
MODEL CHECKING DOLEV-YAO MULTI-AGENT EPISTEMIC LOGIC

Anna Carolina Carvalho Moreira de Oliveira

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Mario Roberto Folhadela

Benevides

Rio de Janeiro

Março de 2018

MODEL CHECKING DOLEV-YAO MULTI-AGENT EPISTEMIC LOGIC

Anna Carolina Carvalho Moreira de Oliveira

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO

GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E

COMPUTAÇÃO.

Examinada por:

Prof. Mario Roberto Folhadela Benevides, Ph.D.

Prof. Valmir Carneiro Barbosa, Ph.D.

Prof. Bruno Lopes, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2018

Oliveira, Anna Carolina Carvalho Moreira de

Model Checking Dolev-Yao Multi-Agent Epistemic

Logic/Anna Carolina Carvalho Moreira de Oliveira. – Rio

de Janeiro: UFRJ/COPPE, 2018.

X, 55 p.: il.; 29, 7cm.

Orientador: Mario Roberto Folhadela Benevides

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2018.

Referências Bibliográficas: p. 45 – 46.

1. knowledge. 2. security. 3. logic. 4. epistemic. 5.

strips. 6. planning. 7. checker. I. Benevides, Mario

Roberto Folhadela. II. Universidade Federal do Rio de

Janeiro, COPPE, Programa de Engenharia de Sistemas

e Computação. III. T́ıtulo.

iii

To my mother and my father for

the support. And my boyfriend for

the partnership in academic life.

iv

Acknowledgments

I would like to thank my advisor Mario Benevides for the opportunity and guidance

since I was an undergraduate.

I must express my gratitude to my boyfriend Luiz Cláudio F. Fernandez for stay

always with me, for our moments since graduation and for all the work developed

together since undergraduate research.

I would also like to acknowledge Ivan Varzinczak for working with us in future

possibilities for our project. And Simon Kramer for the talks about our work.

I also wish to thank Vitor Machado for his assistance.

And I would like to extend my gratitude to my family and my boyfriend’s family

for their support.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

VERIFICADOR DE MODELOS PARA LÓGICA EPISTÊMICA DOLEV-YAO

Anna Carolina Carvalho Moreira de Oliveira

Março/2018

Orientador: Mario Roberto Folhadela Benevides

Programa: Engenharia de Sistemas e Computação

Utilizamos a internet para quase tudo, inclusive para coisas que exigem um

alto ńıvel de sigilo, como por exemplo transações bancárias. Isso nos faz pensar

na segurança necessária para manter seguro esse ambiente, que constantemente

sofre ataques. Por esse motivo o estudo da criptografia está em constante avanço.

Mas além disso é importante também que os protocolos de segurança não contenha

vulnerabilidade. Dolev e Yao em 1983 conseguiram perceber que no protocolo de

chave pública, que é amplamente utilizado até hoje, é posśıvel um usuário malicioso

descobrir o conteúdo de uma comunicação entre outros usuário da rede sem quebra

da chave criptográfica, somente através de trocas de mensagens. Baseado no modelo

apresentado nesse artigo, nós desenvolvemos uma extensão da lógica epistêmica, que

expressa conhecimento e crença, para avaliar se os protocolos são seguros. E em cima

desse nosso novo sistema, nós o traduzimos para a linguagem de strips, onde podemos

automaticamente testar todas as posśıveis ações de um intruso para descobrir se será

posśıvel ele conseguir o conteúdo da mensagem. E com esse novo formato do nosso

sistema, nós desenvolvemos um verificador de modelo.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

MODEL CHECKING DOLEV-YAO MULTI-AGENT EPISTEMIC LOGIC

Anna Carolina Carvalho Moreira de Oliveira

March/2018

Advisor: Mario Roberto Folhadela Benevides

Department: Systems Engineering and Computer Science

We use the web for almost everything, including for actions that require high level

of secrecy, for example, banking transactions. It make us think about the necessary

security to keep this environment safe, that constantly suffers cyber attacks. For this

reason, the study of cryptography is always in advance. Besides, It is important do

not have vulnerability in security protocol too. In 1983, Dolev and Yao realize that

in public key protocol, which is widely used even nowadays, a malicious user in a

network can discover the contents of communications between other users simply

by eavesdropping on the exchange of messages. Based on the model introduced in

the Dolev and Yao’s article, we propose an epistemic logic extension to evaluate if a

security protocol is safe. We transcripted this extension to strips language, where

we can automatically test every possible intruder actions to discover contents of

messages. And with this new notation we developed a model checker.

vii

Contents

List of Figures x

1 Introduction 1

2 A background of logic 3

2.1 Multi-Agents Epistemic Logic . 3

2.1.1 Language and semantics . 3

2.1.2 Axiomatization . 5

2.1.3 Example . 5

2.2 Dolev-Yao Model . 7

2.2.1 Public Key Protocol . 7

2.2.2 Examples . 7

2.2.3 Rules . 10

2.3 BAN Logic . 10

2.3.1 Symbols . 11

2.3.2 Syntax . 11

2.3.3 Logical Postulates . 12

2.3.4 On Quantifiers in Delegations 13

2.3.5 Example . 14

2.4 Planning Problem . 14

2.4.1 Example . 15

2.4.2 STRIPS (Stanford Research Institute Problem Solver) 16

3 Dolev-Yao Multi-Agent Epistemic Logic 20

3.1 Language . 20

3.2 Semantics . 21

3.3 Axiomatization . 21

3.4 Soundness . 22

3.5 Completeness . 23

3.6 Examples . 27

viii

4 Strips Dolev-Yao 31

4.1 Language . 31

4.2 Examples . 32

5 Planner 40

5.1 Implementation . 40

5.2 Execution . 42

6 Final remarks and future works 44

6.1 Future works . 44

Bibliography 45

A Protocols 47

A.1 The Kerberos Protocol’s analysis . 47

A.1.1 The protocol . 47

A.1.2 The analysis . 47

A.2 The Andrew Secure RPC Hanshake’s analysis 50

A.2.1 The protocol . 50

A.2.2 The analysis . 50

B Model Checking Source Code 52

ix

List of Figures

2.1 In this figure we have a reflexive model, a transitive model and sym-

metric model . 4

2.2 A Model with reflexive, transitive and symmetric binary relations and

how we represent in Kripke model. 4

2.3 A Kripke model only with edges a of example 1 6

2.4 A Kripke model only with edges b of example 1 6

2.5 A Kripke model of example 1 . 6

2.6 Example 2 - A sends a message to B 7

2.7 Example 2 - Z intercepts the message and B replies to Z 7

2.8 Example 3 - A sends a message to B 8

2.9 Example 3 - Z intercepts the message and B replies to Z 8

2.10 Example 4 - A sends a message to B and B replies to A 9

2.11 Example 4 - B replies to A and Z intercepts. A replies to Z. Also Z

replies to A and A replies to Z again. 9

2.12 Initial state . 16

2.13 Goal . 16

2.14 Example of strips - Robot . 17

5.1 Execution of the first Dolev and Yao example 43

5.2 Execution of the second Dolev and Yao example 43

x

Chapter 1

Introduction

The internet is widely used by everyone, yet we are always susceptible to risks.

In network traffic there are great quantities of sensitive information, therefore it’s

important that we use mechanisms to protect them. For this purpose, we need good

cryptography algorithms and secure protocols too.

When dealing with communications safety, we are mostly concerned with the

encryption used on the network. Encryption is important for keeping secrecy, but so

is the logic of the protocols themselves.

Dolev and Yao proved in 1983 [1] that a malicious user in a network can discover

the contents of communications between other users simply by eavesdropping on

the exchange of messages. If the protocol itself is not safe, the dependence on solid

encryption algorithms is increased even further.

We used this paper by Dolev and Yao as the basis for the logic presented here,

due to its relevance in the field. We will present this model in Section 2.2.

In our research, we encountered many different approaches for the analysis of

security protocols. Another expressive work is “A Logic of Authentication” by

Burrows, Abadi and Needham [2]. In this article they proposed the BAN Logic,

which however could hardly be considered an usual logic, due to the lack of certain

classical operators on its syntax. However it’s interesting to study their methods,

and we present this in more detail in Section 2.3.

Abadi has other relevant works in the field of communications security. Abadi and

Rogaway consider a distinction between a formal logic approach, and an algebraic

one (computational model). However they also proposed a reconciliation of the two

aspects in [3]. We do not discuss this paper in more detail in this work, since our

proposal consists of a formal model similar to the articles previously mentioned. An

example of a computational model that we analyzed for this work is Spy-Calculus by

Abadi and Gordon [4].

The general idea presented in the work of Dolev and Yao is to reason about what

an intruder can extract from private communications. Considering this, we decided

1

to expand multi-agent epistemic logic, which are logics of knowledge and beliefs, to

reason about security protocols. We further discuss epistemic logics in Section 2.1,

and our own proposed system in Chapter 3.

In 1951, von Wright introduced the notion of work with modal logic to reasoning

about knowledge [5]. Hintikkas’s work defined a semantic to the notion of knowledge

and belief [6]. With this, the area expanded in philosophy. Afterwards, fields such

as computer science, artificial intelligence, linguistic realized the real potential for

develop researches on epistemic logic.

Another important notion used in this project is the planning problem. It came

from artificial intelligence progress, by necessity to program actions in robots and

functions to evaluate every possibilities given a set of actions. Strips was a pioneer

planner and was developed for the “Shakey the robot” project, designed at SRI

International. Shakey was the first mobile robot controlled by artificial intelligence.

Finally, in this work we also introduce a model checker for our logic in Chapter 5.

As we intend to provide this automated approach for the analysis of our logic, we

considered the current state of the art in epistemic logic model checking, and also the

existing implementations of authentication protocols. We decided to transcript our

language into strips (Chapter 4), with which planning problems can be represented,

and then we proceeded to develop our model checker. In the strips model, we are

able to search across all possibilities automatically, something we further explain

with the aid of examples in Section 2.4.

2

Chapter 2

A background of logic

In this chapter we discuss concepts of major importance, that serve as the base of our

work. We present some definitions of multi-agent epistemic logic. Next, we describe

the Dolev-Yao model, and introduce examples extracted from their paper which we

later transcript to, and analyze in our own language. After that, we provide notions

of the BAN Logic, and then introduce the operations used in planning problems.

