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Este trabalho apresenta um método para recuperar a forma 3D de uma vela

usando marcadores passivos. No domı́nio da navegação e engenharia naval, obter

a forma da vela pode ser extremamente valioso para confirmar ou refutar o resul-

tado de simulações, e contribuir no projeto de novas velas otimizadas. O sistema de

aquisição proposto é muito simples e de baixo custo, sendo necessário somente fixar

uma série de marcadores na superf́ıcie da vela e registrar, de um barco auxiliar, a

forma da vela durante condições reais de velejamento utilizando uma única câmera.

A forma média da vela é reconstrúıda durante um intervalo de tempo de poucos

segundos no qual o velejador mantém a vela o mais estável posśıvel, ou seja, a vela

está inflada e sua forma praticamente não muda. Essa média é melhorada por um al-

goritmo de Bundle Adjustment (BA). A reconstrução é esparsa, uma vez que poucos

pontos na superf́ıcie da vela são suficientes para que os engenheiros navais estimem

a sua forma. O método proposto foi testado no cenário real de navegação e apresen-

tou resultados promissores. Quantitativamente, verifica-se a precisão com relação

a área dos marcadores reconstrúıdos e os pontos reprojetados. Qualitativamente,

apresenta-se o feedback dos especialistas do domı́nio que avaliaram os resultados e

confirmaram a utilidade e qualidade da forma reconstrúıda.
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We present a method to recover the 3D flying shape of a sail using passive

markers. In the navigation and naval architecture domain, retrieving the sail shape

may be of immense value to confirm or contest simulation results, and to aid the

design of new optimal sails. Our acquisition setup is very simple and low cost, as

it is only necessary to fix a series of printable markers on the sail and register the

flying shape in real sailing conditions from a side vessel with a single camera. We

reconstruct the average sail shape during a interval of a few seconds, where the

sailor maintains the sail as stable as possible, i.e, the sail is inflated and its shape

practically does not change over time. The average is further improved by a Bundle

Adjustment (BA) algorithm. Our reconstruction is sparse since only a few points on

sail surface are enough for the naval architects to estimate its shape. We tested our

method in a real sailing scenario and present promising results. Quantitatively, we

show the precision in regards to the reconstructed markers area and the reprojected

points. Qualitatively, we present feedback from domain experts who evaluated our

results, and confirmed the usefulness and quality of the reconstructed shape.
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Chapter 1

Introduction

Reconstructing 3D surfaces of real objects is a challenging problem that has attracted

the attention of many researchers in the past years, and has several applications, such

as in: medicine, entertainment, cultural heritage, virtual clothing, and engineering,

to name a few. In this work, we focus our attention on the naval architecture

application domain, more specifically, on recovering the shape of sail over time

during navigation. Designing and manufacturing sailboats require expertise and

precision. For racing boats it is an even more critical aspect, as slight differences on

the sail shape may give the winning edge to a team.

There are several tools to help designers to project new sails, for example, there

are software packages that consider specific conditions such as the pressure on the

sail, wind direction and velocity, and sail cloth [19, 20]. It is also possible to sim-

ulate the sail behavior numerically using Computational Fluid Dynamics (CFD).

Moreover, a controllable test environment can be created in a wind tunnel.

Unfortunately, none of these strategies are able to accurately estimate or predict

the sail shape in real sailing conditions, that is, the flying shape. Computer designed

sails usually do not exactly match the flying shape. This fact is confirmed by recent

publications in this domain, as will be made explicit when the related literature will

be discussed in Chapter 2. Likewise, tests performed in the controlled environment

of a wind tunnel may not correspond precisely to the true behavior of a real scenario.

During navigation, sailors rely mostly on their own visual feedback and expertise

to evaluate the sail performance and propose adjustments. Therefore, retrieving the

sail shape in a navigation environment may be paramount to confirm or contest

simulation results, and to aid in designing new high performance sails.

Nevertheless, this is a challenging task, as there are many external factors that

influence the sail shape, such as wind and the loads applied by the mast and lines.

Moreover, some of these factors have high variability in time, and, thus, instan-

taneous configurations are too noisy for individual analysis. Hence, our goal is to

retrieve the average sail shape during a time interval in seconds, in which the sailor
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maintains the sail as stable as possible. In other words, we are interested to estimate

an mean sail shape during a period in which it is inflated and its shape practically

does not change.

It is important to mention that our reconstruction is sparse. Only a few points

on the sail surface are enough for the naval architect to estimate the sail shape.

In our application, it is much more important to recover a precise average position

of just some interest points on the sail surface, than achieving a densely sampled

surface without guaranteeing the accuracy for all points.

Briefly, in this work we propose a non-invasive methodology for capturing the

sail shape using a single video camera and passive markers. We target a low cost

and simple setup to allow for a more general and broad acquisition system. Our

method was tested for a Finn class sail but it can be adapted for other sails and

boats by changing our capture setup.

Our main contribution is a detailed description of a low cost and simple acquisi-

tion system for sail shape reconstruction. We previously verified the precision of the

method against a battery of tests using rigid objects. A series of parameters were

evaluated in regards to proposed reconstruction metrics for fine tuning the method.

Furthermore, the system was tested in real sailing conditions with feedback from

domain experts.

1.1 Boat terminology

In this section, we introduce the terminology of some parts of the boat that we refer

to in this work. These parts are indicated in the boat diagram presented in Figure

1.1:

• the sail edges: leech, luff and foot;

• the spars (poles): mast and boom;

• the boat hull.

Furthermore, the sailboat has several lines, which are the ropes used to perform

adjustments in the sail shape and boat direction.

1.2 Problem statement

The main problem we want to solve is: given a deformable object, whose behavior

is captured over time by a single camera, estimate the mean shape of the object

during a time interval of a few seconds. More specifically we want to recover the

mean position of a set of predetermined points on the surface.

2



Figure 1.1: Boat diagram indicating the terminology of some parts.

1.3 Objectives

The main objective of the present work is to propose a method to retrieve the mean

shape of a sail covered by passive markers from a video recorded by a single camera.

The achieved reconstruction should be useful for naval architecture purposes. The

secondary objectives are:

• to establish the best possible configuration to capture the sail and allow the

reconstruction given our problem conditions;

• to filter the extracted data to ensure a good reconstruction;

• to evaluate qualitatively and quantitatively the achieved reconstruction.

1.4 Work Organization

The onward part of this work is organized in the following manner:

• Chapter 2 - Literature review: works related to the problem of recon-

structing deformable surfaces and, more specifically, sails.

• Chapter 3 - Proposed method: our proposed method for sail reconstruc-

tion.

3



• Chapter 4 - Experiments: tests we performed to understand our problem,

propose our method and evaluate qualitatively and quantitatively our pro-

posal. This chapter presents also the domain experts feedback and limitations

of our method.

• Chapter 5 - Conclusion: the conclusions of the present work and some

directions for future works.

4



Chapter 2

Literature review

2.1 Deformable surface reconstruction

JOJIC and HUANG [1] presented the first effort to capture cloth motion. They

proposed an algorithm that fit the shape of a cloth model with the range data. The

cloth can be placed over a supporting object, which is also estimated. The cloth

model is calculated through a particle system where each particle interacts with its

neighbors through forces, which are determined by the algorithm. Furthermore, the

interaction between the cloth particles and the supporting objects is also considered

by the particles system. The range data is generated synthetically and scanned

using a laser scanner. Figure 2.1 shows a reconstructed cloth.

Figure 2.1: JOJIC and HUANG [1] cloth reconstruction.

CARCERONI and KUTULAKOS [21] introduced a framework for extracting

the 3D shape and motion of curves from multiple images sequences simultaneously

captured from different viewpoints. They proposed stereo and motion constraints

that can be combined into an over-determined system enforcing both constraints.

Initial stereo correspondences between curves in different views are established us-

ing epipolar geometry. These correspondences are used as input to solve the pro-

posed stereo-motion over-determined system to recover the 3D shape and motion

for each curve point independently. They performed experiments on synthetic data

with added noise and observed that their proposed method slightly improves the
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reconstruction precision when compared to stereo analysis alone. The same authors

presented another work [22] that captures the 3D shape, and non-rigid motion of

dynamic scenes from multiple views. They use the representation of dynamic surfel

(surface element), which is used as a starting point for a set of spatiotemporally-

distributed optimization problems to recover scene’s shape, reflectance and motion

in a small bounded region of space-time. They solve the problem in two steps: first

they achieve the shape and reflectance information and, second, estimate the motion

using the previous step results. They performed experiments in several real scenes,

such as clothing and skin. The results overcome several limitations of the previ-

ous works. However, the method effectiveness was demonstrated only for scenes

captured in controlled conditions of illumination and cameras positioning.

PRITCHARD and HEIDRICH [2] proposed to capture cloth motion through

stereo correspondence and SIFT [23] features. They use a reference image, which is

a flat and undistorted view of the cloth. Correspondences are obtained between this

view and each input view. These correspondences are used to estimate an initial

parameterization of the geometry. They map the image space (2D) to world space

(3D) through a disparity map. Finally, the geometry is completed by interpolating

the features in the world space in order to get a dense and regularly sampled surface.

They eliminate false correspondences by two constraints: a compression constraint

and a stretch constraint. These constraints take into account the degree of exten-

sibility of the cloth, allowing certain compression and stretch. An example of their

cloth reconstruction is shown in Figure 2.2.

Figure 2.2: PRITCHARD and HEIDRICH [2] cloth reconstruction example.

More recently, SALZMANN et al. [3] presented a method for detecting and

recovering 3D deformable surfaces from monocular image sequences. The surface is

represented by a triangular mesh and the deformations are parameterized in terms of

a small subset of the angles between the faces. Based on this parameterization, a set

of samples is drawn by randomly choosing the angles between the faces edges. The

dimension of this set is reduced by applying Principal Component Analysis (PCA),

getting the principal components or modes. Figure 2.3a shows examples of these
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modes. Thus, the shape of a mesh can be described as a sum of the undistorted mesh

plus a weighted sum of the modes. The shape of the deformed mesh is recovered by

an optimization process, where the weights of each mode are calculated in order to

minimize objective functions associated to model-to-image point correspondences,

image-to-image point correspondences, and contour information. It is important

to notice that they introduce a penalty term to force constancy of edge lengths

to surfaces that do not stretch. An example of a T-shirt reconstruction with this

method is shown in Figure 2.3b. An extension of their work was presented by

SALZMANN and FUA [24]. In this extension, the mesh is subdivided into sets

of overlapping patches which are combined linearly to model the deformation. The

constraints are presented as distance equalities, when the distance between neighbors

vertices is kept constant after the deformation, or as distance inequality, when the

distance is bounded above by the distance onto the original mesh.

