
A TABLEAUX METHOD FOR DOLEV-YAO MULTI-AGENT EPISTEMIC

LOGIC

Luiz Cláudio Frederico Fernandez

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Mario Roberto Folhadela

Benevides

Rio de Janeiro

Abril de 2018

A TABLEAUX METHOD FOR DOLEV-YAO MULTI-AGENT EPISTEMIC

LOGIC

Luiz Cláudio Frederico Fernandez

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE

SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. ario Roberto Folhadela Benevides, Ph.D.

RIO DE JANEIRO, RJ - BRASIL

ABRIL DE 2018

Fernandez, Luiz Cláudio Frederico

A Tableaux Method for Dolev-Yao Multi-Agent

Epistemic Logic/Luiz Cláudio Frederico Fernandez. – Rio

de Janeiro: UFRJ/COPPE, 2018.

XI, 51 p.: il.; 29, 7cm.

Orientador: Mario Roberto Folhadela Benevides

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2018.

Referências Bibliográficas: p. 42 – 44.

1. tableaux. 2. epistemic. 3. logic. 4. security.

I. Benevides, Mario Roberto Folhadela. II. Universidade

Federal do Rio de Janeiro, COPPE, Programa de

Engenharia de Sistemas e Computação. III. T́ıtulo.

iii

To my family, friends and

girlfriend, for all the support.

iv

Acknowledgments

I would like to thank all my family, specially my parents, Doris and Claudionor, and

my sister, Line, for all the love and understanding over these years.

To all my friends, that even from afar, I am always with them.

I also wish to thank my advisor, Mario Benevides, for the patient guidance and

for all the opportunities since I was an undergraduate student.

To my coworkers from CAPGov/Lemobs, for all the support and encouragement.

I must also express my gratitude to Professor Ivan Varzinczak, for spending some

time with our project and for introducing us to Simon Kramer.

Finally, a special thank you to my girlfriend, Anna Carolina, for the companion-

ship in this long walk.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UM MÉTODO TABLEAUX PARA LÓGICA EPISTÊMICA MULTI-AGENTE

DOLEV-YAO

Luiz Cláudio Frederico Fernandez

Abril/2018

Orientador: Mario Roberto Folhadela Benevides

Programa: Engenharia de Sistemas e Computação

Dada a importância dos protocolos de segurança no nosso cotidiano, os esforços

para desenvolver mecanismos e modelos para verificação de tais protocolos são sem-

pre relevantes. Neste trabalho, nós propomos a Lógica Epistêmica Multi-Agente

Dolev-Yao, uma extensão da Lógica Epistêmica Multi-Agente, destinada para a

análise de protocolos de segurança e inspirada no modelo Dolev-Yao, o trabalho pre-

cursor sobre criptografia formal. Nós provamos a corretude e completude do nosso

sistema, também demonstrando o seu uso. Em seguida, um método tableaux para

essa lógica é apresentado, também incluindo sua corretude e completude. Por último,

mostramos uma prova de terminação para o nosso método, além de alguns exemplos.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

A TABLEAUX METHOD FOR DOLEV-YAO MULTI-AGENT EPISTEMIC

LOGIC

Luiz Cláudio Frederico Fernandez

April/2018

Advisor: Mario Roberto Folhadela Benevides

Department: Systems Engineering and Computer Science

Given the increasing importance of security protocols in our daily lives, the

efforts to develop mechanisms and models for verification of such protocols are always

relevant. In this work, we propose the Dolev-Yao Multi-Agent Epistemic Logic, which

is an extension of Multi-Agent Epistemic Logic, aimed to analyze security protocols

and inspired by Dolev-Yao model, the seminal work in formal cryptography. We

prove the soundness and completeness of our system, also demonstrating its use.

Then, a tableaux method for this logic is presented, including the proofs of soundness

and completeness. Finally, we provide a termination argument for our method and

show some examples.