2.1 Multi-Agents Epistemic Logic

We consider the multi-agent epistemic logic of [7–10], which is commonly named S5

logic. In this logic it is possible to represent knowledge (K) and beliefs (B) of agents,

and this formalization can be used for several purposes such as security protocol

analysis, machine learning and game theory.

In this type of logic there exists some possible worlds where information cannot

be known with certainty by some of its agents. For instance, consider a card game

where the knowledge of agents is limited, and they need to work with possibilities

to advance the game. Epistemic logic can formally represent all possible states and

agents’ doubts and certainties.

2.1.1 Language and semantics

Definition 1 The language of multi-agent epistemic logic consists of a set Φ of

countably many propositional symbols, a finite set of agents A, boolean connectives ¬,

∧ and →, and a modality Ka for each agent a. The formulas are defined as follows:

ϕ ::= p | > | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 | Kaϕ

where a ∈ A and p ∈ Φ.

We use a standard abbreviations:

3

• ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2);

• > ≡ ¬⊥;

• ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1);

• Baϕ ≡ ¬Ka¬ϕ.

Definition 2 A multi-agent epistemic logic frame is a tuple F = (W,∼a). where W

is a non-empty set of states and ∼a is a reflexive, transitive and symmetric binary

relation over W, for each a ∈ A

We say that model is reflexive when the states have a relation with itself (Figure

2.1(a)). Defined as:

∀w ∈ W → wRw

In transitive relation, if a state x has a relation with state y and y has a relation

with state z then x must have a relation with z (Figure 2.1(b)). Defined as:

∀w, w′, w′′ ∈ W, wRw′ ∧ w′Rw′′ → wRw′′

And in a model with symmetric binary we need to have a relation (y, x) when we

have the relation (x, y) (Figure 2.1(c)). Defined as:

∀w, w′, wRw′ → w′Rw

Where R is a simple relation. In Kripke model we represent the reflexive, transitive

and symmetric binary relation with a simple edge (Figure 2.2).

(a) It is a reflexive frame (b) It is a transitive frame (c) It is a symmetric frame

Figure 2.1: In this figure we have a reflexive model, a transitive model and symmetric

model

Figure 2.2: A Model with reflexive, transitive and symmetric binary relations and

how we represent in Kripke model.

4

Definition 3 A multi-agent epistemic logic model (Kripke model) is M = (F , V).

Where F is an epistemic frame and V is a valuation function V : Φ→ 2W .

Definition 4 Given a multi-agent epistemic logic model M = 〈S,∼a, V 〉 and s ∈ S,

the notion of satisfaction M, s � ϕ is defined as follows:

• M, s � p if and only if s ∈ V (p)

• M, s � ¬ϕ if and only if M, s 2 ϕ

• M, s � ϕ ∧ ψ if and only if M, s � ϕ e M, s � ψ

• M, s � ϕ→ ψ if and only if M, s � ϕ then M, s � ψ

• M, s � Kaϕ if and only if for all s′ ∈ W , if s ∼a s
′ then M, s′ � ϕ

2.1.2 Axiomatization

All instantiations of propositional tautologies are valid axioms. In the multi-agent

epistemic logic also we have the following axioms that are valid in reflexive, transitive

and symmetric frames. And the inference rules are Modus Ponens (M.P.), Universal

Generalization (U.G.) and Substitution (U.B.)

1. Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)

2. Kaϕ→ ϕ

3. Kaϕ→ KaKaϕ

4. ¬Kaϕ→ Ka¬Kaϕ

Inference Rules

M.P. ϕ, ϕ→ ψ/ψ U.G. ϕ/Kaϕ U.B. ϕ/σϕ

where σ is a map uniformly substituting formulas for propositional variables.

2.1.3 Example

Example 1 Consider three agents, Amy (A), Ben (B) and Carl (C), playing a card

game. In this game there are three cards 0, 1 and 2. Ben gets a card with number 1,

and only he sees its value. After that, Carl gets card 2 and he sees card 0 on the table.

Only Carl can see the values of these two cards. Amy does not get a card, and she

does not see any cards either. Next, we show the epistemic model for this situation.

The vertices represent the possible states, and edges denote the states that an

agent can’t distinguish.

5

Figure 2.3: A Kripke model only with edges

a of example 1

Figure 2.4: A Kripke model only with edges

b of example 1

Figure 2.5: A Kripke model of example 1

Here, we can infer some formulas, for example:

• 01b2c 2 Ka1b, which means that in state 01b2c, it is not true that Amy knows

Ben’s card is 1;

• 02b1c � (¬Kb1c) ∧ (Kb2b), here we say that in state 02b1c Ben does not know

that Carl has card 1, and Ben knows card 2 is his card;

• 20b1c � Kc1c ∧Kc0b, means that in the state 20b1c, Carl knows that he has the

card 1, and knows that Ben has card 0;

• 12b0c � Kb¬(¬0c ∧ ¬1c) ≡ 12b0c � Kb(0c ∨ 1c), this formula represents the fact

that Ben knows that Carl has either card 0 or card 1.

We can see in this model that to Amy any state is possible, since she has no

information to exclude any of the possibilities. In contrast, Carl has no doubts, since

he has sufficient information to distinguish between all possible states. Ben, on the

other hand, has some information but not enough to know exactly who has every

card.

6

2.2 Dolev-Yao Model

Dolev and Yao’s paper [1] is very important to the research of formal verification

methods for security protocols. They present arguments showing that secure encryp-

tion protocols do not ensure privacy. If the logic of the communication protocol itself

is not safe, a malicious user can discover contents of other users communications

simply by looking at the exchange of messages.

2.2.1 Public Key Protocol

The Dolev-Yao model uses a public key protocol [11, 12], where each user has two

functions: EX is a public encode function and every agent in the network knows it.

And DX is a decode function that only user X has knowledge about. It is required

that EXDX = DXEX , and if any user Y receives EX(M), nothing about message

M can be extracted.

2.2.2 Examples

Example 2 In this example agent A send message M to agent B. However a

malicious user Z intercepts the encoded message, and forwards it to B as if Z were

the original source.

A // (A,EB(M), B) // B

Figure 2.6: Example 2 - A sends a message to B

A //

(A,EB(M),B)

��

| // B

Z

(Z,EB(M),B)

??

(a) Z intercepts the message

A //

(A,EB(M),B)

��

| // B

(B,EZ(M),Z)

��
Z

(b) B replies to Z

Figure 2.7: Example 2 - Z intercepts the message and B replies to Z

1. User A sends a message to user B. [Figure 2.6]

7

2. Intruder Z intercepts a message sent from A to B. [Figure 2.7(a)]

3. Intruder Z sends message (Z,EB(M), B) to B. [Figure 2.7(a)]

4. B sends message (B,EZ(M), Z) to Z. [Figure 2.7(b)]

5. Intruder Z decodes EZ(M) and obtains M .

Example 3 Agent A sends a message MA to B, and B replies with message M

encoded with the key of the user provided in the encrypted message itself, which results

in the message being unreadable by an intruder Z.

A // (A,EB(MA), B) // B

Figure 2.8: Example 3 - A sends a message to B

A //

(A,EB(MA),B)

��

| // B

Z

(Z,EB(MA),B)

??

(a) Z intercepts the message

A //

(A,EB(MA),B)

��

| // B

(B,EA(MB),Z)

��
Z

(b) B replies to Z

Figure 2.9: Example 3 - Z intercepts the message and B replies to Z

1. A sends message MA to B. [Figure 2.8]

2. Intruder Z intercepts the message sent from A to B. [Figure 2.9(a)]

3. Intruder Z sends message (Z,EB(MA), B) to B. [Figure 2.9(a)]

4. B sends the message (B,EA(MB), Z) to Z. [Figure 2.9(b)]

5. Intruder Z cannot decode EA(MB) to obtain M .

It can be proved that this protocol is secure against any arbitrary behaviour of the

intruder.

8

Example 4 Now, agent A sends message EB(EB(M)A) to B. And when B replies,

an intruder Z intercepts it. Z uses EB(M)A as M ′, and sends EB(EB(M ′)Z) to A

which leads to Z eventually being able to read M .

A // (A,EB(EB(M)A), B) // B

(a) A sends a message to B

B // (B,EA(EA(M)B), A) // A

(b) B replies to A

Figure 2.10: Example 4 - A sends a message to B and B replies to A

A |oo Boo

(B,EA(EA(M)B),A)

��
Z

(Z,EA(EA(M ′)Z),A)

__

(a) B replies to A and Z intercepts

A

(A,EZ(EZ(M ′)A),Z)

��

|oo Boo

(B,EA(EA(M)B),A)

��
Z

(b) A replies to Z

A |oo Boo

(B,EA(EA(M)B),A)

��
Z

(Z,EA(EA(M)Z),A)

__

(c) Z replies to A

A

(A,EZ(EZ(M)A),Z)

��

|oo Boo

(B,EA(EA(M)B),A)

��
Z

(d) A replies to Z again

Figure 2.11: Example 4 - B replies to A and Z intercepts. A replies to Z. Also Z

replies to A and A replies to Z again.

1. A sends message EB(EB(M)A) to B. [Figure 2.10(a)]

2. B replies message EA(EA(M)B) to A. [Figure 2.10]

9

3. The intruder Z intercepts the message sent from B to A. [Figure 2.11(a)]

4. Intruder Z denote EA(M)B by M ′.

5. Intruder Z sends message (Z,EA(EA(M ′)Z), A) to A. [Figure 2.11(a)]

6. A sends message (A,EZ(EZ(M ′)A), Z) to Z. [Figure 2.11(b)]

7. Intruder Z decodes EZ(M ′) and obtains EA(M).

8. Intruder Z sends message (Z,EA(EA(M)Z), A) to A. [Figure 2.11(c)]

9. A sends message (A,EZ(EZ(M)A), Z) to Z. [Figure 2.11(d)]

10. Intruder Z decodes EZ(M) and obtains M .

2.2.3 Rules

The rules defined here are not presented on the same terms as the original paper,

however they can be easily derived as well with the theory presented. Consider a set

of keys K = {K1, ...}, and {M}K represents a message M encrypted with key K.