(a) (b)

Figure 2.3: SALZMANN et al. [3] surface reconstruction method. (a) Examples of
modes. (b) T-shirt reconstruction.

HAYASHI et al. [4] applied the angle parameterization of SALZMANN et al. [3]

in their method for overlaying a texture onto the surface of a deformable object.

They used a depth camera to retrieve the scene information. In an off-line step they

generated deformation models using the approach of SALZMANN et al. [3]. The

on-line stage consists in estimating the surface and overlaying this surface with a

template texture. For this purpose, they sampled points from the cloud provided by

the depth camera and computed the weight of each model generated in the off-line

phase in order to adjust the sampled points. After finding these weights, the surface

can be reconstructed and the texture can be overlaid on the object. It is important

to note that they used passive markers to perform the sampling, but their use is
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restricted to bound the region of interest. In Figure 2.4, we can see these markers

and the reconstructed surface. SHIMIZU et al. [25] presented a version that did

not use markers but a textured region. The region was detected and tracked by a

modified SIFT matching algorithm adapted for deformable objects.

Figure 2.4: HAYASHI et al. [4] surface reconstruction using markers and depth
camera.

PILET et al. [5] proposed a method for detecting deformable surfaces in real

time and apply a new texture over the non-rigid object. The input of the method

is an image of the object in an undeformed pose and a monocular image sequence

of the object. They establish correspondences between the current image and the

undeformed pose image. Given the correspondences, they find the transformation

mapping the undeformed surface model into the deformed one, minimizing the dis-

tances between correspondences and smoothing the deformations. For this propose,

they represent the model by a mesh of triangles hexagonally connected and propose

an energy which should be minimized to find the correct deformation. The terms

of the energy penalize transformations that are not caused by rigid motion. For

example, vertices that do not remain roughly equidistant in two collinear connected

edges are penalized. Figures 2.5a and 2.5b show examples of non penalized and

penalized deformations, respectively. Consequently, erroneous correspondences are

removed and the resulting transformation is achieved. Figure 2.5c shows an example

of a reconstruction.

In order to create a virtual mirror, HILSMANN and EISERT [6] proposed a

method for tracking and retexturing cloth from monocular image sequences. The

detection of a shirt is achieved by segmenting the image and finding a rectangular

highly textured region. This detection process considers color information. After

detecting the shirt, tracking is performed using optical flow constraints combined

with mesh-based motion. They represent the surface as a triangulated regular mesh,

where each point is represented by its barycentric coordinates. In order to maintain

the mesh regularity they add a constraint that the barycentric coordinates of a

point are preserved after vertex displacement. Furthermore, they handle the self-

occlusion problem by estimating an occlusion map and forcing the mesh to shrink
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(a) (b) (c)

Figure 2.5: PILET et al. [5] surface reconstruction method. (a) Examples of non
penalized deformations. (b) Examples of penalized deformation. (c) Reconstruction
example.

instead of folding at the occluded regions. Finally, they recover the illumination and

shading from the original cloth and overlay a virtual texture. An example of surface

detection and reconstruction of HILSMANN and EISERT [6] is shown in Figure 2.6.

Figure 2.6: HILSMANN and EISERT [6] surface tracking example.

BRUNET et al. [7] presented methods to reconstruct inextensible surfaces from

monocular image sequences. They find correspondences between a template im-

age and an input image. First, since they know the intrinsic camera parameters

beforehand, they propose a convex formulation for maximizing the depth of the

reconstructed 3D points subject to the inextensibility constraint, which forces the

Euclidian distance between two points to be never greater than the length of the

corresponding geodesic distance measured in the template image. Figure 2.7 illus-

trates an inextensible deformation. They consider noise in both the template and

the input images. Second, they propose an approach based on the principle of sur-

face inextensibility. Thus, the function mapping from the planar template into the

3D space must be everywhere a local isometry. They parameterized the surface

and formulated a least-square problem including a data, an inextensibility, and a

smoothing term to find the reconstructed surface.

Another monocular reconstruction was proposed by PERRIOLLAT et al. [26].
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Figure 2.7: Inextensible object deformation [7].

They present an algorithm to reconstruct 3D inextensible deformable surfaces, based

on correspondences between a 3D template registered from an image of the object

and the current image of the object. They propose to find upper bounds on the

surface depth. The upper bound of the depth of a pair of points can be estimated

from the projection camera matrix by the inextensibility constraint. This way, the

bounds initially estimated are refined. Finally, the surface is recovered in two steps:

3D points are found from the upper bound and these points are interpolated to

retrieve the final surface.

BARTOLI et al. [8] presented analytical solutions for the problem of monocular

3D deformable surface recovery. The geometry is modeled by five functions, which

are shown in Figure 2.8. In order to find the unknown functions the problem is

mathematically modeled as a differential problem, whose constraints are different

for developable, isometric or conformal surface. These differential formulations allow

to find the functions and reconstruct the surface. They proved the solution for each

surface and note that isometric (developable or non developable) surfaces can be

reconstructed unambiguously and conformal surfaces can be reconstructed up to a

global scale and a few discrete ambiguities. They presented interesting analytical

solutions for the monocular reconstruction problem.

Figure 2.8: Functions for modeling template-based reconstruction [8].

Recently, NGO et al. [9] introduced a new method for reconstructing a 3D de-

formable surface from monocular images. The linear formulation of the problem
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of monocular reconstruction based on correspondences between a template image

and the current image is ill-posed. They used the Laplacian formalism to turn this

linear formulation better-posed. The correspondences are established by generic fea-

tures. The mesh is parameterized by some control points. The configuration of the

mesh is estimated by adding a constraint that penalizes non rigid transformations.

They also used inextensibility constraints that bound the distance between neighbor

vertices. Figure 2.9 shows a result of their reconstruction.

Figure 2.9: Result of NGO et al. [9] reconstruction.

The method proposed by YU et al. [10] reconstructs densely a 3D deformable

surface from a single camera. Although, they used a stereo method in an initial

step to compute a template of the object. They acquire the images by keeping

the object fixed and moving the camera, or keeping the camera static and the

object is rigidly moved. This step is shown in Figure 2.10. Once the template is

computed, the tracking of the surface is performed for each frame by minimizing

an energy. This energy is composed by four terms: a photometric error, which

minimizes the difference of appearance between the current image and the template

shape; a regularization term, which aims to smooth deformations in the spatial sense;

an as rigid as possible term, which penalizes non-rigid transformations of the shape;

and a temporal term, which smooths the deformation over time. Their approach is

robust against occlusions.

Figure 2.10: Template acquisition step of YU et al. [10] method.

A well quoted multi-view 3D reconstruction method was proposed by FU-

RUKAWA and PONCE [27]. From images of different views, they detect generic
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features and match some candidate correspondences. A small rectangular oriented

patch is constructed for each pair of features. The initial patches are optimized and

expanded in order to cover a dense region of the object. Finally, the filtering is

performed to eliminate erroneous patches. The authors show that a polygonal mesh

model can be built from the resulting set of patches. They estimate the orientation

from the views correspondences.

In their work, FABBRI and KIMIA [28] proposed a framework for multi-view

3D reconstruction based on curve correspondences. They started from a set of

images from different views and an approximation of the calibration of each camera.

After extracting the edges of the images, correspondences are established among

curves in different views. These correspondences are used to construct a partial 3D

curve sketch which is the input for the next stage. In this stage, the calibration

is refined minimizing a curve-based reprojection error. Once the refined camera

is obtained, the 3D curve sketch can be complemented by curve fragments that

were not included in the first sketch. This curve sketch approach was improved by

USUMEZBAS et al. [29], where a 3D drawing from the curves is generated. They

identify and integrate information across related edges. The curves are joined based

on topological connectivity resulting in a 3D graph, i.e, the 3D drawing. Recently,

USUMEZBAS et al. [30] proposed a method to reconstruct surfaces from pairs of

curves of the 3D drawing using lofting algorithms. The pairs are selected based

on length, proximity and curvature, and the hypothesis viability is verified by a

occlusion consistency.

Another multi-view reconstruction method was presented by LIU and CHEN

[11]. They proposed a method to estimate simultaneously the 3D structure and

the motion of moving surfaces. They started by establishing point correspondences

across time and views using Scale-Invariant Feature Transform (SIFT) features.

These correspondences are used to estimate an initial 3D triangulation. The surface

is locally modeled as a 9-parameter spatio-temporal plane. They perform a region

growing mechanism and optimize the local plane parameters based on the assump-

tion that if two points are close, their depths and normals are also close to each

other. This optimization is performed by minimizing an energy that considers the

homography between views and the rigid transformation of the points over time.

Figure 2.11 shows an example of surface and flow computed by their method. LIU

and CHEN [31] presented a follow up of this work. The main difference between the

previous work [11] is that they minimize the energy first considering the homogra-

phy between views and use the result to minimize the energy considering the rigid

transformation over time. This new approach results in a cleaner motion field than

LIU and CHEN [11].

BLANZ et al. [32] introduced an algorithm to fit a Morphable Model to scans
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(a) (b)

Figure 2.11: LIU and CHEN [11] surface reconstruction method. (a) Example of
reconstructed surface. (b) Example of computed motion field.

of faces, which simultaneously optimizes shape, texture, pose and illumination. Ini-

tially, from a training set of relatively high quality laser scans, they build a Mor-

phable Model by performing a PCA. In the sequence, given an input of a scan,

containing the texture and cartesian coordinates of each image point, they perform

an optimization to find the shape, the texture and the rigid pose transformation,

minimizing the color image differences and the surface distances to the Morphable

Model. Furthermore they optimize the camera parameters and the lighting, mini-

mizing the effect of overexposure and inhomogeneous shading of the image input.

ZOLLHÖFER et al. [33] addressed the problem of reconstructing a non-rigidly

deformable object in real time using a RGB-D camera. They built their own RGB-

infrared sensor, which provides more flexibility than consumer ones. They modeled

the object as a hierarchical triangle mesh. From the images and depths provided

by the camera, they optimized an energy function composed by four terms: a point

term, which evaluates the distance of each vertex to the closest data point; a plane

term, which measures the conformity of the vertex to its plane; a color term, which

evaluates the difference between the intensities of the projected vertex on the image

at current and previous timestep; and a regularizer term, which penalizes non-rigid

transformations, forcing local deformations of the surface to be as close as possible

to isometries. The minimization of the sum of these energy terms, appropriately

implemented in GPU, allows the real time reconstruction of the objects.

