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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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MAGNETIC RESONANCE IMAGES

Flávio Henrique Schuindt da Silva

Março/2018

Advisor: Ricardo Cordeiro de Farias PhD.

Programa: Engenharia de Sistemas e Computação

Apresentamos neste trabalho um novo método para segmentar o Corpo Caloso

em imagens de ressonância magnética (MRI) usando U-Net, uma rede puramente

convolucional. Treinamos a U-Net usando dois datasets públicos e validamos o

modelo treinado em um conjunto de teste também obtido a partir destes datasets

públicos. Os resultados são obtidos realizando comparações usando o Índice de

Similaridade Estrutural (SSIM) e o coeficiente Dice entre a imagem gabarito e a

imagem gerada pelo modelo.
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In this work we present a novel method to segment Corpus Callosum in Magnetic

Resonance Images (MRI) using U-Net, a Fully Convolutional Neural Network. We

trained the U-Net using two public datasets and evaluated the trained model in a

test set also obtained from these two public datasets. Results are obtained mak-

ing comparisons using the Structural Similarity Index (SSIM) and Dice Coefficient

between the Ground Truth and the Predicted image.
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Caṕıtulo 1

Introduction

The human brain is one of the most complex system that one can find in the nature.

The average human brain has about 100 billion neurons and each of these neurons

has in average connection with 10000 other neurons. It leads to about of 1000 trillion

connections overall. Inside brain, there is some important structures. One of them

is the Corpus Callosum (CC). The corpus callosum is a large bundle of nerve fibres

that connects the left and right brain hemispheres. It’s the largest collection of

white matter within the brain, allowing communication between hemispheres.

Consisting of over 190 million axons, CC is hypothesized to play a fundamental

role in integrating information and mediating complex behaviors. The lack of

normal callosal development can lead to deficits in functional connectivity that

are related to impairments in specific cognitive domains. Weakened integrity of

the CC directly contributes to a decline in cognitive function in aging adults

whereas increased callosal thickness in typical childhood development correlates

with intelligence, processing speed and problem solving abilities. Last but not least,

there is also a growing body of literature reporting that subtle structural changes

in the corpus callosum may correlate with cognitive and behavioral deficits in

neurodevelopmental disorders including autism schizo-phrenia and attention-deficit

disorder [16]. The decreases in corpus callosum size in schizophrenia varys directly

with length of illness, perhaps indicative of a progressive process [17]. CC also

plays an important role in binocular vision, allowing the human being to perceive

depth. Aside from diseases, in MR exams, there is one important landmark called

ACPC line that acts as a convenient standard by the neuroimaging community, and

1



in most instances is the reference plane for axial imaging [18]. Corpus Callosum

is the first reference to obtain ACPC. Figure 1.1 below shows the CC and the ACPC.

Figura 1.1: AC-PC Line.

Therefore, correct segmentation of the CC in Magnetic Resonance images (MRI)

is very useful to diagnoses diseases, allowing doctors to measure the degree of injury

in the area and make appropriate decisions quickly. Also, for MRI it plays an

important role to detect the AC-PC landmark in the brain.
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1.1 Motivation

Deep Learning has been overcoming traditional method in some image tasks like

classification, localization, recognition, segmentation and detection. With advan-

ces in computational power and dataset extraction, the field has become extremely

challenging. Specifically, there is a huge set of applications in the biomedical area,

ranging from tissue segmentation (this work) to cancer detection and classification,

for example. The main advantage of Deep Learning method is that, different from

conventional methods, it can learn by itself the main features extractors presented

in the input image, whereas conventional methods relies on handmade features ex-

tractors, which often are made by experts in the field and based on previous studies,

requiring a significant domain expertise.

1.2 Objective

The objective of this work is to develop a novel and robust system to segment

the Corpus Callosum in brain images. While this system is robust, it’s trained,

validated and tested with a set of only 2003 images, so another main objective is

not only develop a robust system, but with restrictions on the dataset size. It avoids

the human manual task of segmenting the corpus callosum, saving significant time

from specialists, allowing them to concentrate in areas that requires their specific

knowledge.

1.3 Methodology

We train a Fully Convolutional Neural Network (FCNN) to segment the Corpus

Callosum. The FCNN is the U-Net, a convolutional neural network to biomedical

image segmentation [10]. The training is done using two medical datasets annotated

by specialists. The first one is the OASIS dataset [19] and the second one is the

ABIDE dataset [20]. To avoid bias in the trained model, we split the total dataset

images (OASIS+ABIDE) in three different sets: training, validation and test. The

sets contain 70%, 10% and 20% of the images, respectively. We adjust the hyper-

parameters of the neural network to different configurations, allowing us to get the

3



best model possible. All of these methods and configurations are detailed described

in the methodology chapter.

1.4 Related Works

Image Segmentation is a process where the image is subdivided in its well defined

regions. These regions are visually distinct and uniform with respect to some pro-

perty such as grey level, texture or color and has a semantic meaning to the problem

statement, e.g, one can segment the brain in its particular structures like Corpus

Callosum, Hippocampus, Cerebellum, etc.

In the literature, many image segmentation techniques were tried to properly

segment the corpus callosum in the brain. [21] proposed an unsupervised cluste-

ring using K-means that classify each image pixel into K different clusters. In [22]

the authors first extract regions satisfying the statistical characteristics of gray le-

vel distributions of the corpus callosum, that have relatively high intensity values,

and after that combines this result with a search for a region that has the shape

of the corpus callosum. In [23] the authors use the watershed morphological ap-

proach with predefined marks to perform the segmentation. There are also some

approaches using machine learning techniques. The work in [24] presents a machine

learning approach for improving active shape model segmentation. It first extract

local edge features using steerable filters and uses a machine learning classifier based

on AdaBoost [25] to select a small number of critical features that can find optimal

displacements for landmarks by searching along the direction perpendicular to each

landmark. In [26] they use a training set to construct two models representing the

objects-shape model and border appearance model. A two-step approach to image

segmentation is reported. In the first step, an approximate location of the object of

interest is determined. In the second step, accurate border segmentation is perfor-

med. Last, there are some initiatives using Atlas based segmentation [27]. The idea

is to use a large dataset where important regions of interest in the brain were well

delineated by experts radiologists. This large dataset gives a good understanding

about pixels values intensity, edges, etc. With this information, one can get a new

MRI image, that is not presented in the dataset, and match it with the Atlas image

4



and identify the regions of interest. In [28] it is constructed an atlas by clustering

the patient images into subgroups of similar images and it is built a mean image

from each cluster.

1.5 Deep Learning

As stated in previous section, some approaches relies on the use of Machine Learning

based algorithms. Although machine learning algorithms are somehow great in some

tasks, they are limited in their ability to process natural data in their raw form.

For decades, constructing a pattern-recognition or machine-learning system required

careful engineering and considerable domain expertise to design a feature extractor

that transformed the raw data, such as the pixel values of an image, into a suitable

internal representation or feature vector from which the learning subsystem, often a

classifier, could detect or classify patterns from the input data [29]. Deep Learning

comes to exactly avoid this feature engineering tasks to be developed by a human

being. The idea is that you stack Convolutional Layers, one by one, and these layers

are totally responsible for the discover of the representations needed to the detection

or classification without any human intervention on the selection of the appropriate

features. Deep Learning is a kind of Representational Learning in the sense that each

layer is responsible to transform the input data, coming from the previous layer, to a

new representation that is easier to be understood, depending on the problem: image

classification, segmentation, edge detection, etc. Each layer is a non-linear module

that transforms its input data into a representation at a higher and slightly more

abstract level. An image, for example, comes in the form of an array of pixel values,

and the learned features in the first layer of representation typically represent the

presence or absence of edges at particular orientations and locations in the image.

The second layer typically detects motifs by spotting particular arrangements of

edges, regardless of small variations in the edge positions. The third layer may

assemble motifs into larger combinations that correspond to parts of familiar objects,

and subsequent layers would detect objects as combinations of these parts [29].
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1.6 Dissertation Structure

This dissertation presents in the next two chapters the theoretical foundation. The

other chapters are dedicated to Methodology, Results and Discussions, Conclusion

and Future work, respectively.

In chapter 2, Artificial Neural Networks : we present the theoretical foundation

to Neural Networks, beginning with a single Neuron, evolving to Multiple Layer

Perceptrons (MLP) and ending the chapter with Convolutional Neural Networks.

We also introduce some important Machine Learning concepts.

In chapter 3, Modern History of Object Recognition: we go deeper and explore

important concepts to a better understanding of the segmentation task.

In chapter 4, Methodology : we present our methodology for training neural

networks to segment the corpus callosum.

In chapter 5, Results and Discussions : the experimental essays, evaluation and

discussion are presented.

In chapter 6, Conclusion and Future Work : we suggest some improvements to

future works.
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Caṕıtulo 2

Artificial Neural Networks

The brain is like a muscle. When it

is in use we feel very good.

Understanding is joyous.

Carl Sagan

One of the most impressive tasks that a human being can do is to recognize and

label different objects in a image. We do it effortlessly. How we do it? The answer

is that hundreds of million of years of evolution created a complex system in our

brain called the virtual cortex. In each hemisphere of our brain, humans have a

primary visual cortex, also known as V1, containing 140 million neurons, with tens

of billions of connections among them. And yet human vision involves not just V1,

but an entire series of visual cortices - V2, V3, V4, and V5 - doing progressively

more complex image processing [1]

Consider, for example, a task of recognize handwritten digits like in figure 2.1.

Figura 2.1: Handwritten digits from MNIST dataset.

7



There are basically two main approaches to solve this task in a computer pro-

gram. The first one is basically setup a set of rules and apply them, digit by digit.

For example, we could say that a ”4” has a vertical stroke, one horizontal and

another one vertical with half size of the first one. Using this rule in a software, it

can identify digit by digit. The problem with this approach is that we need to write

very complex algorithms that can handle all the possible variations, which is a very

boring task.

The second approach, using Neural Networks, tries to work on the problem in a

different way. Using a huge set of images known as training set, we guide the neural

networks to learn how to identify each digit. With the training set size ranging from

millions or billions of digits, the network can learn very well how to recognize each

digit.

2.1 The Percetron

Before explaining the Neural Networks, we will introduce the most simple artificial

neuron unit called Perceptron that was developed in the 1950s and 1960s. The

perceptron is very simple and his work is only to calculate a mathematical function

using the inputs and evaluate (activate or not) a final response. In the figure 2.2 we

can see how it works.

The perceptrons receives the input features x1, x2 and x3 as in Figure 2.2.

A weight w1, w2 and w3 is associated to each input feature. The weights are

real numbers that express how important is its associated input. In the end, the

perceptron calculates the weighted sum of the input and evaluates the final response:

If the weighted sum is higher than a threshold, the perceptron activates, output equal

1. Otherwise it’s output is 0, not active. More formally:

output =

 0 if
∑

j wjxj <= threshold

1 otherwise
(2.1)

The perceptron is a kind of unit that evaluates decisions by weighting up evi-

dence. One great way to understand how it works is to make analogies. Suppose

that tomorrow an important music festival will be happening in your city and you
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Figura 2.2: Perceptron model.

would like to go, but you have some events to evaluate before decide in your final

answer.

1. The weather is good or not

2. Your companion wants or not to go

3. International bands will play in the festival

We can represent these conditions by binary input variables x1, x2 and x3 res-

pectively, i.e., x1 = 1 if the weather is good, x1 = 0 otherwise. Similary x2 = 1 if

your companion wants to go with you and x3 = 1 if a international bands will play

in the festival.

Now, we can model the perceptron to work the way we want: If an event has

so much importance on the decision of going to the festival, we set a big weight

for that. If not, we set a low weight. In the example above, let’s set the value 4

to the threshold and let’s assume that the third event has a great importance to

you, i.e., no matter what happens (bad weather and without companion) if there

are international bands, you are going anyway. In this case we set a weight equal

to 5 to the third event, and weights 2 to the events 1 and 2. With these options,

the perceptron model outputs 1 whenever international bands play in the festival.
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It doesn’t matter if the weather is good or if your companion wants to go with you

or not.

If one tries to model hard decisions with just one perceptron, probably it will

fail. Hard decisions depends on multiple questions and answers. It’s a level by level

decision, where in the first levels the model tries to extract and understand basic

features of the input and in the last levels more complex features are understood

by the model. But if we stack many perceptrons in a layer by layer fashion, we

can develop a robust model that can handle hard decisions. The proposed model is

shown in Figure 2.3.

Figura 2.3: Many layers Perceptron model. [1]

In this network, the first column of perceptrons on the left, is called the first layer

of perceptrons, is responsible for making three very simple decisions, by weighing

the input evidence. What about the perceptrons in the second layer? Each of

those perceptrons is making a decision by weighing up the results from the first

layer of decision-making. This way a perceptron in the second layer can make a

decisions at a more complex and abstract level than the perceptrons in the first

layer. And even more complex decisions will be made by the perceptron in the third

layer. Meaning that a many-layer network of perceptrons can perform sophisticated

decision making [1].

Equation 2.1 is quite cumbersome with the threshold in the inequality. We will

rearrange the equation to create a new term called bias. This term will control how

easy is to the perceptron to output a 1. Also, we will get rid of the summation in

the equation, changing it to a dot product. The new equation becomes 2.2.
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output =

 0 if w.x+ b <= 0

1 otherwise
(2.2)

The perceptron can also act as a NAND logical gate. Take a look at Figure 2.4.

Figura 2.4: Perceptron can also works as a NAND logical gate.

The truth table for the perceptron when it receives ”0” or ”1” in its inputs is

shown in the Table 2.1.

X1 X2 Perceptron function evaluation Output
0 0 -4*0 + -3*0 + 5 1
0 1 -4*0 + -3*1 + 5 1
1 0 -4*1 + -3*0 + 5 1
1 1 -4*1 + -3*1 + 5 0

Tabela 2.1: Truth table to perceptron as a NAND gate.

The truth table shows clearly that the percetron model reproduced faithfully the

behaviour of the NAND gate. The good news is that NAND gates are universal in

computation and then perceptrons can also be universal.

The computational universality of perceptrons is simultaneously reassuring and

disappointing. It is reassuring because it tells us that networks of perceptrons can

be as powerful as any other computing device. But it is also disappointing because

it makes it seem that perceptrons are merely a new type of NAND gate. Which is

hardly a big news [1]!

However, the situation is better than it seems. It turns out that we can de-

vise learning algorithms which can automatically tune the weights and biases of a

network of artificial neurons. This tuning happens in response to external stimuli,
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without direct intervention of the programmer. These learning algorithms enable us

to use artificial neurons in a way which is radically different to conventional logic

gates. Instead of explicitly laying out a circuit of NAND and other gates, our neural

networks can simply learn to solve problems, sometimes problems where it would

be extremely difficult to directly design a conventional circuit [1].

2.2 Sigmoid Neurons

There is a problem with perceptrons. It would be desired that small changes in the

weights or bias to lead small changes on the output, but as will be seen later in

this text, this can cause the network to generate completely different outputs. This

desired behavior is very important for learning algorithms. This problem can be

attacked by using Sigmoid neurons.

Like perceptrons, sigmoid neurons have inputs and weights, but its inputs can

accept any value between ”0”and ”1”. Also, they are modified so that small changes

in their weights and bias cause only a small change in their output. Figure 2.2

that we use to represent perceptron can also be used to represent sigmoid neurons.