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Objectives . 2

1.2 Roadmap . 2

2 Background 3

2.1 Dolev-Yao model . 3

2.1.1 Public key protocols . 3

2.1.2 Examples . 4

2.1.3 Rules . 6

2.2 Multi-agent epistemic logic . 7

2.2.1 Language and semantics . 7

2.2.2 Axiomatization . 10

2.2.3 Example . 10

2.3 Tableaux method . 11

2.3.1 Semantics . 12

2.3.2 Rules . 12

2.3.3 Example . 13

3 Dolev-Yao Multi-Agent Epistemic Logic 15

3.1 Language and semantics . 15

3.2 Axiomatization . 17

3.3 Soundness . 18

3.4 Completeness . 19

3.5 Examples . 23

4 Tableaux Method for Dolev-Yao Multi-Agent Epistemic Logic 29

4.1 Semantics . 29

4.2 Rules . 29

viii

4.3 Soundness . 30

4.4 Completeness . 31

4.5 Termination property . 34

4.5.1 Classical and modal rules . 34

4.5.2 Dolev-Yao Multi-Agent Epistemic Logic rules 35

4.6 Examples . 35

5 Conclusion 39

5.1 Knowledge de re/de dicto . 39

5.2 Common knowledge . 40

5.3 Adding actions . 40

Bibliography 42

A Kerberos Protocol 45

B Andrew Secure RPC Handshake Protocol 49

ix

List of Figures

2.1 Illustration of Example 2.1.1 . 4

2.2 Illustration of Example 2.1.2 . 5

2.3 Illustration of Example 2.1.3 . 6

2.4 Reflexive relation . 8

2.5 Transitive relation . 9

2.6 Symmetric relation . 9

2.7 Epistemic model Hexa, based on DITMARSCH et al. [1] 11

x

List of Tables

4.1 Components of a type-α formula . 32

4.2 Components of a type-β formula . 32

xi

Chapter 1

Introduction

Security protocols are increasingly present in our daily lives. They help us in banking

transactions, communication, file downloads, that is, information access in general,

protection. There are risks such as key or password cracking, the tracking of these

actions, an user can impersonate another user and so on. A good implementation is

a difficult issue given the saboteur’s behavior possibilities.

Most security protocols are based on one-way functions, which is a good way

of encryption, since it uses functions that are easy to compute, but hard to invert

without knowing a specific complementary information. We can find works related

to the logical verification of such specifications, also called formal cryptography [2–5],

and the ones involving concepts from areas such as probability and process algebra,

which consists the so-called computational cryptography [6–8]. There are even works

that try to combine both approaches, pioneered by ABADI and ROGAWAY [9].

The seminal work known as Dolev-Yao model [10] initiated the formal approach

in the early 1980’s. Here, we consider a perfect encryption scheme and the models are

obtained from functions of encryption and decryption. They show the vulnerability

of the protocol by demonstrating a logical error in the specification. This has inspired

several proposal, including this dissertation.

Multi-agent epistemic logics are designed to reason about knowledge of agents

and groups [11]. As pointed by DITMARSCH et al. [1], nowadays, these logics

are influenced by the development of modal logics and the system S5 is the most

popular one. Its use is relevant in many distinct areas, such as philosophy, economics,

linguistics, cryptography and computer science.

There are many different automated theorem provers, including resolution, nat-

ural deduction and tableaux, from different approaches, namely direct or indirect

deduction and labeled deductive systems [12]. In the latter, we have prefixed tableaux

[13], which has a quite simple proof representation, similar to Kripke semantics [14].

1

1.1 Objectives

Our main objectives in this work are:

1. to present the Dolev-Yao Multi-Agent Epistemic Logic, namely S5DY , a novel

multi-agent epistemic logic for reasoning about properties in protocols. It uses

structured propositions, which is a new technique to deal with messages, keys

and properties in security protocols in uniform manner, keeping the logic

propositional; and

2. to provide a tableaux method for Dolev-Yao Multi-Agent Epistemic Logic, also

discussing the soundness and completeness of the system and presenting its

termination argument.

1.2 Roadmap

This dissertation is planned in the following manner:

• in the next chapter, we present the background of the proposal: the Dolev-Yao

model for analysis of protocols, the multi-agent epistemic logic S5 and the

tableaux method;

• Chapter 3 introduces the S5DY , illustrating its use with some examples and

showing soundness and completeness;

• in Chapter 4, we provide a sound and complete tableaux method for S5DY

and discuss its termination;

• finally, Chapter 5 concludes this dissertation and provides some final remarks.

2

Chapter 2

Background

This chapter presents the required topics for elaboration of our work. First, we

present the Dolev-Yao model, including a brief explanation about public key proto-

cols and some examples. Then, the formalization of multi-agent epistemic logic S5

and, finally, the theorem prover known as tableaux method are given.

2.1 Dolev-Yao model

Introduced in [10], at the time of great discussion about the use of public key en-

cryption in network communication, this work intends to show why a formal model

is desirable to deal with security protocols.