NEWCOMBE et al. [34] proposed a method for reconstructing scenes containing

non-rigidly deforming objects, using a RGB-D camera. The scene motion is repre-

sented by a volumetric warp-field, where each point has a rotation and a translation

associated. The field is estimated for each frame by minimizing an energy composed

by a data term, which takes into account the plane point distance and a regular-

izer term, which smooths the surface over time. The regularizer term takes into

account the temporal information penalizing non-rigid transformations over time.

An efficient implementation ensures a dense reconstruction of the scene.

BRONSTEIN et al. [35] presented a review of non-Euclidian geometric problems

and the solutions for these problems using deep learning techniques. They intro-
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duced the non-Euclidian geometry of the manifolds and graphs structures and gen-

eralized Convolutional Neural Network(CNN) type constructions to these domains.

The learning methods that can be applied to graphs and manifolds are mathemati-

cally described showing the solutions in the frequency, spatial and spatio-frequency

domains. In terms of manifold structures, the problem of adjust and matching of

meshes is appointed as a possible application for the geometric deep learning field.

2.1.1 Discussion

JOJIC and HUANG [1] presented the first effort to capture cloth motion using a

particle system. Thereafter, several other works were proposed to reconstruct 3D

deformable surfaces. As with our approach, some of them opted for a monocular

reconstruction [3, 5–10, 24, 26], others proposed multi-view approaches [2, 11, 21, 22,

28, 31], while some made use of RGB-D devices [4, 25, 32–34]. The use of multiple

cameras and RGB-D devices may indeed improve the acquisition performance and

precision, but renders the system more complex and costly, going against our goal

to keep the system as simple and low-cost as possible.

Most of the proposed works perform the reconstruction based on generic features,

such as SIFT, extracted from the images [2, 3, 5, 7–11, 24–26, 31], requiring that the

object presents a highly textured surface with distinguishable elements. In our work,

we opted for passive markers, which are more easily and accurately detectable, and

mostly important, most sails have practically uniform textures and do not allow for

a straightforward extraction of generic features. Furthermore, passive markers allow

identifying and labeling specific points on the sail surface, an important feature for

our application. HAYASHI et al. [4] do use colored markers, but only to bound the

region of interest on the object, and the surface is actually reconstructed based on

a RGB-D device information.

Some works explore the inextensibility property of certain objects, by adding

constraints of equality and/or inequality between points on the object surface [2, 3,

7–9, 24, 26]. A more specific study of the elasticity of the sail would be necessary

to evaluate the application of this kind of restriction to our problem. Nevertheless,

high-performance sails are highly customizable and do not have an unique elasticity

behavior [36, 37], hence, such specific evaluation goes far beyond the scope of the

current work.

Other reconstruction approaches apply a temporal smooth constraint [10, 11,

21, 22, 31–34]. This constraint assumes the object deforms as minimum as possible

over time and is often accompanied by an as rigid as possible constraint [5, 9–

11, 31–34], which penalizes non-rigid transformations. For our sail reconstruction,

we assume the sail shape is constant over time, presenting only a rigid transformation
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between frames. Note, however, that we do not know how the shape deformed

concerning its resting state, and does we cannot discard its extensibility effect. These

rigid transformations are used to perform a registration between different frames

(Section 3.4). There are works that employ machine learning methods, such as

PCA [3, 4, 24, 25, 32] and deep learning [35], to retrieve the surface deformation.

Since we do not have enough data on sails configurations to apply learning strategies,

such approaches are not possible for our problem at this moment.

Table 2.1 summarizes the choices made in the presented works and compare to

our proposed method, which is presented in Chapter 3.
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JOJIC and HUANG [1] •
CARCERONI and KUTULAKOS [21] • • • •
CARCERONI and KUTULAKOS [22] • • • •
PRITCHARD and HEIDRICH [2] • • • •

SALZMANN et al. [3] • • • • • •
SALZMANN and FUA [24] • • • • • •

HAYASHI et al. [4] • • • • •
SHIMIZU et al. [25] • • • •
PILET et al. [5] • • • •

HILSMANN and EISERT [6] • •
BRUNET et al. [7] • • • • •

PERRIOLLAT et al. [26] • • • • •
BARTOLI et al. [8] • • • •

NGO et al. [9] • • • • •
YU et al. [10] • • • • •

FURUKAWA and PONCE [27] • • •
FABBRI and KIMIA [28] • • •
USUMEZBAS et al. [29] • • •
USUMEZBAS et al. [30] • • •

LIU and CHEN [11] • • • • •
LIU and CHEN [31] • • • • •
BLANZ et al. [32] • • • • •

ZOLLHÖFER et al. [33] • • • • •
NEWCOMBE et al. [34] • • • •
BRONSTEIN et al. [35] •

Our method • • • • •

Table 2.1: Features of the deformable surface reconstruction works.

2.2 Sail shape reconstruction

Besides generic surface reconstruction methods, some specific approaches for sails

were introduced in recent years. CLAUSS and HEISEN [12] proposed a method to

capture the flying shape of the sails of a sailing yacht DYNA. For this purpose, they

applied a set of black square markers on the sail in discrete positions forming a grid.

They captured the sail during sailing using six cameras placed on the boat (Figure
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2.12). The markers are identified in the images by image processing. The local-

ization of the markers in the 3D space is determined by photogrammetry routines.

They used a physical model based on the distance between markers neighbors to

correct erroneous or missing markers. After refining the marker positions using the

physical model, the surface is constructed using the Multisurf modeller software.

The resulting surface was applied in Computational Fluid Dynamics (CFD).

Figure 2.12: Setup of CLAUSS and HEISEN [12]. We can note the marker grid and
the internal cameras positioning.

The Visual Sail Position And Rig Shape (VSPARS) software, popular among

sail designers, was presented by LE PELLEY and MODRAL [13]. They determine

the 3D localization of colored stripes on the sails and colored points on the rig using

three cameras fixed on the boat’s deck (Figure 2.13). The targets are extracted and

their positions in the global coordinate system are estimated based on the hypothesis

that the stripes are in the horizontal plane when flying. This is, nonetheless, a strong

hypothesis, which is not true for several apparent wind angles, according to some

recent works FOSSATI et al. [16], DEPARDAY et al. [17]. In order to validate the

method, they performed tests on wind tunnel using a solid fiberglass and soft sails.

They also performed experiments with full scale boats.

GRAF and MÜLLER [14] proposed a method to acquire the flying shape of sails

in wind tunnel. The sail is covered by coded passive markers and four cameras

are arranged outside the boat (Figure 2.14a). After preprocessing the images, they

recover the markers’ 3D positions using the Photo Modeler Pro photogrammetry

software. Finally, the software Rhinoceros 3D is used to create NURBS curves from
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Figure 2.13: Setup of LE PELLEY and MODRAL [13]. Observe the cameras posi-
tioning on the boat deck and the sail stripes.

the points, which are interpolated in NURBS surfaces. They performed accuracy

tests using an object of known shape presenting an average error of approximately 1

mm, and maximum error of 10 mm. Furthermore, they compare the reconstructed

shape with the design shape and note meaningful differences, since the flying shape

is significantly more asymmetric in comparison to the design shape. MAUSOLF

et al. [15] extended this work by recovering the flying shape of sails at full scale

in real conditions. In order to capture the images, they placed cameras on four

tenders around the target boat, moving in approximately the same speed. Figure

2.14b shows the arrangement of the tenders around the boat. They compare the

reconstructed shape in a wind tunnel and in full scale and observe a considerable

difference, which they attribute to the human factor of sail trimming. More re-

cently, the method of GRAF and MÜLLER [14] was used by RENZSCH and GRAF

[38] to estimate the flying shape in a wind tunnel and show the sail movement on

consecutive photo sets for two different sails. For both sails the movement occurs

mainly at the luff, but the paper does not give further detail on the reconstruction

evaluation. They also calculated the forces over the sail and the results were used

as a benchmark for Fluid-structure interaction (FSI) simulation.

FOSSATI et al. [16] introduced another method to measure flying shapes in

wind tunnel at full scale. The method is based on active capture. They use Time

Of Flight (TOF) technology, which projects on the object a light in the visible

or near infrared range and observe the time of the reflected light (Figure 2.15a).

They built a device, which rotates around an axis, brushing the whole sail area

(Figure 2.15b). This device retrieves a point cloud, which is used to recover the

sail corners, edges and sections. They compute the instantaneous flying shape and
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(a) (b)

Figure 2.14: (a) Wind Tunnel setup of GRAF and MÜLLER [14]. (b) Full scale
setup of MAUSOLF et al. [15]. In both scenarios we note the external positioning
of the cameras.

point out the possibility of averaging multiple shapes. Precision and accuracy were

verified by preliminary tests using known reference objects. The reconstructed sail

shape was evaluated comparing the measurements retrieved against those provided

by the design sail tool, achieving significant differences. As in MAUSOLF et al. [15],

these differences were associate to the trim adjustment. Unfortunately, the authors

do not explicit any quantitative results in their paper.

(a) (b)

Figure 2.15: TOF technology and device used by FOSSATI et al. [16]. (a) Illus-
tration of TOF technology for capture an object. (b) TOF device highlighting the
laser scanner and the axis of rotation.

DEPARDAY et al. [17] introduced a method to retrieve the shape of sails in full

scale while, simultaneously, measuring the aerodynamic load on the corners with

navigation and wind data. To recover the sail shape, they fixed blue square markers

on the sail forming six equidistant rows. The sail is captured by six cameras located

on the boat and synchronized by a laser. The images are delivered to the Photo Mod-

eler software, which recovers the 3D positions of the markers using photogrammetry

algorithms. The calculated points are lofted in splines which in turn are lofted in
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a Non-Uniform Rational B-Spline (NURBS) surface. They estimate instantaneous

sail shape during a stable period and choose one timestamp as representative of the

average shape. The validation of the reconstruction is performed by comparing the

retrieved shape and the designed shape. They also observed strong differences in the

sail shape, indicating the design is not representative of the real sailing conditions.