They have the same components: Inputs, weights, output and a overall bias. The

difference here is that sigmoids neurons instead of only evaluating equation 2.2, it

uses the result as the input for a new function called sigmoid function. The sigmoid

function is defined as:

σ(z) =
1

1 + e−z
(2.3)

where z is:

z =
∑
j

wjxj + b (2.4)

The plot for the sigmoid function shown in the Figure 2.5.

From the plotting, one can see that when z assumes high negative or positive

values, the sigmoid function behaves exactly as the perceptrons. The sigmoid func-
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Figura 2.5: Sigmoid function [2].

tion is like a smoothed version of a step function and this is the key fact that makes

small changes in bias and weights to cause small changes in the output.

How should we interpret the output from a sigmoid neuron? Obviously, one big

difference between perceptrons and sigmoid neurons is that sigmoid neurons do not

output just 0s and 1s. They output any real number between 0 and 1, so values

such as 0.173 and 0.689 are legitimate outputs. This can be useful, for example, if

we want to use the output value to represent the average intensity of the pixels in an

image input to a neural network. But sometimes it can be a nuisance. Suppose we

want the output from the network to indicate either ”the input image is a 9”or ”the

input image is not a 9”. Obviously, it would be easier to do this if the outputs were

0s and 1s, as for perceptrons. But in practice this behavior can be simulated by,

for instance, stating that outputs smaller than 0.5 indicate a ”not 9”, and outputs

greater or equal than 0.5 indicate ”9” [1].

2.3 Neural Network Architecture

In the last section, we talked about neuron units, perceptrons and sigmoid neurons,

and how they work. We also made a brief introduction about the stack of neuron

units in layers. This is the main idea of this section, how to stack neurons in layers

to create Neural Networks!

Neural Networks are modeled as collections of neurons that are connected in an

acyclic graph. In other words, the outputs of some neurons can become inputs to

other neurons. Cycles are not allowed since that would imply an infinite loop in the

forward pass of a network. Instead of an amorphous blobs of connected neurons,

Neural Network models are often organized as distinct layers of neurons. For regular
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neural networks, the most common layer type is the fully-connected layer in which

neurons in two adjacent layers are fully pairwise connected, but neurons belonging

to the same layer, share no connection. Figure 2.6 shows two examples of Neural

Network topologies, that use a stack of fully-connected layers [2].

(a) A 2-layer Neural Network. One
hidden layer of 4 neurons, one out-
put layer with 2 neurons, and three
input units.

(b) A 3-layer neural network with three inputs, two hid-
den layers of 4 neurons each, and one output layer

Figura 2.6: Two neural networks with different topologies. Notice that in both cases
there are connections, synapses, between neurons of different layers, but not within
a layer [2].

There are some conventions that the reader should be aware of to properly un-

derstand Neural Networks architectures:

1. The first layer is called input layer, the last one is called output layer and all

others are called hidden layers.

2. We don’t count the input layer. In Figure 2.6, for example, the left image is a

2-layer network because we have one hidden layer and one output layer.

3. This multiple layer topology, for historical reason, is called multilayer per-

ceptrons (MLP) sometimes, despite being made up of sigmoid neurons, not

perceptrons. It can also be called sometimes using the term Artificial Neural

Networks (ANN).

Generally, the design of input and output layers of the ANN should be very

simple and straightforward. The cool and artistic work happens in the design of the

hidden layers. How many hidden layers? How many neurons in each layer? How

to model the activation functions to be used? These questions are asked every time

by the ANN designer. This is what differentiates one Neural Network from another
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and can lead to very different results. We will talk more about specific architectures

later.

2.4 The Logistic Regression Model

Logistic regression is a regression model when one tries to predict the value of a

output variable y given a input variable x. It’s used in binary classification pro-

blems, where y can only assume values 0 and 1, and plays an important rule as the

foundation to the understanding of more complex concepts in deep neural networks.

The logistic regression model is defined as: given the input x, we want to find the

output ŷ using the model parameters w and b, weight and bias, respectively. The

best w and b will minimize the loss function L over a set of m training examples

minw,bJ(w, b) (2.5)

where J(w, b) is:

J(w, b) = 1/m ∗
∑
m

L(ŷi, yi) (2.6)

The loss function L measures how close the predicted result ŷ is from the actual

result y. One simple thing that we could do is to use the squared error as loss

function. It could work, but in logistic regression we use the log loss function

because it is convex, to be seen in section 2.6. It is defined as:

L(ŷ, y) = −(y logŷ + (1− y)log(1− ŷ)) (2.7)

This makes sense because if we have y = 1, it means that L(ŷ, y) = −logŷ, and

since we are trying to minimize the loss function, we want logŷ, i.e., ŷ to be the

largest possible value and, as mentioned before, this is a classification problem and

the largest value that ŷ can achieve is 1, which is the result we want to predict.
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The opposite is also true. If y = 0, it means that L(ŷ, y) = −log(1 − ŷ). Since we

are trying to minimize the loss function, we want −log(1− ŷ), i.e., 1− ŷ to be the

lowest possible value and, as mentioned before, this is a classification problem and

this value for ŷ is 0, i.e, which is also the result we want to predict.

There are other types of loss function that we will investigate later, but for

logistic regression, the most used is the log loss function.

2.5 Feed-Forward Computation

Looking to Figure 2.6, one can see that there is no loop among the layers. For this

is the reason those are called feed-forward neural networks. The data that came as

the inputs go through the neural networks suffering modifications until the output

at the end. In this section we will start to use some mathematical notation and

formulas that will guide us to fully understand neural networks.

To understand the feed forward computation, we will first analyze what happens

with a single neuron, after we will generalize for n neurons in a single layer l of the

neural network, and finally we will propagate of the calculations up to the output

layer.

A neuron computes its output in two phases. First, it calculates the output z

exactly as shown in equation 2.4. After, it uses the output z as an input to calculate

a, i.e., its activation. Figure 2.7 shows these two phases.

Figura 2.7: A single neuron feed-forward computation [3].
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Now, let’s generalize for an entire layer in the neural network. We will illustrate

this example using the following neural network, Figure 2.8 [3].

Figura 2.8: Neural network feed-forward computation [3].

In this network, we have three inputs, x1, x2 and x3, first hidden layer has 4

neurons and the final output layer has one neuron. The feed-forward in the first

neuron in the first hidden layer is:

z11 = w1Tx+ b11 (2.8)

a11 = σ(z11) (2.9)

In Equation 2.8 and 2.9, the superscript indicates the layer number and the

subscript the neuron position from top to bottom. In this case, for example, the

equation above is calculating the output for the first neuron in the first hidden layer.

In general, we have the output a for a neuron k in a layer l as follows:

zlk = wlTxl + blk (2.10)

alk = σ(zlk) (2.11)

And if we do the same thing for every neuron in a specific layer, we end up with

a final matrix al that represents all the activations for all n neurons in a specific

layer:
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zl =


zl1

zl2
...

zln



al =


al1

al2
...

aln


or:

zl = al

The output al is feed-forward as input x to the next layer until we get the final

result in the output layer. Specifically in the neural network from Figure 2.8 the

intermediate and final results are:

z1 = w1x+ b1 (2.12)

a1 = σ(z1) (2.13)

z2 = w2a1 + b2 (2.14)

a2 = σ(z2) (2.15)

2.6 The Backpropagation Algorithm

From the previous section, we learned how to calculate the final output feed forwar-

ding the data from the input until the last neuron in the output network layer.

However, it’s important to note that we are trying to train neural networks to achi-

eve the best result for the task. We need a scheme that can read the output value

and adjust every weight and bias of the network to achieve better results in the

output. This is called the backpropagation algorithm.

Before studying this algorithm, we first need to understand the concept of gra-
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dient descent. We learned from Section 2.4 that we have to find parameters w and

b that minimize the loss function. How do this by using the gradient descent.

The cost as a function of parameters W and b have a bowl shape as shown in

Figure . It means that we are working with a convex function with global optima

and this is the reason why the gradient descent works so well in this context [3].

Figura 2.9: The cost as a function of parameters W and b [3].

The gradient descent algorithm is very simple, and can be written in python as

follows:

1 def gradient descent(learning rate , w, b,

2 num epochs , training set):

3 for i in range(num epochs):

4 forward result = forward pass(training set)

5 dw, db = backpropagation(forward result)

6 w = w − learning rate ∗ dw

7 b = b − learning rate ∗ db

The algorithm only iterates a fixed number of epochs and in each iteration, using

the forward and backpropagation algorithms, it calculates the derivative of the cost

function in respect of w and b, dw and db respectively, and these values are scaled

using a factor of learning rate that controls how fast we are going towards the global

optima point. The minus signal in the formula indicates that the gradient descent is

trying to go in the opposite direction of the gradient, i.e, if the gradient is positive,

and we saw previously that the function is convex, then the update must be negative
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to bring w and b to the global optima point. If it is negative, then the update must

be positive.

In Deep Learning, we are dealing with a lot of data, in the order of ten of

thousands or more. One flaw of the gradient descent algorithm is that if the size of

the training set is huge it will take a lot of time to finish even the first epoch. It will

be in practice impossible to find the global minima of the function in a reasonable

time. There are two variations of the gradient descent algorithm that we can do to

speedup the training in this case: (1) mini-batch gradient descent and (2) stochastic

gradient descent. What we do in both algorithms is to divide the training set in

K blocks called batches, of size B. Now a different block is used in each epoch of

training. It means is that instead of updating weights and bias only once by epoch

of the gradient descent algorithm, we will do K updates for the weight and bias

per epoch. In particular, in stochastic gradient descent we have only one sample

per batch, B = 1, and then K = m, where m is the number of training examples.

Mini-batch gradient descent, in turn, allows us to set any value for B and then

K = m/B. Generally, in Deep Learning, we avoid using the stochastic gradient

descent because it is much more difficult to converge: in one epoch you can have a

good training sample and go one step towards the convergence. While in another

epoch with a bad training sample, leads us away from convergence. Also, in terms of

implementation you lose the advantage of vectorization, since there will be only one

example in the batch. The best choice is to use the mini-batch gradient descent and

choose a batch size of size 2n, where n = 1, 2, 3, 4... This choice makes the training

step faster compared to gradient descent and with a better convergence compared

to stochastic gradient descent. Using 2n as batch size also helps the allocation

in CPU/GPU memory, as the allocation systems in these devices generally work

better with allocations multiples of 2. The mini-batch gradient descent algorithm is

as follows:

1 def mini batch gradient descent(learning rate , w, b,

2 num epochs , training set , B):

3 K = len(training set) / B

4 for i in range(num epochs):

5 for j in range(K):
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6 current batch = training set[j∗B:j∗B+B]

7 forward result = forward pass(current batch)

8 dw, db = backpropagation(forward result)

9 w = w − learning rate ∗ dw

10 b = b − learning rate ∗ db

Now that the gradient descent was introduced, lets understand how to calculate

the derivatives. Again, we will first see how we do it using logistic regression and

then we will generalize it. As shown in Figure 2.10, in logistic regression we do a

forward computation, black arrows, afterwards we backpropagate, red arrows, the

gradients and update the parameters w and b.

Figura 2.10: Forward and backpropagation in logistic regression.

For the sake of simplicity, we will refer to da, dz, db and dw as the derivatives of

the loss function with respect to the variables a, z, b and w, respectively. In logistic

regression example above, the equations are:
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da =
dL(a, y)

da
=
−y
a

+
1− y
1− a

(2.16)

dz =
dL(a, y)

dz
=
dL

da
∗ da
dz

= da ∗ dσ
dz

(2.17)

dw1 =
dL(a, y)

dw1

=
dL(a, y)

dz
∗ dz

dw1

= dz ∗ x1 (2.18)

dw2 =
dL(a, y)

dw2

=
dL(a, y)

dz
∗ dz

dw2

= dz ∗ x2 (2.19)

db =
dL(a, y)

db
=
dL(a, y)

dz
∗ dz
db

= dz ∗ 1 = dz (2.20)

(2.21)

These obtained these equations for backpropagation using calculus concept of

chain rule for derivatives. For example: To calculate dz we take ”what is in front

of parameter z in the sequence”, in this example parameter a, and calculate the

derivative of loss function in respect of this variable. Then we multiply this result

by the derivative of a with respect of z since a depends on z. In other words, we

are trying to measure the modifications that can occur in the output with a slight

variation in a and z. All the equations above use this same chain rule principle.

Now, we will generalize the linear regression above to a neural network with two

layers. From two layers and beyond the process is the same. The two layer neural

network is shown in the Figure 2.11.

Figura 2.11: Forward and backpropagation in a 2-layer neural network.

As usual, we start the process from the end to the begin. The superscript [k]

means the k − th layer. In the example, starting from the end, second layer, the

equations are given by:
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da[1] =
dL(a[2], y)

da[1]
=
−y
a[2]

+
1− y

1− a[2]
(2.22)

dz[2] =
dL(a[2], y)

dz[2]
=

dL

da[2]
∗ da

[2]

dz[2]
= da[2] ∗ dσ(z[2])

dz[2]
= a[2] − y (2.23)

dw[2] =
dL(a[2], y)

dw[2]
=
dL(a[2], y)

dz[2]
∗ dz

[2]

dw[2]
= dz[2] ∗ a[1]T (2.24)

db[2] =
dL(a[2], y)

db[2]
=
dL(a[2], y)

dz[2]
∗ dz

[2]

db[2]
= dz[2] ∗ 1 = dz[2] (2.25)

Continuing to propagate the gradients until the input vector X, the equations

for the first, and last propagation layer, become:

da[1] =
dL(a[2], y)

da[1]
=
dL(a[2], y)

dz[2]
∗ dz

[2]

da[1]
= (a[2] − y) ∗ w[2] (2.26)

dz[1] =
dL(a[2], y)

dz[1]
=

dL

da[1]
∗ da

[1]

dz[1]
= (a[2] − y) ∗ w[2] ∗ dσ(z[1])

dz[1]
∗ z[2] (2.27)

dw[1] =
dL(a[2], y)

dw[1]
=
dL(a[2], y)

dz[1]
∗ dz

[1]

dw[1]
= dz[1] ∗XT (2.28)

db[1] =
dL(a[2], y)

db[1]
=
dL(a[2], y)

dz[1]
∗ dz

[1]

db[1]
= dz[1] ∗ 1 = dz[1] (2.29)

With all the gradients at hand, one only needs to use the gradient descent to

update the weights and biases of the neural network.

2.6.1 Faster Convergence: Input Normalization and Batch

Normalization

Recall that the usage of mini-batch gradient descent turns the training reasonably

faster. It is very simple, and it works like a brute force method, i.e, we are decreasing

the size of the training set for each gradient descent step. We can implement two

data normalization that will help for a faster convergence of gradient descent: Input

normalization and Batch normalization [30].

When training a Deep Neural Network, the input feature vector X can have

many features. The problem here is that each feature can have different scales. This

means that one feature could, for example, have values in range [0, 1], but some

other feature in X could have values in range [0, 1000]. This leads to a problem
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where one feature could have a variance much more larger than another and it will

impact directly in the gradient descent derivatives and, as a consequence, in the

training. The ideal solution would be to centralize all the features with zero mean

and unit variance. We can achieve it by implementing input normalization as shown

in equation 2.32.