Reflexivity

M ∈ T
T `M

Encryption Decryption

T ` K T `M
T ` {M}K

T ` {M}K T ` K
T `M

Pair-Composition Pair-Decomposition

T `M T ` N
T ` (M,N)

T ` (M,N)

T `M
T ` (M,N)

T ` N

2.3 BAN Logic

In another well-known article about authentication in security protocols by M.

Burrows, M. Abadi e R. Needham published in 1990 [2], they proposed the BAN

logic, which name derives from the authors’ initials. This is an important work in the

field of authentication. It’s similar to Hoare logic and somewhat distant from usual

10

propositional or classical logics. In the paper they analyzed two famous protocols,

Kerberos and Andrew Secure RPC Handshake. We used our proposed system to

analyze these as well, and the results are presented in Appendix A.

2.3.1 Symbols

The symbols of the logic corresponds to the users of the network, the keys used in

the protocols, and statements.

By convention, to denote different kinds of keys we use Kab, Kas and Kbs for

shared ones, Ka, Kb and Ks for public ones, and K−1
a , K−1

b and K−1
s for secret ones.

To represent specific statements we use Na, Nb and Ns. Also we typically use A, B

for specific agents and S for server agent.

To range over the symbols, we frequently use P , Q for agents and R , X, Y for

statements and K for encryption keys.

2.3.2 Syntax

This syntax is quite unlike that of classical logic. For instance, the only propositional

connective is the conjunction, which is denoted by a comma (,). These conjunctions

respects properties such as associativity and commutativity.

To compose the syntax the system has P believes X, P sees X, P said X, P

controls X (meaning that P has jurisdiction over X) and fresh(X) (it is important

in BAN Logic to know if a formula X is fresh). We also have P K←→ Q, which represents

that P and Q may use the shared key K to communicate;
K7→ P meaning that P has

K as a public key; P
X

 Q which means that a formula X is a secret known only to

P and Q; {X}K representing formula X encrypted with the key K; and 〈X〉Y which

represents the formula X combined with the formula Y . In actual implementations,

〈X〉Y means X is simply concatenated with the formula Y .

Therefore, we have the following syntax:

ϕ ::= P believes X | P sees X | P said X | P controls X | fresh X

ψ ::= P K←→ Q | K7→ P | P
X

 Q | 〈X〉Y

Where ϕ works with information and ψ works with keys and passwords.

11

2.3.3 Logical Postulates

In their paper, Burrows, Abadi and Needham showed us the necessity to distinguish

between what happened in past, to what’s occurring in the present. In their work,

they consider that the present starts at the beginning of the protocol execution. It’s

also important to keep in mind that the notion of belief is very important in BAN

Logic, as it is essential to define if an user can trust an incoming message. With that

in mind, we proceed to the rules introduced by them.

The three following rules are concerned with the meaning of messages. This rules

represent that if P believes in key or secret authenticity and sees a information

encoded with this key or secret, then P believes that Q said the information.

For shared keys

P believesQK←→P, P sees {X}K
P believesQ saidX

For public keys

P believes K←→Q, P sees {X}K−1

P believesQ saidX

For shared secrets

P believesQ
Y

 P, P sees 〈X〉Y

P believesQ saidX

The following rule is concerned with whether an user has jurisdiction over some

information. It expresses that if P believes that Q has jurisdiction over a information

and believes in it, then P believes in this information.

P believesQ controlsX, P believesQbelievesX

P believesX

12

These rules are related to what an agent sees. This rules are equivalent pair

decomposition and decoded rules.

P sees (X, Y)

P seesX

P sees 〈X〉Y
P seesX

P believesQ K←→ P, P sees {X}K
P seesX

P believes
K7→ P, P sees {X}K
P seesX

P believes
K7→ Q, P sees {X}K−1

P seesX

This rule determines if an information is recent. In this postulate we have that If

a piece of information in a pair composition is fresh, then P believes that all pair

composition is recent.

P believes fresh(X)

P believes fresh (X, Y)

2.3.4 On Quantifiers in Delegations

The following captures how jurisdiction delegation works:

A believes S controls A K←→ B

Abelieves∀K.(S controlsA K←→B)

Abelieves∀K.(S controlsB controlsA K←→B)

AbelievesS controls∀K.(B controlsA K←→B)

13

P believes∀V1 . . . Vn.(Q controlsX)

P believesQ′ controlsX ′

2.3.5 Example

Example 5 This is the Example 1 of Dolev and Yao’s paper written in BAN Logic

notation. The example that A send a message M to B, but a intruder Z intercepts

the encoded message and forwards it to B.

1. m1 : A −→ B : {m}KB

2. m2 : Z −→ B : {m}KB

3. m3 : B −→ Z : {m}KZ

4. B believes A
KB←→ B

5. Z believes B
KZ←→ Z

6. m1 : Z sees {m}KB

7. m2 : B sees {m}KB

8. B sees m (agent sees rule)

9. m3 : Z sees {m}KZ

10. Z sees m (agent sees rule)

In this example, the items beginning with mx represent the protocol itself, that is,

the sequence of messages which were exchanged. The others are inferences made with

the BAN Logic syntax and its derived rules.

2.4 Planning Problem

The planning problem consists of an automated process to check if a goal is achievable,

given the starting state and the defined actions. With the information acquired in

the process, it’s possible to construct the possibility graph [13, 14].

This is interesting for the field of artificial intelligence because it results in a

tree of possibilities given a set of actions and an initial state, with which one can

find a path to reach the intended state. This can be applied in robot and games

programming, for performance analysis, and in some decision making processes.

14

Definition 5 The classic planning problem is a tuple 〈S,Ac, s0, SG〉, where S is the

set of all possible states, Ac a set of actions, s0 ∈ S is the initial state, and SG ⊆ S

is a set containing the possible goals.

2.4.1 Example

One of the widely known examples in planning problem is the “blocks world”. We

have three blocks A, B and C sitting on a table and we want stack them in a way

that the C stay in bottom and A in top. An action can only be applied to one block

at a time, and an upper block is required to move, so you can move the bottom of

the stack. And only one block can stay directly on top of another.

Here we have propositions to represent the table, the blocks (using a variable to

distinguish each one), when a block is on another block or the table (On) and if the

block has nothing on top of it (Clear). Also, the actions are move, when a block

sitting on a table or another block and we move to the top of different block, and

move to table.

• Table;

• Block(x);

• On(x, y);

• Clear(x);

• Action(Move(z, x, y),

– Precondition: On(z, x)∧Clear(z)∧Clear(y)∧Block(z)∧Block(y)∧(z 6=
x) ∧ (z 6= y) ∧ (x 6= y)

– Effect: On(z, y) ∧ Clear(x) ∧ ¬On(z, x) ∧ ¬Clear(y))

• Action(MoveToTable(z, x),

– Precondition: On(z, x)∧Clear(z)∧Clear(Table)∧Block(z)∧Table∧(z 6=
x)

– Effect: On(z, Table) ∧ Clear(x) ∧ ¬On(z, x) ∧ ¬Clear(Table))

It is necessary to specify an initial state and a goal, as follows:

• Initial(Block(A) ∧ Block(B) ∧ Block(C) ∧ On(A, Table) ∧ On(B, Table) ∧
On(C, Table) ∧ Clear(A) ∧ Clear(B) ∧ Clear(C))

• Goal(On(A,B) ∧On(B,C) ∧ Clear(Table) ∧ Clear(Table))

15

Figure 2.12: Initial state Figure 2.13: Goal

2.4.2 STRIPS (Stanford Research Institute Problem

Solver)

The Stanford Research Institute Problem Solver is a problem solver developed by

Fikes and Nilsson in 1971 [15, 16]. The language was created with the goal of

implementing efficient operators. It was developed to be a planner for the first mobile

robot controlled by artificial inteligence, “Shakey the robot”.

In Strips, the problem space is formed by an initial state, a set of operator with

their effects, and goal conditions. The search space is a set of all possible worlds

that are transversed to locate a goal. It applies the operators which change the

current state, until it reaches the goal conditions. An operator consists of a set of

preconditions and effects, which can be in a delete list, or an add list.

They introduced the search strategy as a search tree formed by goal, sub-

goals and models generated in process. In this representation, each node has

(〈world model〉, 〈goal list〉).

Example

Now we introduce a simplification of example presented by them.

In this example, we can realize the potential of this system. When the robot

receives the task, he use the set of actions given to map all possibilities and analyze

what the sequence of actions must be executed to achieve the goal.

16

Figure 2.14: Example of strips - Robot

Initial World

• (∀x∀y∀z)[Connects(x, y, z)⇒ Connects(x, z, y)]

• Connects(Door 1, Room 1, Room 3)

• Connects(Door 2, Room 2, Room 3)

• LocInRoom(d,Room 2)

• At(Box 1, a)

• At(Box 2, b)

• AtRobot(c)

• Type(Box 1, Box)

• Type(Box 2, Box)

• Type(Door 1, Door)

• Type(Door 2, Door)

• InRoom(Box 1, Room 1)

• InRoom(Box 2, Room 1)

• InRoom(Robot, Room 1)

17

• Pushable(Box 1)

• Pushable(Box 2)

• OnFloor

Operators

• goto1(m): Robot goes to m.

– Preconditions: OnFloor ∧ ∃x[InRoom(Robot, x) ∧ LocInRoom(m,x)]

– Delete list: AtRobot(S), NextTo(Robot, S)

– Add list: AtRobot(m)

• goto2(m): Robot goes next to object m.

– Preconditions: OnFloor ∧ ∃x[InRoom(Robot, x) ∧ LocInRoom(m,x)] ∨
∃x∃y[InRoom(Robot, x) ∧ Connects(m,x, y)]

– Delete list: AtRobot(S), NextTo(Robot, S)

– Add list: NextTo(Robot,m)

• pushto(m, n): Robot pushes object m next to object n.

– Preconditions: Pushable(m) ∧ OnFloor ∧ NextTo(Robot,m) ∧
{∃x[InRoom(m,x) ∧ InRoom(n, x)] ∨ ∃x∃y[InRoom(m,x) ∧
Connects(n, x, y)]}

– Delete list:AtRobot(S), NextTo(Robot, S), NextTo(S,m), At(m,S), NextTo(m,S)

– Add list: NextTo(Robot,m), NextTo(m,n), NextTo(n,m)

• gothrudoor(k, l, m): Robot goes through door k from room l into room m.