Figure 2.16: Setup of DEPARDAY et al. [17]. We can see the internal cameras po-
sitioning, the markers grid and the positioning of other aerodynamic load measurer
devices.

Recently, FERREIRA et al. [18] proposed a method to detect the sail flying

shape based on fiber optic strain gauge sensors. They insert such sensors into a

set of horizontal sections of the sail and connect them to an optical interrogation

unit located in the boat. This unit acquires multiplexed data, which is processed

to estimate the curvature of the sections. The estimated curvature may be sent

to mobile devices and seen by the sailor in real time. Figure 2.17 illustrates their

proposal. They validate their method in lab conditions using a rigid model, but

are still studying the influence of the sensors material on the aerodynamic of real

flexible sails.

Table 2.2 summarizes the main features of the presented sail reconstruction meth-

ods, as well as a confrontation with our proposal. We again draw the attention to

one important point communicated in previous work, that is, the significant diver-

gence between the designed shape and the one retrieved in real scenarios by the

related methods, reinforcing the need to appropriately and accurately reconstruct
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Figure 2.17: Setup of FERREIRA et al. [18]. They illustrate the strain sensors and
the interrogator device.

the flying shape in such conditions. Another worthy comment is that our method is

the only one that works with a single camera, and thus offers a much simpler and

generic setup for capturing the sail in a real sailing environment. For boats with

large sails or more than one sail, we can separately capture and reconstruct each sail

or sail part using more cameras. Moreover, if the wind conditions do not change,

we can capture perform each record in different instants using a single camera.
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CLAUSS and HEISEN [12] • • • • • • •
LE PELLEY and MODRAL [13] • • • • • •

GRAF and MÜLLER [14] • • • • •
MAUSOLF et al. [15] • • • • • •

RENZSCH and GRAF [38] • • • • •
FOSSATI et al. [16] •

DEPARDAY et al. [17] • • • • •
FERREIRA et al. [18] •

Our method • • • • • • •

Table 2.2: Features of the sail reconstruction works.
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Chapter 3

Proposed method

In this Chapter, we will describe our proposed method for solving the problem of

sail shape estimation. As depicted in Figure 3.1, it is composed of five steps, which

will be described in the next sections:

Figure 3.1: Proposed method steps. Blue: main steps. Red: outlier removal internal
steps. Green: selection and optimization internal steps.

1. Markers fixation (Section 3.1): markers are chosen, printed and fixed on the

sail. This disposition should ensure that the markers will be detected and the

sail can be properly captured.

2. Capture (Section 3.2): the marked sail is captured during a real sailing situ-

ation. The capture needs to ensure that the markers can be detected from the

images, trying to avoid as best as possible adversary conditions such as strong

reflections. Moreover, it is necessary to record from a position that captures

the whole sail, since we use a single camera.

3. Detection (Section 3.3): markers are extracted from the captured images.

Each marker is labeled in order to integrate the temporal information in the

next steps based on the correspondences. Duplicate markers elimination is

performed by a simple verification of topological consistency. Besides the

marker label, the detection step provide its 2D points on the image and the

corresponding 3D points in the camera coordinate system.
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4. Registration (Section 3.4): since each image is captured under a different

coordinate system, it is necessary to perform a global registration. In this step,

we also select the frames in a given time frame that will be used to estimate

the mean sail shape. Furthermore, our registration performs a filtering step

to remove outliers.

5. Reconstruction (Section 3.5): an average shape of the sail over the previously

selected frames is achieved by integrating the registered data. Before the

average shape estimation the least frequent markers are removed and are not

used to calculate the mean. Furthermore, the average is improved by a Bundle

Adjustment (BA) algorithm [39].

One important observation regarding our method is that we reconstruct an av-

erage sail shape during a time interval, since instantaneous configuration recovered

from single frames are very noisy. During the recording interval the sailor keeps

the boat and sail as stable as possible, and we assume that any noise resulting

from external forces can be treated as a normal distribution with zero mean, and

consequently may be averaged out.

3.1 Markers fixation

The first step of our method is to place markers on the sail. We opted for augmented

reality markers printed on waterproof adhesives, fixed on one side of the sail sur-

face. As described in Section 4.1, we compared the robustness of detection of two

libraries: ARToolKit [40] and ArUco [41]. ArUco presented best results for our tests,

and we decided to use markers from this library. For naval architecture purposes, it

is important to retrieve horizontal sections along the sail, since they convey well its

general shape. In fact, for simulation and design purposes the sail surface is mainly

defined by horizontal curves [42]. Thus, markers were placed forming horizontal

lines (Figure 3.2) in strategic positions pointed out by the naval architects. We also

made a vertical line of markers on the sail, which is important to get an orthog-

onal orientation of the sail and verify the coherence among the horizontal stripes.

Moreover, it is interesting to have a rigid reference for the sail’s markers in order to

properly capture the sail behavior over time. For this purpose, some markers were

fixed on the hull.

The markers fixation should be performed carefully to avoid loosing them during

sailing. The markers should tolerate some amount of water, wind and sail deforma-

tions. Since the adhesive glue may not be enough to avoid these issues, we fixed

scotch tape on the markers border, as presented in Figure 3.3.
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Figure 3.2: Marked sail.

Figure 3.3: Markers fixation process.

Once the markers are fixed, their positions on the sail allow to establish an

adjacency map. This map defines a graph as a set:

G = {V ,E},
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where V = {vi | vi is the marker with index i} is the vertices set and E =

{eij | eij is the edge connecting the vertices vi and vj} is the edges set. We estab-

lished the adjacencies as shown in Figure 3.4: markers on horizontal lines are con-

nected to the markers on right and left; markers on the vertical line are connected to

the markers above and below; and markers on the hull are connected to all adjacent

markers. This graph is useful to verify the topological coherence and remove dupli-

cate detected markers (Section 3.3). We define the distance between two vertices

as the number of edges connecting them. Thus, the smaller the number of edges

between two vertices, closer they are. For example, in Figure 3.4 the vertices vj and

vk are the nearest vertices to vi because only one edge separates these vertices. In

other words, vj and vk have distance 1 to vi. The next nearest vertex is vl, which

has distance 2 to vi.

Figure 3.4: Markers graph.

3.2 Capture

The next step of our method is to capture a video of the marked sail in real sailing

conditions. We use a single camera placed in another boat that follows the target

boat from a distance of a few meters. Three to five meters is enough to not affect

the sail boat performance, retrieve the markers, and, at the same time, capture the

whole sail surface. Alternatively, we could place the cameras inside the target boat.

However, this configuration has disadvantages, such as the need for more cameras

in order to capture the whole sail surface [12, 13], and the perspective distortion of

the images, especially on the sail top [17]. Positioning the cameras in another boat
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allows to record the sail at a more perpendicular angle, and is a more generic and

simple setup that can be used for a broader range of boats, and does not interfere

with the sailing of the tracked boat.

The main challenge of capturing the sail is to keep the camera in a distance

that allows a good marker detection while avoiding illumination problems. Since

the sailor needs to change the boat direction and the sail position to keep the sail

shape, the another boat should also change to track the target boat properly. These

changes of positioning makes difficult to keep the ideal capture conditions for a long

time.

3.3 Detection

After capturing the markers, we move on to identify each one. Given a video frame

f , for a detected marker whose index is k, its four corners {xk,1,xk,2,xk,3,xk,4} are

extracted in image domain Ω ⊂ R2, while its center’s transformation (translation

~tk,0 ∈ R3 and rotation Rk ∈ SO(3)) are recovered in relation to the camera’s

coordinate system. Rk also defines the marker’s normal and tangent vectors, while

its center position in camera space pk,0 ∈ R3 is directly obtained from~tk,0. Similarly,

we can find the corners positions {pk,1,pk,2,pk,3,pk,4} by a rigid transformation of

pk,0. Conversely, the image point of the marker’s center xk,0 ∈ Ω can be found by

projecting pk,0 onto the image. Thus, for each marker we can define a matrix of 2D

points in image coordinates:

Xk,f =
[

xk,0 xk,1 xk,2 xk,3 xk,4

]T
,

and a matrix of their respective 3D points in camera coordinates:

Pk,f =
[

pk,0 pk,1 pk,2 pk,3 pk,4

]T
.

Therefore, a marker of index k detected at frame f can be defined by the pair:

Mk,f = (Xk,f ,Pk,f ).

Commonly, false positives arise during detection. Artifacts on the image may be

confused with a marker, and markers may be mislabeled, as shown in Figure 3.5. In

order to simplify our process, we use markers with unique indices k, i.e., any marker

detected more than once clearly indicates a detection error.

We identify and remove the duplicate markers using topological con-

straints, which are based on the graph defined in Section 3.1. For each

index k and frame f , we have a set of candidates markers Ck,f =
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Figure 3.5: Example of false positive markers: marker of index 79 was detected as
an artifact on the bottom of the sail and the correct marker 79 was mislabeled with
index 30.

{M i
k,f | M i

k,f is a candidate for marker k at frame f}. Initially, all markers with

only one candidate, that is |Ck,f | = 1, are marked as correct. Given a marker

index k, such that |Ck,f | > 1, for each candidate M i
k,f ∈ Ck,f , we compute the

average distance in pixels (px) between its marker center xi
k,0 and the three topolog-

ically nearest vertices that are already marked as correct. If a marker is an outlier,

we expect it to be far from its topological neighbors. For example, in Figure 3.5,

marker 30 is far from markers 28, 29, 31 and 32. Thus, the candidate with smallest

average distance is selected as the marker with index k, and all other candidates are

discarded. Even though this criterion is not fail proof, it works well because dupli-

cate markers are rare in practice. After this initial selection, we have only a single

candidate for each marker. Algorithm 1 shows the pseudocode of our duplicate re-

moval algorithm. We further implemented another topological verification for the

non-duplicate candidates to verify that they are really correct. However, we noted

that this verification did not improve the reconstruction results. The two additional

filtering steps applied during registration (Section 3.4.1) and reconstruction (Section

3.5) are more effective to remove outliers. Thus, we have chosen to handle only the

duplicate markers in the detection step.