µ =

∑n
i=1X

(i)

n
(2.30)

σ2 =

∑n
i=1(X

(i) − µ) ∗ ∗2
n

(2.31)

X =
X − µ
σ2

(2.32)

This helps regarding the input features. But what about the activation of each

neuron in each hidden layer? Can we also normalize it? That is the problem that

Batch normalization tries to solve. For the sake of example, suppose that you are

trying to train the neural network shown in 2.11 and you want to make the values

of all neuron outputs in Z [l] in any hidden layer normalized, i.e., with the same

mean and variance along all the training. For the sake of simplicity, let’s think

about Z [l](i), i.e., just one neuron output of the l-th layer. We start normalizing this

neuron output exactly the same way we did in equation 2.32. Equation 2.35 shows

the normalization of one neuron using batch normalization.

µ =

∑n
i=1 Z

[l](i)

n
(2.33)

σ2 =

∑n
i=1(Z

[l](i) − µ) ∗ ∗2
n

(2.34)

Z [l](i)
norm =

Z [l](i) − µ√
σ2 + ε

(2.35)

Note that ε is just a parameter to control numerical stability, i.e., to avoid division

by zero.

Now, remember that we want a fixed mean and variance for the whole

training, i.e., Batch normalization has the objective to make the distribution of

values fixed in a mean and variance no matter what the updates of gradient descent
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in the weights and bias of the network do. To do this, we introduce two new

learnable parameters in the network, σ and β that will control this behaviour. The

final normalized Z [l](i) is now known as Z̃ [l](i) and is shown in equation 2.36.

Z̃ [l](i) = σZ [l](i)
norm + β (2.36)

Finally, you just need to train your neural network exactly the same way we

presented before using mini-batch gradient descent, but using Z̃ [l](i) in forward pro-

pagation instead of Z [l](i) for each hidden layer.

2.7 Loss Functions

Until now, we presented in this text, as in Section 2.4, only the log loss function.

There are a lot of other loss function and each one is suitable for a specific domain.

In this section we will present some of these functions so that the reader can be

aware of them. The notation in the section showing what is prediction and what is

actual value is the same as used in 2.4.

Quadratic Loss Function

The quadratic loss function, also known as MSE function, is defined as:

L(ŷ, y) =
1

2n

∑
n
|ŷ − y|2 (2.37)

Equation 2.37, it’s very simple: it goes in each one of the n training examples

and computes how far the prediction ŷ is from the actual value y. This difference

is augmented by a squared factor and summed up. At the end, it is averaged over

the n training examples.

Although fast and simple, the MSE has a serious drawback from a training

perspective, as explained next.

Let z and ŷ be the same as defined in Figure 2.7. We can use the math chain of

rule to differentiate Equation 2.37 with respect to the bias and weights:
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dL(ŷ, y)

dw
= (ŷ − y)σ

′
(z)x (2.38)

dL(ŷ, y)

db
= (ŷ − y)σ

′
(z) (2.39)

Now imagine, as an example, a simple problem where the real output y is 0 and

the neuron from Figure 2.7 starts to predict it as 1. The neuron will try to bring it

down to zero, but it will be a very slow process because the term σ
′
(z) is very close

to zero when the predicted output is close to 1 as shown in Figure 2.5. With this

term close to zero, the weights and bias are updated very slow and the convergence

for the true output is also very slow.

Cross-entropy Loss Function

In Section 2.4 we introduced the log loss function. Logistic regression is a problem

where one tries to classify an input x in one of two different classes. However, the

log loss function is just a special case of a more generic loss function known as

Cross-entropy that deals with more than two classes as output, i.e, M classes.

L(ŷ, y) =
M∑
j=1

yj log ŷj + (1− yj) log(1− ŷj) (2.40)

It is not so easy to see, in a first look, but the cross-entropy bupasses the slow

learning curve of the MSE. It is easy to show that the derivative of log-loss function

is what is shown in Equation 2.42. The term σ
′
(z) disappeared and now the updates

of weights and bias are truly controlled by the error in the output, σ(z)− y.

dL(ŷ, y)

dw
= x(σ(z)− y) (2.41)

dL(ŷ, y)

db
= σ(z)− y (2.42)
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Dice Coefficient Loss

The dice coefficient loss function, also known as F1-Score, is the loss function

that we use to classify pixel predictions of Corpus Callosum (CC) in the

implementation of this work. To understand it clearly, we need first to unders-

tand an important statistical concepts like 2x2 contingency table, True Positive,

True Negative, False Positive and False Negative. With that clear, we can show

statistical metrics like Accuracy, Precision, Recall and, finally, the Dice Coefficient.

To illustrate all of the concepts, let’s, for the sake of simplicity, imagine that we

have a 3x3 MRI image of a imaginary brain as shown in Figure 2.12. The white

square is a ”corpus callosum pixel”and the black square isn’t.

Figura 2.12: A 3x3 MRI example image.

Now, again, for the sake of simplicity, suppose that we built a segmentation

model and it predicted Figure 2.13 as the segmented image.

Figura 2.13: A 3x3 MRI example image segmentation.

Looking at both images, the first question is How far the segmented image is

from the true image? To answer this, let’s first classify each pixel in the segmented

image as TP, TN, FP and FN (True positive, True negative, False positive and False

negative, respectively).
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• TP: Pixel at position k in the true image is a corpus callosum pixel and pixel

at the same position in predicted image is a corpus callosum pixel too;

• TN: Pixel at position k in the true image is not a corpus callosum pixel and

pixel at the same position in predicted image is not a corpus callosum pixel

too;

• FP: Pixel at position k in the true image is not a corpus callosum pixel and

pixel at the same position in predicted image is a corpus callosum pixel;

• FN: Pixel at position k in the true image is a corpus callosum pixel and pixel

at the same position in predicted image is not a corpus callosum pixel;

Table 2.2 is know as contingency table and shows these numbers for images of

figure 2.12 and 2.13.

Is CC Pixel (True Img.) Is Not CC Pixel (True Img.)
Is CC Pixel (Predicted Img.) 0 1
Is Not CC Pixel (Predicted Img.) 1 7

Tabela 2.2: Contingency table.

The accuracy of the system is given by:

accuracy =
TP + TN

TP + FP + FN + TN
(2.43)

Here is our first warning about using accuracy. We got a good accuracy (≈

77.7%) in the example, but the segmented image had the CC completely different

from the true image, i.e., all predictions in the CC area were wrong. It happens for

accuracy whenever we have imbalanced data. In this example, for example, only

one pixel for a total of nine is a CC pixel.

Further, we can have two other numbers that measures this problem, Precision

and Recall. The Precision tries to answer the question From all the pixels that the

model classified as CC, how many of them were really CC, i.e., the model took the

right decision?. Recall, in turn, is trying to answer the question From all the pixels

that were really CC in the true image, how many of them the model predicted right?.

Recall and Precision are given by:
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precision =
TP

TP + FP
(2.44)

recall =
TP

TP + FN
(2.45)

For the example, we have a precision and recall of 0%. That is much more

consistent with the model predictions.

We can combine Precision and Recall in a harmonic average of both. This is

known as the Dice Coefficient or F1-Score. It has the goal of giving equal importance

to precision and recall and its score is always in the range [0, 1], i.e., 1 means that

the task was perfect, obtaining the correct result, and 0 means that we made all

kinds of mistakes.

dice =
2 ∗ precision ∗ recall
precision+ recall

(2.46)

In resume, the Dice Coefficient is a measure of how well we are doing the compa-

rison with the ground-truth. To use it as the loss functions, we must always instruct

the gradient descent to go in the opposite direction of the dice. It means that if we

have a dice coefficient of 1, the loss is -1 because we are making less mistakes. If

the dice coefficient is near zero, we are making a lot of mistakes and then gradient

descent should have a higher loss, near zero in this case.

2.8 More Activation Functions

In Section 2.2 we started describing the sigmoid function. Although it is very simple,

easy to understand and to use, the sigmoid function has two major drawbacks:

It can saturate and kill the gradients, and its output is not zero-centered. The

first drawback is pretty clear when we look at Figure 2.14. Note that if we have

activations near zero or one, near the ”tails”of the sigmoid curve, the derivative

of the activation function at these points will be almost zero or zero. As we use

the derivative of activation function in the backpropagation algorithm, this zeroed

value will be propagate through the network and the gradient will be entirely killed
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for the neurons that receive this gradient. This is known as the vanishing gradient

problem [31]. The second drawback has less severe consequences, but it is still a

problem because if its output is not zero-centered it means that the activations will

be particularly in the range [0, 1] for the sigmoid neuron. Now, see in Equation 2.49

what happens for a single neuron in the backpropagation:

z =
∑

i
wixi + b (2.47)

df

dwi
= xi (2.48)

dL

dwi
=
dL

df

df

dwi
=
dL

df
xi (2.49)

As xi is always positive, then the gradient will depend exclusively on dL
df

. It

will make the whole gradient to be either all positive or all negative, introducing

an undesirable zig-zagging effect in the gradient descent algorithm while updating.

This has less severe consequences because the gradients are summed up across mini-

batches of data in each training epoch and then the weights will have variable signs.

One way to solve this second drawback is to make the sigmoid zero-centered.

This is what we do by introducing the tanh non-linearity activation function. The

tanh takes a real number and squashes it into range [−1, 1]. As this range now can

have values positives or negatives, the zig-zagging effect disappears. However, we

still have problems of gradient being killed with tanh as shown in Figure 2.15.

We still have to consider ReLU [32]. It has become very popular in the last

few years. It computes the function f(x) = max(0, x) as shown in Figure 2.16.

ReLU has two advantages over tanh and sigmoid. First, it is simpler to calculate:

no exponentials, no divisions. Just a threshold. Second, it was found to greatly

accelerate approximately by a factor of 6x the convergence of stochastic gradient

descent compared to the sigmoid/tanh functions. It is argued that this is due to

its linear, non-saturating form [33]. However, it has the same problem of not being

centered similar to sigmoid function and it can also suffer from the vanishing gradient

problem because as shown in Figure 2.16, the derivative value of ReLU for x < 0

is always zero. It’s important to note that, unlike sigmoid, this problem has lesser

chance to happen because the gradient is only zero on half of the curve.
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Figura 2.14: Sigmoid and its derivative.

Figura 2.15: Tanh and its derivative.
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One thing that can be done to prevent the vanish gradient problem in ReLU is to

implement a new function called Leaky ReLU [34]. The Leaky ReLU is defined by

the function f(x) = max(0.1x, x). What is does is that in the first half of the ReLU

curve it adds a small positive slope to prevent the vanishing gradient problem.

Figura 2.16: ReLU and its derivative.

2.9 Improving the way Neural Networks Learn

In the previous sections, we explained the foundations of how neural networks work.

In this section we will go further, showing how can be improved the learning of the

neural networks using hyperparameters tuning, data setup and a faster optimization

algorithm.

2.9.1 Machine Learning Basics: Training, Validation and

Test Datasets

The applied Machine Learning is a highly interactive process as shown in the Fi-

gure 2.17. It starts with the idea, goes to coding and ends with the experiments. It
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is repeated until you find a good model.

Figura 2.17: The iterative Machine Learning process. [4]

A deep learning model depends on a large number of parameters: number of

layers, number units in each hidden layer, activation functions, learning rates, etc.

Even very experienced deep learning experts find it very hard to correctly guess

the best choice of hyperparameters at a first glance. If one tries to repeat the cycle

depicted in Figure 2.17 indefinitely, by randomly changing the hyperparameters,

the learning process does not converge. That is the reason that we must split our

dataset in three sub-sets: training, validation and test. This will allow us to find

the best model.

The training sub-set is used to train the models. The validation sub-set is used

to evaluate the models, each one having different hyperparameters. The goal of

the validation set is just select the best model, i.e. the model that produces the

results closer to the expected ones. Finally, the test sub-set is the fireproof that will

show how well the best model works on the real world. The importance of the test

sub-set is that it gives an unbiased estimation of your model performance. It’s not

absolutely required to have the test sub-set, but if your dataset is large enough to

allow you to separate a part of it to used as such, it is always a good idea to do it.

In the past, before the ”big data” era, it was a common practice to split your

dataset in 60% for training, 20% for validating and 20% for testing. Nowadays with

huge datasets at hand, for instance one million data, one can split it into 98/1/1%

for training, validation and test, respectively, which will give you enough amount of

data for each of the three steps [4].
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When you train a neural network, you must pay attention two important measu-

rements: bias and variance. The bias measures how well your model fit the training

data, while the variance measures how well your model can generalize in the vali-

dation set. To illustrate these concepts, let’s imagine that we are trying to do a cat

classifier, i.e., a system that classifies an image as cat or not cat and assume that

the human error in classification of cat images is almost 0%. This is called optimal

bayes error, i.e, this is our error rate baseline and we can’t be better than this. Now,

we can measure bias and variance in four different cases:

1. 1% training set error and 9% validation set error→ low bias and high variance:

Model is not good because is not generalizing well.

2. 10% training set error and 9% validation set error → high bias and low vari-

ance: Even though the model has low variance, it is not good because it is not

fitting the training data.

3. 20% training set error and 12% validation set error → high bias and high

variance: Model is not good because is not fitting the training data and it is

not generalizing well. Worst case!

4. 1% training set error and 2% validation set error→ low bias and low variance.

This is the best model! The model is fitting the training data and it is also

generalizing well on validation dataset.

It is important to note that we always have to pay attention to the baseline error.

If, for example, the baseline human error were about 9% then the second case above

would be considered a good model.

A general framework for Machine Learning is:

1. Train the model. If it has high bias, then you try a few things: A bigger

network, train it longer or try a new neural network architecture.

2. Repeat step 1 above until you are comfortable with a good bias value.

3. Once you solved the bias problem, you check for the variance. If the model has

high variance, you can try to add more data. Use regularization, we will talk

more about it in the next section, or try a new neural network architecture.
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4. Repeat step 3 above until you are comfortable with a good variance value.

2.9.2 Regularization

Sometimes, your model overfits. Overfitting happens when your model has a low

error in training set, but a relative high error in validation data, i.e., the model is

only memorizing the examples, but no generalizing well for new examples. It is the

case 1 presented before.

A simple solution to prevent overfitting is to add more data. If there is no more

data available another solution is to apply regularization. Let’s try to understand

how to apply regularization by using logistic regression, introduced in Section 2.4.

Basically the two most common types of regularizers are L1-norm 2.51 and L2-

norm 2.53. By applying these regularizers to Equation 2.6, we obtain equations 2.50

and 2.52:

J(w, b) = 1/m ∗
∑
m

L(ŷi, yi) + 1/m ∗ λ ∗ ||w||11 (2.50)

Where L1 regularization term is defined as:

||w||11 =
∑
j

wj (2.51)

J(w, b) = 1/m ∗
∑
m

L(ŷi, yi) + 1/2m ∗ λ ∗ ||w||22 (2.52)

Where L2 regularization is known as squared euclidean norm and is defined as:

||w||22 =
∑
j

w2
j = wTw (2.53)

The parameter λ is a hyperparameter known as regularization parameter and

is obtained using cross validation in the training set as explained previously in
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Subsection 2.9.1.

