising to see that all data level solutions fail to produce – for any of the classes

– results that are superior to those of PC in relation to the F1 score. SMOTE-ENN

performs particularly poorly, having (by a good margin) the worst results for all classes.

The other algorithms have similar results, staying generally close to the performance of

PC but never overcoming it.

 The negative results of SMOTE-ENN can be attributed to its poor performance in

precision for classes Database and Internal Network (0.7485 and 0.7574 respectively) and

in recall for classes Application and Platform (0.8200 and 0.8030 respectively). As Table

35, which displays the detailed results of the best-performing algorithm for classifier L2

(ROS), shows, those numbers are far below those obtained by both PC and ROS.

Table 34 – L2 (Experiment III – Overall Results)

Class PC SMOTE ROS
SMOTE-

ENN

SMOTE-

TL

Number of

Records

Application 0.8847 0.8821 0.8812 0.8447 0.8814 8,952

Database 0.8497 0.8462 0.8479 0.8058 0.8425 4,077

Internal

Network
0.9035 0.8980 0.8983 0.8348 0.9013 1,761

Platform 0.8609 0.8551 0.8570 0.8304 0.8561 8,549

Average / Total 0.8713 0.8672 0.8678 0.8319 0.8668 23,339

96

Table 35 reveals the only observed gains of ROS in relation to PC appear in the

precision of the Database class and in the recall of the Internal Network tickets; in both

cases, the numbers rise slightly. The latter improvement, though, comes at the cost of a

bigger decrease in the precision of the classification of that class, which falls from 0.9116

to 0.8871. Everywhere else, there is no considerable disparity between the scores: ROS

is consistently worse than PC, but the gap between the performances is small, which

reflects on metrics whose weighted averages are always close to each other.

Table 35 – L2 (Experiment III – Best Results – ROS)

Class
Precision Recall F1 Number of

Records PC ROS PC ROS PC ROS

Application 0.8754 0.8730 0.8941 0.8896 0.8847 0.8812 8,952

Database 0.8601 0.8621 0.8396 0.8344 0.8497 0.8479 4,077

Internal Network 0.9116 0.8871 0.8955 0.9097 0.9035 0.8983 1,761

Platform 0.8641 0.8614 0.8578 0.8526 0.8609 0.8570 8,549

Average / Total 0.8713 0.8679 0.8714 0.8679 0.8713 0.8678 23,339

Overview

In Experiment III, it was possible to see that, in some specific cases, the data level

solutions contributed to the achievement of better results in the classification of some

classes. For classifier L1 vs. L2, the former class as well as the whole classifier itself

reached a higher level of F1 score when SMOTE was applied; for classifier L0, that

improvement happened for classes Cloud and External Network (which is, surprisingly,

a majority class), and that better performance ended up increasing the overall result of the

classifier when SMOTE was applied; finally, for classifier L1, the class Control was also

better classified with SMOTE than when the pure classifier of Experiment I was

employed.

 Therefore, in all classifiers where a gain in performance occurred, whether in one

or more classes or in relation to the classifier itself, SMOTE was involved. For classifiers

L0 vs. Non L0, and L2, where improvements in the F1 score were not seen, SMOTE was

not the top-performing algorithm, but in both cases it came extremely close to the top. In

the case of L0 vs. Non L0, the best score, achieved by SMOTE-TL, was 0.9649; and

SMOTE reached 0.9647. Meanwhile, in the case of L2, the best score, achieved by ROS,

was 0.8678; and SMOTE reached 0.8672.

97

 The sole data-balancing algorithm that did not come out on top for any of the

classifiers was also a considerable negative highlight in the experiment as a whole.

SMOTE- ENN was the worst-performing algorithm for all classifiers, and in some cases

(L1 and L2) the gap between its achieved F1 score and that of the second-to-last algorithm

was big.

 At the end of Experiment III, when considering even the cases where the execution

of data-balancing did not make classifiers outperform the results they had achieved

Experiment I, the selected configuration of each one of them was:

 L0 vs. Non L0: TF and RF; Binary IFDR at 25%; SMOTE-TL.

 L1 vs. L2: TF and RF; Frequency IFDR at 25%; SMOTE.

 L0: TF-IDF and SVM; Binary IFDR at 25%; SMOTE.

 L1: TF-LOG and SVM; Binary IFDR at 25%; SMOTE.

 L2: TF and NN; Frequency IFDR at 25%; ROS.

5.3.5 Experiment IV – Imbalanced Data (Ensemble Solution)

Experiment IV, like Experiment III, tries to address the problem of class-

imbalance for all classifiers of Incident Routing’s classification tree. However, while

Experiment III tries to do so with data level solutions, Experiment IV looks to the

ensembles bagging and boosting, which have been reported to achieve good results in

situations where class-imbalance occurs (GALAR et al., 2014) (WANG; YAO, 2012)

and, in the case of AdaBoost, to improve the effects of data level solutions when applied

in conjunction with those (BARUA et al., 2014).

 However, boosting and bagging are usually employed with weak classifiers

(MAYR et al., 2014) and research indicates performance degradation can occur when

they are built with strong learning models (DONG; HAN, 2005), such as SVM.

 Yet, as it stands, after the results of Experiment I, all classifiers of Incident

Routing’s classification tree are configured with strong learning models: NN, RF, and

SVM. For the purpose of Experiment IV, then, all classifiers are replaced with DTs. The

setup of each classifier is, therefore, as follows:

98

 L0 vs. Non L0: TF and DT; Binary IFDR at 25%; SMOTE-TL.

 L1 vs. L2: TF and DT; Frequency IFDR at 25%; SMOTE.

 L0: TF-IDF and DT; Binary IFDR at 25%; SMOTE.

 L1: TF-LOG and DT; Binary IFDR at 25%; SMOTE.

 L2: TF and DT; Frequency IFDR at 25%; ROS.

 Similarly to what happened in Experiment III, for both boosting and bagging, the

procedure that was followed was the same. The 5-fold cross-validation was executed, and

for each fold – that is, in every one of its five iterations – the data-balancing approaches

selected in Experiment III were applied on the four pieces used for training (as shown in

Figure 20); the data contained in the one piece of each iteration that is used for testing (or

validation) was, then, ignored during the data-balancing procedure.

 The results of the experiment are reported for each class of the five classifiers.

The F1 scores obtained through all ensemble solutions are presented as well as their

average as weighted according to the number of records of each class. For comparative

purposes, the F1 scores obtained for all classes on Experiment I are also shown; in those

cases, the scores are those of the best classifiers that were selected at the end of the

experiment. Those scores are denoted by PC, which stands for pure classifiers; in other

words, the classifiers without the feature selection of Experiment II and the data-

balancing of Experiment III.

Classifier L0 vs. Non L0

Table 36 shows the overall results obtained for classifier L0 vs. Non L0. The best

result for each class is highlighted in bold. As it happened in Experiment III, no

improvements in terms of the F1 score for each class can be noticed. For both classes,

boosting outperforms bagging.

Table 36 – L0 vs. Non L0 (Experiment IV – Overall Results)

Class PC
SMOTE-TL

Boosting

SMOTE-TL

Bagging

Number of

Records

L0 0.8879 0.8732 0.8695 4,832

Non L0 0.9799 0.9772 0.9760 26,314

Average / Total 0.9655 0.9610 0.9595 31,146

99

Table 37 shows the detailed results obtained with SMOTE-TL and boosting, the

best-performing combination, for classifier L0 vs. Non L0. The best results for each

metric for each class are highlighted in bold. Differently from what was seen in

Experiment III, even when drilling down on the results and analyzing precision and recall,

the mixture of a data level solution for class imbalance and an ensemble does not bring

any noticeable gains.

Table 37 – L0 vs. Non L0 (Experiment IV – Best Results – SMOTE-TL / Boosting)

Class

Precision Recall F1

Number of

Records PC

SMOTE-

TL

Boosting

PC

SMOTE-

TL

Boosting

PC

SMOTE-

TL

Boosting

L0 0.9061 0.8889 0.8704 0.8582 0.8879 0.8732 4,832

Non L0 0.9764 0.9741 0.9834 0.9803 0.9799 0.9772 26,314

Average / Total 0.9655 0.9609 0.9659 0.9614 0.9655 0.9610 31,146

Classifier L1 vs. L2

Table 38 shows the overall results obtained for classifier L1 vs. L2. The best result

for each class is highlighted in bold. In this case, the least-represented class (L1) does

achieve a gain of performance when both SMOTE and boosting are applied in

conjunction. Differently from what happened in Experiment III, though, that increase is

not enough to make the classifier’s weighted F1 score be bigger when data balancing

occurs than when it does not. It is also worthy of note how that gain does not happen

when bagging is applied. Boosting once more achieves the best result among both

configurations even if it does not surpass PC.

Table 38 – L1 vs. L2 (Experiment IV – Overall Results)

Class PC
SMOTE

Boosting

SMOTE

Bagging

Number of

Records

L1 0.7280 0.7307 0.7194 2,975

L2 0.9687 0.9669 0.9642 23,339

Average / Total 0.9415 0.9402 0.9365 26,314

Table 39 shows the detailed results obtained with SMOTE and boosting, the best-

performing combination, for classifier L1 vs. L2. The best results for each metric for each

100

class are highlighted in bold. SMOTE and boosting are able to improve the F1 score of

class L1 by increasing the recall from 0.6639 to 0.7062 and sacrificing the precision,

which falls from 0.8058 to 0.7578. Moreover, there is a slight gain in the precision metric

for class L2, a result that does not reflect on a better F1 score because there is a bigger

drop in the recall metric for that class when boosting and SMOTE are used.

Table 39 – L1 vs. L2 (Experiment IV – Best Results – SMOTE / Boosting)

Class

Precision Recall F1
Number of

Records PC
SMOTE

Boosting
PC

SMOTE

Boosting
PC

SMOTE

Boosting

L1 0.8058 0.7578 0.6639 0.7062 0.7280 0.7307 2,975

L2 0.9581 0.9629 0.9796 0.9710 0.9687 0.9669 23,339

Average / Total 0.9409 0.9397 0.9439 0.9411 0.9415 0.9402 26,314

Classifier L0

 Table 40 shows the overall results obtained for classifier L0. The best result for

each class is highlighted in bold. While in Experiment III the data-balancing approaches

had brought better results for the Cloud and External Network classes, the mixture of

SMOTE with either boosting or bagging does not do the same in this experiment. In fact,

with the exception of the majority class External Network, for which the F1 scores of the

three classifiers are even, the drops in performance are considerable; moreover, they

happen for the minority classes, categories which the data level solutions and ensembles

should have theoretically benefited. The most glaring degradation occurs for the

Production Support class, for while classifier PC reaches 0.9091, bagging and boosting

fail in getting to 0.8.