– Preconditions:NextTo(Robot, k)∧Connects(k, l,m)∧InRoom(Robot, l)∧
OnFloor

– Delete list: AtRobot(S), NextTo(Robot, S), InRoom(Robot, S)

– Add list: InRoom(Robot,m)

Tasks

1. Push two boxes together

18

• Goal: NextTo(Box 1, Box 2)

• Strips solution: {goto2(Box 2), pushto(Box 2, Box 1)}

2. Go to a location in another room

• Goal: AtRobot(d)

• Strips solution: {goto2(Door 1), gothrudoor(Door 1, Room 1, Room 3),

goto2(Door 2), gothrudoor(Door 2, Room 3, Room 2), goto1(d)}

19

Chapter 3

Dolev-Yao Multi-Agent Epistemic

Logic

In Dolev and Yao’s model (seen in section 2.2), the focus is on reasoning about an

intruder. The idea is mapping possible actions and knowledge acquired by the agents.

On the other hand, epistemic logic (seen in section 2.1) can formally express what

the agents know about the world. So we attempted to introduce substantial elements

to better represent the information learned by an outsider during communications.

This system is an extension to the epistemic logic of knowledge and beliefs, to

reason about security protocols [17]. We can use the expressive power of S5 to think

about users’ possibilities, and what an user can discover during communications. More

importantly, what information an intruder can extract from these communications.

3.1 Language

The language is a multi-agent epistemic logic extension. Now, we have expressions

beyond the propositions in the formulas. With this, we can denote keys, pair compo-

sition of information and information encoded under specific key. Also, we have the

same standard abbreviations to express the ∨, ⊥ and ↔.

Definition 6 The Dolev-Yao multi-agent epistemic logic language consists of an

enumerable set Φ of propositional symbols, a finite set of agents A, an enumerable

set of keys K = {k1, · · · }, boolean connectives ¬, ∧ and →, and a modality Ka for

each agent a. The expressions and formulas are defined as follows:

E ::= p | k | (E1, E2) | {E}k

where k ∈ K.

ϕ ::= e | > | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 | Kaϕ

20

where e ∈ E e a ∈ A.

3.2 Semantics

Regarding the semantics, the definitions of frame and satisfaction are the same as

in standard multi-agent epistemic logics. However, three restrictions were added to

the valuation function, which we found necessary for the soundness proof developed

later on.

Definition 7 A frame of Dolev-Yao multi-agent epistemic logic is a tuple F =

(W,∼a). Where W is a non-empty set of states and ∼a is a reflexive, transitive and

symmetric binary relation over W , for each a ∈ A.

Definition 8 A Dolev-Yao multi-agent epistemic logic model isM = (F , V). Where

F is a Dolev-Yao multi-agent epistemic frame and V is a valuation function V :

E → 2W satisfying the following conditions:

1. V (m) ∩ V (k) ⊆ V ({m}k);

2. V ({m}k) ∩ V (k) ⊆ V (m);

3. V (m) ∩ V (n) = V ((m,n)).

Definition 9 Given a Dolev-Yao multi-agent epistemic logic model M = 〈S,∼a, V 〉
and s ∈ S. The notion of satisfaction M, s � ϕ is defined by:

• M, s � e if and only if s ∈ V (e);

• M, s � ¬ϕ if and only if M, s 2 ϕ;

• M, s � ϕ ∧ ψ if and only if M, s � ϕ and M, s � ψ;

• M, s � ϕ→ ψ if and only if M, s � ϕ then M, s � ψ;

• M, s � Kaϕ if and only if for all s′ ∈ S, if s ∼a s
′ then M, s′ � ϕ.

3.3 Axiomatization

In the axiomatization, we have the same axioms and inference rules as those from

multi-agent epistemic logic. We have also added the three last axioms of the list

below:

1. All instantiations of propositional tautologies

21

2. Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ),

3. Kaϕ→ ϕ,

4. Kaϕ→ KaKaϕ (+ introspection),

5. ¬Kaϕ→ Ka¬Kaϕ (− introspection),

6. m ∧ k → {m}k (encryption),

7. {m}k ∧ k → m (decryption),

8. m ∧ n↔ (m,n) (pair composition & decomposition).

Inference Rules

M.P. ϕ, ϕ→ ψ/ψ U.G. ϕ/Kaϕ U.B. ϕ/σϕ

where σ is a map uniformly substituting formulas for propositional variables.

Lemma 1 The following formulas are theorems of S5DY:

1. Kam ∧Kak → Ka{m}k,

2. Ka{m}k ∧Kak → Kam,

3. Kam ∧Kan↔ Ka(m,n).

Proof: This proof is straightforward from axioms 6, 7, 8, axiom 2 and

inference rule U.G. and the the fact that the Ka distribuit over the

conjunction (` Ka(ϕ ∧ ψ)↔ (Kaϕ ∧Kaψ)).

4

Theorem 1 S5DY is sound and complete w.r.t. the class of S5DY models.

Proof: The soundness and completeness proof are in section 3.4 and

section 3.5 respectively.

4

3.4 Soundness

Axioms 1, 2, 3, 4, 5 and inference rules are standard in multi-agent epistemic logic,

so we only prove the soundness of axioms that we added in system, 6, 7, 8.

Lemma 2 The following axioms are sound.

22

1. m ∧ k → {m}k (encryption)

2. {m}k ∧ k → m (decryption)

3. m ∧ n↔ (m,n) (pair composition & decomposition)

Proof:

1. Suppose we have a Dolev-Yao multi-agent epistemic model M and

a state w s.t. M,w m ∧ k. Then we have that M,w m and

M,w k. But this is if and only if w ∈ V (m) and w ∈ V (k). By

condition 1 of definition 8 we have that w ∈ V ({m}k) and thus

M,w {m}k and M,w m ∧ k → {m}k.

2. (ii) and (iii) are analogous to (i), but we use condition 2 and 3 of

definition 8 respectively.

4

3.5 Completeness

Here, we have the proof of completeness of our system.

Definition 10 Given a set of formulas Γ, we say:

1. Γ is inconsistent if there exists a subset {α1, . . . , αn} ⊆ Γ, such that `
¬(α1 ∧ . . . ∧ αn). Γ is consistent if it is not inconsistent;

2. Γ is maximal if for any formula α, either α ∈ Γ, or ¬α ∈ Γ;

3. Γ is maximal consistent if it is both maximal and consistent. In this case,

we say that Γ is a MCS (Maximal Consistent Set).

Proposition 1 (MCS Properties) Let Γ be a MCS. So:

1. for all φ, either φ ∈ Γ, or ¬φ ∈ Γ, but not both;

2. Γ is closed under Modus Ponens: if φ ∈ Γ and φ→ ψ, then ψ ∈ Γ;

3. ∀φ, ψ, φ ∨ ψ ∈ Γ iff either φ ∈ Γ, or ψ ∈ Γ;

4. ∀φ, ψ, φ ∧ ψ ∈ Γ iff both φ ∈ Γ, and ψ ∈ Γ;

5. all theorems of S5DY ⊆ Γ;

6. if m ∈ Γ and k ∈ Γ, then {m}k ∈ Γ;

23

7. if {m}k ∈ Γ and k ∈ Γ, then m ∈ Γ;

8. (m,n) ∈ Γ iff both m ∈ Γ and n ∈ Γ.

Proof:

- 1 by maximality, one of them must be in Γ;

- 2 suppose ψ 6∈ Γ, so {φ, φ→ ψ,¬ψ} ⊆ Γ, which is an absurd because

{φ, φ→ ψ,¬ψ} is inconsistent. Therefore ψ ∈ Γ;

- 3 and 4 analogous to 2;

- 5 for all theorems φ ∈ S5DY , ` φ. Suppose ¬φ ∈ Γ, as Γ is consistent,

Γ ` ¬φ, which is a contradiction. So ¬φ 6∈ Γ. By maximality, φ ∈ Γ.

Therefore, all axioms of S5DY ⊆ Γ.

- 6, 7 and 8 follow straightforward from 2 and 5.

4

Lemma 3 (Lindenbaum’s Lemma) For any consistent set Σ, there is a set Σ+

such that Σ ⊆ Σ+ and Σ+ is a MCS.

Proof: Let φ0, φ1, φ2, . . . be an enumeration of the formulas of our lan-

guage. We define the set Σ+ as the union of a chain of consistent sets as

follows:

• Σ0 = Σ; Σi+1 =

{
Σi ∪ {φi+1}, if it is consistent

Σi ∪ {¬φi+1}, otherwise

Claim: Σk is consistent for all k. We prove that by induction on k.

Base Case: Σ0 = Σ is consistent by hypothesis.

Induction Hypothesis: suppose that Σk is consistent.

Now, we want to show that Σk+1 is also consistent. By construction,

we have:

Σk+1 =

{
Σk ∪ {φk+1}, if it is consistent

Σk ∪ {¬φk+1}, otherwise

By this construction, we have directly that Σk+1 is consistent too.

Therefore, Σn is consistent for all n.

• Σ+ ∪i≥0 Σi. Now we have to prove that Σ+ is a MCS.

Σ+ is consistent. Because otherwise some finite subset of the set

Σi ⊆ Σ+ would be inconsistent, but we just proved that all Σi are

consistent. So, Σ+ is consistent. (by item 1 of definition 10)

24

Σ+ is maximal. Because given any formula φ, either φ ∈ Σk, or

¬φ ∈ Σk, for some k. Then Σk ⊆ Σ+. So, Σ+ is maximal. Therefore

Σ+ is a MCS.

4

Definition 11 (Canonical Model) Let Λ be a set of formulas. The canonical

model M over Λ is the triple (WΛ,∼Λ
a , V

Λ), where:

1. WΛ is the set of all Λ-MCS;

2. ∼Λ
a , the canonical relation, is the binary relation on WΛ, for each agent a ∈ A,

defined by w ∼Λ
a v if for all formula ψ: Kaψ ∈ w ⇒ ψ ∈ v.

3. V Λ, the canonical valuation, defined as V Λ(m) = {w ∈ WΛ|m ∈ w}, where

m ∈ E.

F = (WΛ,∼Λ
a) is called the canonical frame.

Lemma 4 (Existence Lemma) Let Γ ∈ WΛ be MCS such that Baφ ∈ Γ. Then

exists a MCS Σ such that {ϕ|Kaϕ ∈ Γ} ∪ {φ} ⊆ Σ.