The reader could also argue that we are not adding any regularization term in

bias parameter b. We don’t regularize parameter b because it is a single number

while w is a much higher dimension parameter vector and presents higher variance

problem [4].

Besides L1 and L2 regularization, one very creative and very functional technique

is dropout [35]. Imagine, for example, that you trained a Neural Network like the one

from Figure 2.6(b) and it overfits. Dropout means that for every training example

that is fed through out the network, we are going to randomly select, with probability

p, in each layer some neurons to literally vanish. It means that their output will be

set to zero. This will have two consequences that will prevent overfitting: (1) By

removing some neurons, our network become simpler, with less parameters, or less

likely to overfit; and (2) the preserved neurons become much more specialized

in the task, once they can not rely on a neighbor neuron, since this neuron could

have been dropped out from the process. This is a process called weight spread

out and it means that the neuron that was not dropped out will try to spread the

weights among its neighbors neurons. The weights spreading will have the effect of

shrinking the squared norm of the weights and it is very similar to what happens in

L2 regularization.

Another regularization technique is early stopping. In this technique, we keep

measuring the training and validation set error of the model iteration by iteration.

When these two curves start diverging, it is time to stop the training and save the

model. The downside of this technique is that by early stopping the training you

can simultaneously affect the bias and variance of your model, meaning that they

are coupled. It is against the orthogonalization principle of machine learning that

states that you should be able to change one parameter and see only the particular

effect of on the model without coupling it with other parts of your model [36].

Recall from section 2.6.1 that Batch Normalization scales each mini batch by

the mean/variance computed on only that mini batch. Well, as we are not using

the full distribution, i.e., the whole training set and only a batch, this mean and

variance is a estimate over the entire training set and then adds some noise to the

values of Z̃ [l](i) in this particular mini batch. This is a similar process that happens
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with dropout. In dropout, we are introducing a multiplicative noise by multiplying

some neurons outputs by zero. In Batch normalization, the noise is introduced by

µ and σ2. This noise, like dropout, has a regularization effect [30].

Remember from the beginning of this section that we said that a simpler appro-

ach is add more data. If it is difficult to get new data, one can synthesize new data

from the data at hand, known as data augmentation. It can be done by applying ro-

tation, translation, shearing, zooming, etc, to the images that you have, generating

new ones.

2.10 Convolutional Neural Networks

From section 2.3 to 2.6, we established the Neural Networks foundations, from its

conception to how we train it. We started explained what is a neuron, how we stack

many of them in a layer, how we create many layers and how we train of all this

using the backpropagation algorithm. In this section we are going to explain what

is a Convolutional Neural Network (CNN).

Convolutional Neural Networks are very similar to ordinary Neural Networks

from the previous sections: they are made up of neurons that have adjustable

weights and biases. Each neuron receives some inputs, performs a dot product

and optionally follows them with a non-linearity. The whole network still expresses

a single differentiable score function: from the raw image pixels on one end to class

scores at the other. And they still have a loss function (e.g. SVM/Softmax) on the

last (fully-connected) layer and all the tips/tricks we developed for learning regular

Neural Networks still apply [2].

If they are similar and every technique that we learned for Neural Networks

can be used in CNN, why do we need to learn one more type of network? A

simple assumption made for the CNN is that the inputs are always images. This

assumption allows the application of contractions on the images, through out the

neural network, making the computation faster, since it reduces the number of

parameters in the network.
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2.10.1 CNN Architecture

Recall from the Neural Networks, that NNs receives an input, for instance an image,

the process is a sequence of activations that happens from a neuron to all neurons in

the next hidden layer. Each neuron of a hidden layer is fully connected to all neurons

in the previous hidden layer. The problem with this approach is the big number

of weights that we would have in the neural network. To work on 256x256 images

as input, for instance, each neuron in the hidden layers will have 64K connections.

If we consider a bigger image, like 1Kx1K, we would have 1M connections. Such

architecture may not scale satisfactory and great probability of overfitting.

Convolutional Neural Networks take advantage of the fact that the input consists

of images and they constrain the architecture in a more sensible way. In particular,

unlike a regular Neural Network, the layers of a ConvNet have neurons arranged in 3

dimensions: width, height, depth. Note that the word depth here refers to the third

dimension of an activation volume, not to the depth of a full Neural Network, which

can refer to the total number of layers in a network [2]. This arrangement makes

neurons in one layer connect only with a small region of the layer before it, instead

of all neurons. Every layer in the ConvNet has a simple contract: It transforms a

3D input volume to another different output volume. In the figure below, one can

see the difference between Neural Networks and Convolutional Neural Networks.

(a) A 3-layer neural network with th-
ree inputs, two hidden layers of 4 neu-
rons each and one output layer

(b) A convolutional neural
network with layers arran-
ged as volumes.

Figura 2.18: In the Neural Network (a), all neurons of one layer are fully connected
to all neurons from the previous layer. In the ConvNet (b), the neurons are arranged
as 3D volumes [2].

2.10.2 The spacial arrangement of CNN

Recall from section 2.10.1 that each layer in the CNN receives in its input a volume.

Let’s now describe how we can ”walk”in a input volume and produce a different
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spatially arranged output volume. We need to understand three hyperparameters

that control the size of the output volume: Depth, Stride and Padding. For the

sake of example, let’s assume that our input volume is a single channel image with

dimensions 32x32x1 and that we try to apply in this volume six filters of dimensions

3x3x1 each one as as shown in Figure 2.19.

(a) Input volume.

(b) Filter volume.

Figura 2.19: The input volume, the image with dimension 32x32x1 to be covolved,
is represented by a single cube in (a). In (b), there are 6 filters, each one having
dimensions 3x3x1 and being represented by a different color.

The first hyperparameter is Depth. Depth, as the name says, is just the depth of

the input/filter volume, i.e., the number of filters that we are applying in the input

volume. In this example, the depth of the filter volume is six.

Now, imagine that we get only the first filter, the red one, to do convolutions

of this filter through the input volume. To do this, we place the red filter in the

top left corner of the input volume and make the following question to ourselves:

Walking pixel by pixel horizontally, from left to right, how many different positions

the filter can occupy? In this example, it can occupy exactly different 30 positions

without extrapolate the input volume size in the same dimension (Remember: Input

volume has size of 32 in the same dimension!). To analyze the size vertically, i.e.
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from top to bottom, we do the same logic. As the input volume has also size of

32 from top to bottom then the output dimension in this case will also be 30. An

important point here is, as we are doing convolutions, each filter in the filter volume

needs to have the same depth of the input volume, one in this case (otherwise the

convolution math would not work). So, in the end, the red filter produced a filtered

image of size 30x30x1. Doing this for all the filters in the filter volume we would

have in the end a final output volume of 6x30x30x1. The step size that we choose

to walk through the pixels is known as Stride. The stride controls the size of the

output volume spatially. If we had chosen a filter size of 5x5x1 and a stride of 3,

for example, we would have a volume of 16x16x1 in the end. That’s approximately

half of the output when we were using Stride of one.

The third hyperparameter is padding. Imagine that we will use a filter size of

5x5x1 and striding of 1. In this case, we would have, thinking only in the red filter,

a filtered image of size 28x28x1. But now, imagine that we would like to preserve

the image input size, 32x32 in this example. What we can do is add two borders of

zero around the input volume, making it of size 36x36x1. If we do the exactly same

math as explained in the striding, then we will have a final output volume of size

6x32x32x1, i.e., each slice of it containing a filtered image of the same dimension as

the input.

More general, we can define Equation 2.54 as a general equation to obtain spatial

dimensions to the output volume O when applying convolutions for a image of size

WxW, a filter size of size FxF, a Padding of size P and using Stride S. It’s important

to keep in mind while observing this equation that, in Deep Learning, is very common

to use squared images, that’s the reason that we only use W. Also, whenever we

apply padding, we apply it in all the borders of the input image.

O = (W − F + 2P )/S + 1 (2.54)

An important property of the CNN is that it does parameter sharing. It means

that each slice of the filter volume has the same weights and only one bias. To

make it more general, if we have a input volume of size WxWx1 and K filters with

dimensions FxFxN, then each filter will have FxF unique weights and one bias that
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will be shared through the whole convolution process for that particular filter. In

the end, we will have a total of KxFxF different weights and K biases. It reduces

drastically the number of weights and biases in the neural network, making it faster

to be trained.

2.10.3 CNN Layers

A CNN layer can be classified as one of the following four types: Convolutional

Layer (ConvLayer), ReLU Layer, Pooling Layer, or Fully-Connected Layer. The

convolutional and fully-connected layers have parameters that are properly adjusted

in the training phase using the same gradient descent and backpropagation algorithm

that we described before. The pooling layer does not need parameters and always

implement a fixed function, i.e., a function that will receive an input and apply a

mathematical operation without any dynamic learned parameters in this function.

Convolutional Layer

To understand the convolutional layer, let’s make an analogy using car headlights.

Imagine that you are driving your car at night in Los Angeles and you see a big

picture in a huge building wall. You point your car headlight to the picture to try

to figure out what it is. Since the picture is big and your headlights have limited

range, you can only highlight a small part of the picture. Also the light illuminates

better the center than the borders. On this analogy, consider your car headlight as

a convolutional filter and the difference in illumination as the weights of this filter.

The region that the headlights is illuminating in the picture is known as receptive

field. The convolution operation is the operation that happens with the interac-

tion between the filter weights and the values of the picture pixels. We perform a

element-wise multiplication of the filter weights and pixels values, summing up the

multiplications, what results in a number. For the sake of simplicity, assume that

in this analogy the car is illuminating a 3x3 area in the wall. The filter is shown in

Figure 2.20 for the car analogy.

Continuing with this analogy, the visualization of a small part of the image is not

enough to figure out what the picture is about. We need to stride our filter through

out the whole wall to highlight important features in other parts of the picture, as
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Figura 2.20: Convolutional filter is the yellow box and the numbers inside it are the
weights of the filter. The weights highlight elements from the center to the borders.
That is not always the case when we are working with CNNs, tough.

shown in Figure 2.21.

After the filter is convolved through out the entire image, we end up with an

activation map or feature map. This map highlights the important features that the

filter extracted from the image. However, it may not be, and it is almost always

the case, sufficient to have only one activation map. We need to have a volume of

activation maps. Recall the CNN API described before. In this analogy, another

activation map would come from a friend’s car headlights with a different headlights,

meaning different filter weights. Consider the same illumination area size of 3x3, as

mentioned above, but with different weights for the convolution.

ReLU Layer - Rectified Linear Units)

After each convolutional layer, it is convention to apply a nonlinear layer, or acti-

vation layer. The purpose of this layer is to introduce nonlinearity to a system that

has basically been computed by linear operations, for the convolutional layers, or

just element wise multiplications and summations. In the past, nonlinear functions

like tanh and sigmoid were used, but researchers found out that ReLU layers work
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Figura 2.21: Filter striding. Columns represent the filter striding horizontally.

better because the network is able to train much faster because of the computational

efficiency, and without causing significant loss of accuracy. Also, it helps to alleviate

the vanishing gradient problem, that makes the lower layers, of the network, to get

trained very slowly, since the gradient decreases exponentially from layer to layer.

The ReLU layer applies the function f(x) = max(0, x) to all the values of the input

volume. Basically, this layer changes all negative activations to 0. This layer incre-

ases the nonlinear properties of the model and the overall network without affecting

the receptive fields of the Convolutional Layer [7].
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Pooling Layer

The pooling layer, also known as downsampling layer, has the function to progressi-

vely reduce the spatial size of the image [2]. Think about the pooling layer exact as

we humans do while trying, for example, to identify another human being. We don’t

need the full representation of the human face to identify it. A small (downsample)

is sufficient. It works because our brain identify elements in the face related with

other elements, e.g., the mouth is below the nose. And that is essentially what

we have in the filter response explained in subsection 2.10.3. The filter learns and

highlights the important features, afterwards we can compress, downsample, the

information and move forward.

The Pooling Layer serves for two purposes: it reduces the computational cost

and helps preventing overfitting. You can use a number of pooling variants, like

Max Pooling, Average Pooling, L2-Norm Pooling, etc. It is important to mention

here, that no matter which variant you use, all of them will select a block in the

activation map and apply an operation, Max, Average, L2-Norm, etc, that will

reduce the spacial dimensionality.

Figure 2.22 shows an input volume being downsampled using a Max Pooling

layer.

(a) The input volume of size
224x224x64 is pooled by a filter size
2x2, stride 2 to an output volume of
size 112x112x64.

(b) The most commonly downsampling operation used
is max pooling. It is shown here with a stride of 2. That
is, each max is taken over 4 numbers, a 2x2 square).

Figura 2.22: Pooling operation [2].

As we will see, in section 3.4, the max pooling has a interesting property that

allows the network to achieve translation invariance over small spatial shifts in the

input image.
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Fully-connected layer

The Fully-connected layer in CNN works the same way as the hidden layers com-

mented in section 2.3, i.e., all the neurons in this layer are fully-connected with the

neurons in the previous layer. Generally, this layer is used in CNNs as the last layer

and has the function to classify the final pixel in some class. Figure 2.23 shows

a Convolutional Neural Network that attempts to classify an image in one of ten

different classes using the well-known dataset CIFAR-10 [6]. Note that the Fully-

Connected layer is at the end with the intention of classifying the final result. The

reason for being at the end is obvious: If we implement it in every layer, we would

end up with the same excessive neuron connections as in the Neural Networks.

Figura 2.23: A CNN based on VGG Net [5] architecture using CIFAR-10 dataset [6].
Although CIFAR-10 has 10 classes for each image, for simplicity, this example shows
only the top five classes [2].
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Caṕıtulo 3

The Modern History of Object

Recognition

What I cannot create, I do not

understand.

Richard Feynman (1988)

The human visual system of recognition is pretty much fantastic. Humans can

classify, localize, recognize, detect and segment practically all objects present in one

image or scene. But how can the computer do something similar? In this chapter,

we will describe the challenges in computer vision briefly and we will concentrate

on the topic that this work is trying to solve: segmentation. We will talk about

the Fully Convolutional Networks for Semantic Segmentation [37] that will be the

basis to understand two important architectures that we use here: U-Net [10] and

SegNet [11].

3.1 Challenges in Computer Vision

We can divide the tasks that one can do in image using computer vision essentially

in four different types: Image classification, Object localization, Object recognition

and Segmentation. Let’s discuss what means each of these tasks.
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3.1.1 Image Classification

Image classification is a task where the computer, i.e., an algorithm, tries to classify

an image based on the dominant object inside it. This is essentially the case from

Figure 2.23. In this example, the figure is about a car in a road with some trees

and the sky in the background. What is the dominant image in the image? Clearly

the dominant object is the car and that is the reason that the CNN in this example

outputs ”car”.

3.1.2 Object Localization

Object localization goes further and not just classifying the dominant object but

also surround it with one bounding box in the image. It’s important to have in

mind that the bounding box can contain part of other objects, i.e., it’s not the

perfect localization, but based on the dominant object exactly as define in the Image

classification task. Figure 3.1 shows the difference between object classification and

object localization.

Figura 3.1: Classification and Localization of an object. [7]

3.1.3 Object recognition

The object recognition task is more extensive and, unlike localization that only

surrounds the dominant object with a bounding box, in this task we are trying to

classify and surround all objects in the image, not only the dominant one. Figure 3.2

shows the objects being recognized in a scene.
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Figura 3.2: Object recognition [8].