Table 40 – L0 (Experiment IV – Overall Results)

Class PC
SMOTE

Boosting

SMOTE

Bagging

Number of

Records

Cloud 0.9143 0.8558 0.8883 114

External Network 0.9987 0.9954 0.9976 4,239

Incident Management 0.9368 0.8519 0.8914 338

Production Support 0.9091 0.7931 0.7941 141

Average / Total 0.9898 0.9762 0.9817 4,832

101

Table 41 shows the detailed results obtained with SMOTE and bagging, the best-

performing combination, for classifier L0. The best results for each metric for each class

are highlighted in bold. The only gain, and one that is very marginal, happens in the recall

metric of the Cloud class. It is possible to see that the massive degradation suffered by

the Production Support class comes from both metrics, as the class’ precision and recall

when SMOTE and bagging are used are both significantly worse than the values of those

metrics for PC. Additionally, save for the External Network class, it can be seen how the

fall in performance is pretty much widespread: the precision and recall for all categories

become much worse when SMOTE and bagging are applied. In the case of classifier L0,

then, not only did the combination of a data-balancing approach with an ensemble method

fail to improve results for minority classes, it also made the classification of those least-

represented categories much worse.

Table 41 – L0 (Experiment IV – Best Results – SMOTE / Bagging)

Class

Precision Recall F1
Number of

Records PC
SMOTE

Bagging
PC

SMOTE

Bagging
PC

SMOTE

Bagging

Cloud 1.0 0.9338 0.8421 0.8509 0.9143 0.8883 114

External Network 0.9981 0.9972 0.9993 0.9981 0.9987 0.9976 4,239

Incident Management 0.9106 0.8792 0.9645 0.9053 0.9368 0.8914 338

Production Support 0.9328 0.8091 0.8865 0.7801 0.9091 0.7941 141

Average / Total 0.9901 0.9819 0.9899 0.9818 0.9898 0.9817 4,832

Classifier L1

Table 42 shows the overall results obtained for classifier L1. The best result for

each class is highlighted in bold. Repeating the pattern of Experiment III, most of the

classes had their best F1 score in the pure classifier of Experiment I; meaning that data-

balancing in conjunction with ensembles did not improve classification. While in

Experiment III the only marginal improvement happened for class Control, in Experiment

IV the only marginal improvement emerges for class Operation and is achieved by the

combination of SMOTE and boosting, which once again outperforms bagging. For the

class Job, both ensembles present a considerable performance degradation, with the one

yielded by bagging being more significant. For all other classes, SMOTE and boosting

are consistently close to PC, falling behind by small margins in F1 score, and consistently

102

ahead of SMOTE and bagging. That combination is a particular negative highlight on the

Control class, where it reaches an F1 score of 0.7844 while the other two configurations

operate above 0.82.

Table 42 – L1 (Experiment IV – Overall Results)

Class PC
SMOTE

Boosting

SMOTE

Bagging

Number of

Records

Backup 0.9433 0.9333 0.9246 826

Control 0.8368 0.8208 0.7844 163

Job 0.7195 0.6822 0.6392 238

Monitoring 0.9456 0.9387 0.9338 1,602

Operation 0.6512 0.6586 0.6451 146

Average / Total 0.9065 0.8965 0.8853 2,975

Table 43 shows the detailed results obtained with SMOTE and boosting, the best-

performing combination, for classifier L1. The best results for each metric for each class

are highlighted in bold. For classes Backup, Control, and Monitoring, SMOTE and

boosting bring improvements to the precision metric; however, they also bring losses to

recall, which causes the F1 scores for those classes to be inferior to those obtained by PC.

For the Job class, there is a big improvement in terms of recall, but an even bigger drop

regarding precision, which negatively impacts the F1 score for that class. The only

category in which SMOTE and boosting outperform PC in classifier L1, the class Control,

gets a gain in performance because while recall is enhanced, precision does not suffer that

much, dropping from 0.7500 to 0.7328.

Table 43 – L1 (Experiment IV – Best Results – SMOTE / Boosting)

Class

Precision Recall F1
Number of

Records PC
SMOTE

Boosting
PC

SMOTE

Boosting
PC

SMOTE

Boosting

Backup 0.9305 0.9336 0.9564 0.9334 0.9433 0.9333 826

Control 0.8103 0.8305 0.8650 0.8160 0.8368 0.8208 163

Job 0.7784 0.6541 0.6681 0.7185 0.7195 0.6822 238

Monitoring 0.9358 0.9401 0.9557 0.9376 0.9456 0.9387 1,602

Operation 0.7500 0.7328 0.5753 0.6164 0.6512 0.6586 146

Average / Total 0.9058 0.8992 0.9092 0.8965 0.9065 0.8965 2,975

103

Classifier L2

Table 44 shows the overall results obtained for classifier L2. The best result for

each class is highlighted in bold. As it happened in Experiment III, no improvements in

terms of the F1 score for each class can be noticed. Bagging outperforms boosting by a

small margin.

Table 44 – L2 (Experiment IV – Overall Results)

Class PC
ROS

Boosting

ROS

Bagging

Number of

Records

Application 0.8847 0.8687 0.8722 8,952

Database 0.8497 0.8369 0.8438 4,077

Internal Network 0.9035 0.8999 0.8786 1,761

Platform 0.8609 0.8471 0.8466 8,549

Average / Total 0.8713 0.8580 0.8583 23,339

Table 45 shows the detailed results obtained with ROS and bagging, the best-

performing combination, for classifier L2. The best results for each metric for each class

are highlighted in bold. The only gains achieved by ROS and bagging come in the

precision of class Platform and in the recall of class Internal Network. None of those

improvements, however, are enough to increase the classes’ F1 score, because the

precision and recall achieved by ROS and bagging for, respectively, classes Internal

Network and Platform are much worse than the ones reached by PC.

Table 45 – L2 (Experiment IV – Best Results – ROS / Bagging)

Class

Precision Recall F1
Number of

Records PC
ROS

Bagging
PC

ROS

Bagging
PC

ROS

Bagging

Application 0.8754 0.8545 0.8941 0.8906 0.8847 0.8722 8,952

Database 0.8601 0.8573 0.8396 0.8308 0.8497 0.8438 4,077

Internal Network 0.9116 0.8517 0.8955 0.9074 0.9035 0.8786 1,761

Platform 0.8641 0.8659 0.8578 0.8283 0.8609 0.8466 8,549

Average / Total 0.8713 0.8589 0.8714 0.8586 0.8713 0.8583 23,339

104

Overview

In Experiment IV, none of the classifiers had their overall performance improved

by the use of combinations of bagging and boosting with data-balancing methods,

contrasting with Experiment III, where two classifiers had gains in terms of their weighted

F1 score. In fact, those combinations were so unsuccessful that only two ticket categories

– L1 for classifier L1 vs. L2 and Operation for classifier L1 – had better results when

compared to the pure configurations of Experiment I. Moreover, for some classes like

Cloud, Incident Management, Production Support, and Job, there was considerable

performance degradation.

 If, for each classifier, the best configurations obtained in Experiment IV are

considered, whether or not they report improvements over previously used setups, the

experiment ends with the following parameters:

 L0 vs. Non L0: TF and DT; Binary IFDR at 25%; SMOTE-TL and Boosting.

 L1 vs. L2: TF and DT; Frequency IFDR at 25%; SMOTE and Boosting.

 L0: TF-IDF and DT; Binary IFDR at 25%; SMOTE and Bagging.

 L1: TF-LOG and DT; Binary IFDR at 25%; SMOTE and Boosting.

 L2: TF and DT; Frequency IFDR at 25%; ROS and Bagging.

5.3.6 Experiment V – Testing Dataset

With the best text transformation techniques and learning models identified

(Experiment I); the feature selection done for the five classifiers tasked with routing

incident tickets to the correct areas (Experiment II); and the imbalanced nature of the

datasets treated through data level and ensemble solutions (Experiment III and IV,

respectively), the resulting best configurations for each of the classifiers in each

experiment were applied to the test dataset.

 The test dataset consists of 7,787 incident tickets. Since the goal is to evaluate the

improvement brought by the use of classifiers in the routing of incident tickets in relation

to the current manual setting, we use the forwarding cost (FC) metric to present the final

results. For the current scenario, the test dataset would cause a forwarding cost of 7,787,

as all tickets require one action of analysis and forwarding (as shown by Figure 3); for

105

the automatic scenario, meanwhile, the forwarding cost is given by the total number of

misclassified tickets multiplied by 2, which is how many times tickets that do not reach

the specialized teams fed by classifiers L0, L1, and L2 need to be forwarded to reach the

area that is actually responsible for them (as shown by Figure 19).

 In addition to the resulting classification trees of the four previous experiments,

another three classification methods were employed. Firstly, a baseline classifier was

constructed; that baseline classifier is an NB model that tries to simultaneously categorize

tickets of all thirteen classes; that is, it does not employ the proposed tree structure shown

in Figure 4. Secondly, the configurations obtained in Experiment IV were tested without

the ensembles. The goal of this particular classification tree is to evaluate the gains (if

any) the use of boosting and bagging brought to the balanced datasets. Finally, a super

classification tree was put together by configuring each classifier with the setup that,

through the course of the first four experiments, yielded the best results in terms of the

overall F1 score. Table 46 shows how the F1 scores for each classifier progressed as the

experiments went along and highlights the best configuration for each classifier in bold.

Table 46 – F1 Scores (Experiments I-IV)

Classifier Experiment I Experiment II Experiment III Experiment IV

L0 vs. Non L0 0.9656 0.9649 0.9649 0.9610

L1 vs. L2 0.9415 0.9441 0.9424 0.9402

L0 0.9898 0.9891 0.9899 0.9817

L1 0.9065 0.9052 0.8901 0.8965

L2 0.8713 0.8697 0.8678 0.8583

With that, in the super classification tree, L0 vs. Non L0, L1, and L2 were

configured as the pure classifiers of Experiment I; L1 vs. L2 was configured as the

classifier with feature selection of Experiment II; and L0 was configured as the classifier

with feature selection and data balancing of Experiment III.

 Table 46 shows the final results. The column Total has the number of tickets for

each class in the testing dataset. The gain is reported according to how much the of the

workload (in terms of forwarding cost) is lifted from the service desk if that classification

tree is employed. For each class, the best result is highlighted in green; the worst result is

highlighted in red. The baseline classifier was not included in the coloring scheme.

 The columns of the table represent the classification methods, which learned

patterns for the classes by using the training portion of the dataset (80% of the full set of

106

tickets) and were then used to classify the testing tickets (20% of the full set). These

classification methods are:

 BL: The baseline Naïve Bayes classifier with TF-IDF that does not use a tree-like

structure.