Proof: We first prove that Λ− = {ϕ|Kaϕ ∈ Γ} ∪ {φ} is consistent.

Suppose that Λ− is inconsistent. So, for the finite subset ϕ1, · · · , ϕn we

have that ¬(ϕ1 ∧ · · · ∧ ϕn ∧ φ) is a theorem.

`Λ ¬(ϕ1 ∧ · · · ∧ ϕn ∧ φ)

`Λ ϕ1 ∧ · · · ∧ ϕn → ¬φ, propositional tautology

`Λ Ka(ϕ1∧ · · · ∧ϕn → ¬φ), Universal Generalization inference rule

`Λ Kaϕ1 ∧ · · · ∧Kaϕn → Ka¬φ, axiom ii

By hypothesis, Kaϕ1 ∈ Γ, . . . , Kaϕn ∈ Γ, so, by property 2 of proposi-

tion 1, Ka¬φ ∈ Γ, and also, ¬Baφ ∈ Γ, which is a contradiction. Thus,

Λ− is consistent and by lemma 3, there exists a MCS extension Σ that

extends Λ−.

4

Lemma 5 (Truth Lemma) For any formula φ, MΛ, w φ⇔ φ ∈ w.

Proof: By induction on the length of φ.

Base Case: MΛ, w e, iff w ∈ V Λ(e) iff e ∈ w.

Induction Hypothesis: It holds for |φ| < n: MΛ, w φ⇔ φ ∈ w.

Booleans: follows from the property 1 of Proposition 1.

Knowledge Operator:

25

⇒ Suppose MΛ, w Kaφ (1) and Kaφ 6∈ w. So, by maximality, we

have that Ba¬φ ∈ w. So, by Lemma 4 there exists a v such that

{ϕ|Kaϕ ∈ w} ∪ ¬φ ⊆ v (2); by definition 11 w ∼Λ
a v. From (1), for

all w′, if w ∼Λ
a w′ then MΛ, w′ φ, By the induction hypothesis,

φ ∈ w′ for all w′ and in particular φ ∈ v, which is a contradiction

with (2). Thus, Kaφ ∈ w

⇐ Suppose Kaφ ∈ w and MΛ, w 6 Kaφ, then there exists v such that

w ∼Λ
a v and MΛ, v ¬φ. But, by induction hypothesis ¬φ ∈ v. By

definition 11 if w ∼Λ
a v, for all formula ψ: Kaψ ∈ w ⇒ ψ ∈ v. So,

φ ∈ v, which is a contradiction. Thus, MΛ, w Kaφ

4

Lemma 6 The canonical model relations ∼Λ
a are reflexive, transitive and symmetric.

Proof: This follows from the definition of ∼Λ
a and this proof can be found

in epistemic and modal logic literature [7–9].

4

Theorem 2 The canonical model MS5DY is a S5DY models.

Proof: First we prove that MS5DY satisfies the conditions 1, 2, and 3 of

definition 8:

• Suppose we have w ∈ V (m) ∩ V (k) for a generic state w ∈ W S5DY .

So, we have that w ∈ V (m) and w ∈ V (k). Also, MS5DY , w m

and MS5DY , w k, which entails MS5DY , w m∧k. Using axiom 6,

MS5DY , w {m}k. By the Truth Lemma (Lemma 5), we have that

{m}k ∈ w, that is, w ∈ V ({m}k). Thus V (m) ∩ V (k) ⊆ V ({m}k)
(condition 1 of definition 8).

• The proofs of conditions 2 and 3 of definition 8 are analogous to the

above proof, but we use axioms 7 and 8, instead of b respectively.

Together with Lemma , we are done.

4

Theorem 3 - Completeness Let Σ be a consistent set of formulas. Then, Σ is

satisfiable .

Proof: By the Existence Lemma (Lemma 4), there exists a MCS Σ+ ,

such that Σ ⊆ Σ+ and by the Truth Lemma (Lemma 5), M,Σ+ |= Σ.

4

26

3.6 Examples

Example 6 We recover the first example (example 2) from the original paper by

Dolev and Yao. The example that the agent A send a message M to agent B, but

a malicious user Z intercepts the encoded message and forwards it to B. We have

three agents A,B and Z. We assume that KXY = KY X for all agents X and Y .

0. KB0 = {KAkAB, KBkAB, KBkBZ , KZkBZ , KAm} initial knowledge

1. Ka{AB}
sendAB({m}kAB

)

��

L1.1

−−−
Z intercepts

��
1. KB1 := KB0 ∪KZ{m}kAB

sendZB({m}kAB
)

��
2. KB2 := KB1 ∪KB{m}kAB

KBm L1.2

KB{m}kZB

sendBZ({m}kBZ
)

��

L1.1

3. KB3 := KB2 ∪KZ{m}kBZ

KZm L1.2

The intruder Z knows M

Example 7 We recover the second example (example 3) from the original paper by

Dolev and Yao. A sends a message MkAB to B, and B replies to the intruder with

the same message encrypted with the key that was encoded with the message. Again,

we assume that KXY = KY X for all agents X and Y .

0. KB0 = {KAkAB, KBkAB, KBkBZ , KZkBZ , KAm} initial knowledge

KB0 ` KA(kAB,m) L1.3

27

KB0 ` KA{(kAB,m)}kAB

sendAB({(kAB ,m)}kAB
)

��

L1.1

−−−
Z intercepts

��
1. KB1 := KB0 ∪KZ{(kAB,m)}kAB

sendZB({(kAB ,m)}kAB
)

��
2. KB2 := KB1 ∪KB{(kAB,m)}kAB

KB(kAB,m) L1.2

KBm L1.3

KB{(kAB,m)}kAB

sendBZ({(kAB ,m)}kAB
)

��

L1.1

3. KB3 := KB2 ∪KZ{(kAB,m)}kAB

KB3 6` KZm

Intruder Z does not know the message M

Example 8 We recover the third example (example 4) from the original paper by

Dolev and Yao. A sends a message ({M}kAB
, kAB) to B and B replies, but the

intruder intercepts the message and starts communicating directly with A. Again, we

assume that KXY = KY X for all agents X and Y .

0. KB0 = {KAkAB, KAkAZ , KBkAB, KZkAZ , KAm} initial knowledge

KB0 ` KA{m}kAB
L1.1

KB0 ` KA(kAB, {m}kAB
) L1.3

KB0 ` KA{(kAB, {m}kAB
)}kAB

sendAB({(kAB ,{m}kAB
)}kAB

)

��

L1.1

1. KB1 := KB0 ∪KB{(kAB, {m}kAB
)}kAB

KB(kAB, {m}kAB
) L1.2

28

KB{m}kAB
L1.3

KBm L1.2

KB{(kAB, {m}kAB
)}kAB

sendBA({(kAB ,{m}kAB
)}kAB

)

��

L1.1

−−−
Z intecepts

��
2. KB2 := KB1 ∪KZ{(kAB, {m}kAB

)}kAB

KZ{m′}kAB
= {(kAB, {m}kAB

)}kAB

KZ{(kAZ , {m′}kAB
)}kAZ

sendZA({(kAZ ,{m′}kAB
)}kAZ

)

��

L1.1

3. KB3 := KB2 ∪KA{(kAZ , {m′}kAB
)}kAZ

KA(kAZ , {m′}kAB
) L1.2

KA{m′}kAB
L1.3

KAm
′ L1.2

KA{(kAZ , {m′}kAZ
)}kAZ

sendAZ({(kAZ ,{m′}kAZ
)}kAZ

)

��

L1.1

4. KB4 := KB3 ∪KZ{(kAZ , {m′}kAZ
)}kAZ

KZ(kAZ , {m′}kAZ
) L1.2

KZ{m′}kAZ
L1.3

KZm
′ L1.2

KZ(kAB, {m}kAB
)

29

KZ{m}kAB
L1.3

KZ{(kAZ , {m}kAB
)}kAZ

sendZA({(kAZ ,{m}kAB
)}kAZ

)

��

L1.1

5. KB5 := KB4 ∪KA{(kAZ , {m}kAB
)}kAZ

KA(kAZ , {m}kAB
) L1.2

KA{m}kAB
L1.3

KAm L1.2

KA{(kAZ , {m}kAZ
)}kAZ

sendAZ({(kAZ ,{m}kAZ
)}kAZ

)

��

L1.1

6. KB6 := KB5 ∪KZ{(kAZ , {m}kAZ
)}kAZ

KZ(kAZ , {m}kAZ
) L1.2

KZ{m}kAZ
L1.3

KZm L1.2

Intruder Z knows M

30

Chapter 4

Strips Dolev-Yao

One interesting aspect of our work, is that a model checker was developed. We

decided to use the Strips system, since it is a new approach to be explored in this

particular line of work. It allows all the actions included in the language.

With this, we transcripted our logic into the Strips language. We managed to

also include some additional actions in our system which are only at a meta-level.

In this case, however, some restrictions were added to avoid some possible branches

which are not interesting for our analysis.

4.1 Language

In this section we present our Strips Dolev-Yao language. It has propositions, that

represent the agents’ knowledge and the actions already happened. Also, the protocol

actions that are formed by specific preconditions and effects. This actions express

possibilities in communication. We have send, receive, intercept, encryption (enc),

decryption (dec), pair composition (conc) and pair decomposition (dconc). In our

system only “add” effects are modelled without negation in proposition, since there’s

no loss of knowledge.

Propositions:

• knows(x, i)

• sent(i, x1, x2)

• intercept(x3, i, x1, x2)

• received(i, x2, x1)

Actions:

send(i, x1, x2)

31

Precondition: knows(x1, i)

Effect: sent(i, x1, x2) ∧ ¬ intercepted(x3, i, x1, x2) ∧ ¬ received(i, x2, x1)

receive(i, x2, x1)

Precondition: sent(i, x1, x2) ∧ ¬ intercepted(x3, i, x1, x2)

Effect: + (knows(x2, i) ∧ received(i, x2, x1))

− (¬ received(i, x2, x1))

intercept(x3, i, x1, x2)

Precondition: sent(i, x1, x2) ∧ ¬ received(i, x2, x1)

Effect: + (knows(x3, i) ∧ intercepted(x3, i, x1, x2))

− (¬ intercepted(x3, i, x1, x2))

enc(x,m, kx)

Precondition: knows(x,m) ∧ knows(x, kx)

Effect: knows(x, {m}kx)

dec(x, {m}kx)

Precondition: knows(x, {m}kx) ∧ knows(x, kx)

Effect: knows(x,m)

conc(x,m, n)

Precondition: knows(x,m) ∧ knows(x, n)

Effect: knows(x, (m,n))

dconc(x, (m,n))

Precondition: knows(x, (m,n))

Effect: knows(x,m) ∧ knows(x, n)

4.2 Examples

In this section, we translate some of the previous examples into the Strips language.