3.1.4 Segmentation

Neither tasks mentioned tried to delimit perfectly an object in the scene. The closer

that was achieved was to draw bounding boxes surrounding the objects. The image

segmentation task tries to address this problem by making contours in the objects.

The goal is to have these contours the best possible. Figure 3.3 shows objects being

segmented. The segmentation task can also be divide in semantic segmentation and

instance segmentation. Semantic segmentation doesn’t care about objects of the

same class, i.e., three dogs in a scene, for example, will be segmented and painted

with the same color. It does not distinguish between elements of the same class.

Instance segmentation, however, paint objects of the same class with different colors,

i.e., three dogs in a scene, for example, will be segmented and painted with different

colors because essentially they are different instances.
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Figura 3.3: Image segmentation. On the left, semantic segmentation with all cubes
belonging to the same class. On the right, instance segmentation is performed and
each cube is belonging to a different class [9].

3.2 Fully Convolutional Networks for Semantic

Segmentation

Recall from section 2.10 that Convolutional Neural Networks tries to solve a classi-

fication problem by using a series of convolutions, poolings and at the end a uses a

fully connected layer. Is it possible to apply the same methods and concepts that

we learn for CNNs to solve the semantic segmentation problem? It seems that a lot

of the concepts can be utilized here!

Let’s start with a first intuition: Instead of using a CNN to classify the whole

image, what can be done is to divide the input image in patches of equal size and to

use the CNN to classify the pixel at the center of the patch as shown in Figure 3.4.

Figura 3.4: Image segmentation using patches. [2]

Although this is a creative and a simple approach, it is extremely inefficient since

it is not reusing shared features from overlapping patches due to the fact that we
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are training the patches separately [2].

The next step is to implement what we call a Fully Convolutional Neural

Network [37]. The idea is that you receive a image of size HxW and you pass

this image through a deep network that has only convolutional layers, i.e., no fully-

connected layers at the end. The only concern here is that your convolutional layers

must be configured, striding and pooling, in a such a way that they preserve the size

of the input. This network will produce in the output a classification volume of size

HxWxC, where C is the available classes. With the classification volume at hand,

you just take the argmax for every pixel, and this will be your final classification at

the pixel level. To train this network, you can take the average cross entropy loss

through all pixels and then backpropagate the same way as we saw in section 2.6.

Figure 3.5 shows a fully convolutional network.

Figura 3.5: Fully convolutional neural network architecture. [2]

This approach is much better than the first one but we are still having a problem:

Note that we are not using any pooling layer. The pooling layer, as explained in

Subsection 2.10.3, has the function to downsampling the input, decreasing its sizing.

This makes the training faster. This makes this configuration very computationally

expensive. We need to figure out a way to make training simpler and faster.

There is a way of achieving this goal, and it is presented in Fully Convolutional

Networks for Semantic Segmentation Section [37]. The trick is to separate the

convolutional layers in two symmetric groups: downsampling and upsampling. The

first one will run exactly as we already saw in the CNN Section 2.10, i.e., it will

apply convolutional filters and reduce the spatial size of the image through pooling

layers. The upsampling group will get the reduced images and increase the spatial

size of the image output until it has the same size of the input. This improves our
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training by reducing size of the image in the downsampling layer instead of working

with the original size in every layer as before. Figure 3.6 shows this architecture.

Figura 3.6: Fully Convolutional Neural Network architecture with upsampling [2].

Like we explained in subsection 2.10.3 that there are some different functions that

can choosen to be used in a pooling operation. This is also true for the ”unpooling”in

the upsampling layers. Figure 3.7 shows two examples.

Figura 3.7: Some examples of unpooling operation. [2]

In the nearest neighbor approach, we just repeat the value in the receptive field

in the output. In ”Bed of Nails”approach, the value in the receptive field of the filter

are allocated in the left corner of the expanded output and all the other positions

are filled with zeros.

There is another important unpooling operation called max unpooling. In this

operation, we are taking advantage of the symmetry of the downsampling and up-

sampling layers and keeping in every downsampling operation the pixel position that

was took as the maximum in the receptive field. With that at hand, when we apply

the unpooling operation in the respective symmetric upsampling layer, we use these

pixel positions from the downsampling layer. Figure 3.8 shows this operation.

Max unpooling operation has one advantage over Nearest neighbor and Bed of

nails. When we are talking about semantic segmentation we want that our pixel

class prediction to be as perfect as possible. The problem is that when you do, for
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Figura 3.8: The max unpooling operation [2].

example, Max pooling in the downsampling layers, you are loosing spatial informa-

tion in some sense. But when you keep the index in the downsampling layer that

generate the max pixel value and you use this information to do the max unpooling

operation in the corresponding symmetric upsampling layer you are preserving the

spacial information that was lost during downsampling due to max pooling opera-

tion.

The upsampling operations, just described, are fixed functions. They don’t des-

cribe how we actually do the upsampling. For this we need to do an operation called

transposed convolution. This operation is a normal convolution but it has an oppo-

site interpretation from the stride convolution that we saw in section 2.10. Recall

from the stride convolution that we slide the filter through out the input and for

every filter position on the image we make a dot product between the filter and the

input. The stride gives the ratio between movement in input and output, i.e., filter

moves strides pixels in the input for every pixel in the output. Now, in transpose

convolution the stride gives the ratio between movement in output and input., i.e.,

filter moves strides pixels in the output for every pixel in the input. Another point

to note is that in transpose convolutional the input will give weights for the filter,

i.e., for every value in the filter we get the corresponding pixel in the input and

apply it as a weight in the filter instead of making inner products between the filter

and the input. Figure 3.9 shows how it works.
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Figura 3.9: Transpose convolution [2].

3.3 U-Net

The typical use of convolutional networks is on classification tasks, where the output

for an image is a single class label. However, in many visual tasks, especially in

biomedical image processing, the desired output should include localization, i.e., a

class label is supposed to be assigned to each pixel. Moreover, thousands of training

images are usually very difficult to be obtained in the biomedical field [10].

As mentioned in the 3.2, a simple idea to segment an image is to divide it into

patches and classify the patch’s central pixel. Ciresan et al. [38] approach does

exactly this. With this architecture, they won the EM segmentation challenge at

ISBI 2012 by a large margin.

Although this is very impressive, their architecture has two major drawbacks:

First, it is quite slow because the network must be run separately for each patch, and

there is a lot of redundancy due to overlapping patches. Second, there is a trade-off

between localization accuracy and the use of context. Larger patches require more

max-pooling layers that reduce the localization accuracy, while small patches allow

the network to see only little context. [10]

The purpose of U-Net is that it modifies the network architecture proposed

by Long et al. [37] and extend it to work with very few images and more precision

segmentations. The main idea of U-Net is that it implements two paths: contraction

and expansion path. The contraction path works the same way as regular CNNs,

applying downsampling successively, pooling operation. The expansion path uses

upsampling operators as described in the previous sections.
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In order to localize, high resolution features from the contracting path are com-

bined with the upsampled output. A successive convolution layer can then learn to

assemble a more precise output based on this information. One important modifica-

tion introduced by U-Net is that in the upsampling part there is also a large number

of feature channels, which allow the network to propagate context information to

higher resolution layers. As a consequence, the expansive path is more or less sym-

metric to the contracting path, and yields a u-shaped architecture [10]. Figure 3.10

shows the U-Net architecture.

Figura 3.10: U-Net architecture [10].

3.4 SegNet

SegNet is a deep convolutional encoder-decoder architecture for image segmentation.

As we can be seing in Figure 3.11, in terms of architecture it is a little bit similar

with U-Net: It has a encoder, contraction path equivalent for U-Net, and a decoder,

expansion path in U-Net. However, a key and important difference among them is

that U-Net combines the high resolution features from the contracting path with
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the upsampled feature map by copying the entire map. SegNet, in turn, just stores

the max pooling indices in each encoder feature map and use it to perform non-

linear upsampling of the input feature maps. In terms of computational memory,

this is much more effective. According to [11], reusing max-pooling indices in

the decoder has three main advantages: (i) it improves boundary delineation, (ii)

reduces the number of parameters enabling end-to-end training, and (iii) this form

of upsampling can be incorporated into any other encoder-decoder architecture with

minor modifications. However, although having a higher memory cost and inference

time, architectures that uses the full feature map from the encoder into the decoder

layer still have better performance [11].

Figura 3.11: SegNet architecture [11].

The idea of reusing the max pooling indices in SegNet was inspired from an

architecture designed for unsupervised feature learning [12] shown in Figure 3.12.

Figura 3.12: Convolutional auto-encoder [12].

Note how the max pooling operation in this architecture produces a shift-

invariant representation of the learned features. To understand this, imagine that

you have the feature map F and you want to apply a 2x2 max pooling window on
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it. The max pooling operation here is just extracting from the feature map F the

highest value from the 2x2 window. We can see in M that the resulting operation

of the max pooling. But it seems that we can encode this learned representation:

Instead of using the magnitude of the pixels in M, we create a new coded represen-

tation C setting just the index of the highest pixel value in the feature map to 1

and all others to 0. We can say, for example, that for input feature map F we have

the representation code 1001. Now, if you move the feature map F a little bit to

the top, bottom, left or right, your final code will still be 1001 because it is still the

max value in the window. This way the network is coding the features, retaining

what is important and being shift-invariant.

F =


2 3 0 0

5 1 0 0

0 0 3 8

0 0 7 2



M =


0 0 0 0

5 0 0 0

0 0 0 8

0 0 0 0



C =


0 0 0 0

1 0 0 0

0 0 0 1

0 0 0 0


This idea, that comes from the max pooling operation, is used both on U-Net

and Segnet.
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Caṕıtulo 4

Methodology

The purpose of computing is

insight, not numbers.

R. Hamming.

In this chapter it is described the methodology we use in this work. We will

describe the datasets used, pre-processing steps applied, and the dataset split and

augmentation. Afterwards, we describe the training phase and its hyperparameters,

the tools and the network architecture. Finally, we show the technique that we used

to compare the result images against the ground-truth.

4.1 Understanding the data

Before going into the details of the methodology, we need to understand the dataset

images that we use to train the deep neural network. In the coming subsections

we show how they are structured and how we can augument it to make the trained

model more robust.

4.1.1 The Datasets

In Magnetic Resonance Image, MRI, there are three different types of images: Axial,

Sagittal and Coronal, shown in Figure 4.1.

As defined in [13]:

• Axial plane: Transverse images represent ”slices”of the body;
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Figura 4.1: MRI Planes. [13]

• Sagittal plane: Images taken perpendicular to the axial plane which separate

the left and right sides, Lateral view;

• Coronal plane: Images taken perpendicular to the sagittal plane which sepa-

rate the front from the back, Frontal view.

From Figure 4.1 it can be seen that the corpus callosum are completely observable

in the sagittal plan, although part of appears also in the other view planes. For this

reason, in this work we are only training, consequently evaluating the model, using

sagittal images.

Two different datasets are used: OASIS and ABIDE. The Open Access Series of

Imaging Studies, OASIS, is a series of magnetic resonance imaging data set publicly

available for studies and analysis. The initial data set consists of a cross-sectional

collection of 416 subjects aged between 18 to 96 years old. A hundred of them are

older than 60 years, which have been clinically diagnosed with very mild to moderate

Alzheimer’s disease. The subjects are all right-handed and include both men and

women. Each subject includes, three or four individuals T1-weighted magnetic

resonance imaging scans were obtained in single imaging sessions. Multiple within-

session acquisitions provide extremely high contrast-to-noise ratio, making the data

amenable to a wide range of analytic approaches including automated computational

analysis [39]. In this work, we selected only a subset containing 1806 sagittal images,

903 original images and 903 ground truth images, from the original dataset.

The Autism Brain Imaging Data Exchange, ABIDE, has aggregated functional

and structural brain imaging data collected from laboratories around the world to
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accelerate our understanding of the neural bases of autism. With the ultimate goal

of facilitating discovery science and comparisons across samples, the ABIDE initi-

ative now includes two large-scale collections called ABIDE I and ABIDE II. Each

collection was created by the aggregation of datasets independently collected across

more than 24 international brain imaging laboratories and have been made available

to investigators throughout the world, consistent with open science principles, such

as those at the core of the International Neuroimaging Data-sharing Initiative [14].

The original ABIDE dataset has all images in nii format. A python program was

written to convert the original format into tiff files, generating a total of 2200 sa-

gittal images, 1100 original images and 1100 ground truth images. Using these two

datasets, we have a reasonable database, containing images of normal subjects and

individuals with autism, generating a heterogeneous and not only strict database.

4.1.2 Data Pre-Processing

As described in the previous section, we have a total of 2003 images pairs containing

in each pair one image the whole brain and in the other the ground truth. An

example pair is shown in Figure 4.2.

(a) Whole brain training image from
ABIDE dataset.

(b) Corpus Callosum ground truth extrac-
ted from image (a) from ABIDE dataset.

Figura 4.2: MRI sagittal image and ground truth from ABIDE dataset.[14]

Although the dataset is ready to be used, there are some pre-processing steps

that one must follow to get the images ready train the neural network. In this work,

the following steps are taken as data preparation:
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• Image conversion to gray scale;

• Image resizing to 128x128;

• Feature scaling, z-score.

The image conversion to gray scale is a simple way to make the training com-

putationally less expensive. Instead of having the three RGB channels, we use only

one channel for each pixel value ranging from 0 to 255. Afterwards, we resize the

image to a smaller resolution 128x128 with the same goal: make the training faster.

In general, it is not safe to feed into a neural network data that contains relatively

large values or data which are heterogeneous, for example, data where one feature

ranges between [0,1] and another one that ranges between [100-200]. This could

trigger large gradient updates that will prevent the network from converging [40].

This is avoided by applying a feature scaling in the dataset. The feature scaling, or

z-score, is calculated as the mean (µ) and standard deviation (σ) from the training

set, which are used to scale each dataset:

Xtrain =
Xtrain − µtrain

σtrain
(4.1)

Xval =
Xval − µtrain

σtrain
(4.2)

Xtest =
Xtest − µtrain

σtrain
(4.3)

An important note, that always causes confusion, is that we should use only the

mean and standard deviation from the training data and apply the equations above

on all separate datasets. The reason is that, by machine learning principles, your

test set should be reasonably representative of the training set, otherwise you would

be comparing apples with oranges, which makes no sense. With this assumption,

using only the training set mean and standard deviation, we avoid that sampling

errors in the test set negatively bias the predictions [41].

4.1.3 Data Augmentation

The aim of the deep learning model is to be comprehensive enough to deal with

whatever image that is used in the system. That brings up an important question:
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How to asure that the system will be robust enough if we only have 2003 images

available for training it? The answers for this question is data augmentation and

it helps to avoid overfitting, as described in subsection 2.9.2, by generating more

training data from the existing ones using a number of random transformations.

The idea is that in the training step, your model will not see exactly the same

picture twice, exposing the model to more aspects of the data, leading to a better

generalization [40].

In this work, we use two affine transformations to augment our data: translations

and rotations. An affine transformation is a function between two affine spaces

that preserves points, straight lines and planes. It means that the rotations and

translations that we apply to the original images do not change the image structure,

i.e., a brain MRI will keep showing an image of a brain, a little displaced and/or

rotated, but still a brain. Table 4.1 shows the rotations and translations that were

used in this work.