Thus, for each frame f , we define the set: Df = {Mk,f} of markers detected and

verified at frame f . Henceforth, when a marker of index k is discarded at a frame

f , Mk,f will be removed from Df .
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Input : A set of candidates markers Ck,f = {M i
k,f} for each marker index k

detected at frame f
Output: A single candidate Mk,f selected for each k and frame f
begin

for each frame f do
for each marker index k do

if |Ck,f | = 1 then
M 0

k,f is marked as correct and selected as the marker with
index k

end

end
for each marker index k do

if |Ck,f | > 1 then
for each candidate M i

k,f do
compute the average distance in pixels (px) between its
marker center xi

k,0 and the three topologically nearest
vertices that are already marked as correct

end
M i

k,f with smallest average distance is selected as the marker
with index k

end

end

end

end
Algorithm 1: Duplicate removal algorithm. Markers that were detected more
than once are checked againts its closest neighbors on the graph to remove the
incorrect duplicates.

3.4 Registration

The markers on the sail and the camera move independently over time. Their relative

position changes constantly during recording, as illustrated by Figure 3.6a. For each

video frame f we initially have a different coordinate system, therefore, we need to

define a common reference system for all frames, as illustrated in Figure 3.6b.

(a) (b)

Figure 3.6: Camera and sail dynamics during different time frames. (a) Before
registration. (b) After registration with a global reference frame.
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To perform the reconstruction, we define a central frame r, around which we

intend to achieve the average sail configuration. Next, we select n frames before and

n frames after r. These n frames do not need to be selected consecutively, as frames

with small time differences are very similar and do not add much new information

to the reconstruction. In fact, very similar frames may even cause numerical issues

for the reconstruction. The spacing between frames depends on recording conditions

such as boat velocity and video frame rate, and the criterion to select the frames

will be detailed below. For now, without loss of generality, lets define the set that

contains the selected 2n+ 1 frames as:

S = {f | frame f was selected to compose the reconstruction}.

For each frame f ∈ S , given its verified markers Mk,f ∈ Df , we need to find

the rigid transformation that optimally aligns all the markers centers pk,0 ∈ Pk,f

denoted by p
(f)
k,0 and pk,0 ∈ Pk,r denoted by p

(r)
k,0:

(Rf,r, ~vf,r) = arg min
R∈SO(3),~v∈R3

∑
k∈Df and k∈Dr

||(R · p(f)
k,0 + ~v)− p

(r)
k,0||

2, (3.1)

where k ∈ Df and k ∈ Dr, Rf,r ∈ SO(3) and ~vf,r ∈ R3 are the rotation and the

translation that align f ’s reference system with r’s. Equation 3.1 is a least square

problem which can be solved by Singular Value Decomposition (SVD) [43]. It must

be solved for each f ∈ S , resulting in |S| − 1 = 2n rigid transformations.

3.4.1 Filtering markers with RANSAC

Some markers can be erroneously estimated by ArUco at frame f ∈ S . These wrong

markers are not related to central frame r by the same transformation as the correct

markers. Since the least square solution of Equation 3.1 searches for a solution that

best fits all markers, these outliers disturb the solution (Rf,r, ~vf,r). It is important to

filter these wrong markers to maximize the registration quality. For this purpose, we

employ a Random Sample Consensus (RANSAC) scheme to select the best points

to perform the registration. Markers that are identified as outliers by RANSAC

are removed from Df , resulting in a filtered version of Df , which is used to solve

Equation 3.1 and find (Rf,r, ~vf,r).

This RANSAC strategy is also used to select the n frames before and after frame

r. Starting from frame r, we skip s frames backwards to frame c0 = r − s. We

then apply RANSAC between r and each frame between c0 −m and c0 + m. The

frame f ∈ [c0 −m, c0 + m] with the largest number of inliers is selected. Next, we

start from frame f and skip s frames backward defining a new frame c1 = f − s and
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repeat the process around the c1 neighborhood. This search is repeated until we

select n frames before, and, likewise, n frames after r. It is important to note that

the parameters n (number of selected frames), s (skip size) and m (neighborhood

size) need to be carefully chosen, and will be discussed in Section 4.3.3.

Finally, for each Pk,f such as f ∈ S and k ∈ Df , we apply the estimated rigid

transformation:

P′k,f = Rf,r ·Pk,f + ~vf,r (3.2)

where Rf,r and ~vf,r are the rotation and translation between f and r, using Df with

hindering markers removed. Points from P′k,f are in the same reference system as

the central frame r. Notice that the markers image points are not modified by the

registration, since we transform only the points in camera space.

One pertinent observation is that any marker detected in a frame f ∈ S and not

detected in frame r is not handled by RANSAC, and thus may not be classified as

an outlier. These markers do not participate in the computation of (Rf,r, ~vf,r), but

we opted to register them using Equation 3.2, and evaluated them by the weighted

average described in Section 3.5 instead of RANSAC. Hence, we avoid discarding

a marker that is not detected in central frame r, but is correctly detected in other

frames f ∈ S .

It is important to note that we use the 3D marker information Pk,f provided

by the ArUco. We also implemented a triangulation method to estimate the 3D

points Pk,f from the image points Xk,f of two images. However, a triangulation

algorithm presents very numerical instability, depending on a good parallax between

the frames. Thus, the results achieved with this approach were not satisfactory.

3.5 Reconstruction

Let:

Qk = {f | Mk,f ∈ Df and f ∈ S}

be the set of selected frames where marker of index k was correctly detected. A

marker needs to appear in a minimum number of frames so that its position can

be correctly optimized by the Bundle Adjustment (BA) algorithm [39]. To avoid

optimization problems, if |Qk| < β, Mk,f is removed from Df , for all f ∈ S . The

threshold β is our frequency tolerance and its value will be discussed in Chapter 4.

Thus, only markers of index k such that |Qk| ≥ β will be reconstructed. The set of

these marker indexes to be reconstructed is then defined as:

I = {k | |Qk| ≥ β}.
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After the frequency tolerance removal, the updated set Df can be used to esti-

mate a matrix P̄k of the mean markers positions for markers indexes k ∈ I. We

initialize P̄k as:

P̄0
k =

1

|Qk|
∑
f∈Qk

P′k,f ,

where k ∈ I .

After computing this initial mean P̄0
k, we start an iterative algorithm to compute

a weighted averaged [43] position for each marker k ∈ I . For each iteration i, P̄i
k is

given by:

P̄i
k =

(∑
f∈Qk

Wi
k,f

)−1
·
∑
f∈Qk

Wi
k,f ·P′k,f ,

where Wi
k,f is a weight matrix defined as:

Wi
k,f =


wi

k,0 0 0 0 0

0 wi
k,1 0 0 0

0 0 wi
k,2 0 0

0 0 0 wi
k,3 0

0 0 0 0 wi
k,4



where wi
k,j = e

||p′k,j−p̄i−1
k,j
||

σ , for j = 0, 1, 2, 3, 4. Thus, Wi
k,f is a gaussian weight matrix

that favors points nearer to the average in the previous iteration. Points far from the

average will have a decreasing weight and the process converges after few iterations

[43]. At the end of this iterative process, we have a matrix:

P̄k =
[

p̄k,0 p̄k,1 p̄k,2 p̄k,3 p̄k,4

]T
of the mean position of the markers points for each k ∈ I . This weighted iterative

estimation converges to a fair estimative by progressively penalizing points far from

the mean. Thus, we can define a set:

P̄ = {p̄k,j | p̄k,j ∈ P̄k, j = 0, 1, 2, 3, 4, k ∈ I } (3.3)

of the mean marker points positions. This estimative of mean points will be refined

by the BA algorithm.

3.5.1 Bundle adjustment

We further refine the mean points estimative using Bundle Adjustment (BA) [39]. It

optimizes the points reconstructed in world space and the cameras poses by minimiz-
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ing the points projection error in image space. BA is important to globally optimize

our reconstructed points taking into account all the selected frames. Note that up

to this point, we were only computing transformation between pair of frames, but

to have a globally consistent set of frames, it is important to optimize the points

and cameras simultaneously.

The algorithm needs three inputs: a set W = {wi ∈ R3} of points in world

space, a set C = {(Rj,~tj) | Rj ∈ SO(3) and ~tj ∈ R3} of camera poses, and a set

Y = {yij ∈ Ω | yij is the image of point wi by camera j}. For our problem, we

define:

W = P̄ , (3.4)

where P̄ is the set of mean points defined in Equation 3.3. In this case, the coordinate

system of points in P̄ is the world coordinate system.

For each f ∈ S , we need to find an initial estimative for camera pose (Rf ,~tf )

in relation to the world system. This estimative pose can be achieve by finding the

rigid transformation that optimally aligns all the markers position centers between

frame f and the world points, similar to the problem of Equation 3.1:

(Rf ,~tf ) = arg min
R∈SO(3),~t∈R3

∑
k∈Df

||(R · p̄k,0 +~t)− pk,0||2, (3.5)

where pk,0 ∈ Pk,f is the center position of marker Mk,f , k ∈ I before registration

and p̄k,0 is the world position of this marker center. Solving Equation 3.5 for each

j ∈ S we find our camera poses set C :

C = {(Rf ,~tf ) | f ∈ S}, (3.6)

where (Rf ,~tf ) is the pose of the camera that captured the frame f ∈ S in world

space.

Our image points set Y is defined as:

Y = {xk,j | xk,j ∈ Xk,f , j = 0, 1, 2, 3, 4, f ∈ S , k ∈ I and k ∈ Df}. (3.7)

Thus, we apply the BA algorithm implemented by g2o library [44] using our

sets W , C and Y defined by Equations 3.4, 3.6 and 3.7 as input. The algorithm

returns the optimized sail points W ∗ and camera poses C ∗. Although BA may not

maintain the real points scale, this issue can be corrected since we know the real size

of the markers. We first compute the average marker side length l̄ from the points

in W ∗, and then scale each wi ∈W ∗ and ~tj ∈ C ∗ by l/l̄, where l is the real marker

side length. This scaled version of W ∗ is our average sail configuration around the

central frame r.
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Chapter 4

Experiments

As presented in Chapter 3, we extract information from augmented reality markers

placed on the sail surface at known initial positions. Augmented reality markers are

squares with a black border and an internal pattern. This pattern differentiates the

markers from each other. KATO and BILLINGHURST [40] proposed an algorithm

to detect these markers and extract their 3D position and orientation in camera

coordinate system. This algorithm was implemented in the ARToolKit library [45]

and is widely used for augmented reality applications. More recently, GARRIDO-

JURADO et al. [41] presented a new augmented reality library based on OpenCV

named ArUco. They use a detection method similar to ARToolKit and allow creating

custom dictionary of markers. We performed tests using the ARToolKit and ArUco

libraries in order to evaluate the accuracy of the position and orientation detected,

and compare the performance of them.