Example 9 Returning to the first Dolev and Yao’s example. Agent A sends a

message M to agent B. However a intruder Z and forwards it to B.

32

knows(A,m), knows(A, kAB), knows(B, kAB), knows(B, kBZ), knows(Z, kBZ)

enc(A,m,kAB)
��

+knows(A, {m}kAB
)

send({m}kAB
,A,B)

��
+sent({m}kAB

, A,B)

+¬intercepted(Z, {m}kAB
, A,B)

+¬received({m}kAB
, B,A)

intercept(Z,{m}kAB
,A,B)

��
+knows(Z, {m}kAB

)

+intercepted(Z, {m}kAB
, A,B)

−¬intercepted(Z, {m}kAB
, A,B)

send({m}kAB
,Z,B)

��
+sent({m}kAB

, Z,B)

+¬intercepted(A, {m}kAB
, Z,B)

+¬received({m}kAB
, B, Z)

receive({m}kAB
,B,Z)

��
+knows(B, {m}kAB

)

+received({m}kAB
, B, Z)

−¬received({m}kAB
, B, Z)

dec(B,{m}kAB
)
��

+knows(B,m)

enc(B,m,kBZ)
��

+knows(B, {m}kBZ
)

send({m}kBZ
,B,Z)

��
+sent({m}kBZ

, B, Z)

+¬intercepted(A, {m}kBZ
, B, Z)

33

+¬received({m}kBZ
, Z,B)

receive({m}kBZ
,Z,B)

��
+knows(Z, {m}kBZ

)

+received({m}kBZ
, Z,B)

−¬received({m}kBZ
, Z,B)

dec(Z,{m}kBZ
)
��

+knows(Z,m)

Example 10 Returning to the second Dolev and Yao’s example. A sends a message

MkAB to B, and B replies to Z with the same message encrypted with the key that

was encoded with the message.

knows(A,m), knows(A, kAB), knows(B, kAB), knows(B, kBZ), knows(Z, kBZ)

conc(A,m,kAB)
��

+knows(A, (m, kAB))

enc(A,(m,kAB),kAB)
��

+knows(A, {(m, kAB)}kAB
)

send({(m,kAB)}kAB
,A,B)

��
+sent({(m, kAB)}kAB

, A,B)

+¬intercepted(Z, {(m, kAB)}kAB
, A,B)

+¬received({(m, kAB)}kAB
, B,A)

intercept(Z,{(m,kAB)}kAB
,A,B)

��
+knows(Z, {(m, kAB)}kAB

)

+intercepted(Z, {(m, kAB)}kAB
, A,B)

−¬intercepted(Z, {(m, kAB)}kAB
, A,B)

send({(m,kAB)}kAB
,Z,B)

��
+sent({((m, kAB)}kAB

, Z,B)

+¬intercepted(A, {(m, kAB)}kAB
, Z,B)

34

+¬received({(m, kAB)}kAB
, B, Z)

receive({(m,kAB)}kAB
,B,Z)

��
+knows(B, {(m, kAB)}kAB

)

+received({(m, kAB)}kAB
, B, Z)

−¬received({(m, kAB)}kAB
, B, Z)

dec(B,{(m,kAB)}kAB
)
��

+knows(B, (m, kAB)

dconc(B,(m,kAB))
��

+knows(B,m))

+knows(B,KAB)

conc(B,m,kAB)
��

+knows(B, (m, kAB))

enc(B,(m,kAB),kAB)
��

+knows(B, {(m, kAB)}kAB
)

send({(m,kAB)}kAB
,B,Z)

��
+sent({(m, kAB)}kAB

, B, Z)

+¬intercepted(A, {(m, kAB)}kAB
, B, Z)

+¬received({(m, kAB)}kAB
, Z,B)

receive({(m,kAB)}kAB
,Z,B)

��
+knows(Z, {(m, kAB)}kAB

)

+received({(m, kAB)}kAB
, Z,B)

−¬received({(m, kAB)}kAB
, Z,B)

Example 11 Returning to the third Dolev and Yao’s example. A sends a mes-

sage ({M}kAB
, kAB) to B and B replies, but Z intercepts the message and starts

communicating directly with A.

35

knows(A,m), knows(A, kAB), knows(A, kAZ), knows(B, kAB), knows(Z, kAZ)

enc(A,m,kAB)
��

+knows(A, {m}kAB
)

conc(A,{m}kAB
,kAB)

��
+knows(A, ({m}kAB

, kAB))

enc(A,({m}kAB
,kAB),kAB)

��
+knows(A, {({m}kAB

, kAB)}kAB
)

send({({m}kAB
,kAB)}kAB

,A,B)
��

+sent({({m}kAB
, kAB)}kAB

, A,B)

+¬intercepted(Z, {({m}kAB
, kAB)}kAB

, A,B)

+¬received({({m}kAB
, kAB)}kAB

, B,A)

receive({({m}kAB
,kAB)}kAB

,B,Z)
��

+knows(B, {({m}kAB
, kAB)}kAB

)

+received({({m}kAB
, kAB)}kAB

, B,A)

−¬received({({m}kAB
, kAB)}kAB

, B,A)

dec(B,{{m}kAB
,kAB}kAB

)
��

+knows(B, ({m}kAB
, kAB))

dconc(B,({m}kAB
,kAB))

��
+knows(B, {m}kAB

))

+knows(B,KAB)

dec(B,{{m}kAB
)
��

+knows(B,m)

enc(B,m,kAB)
��

+knows(B, {m}kAB
)

conc(B,{m}kAB
,kAB)

��
+knows(A, ({m}kAB

, kAB))

enc(B,({m}kAB
,kAB),kAB)

��
+knows(B, {({m}kAB

, kAB)}kAB
)

send({({m}kAB
,kAB)}kAB

,B,A)
��

+sent({({m}kAB
, kAB)}kAB

, B,A)

+¬intercepted(Z, {({m}kAB
, kAB)}kAB

, B,A)

36

+¬received({({m}kAB
, kAB)}kAB

, A,B)

intercept(Z,{({m}kAB
,kAB)}kAB

B,A)
��

+knows(Z, {({m}kAB
, kAB)}kAB

)

+intercepted(Z, {({m}kAB
, kAB)}kAB

, B,A)

−¬intercepted(Z, {({m}kAB
, kAB)}kAB

, B,A)

conc(Z,{({m}kAB
,kAB)}kAB

,kAZ)
��

+knows(Z, ({({m}kAB
, kAB)}kAB

, kAZ))

enc(Z,({({m}kAB
,kAZ)}kAB

,kAZ),kAZ)
��

+knows(Z, {({({m}kAB
, kAB)}kAB

, kAZ)}kAZ
)

send({({({m}kAB
,kAB)}kAB

,kAZ)}kAZ
,Z,A)

��
+sent({({({m}kAB

, kAB)}kAB
, kAZ)}kAZ

, Z, A)

+¬intercepted(B, {({({m}kAB
, kAB)}kAB

, kAZ)}kAZ
, Z, A)

+¬received({({({m}kAB
, kAB)}kAB

, kAZ)}kAZ
, A, Z)

receive({({({m}kAB
,kAB)}kAB

,kAZ)}kAZ
,A,Z)

��
+knows(A, {({({m}kAB

, kAB)}kAB
, kAZ)}kAZ

)

+received({({({m}kAB
, kAB)}kAB

, kAZ)}kAZ
, A, Z)

−¬received({({({m}kAB
, kAB)}kAB

, kAZ)}kAZ
, A, Z)

dec(A,{({({m}kAB
,kAB)}kAB

,kAZ)}kAZ ��
+knows(A, ({({m}kAB

, kAB)}kAB
, kAZ))

dconc(A,({({m}kAB
,kAB)}kAB

,kAZ))
��

+knows(A, {({m}kAB
, kAB)}kAB

))

+knows(A,KAZ)

dec(A,{({m}kAB
,kAB)}kAB ��

+knows(A, ({m}kAB
, kAB))

enc(A,({m}kAB
,kAB),kAZ)

��
+knows(A, {({m}kAB

, kAB)}kAZ
)

conc(A,{({m}kAB
,kAB)}kAZ

,kAZ)
��

+knows(A, ({({m}kAB
, kAB)}kAZ

, kAZ))

enc(A,({({m}kAB
,kAB)}kAZ

,kAZ),kAZ)
��

+knows(A, {({({m}kAB
, kAB)}kAZ

, kAZ)}kAZ
)

send({({({m}kAB
,kAB)}kAZ

,kAZ)}kAZ
,A,Z)

��
+sent({({({m}kAB

, kAB)}kAZ
, kAZ)}kAZ

, A, Z)

37

+¬intercepted(B, {({({m}kAB
, kAB)}kAZ

, kAZ)}kAZ
, A, Z)

+¬received({({({m}kAB
, kAB)}kAZ

, kAZ)}kAZ
, Z, A)

receive({({({m}kAB
,kAB)}kAZ

,kAZ)}kAZ
,Z,A)

��
+knows(Z, {({({m}kAB

, kAB)}kAZ
, kAZ)}kAZ

)

+received({({({m}kAB
, kAB)}kAZ

, kAZ)}kAZ
, Z, A)

−¬received({({({m}kAB
, kAB)}kAZ

, kAZ)}kAZ
, Z, A)

dec(Z,{({({m}kAB
,kAB)}kAZ

,kAZ)}kAZ ��
+knows(Z, ({({m}kAB

, kAB)}kAZ
, kAZ))

dconc(Z,({({m}kAB
,kAB)}kAZ

,kAZ))
��

+knows(Z, {({m}kAB
, kAB)}kAZ

)