Total Total Training Translations Rotations Aug. Factor Total Final
2003 1402 [(-1, -1),(-1, 0),(0, -1),(0, 0)] [-1, 0] 8 11216

Tabela 4.1: Data augmentation table.

The understanding of this table is simple. We start with the original set of 2003

images. We use the first 1402 images pairs as training images. We explain the

dataset splitting in the next sections. For each image, we apply a translation pair

(x, y) on each pixels, and apply a rotation angle a, in degrees. As we have four

translation pairs and two angles, we are augmenting the total training set size in a

factor of 8, Augmentation factor, generating 9814 new images, resulting in a final

training set of size 11216.

4.1.4 Dataset Split

We need to separate our dataset in training, validation and test sets. From the ori-

ginal 2003 images pairs, we divide it into 70%, 10% and 20% for training, validation

and test, respectively. As described in section 4.1.3, we augment only the training

set. Validation and test sets are not modified. Table 4.2 shows the final dataset size

for each one.
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Training Validation Test
Dataset #1 (Initial) 1402 200 401
Dataset #2 (After augmentation) 11216 200 401

Tabela 4.2: Training, Validation and Test sets sizes.

4.1.5 Training

With the dataset ready to be used, the next step is to actually train the Neural

Network. In this work, we train the U-Net [10] model with a slight change in the

cost function from the original paper. In the original paper, the authors use a

Weighted cross-entropy [42] as the loss function. We change it to use the Dice loss

function defined in 2.7 because when the level of pixel imbalance increases, Dice has

better results than Weighted cross-entropy [42, 43].

hyperparameters-note As we will see in the next chapter when we present the

results, each one is obtained training the network with a different set of hyperpara-

meters. Essentially, the hyperparameters that we change for each test are:

• boolean : use dropout - To add, or not, dropout as regularizer.

• boolean : use batch normalization - To add, or not, batch normalization as

regularizer.

• int : dropout rate - If true, it indicates the probability of dropping out a

neuron.

• int : number of epochs - Number of epochs for training.

• int : batch size - Size of mini batch.

• int : kernel size - The size of the convolutional filters.

• int : initial volume size - The initial amount of filters to start the training.

We train the neural network using mini-batch gradient descent with Adam opti-

mizer [44] and a batch size of 32. In each training epoch, we shuffle the training data

what ensures that bias in the presentation order does not adversely affect the final

result [45]. We use the deep learning framework TensorFlow [46] and the high-level

API [47] to implement the training, obtain the model and evaluate it on test set.

62



In Table 4.3 it can be seen the trained model, layer by layer, i.e., the number of

parameters in the layer, type of the layer, and what is the output volume generated

by the layer. In Figure 4.3, we show the architecture of the trained model. It’s

important to note that, as we stated in Section 4.1.5, the model is trained with

a lot of different configurations to compare the results. In Table 4.3, we present

the model with the last test configuration, and it does not alter the understanding

of the whole model, since the architecture is the same for all tests, and just some

hyperparameters are changed.

4.1.6 Model Evaluation

After training, we have the model ready for evaluation on our test set. Each eva-

luation on the test set will produce a result image that needs to be compared with

the ground truth. In this work, the model evaluation is done using the Structural

Similarity (SSIM) index [15].

One of the simplest and easiest way to compare two images is using the minimum

square error (MSE), Equation 2.37. It is appealing because they are simple to

calculate, have clear physical meanings, and are mathematically convenient in the

context of optimization [15]. However, in the comparison of two images, there is a

strong drawback: It does not indicates the structure of the images when the error

is being penalized. Figure 4.4 shows a classical example of this problem: all of the

images have the same MSE error even though the human vision system can perceive

huge differences among their qualities. The SSIM index comes in place to solve

exactly this problem. In this same figure, note that SSIM is very different between

images and also gives higher value to the images that are visually better.

The luminance of the surface of an object being observed is the product of the

illumination and the reflectance, but the structures of the objects in the scene are

independent of the illumination and contrast [15]. The general SSIM framework can

be seen in Figure 4.5.

The SSIM between two images x and y is composed essentially by three com-

ponents: a luminance comparison function l(x, y), a contrast comparison function

c(x, y) and a structural comparison function s(x, y). The luminance µx is obtained

by taking the mean intensity among the N pixels of the image, shown in Equa-
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tion 4.4. Following the framework, we use the standard deviation as a estimator of

image contrast σx, shown in Equation 4.5. The structure comparison is made in the

normalized signals with normalization being copmuted as defined in Equation 2.32.

With all these variables, the SSIM components can be defined for luminance and

contrast, as in Equations 4.6 and 4.7, respectively. For the structure component,

as we normalize it, the correlation between (x−µx
σx

) and (y−µy
σy

) is defined in Equa-

tion 4.8. Equation 4.9 uses this correlation to obtain the structural comparison

function. Finally, we can define SSIM as a linear combination of l(x, y), c(x, y) and

s(x, y) as shown in Equation 4.10. In the original paper, the authors set α, β and γ

to 1, we did the same. The SSIM index can be written as in Equation 4.11. They

calculate the SSIM index using M patches of size 11x11 and afterwards they average

the these local SSIM. Equation 4.12 shows the mean SSIM index, MSSIM. As a side

note, in all equations the parameters Cx are added to asure numerical stability, i.e.,

avoid division by zero.

µx =

n∑
i=1

xi

N
(4.4)

σx =

n∑
i=1

(xi − µx)2

N − 1
(4.5)

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(4.6)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

(4.7)

σxy =

n∑
i=1

(xi − µx)(yi − µy)

N − 1
(4.8)

s(x, y) =
σxy + C3

σx + σy + C3

(4.9)

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (4.10)

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.11)

MSSIM(X, Y ) =

M∑
i=1

SSIM(xj, yj)

M
(4.12)
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Figura 4.3: Trained Model Architecture.
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Layer (type) Output shape Param # Connected to
input 2 (InputLayer) (32, 128, 128, 1) 0 N/A
conv2d 3 (Conv2D) (32, 128, 128, 64) 1664 input 2[0][0]
conv2d 4 (Conv2D) (32, 128, 128, 64) 102464 conv2d 3[0][0]
batch norm 2 (BatchNorm) (32, 128, 128, 64) 256 conv2d 4[0][0]
max pooling2d 1 (MaxPooling2D) (32, 64, 64, 64) 0 batch norm 2[0][0]
conv2d 5 (Conv2D) (32, 64, 64, 128) 204928 max pooling2d 1[0][0]
conv2d 6 (Conv2D) (32, 64, 64, 128) 409728 conv2d 5[0][0]
batch norm 3 (BatchNorm) (32, 64, 64, 128) 512 conv2d 6[0][0]
max pooling2d 2 (MaxPooling2D) (32, 32, 32, 128) 0 batch norm 3[0][0]
conv2d 7 (Conv2D) (32, 32, 32, 256) 819456 max pooling2d 2[0][0]
conv2d 8 (Conv2D) (32, 32, 32, 256) 1638656 conv2d 7[0][0]
batch norm 4 (BatchNorm) (32, 32, 32, 256) 1024 conv2d 8[0][0]
max pooling2d 3 (MaxPooling2D) (32, 16, 16, 256) 0 batch norm 4[0][0]
conv2d 9 (Conv2D) (32, 16, 16, 512) 3277312 max pooling2d 3[0][0]
conv2d 10 (Conv2D) (32, 16, 16, 512) 6554112 conv2d 9[0][0]
batch norm 5 (BatchNorm) (32, 16, 16, 512) 1024 conv2d 10[0][0]
max pooling2d 4 (MaxPooling2D) (32, 8, 8, 512) 0 batch norm 5[0][0]
conv2d 11 (Conv2D) (32, 8, 8, 1024) 13108224 max pooling2d 4[0][0]
conv2d 12 (Conv2D) (32, 8, 8, 1024) 26215424 conv2d 11[0][0]
batch norm 6 (BatchNorm) (32, 8, 8, 1024) 4096 conv2d 12[0][0]
up sampling2d 1 (UpSampling2D) (32, 16, 16, 1024) 0 batch norm 6[0][0]
concat 1 (Concatenate) (32, 16, 16, 1536) 0 up sampling2d 1[0][0]

batch norm 5[0][0]
dropout 1 (Dropout) (32, 16, 16, 1536) 0 concat 1[0][0]
conv2d 13 (Conv2D) (32, 16, 16, 512) 19661312 dropout 1[0][0]
conv2d 14 (Conv2D) (32, 16, 16, 512) 6554112 conv2d 13[0][0]
up sampling2d 2 (UpSampling2D) (32, 32, 32, 512) 0 conv2d 14[0][0]
concat 2 (Concatenate) (32, 32, 32, 768) 0 up sampling2d 2[0][0]

batch norm 4[0][0]
dropout 2 (Dropout) (32, 32, 32, 768) 0 concat 2[0][0]
conv2d 15 (Conv2D) (32, 32, 32, 256) 4915456 dropout 2[0][0]
conv2d 16 (Conv2D) (32, 32, 32, 256) 1638656 conv2d 15[0][0]
up sampling2d 3 (UpSampling2D) (32, 64, 64, 256) 0 conv2d 16[0][0]
concat 3 (Concatenate) (32, 64, 64, 384) 0 up sampling2d 3[0][0]

batch norm 3[0][0]
dropout 3 (Dropout) (32, 64, 64, 384) 0 concat 3[0][0]
conv2d 17 (Conv2D) (32, 64, 64, 128) 1228928 dropout 3[0][0]
conv2d 18 (Conv2D) (32, 64, 64, 128) 409728 conv2d 17[0][0]
up sampling2d 4 (UpSampling2D) (32, 128, 128, 128) 0 conv2d 18[0][0]
concat 4 (Concatenate) (32, 128, 128, 192) 0 up sampling2d 4[0][0]

batch norm 2[0][0]
dropout 4 (Dropout) (32, 128, 128, 192) 0 concat 4[0][0]
conv2d 19 (Conv2D) (32, 128, 128, 64) 307264 dropout 4[0][0]
conv2d 20 (Conv2D) (32, 128, 128, 64) 102464 conv2d 19[0][0]
conv2d 21 (Conv2D) (32, 128, 128, 1) 65 conv2d 20[0][0]

Tabela 4.3: Trained model. Total params: 87, 157, 889, where 87, 153, 921 are trai-
nable and 3, 968 are non-trainable.
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Figura 4.4: Comparison of “Boat” images with different types of distortions, all
presenting MSE = 210. (a) Original image, 8 bits/pixel; cropped from 512x512
to 256x256. (b) Contrast-stretched image, MSSIM = 0.9168. (c) Mean-shifted
image, MSSIM = 0.9900. (d) JPEG compressed image, MSSIM = 0.6949. (e)
Blurred image, MSSIM = 0.7052. (f) Salt-pepper impulsive noise contaminated
image, MSSIM = 0.7748 [15].

Figura 4.5: SSIM Framework. [15]
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Caṕıtulo 5

Results and Discussions

Information is the resolution of

uncertainty.

Claude Shannon (1948)

In this chapter we will describe our tests results. Each test tries to achieve a

better model, i.e., a model that performs better on the test set, than the previous

one, by changing essentially the regularization parameters, number of epochs, batch

size, filter size, and initial quantity of filters. At the end of the chapter, we make a

general discussion of all tests.

5.1 The Tests

Table 5.1 resumes all the tests. We conducted four different tests, each one with

a small variation of one or more hyperparameters. The datasets described in this

table are the same as those described in Table 4.2.

Test Dataset Epochs BatchSize FilterSize Filters# Dropout BatchNorm
1 1 1000 32 3x3 32 X X
2 2 100 32 3x3 32 X X
3 2 740 32 3x3 32 X X
4 2 200 32 5x5 64 X X

Tabela 5.1: Tests configurations.

As described in Section 2.7, we used the dice coefficient as the loss function.

Each test shows dice coefficient loss curves in the training and validation sets.
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5.1.1 Test 1: Getting a baseline

We start with the most basic test. In this test, we don’t make any data augmentation

in the training set and we do not apply any regularization nor Batch normalization.

The objective in this test is to determine a baseline for all other tests. Figure 5.1

shows the loss obtained for this test.

Figura 5.1: Test 1 - Dice loss - 1000 epochs.

5.1.2 Test 2: The Effect of Data Augmentation

With the baseline set, we want to see the effect of the data augmentation. For

this we use the same configuration as for test in Section 5.1.1, but we decrease the

number of epochs and use data augmentation. Figure 5.2 shows the loss for this

test. We did not observe any reasonable improvement over test 5.1.1. It’s important

to note here that we train only with 100 epochs because we increased the dataset by

a factor of 9 compared with test 5.1.1 and it would be computationally expensive

training 1000 epochs. Moreover, it’s pretty clear from the loss curve that we obtain

a good convergence even before the first 100 epochs.
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Figura 5.2: Test 2 - Dice loss - Data Augment; 100 Epochs.

5.1.3 Test 3: Adding Dropout and Batch Normalization

Until now, no test used any kind of regularizer, like Dropout, and they were trained

without Batch normalization. If we look at the loss curve for all the tests, they do not

appear to be overfitting, but by introducing regularizer we obtain a better model,

since the validation loss curve keeps closer to the training loss curve. Figure 5.3

shows the loss curve for this test and we can see that the general validation loss is

smaller than the previous one. By being closer to the training curve, it means that

the model is predicting better on the validation set.

5.1.4 Test 4: More and Bigger Filters per Layer

All the configurations so far started with 32 filters of size 3x3 each. In this test, we

want to see how the model behaves when we increase the capacity, i.e., the number

of parameters. To achieve this, we increase the filter size to 5x5, starting with 64

instead of 32. For a similar reason that the one explained in test in Section 5.1.2, in

this test, again, we decrease the number of epochs because the model has much more

parameters and it is much more computationally expensive to train. Figure 5.4 shows

the loss curve for this test. We can see clearly that with a higher capacity the model

starts to be a little bit unstable compared to others, although this instability does

70



Figura 5.3: Test 3 - Dice loss - With Droupout and Normalization.

not cause an overfitting. Moreover, with more parameters, training and inference

start to be really computationally expensive.

Figura 5.4: Test 4 - Dice loss - Bigger and More Filters.
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5.2 Results

For each trained model, we measure the accuracy of the model with the test set. To

do this, we use the opposite of the loss function, −dice loss, to obtain the F1-Score.

Table 5.2 shows the F1-Score averaged over all images of the test set and also the

training timing and inference timing.

Test Average F1-Score (%) TrainingTime(hours) InferenceTime(s)
1 93.76 1.0 0.2
2 93.38 8.3 0.2
3 95.10 61.7 0.2
4 95.18 88.8 2

Tabela 5.2: Average F1-score of segmentation, training time and inference time.

Looking at the F1-score in Table 5.2, the models 5.1.3 and 5.1.4 seems to

perform better. Actually, they don’t have much difference in the results compared

each other. However, we can not look only to the overall averaged F1-Score. We

need somehow to make a more significant statistical analysis. To do this, we use a

Box Plot to evaluate median, percentiles and outliers. Figure 5.5 shows the results

comparing all the models using SSIM index and Figure 5.6 using the Dice coefficient.