 PC: The pure classifiers of Experiment I.

 FS: The classifiers with feature selection of Experiment II.

 DB: The classifiers with feature selection and data-balancing of Experiment III.

 EN: The ensembles of decision trees with feature selection and data balancing of

Experiment IV.

 DTB: The decision trees of Experiment IV with balancing but without the

ensembles.

 ST: The super tree of classifiers built with the best overall result (selected by F1

Score) of each classifier in all experiments.

 For BL, it is clear the learning model struggles with classes that are poorly

represented in the dataset. For Cloud, Production Support, Control, Job, and Operation,

BL is unable to rout a single incident ticket to the correct teams. And for Incident

Management, just 1 ticket out of 37 successfully makes its way to the technical team

responsible for solving tickets of the sort. Therefore, the choice of making a Naïve Bayes

algorithm choose from one among thirteen classes (without the proposed tree-like

classification structure) to file the ticket under proves to be quite harmful to minority

categories. BL achieves surprising results for the Internal Network class, where it

outperforms all other classification trees, being able to identify 26 tickets more than the

second-best approach (PC). Everywhere else, though, BL is either outright the worst-

performing approach or lies close to the worst one. Unsurprisingly, therefore, it is the

classification method with the worst reported gain.

PC, FS, and DB, meanwhile, report gains that are similar to one another: 65.6%,

65.2%, and 63.5%, respectively. The difference rests in how they are achieved. PC does

so with the whole set of attributes present in the dataset; FS reaches a result that is just

0.4% worse but by eliminating 75% of the attributes of the dataset, showing that the

feature selection performed in Experiment II yielded the expected effects. In other words,

it allowed classifiers to manage less attributes while keeping classification performance

107

on a similar level. One particular highlight of FS is how it improves the classification of

the L1 class, from 425 correctly classified tickets in PC (the worst-performing approach)

to 438. Given that class is part of an imbalanced classification problem (L1 vs. L2), it is

possible to say the reduction in the number of attributes reduced the bias of the classifier

to a certain degree.

The results of the classification trees for class L1 are, in fact, revealing. Results in

Experiment III had indicated that the use of data-balancing techniques had brought

noticeable gains in terms of F1 score for that group of tickets when compared to the

numbers of Experiment I. And, here, they materialize. DB, DTB, and EN all perform data

level solutions for class imbalance on the training dataset, and they perform better for that

class than all other classification trees. Moreover, when it comes to the minority classes,

the best results are usually found among those three classification trees. DB has the best

results for L1, Backup, Control, and Operation, and is close to the best in Incident

Management and Job; DTB has the best results for Cloud, Production Support, Incident

Management, and Operation, and is close to the best in L1, Backup, Control, and Job; and

EN has the best results for Cloud, Production Support, and Operation, and is close to the

best in L1, Incident Management, Control, and Job.

DB and EN get to results that are close to the best ones by performing consistently

better than the other classifiers in those minority classes. They usually fall behind PC and

FS in relation to classes that are well-represented, but they make up for that gap by

regularly outperforming those classification trees in the least-represented categories. And,

alongside DTB, they show the data-balancing that was executed produced positive

results. DB is a particularly solid classification tree: it is the worst-performing tree for

none of the classes, and it feeds with a certain degree of success all of the teams handling

incident tickets. It may not present the largest gain, but it gets close to that in a balanced

way.

DTB was deployed so that the gain in using the ensembles bagging and boosting

alongside data-balancing approaches could be evaluated in its comparison with EN,

which uses the same configuration as DTB but with those ensembles being executed.

And, in that regard, as Experiment IV had indicated, the results show no noticeable gain,

as DTB gets similar numbers to EN in many minority classes. The negative effect that the

lack of boosting and bagging causes for DTB is that the decision trees struggle for the

108

classes of L2 when they are not working inside an ensemble: DTB is the worst

classification tree for all classes of L2.

Table 47 – Testing Dataset Results

 BL PC FS DB DTB EN ST Total

L0 vs.

Non L0

L0 - 1,082 1,074 1,078 1,071 1,078 1,081 1,237

Non L0 - 6,454 6,465 6,450 6,407 6,441 6,452 6,550

L1 vs.

L2

L1 - 425 438 464 458 460 433 763

L2 - 5,660 5,653 5,591 5,465 5,573 5,662 5,787

L0

Cloud 0 7 10 8 11 11 5 26

External

Network
1,077 1,051 1,037 1,040 1,017 1,023 1,048 1,094

Incident

Management
1 15 18 19 21 19 18 73

Production

Support
0 9 8 11 17 17 10 44

L1

Backup 91 158 147 161 153 154 148 222

Control 0 22 22 25 23 23 24 42

Job 0 21 23 27 26 30 32 65

Monitoring 101 200 217 211 209 213 193 403

Operation 0 8 7 13 13 13 11 31

L2

Application 1,946 1,980 1,974 1,943 1,883 1,964 2,004 2,204

Database 651 836 828 819 803 830 828 1,050

Internal

Network
309 375 377 373 357 366 380 426

Plataform 1,576 1,764 1,763 1,717 1,645 1,682 1,756 2,107

Results

Forwarding

Cost
4,050 2,682 2,712 2,840 3,218 2,888 2,642 -

Gain (%) 47.9 65.6 65.2 63.5 58.7 62.9 66.1 -

109

 The created super classification tree (ST) achieves, by a margin of 0.5% over PC,

the largest gain in terms of forwarding cost. However, that classification tree presents the

problem that its classification is biased towards the level with the most numerous set of

tickets: L2. For all classes of that level, ST is either the classification tree with the best

results or is close to the best-performing ones, a success that is responsible for its superior

gain in terms of workload reduction, given that for many of the other classes ST is among

the worst-performing methods. In fact, for minority classes, ST struggles. The only

minority class for which it excels is that of L2: Internal Network. Therefore, if it were

chosen to rout tickets to their correct destinations, it would fall behind DB when it comes

to keeping all specialized teams well-fed with tickets.

 Outside of class L1, the gain observed for the minority classes may not have been

very significant when data-balancing algorithms were executed; the improvements were

steady, but small. By looking at Table 48 and Table 49, which are the confusion matrixes

for the classification tree DB when it comes to levels L0 and L1, the reason behind that

small improvement is revealed.

Table 48 – Confusion Matrix (DB – L0)

 Cloud
External

Network

Incident

Management

Production

Support

Cloud 8 0 0 0

External Network 1 1,040 0 0

Incident Management 0 0 19 0

Production Support 0 0 0 11

Table 49 – Confusion Matrix (DB – Ll)

 Backup Control Job Monitoring Operation

Backup 161 1 2 0 9

Control 0 25 0 0 0

Job 2 3 27 0 0

Monitoring 1 1 4 211 1

Operation 3 0 0 0 13

 Both classifiers are very successful in the labeling of the tickets of L0 and L1. If

a ticket arrives to the classifier, it will most likely be sent to the correct team. That means

that even though the total of tickets that is correctly sent to the teams of those levels is

110

not very high, the problem does not lie in those classifiers, but in L0 vs. Non L0 and L1

vs.L2, which are the points where improvements can be achieved in terms of classification

so that tickets from those two levels are more accurately identified and sent to their

respective classifiers, since the proportion of tickets recovered for them is low compared

to that of L2.

5.4 Concept Drift Treatment

5.4.1 Methodology

With the refinement experiments that sought to improve the classification of the

tickets to its maximum level and achieve the best-possible results in terms of workload

reduction done, the goal shifts to the evaluation of the existence of concept drift in the

field of IT incidents. With that target in mind, the scope of this experiment is to measure

how learning with more recent tickets (and ignoring those from a more distant past) brings

different results when compared to learning with all tickets.

 As so, 7 classification trees as the one shown in Figure 4 were created and

trained. Following the procedure described in the FLORA algorithm, the training of each

one of the classifiers that compose them was done by only considering tickets from

distinct time windows that preceded the month that was being evaluated. The names given

to the classification trees as well as the data within their training windows are:

 K1: 1 Month Prior to Month Being Evaluated.

 K2: 2 Months Prior to Month Being Evaluated.

 K3: 3 Months Prior to Month Being Evaluated.

 K4: 4 Months Prior to Month Being Evaluated.

 K5: 5 Months Prior to Month Being Evaluated.

 K6: 6 Months Prior to Month Being Evaluated.

 KN: All Months Prior to Month Being Evaluated.

 Therefore, the cumulative classification tree KN serves as the experiment’s

baseline, for by learning with all tickets that were created before the start of the current

111

month, it ignores the presence of concept drift in the dataset. In addition to those 7

classification trees, the proposed ensembles of Section 3.5.2 were also tested. Given both

short and long learning windows have their own advantages and disadvantages, as

previously discussed, these ensembles look to balance those characteristics and put

together classification strategies that outperform the fixed training windows of the

FLORA algorithm by combining their decisions through different voting schemes. The

ensembles that will be executed concurrently with the classification trees K1-KN are:

 Unweighted Voting (UV);

 Weighted by Shortest Window (WSW);

 Weighted by Longest Window (WLW);

 Weighted Monthly (WM);

 Weighted by Classifier Accuracy (WCA);

 Weighted by Classifier Total (WCT).

 As the data collected for the execution of the concept drift experiment represents

a period of fifteen months, and the longest training window tested was of 6 months, the

classifier and ensemble trees were compared during the remaining 9 months of the

dataset. Their performance was evaluated by considering the total percentage of tickets

that were successfully forwarded to the correct areas, which represents a reduction of the

workload (measured by forwarding cost) that is dedicated to manually analyzing the

tickets and sending them to the technical group that is capable of solving them. The 9

months evaluated in the test were as follows:

 M1: 10/25/2016 to 11/24/2016.

 M2: 11/25/2016 to 12/24/2016.

 M3: 12/25/2016 to 01/24/2017.

 M4: 01/25/2017 to 02/24/2017.

 M5: 02/25/2017 to 03/24/2017.

 M6: 03/25/2017 to 04/24/2017.

 M7: 04/25/2017 to 05/24/2017.

 M8: 05/25/2017 to 06/24/2017.

 M9: 06/25/2017 to 07/24/2017.

112

 It is worthy to highlight that given the total number of months of data that preceded

the first month is 6, in the evaluation of that month both K6 and KN (the cumulative

classifier) were trained with the same subset.

 Additionally, since the configurations of the classifiers that were obtained through

the classification refinement experiments considered tickets that are now part of the

testing subset, given the dataset is now divided from a temporal standpoint that had not

been previously considered, all classifiers were reconfigured to a standard setup. That

configuration is: TF-IDF for text transformation; Linear SVM for classification; and ROS

for data-balancing.