4.1 Marker detection tests

In order to evaluate the accuracy of the libraries detection, we built a planar pattern

and analyzed the errors of the detected markers. We produced a pattern composed

by 12 markers of 40 mm of side length and spaced by known distances according to

Figure 4.1. This pattern was fixed on a planar glass and used to perform the tests.

We evaluated the precision of the position and the orientation (tangents and nor-

mal) of the markers provided by ARToolKit and ArUco. The videos were captured

by a Logitech webcam C920 with resolution of 720p. We recorded videos of the

pattern in eight different situations. These situations vary according to the pattern

orientation and the rotation around the axes defined in the Figure 4.2:

a. the pattern is in a horizontal orientation and almost static;

b. the pattern is in a horizontal orientation and rotates approximately around

the y axis;
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Figure 4.1: Planar pattern built for accuracy tests of the ARToolKit.

Figure 4.2: Axes defined for pattern rotation.

c. the pattern is in a horizontal orientation and rotates approximately around

the x axis;

d. the pattern is in a horizontal orientation and rotates randomly approximately

around the pattern center;

e. the pattern is in a vertical orientation and almost static;

f. the pattern is in a vertical orientation and rotates approximately around the

y axis;

g. the pattern is in a vertical orientation and rotates approximately around the

x axis;

h. the pattern is in a vertical orientation and rotates randomly approximately

around the pattern center.

Figure 4.3 shows images of these situations.

In order to measure the accuracy of the position we calculated the Euclidian

distance between the positions provided by the library for each pair of adjacent
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Test situations. (a) the pattern is in a horizontal orientation and al-
most static. (b) the pattern is in a horizontal orientation and rotates approximately
around the y axis. (c) the pattern is in a horizontal orientation and rotates approx-
imately around the x axis. (d) the pattern is in a horizontal orientation and rotates
randomly approximately around the pattern center. (e) the pattern is in a vertical
orientation and almost static. (f) the pattern is in a vertical orientation and rotates
approximately around the y axis. (g) the pattern is in a vertical orientation and
rotates approximately around the x axis. (h) the pattern is in a vertical orientation
and rotates randomly approximately around the pattern center.

markers and compared to the real distances. The distance error ed was computed

as the absolute value of difference between the calculated distance dcalc and the real

distance dreal:

ed = |dcalc − dreal|.

Since this first test was performed with a planar pattern, we expected that the

detected markers would be on a same plane. Thus, we performed a plane regression

with the markers positions and computed the distances between each marker and

the resulting plane. This distance is the plane projected error of each marker.

In addition to the position of the markers, the detection algorithms also pro-

vides their orientation, i.e., the normal and tangents of the marker. Since our

pattern is planar, all markers should have the same orientation. In order to evaluate

the extracted orientation, we computed the normalized mean vector ~vmean for each

orientation vector for every frame:

~vmean =

∑
~vi

||
∑
~vi||

,

where ~vi is the orientation vector for each marker. We calculated this normal-

ized mean vector for the normal and the x-direction tangent. We evaluated the

orientation of each marker by calculating the angle between the marker’s detected

orientation and the normalized mean vector.
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For every frame of each video, we computed the distance, plane projected, and

orientation errors for the detected markers. To identify a general behavior we com-

pute the average error values for each situation presented in Figure 4.3. Figures

4.4, 4.5, 4.6 and 4.7 show charts comparing the mean errors achieved using the two

libraries.

Figure 4.4: Comparison between mean distance errors achieved by ARToolKit and
ArUco libraries.

Figure 4.5: Comparison between mean projected error achieved by ARToolKit and
ArUco libraries.

The analysis of Figures 4.4, 4.5, 4.6 and 4.7 shows that ArUco presents a perfor-

mance significantly better than ARToolKit for most computed errors. We observe

that the errors are stable for all the situations, including the most challenging, for

the ArUco library, while for the ARToolKit the performance is significantly worst.

Moreover, we observe that the mean errors are around one millimeter. Although

these initial tests were performed in a controlled laboratory scenario, using an ideal
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Figure 4.6: Comparison between mean normal error achieved by ARToolKit and
ArUco libraries.

Figure 4.7: Comparison between mean tangent error achieved by ARToolKit and
ArUco libraries.

object, and recorded at a short distance, we compensated some hardships concern-

ing our outdoor environment with a camera with better resolution and stability.

Thus, based on the presented tests, we opted to use ArUco markers in our proposed

method.

The ArUco library allows creating markers dictionary. Besides the number of

different dictionary markers, we can define the number of internal and border bits.

In order to find the ideal marker parameters for our application, we perform some

detection tests varying these parameters. The tests were performed using a Go Pro

Hero 5 Black camera, the same used for the real experiments. Figure 4.8 shows

markers with 9, 16 and 25 bits of internal pattern. The greater the number of

internal bits the more differentiable it is. However, markers with less internal bits
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are more easily detectable from greater distances because the squares that represent

each bit has greater area. We perform some experiments varying the internal bits

and the distance from the camera and confirmed that markers with fewer bits are

better for our purpose. Thus, we decided to use markers of 9 internal bits.

(a) (b) (c)

Figure 4.8: Examples of markers with different number of internal bits. (a) 9 bits.
(b) 16 bits. (c) 25 bits.

Figure 4.9 presents markers with 1, 2 and 3 border bits. A greater border has

a larger black external area, which facilitates the detection of the marker in the

image, but makes the area of the internal pattern smaller, hindering the labeling. In

particular, for great distances a smaller border is better for detection and labeling,

since the smaller the number of bits the larger the area of each square bit. Thus,

after some tests, we opted by using markers with 1 bit of border.

(a) (b) (c)

Figure 4.9: Examples of markers with different number of border bits. (a) 1 bit. (b)
2 bits. (c) 3 bits.

Concerning the marker side length, we performed some experiments varying the

marker size and the camera distance. We tested markers of side length varying

from 6 to 12 cm. We varied the distance from 3 to 7 meters, since we knew that a

distance from 3 to 5 meters is a possible range in practice for capturing the sail. We

noticed that markers larger than 8 cm of side can be detected from up to 7 meters.

Since these tests were performed in a controlled environment, we opted to use 10

cm markers to ensure they would be detected in our real sailing tests.
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4.2 Rigid object tests

Before our first experiments with a real sail, we performed some tests with rigid

objects and ground truths. These experiments allowed to evaluate our proposed

method and limit the parameters range. Figure 4.10 present two rigid objects used

in these experiments: the walls of a room (Figure 4.10a) and a pattern fixed on a

glass (Figure 4.10b).

(a) (b)

Figure 4.10: Rigid objects used for preliminary tests. (a) Room walls. (b) Pattern
fixed on a glass.

For the room (Figure 4.10a) we analyzed the plane projected error described in

Section 4.1 for the two walls. We achieved results smaller than 0.5 mm after bundle

adjustment. We also computed the angle between the normal of the two planes,

which is expected to be 90◦. The angle errors were smaller than 0.5◦ after bundle

adjustment.

For the glass (Figure 4.10a), we analyzed the distance between adjacent markers

and compared to the real distance. We performed several tests recording the pattern

from several distances in range from 3 to 7 meters and, moving the camera, the object

or both. For the most challenging case, where both camera and object move, we

achieved errors smaller than 0.5 mm for the plane projected error and smaller than

1 mm for the markers distance, after applying the bundle adjustment algorithm.

In our last experiments before real sail tests, we used a plastic deformable surface

showed in Figure 4.11. Since the markers were manually fixed and the surface is

deformable, we could not establish an accurate ground truth for this object. But we

analyzed the reconstructed shape and compare to the expected shape. We observed

that the results were consistent with the expected.
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Figure 4.11: Deformable plastic used for preliminary tests.

4.3 Sail reconstruction tests

In this section we present the experiments performed to evaluate our method. We

printed and fixed 122 markers on a Finn Class sail forming 7 horizontal and 1

vertical line. Furthermore, 8 markers were fixed on the boat hull as depicted in

Figure 4.12. The sail was captured by a Go Pro Hero 5 Black camera using the

following resolutions and frame rates: 4K at 30 FPS, 2.7K at 60 FPS and 12 MP

at 2 FPS (time lapse mode). Preliminary experiments showed that 4K resolution at

30 FPS gives the best trade-off between spatial and temporal resolutions. Thus, all

results are presented using this configuration.

It is important to note that the GoPro camera presents high lenses distortion.

Nevertheless, the camera has fixed and pre-calibrated intrinsic matrix and radial

distortion coefficients, hence we can readily rectify the images.

4.3.1 Sail video dataset

The sail videos registered throghout our experimental sessions are available at http:

//www.lcg.ufrj.br/sail3D. In order to evaluate a more controlled environment,

we recorded some videos with the sail ashore (Figure 4.12a). This scenario allowed

more control over the capture distance and the illumination. We recorded a total of

20 ashore sequences, including all camera resolutions. After this controlled scenario,

we captured the sail in a real sailing environment (Figure 4.12b), totalizing 28

sequences. Our original videos were divided in these two categories: ashore and

sailing.

The original videos were splitted and classified into two main classes based on

the capture distance to the sail: near or far. This division resulted in 39 clips.

Each clip presents some particular features, which are presented in Table 4.1. As
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(a) (b)

Figure 4.12: Dataset video frames examples. (a) Ashore video frame. (b) Sailing
video frame.

previously mentioned the videos at 4K presented a better performance, only them

are discussed.

According to the reflection occurrence the clips can be classified as “Weak reflec-

tion” when the reflection obfuscates few markers or “Strong reflection” when many

markers are obfuscated by the natural illumination. Figure 4.13 presents examples

of these situations. It is important to note that both reflection types can occur in

the same clip. For future records, we can soften this issue using filters in the camera.