Figures 5.7 and 5.8 show the model from test 5.1.3 being applied on 16 unseen images

from test set along with its respective Ground Truth segmentation and Predicted

segmentation results. Figures 5.9 and 5.10 show the model from test 5.1.3 being

applied on 14 general images found on Internet. These images are not in OASIS

neither in ABIDE dataset.

5.3 Discussions

We obtained an overall score of 95.10% in the test set for the model obtained in

test 5.1.3. Compared to models obtained in tests 5.1.1 and 5.1.2, it is far away better

than these. Compared to model 5.1.4, they have almost the same performance. We

choose model 5.1.3 because it has less outliers compared to model 5.1.4, its training

and inference time are computationally cheaper, and also because the real test on

images obtained from Internet it performed better.

It is clear when we test with images that are in a different distribution from the
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Figura 5.5: Box plot for all trained models using SSIM index.

Figura 5.6: Box plot for all trained models using Dice coefficient.

dataset, i.e., images that not belong to dataset OASIS neither ABIDE, we get some

reasonable segmentation, even though the model makes more mistakes. To address

this drawback, we would have to make our dataset more generic, adding images of
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other distributions and augmenting it with other types of image transformations

such as shear, zoom and elastic deformations.
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Figura 5.7: Final results for test set. First 8 images.
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Figura 5.8: Final results for test set. Another 8 images.
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Figura 5.9: Final results for images obtained on the Internet. First 8 images.
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Figura 5.10: Final results for images obtained on the Internet. Another 6 images.
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Caṕıtulo 6

Conclusion and Future Work

For millions of years, mankind

lived just like the animals. Then

something happened which

unleashed the power of our

imagination. We learned to talk.

Stephen Hawking (1994)

6.1 Conclusion

We successfully built a system that obtained an overall 95.10% F1-Score with only

2003 annotated images in the dataset and without using any pre-processing steps to

help the network to segment. Another key point is that the best model took about

61 hours to be trained in a NVIDIAR© Tesla K80 GPU. Although this is a long time

for to train the model, the inference takes only 0.2 s per image in a regular IntelR©

CoreTM i7-7500U CPU. It makes the system feasible to be used in a real application.

Unfortunately, it was not possible to compare the U-Net with the SegNet due to

lack of time. This is an issue we intend to address in the near future. Also, there

is a segmentation tool for Corpus Callosum developed by [48], which we were not

able to properly run in our environment. That could be a good candidate to test

the developed system against a traditional segmentation method.
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6.2 Future Work

There are a lot of opportunities to enhance this system. Regarding datasets, we can

increase the dataset size if we obtain new sources of data with annotated images.

These should be new datasets different from OASIS and ABIDE. Also, we can expe-

riment new data augmentation techniques like shear, zoom and elastic deformation.

It can help in the robustness of the network for unseen data.

To improve results, we can compare the developed system with SegNet and other

segmentation networks. Also, a comparison with traditional techniques should also

be good.

To improve training, there are two works [34, 49] which shows that Parametric

ReLU and Randomized ReLU consistently outperform the original ReLU. We can

add this techniques in our system too and compare the results. To get a speedup

in training, a compression in the input images using Principal Component Analysis,

PCA, could be applied. It transforms the input image to a new representation with

less components. Another idea is that our current architecture is based on U-Net and

it copies the whole features maps from the contraction path to their correspondent

pair in the expansion path. Looking at the SegNet, it only copies the max pooling

indexes and it is much faster than copying the whole feature map. These two ideas

could be combined: In the first concatenations, we are talking about small feature

maps, so we can keep the whole feature map as in the current implementation, but

as we go on the expansion path, we could copy just the max pooling indexes, making

computation faster.

Figura 6.1: Deusa Minerva.
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[1] NIELSEN, M. A. Neural Networks and Deep Learning. Determination Press,

2015.

[2] LEE, F., Y. S. J. J. “CS231n Convolutional Neural Networks for Visual Recog-

nition”. 2017. Available in: <http://cs231n.github.io/>.

[3] NG, A., K. K. M. Y. B. “Neural Networks and Deep Lear-

ning”. 2017. Available in: <https://www.coursera.org/learn/

neural-networks-deep-learning>.

[4] NG, A., K. K. M. Y. B. “Improving Deep Neural Networks: Hyperparameter

tuning, Regularization and Optimization”. 2017. Available in: <https:

//www.coursera.org/learn/deep-neural-network>.

[5] SIMONYAN, K., ZISSERMAN, A. “Very Deep Convolutional Networks for

Large-Scale Image Recognition”, CoRR, v. abs/1409.1556, 2014.

[6] KRIZHEVSKY, A. “CIFAR-10 and CIFAR-100 datasets”. 2010. Available in:

<https://www.cs.toronto.edu/~kriz/>.

[7] DESHPANDE, A. “A Beginner’s Guide To Understanding Con-

volutional Neural Networks”. 2016. Available in: <https:

//adeshpande3.github.io/adeshpande3.github.io/A-Beginner’

s-Guide-To-Understanding-Convolutional-Neural-Networks/>.

[8] REN, S., HE, K., GIRSHICK, R. B., etãl. “Faster R-CNN: Towards
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Apêndice A

Code

C is quirky, flawed, and an

enormous success.

Dennis Ritchie
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generate-dataset-thesis

March 21, 2018

In [ ]: import numpy as np

import os

import joblib

import math

from PIL import Image

0.0.1 Create numpy arrays from raw images

In [ ]: datasets = [

'datasets/abide_imgs',

'datasets/oasis_imgs'

]

img_size = (128, 128)

Xall, Yall = np.array([]), np.array([])

number_of_images_total = 0

for dataset in datasets:

print("Reading data for dataset {}".format(dataset))

total_images_for_dataset = 0

dataset_folder = os.path.join('.', dataset)

dataset_files = sorted(os.listdir(dataset_folder))

dataset_size = len(dataset_files)

for i in range(0, dataset_size, 2):

number_of_images_total += 1

total_images_for_dataset += 1

full_image = dataset_files[i]

segmented_image = dataset_files[i+1]

if 'abide' in dataset_folder:

full_image, segmented_image = segmented_image, full_image

filename = os.path.splitext(full_image)[0]

# create np array image of full image

tiff_file_path = os.path.join(dataset_folder, full_image)

tiff_image = Image.open(tiff_file_path, 'r').convert('L').resize(img_size)

full_image = np.array(tiff_image)

Xall = np.append(Xall, full_image)
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# create np array image of segmented image

tiff_file_path = os.path.join(dataset_folder, segmented_image)

tiff_image = Image.open(tiff_file_path, 'r').convert('L').resize(img_size)

segmented_image = np.array(tiff_image)

segmented_image[segmented_image != 255] = 1.0

segmented_image[segmented_image == 255] = 0.0

Yall = np.append(Yall, segmented_image)

if number_of_images_total % 1000 == 0:

print("{} / {} processed!".format(

total_images_for_dataset, dataset_size // 2))

print("Dataset {} finished!".format(dataset))

Xall = Xall.reshape(number_of_images_total, *img_size, 1)

Yall = Yall.reshape(number_of_images_total, *img_size, 1)

print("Generated dataset shapes. input: {} ; output: {}".format(

Xall.shape, Yall.shape))

joblib.dump((Xall, Yall), 'datasets/dataset-1/all.pkl')

0.0.2 Separate train, val and test data and save them on disk

In [ ]: Xall, Yall = joblib.load('datasets/dataset-1/all.pkl')

print(Xall.shape)

print(Yall.shape)

training_percentage = 0.7

validation_percentage = 0.1

training_set_index = math.floor(Xall.shape[0]*training_percentage)

validation_set_index = math.floor(

Xall.shape[0]*validation_percentage) + training_set_index

# shuffling before training-validation-test slicing

ids = np.arange(Xall.shape[0])

np.random.shuffle(ids) # shuffle images to avoid bias in training

Xall, Yall = Xall[ids], Yall[ids]

print(Xall.shape)

print(Yall.shape)

Xte, yte = Xall[validation_set_index:,:],

Yall[validation_set_index:] # X and y for testing

# test set is saved on disk.

#It should NOT be modified. All model evaluations MUST target the same test set.

joblib.dump((Xte,

2

89



yte,

{

'test_percentage': 1 - training_percentage - validation_percentage

}

), 'datasets/dataset-1/test.pkl')

# X and y for training and validation

X_remaining, y_remaining = Xall[:validation_set_index,:],

Yall[:validation_set_index]

# test and val set are saved on disk.

#It can be loaded after and be shuffled, cross validated, etc.

config = {

'train_percentage': training_percentage,

'training_set_index': training_set_index,

'val_percentage': validation_percentage,

'validation_set_index': validation_set_index

}

joblib.dump((X_remaining, y_remaining, config), 'datasets/dataset-1/train-and-val.pkl')
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train-thesis

March 21, 2018

In [ ]: import joblib

import numpy as np

import os

import tensorflow as tf

import math

import csv

from keras.models import Model

from keras.layers import Input, merge, Conv2D,

MaxPooling2D, UpSampling2D, concatenate,

Dropout

from keras.layers.normalization import BatchNormalization

from keras.optimizers import Adam

from keras.callbacks import ModelCheckpoint, LearningRateScheduler,

TensorBoard, CSVLogger

from keras.preprocessing.image import ImageDataGenerator

from keras.utils import plot_model

from keras import backend as K

from PIL import Image

from skimage.measure import compare_ssim as ssim

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

import matplotlib.pyplot as plt # to plot images

%matplotlib inline

0.0.1 Consts

In [ ]: train_and_val_dataset_file = 'datasets/dataset-1/train-and-val.pkl'

test_dataset_file = 'datasets/dataset-1/test.pkl'

saved_model_filename = "datasets/dataset-1/test-3.hdf5"

csv_logger_training = "datasets/dataset-1/test-3.csv"

0.0.2 Load datasets

In [ ]: X_remaining, Y_remaining, remaining_dataset_desc = joblib.load(

train_and_val_dataset_file

)

# X and y for test

1
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Xte, yte, test_dataset_desc = joblib.load(test_dataset_file)

training_set_index = remaining_dataset_desc['training_set_index']

validation_set_index = remaining_dataset_desc['validation_set_index']

# X and y for training

Xtr, ytr = X_remaining[:training_set_index,:],

Y_remaining[:training_set_index]

# X and y for validation

Xva, yva = X_remaining[training_set_index:validation_set_index,:],

Y_remaining[training_set_index:validation_set_index]

print(Xtr.shape)

print(Xva.shape)

print(Xte.shape)

print(ytr.shape)

print(yva.shape)

print(yte.shape)

0.0.3 Data augmentation

In [ ]: txtyrange = range(-1, 1, 1) # translation range for x and y directions

loat = [ (tx, ty) for tx in txtyrange

for ty in txtyrange

] # list of accepted translations

loaa = list(range(-1, 1, 1))

foia = len(loat) * len(loaa) # factor of image augmentation

print(foia)

total_imgs = Xtr.shape[0]

increment = 0

print(total_imgs*foia)

for i in range(total_imgs):

x = Xtr[i]

y = ytr[i]

for (tx, ty) in loat:

input_array = x.reshape(x.shape[0], x.shape[1])

output_array = y.reshape(y.shape[0], y.shape[1])

input_image = Image.fromarray(input_array)

input_image = input_image.transform(

input_image.size, Image.AFFINE, (1, 0, tx, 0, 1, ty)

) # translated full image

output_image = Image.fromarray(output_array)

output_image = output_image.transform(

output_image.size, Image.AFFINE, (1, 0, tx, 0, 1, ty)
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) # translated full image

for a in loaa:

increment += 1

if increment % 1000 == 0:

print("Processed {}/{}".format(increment, total_imgs*foia))

# rotated trcimg

input_image = input_image.rotate(a, resample=Image.BICUBIC)

input_array_augmented = np.array(input_image) # array with pixel values

Xtr = np.append(Xtr, input_array_augmented).reshape(

total_imgs+increment, x.shape[0], x.shape[1], x.shape[2]

)

# rotated trcimg

output_image = output_image.rotate(a, resample=Image.BICUBIC)

output_array_augmented = np.array(output_image) # array with pixel values

ytr = np.append(ytr, output_array_augmented).reshape(

total_imgs+increment, y.shape[0], y.shape[1], y.shape[2]

)

0.0.4 Pre processing

In [ ]: # Preprocessing in the training set (mean and sd) and apply it to all sets

full_image_mean_value = Xtr.mean() # mean-value for each pixel of all full images

full_image_sd = Xtr.std() # standard deviation for each pixel of all full images

Xtr = (Xtr - full_image_mean_value) / full_image_sd

Xva = (Xva - full_image_mean_value) / full_image_sd

Xte = (Xte - full_image_mean_value) / full_image_sd

0.0.5 Pre-configurations

In [ ]: K.set_image_data_format('channels_last') # TF dimension

_, *input_image_shape, _ = Xtr.shape

input_image_shape = tuple(input_image_shape)

print(input_image_shape)

smooth = 1.

use_dropout = True

use_regularizers = True

dropout_rate = 0.5

number_of_epochs = 1000

batch_size = 32

kernel_size = (5, 5)

initial_volume_size = 64

3

93



0.0.6 Define Unet model

In [ ]: # Define loss function

def dice_coef_per_image_in_batch(y_true, y_pred):

y_true_f = K.batch_flatten(y_true)

y_pred_f = K.batch_flatten(y_pred)

intersection = 2. * K.sum(y_true_f * y_pred_f, axis=1, keepdims=True) + smooth

union = K.sum(y_true_f, axis=1, keepdims=True) + K.sum(

y_pred_f,

axis=1,

keepdims=True) + smooth

return K.mean(intersection / union)

def dice_coef_loss(y_true, y_pred):

return -dice_coef_per_image_in_batch(y_true, y_pred)

def dice_coef_accur(y_true, y_pred):

return dice_coef_per_image_in_batch(y_true, y_pred)

def setup_regularizers(conv_layer):

return BatchNormalization()(conv_layer) if use_regularizers else conv_layer

def setup_dropout(conv_layer):

return Dropout(dropout_rate)(conv_layer) if use_dropout else conv_layer

# Define model

inputs = Input((*input_image_shape, 1))

conv1 = Conv2D(initial_volume_size,

kernel_size, activation='relu',

padding='same')(inputs)

conv1 = Conv2D(initial_volume_size,

kernel_size, activation='relu',

padding='same')(conv1)

conv1 = setup_regularizers(conv1)

pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

conv2 = Conv2D(initial_volume_size*2,

kernel_size, activation='relu',

padding='same')(pool1)

conv2 = Conv2D(initial_volume_size*2,

kernel_size,

activation='relu',

padding='same')(conv2)

conv2 = setup_regularizers(conv2)

pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

conv3 = Conv2D(initial_volume_size*4,
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kernel_size,

activation='relu',

padding='same')(pool2)

conv3 = Conv2D(initial_volume_size*4,

kernel_size,

activation='relu',

padding='same')(conv3)

conv3 = setup_regularizers(conv3)

pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

conv4 = Conv2D(initial_volume_size*8,

kernel_size,

activation='relu',

padding='same')(pool3)

conv4 = Conv2D(initial_volume_size*8,

kernel_size, activation='relu',

padding='same')(conv4)

conv4 = setup_regularizers(conv4)

pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

conv5 = Conv2D(initial_volume_size*16,

kernel_size,

activation='relu',

padding='same')(pool4)

conv5 = Conv2D(initial_volume_size*16,

kernel_size,

activation='relu',

padding='same')(conv5)

conv5 = setup_regularizers(conv5)

up6 = concatenate([UpSampling2D(size=(2, 2))(conv5), conv4], axis=3)

up6 = setup_dropout(up6)

conv6 = Conv2D(initial_volume_size*8,

kernel_size,

activation='relu',

padding='same')(up6)

conv6 = Conv2D(initial_volume_size*8,

kernel_size,

activation='relu',

padding='same')(conv6)

up7 = concatenate([UpSampling2D(size=(2, 2))(conv6), conv3], axis=3)

up7 = setup_dropout(up7)

conv7 = Conv2D(initial_volume_size*4,

kernel_size,

activation='relu',

padding='same')(up7)

conv7 = Conv2D(initial_volume_size*4,
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kernel_size,

activation='relu',

padding='same')(conv7)

up8 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv2], axis=3)

up8 = setup_dropout(up8)

conv8 = Conv2D(initial_volume_size*2,

kernel_size,

activation='relu',

padding='same')(up8)

conv8 = Conv2D(initial_volume_size*2,

kernel_size,

activation='relu',

padding='same')(conv8)

up9 = concatenate([UpSampling2D(size=(2, 2))(conv8), conv1], axis=3)

up9 = setup_dropout(up9)

conv9 = Conv2D(initial_volume_size,

kernel_size,

activation='relu',

padding='same')(up9)

conv9 = Conv2D(initial_volume_size,

kernel_size,

activation='relu',

padding='same')(conv9)

conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)

model = Model(inputs=[inputs], outputs=[conv10])

model.compile(optimizer=Adam(lr=1e-5),

loss=dice_coef_loss,

metrics=[dice_coef_accur])

print("Size of the CNN: %s" % model.count_params())