5.4.2 Experiment VI – Concept Drift

 Figure 28 shows, with lines corresponding to each of the 13 classifiers, how they

performed for each of the months evaluated. As it is possible to see, with the exception

of the third month, all classifier trees are able to reach good percentages of correctly

classified tickets.

Figure 28 – Monthly Performance Of Classification Trees

113

The global deterioration of performance that occurs during the third month (the

period between 12/25/2016 and 01/24/2017) can be explained by how prior to this period

External Network tickets were almost non-existent. Before that month, only 5 External

Network incidents had been registered; in the third month, though, a surge occurred and

869 tickets belonging to that category appeared, which caused classifiers not to have

enough data to identify the patterns present in the class and misclassify a considerable

portion of them. The second month also presented a similar phenomenon, as the number

of Cloud tickets rose from 1 (prior to that period) to 29, which also caused classifiers to

struggle; however, as the number of Cloud tickets is relatively insignificant compared to

the whole dataset such an issue is not visible on the chart.

Figure 28 also reveals that the percentages of correctly classified tickets per month

are very similar for all 13 classification trees; nonetheless, there is a certain consistency

in how some of them fare better than others. KN, the cumulative tree that serves as the

experiment’s baseline is constantly among the worst-performing trees; and the same goes

for K6, showing that longer learning windows are not beneficial to the classification of

the tickets of the dataset and that concept drift is occurring. On the other hand of the

spectrum, it is possible to see that the lines representing the created ensembles are usually

among the best for any given month, which shows the success of the proposed aggregation

strategies.

Table 50 – Monthly Performance Ranking Of Classification Trees

M1 M2 M3 M4 M5 M6 M7 M8 M9

1st WSW K3 K2 K2 WSW WCA K6 WM WSW

2nd K5 WSW WSW K1 WCA WCT WLW WCA WLW

3rd WCT K2 K1 WM WM UV WCA UV WM

4th WCA WCA KN WCT WCT WLW WCT WCT UV

5th UV WCT WCT WSW K2 WSW WM WLW K3

6th WLW UV K6 WCA UV WM WSW WSW WCT

7th WM WM WM UV WLW K3 UV K3 K6

8th K1 K4 UV K3 K1 K4 K4 K4 WCA

9th K2 WLW K3 WLW K3 K5 K5 K5 K5

10th K4 K5 WLW K4 K4 K6 K3 K6 K4

11th K3 K1 K5 K5 K5 K2 K2 K2 KN

12th KN KN WCA KN K6 KN KN KN K2

13th K6 K6 K4 K6 KN K1 K1 K1 K1

114

Table 50 presents the information of Figure 28 in a different way: although

percentages cannot be seen, the monthly raking of all trees (according to the number of

correctly classified tickets) is clearer and can be further analyzed. Columns represent the

9 months whose tickets were evaluated, while rows represent the rank for that given

month. Save for in M3, the worst-performing classification tree is either one with a long

window (K6 and KN) or with a very short learning period (K1, which takes the bottom

position of the table during the final four months of the experiment); a fact that shows

neither extreme is ideal, even if K1 has good performances in M3 and M4. With

ensembles excluded from the equation, the best learning windows seem to be those that

lie in between the poles: K2 and K3. They are, still, slightly inconsistent: K2 is always

among the top-ranked trees from M1 to M5, but it drops down considerably from M6 to

M9; and K3 is the best-performing non-ensemble in 4 of the 9 months, but it struggles in

M1 and M7 while staying close to the middle of the pack everywhere else.

 As the longest windows (K6 and KN) are the least-effective ones, it is not

surprising to notice that the ensemble that gives more weight to their votes (WLW)

usually ranks among the last of the ensemble solutions; conversely, due to the positive

results of K2 and K3, as well as the occasional success of K1 in M3 and M4, the ensemble

that gives more weight to the votes of the shortest windows (WSW) is naturally constantly

reaching a very good performance level, being the best-performing ensemble during five

of the 9 months.

Table 51 shifts the analysis from the month dimension to the evaluation of the five

classifiers of the tree through the 9-month period that was tested. It shows which learning

windows were the best for the performance (once more evaluated via the number of

correctly classified tickets) of each classifier. Through that perspective, among non-

ensembles, K2 and K3 are even bigger highlights than they were in the monthly

perspective: they are always floating inside the three best-performing trees of that class.

Meanwhile, KN is the worst tree for all classifiers save for L1, and – once again – it is

joined at the bottom of the list by K6, and also K5; the former never rising above the 11th

place and the latter having its best performance for L2, to which it is only the 9th-best

classification tree. When it comes to ensembles, WSW repeats its success, always being

among the three best-performing voting strategies; with no other ensembles being so

consistent in their rank; all of the proposed strategies are, nonetheless, constantly

115

outperforming the fixed sliding learning windows of the FLORA algorithm, further

validating that ensemble strategies are the better option when dealing with concept drift.

Table 51 – 9-Month Performance Ranking Of Classification Trees Per Classifier

L0 vs. Non L0 L1 vs. L2 L0 L1 L2

1st K2 WSW WM K3 WSW

2nd WCA WCT UV K2 WCT

3rd WM WCA WSW K4 WM

4th WSW WM WCA WM WCA

5th WCT UV WLW WCA UV

6th K1 K3 WCT WSW WLW

7th UV WLW K2 WLW K2

8th WLW K2 K1 WCT K3

9th K3 K1 K3 UV K5

10th K4 K4 K4 K5 K4

11th K5 K5 K5 K6 K6

12th K6 K6 K6 KN K1

13th KN KN KN K1 KN

Table 52, Table 53, Table 54, and Table 55 drill down on the view by classifier

and explore how each employed strategy fared when it comes to all classes of the dataset

across the period of the experiment. As expected, based on previous results, shorter

windows again tend to be more accurate in the classification of tickets and ensembles are

usually better than the standalone learning windows. There are, however, exceptions to

the rule. In Table 52, for example, the rankings of the classification trees are consistent

for classes L0, Non L0, and L2. For L1, though, results shift. With the exception of KN,

which still does pretty poorly and ranks second-to-last (as opposed to last for all other

classes), longer windows overcome shorter ones. K4, K5, K6, and WLW (which gives

more weight to the votes of longer windows) outperform generally successful

classification trees like K2 and WSW.

 It is worth noting that L1 is a minority class for classifier L1 vs. L2, and the

performance of its classification was improved during the data-balancing experiments.

Given L1 tickets are not very common when compared to those of L2, classifiers that

work with longer windows have the advantage of being able to learn from a bigger

116

collection of tickets from that class; when windows are too short, examples of minority

class are scarce. Therefore, it is possible K1 and K2 are struggling due to that matter.

Table 52 – 9-Month Performance Ranking Of Classification Trees Per Class I

 L0 vs. Non L0 L1 vs. L2

L0 Non L0 L1 L2

1st WM K2 K4 WSW

2nd UV WCA K6 WCT

3rd WSW WCT WLW K1

4th WLW WSW K5 WM

5th WCA WM WCA WCA

6th WCT K1 K3 UV

7th K1 K3 UV K2

8th K2 UV WSW K3

9th K3 K4 WM WLW

10th K4 WLW K2 K4

11th K5 K5 WCT K5

12th K6 K6 KN K6

13th KN KN K1 KN

Total Tickets 10,051 20,979 3,392 17,587

Percentage of

Dataset (%)
32.39 67.61 16.16 83.84

In Table 53, which shows the results for the classes of L0, that pattern reappears.

For the most numerous class of that subset, External Network, the shorter the learning

window the better it performs, and K1 is the best classifier, correctly labeling 8,355 tickets

versus 8,190 of K6 and 8,155 of KN. For the least numerous classes, that reality is

inverted: K5, K6, and KN dominate the top positions for classes Incident Management

and Production Support. Differences in performance between them and the trees that learn

with shorter windows can, in fact, be big when the total number of tickets for each class

is considered. For Incident Management, K6, KN, WLW and K5 correctly label 29, 29,

21, and 20 tickets; while K2, WSW, and K1 correctly label 15, 15, and 7 tickets. For

Production Support, KN, K6, and K5 correctly label 47, 31, and 28 tickets; while WSW,

K2, and K1 correctly label 16, 15, and 14 tickets.

 As far as the poorly represented classes of L0 go, the Cloud category is an outlier

in that sense and shorter learning windows such as K2, K4, and K3 overcome K5, K6,

117

and KN; however, it is worth noting how WLW does better than WSW, even if it is by

the smallest of margins: 166 versus 165, a closeness in performance that does not reappear

in any other class of L0.

Table 53 – 9-Month Performance Ranking Of Classification Trees Per Class II

L0

Cloud
External

Network

Incident

Management
Production Support

1st UV K1 K6 KN

2nd WM WSW KN K6

3rd K2 WM WLW K5

4th K4 WCA K5 K4

5th WLW UV UV WLW

6th WSW WCT K3 UV

7th WCA WLW K4 WCT

8th K3 K2 WCA K3

9th WCT K3 WM WM

10th K5 K4 WCT WCA

11th K6 K5 K2 WSW

12th K1 K6 WSW K2

13th KN KN K1 K1

Total Tickets 311 9,489 146 105

Percentage of

Dataset (%)
3.09 94.40 1.46 1.05

In Table 54, which shows the results for the classes of L1, minority classes Job

and Operation are also better identified by classification trees that use longer learning

windows. For class Operation, while KN correctly labels 31 tickets, K1 only successfully

recovers 11 of them. For class Job, meanwhile, the difference between the number of

correctly classified tickets achieved by the first and last-placed classification trees is

smaller, but it still exists: K5 is able to send 41 tickets to the Job team, whereas K1

forwards 28 of them. For well-represented classes Backup and Monitoring, the opposite

happens: classification trees with shorter windows do better. Once again, a minority class

acts as an outlier; in this case, the class Control, for although it has a low number of

tickets, K2 and K1 are the best non-ensembles. In fact, while K2 correctly classifies 61

control tickets, KN only correctly classifies 25 of them.

118

 These variations in performance of the standalone classification trees with fixed

learning windows validate the option to create ensembles. By joining the votes of

different-sized learning windows, the good and bad characteristics of each one of them

are balanced, and the quality of the classifications are improved. And as Table 52, Table

53, Table 54, and Table 55 show, ensemble strategies are constantly ahead of standalone

classification trees.