+knows(Z,KAZ)

dec(Z,{({m}kAB
,kAB)}kAZ

)
��

+knows(Z, ({m}kAB
, kAB))

dconc(Z,({m}kAB
,kAB))

��
+knows(Z, {m}kAB

)

+knows(Z,KAB)

conc(Z,{m}kAB
,kAZ)

��
+knows(Z, ({m}kAB

, kAZ))

enc(Z,({m}kAB
,kAZ),kAZ)

��
+knows(Z, {({m}kAB

, kAZ)}kAZ
)

send({({m}kAB
,kAZ)}kAZ

,Z,A)
��

+sent({({m}kAB
, kAZ)}kAZ

, Z, A)

+¬intercepted(B, {({m}kAB
, kAZ)}kAZ

, Z, A)

+¬received({({m}kAB
, kAZ)}kAZ

, A, Z)

receive({({m}kAB
,kAZ)}kAZ

,A,Z)
��

+knows(A, {({m}kAB
, kAZ)}kAZ

)

+received({({m}kAB
, kAZ)}kAZ

, A, Z)

38

−¬received({({m}kAB
, kAZ)}kAZ

, A, Z)

dec(A,{({m}kAB
,kAZ)}kAZ

)
��

+knows(A, ({m}kAB
, kAZ))

dconc(A,({m}kAB
,kAZ))

��
+knows(A, {m}kAB

)

+knows(A,KAZ)

dec(A,{m}kAB
)
��

+knows(A,m)

enc(A,m,kAZ)
��

+knows(A, {m}kAZ
)

conc(A,{m}kAZ
,kAZ)

��
+knows(A, ({m}kAZ

, kAZ))

enc(A,({m}kAZ
,kAZ),kAZ)

��
+knows(A, {({m}kAZ

, kAZ)}kAZ
)

send({({m}kAZ
,kAZ)}kAZ

,A,Z)
��

+sent({({m}kAZ
, kAZ)}kAZ

, A, Z)

+¬intercepted(B, {({m}kAZ
, kAZ)}kAZ

, A, Z)

+¬received({({m}kAZ
, kAZ)}kAZ

, Z, A)

receive({({m}kAZ
,kAZ)}kAZ

,Z,A)
��

+knows(Z, {({m}kAZ
, kAZ)}kAZ

)

+received({({m}kAZ
, kAZ)}kAZ

, Z, A)

−¬received({({m}kAZ
, kAZ)}kAZ

, Z, A)

dec(Z,{({m}kAZ
,kAZ)}kAZ

)
��

+knows(Z, ({m}kAZ
, kAZ))

dconc(Z,({m}kAZ
,kAZ))

��
+knows(Z, {m}kAZ

)

+knows(Z,KAZ)

dec(Z,{m}kAZ
)
��

+knows(Z,m)

39

Chapter 5

Planner

The language we decided to use to implement our Strips Dolev-Yao model checker

was Python 2.

In this process we faced some obstacles, since standard Strips considers every

possibility, whereas for our analysis only certain paths are really interesting. These

other paths are acceptable if you only look at an action level, but they do not make

sense during the protocol execution. For instance, it’s not normal for an agent to

send a message directly to the intruder in the first step.

And at the action construction level, other difficulties arised due to protocol

variety. Since protocol restrictions have to be considered in the definitions of the

actions, for each different protocol different conditions have to be a part of these

actions’ implementations.

5.1 Implementation

The code is divided into several parts. We begin with the main function. This

fragment receives all information, classes and other functions, and joins all of the

aspects of the work, returning the final result.

Then we have the predicates. These are a set of classes, with a class for each

predicate existing in the system. They are a part of the effects and the preconditions

of the actions.

And finally the actions themselves, which are another set of classes implementing

all possible actions of the protocol. Since each protocol has different requirements,

we also have to adjust certain conditions in the code.

Now, we show some parts of the code, with examples of a predicate and an action.

Listing 5.1: The implementation of predicate knows

class Knows(object):

40

def __init__(self , x, info):

self.x = x

self.info = info

def listar(self):

if (type(self.info) is Key) or

(type(self.info) is Encoded) :

return [’knows ’, self.x,

self.info.listar ()]

else:

return [’knows ’, self.x,

self.info]

Listing 5.2: The implementation of action send

class Send(object):

def precond(self):

global agents

global messages

global knowledge

global actions

for agent1 in agents:

for agent2 in agents:

if agent1 != agent2:

for agent3 in agents:

for agent4 in agents:

for message in messages:

key = Key(agent3 , agent4)

enc = Encoded(message , key)

if Knows(agent1 , enc).listar () in knowledge and

not(Sent(enc , agent1 , agent2).listar () in

actions):

if ((agent2 == enc.key.x1) or (agent2 ==

enc.key.x2)) or (Received(enc , agent1 ,

agent2).listar () in actions):

return [True , Sent(enc , agent1 ,

agent2).listar ()]

41

return [False]

def action(self):

global agents

global messages

global knowledge

global actions

for agent1 in agents:

for agent2 in agents:

if agent1 != agent2:

for agent3 in agents:

for agent4 in agents:

for message in messages:

key = Key(agent3 , agent4)

enc = Encoded(message , key)

if Knows(agent1 , enc).listar () in knowledge:

if ((agent2 == enc.key.x1) or (agent2 ==

enc.key.x2)) or (Received(enc , agent1 ,

agent2).listar () in actions):

actions.append(Sent(enc , agent1 ,

agent2).listar ())

5.2 Execution

The results shown after an execution are composed of the evolution of the base

knowledge, and booleans which are true when a goal was reached in the path, and

false otherwise.

If a true value is returned, it means that it is possible to achieve a goal in one of

the paths, and therefore the protocol is not secure.

Figures 5.1 and 5.2 show the results received after running the examples 2 and 3,

respectively.

42

Figure 5.1: Execution of the first Dolev and Yao example

Figure 5.2: Execution of the second Dolev and Yao example

43

Chapter 6

Final remarks and future works

In this work, we have defined our extension to the traditional multi-agent epistemic

logic, and then transcripted our logic into the Strips language. We have done so, so

that in the next step our model checker could be described and implemented.

The results obtained via our implementation were sound with respect to the logic

definitions and rules. At first, our goal was to extend the logic language itself with

actions, but since our focus lies on model checking, we have quickly realized that a

Strips language would be more suitable for this kind of application.

6.1 Future works

We have outlined some other ways in which our “add” actions can be further

developed in the future. In dynamic epistemic logics, it is easier to see the changes

in kripke models that result from actions happening. It’s also possible to see the

changes graphically.

Another system to be considered is propositional dynamic logic. The main issue

with this language is writing down the actual steps taken. While it’s reasonably

easy to implement, it’s hard to keep track of the evolution on a step-by-step basis.

Therefore, a possible future work extension is to find a way to make this kind of

system more usable in practice.

Beyond the actions models, we outlined an extension based on Simon Kramer’s

article [18]. In his work, he makes a distinction between two types of knowledge,

named de re and de dicto. The Knowledge de dicto is the standard knowledge of

epistemic logic and represents knows that it is the case that. Also, the knowledge de

re denotes that the agent knows the content of some information.

Another possibility to extend this work is to improve the model checker imple-

mentation, by allowing restriction inputs at a higher level language, and have it

automatically translate it to serve as input for the algorithm.

44

Bibliography

[1] DOLEV, D., YAO, A. C. “On the Security of Public Key Protocols”, Information

Theory, IEEE Transactions on, v. 29, n. 2, pp. 198–208, 1983.

[2] BURROWS, M., ABADI, M., NEEDHAM, R. “A Logic of Authentication”,

ACM Transactions on Computer Systems, v. 8, n. 1, pp. 18–36, 1990.

[3] ABADI, M., ROGAWAY, P. “Reconciling Two Views of Cryptography (The

Computational Soundness of Formal Encryption)*”, Journal of Cryptology,

v. 15, n. 2, pp. 103–127, 2002.

[4] ABADI, M., GORDON, A. D. “A Calculus for Cryptographic Protocols: The

Spi Calculus”. In: Proceedings of the 4th ACM Conference on Computer

and Communications Security, pp. 36–47. ACM, 1997.

[5] VON WRIGHT, G. H. An Essay in Modal Logic. Amsterdam: North-Holland

Pub. Co., 1951.

[6] HINTIKKA, J. Knowledge and Belief: An Introduction to the Logic of the Two

Notions. Ithaca, N. Y., Cornell University Press, 1962.

[7] VAN DITMARSCH, H., VAN DER HOEK, W., KOOI, B. Dynamic Epistemic

Logic. Synthese Library Series, volume 337. The Netherland, Springer,

2008.

[8] FAGIN, R., HALPERN, J. Y., MOSES, Y. Reasoning about knowledge. Cam-

bridge, Massachusetts, MIT Press, 1995.

[9] BLACKBURN, P., DE RIJKE, M., VENEMA, Y. Modal Logic. UK, Cambridge

University Press, 2001.

[10] BLACKBURN, P., BENTHEM, J. F. A. K. V., WOLTER, F. Handbook of

Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning). New

York, NY, USA, Elsevier Science Inc., 2006. ISBN: 0444516905.

[11] DIFFIE, W., HELLMAN, M. “New Directions in Cryptography”, IEEE Trans-

actions on Information Theory, v. 22, n. 6, pp. 644–654, 1976.

45

[12] RIVEST, R. L., SHAMIR, A., ADLEMAN, L. “A Method for Obtaining

Digital Signatures and Public-key Cryptosystems”, Commun. ACM, v. 21,

pp. 120–126, 1978.

[13] LUGER, G. F. Artificial Intelligence: Structures and Strategies for Complex

Problem Solving. 6th ed. USA, Addison-Wesley Publishing Company, 2008.

ISBN: 0321545893, 9780321545893.

[14] RUSSELL, S. J., NORVIG, P. Artificial intelligence - a modern approach, 2nd

Edition. Prentice Hall series in artificial intelligence. Prentice Hall, 2003.

[15] FIKES, R. E., NILSSON, N. J. “STRIPS: A New Approach to the Application

of Theorem Proving to Problem Solving”. In: Proceedings of the 2Nd

International Joint Conference on Artificial Intelligence, IJCAI’71, pp.

608–620, San Francisco, CA, USA, 1971. Morgan Kaufmann Publishers

Inc.