In [ ]: print(model.summary())

0.0.7 Train model

In [ ]: # Define callbacks

model_checkpoint = ModelCheckpoint(

saved_model_filename,

monitor='val_dice_coef_accur',

save_best_only=True, verbose=1

)

csv_logger = CSVLogger(csv_logger_training, append=True, separator=';')

# Train
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history = model.fit(Xtr,

ytr,

batch_size=batch_size,

epochs=number_of_epochs,

verbose=2,

shuffle=True,

callbacks=[model_checkpoint, csv_logger], validation_data=(Xva, yva))

0.0.8 Show model metrics

In [ ]: x = history.history['dice_coef_accur']

y = history.history['val_dice_coef_accur']

plt.plot(x, label='train')

plt.plot(y, label = 'val')

plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

plt.show()

x = history.history['loss']

y = history.history['val_loss']

plt.plot(x, label='train')

plt.plot(y, label='val')

plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

plt.show()

0.0.9 Evaluate the model

In [ ]: test_loss, accuracy_test = model.evaluate(Xte, yte, verbose=0)

print("Training Accuracy Mean: "+str(np.array(data['dice_coef_accur']).mean()))

print("Validation Accuracy Mean: "+str(np.array(data['val_dice_coef_accur']).mean()))

print("Test Accuracy Mean: "+str(accuracy_test))

0.0.10 Predict masks using the trained model

In [ ]: model.load_weights("datasets/dataset-1/test-6-new-tentative-105-0.9527.hdf5")

print(model.metrics_names)

test_loss, accuracy_test = model.evaluate(Xte, yte, verbose=0)

print("Test Accuracy Mean: "+str(accuracy_test))

imgs_mask_test = model.predict(Xte, verbose=1)

0.0.11 Show results

In [ ]: ncols = 3 # number of columns in final grid of images

nrows = 30 # looking at all images takes some time

_, axes = plt.subplots(nrows, ncols, figsize=(17, 17*nrows/ncols))

for axis in axes.flatten():

axis.set_axis_off()

axis.set_aspect('equal')
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for k in range(0, nrows):

im_test_original = Xte[k].reshape(*input_image_shape)

im_result = imgs_mask_test[k].reshape(*input_image_shape)

im_ground_truth = yte[k].reshape(*input_image_shape)

axes[k, 0].set_title("Original Test Image")

axes[k, 0].imshow(im_test_original, cmap='gray')

axes[k, 1].set_title("Ground Truth")

axes[k, 1].imshow(im_ground_truth, cmap='gray')

axes[k, 2].set_title("Predicted")

axes[k, 2].imshow(im_result, cmap='gray')

0.0.12 Compare images quality

In [ ]: def mse(ground_truth, predicted):

_, width, height, _ = ground_truth.shape

return np.sum(( (predicted - ground_truth) ** 2), axis=(1,2,3)) / (width * height)

result = mse(imgs_mask_test, yte)

objects = tuple([x for x in range(yte.shape[0])])

y_pos = np.arange(len(objects))

plt.figure(figsize=(10, 10))

plt.plot(y_pos, result, 'ro')

#plt.bar(y_pos, result)

plt.ylabel('Error')

plt.xlabel('Image')

plt.title('MSE Error Per Image')

plt.show()

number_of_images, width, height, _ = yte.shape

objects = []

result = []

for i in range(number_of_images):

objects.append(i)

ground_truth = yte[i].astype('float32').reshape(yte.shape[1:3])

predicted = imgs_mask_test[i].reshape(imgs_mask_test.shape[1:3])

result.append(ssim(ground_truth, predicted))

objects = tuple(objects)

y_pos = np.arange(len(objects))

plt.figure(figsize=(10, 10))

plt.plot(y_pos, result, 'ro')
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#plt.bar(y_pos, result)

plt.ylabel('SSIM')

plt.xlabel('Image')

plt.title('SSIM Per Image')

plt.show()

0.0.13 Compare image quality results of all tests

In [ ]: def _setup_regularizers(conv_layer, use_regularizers):

return BatchNormalization()(conv_layer) if use_regularizers else conv_layer

def _setup_dropout(conv_layer, use_dropout):

return Dropout(dropout_rate)(conv_layer) if use_dropout else conv_layer

def get_model(kernel_size, use_regularizer, use_dropout, initial_volume_size):

# Define model

inputs = Input((*input_image_shape, 1))

conv1 = Conv2D(initial_volume_size,

kernel_size,

activation='relu',

padding='same')(inputs)

conv1 = Conv2D(initial_volume_size,

kernel_size,

activation='relu',

padding='same')(conv1)

conv1 = _setup_regularizers(conv1, use_regularizer)

pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

conv2 = Conv2D(initial_volume_size*2,

kernel_size,

activation='relu',

padding='same')(pool1)

conv2 = Conv2D(initial_volume_size*2,

kernel_size,

activation='relu',

padding='same')(conv2)

conv2 = _setup_regularizers(conv2, use_regularizer)

pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

conv3 = Conv2D(initial_volume_size*4,

kernel_size,

activation='relu',

padding='same')(pool2)

conv3 = Conv2D(initial_volume_size*4,

kernel_size,

activation='relu',

padding='same')(conv3)
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conv3 = _setup_regularizers(conv3, use_regularizer)

pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

conv4 = Conv2D(initial_volume_size*8,

kernel_size,

activation='relu',

padding='same')(pool3)

conv4 = Conv2D(initial_volume_size*8,

kernel_size,

activation='relu',

padding='same')(conv4)

conv4 = _setup_regularizers(conv4, use_regularizer)

pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

conv5 = Conv2D(initial_volume_size*16,

kernel_size,

activation='relu',

padding='same')(pool4)

conv5 = Conv2D(initial_volume_size*16,

kernel_size,

activation='relu',

padding='same')(conv5)

conv5 = _setup_regularizers(conv5, use_regularizer)

up6 = concatenate([UpSampling2D(size=(2, 2))(conv5), conv4], axis=3)

up6 = _setup_dropout(up6, use_dropout)

conv6 = Conv2D(initial_volume_size*8,

kernel_size,

activation='relu',

padding='same')(up6)

conv6 = Conv2D(initial_volume_size*8,

kernel_size,

activation='relu',

padding='same')(conv6)

up7 = concatenate([UpSampling2D(size=(2, 2))(conv6), conv3], axis=3)

up7 = _setup_dropout(up7, use_dropout)

conv7 = Conv2D(initial_volume_size*4,

kernel_size,

activation='relu',

padding='same')(up7)

conv7 = Conv2D(initial_volume_size*4,

kernel_size,

activation='relu',

padding='same')(conv7)

up8 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv2], axis=3)

up8 = _setup_dropout(up8, use_dropout)
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conv8 = Conv2D(initial_volume_size*2,

kernel_size,

activation='relu',

padding='same')(up8)

conv8 = Conv2D(initial_volume_size*2,

kernel_size,

activation='relu',

padding='same')(conv8)

up9 = concatenate([UpSampling2D(size=(2, 2))(conv8), conv1], axis=3)

up9 = _setup_dropout(up9, use_dropout)

conv9 = Conv2D(initial_volume_size,

kernel_size,

activation='relu',

padding='same')(up9)

conv9 = Conv2D(initial_volume_size,

kernel_size,

activation='relu',

padding='same')(conv9)

conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)

model = Model(inputs=[inputs], outputs=[conv10])

model.compile(optimizer=Adam(lr=1e-5),

loss=dice_coef_loss,

metrics=[dice_coef_accur])

return model

In [ ]: trained_models = [

(

"datasets/dataset-1/test-2-996--0.9361-0.9361.hdf5",

get_model((3,3), False, False, 32)),

(

"datasets/dataset-1/test-3-97-0.9321.hdf5",

get_model((3,3), False, False, 32)),

(

"datasets/dataset-1/test-5-new-tentative-682-0.9783.hdf5",

get_model((3,3), True, True, 32)),

(

"datasets/dataset-1/test-6-new-tentative-105-0.9527.hdf5",

get_model((5,5), True, True, 64))

]

def dice_coef_numpy(y_true, y_pred):

y_true_f = y_true.flatten()

y_pred_f = y_pred.flatten()
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intersection = 2 * np.sum(y_true_f * y_pred_f) + smooth

union = np.sum(y_true_f) + np.sum(y_pred_f) + smooth

return np.mean(intersection / union)

def _get_predicitions_for_model(trained_model):

weights, model = trained_model

model.load_weights(weights)

imgs_mask_test = model.predict(Xte, verbose=1)

return imgs_mask_test

def get_box_data_for_each_model(comparison_function):

data = []

for model_prediction in models_predictions:

result = []

for i in range(number_of_images):

ground_truth = yte[i].astype('float32').reshape(yte.shape[1:3])

predicted = model_prediction[i].reshape(imgs_mask_test.shape[1:3])

measure = comparison_function(ground_truth, predicted)

result.append(measure)

data.append(result)

return data

def _create_box_plot(data, fig_identifier, subplot_index):

# Create a figure instance

fig = plt.figure(fig_identifier, figsize=(18, 12))

# Create an axes instance

ax = fig.add_subplot(subplot_index)

# Create the boxplot

bp = ax.boxplot(data, patch_artist=True)

for box in bp['boxes']:

# change outline color

box.set( color='#000000', linewidth=2)

# change fill color

box.set( facecolor = 'pink' )

## change color and linewidth of the whiskers

for whisker in bp['whiskers']:

whisker.set(color='#000000', linewidth=2)

## change color and linewidth of the caps

for cap in bp['caps']:

cap.set(color='#000000', linewidth=2)

## change color and linewidth of the medians

for median in bp['medians']:
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median.set(color='#ff0000', linewidth=2)

## change the style of fliers and their fill

for flier in bp['fliers']:

flier.set(marker='o', color='green')

models_predictions = []

for trained_model in trained_models:

models_predictions.append(_get_predicitions_for_model(trained_model))

In [ ]: data = get_box_data_for_each_model(dice_coef_numpy)

_create_box_plot(data, 'dice', 111)

plt.show()

In [ ]: data = get_box_data_for_each_model(ssim)

_create_box_plot(data, 'ssim', 111)

plt.show()

0.0.14 Save predicted images to disk

In [ ]: total_images, width, height, _ = imgs_mask_test.shape

for i in range(total_images):

I = imgs_mask_test[i].reshape(width, height)

I8 = (((I - I.min()) / (I.max() - I.min())) * 255.9).astype(np.uint8)

img = Image.fromarray(I8)

img.save(result_imgs_folder.format(i, 'predicted'))

I = yte[i].reshape(width, height)

I8 = (((I - I.min()) / (I.max() - I.min())) * 255.9).astype(np.uint8)

img = Image.fromarray(I8)

img.save(result_imgs_folder.format(i, 'gt'))

0.0.15 Segmenting random images from Internet

In [ ]: path = "datasets/dataset-1/tests-random-images"

images_in_disk = os.listdir(path)

img_size = (128, 128)

images = np.array([])

number_of_images_total = 0

for f in images_in_disk[8:]:

input_image_location = os.path.join(path,f)

if os.path.isfile(input_image_location):

input_image = Image

.open(input_image_location, 'r')
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.convert('L')

.resize(img_size)

input_image_array = np.array(input_image)

images = np.append(images, input_image_array)

number_of_images_total += 1

images = images.reshape(number_of_images_total, *img_size, 1)

images = (images - full_image_mean_value) / full_image_sd

segmented_images = model.predict(images, verbose=1)

ncols = 2 # number of columns in final grid of images

nrows = number_of_images_total # looking at all images takes some time

_, axes = plt.subplots(nrows, ncols, figsize=(17, 17*nrows/ncols))

for axis in axes.flatten():

axis.set_axis_off()

axis.set_aspect('equal')

for k in range(0, nrows):

im_original = images[k].reshape(*img_size)

im_result = segmented_images[k].reshape(*img_size)

axes[k, 0].set_title("Original Image: {}".format(images_in_disk[k]))

axes[k, 0].imshow(im_original, cmap='gray')

axes[k, 1].set_title("Segmented")

axes[k, 1].imshow(im_result, cmap='gray')

0.0.16 Fun Experiment: Looking at the layers!

In [ ]: def _get_convolutions(layer_name):

output = [layer.output for layer in model.layers if

layer.name == layer_name or layer_name is None][0]

inputs = [K.learning_phase()] + model.inputs

_convout1_f = K.function(inputs, [output])

def convout1_f(X):

# The [0] is to disable the training phase flag

return _convout1_f([0] + [X])

convolutions = convout1_f(Xte[0:1])

convolutions = np.squeeze(convolutions)

return convolutions

def layer_to_visualize(layer_name, save_plot=False):

convolutions = _get_convolutions(layer_name)

#print ('Shape of conv:', convolutions.shape)
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n = convolutions.shape[0]

from math import sqrt

ncols = nrows = int(sqrt(convolutions.shape[2])) # board

fig, axes = plt.subplots(nrows, ncols, figsize=(80, 80*nrows/ncols))

for axis in axes.flatten():

axis.set_axis_off()

axis.set_aspect('equal')

for k in range(0, nrows):

for j in range(0, ncols):

axes[k, j].imshow(convolutions[:,:,k*nrows+j], cmap='gray')

if save_plot:

fig.savefig(layer_name)

layers_name = [layer.name for layer in model.layers]

print(layers_name)

In [ ]: layer_to_visualize(layer_name='conv2d_15', save_plot=False)
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