Table 54 – 9-Month Performance Ranking Of Classification Trees Per Class III

L1

Backup Control Job Monitoring Operation

1st WSW K2 K5 K3 KN

2nd K2 WM K6 K4 WLW

3rd UV WCT WLW K5 K6

4th WM WSW UV K6 K5

5th WCA WCA WCA K2 K4

6th K3 UV WCT WM UV

7th WCT WLW KN WCA K2

8th K4 K1 WM WCT WSW

9th WLW K3 K4 WLW WM

10th KN K4 K3 WSW WCA

11th K5 K5 WSW UV WCT

12th K6 K6 K2 K1 K3

13th K1 KN K1 KN K1

Total Tickets 1,577 103 168 1,427 117

Percentage of

Dataset (%)
46.49 3.04 4.96 42.07 3.44

 Although through all experiments conducted L2 has shown itself to be the most

balanced set of classes, Table 55 reveals that even the minority class of that group –

Internal Network – replicates the phenomenon where longer learning windows are the

best choice, with KN, K6, K5, and WLW occupying the top positions. For classes

Database and Platform, the ensemble strategies do particularly well, and the Application

class marks the sole point on the entire dataset in which the worst-performing

classification tree is an ensemble.

119

Table 55 – 9-Month Performance Ranking Of Classification Trees Per Class IV

 L2

Application Database Internal Network Platform

1st K2 WM KN WSW

2nd WSW WCT K6 UV

3rd KN WSW K5 WCT

4th WCT UV WLW WLW

5th WM WCA WCA WCA

6th K1 K5 WM WM

7th WCA K3 UV K3

8th K3 WLW K3 K4

9th K6 K4 WCT K1

10th K5 KN WSW K5

11th K4 K6 K4 K2

12th UV K2 K2 K6

13th WLW K1 K1 KN

Total Tickets 6,284 3,542 1,105 6,656

Percentage of

Dataset (%)
35.37 20.14 6.29 37.84

All of those results culminate in Table 56, which displays the forwarding cost –

the metric utilized to measure the gains in workload reduction achieved by the classifiers

– for all classification trees during the period covered by the experiment. Through those

9 months, 31,030 tickets were created; given each ticket represents, in the current service

desk structure that is in place, a forwarding cost of 1, the total forwarding cost for the

dataset is the same as the number of tickets.

 All of the 7 proposed ensemble strategies do better than the classification trees

with fixed learning windows, confirming the value gained by aggregating the votes of the

individual classifiers in order to make a decision on the class of the ticket. As Figure 28

had indicated, the minimal differences in the percentage of correctly classified tickets for

each month produced a final result in which the gap between the strategies is tight: the

difference between the best and worst approaches is of 565 tickets, which represent an

extra forwarding cost of 1,130. Nevertheless, by seeking to treat concept drift in the

scenario of incident ticket management, better results were achieved, for the worst-

performing classification tree (KN) represents the case in which concept drift is ignored

120

and the full dataset is used in the learning. In this case, having more data to build the

classifier did not yield a superior result; in fact, the total opposite happened.

Table 56 – 9-Month Overall Performance Ranking Of Classification Trees

Ranking
Classification

Tree

Correctly

Classified

Tickets

Incorrectly

Classified

Tickets

Forwarding

Cost
Gain (%)

1st WSW 23,466 7,564 15,128 51.24

2nd WCT 23,430 7,600 15,200 51.01

3rd WM 23,418 7,612 15,224 50.93

4th WCA 23,406 7,624 15,248 50.86

5th UV 23,359 7,671 15,342 50.55

6th WLW 23,307 7,723 15,446 50.22

7th K2 23,292 7,738 15,476 50.12

8th K3 23,241 7,789 15,578 49.79

9th K4 23,151 7,879 15,758 49.21

10th K5 23,113 7,917 15,834 48.97

11th K1 23,065 7,965 15,930 48.66

12th K6 23,053 7,977 15,954 48.58

13th KN 22,901 8,129 16,258 47.60

Among non-ensemble strategies, as previous tables had shown, windows that lie

between the too short and too big extremes fare better, with K2, K3, and K4 overcoming

K5, K1, K6, and KN. Due to that, the ensemble that gave more weight to the votes of

shortest windows (WSW) produced the best results, while the one that gave more weight

to the votes of longest windows (WLW) ranked the worst among ensemble classification

trees. Besides, overall, giving weight to the votes is a better idea than leaving them

unweighted, because four of the five approaches that used weighted votes outperformed

UV, the Unweighted Voting classifier. Moreover, adjusting the weight of the votes for

each classifier individually (which is what WCT and WCA do) did not bring results that

121

were significantly better than weighting them in the same way throughout the whole tree

according to the performance of the different-sized learning windows during the previous

month (which is what WM does). Still, weighting votes according to the total of correctly

classified tickets of classifiers (WCT) was better than doing so according to their accuracy

(WCA).

Appendix A holds more details regarding the numbers of correctly classified

tickets that produced the rankings shown in the tables of this experiment.

122

Chapter 6

Conclusions and Future Works

6.1 Conclusions

By using the combinations of text transformation techniques and learning models

obtained through Experiment I, it was possible to report gains in the forwarding cost

metric, reducing by 65.6% the analysis and forwarding work the routing of a ticket entails

and diminishing the workload of the service desk team tasked with opening the tickets

and assigning them. It is important to note the reported gains over the manual scenario

currently in place assume service desk members make no mistakes in the forwarding of

the tickets, meaning they could be even bigger.

 The classifiers of Experiment I were not significantly improved by those built in

the 3 subsequent experiments, as the best overall result (the one obtained by ST, the

classification tree with the best configuration of each classifier in all experiments) was

only 0.5% better. What changed, however, between PC and the others, was how the gains

were obtained. FS had similar results to PC, but by using just 25% of the terms in the

corpus, showing the effectiveness of IFDR outside the sentiment analysis realm in which

it was originally tested. It is a reduction that can mean improvements related to how

quickly the classifiers can be trained, something that can be significant as new incident

tickets are added to the training dataset.

 Meanwhile, both DB and EN – constructed with the goal of better classifying

minority classes – tended to get the best results for underrepresented ticket categories. In

the construction of those classification trees the data-balancing methods SMOTE, ROS,

and SMOTE-TL stood out, while SMOTE-ENN failed to achieve good results. With those

3 selected data level solutions for class imbalance, minority classes such as L1, Incident

Management, Production Support, Control, Job, and Operation were better identified by

those trees of classifiers than by PC and FS. For most of them Incident Routing failed to

recover more than half of the tickets; still, improvements were consistent nevertheless –

even if not too big, which indicates there may be room for improvement regarding the

treatment of those classes. The most noteworthy gain regarding the classification of

123

underrepresented categories came in the L1 class of the L1 vs. L2 classifier; out of its 763

tickets, only 425 were recovered by PC; however, when FS, DB, and EN were used, the

correctly routed amount raised to 438, 464, and 460 respectively.

 Finally, the BC classification tree topped all others in terms of sheer forwarding

cost gain; still, it did so by being biased towards the most represented classes, which are

those of L2 (Application, Database, Internal Network, and Platform). While it did well in

those categories, it contrasted those results by being among the worst classification trees

for many other less numerous classes, such as L1, Cloud, Incident Management,

Monitoring, and Production Support.

 With those results, it is possible to see text classification and machine learning can

be used to improve the work of service desks and incident management, which are among

the most critical aspects of IT service providing since if not treated in an efficient manner

they can damage the image of companies due to outages, slowdowns, and other problems

in important applications or other services. Moreover, feature selection (more

specifically, the IFDR technique) as well as methods for treating imbalanced datasets

proved to be useful in, respectively, reducing dimensionality while preserving F1 Score

performance and enhancing the classification of minority classes.

 Both ensembles explored in the first set of experiments (boosting and bagging),

however, did not produce significant improvements for this dataset when applied over

data-balancing approaches; SMOTE, ROS, and SMOTE-TL proved to be enough to deal

with such issue. The only class in which the combination of bagging and boosting with

data-balancing algorithms resulted in gains when compared to the scenario in which those

algorithms were applied on their own was Production Support.

 Moreover, when comparing the classification trees DTB (formed by decision trees

with data-balancing approaches) and EN (formed by decision trees with data-balancing

approaches and ensembles), there are no significant differences for the poorly represented

classes, which goes to show the addition of ensembles did not do much to make the data-

balancing approaches more effective.

 Regardless of the approach used, and even including the baseline classifier that

was outperformed by all other classification trees obtained during the classification

refinement experiments (hence validating the strategy of using a tree-like classification

structure), it was proven, through the forwarding fost metric, that the proposed Incident

Routing approach can reduce the workload of service desks by lifting the task of

124

analyzing recorded incidents out of their shoulders and automatically sending those

tickets to the specialized areas that will be capable of solving them. As tickets are solved

by teams, they can automatically be labeled by the service desk system as belonging to

that incident category and then fed into the training dataset that will be used to update the

classifiers; consequently, creating an environment in which classifiers are able to keep

up-to-date with the data distribution as time goes along.

 Inside that context of time, Experiment VI showed that, like many other fields that

have been approached under the perspective of the concept drift problem, incident ticket

management – which has grown to be a rather important area in a business scenario where

IT service providing is one of the bases of the world’s economy – is also affected by

hidden contexts that, over time, alter the behavior of the target function classifiers seek

to learn. As a consequence, a consideration of the time dimension when addressing the

classification of incidents can bring gains; care, however, as the conducted experiment

has shown, must be taken when it comes to choosing the most appropriate training

windows for the classifiers.

 A very short training window that only considers the most recent tickets

negatively affects the classification of minority classes, because under a very tight

learning period there may not be enough examples of those classes for classifiers to be

able to identify them effectively. Meanwhile, windows that are too long may be slow to

react to concept drift and fail to perform as well as shorter windows. Therefore, as

Experiment VI showed, the combination of shorter and longer windows inside ensembles

that use different strategies to aggregate the votes of those classifiers so that items are

identified yields better results than standalone windows of fixed size.

 During the period of 9 months whose tickets were evaluated, the 6 proposed

ensemble strategies outperformed not only all standalone training windows of size

varying from 1 to 6 months but also the cumulative classification tree that considered the

full set of past data in its training. In fact, that cumulative classifier was the worst-

performing of all employed approaches, reporting a gain of 47.6% versus 51.24%

achieved by the best classification tree, displaying how concept drift affects incidents that

occur in a company’s IT infrastructure.

125

6.2 Future Works

A detail that is rather noticeable in relation to Experiment V and Experiment VI

is how the gains that were reported in terms of forwarding cost differ. In Experiment V,

the best-performing classification tree (ST) eliminated 65.6% of the workload; in

Experiment VI, meanwhile, the best performing classification tree (WSW) eliminated

51.24% of the workload. Such a gap can be attributed to many factors. Treating the

available dataset of tickets by considering the time variable causes situations such as the

one that occurred for the External Network tickets in M3. Before that month, only 5

tickets of the class had been reported; when that month arrived, though, 869 tickets of

that class appeared, and – naturally – given they had almost no examples of tickets from

that class, the classification trees failed to correctly identify them, which caused a

considerable drop in performance. When the dataset is randomly divided into 2 pieces –

one for training and one for testing, as it was done in Experiments I through V – such a

problem does not occur, as all ticket patterns are already present in the data, and by

extracting a subset of those tickets it is possible all patterns will be captured and classifiers

will thus perform better in the testing dataset.