[16] FIKES, R. E., NILLSON, N. J., COCOSCO, C. A. “A Review of ”STRIPS: A

New Approach to the Application of Theorem Proving to Problem Solving

by R.E. Fikes, N.J. Nillson, 1971””. 1998.

[17] BENEVIDES, M. R. F., FERNANDEZ, L. C. F., OLIVEIRA, A. C. C. M.

“Epistemic Logic Based on Dolev-Yao Model”. In: Anais - XXXVII Con-

gresso da Sociedade Brasileira de Computação - ETC, pp. 67–70. Sociedade

Brasileira de Computação, 2017.

[18] KRAMER, S. “Cryptographic Protocol Logic: Satisfaction for (Timed) Dolev-

Yao Cryptography”, Journal of Logic and Algebraic Programming, v. 77,

n. 1–2, 2008. http://dx.doi.org/10.1016/j.jlap.2008.05.005.

46

http://dx.doi.org/10.1016/j.jlap.2008.05.005

Appendix A

Protocols

In this appendix, we present two protocols used as example in the original BAN

Logic paper [2]. We used our logic to authenticate them too. First, we show the

protocol, and then the analysis with our system.

A.1 The Kerberos Protocol’s analysis

A.1.1 The protocol

Message 1. A→ S : A,B;

Message 2. S → A : {Ts, L, Kab, B, {Ts, L, Kab, A}Kbs
}Kas ;

Message 3. A→ B : {Ts, L, Kab, A}Kbs
, {A, Ta}Kab

;

Message 4. B → A : {Ta + 1}Kab
.

A.1.2 The analysis

0. KB0 = {KAA,KAB,KAkAS, KATA, KBkBS,

KBTB, KZkzs, KZTZ , KZZ}
sendSA({(TS ,L,kAB ,B,{(TS ,L,kAB ,A)}kBS

)}kAS
)

��

initial knowledge

1. KB1 := KB0 ∪KA{(TS, L, kAB, B, {TS, L, kAB, A}kBS
)}kAS

47

KA(TS, L, kAB, B, {TS, L, kAB, A}kBS
) L1.2

KA{TS, L, kAB, A}kBS
L1.3

KA(A, TA) L1.3

KA{(A, TA)}kAB

sendAB({(TS ,L,kAB ,A)}kBS
,{(A,TA)}kAB

)

��

L1.1

−−−
Z intercepts

��
2. KB2 := KB1 ∪KZ({(TS, L, kAB, A)}kBS

∧ {(TA, A)}kAB
)

For the next step, we have three possibilities:

First, when the intruder Z intercepts the message, he sends it to agent B without

modifications:

2. KB2 := KB1 ∪KZ({(TS, L, kAB, A)}kBS
∧ {(TA, A)}kAB

)

sendZB({(TS ,L,kAB ,A)}kBS
,{(A,TA)}kAB

)

��
3. KB3 := KB2 ∪KB({(TS, L, kAB, A)}kBS

∧ {(TA, A)}kAB
)

KB(TS, L, kAB, A) L1.2

KB(TA, A) L1.2

KBTA L1.3

KB{TA + 1}kAB

sendBZ({TA+1}kAB
)

��

L1.1

4. KB4 := KB3 ∪KZ{TA + 1}kAB

KB4 6` KZTA + 1

Intruder Z does not know TA + 1

48

Second, when the intruder Z intercepts the message, he sends it to agent B while

changing the first part of the message. The intruder uses a part of communication

that he could require to server S:

2. KB2 := KB1 ∪KZ({(TS, L, kAB, A)}kBS
∧ {(TA, A)}kAB

)

sendZB({(TS ,L
′,kZB ,Z)}kBS

,{(A,TA)}kAB
)

��
3. KB3 := KB2 ∪KB({(TS, L′, kZB, Z)}kBS

∧ {(TA, A)}kAB
)

KB(TS, L
′, kZB, Z) L1.2

KB3 6` KBkAB

KB3 6` KBTA ∧ A

The communications do not continue. Intruder Z does not know the contents of

these communications.

Third, when the intruder Z intercepts the message, he sends it to agent B while

changing the second part of the message. The intruder uses a shared key required to

server S:

2. KB2 := KB1 ∪KZ({(TS, L, kAB, A)}kBS
∧ {(TA, A)}kAB

)

sendZB({(TS ,L,kAB ,A)}kBS
,{(Z,TZ)}kZB

)

��
3. KB3 := KB2 ∪KB({(TS, L, kAB, A)}kBS

∧ {(TZ , Z)}kZB
)

KB(TS, L, kAB, A) L1.2

KB3 6` KBkZB

KB3 6` KBTZ ∧ Z

The communications do not continue. Intruder Z does not know the contents of

these communications.

49

A.2 The Andrew Secure RPC Hanshake’s analy-

sis

A.2.1 The protocol

Message 1. A→ B : A, {Na}Kab
.

Message 2. B → A : {Na + 1, Nb}kab .
Message 3. A→ B : {Nb + 1}kab .
Message 4. B → A : {K ′ab, N ′b}kab .

A.2.2 The analysis

0. KB0 = {KAkAZ , KAkAB, KZkAZ , KZkBZ ,

KBkAB, KBkBZ , KANA} initial knowledge

KB0 ` KA{NA}kAB

sendAB({NA}kAB
)

��

L1.1

1. KB1 := KB0 ∪KB{NA}kAB

KBNA L1.1

KBNB

sendBA({(NA+1,NB)}kAB
)

��
2. KB2 := KB1 ∪KA({(NA + 1, NB)}kAB

)

KA(NA + 1, NB) L1.2

KANB ax. 8

50

KA{NB + 1}kAB

sendAB({(NB+1)}kab)

��

L1.1

−−−
Z intercepts

��
3. KB3 := KB2 ∪KZ{NB + 1}kAB

sendZB({(NB+1)}kab)

��
4. KB4 := KB3 ∪KB{NB + 1}kAB

KBNB + 1 L1.2

KBk
′
AB

KBN
′
B

KB{(k′AB, N
′
B)}kZB

sendZB({(k′AB ,N ′B)}kZB
)

��

L1.3, L1.1

5. KB5 := KB4 ∪KZ{(k′AB, N
′
B)}kZB

KZk
′
AB L1.2, L1.3

KZN
′
B L1.2, L1.3

KZ{(k′AB, N
′
B)}kAZ

sendZA({(k′AB ,N ′B)}kAZ
)

��

L1.3, L1.1

6. KB7 := KB6 ∪KA{(k′AB, N
′
B)}kAZ

KAk
′
AB L1.2, L1.3

KAN
′
B L1.2, L1.3

Intruder Z can decrypt messages encrypted with k′AB.

51

Appendix B

Model Checking Source Code

Here we present the core of the implementation, and the main elements of examples 1

and 2. The complete code is available on Github. (https://github.com/annaccmo/

StripsDolevYao)

Listing B.1: The implementation of planner

def Planner(Protocol , Knowledge , Goal , Agents , Messages):

’’’

Planner(Protocol , Knowledge , Goal , Agents ,

messages)

Protocol: actions possibles in protocol.

Knowledge: initial knowledge.

Goal:

Agents: every agents in protocol , including

the intruder.

Messages: messages send in protocol.

’’’

global protocol

global knowledge

global actions

global goal

global agents

global messages

actions = []

goal = Goal

agents = Agents

52

https://github.com/annaccmo/StripsDolevYao
https://github.com/annaccmo/StripsDolevYao

messages = Messages

l = len(Protocol)

i = 0

while i < l:

j = i

knowledge = Knowledge

protocol = []

while j < l:

protocol.append(Protocol[j])

j+=1

j = 0

while j < i:

protocol.append(Protocol[j])

j+=1

stop = False

while not(stop):

stop = True

for action in protocol:

a = action.precond ()

if a[0]:

if not(a[1] in

actions):

action.action ()

print

knowledge

stop = False

if goal in knowledge:

print ’True’

i = l

stop = True

break

print ’False’

i+=1

53

Listing B.2: First example of Dolev-Yao

#Example 1 of Dolev -Yao

from dyel_strips3 import *

#Agents

Agents = [’a’,’b’,’z’]

#Mensage

Messages = [’m’]

#Protocol

Protocol = [encode , decode , send , receive , intercept]

#Initial Knowledge

kab = Key(’a’, ’b’).listar ()

kbz = Key(’b’, ’z’).listar ()

Knowledge = [Knows(’a’, ’m’).listar (), Knows(’a’,

kab).listar (), Knows(’b’, kab).listar (), Knows(’b’,

kbz).listar (), Knows(’z’, kbz).listar ()]

#Goal

Goal = Knows(’z’, ’m’).listar ()

Listing B.3: Second example of Dolev-Yao

#Exemplo 2 do Dolev -Yao

from dyel_strips3 import *

#Agents

54

Agents = [’a’,’b’,’z’]

#Mensage

Messages = [’m’]

#Protocol

Protocol = [encode2 , decode2 , concatenate , deconcat ,

send2 , receive2 , intercept2]

#Initial Knowledge

kab = Key(’a’, ’b’).listar ()

kbz = Key(’b’, ’z’).listar ()

Knowledge = [Knows(’a’, ’m’).listar (), Knows(’a’,

kab).listar (), Knows(’b’, kab).listar (), Knows(’b’,

kbz).listar (), Knows(’z’, kbz).listar ()]

#Goal

Goal = Knows(’z’, ’m’).listar ()

55

	List of Figures
	Introduction
	A background of logic
	Multi-Agents Epistemic Logic
	Language and semantics
	Axiomatization
	Example

	Dolev-Yao Model
	Public Key Protocol
	Examples
	Rules

	BAN Logic
	Symbols
	Syntax
	Logical Postulates
	On Quantifiers in Delegations
	Example

	Planning Problem
	Example
	STRIPS (Stanford Research Institute Problem Solver)

	Dolev-Yao Multi-Agent Epistemic Logic
	Language
	Semantics
	Axiomatization
	Soundness
	Completeness
	Examples

	Strips Dolev-Yao
	Language
	Examples

	Planner
	Implementation
	Execution

	Final remarks and future works
	Future works

	Bibliography
	Protocols
	The Kerberos Protocol's analysis
	The protocol
	The analysis

	The Andrew Secure RPC Hanshake's analysis
	The protocol
	The analysis

	Model Checking Source Code