(a) (b)

Figure 4.13: Classification of the reflection. (a) Example of weak reflection. (b)
Example of strong reflection.
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Video Ashore Sailing
Weak

reflection
Strong

reflection
Wind
change

Too
far

Bad
angle

Duration
(sec.)

far 4k 01 • 71
far 4k 02 • • 83
far 4k 03 • • 27
far 4k 04 • • • 18
far 4k 05 • • 31
far 4k 06 • • • 19
far 4k 07 • • 9
far 4k 08 • • 74
far 4k 09 • • 14
far 4k 10 • • • • 85
far 4k 11 • • • 16
far 4k 12 • • • • 120
far 4k 13 • • • • 89
far 4k 14 • • 20
far 4k 15 • • 20
far 4k 16 • • 35
far 4k 17 • • • 39
far 4k 18 • • • • 35
far 4k 19 • • • 48
far 4k 20 • • • 42
far 4k 21 • • • 13
far 4k 22 • • • 51

near 4k 01 • • • 18
near 4k 02 • • 10
near 4k 03 • • 10
near 4k 04 • • • 4
near 4k 05 • • 8
near 4k 06 • • 7
near 4k 07 • • • 17
near 4k 08 • • 20
near 4k 09 • 37
near 4k 10 • 30
near 4k 11 • 50
near 4k 12 • • 40
near 4k 13 • 39
near 4k 14 • • 25
near 4k 15 • 37
near 4k 16 • • 25
near 4k 17 • • • 59

Table 4.1: Sail dataset video features.

In some clips the wind changes during the capture, modifying the sail shape.

The clips where this changing occur were classified as “Wind change”. Figure 4.14

illustrates this fact comparing three frames of the clip “near 4k 08.mp4”.

Some clips were recorded from a great distance, which makes markers detection

very difficult. These clips are classified as “Too far”. Figure 4.15a presents an

example frame of this case. Furthermore, some clips were captured from an almost

parallel angle in relation to the sail. Ideally the capture should be performed from

an as perpendicular angle as possible to the sail. Thus, the clips captured almost in
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(a) Frame 60 (2 sec) (b) Frame 210 (7 sec) (c) Frame 330 (11 sec)

Figure 4.14: Sail shape variation due wind changing for clip “near 4k 08.mp4”.

parallel were classified as “Bad angle” as showed in Figure 4.15b.

4.3.2 General parameters evaluation

We used three metrics to quantitatively evaluate our reconstruction:

• marker area error ea = |ar− a|: the absolute difference between the area of

the reconstructed marker ar and the real area a;

• image reprojected error er = ||Π(P)− x||: the absolute distance in image

space between the reconstructed point P reprojected on the central frame and

the respective points detected by ArUco library x;

• reconstruction ratio nr
N

: ratio of reconstructed markers nr over the total

number of markers on the sail N .
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(a) (b)

Figure 4.15: Examples of “Too far” and “Bad angle” frames. (a) “Too far” frame.
(b) “Bad angle” frame.

For each clip in our dataset, we compute the reconstruction centered in several

frames. The area error ea was computed for each reconstructed marker and the

reprojected error er was computed for each marker point. In order to achieve a

general evaluation of the reconstruction and fine tune the parameters, we computed

the statistics of the errors: average, standard deviation, median, minimum and

maximum.

In Section 3.5, we described our iterative weighted average of the markers points.

This average uses a Gaussian weight with parameter σ. We tested some σ values

in the interval [0.1, 5.0] and observed its influence on the metrics. We noted that

σ does not influence the reconstruction ratio, and values σ ≥ 0.6 do not disturb ea

and er. Thus, we set σ = 0.6 for our experiments. We also analyze the threshold

β for the frequency filter by varying its value between 10% and 40%. Small values

increase the number of reconstructed markers, but also increases ea and er. The

value β = 30% presented the best trade-off between reconstruction ratio and errors.

We use 30 iterations, which were enough to achieve convergence.

For the RANSAC strategy described in Section 3.4.1, we need to define a thresh-

old for considering a point as an inlier. In our case, this value is the acceptable

distance between the registered point and the point in the central frame. We tested
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values between 50 and 300 mm, and noticed that 100 mm presents good results con-

sidering ea and er. Values below 100 slightly decrease the errors but considerably

reduces the number of reconstructed markers. On the other hand, values above 100

increase the reconstruction ratio at the cost of increasing errors.

4.3.3 Reconstruction results

The clip “near 4k 17.mp4” is the longest sequence recorded in sailing conditions

from a reasonable distance. This clip present a good sail stability, parts with weak

and strong reflection. Thus, it is considered ideal for reconstruction and the results

presented in this section use this clip. It will be used in the next subsections for

comparing the results with difficult clips.

Figure 4.16 presents a visualization of the reconstruction centered in the frame

457 from two views. It shows all points for each reconstructed marker.

Figure 4.16: Visualization of the reconstruction of the clip “near 4k 17.mp4” cen-
tered in the frame 457 from two views.
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As previously mentioned, we compute the reconstruction centered in several

frames and the reconstruction metrics. In order to statistically evaluate the behavior

for the entire clip, the metrics statistics presented are computed as follows:

• For a reconstruction performed centered in a frame:

– Compute the ea for each marker, the er for each marker point and the nr
N

for the reconstruction

– Compute the average, standard deviation, median, minimum and maxi-

mum over all ea and er for the reconstruction

• Compute the mean of the statistics over all reconstructions

• Compute the mean of nr
N

over all reconstructions of the clip

Our frame selection procedure described in Section 3.4.1 depends on three pa-

rameters: n (number of selected frames), s (skip size) and m (neighborhood size).

We varied n in the interval [5, 50], which results in varying |S| = 2n + 1 in the in-

terval [11, 101]. Figures 4.17, 4.18 and 4.19 show the metrics. Figure 4.17 presented

the mean statistics in function of |S|. Notice in Figure 4.17 that the error decreases

with the increase of selected frames, but after 41 frames the variation is small. The

average error was around 250 mm2, which represents 2.5% of the marker area and

the maximum around 1000 mm2, which is 10% of the area. For the reprojected error,

we observe that the error slightly increase with the frames increase. This increase

is expected since we have more frames to be adjusted by the bundle adjustment.

Despite this increase, the maximum error does not change, keeping around 2 px.

The reconstructed ratio decreases with the total of selected frames, varying from

56.9% for 11 frames to 40.1% for 101 frames, i.e, the more frames used for the re-

construction, the smaller the reconstruction rate. The decrease is more accentuated

after |S| = 31. Thus, we can summarize the analysis of the Figures 4.17, 4.18 and

4.19 as:

• More frames decrease the area error, presenting a stable behavior after |S| =
41;

• More frames slightly increase the reprojected error;

• More frames decrease the reconstruction rate, mainly after |S| = 31.

Based on this analysis we opted to use n = 20, i.e., selecting |S| = 41 frames for

reconstruction. This value ensures a good area error without penalizes too much

the reconstruction ratio.
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Figure 4.17: Area error in function of total of selected frames. The max error scale
is indicated by the right vertical axis.
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Figure 4.18: Reprojected error in function of total of selected frames.

Figure 4.19: Reconstruction ratio in function of total of selected frames.

Figures 4.20, 4.21 and 4.22 present the metrics results in function of the skip size

s. By analyzing Figure 4.20, we note that small values perform poorly. This perfor-
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mance is explained by the frames similarity, since the frame rate is high in relation

to the movement variation of the scene. On the other hand, if we increase the value

of s, a more long clip is necessary to select the frames, since the interval between

two selected frames will be larger, and keeping the sail stable for an extended period

is usually not a trivial task. Furthermore, Figure 4.22 shows that the reconstruction

ratio decreases with the s increase. In relation to the reprojected error (Figure 4.21),

the behavior was similar to the Figure 4.18, i.e. the error slightly increase with the

s increase. The explanation is also similar. Since the bundle adjustment should

adjust frames with more variability between them, it is expected an increase of the

mean error to adjust all frames. We observed that s = 10 is a good choice for videos

recorded at 30 FPS.
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Figure 4.20: Area error in function of skip size. The max error scale is indicated by
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Figure 4.21: Reprojected error in function of skip size.

We also observed that m has no significant impact on the errors, but increasing

m also increases the reconstruction ratio. This increase occur because we search by

frames with the largest number of inliers to register with the central frame. The
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Figure 4.22: Reconstruction ratio in function of skip size.

value of m should not be greater than s to avoid overlapping the intervals. We

found that m = 5 is a good choice for s = 10. Considering the values of n = 20,

s = 10 and m = 5, we can estimate a minimum video length. In the worst case for

these values, all frames are selected with spacing of 15 frames. To select 41 frames

(n = 20) at least 20 seconds of video at 30 FPS is necessary. However, larger videos

allow us to also vary the central frame.

In order to analyze the markers area, Figure 4.23 presents the histogram of

the area distribution for the reconstruction using n = 20, s = 10 and m = 5.

This histogram considers the area of the markers reconstructed for all reconstructed

frames. We observe the most markers presented area near to the expected value.

Figure 4.23: Histogram of the markers area distribution.

We notice a considerable difference between the results in the real sailing en-

vironment and the controlled tests in laboratory. For our controlled tests we use

rigid objects, whose geometry and markers position are accurately known. On the

other hand, in our real tests, the only information we have is the marker’s length

and area. Furthermore the sail surface is deformable, which changes the markers

geometry, since they are not exactly plane.
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Figures 4.19 and 4.20 present values smaller than 60% for reconstruction ratio.

It is important to clarify that the values presented in these figures are the average

reconstruction ratio for the all clip frames. Figure 4.24 shows the reconstruction

ratio for each frame from 202 to 1502 for the clip using using n = 20, s = 10 and

m = 5. We observe that the reconstruction ratio is around 70% before the frame

600, i.e., before 20 seconds of the video. After this frame, the ratio decreases, only

rising again near to the clip end. The decreasing can be justified by the increase of

the capture distance.

Figure 4.24: Reconstruction ratio by frame for clip “near 4k 17.mp4”.

Figure 4.25 shows the reprojection of the reconstructed points (Figure 4.16)

on the central frame 457. It is possible to note that the points are projected on

the expected positions, i.e., at the center of the markers. Observe that this frame

presents a weak reflection (highlighted in red in Figure 4.25) and the markers in this

region were not reconstructed.

Figure 4.26 presents the rigid motion of the sail markers in relation to the hull

markers. This motion is computed by aligning two reconstructions centered in dif-

ferent frames in relation to the hull markers. The distance between the central

frames of the reconstructions is 15 frames, i.e., 0.5 second (frames 457 and 472). We

note that the motion occurs mainly on the sail top, which is coherent with the sail

dynamics and confirmed by domain experts as the expected behavior.

Wind changing video results

Since our method estimate the mean sail shape during a time interval, it is important

the sail shape keeps as stable is possible during this period. However, as presented in

Section 4.3.1, the wind changes during some videos, modifying the sail shape (Figure

4.14). In this section we discuss the results of our method for the clip “near 4k -

08.mp4”, which presents wind changing. The reconstruction was performed using

the parameters previously chosen (n = 20, s = 10 and m = 5).