 More importantly, however, the 13 classification trees of Experiment VI did not

go through any of the refinements done in Experiments I through IV: the text

transformation method of their classifiers was defined as TF-IDF; the learning model that

was used was SVM; and the data-balancing algorithm employed was ROS. Those

selections were not made based on comparisons to alternative methods to see which

would be more appropriate; they were made based on the knowledge those techniques

tend to work well. Additionally, no feature selection was done for those classifiers.

 Consequently, there are two natural progressions to this work. Firstly, when it

comes to the classification refinement experiments, more methods could be evaluated. In

terms of feature selection, those alternatives could be Log Likelihood Ratio (DUNNING,

1993) and Chi-Squared Test (MANNING et al., 1999). In the field of imbalanced datasets

(FERNÁNDEZ et al., 2013), not only are there other data level solutions besides the ones

that were used, but algorithmic level and cost-sensitive solutions, two areas that were not

approached in this work, also hold plenty of opportunities for improvement. Furthermore,

Word2Vec, which did not yield the best results for any of the classifiers, could be more

deeply explored, as it has the benefit of producing vectors that represent tickets with a

126

small number of dimensions and there is research (CHAWLA et al., 2002) indicating high

dimensionality creates classifiers that are more biased; particularly, its Doc2Vec variation

as well as models that are pre-trained over a larger corpus (like GloVe) could be adapted

to be used with the dataset that was explored. If employed in conjunction with data-

balancing approaches, it could be possible to analyze if the lower dimensionality of the

ticket vectors yielded by Word2Vec helps in the classification of the minority classes,

especially those of L0 and L1, service desk levels for which Incident Routing has room

for improvement. All of those refinements could, additionally, be conducted in

conjunction with the treatment of concept drift; in other words, the work of the two sets

of experiments of this work could be combined.

 When it comes to concept drift on its own, the FLORA algorithm that uses

learning windows of fixed size, ignoring data that is older than a certain threshold, is one

of the area’s first and simplest approaches to the problem. Thorough surveys on concept

drift (ZLIOBAITĖ et al., 2010) (GAMA et al., 2014) have gone to great lengths to list

other different solutions for the problem, some of which try to adjust the size of learning

windows by detecting the occurrence of concept drift. Hence, not only could they be

implemented in the domain of incident ticket management, but ensemble strategies such

as the ones proposed in this work could be explored to combine the qualities of the

different algorithms in order to produce stronger classification results. In relation to the

fixed window sizes of the FLORA algorithm, smaller scales of window-update time could

be tried, such as hourly, daily, or weekly updates, as opposed to the monthly time scale

used to move the windows forward in the experiment that was executed in this work.

 Furthermore, attempts to enhance the classification results themselves could be

executed in a number of ways. Alternatives to the bag of words methods for text

transformation that were used in this work and that yielded the best F1 Score for all

classifiers could be explored, such as feature engineering techniques (SCOTT;

MATWIN, 1999). Moreover, given text was always transformed into unigrams, bigrams

– which have the advantage of capturing some information about the local word order of

the text (JOULIN et al., 2016) – could also be evaluated. Finally, the tree structure of

Incident Routing was strongly based on the one employed in a similar work (MENEZES,

2009), starting by separating tickets from the top level of the service desk until the one

that stands at the bottom (from L0 to L2, in the case of this work). Different tree

configurations, then, could be explored.

127

References

ABU-MOSTAFA, Yaser S.; MAGDON-ISMAIL, Malik; LIN, Hsuan-Tien. Learning from data.

New York, NY, USA:: AMLBook, 2012.

ALBERG, Dima; LAST, Mark. Short-Term Load Forecasting in Smart Meters with Sliding

Window-Based ARIMA Algorithms. In: Asian Conference on Intelligent Information and

Database Systems. Springer, Cham, 2017. p. 299-307.

ANDERSON, Monica. Technology Device Ownership: 2015. Pew Research Center, 2015.

Available online in: http://www.pewinternet.org/2015/10/29/technology-device-ownership-

2015/

BAHLI, Bouchaib; RIVARD, Suzanne. The Information Technology Outsourcing Risk: A

Transaction Cost and Agency Theory-Based Perspective. In: Outsourcing and Offshoring

Business Services. Palgrave Macmillan, Cham, 2017. p. 53-77.

BARUA, Sukarna et al. MWMOTE--majority weighted minority oversampling technique for

imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering, v. 26, n.

2, p. 405-425, 2014.

BATISTA, Gustavo EAPA; PRATI, Ronaldo C.; MONARD, Maria Carolina. A study of the

behavior of several methods for balancing machine learning training data. ACM Sigkdd

Explorations Newsletter, v. 6, n. 1, p. 20-29, 2004.

BATISTA, Gustavo EAPA; BAZZAN, Ana LC; MONARD, Maria Carolina. Balancing Training

Data for Automated Annotation of Keywords: a Case Study. In: WOB. 2003. p. 10-18.

BESSA, Ricardo J. et al. Information theoretic learning applied to wind power modeling. In:

Neural Networks (IJCNN), The 2010 International Joint Conference on. IEEE, 2010. p. 1-8.

BLACK, Michaela; HICKEY, Ray. Detecting and adapting to concept drift in bioinformatics.

Lecture Notes in Computer Science, p. 161-168, 2004.

BOGOJESKA, Jasmina et al. Impact of HW and OS type and currency on server availability

derived from problem ticket analysis. In: Network Operations and Management Symposium

(NOMS), 2014 IEEE. IEEE, 2014. p. 1-9.

BOJARSKI, Mariusz et al. End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

BOLTON, Richard J.; HAND, David J. Statistical fraud detection: A review. Statistical science,

p. 235-249, 2002.

BREIMAN, Leo. Bagging predictors. Machine learning, v. 24, n. 2, p. 123-140, 1996.

BROWN, Iain. An experimental comparison of classification techniques for imbalanced credit

scoring data sets using SAS® Enterprise Miner. In: Proceedings of SAS Global Forum. 2012.

CHANDRASHEKAR, Girish; SAHIN, Ferat. A survey on feature selection methods. Computers

& Electrical Engineering, v. 40, n. 1, p. 16-28, 2014.

CHAWLA, Nitesh V. et al. SMOTE: synthetic minority over-sampling technique. Journal of

artificial intelligence research, v. 16, p. 321-357, 2002.

COWLEY, Benjamin Ultan; CHARLES, Darryl. Adaptive Artificial Intelligence in Games:

Issues, Requirements, and a Solution through Behavlets-based General Player Modelling. arXiv

preprint arXiv:1607.05028, 2016.

http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/
http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/

128

CUNNINGHAM, Padraig; DELANY, Sarah Jane. k-Nearest neighbour classifiers. Multiple

Classifier Systems, v. 34, p. 1-17, 2007.

DAHLGAARD-PARK, Su Mi (Ed.). The sage encyclopedia of quality and the service economy.

SAGE Publications, 2015.

DINATA, Ida Bagus Putu Peradnya; HARDIAN, Bob. Predicting smart home lighting behavior

from sensors and user input using very fast decision tree with Kernel Density Estimation and

improved Laplace correction. In: Advanced Computer Science and Information Systems

(ICACSIS), 2014 International Conference on. IEEE, 2014. p. 171-175.

DONG, Yan-Shi; HAN, Ke-Song. Boosting SVM classifiers by ensemble. In: Special interest

tracks and posters of the 14th international conference on World Wide Web. ACM, 2005. p. 1072-

1073.

DUNNING, Ted. Accurate methods for the statistics of surprise and coincidence. Computational

linguistics, v. 19, n. 1, p. 61-74, 1993.

ERL, Thomas. Service-oriented architecture (SOA): concepts, technology, and design. 2005.

FREUND, Yoav; SCHAPIRE, Robert E. A desicion-theoretic generalization of on-line learning

and an application to boosting. In: European conference on computational learning theory.

Springer, Berlin, Heidelberg, 1995. p. 23-37.

GALAR, Mikel et al. A review on ensembles for the class imbalance problem: bagging-, boosting-

, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), v. 42, n. 4, p. 463-484, 2012.

GAMA, João et al. A survey on concept drift adaptation. ACM Computing Surveys (CSUR), v.

46, n. 4, p. 44, 2014.

GUERRA, Pedro Calais; MEIRA JR, Wagner; CARDIE, Claire. Sentiment analysis on evolving

social streams: How self-report imbalances can help. In: Proceedings of the 7th ACM

international conference on Web search and data mining. ACM, 2014. p. 443-452.

HAASDIJK, Evert; BREDECHE, Nicolas; EIBEN, A. E. Combining environment-driven

adaptation and task-driven optimisation in evolutionary robotics. PloS one, v. 9, n. 6, p. e98466,

2014.

HAN, Jiawei; PEI, Jian; KAMBER, Micheline. Data mining: concepts and techniques. Elsevier,

2011.

HAREN, Van. TOGAF Version 9.1. Van Haren Publishing, 2011.

HARTMANN, Nathan et al. Portuguese Word Embeddings: Evaluating on Word Analogies and

Natural Language Tasks. arXiv preprint arXiv:1708.06025, 2017.

JONES, Rupert. Mobile banking on the rise as payment via apps soars by 54% in 2015. The

Guardian, 2016. Available online in:

<https://www.theguardian.com/business/2016/jul/22/mobile-banking-on-the-rise-as-payment-

via-apps-soars-by-54-in-2015>

IDEN, Jon; EIKEBROKK, Tom Roar. Implementing IT Service Management: A systematic

literature review. International Journal of Information Management, v. 33, n. 3, p. 512-523, 2013.

ITIL. The Official Introduction to the ITIL Service Lifecycle. ITIL Foundation, 2011.

JAN, Ea-Ee; CHEN, Kuan-Yu; IDÉ, Tsuyoshi. Probabilistic text analytics framework for

information technology service desk tickets. In: Integrated Network Management (IM), 2015

IFIP/IEEE International Symposium on. IEEE, 2015. p. 870-873.

JOHNSON, Mark W. et al. Evolving standards for IT service management. IBM Systems Journal,

v. 46, n. 3, p. 583-597, 2007.

129

JOULIN, Armand et al. Bag of tricks for efficient text classification. arXiv preprint

arXiv:1607.01759, 2016.

KIKUCHI, Shinji. Prediction of Workloads in Incident Management Based on Incident Ticket

Updating History. In: Utility and Cloud Computing (UCC), 2015 IEEE/ACM 8th International

Conference on. IEEE, 2015. p. 333-340.

KINGMA, Diederik; BA, Jimmy. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

LAINHART IV, John W. COBIT™: A methodology for managing and controlling information

and information technology risks and vulnerabilities. Journal of Information Systems, v. 14, n. s-

1, p. 21-25, 2000.

LAN, Man et al. Supervised and traditional term weighting methods for automatic text

categorization. IEEE transactions on pattern analysis and machine intelligence, v. 31, n. 4, p. 721-

735, 2009.

LANE, Terran; BRODLEY, Carla E. Temporal sequence learning and data reduction for anomaly

detection. ACM Transactions on Information and System Security (TISSEC), v. 2, n. 3, p. 295-

331, 1999.

LEMAITRE, Guillaume; NOGUEIRA, Fernando; ARIDAS, Christos K. Imbalanced-learn: A

python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine

Learning Research, v. 18, n. 17, p. 1-5, 2017.

LIFNA, C. S.; VIJAYALAKSHMI, M. Identifying concept-drift in twitter streams. Procedia

Computer Science, v. 45, p. 86-94, 2015.

LILLEBERG, Joseph; ZHU, Yun; ZHANG, Yanqing. Support vector machines and word2vec

for text classification with semantic features. In: Cognitive Informatics & Cognitive Computing

(ICCI* CC), 2015 IEEE 14th International Conference on. IEEE, 2015. p. 136-140.

LIU, Yi-Hung; CHEN, Yen-Ting. Total margin based adaptive fuzzy support vector machines for

multiview face recognition. In: Systems, Man and Cybernetics, 2005 IEEE International

Conference on. IEEE, 2005. p. 1704-1711.

LÖFSTRÖM, Tuwe. On Effectively Creating Ensembles of Classifiers: Studies on Creation

Strategies, Diversity and Predicting with Confidence. 2015. (Doctoral dissertation, Department

of Computer and Systems Sciences, Stockholm University).

MANNING, Christopher D. et al. Foundations of statistical natural language processing.

Cambridge: MIT press, 1999.

MARRONE, Mauricio et al. IT service management: A cross-national study of ITIL adoption.

Communications of the association for information systems, v. 34, 2014.

MAYR, Andreas et al. The evolution of boosting algorithms. Methods of information in medicine,

v. 53, n. 6, p. 419-427, 2014.

MAZHELIS, Oleksiy; PUURONEN, Seppo. Comparing classifier combining techniques for

mobile-masquerader detection. In: Availability, Reliability and Security, 2007. ARES 2007. The

Second International Conference on. IEEE, 2007. p. 465-472.

MAZUROWSKI, Maciej A. et al. Training neural network classifiers for medical decision

making: The effects of imbalanced datasets on classification performance. Neural networks, v.

21, n. 2, p. 427-436, 2008.

MENEZES, João. Classificação de Texto para Melhoria no Atendimento de Help Desk. M.S.

thesis, Programa de Engenharia de Sistemas e Computação, COPPE/UFRJ, Rio de Janeiro, Brazil,

2009.

130

MIAO, Gengxin et al. Reliable ticket routing in expert networks. In: Reliable Knowledge

Discovery. Springer, Boston, MA, 2012. p. 127-147.

MIKOLOV, Tomas et al. Distributed representations of words and phrases and their

compositionality. In: Advances in neural information processing systems. 2013a. p. 3111-3119.

MIKOLOV, Tomas et al. Efficient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781, 2013b.

MIKOLOV, Tomas; YIH, Wen-tau; ZWEIG, Geoffrey. Linguistic regularities in continuous

space word representations. In: hlt-Naacl. 2013c. p. 746-751.

MIRTALAIE, Monireh Alsadat et al. A decision support framework for identifying novel ideas

in new product development from cross-domain analysis. Information Systems, v. 69, p. 59-80,

2017.

MITCHELL, Tom Michael. The discipline of machine learning. Carnegie Mellon University,

School of Computer Science, Machine Learning Department, 2006.

MOHARRERI, Kayhan; RAMANATHAN, Jayashree; RAMNATH, Rajiv. Motivating dynamic

features for resolution time estimation within IT operations management. In: Big Data (Big Data),

2016a IEEE International Conference on. IEEE, 2016a. p. 2103-2108.

MOHARRERI, Kayhan; RAMANATHAN, Jayashree; RAMNATH, Rajiv. Probabilistic

sequence modeling for trustworthy it servicing by collective expert networks. In: Computer

Software and Applications Conference (COMPSAC), 2016b IEEE 40th Annual. IEEE, 2016. p.

379-389.

MURTHY, Sreerama K. Automatic construction of decision trees from data: A multi-disciplinary

survey. Data mining and knowledge discovery, v. 2, n. 4, p. 345-389, 1998.

OSTERWALDER, Alexander et al. Value proposition design: How to create products and

services customers want. John Wiley & Sons, 2014.

PALSHIKAR, Girish Keshav et al. Streamlining service levels for it infrastructure support. In:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on. IEEE, 2012.

p. 309-316.

PANG, Bo; LEE, Lillian. Seeing stars: Exploiting class relationships for sentiment categorization

with respect to rating scales. In: Proceedings of the 43rd annual meeting on association for

computational linguistics. Association for Computational Linguistics, 2005. p. 115-124.

PANG, Bo; LEE, Lillian; VAITHYANATHAN, Shivakumar. Thumbs up?: sentiment

classification using machine learning techniques. In: Proceedings of the ACL-02 conference on

Empirical methods in natural language processing-Volume 10. Association for Computational

Linguistics, 2002. p. 79-86.

PECHENIZKIY, Mykola et al. Online mass flow prediction in CFB boilers with explicit detection

of sudden concept drift. ACM SIGKDD Explorations Newsletter, v. 11, n. 2, p. 109-116, 2010.

PEDREGOSA, Fabian et al. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, v. 12, n. Oct, p. 2825-2830, 2011.

PENNINGTON, Jeffrey; SOCHER, Richard; MANNING, Christopher D. Glove: Global vectors

for word representation. In: EMNLP. 2014. p. 1532-1543.

POH, Norman et al. Challenges and research directions for adaptive biometric recognition

systems. Advances in Biometrics, p. 753-764, 2009.

POLLARD, Carol; CATER-STEEL, Aileen. Justifications, strategies, and critical success factors

in successful ITIL implementations in US and Australian companies: an exploratory study.

Information systems management, v. 26, n. 2, p. 164-175, 2009.

131

RENNIE, Jason D. et al. Tackling the poor assumptions of naive bayes text classifiers. In:

Proceedings of the 20th International Conference on Machine Learning (ICML-03). 2003. p. 616-

623.

RESNICK, Paul; VARIAN, Hal R. Recommender systems. Communications of the ACM, v. 40,

n. 3, p. 56-58, 1997.

REHUREK, Radim; SOJKA, Petr. Software framework for topic modelling with large corpora.

In: In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. 2010.

ROELLEKE, Thomas. Information retrieval models: foundations and relationships. Synthesis

Lectures on Information Concepts, Retrieval, and Services, v. 5, n. 3, p. 1-163, 2013.

ROSENTHAL, Sara et al. SemEval-2015 Task 10: Sentiment Analysis in Twitter. In: SemEval@

NAACL-HLT. 2015. p. 451-463.

SALAH, Saeed et al. A model for incident tickets correlation in network management. Journal of

Network and Systems Management, v. 24, n. 1, p. 57-91, 2016.

SCOTT, Sam; MATWIN, Stan. Feature engineering for text classification. In: ICML. 1999. p.

379-388.

SHARMA, Anuj; DEY, Shubhamoy. Performance investigation of feature selection methods and

sentiment lexicons for sentiment analysis. IJCA Special Issue on Advanced Computing and

Communication Technologies for HPC Applications, v. 3, p. 15-20, 2012.

SHEU, Jyh-Jian et al. An efficient incremental learning mechanism for tracking concept drift in

spam filtering. PloS one, v. 12, n. 2, p. e0171518, 2017.

SMITH, Aaron; ANDERSON, Monica. Online Shopping and E-Commerce, 2016. Available

online in: <http://www.pewinternet.org/2016/12/19/online-shopping-and-e-commerce/>

SANDVINE. Global Internet Phenomena, 2016.

STEINBACH, Michael et al. A comparison of document clustering techniques. In: KDD

workshop on text mining. 2000. p. 525-526.

SUNG, Tae Kyung; CHANG, Namsik; LEE, Gunhee. Dynamics of modeling in data mining:

interpretive approach to bankruptcy prediction. Journal of Management Information Systems, v.

16, n. 1, p. 63-85, 1999.

TANG, Jiliang; ALELYANI, Salem; LIU, Huan. Feature selection for classification: A review.

Data Classification: Algorithms and Applications, p. 37, 2014.

TOMEK, Ivan. Two modifications of CNN. IEEE Trans. Systems, Man and Cybernetics, v. 6, p.

769-772, 1976.

TSYMBAL, Alexey et al. Handling local concept drift with dynamic integration of classifiers:

Domain of antibiotic resistance in nosocomial infections. In: Computer-Based Medical Systems,

2006. CBMS 2006. 19th IEEE International Symposium on. IEEE, 2006. p. 679-684.

TSYMBAL, Alexey. The problem of concept drift: definitions and related work. Computer

Science Department, Trinity College Dublin, v. 106, n. 2, 2004.

UNITED NATIONS. E-Government Survey, 2014.

VAN SELM, Leo. ISO/CEI 20000-Introduction. Van Haren, 2009.

WANG, Suge et al. A feature selection method based on improved fisher’s discriminant ratio for

text sentiment classification. Expert Systems with Applications, v. 38, n. 7, p. 8696-8702, 2011.

WANG, Shuo; YAO, Xin. Multiclass imbalance problems: Analysis and potential solutions.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), v. 42, n. 4, p. 1119-

1130, 2012.

132

WIDMER, Gerhard; KUBAT, Miroslav. Learning in the presence of concept drift and hidden

contexts. Machine learning, v. 23, n. 1, p. 69-101, 1996.

YANG, Yiming; PEDERSEN, Jan O. A comparative study on feature selection in text

categorization. In: Icml. 1997. p. 412-420.

YAP, Bee Wah et al. An application of oversampling, undersampling, bagging and boosting in

handling imbalanced datasets. In: Proceedings of the First International Conference on Advanced

Data and Information Engineering (DaEng-2013). Springer, Singapore, 2014. p. 13-22.

ZHOU, Wubai et al. Recommending ticket resolution using feature adaptation. In: Network and

Service Management (CNSM), 2015 11th International Conference on. IEEE, 2015. p. 15-21.

ZHOU, Z. The development of service economy: a general trend of the changing economy.

Development Research Center of Shanghai, Shanghai, 2015.

ZHU, Ji et al. Multi-class adaboost. Statistics and its Interface, v. 2, n. 3, p. 349-360, 2009.