Figure 4.27 presents a visualization of the reconstruction of the frame 219 from

two views. We note that the sail region near to the luff are incorrectly reconstructed.
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Figure 4.25: Reconstructed points reprojected on the central frame 457 for clip
“near 4k 17”. The red rectangle highlighted shows a region where the natural illu-
mination obfuscate some markers.

This is just the sail region that deforms with the wind change, as depicted in Figure

4.14.

Figure 4.28 shows the reconstructed markers centers reprojected on the frame

219. We observe that the centers are not reprojected in the expected position in the

region where the sail shape changes. However, the remaining markers are correctly

reprojected on the markers centers.

Concerning to the reconstruction metrics, Figures 4.29 and 4.30 present the

comparison between the clips “near 4K 17.mp4” and “near 4k 08.mp4” for the area

and reprojected errors, respectively. We observe that the errors were greater for all

the criterion for the clip “near 4k 08.mp4”. This confirms quantitatively that our

algorithm does not work properly under wind changing conditions. On the other

hand, the clip “near 4k 08.mp4” presents a high reconstruction ratio (85%) since the

conditions of distance and illumination are favorable. Summarizing, the sail shape

stability is essential for the correct working of our method. Even a clip recorded

in conditions that allow the markers detection is not correctly reconstructed if the

wind changes the sail shape.
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Figure 4.26: Sail markers rigid motion in relation to the hull markers. The recon-
structions central frames are separated by 0.5 seconds (frames 457 and 472). The
movement is consistent with the expected behavior, that is, larger motion at the top
of the sail.

Strong reflection video results

Our sailing videos were recorded under natural illumination condition, which are

not controllable. As described in Table 4.1, several videos presented a strong reflec-

tion. To illustrate the effect of this issue in our method, Figure 4.31 presents the

visualization of reconstruction of the frame 246 of the clip “far 4k 14.mp4” from two

views. We note that many markers could not be reconstructed due the reflection.

Figure 4.32 shows the markers centers reprojected on the central frame. Ana-

lyzing the image we note that, although many markers were not reconstructed due

to the reflection, the few reconstructed markers are reprojected in their expected

positions at the markers centers.

It is interesting to note that the reflection makes marker detection difficult, re-
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Figure 4.27: Visualization of the reconstruction of the clip “near 4k 08.mp4” cen-
tered in the frame 219 from two views.

ducing the reconstruction ratio, but it does not affect the quality of the reconstructed

markers. Figures 4.33 and 4.34 compare the area and reprojeted errors respectively

for the clips “near 4K 17.mp4” and “far 4k 14.mp4”. The charts show that the two

clips present similar errors. For some criterion the clip “far 4k 14.mp4” presents

even smaller values.

Capture angle and distance issues

The capture angle is another issue that makes difficult the markers detection. Figure

4.35 shows the reconstructed markers centers of the frame 205 of the clip “near 4k -

07.mp4” reprojected on the respective frame. We note that, beyond the markers on

the top that were obfuscated, the markers at the luff region were not detected due

the bad capture angle. But as well as the example of the clip “far 4k 14.mp4” the

few reconstructed points are correctly reprojected to the markers centers.
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Figure 4.28: Reconstructed points reprojected on the central frame 219 for clip
“near 4k 08”.

Figure 4.29: Area error criterion comparison between “near 4k 17.mp4” and “near -
4k 08.mp4” clips.
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Figure 4.30: Reprojected error criterion comparison between “near 4k 17.mp4” and
“near 4k 08.mp4” clips.

The reconstructed points of frame 205 of the clip “near 4k 07.mp4” are presented

in Figure 4.36 from two views. The visual analysis of these points indicates they are

correctly reconstructed.

Another issue that should be considered for our method is the capture distance.

Markers can not be detected from videos recorder from a great distance. For the clips

assigned as “Too far” in the Table 4.1 our reconstruction rate was zero or smaller

than 10%. Thus, we conclude that the reflection, the capture angle and distance

are important issues that influence the markers detection and, consequently, the

detection ratio.

4.3.4 Qualitative feedback from domain expert

Our results were analyzed by the naval architect and professor of UFRJ Alexandre

Alho (alexandrealho@poli.ufrj.br), and the experienced sailor Jorge Rodrigues (jr-

silva@gmail.com), in order to have feedback from domain experts. They analyzed

results for the reconstruction of the clip “near 4k 17.mp4”. Figure 4.37 shows the

profiles of the sail sections generated by the naval architect using the ANSYS [46]

software from the markers centers of our reconstruction data. They observed that,

in general, the shape of the profiles of the sail sections are very satisfactory. How-

ever, some distortions are observed near the boom (in red). Nonetheless, it is not

clear if these are reconstruction errors or the sails actual shape since this region

is subject to significant interference from the mast and the boom. Furthermore,

some misalignments between the profiles are observed. The same observation was

formulated about the initial and final points of the profiles. However, we note these

misalignments result from the actual markers positioning on the sail. Therefore,

54



Figure 4.31: Visualization of the reconstruction of the clip “far 4k 14.mp4” centered
in the frame 246 from two views.

the per points reconstruction quality is fully satisfactory to generate the sail shape.

Nevertheless, it was suggested that it is important to achieve additional information

about the sail bounds to have a more useful reconstruction for simulation and design

evaluation purposes, and a more careful positioning of the markers to increase the

profile reconstruction quality.
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Figure 4.32: Reconstructed points reprojected on the central frame 246 for clip
“far 4k 14”.

Figure 4.33: Area error statistics comparison between “near 4k 17.mp4” and “far -
4k 14.mp4” clips.
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Figure 4.34: Reprojected error statistics comparison between “near 4k 17.mp4” and
“far 4k 14.mp4” clips.

Figure 4.35: Reconstructed points reprojected on the central frame 205 for clip
“far 4k 14”.

57



Figure 4.36: Visualization of the reconstruction of the clip “near 4k 07.mp4” cen-
tered in the frame 205 from two views.

Figure 4.37: Profile of the sail sections. The lower curve in red presented some
distortion, but we were unable to precise its source.
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Chapter 5

Conclusion

In this work, we proposed a methodology for capturing the sail shape using a single

video camera and passive markers. Our method is mostly non-invasive, as even

though we still have to stick the markers onto the sail, we do not interfere with

the sailing. For naval architecture purposes it is important to achieve the sail mean

shape during a time interval, during which the sailor maintains the sail as stable as

possible. Our main hypothesis is that the sail shape does not change significantly

during the time period used for the reconstruction. Based on this, we proposed a

method to estimate the sail mean shape from the markers position extracted along

the interval. Our method is simple and very low-cost, since we need only passive

markers and a single camera. Furthermore, our reconstruction is sparse by design,

since just a few points on the sail surface are enough for the naval architects to

extract reconstruct its shape. In fact, they point out that a few well placed and well

recovered points is a much better input for them, than a dense reconstruction from

which they would have to manually remove many points that where not precisely

reconstructed.

After fixing the markers on the sail surface, they are captured from another boat.

The markers information is extracted from the images and the selected frames are

registered to a global reference system. This registered data is used to estimate

the mean position of each marker during the interval, and is further optimized by a

Bundle Adjustment algorithm, resulting in our final reconstruction.

Preceding our real sailing tests, we performed several laboratory experiments.

These experiments allowed us to evaluate the accuracy and limitations of the marker

detection method. Furthermore, we ran many tests against rigid objects, where the

ground truth is known and precise reconstruction metrics could be extracted. We

achieved an error smaller than 1 mm in this controlled environment.

For the real validation of our method, we recorded several videos of a Finn class

sail in two situations: ashore and sailing. These videos compose our dataset, which

we have made available at http://www.lcg.ufrj.br/sail3D. In addition to the
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original videos, we also split them into smaller clips and separated them by capture

distance. We also divided the clips in categories presented wind changes, reflection

and capture angle. We believe that the creation of such dataset may be of immense

value for other researchers in this area.

The dataset clips were tested using our method and the results were quantita-

tively evaluated by analyzing the markers’ areas and the reprojected errors. We

noticed that for stable videos the maximum area error was around 10% regarding

the marker area, and the maximum reprojected error was around 2.5%. Qualita-

tively, we note that the reconstructed points were correctly reprojected at the central

frame. Furthermore, we estimated the sail rigid motion between two reconstructions

and observed that the movement is coherent with the sail dynamics.

Some videos presented wind changes, which modifies the sail shape. As expected,

the quantitative and qualitative results for these videos were worse than the stable

case, which confirm our hypothesis that the sail needs to be as stable as possible

during the capture. Other limitations of our method are the reflection, and the

capture distance and angle. Markers that are obfuscated by sun light, or recorded

from a large distance or in a bad angle are not detected from the images and, conse-

quently, are not reconstructed. However, even in a video that presents these issues,

the markers captured from good conditions are correctly reconstructed. Moreover,

we admit that the reflection problem was mostly due to a design issue, since a simple

polarization filter could have been of great aid.

Our reconstruction result was evaluated by domain experts and were considered

very satisfactory, and we conclude that our reconstructions were sufficiently accurate

to be used for a real application. Moreover, our system can be easily applied on

other types of boats, and even other kinds of surface, such as the boat hull.

Albeit the promising results, there are many possible improvements. We can

improve the positioning of the markers on the sail, and fix markers on the sail

bounds (the foot, the luff and the leech) to improve the final profile reconstruction.

We can use filters to deal to the reflection issue. Our capture step can be modified to

adapt to different boats and sails. We can capture a large sail or more than one sail

by simultaneously use two or more auxiliary boats, or by capturing them separately.

Finally, it would be possible to use a drone to record the sail from a better angle,

but that would imply in increasing the cost of the system.

Several improvements can be implemented in our reconstruction method. We can

introduce specific conditions for the Bundle Adjustment, using known constraints

of our problem. Another criterion to search optimized frames for the reconstruction

can be evaluated, selecting frames based in their reconstruction quality instead of

quantity of markers. Actually, our system is very modular, and we could try new

methods for each step without many issues.
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[8] BARTOLI, A., GÉRARD, Y., CHADEBECQ, F., et al. “On template-based

reconstruction from a single view: Analytical solutions and proofs of well-

posedness for developable, isometric and conformal surfaces”. In: Pro-

ceedings of Conference on Computer Vision and Pattern Recognition, pp.

2026–2033. IEEE, 2012.

61
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