ZLIOBAITĖ, Indrė. Learning under concept drift: an overview. arXiv preprint arXiv:1010.4784,

2010.

133

Appendix A – Experiment VI (Details)

 The tables in this appendix give more details regarding the results obtained in

Experiment VI. More specifically, they complement the tables shown in that experiment

by adding the number of correctly classified tickets to the rankings of the classification

trees.

 Table 57, Table 58, and Table 59 show the monthly totals. The bottom line of each

table displays the number of tickets that were generated during a specific month.

Table 57 – Monthly Ranking Of Classification Trees I (Details)

M1 M2 M3

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

1st WSW 1,780 K3 1,785 K2 1,502

2nd K5 1,776 WSW 1,782 WSW 1,494

3rd WCT 1,772 K2 1,765 K1 1,491

4th WCA 1,767 WCA 1,759 KN 1,490

5th UV 1,766 WCT 1,754 WCT 1,490

6th WLW 1,764 UV 1,753 K6 1,489

7th WM 1,761 WM 1,753 WM 1,482

8th K1 1,757 K4 1,752 UV 1,478

9th K2 1,750 WLW 1,750 K3 1,476

10th K4 1,749 K5 1,748 WLW 1,472

11th K3 1,744 K1 1,742 K5 1,466

12th KN 1,715 KN 1,740 WCA 1,459

13th K6 1,710 K6 1,731 K4 1,455

Monthly

Total
2,669 2,460 2,960

134

Table 58 – Monthly Ranking Of Classification Trees II (Details)

M4 M5 M6

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

1st K2 3,133 WSW 2,725 WCA 3,198

2nd K1 3,128 WCA 2,716 WCT 3,194

3rd WM 3,091 WM 2,714 UV 3,191

4th WCT 3,083 WCT 2,700 WLW 3,183

5th WSW 3,077 K2 2,693 WSW 3,177

6th WCA 3,071 UV 2,692 WM 3,174

7th UV 3,051 WLW 2,683 K3 3,170

8th K3 3,012 K1 2,682 K4 3,163

9th WLW 3,009 K3 2,677 K5 3,149

10th K4 3,008 K4 2,639 K6 3,147

11th K5 2,958 K5 2,636 K2 3,136

12th KN 2,947 K6 2,622 KN 3,131

13th K6 2,936 KN 2,591 K1 3,057

Monthly

Total
3,936 3,336 3,847

135

Table 59 - Monthly Ranking Of Classification Trees III (Details)

M7 M8 M9

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

1st K6 3,249 WM 3,267 WSW 2,947

2nd WLW 3,246 WCA 3,262 WLW 2,946

3rd WCA 3,242 UV 3,261 WM 2,942

4th WCT 3,238 WCT 3,260 UV 2,940

5th WM 3,234 WLW 3,254 K3 2,939

6th WSW 3,231 WSW 3,253 WCT 2,939

7th UV 3,227 K3 3,246 K6 2,933

8th K4 3,216 K4 3,241 WCA 2,932

9th K5 3,215 K5 3,236 K5 2,929

10th K3 3,192 K6 3,236 K4 2,928

11th K2 3,179 K2 3,218 KN 2,928

12th KN 3,170 KN 3,189 K2 2,916

13th K1 3,137 K1 3,181 K1 2,890

Monthly

Total
3,997 4,162 3,663

136

 Table 60 and Table 61 show the detailed rankings for each of the 5 classifiers of

Incident Routing during the 9-month period of the experiment. The bottom line of each

table displays the number of tickets, during that timespan, that belonged to the classes

covered by that classifier.

Table 60 – Ranking Of Classification Trees Per Classifier I (Details)

L0 vs. Non L0 L1 vs. L2

Classification

Tree

Correctly Classified

Tickets

Classification

Tree

Correctly Classified

Tickets

1st K2 28,753 WSW 18,180

2nd WCA 28,746 WCT 18,131

3rd WM 28,740 WCA 18,124

4th WSW 28,739 WM 18,118

5th WCT 28,735 UV 18,061

6th K1 28,701 K3 18,047

7th UV 28,700 WLW 18,043

8th WLW 28,687 K2 18,041

9th K3 28,639 K1 18,007

10th K4 28,603 K4 17,974

11th K5 28,553 K5 17,948

12th K6 28,492 K6 17,888

13th KN 28,226 KN 17,613

Total 31,030 20,979

137

Table 61 – Ranking Of Classification Trees Per Classifier II (Details)

L0 L1 L2

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

1st WM 8,545 K3 1,850 WSW 13,100

2nd UV 8,542 K2 1,839 WCT 13,084

3rd WSW 8,540 K4 1,836 WM 13,043

4th WCA 8,539 WM 1,830 WCA 13,042

5th WLW 8,537 WCA 1,826 UV 13,004

6th WCT 8,530 WSW 1,826 WLW 12,953

7th K2 8,522 WLW 1,817 K2 12,931

8th K1 8,521 WCT 1,816 K3 12,914

9th K3 8,477 UV 1,813 K5 12,878

10th K4 8,438 K5 1,812 K4 12,877

11th K5 8,423 K6 1,805 K6 12,841

12th K6 8,407 KN 1,725 K1 12,838

13th KN 8,362 K1 1,706 KN 12,814

Total 10,051 3,392 17,587

138

 Table 62, Table 63, Table 64, Table 65, Table 66, Table 67, and Table 68 show

the detailed rankings for each class during the 9-month period of the experiment. The

bottom line of each table displays the number of tickets, during that timespan, that

belonged to each class.

Table 62 – Ranking Of Classification Trees Per Class I (Details)

L0 Non L0

Classification Tree
Correctly

Classified Tickets
Classification Tree

Correctly

Classified Tickets

1st WM 8,557 K2 20,225

2nd UV 8,554 WCA 20,198

3rd WSW 8,550 WCT 20,193

4th WLW 8,550 WSW 20,189

5th WCA 8,548 WM 20,183

6th WCT 8,542 K1 20,170

7th K1 8,531 K3 20,153

8th K2 8,528 UV 20,146

9th K3 8,486 K4 20,142

10th K4 8,461 WLW 20,137

11th K5 8,439 K5 20,114

12th K6 8,423 K6 20,069

13th KN 8,387 KN 19,839

Total 10,051 20,979

139

Table 63 – Ranking Of Classification Trees Per Class II (Details)

L1 L2

Classification Tree
Correctly

Classified Tickets
Classification Tree

Correctly

Classified Tickets

1st K4 2,007 WSW 16,212

2nd K6 2,002 WCT 16,178

3rd WLW 1,995 K1 16,162

4th K5 1,989 WM 16,153

5th WCA 1,986 WCA 16,138

6th K3 1,979 UV 16,082

7th UV 1,979 K2 16,078

8th WSW 1,968 K3 16,068

9th WM 1,965 WLW 16,048

10th K2 1,963 K4 15,967

11th WCT 1,953 K5 15,959

12th KN 1,918 K6 15,886

13th K1 1,845 KN 15,695

Total 3,392 17,587

140

Table 64 – Ranking Of Classification Trees Per Class III (Details)

Cloud External Network Incident Management

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

1st UV 167 K1 8,355 K6 29

2nd WM 167 WSW 8,344 KN 29

3rd K2 166 WM 8,343 WLW 21

4th K4 166 WCA 8,339 K5 20

5th WLW 166 UV 8,337 UV 19

6th WSW 165 WCT 8,331 K3 18

7th WCA 164 WLW 8,328 K4 18

8th K3 163 K2 8,326 WCA 18

9th WCT 163 K3 8,278 WM 17

10th K5 161 K4 8,230 WCT 17

11th K6 157 K5 8,214 K2 15

12th K1 145 K6 8,190 WSW 15

13th KN 131 KN 8,155 K1 7

Total 311 9,489 146

141

Table 65 – Ranking Of Classification Trees Per Class IV (Details)

Production Support Backup Control

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

1st KN 47 WSW 1,234 K2 61

2nd K6 31 K2 1,231 WM 56

3rd K5 28 UV 1,229 WCT 56

4th K4 24 WM 1,228 WSW 56

5th WLW 22 WCA 1,227 WCA 54

6th UV 19 K3 1,225 UV 52

7th WCT 19 WCT 1,216 WLW 52

8th K3 18 K4 1,213 K1 51

9th WM 18 WLW 1,212 K3 51

10th WCA 17 KN 1,188 K4 44

11th WSW 16 K5 1,185 K5 43

12th K2 15 K6 1,181 K6 40

13th K1 14 K1 1,166 KN 25

Total 105 1,577 103

142

Table 66 – Ranking Of Classification Trees Per Class V (Details)

Job Monitoring Operation

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

Classification

Tree

Correctly

Classified

Tickets

1st K5 41 K3 529 KN 31

2nd K6 38 K4 524 WLW 28

3rd WLW 38 K5 521 K6 25

4th UV 37 K6 521 K5 22

5th WCA 37 K2 499 K4 21

6th WCT 36 WM 494 UV 20

7th KN 35 WCA 493 K2 19

8th WM 35 WCT 493 WSW 18

9th K4 43 WLW 487 WM 17

10th K3 33 WSW 486 WCA 15

11th WSW 32 UV 475 WCT 15

12th K2 29 K1 450 K3 12

13th K1 28 KN 446 K1 11

Total 168 1,427 117

143

Table 67 – Ranking Of Classification Trees Per Class VI (Details)

Application Database

Classification Tree
Correctly

Classified Tickets
Classification Tree

Correctly

Classified Tickets

1st K2 5,294 WM 2,428

2nd WSW 5,243 WCT 2,422

3rd KN 52,37 WSW 2,421

4th WCT 5,233 UV 2,420

5th WM 5,226 WCA 2,420

6th K1 5,225 K5 2,419

7th WCA 5,214 K3 2,415

8th K3 5,182 WLW 2,411

9th K6 5,168 K4 2,406

10th K5 5,165 KN 2,406

11th K4 5,163 K6 2,405

12th UV 5,143 K2 2,392

13th WLW 5,107 K1 2,381

Total 6,284 3,542

144

Table 68 – Ranking Of Classification Trees Per Class VII (Details)

Internal Network Platform

Classification Tree
Correctly

Classified Tickets
Classification Tree

Correctly

Classified Tickets

1st KN 835 WSW 4,670

2nd K6 795 UV 4,669

3rd K5 794 WCT 4,662

4th WLW 791 WLW 4,644

5th WCA 782 WCA 4,626

6th WM 774 WM 4,615

7th UV 772 K3 4,550

8th K3 767 K4 4,543

9th WCT 767 K1 4,526

10th WSW 766 K5 4,500

11th K4 765 K2 4,497

12th K2 748 K6 4,473

13th K1 706 KN 4,336

Total 1,105 6,656