Public key systems are efficient when we have a “passive” saboteur (also called

eavesdropper, attacker, intruder and so on), one who only intercepts the commu-

nication and tries to decode the message. But NEEDHAM and SCHROEDER [15]

already had pointed out that a not well specified protocol permits an “active” in-

truder, one who may fake his identity and manipulate the intercepted message, to

succeed.

2.1.1 Public key protocols

In this system, based on [16, 17], we assume that every user X in the network has an

encryption function EX , which generates a pair (X, EX), inserted in a secure public

directory, and a decryption function DX , known only by X. The main requirements

on the functions above are:

• DX(EX(M)) = M ;

• for any user Y , knowing EX(M) and the directory containing all the public

pairs does not reveal anything about M .

3

So, other users can communicate with X sending an encrypted message EX(M)

and X can decrypt it using DX(EX(M)) = M , but only X gets M , even if EX(M)

is accessible to them.

A message transmitted between two users is denoted by: the sender’s name,

the text (encrypted) and the receiver’s name. One of the basic assumptions on the

perfect public key system is that the functions are unbreakable.

2.1.2 Examples

To illustrate intruder’s possible behaviours, let’s consider the following examples.

Example 2.1.1. In this case, the receiver always replies a message using the

sender’s public key. User A wants to send a plaintext M to user B:

a) A sends message (A,EB(M), B) to B [Figure 2.1(a)];

b) Intruder Z intercepts the above message and sends message (Z,EB(M), B) to

B [Figure 2.1(b)];

c) B sends message (B,EZ(M), Z) to Z [Figure 2.1(c)];

d) Z decodes EZ(M) and obtains M .

A // (A,EB(M), B) // B

(a) Message sent from A to B

A //

(A,EB(M),B)

��

| // B

Z

(Z,EB(M),B)

??

(b) Interception and message sent from Z to B

A //

(A,EB(M),B)

��

| // B

(B,EZ(M),Z)

��
Z

(c) Message sent from B to Z

Figure 2.1: Illustration of Example 2.1.1

As suggested in [15], it’s possible to improve this protocol encoding the sender’s

name concatenated with the plaintext.

4

Example 2.1.2. Now, the receiver uses the public key of the indicated user that is

encrypted with the plaintext, not the sender’s one (where MA is the concatenation

of M and A):

a) A sends message (A,EB(MA), B) to B [Figure 2.2(a)];

b) Z intercepts the above message and sends message (Z,EB(MA), B) to B [Fig-

ure 2.2(b)];

c) B sends message (B,EA(MB), Z) to Z [Figure 2.2(c)];

d) Z cannot decode EA(MB) to obtain M .

A // (A,EB(MA), B) // B

(a) Message sent from A to B

A //

(A,EB(MA),B)

��

| // B

Z

(Z,EB(MA),B)

??

(b) Interception and message sent from Z to B

A //

(A,EB(MA),B)

��

| // B

(B,EA(MB),Z)

��
Z

(c) Message sent from B to Z

Figure 2.2: Illustration of Example 2.1.2

In the next example, the sender adds another layer of encryption to the message

but, surprisingly, it becomes an insecure protocol.

Example 2.1.3. In this case, the receiver also uses the public key of the indicated

user that is encrypted with the plaintext.

a) A sends message (A,EB(EB(M)A), B) to B [Figure 2.3(a)];

b) B sends message (B,EA(EA(M)B), A) to A [Figure 2.3(a)];

c) Z intercepts the above message. Let’s denote EA(M)B by M̃ , then Z has

EA(M̃) from the intercepted message. Now, Z starts a communication with

A sending him message (Z,EA(EA(M̃)Z), A) [Figure 2.3(c)];

5

d) A sends message (A,EZ(EZ(M̃)A), Z) to Z [Figure 2.3(d)];

e) Z decodes EZ(M̃), obtains EA(M) and sends message (Z,EA(EA(M)Z), A)

to A [Figure 2.3(e)];

f) A sends message (A,EZ(EZ(M)A), Z) to Z [Figure 2.3(f)];

g) Z decodes EZ(M) and obtains M .

A // (A,EB(EB(M)A), B) // B

(a) Message sent from A to B

A (B,EA(EA(M)B), A)oo Boo

(b) Message sent from B to A

A |oo Boo

(B,EA(EA(M)B),A)

��
Z

(Z,EA(EA(M̃)Z),A)

__

(c) Interception and message sent from Z to A

A

(A,EZ(EZ(M̃)A),Z)

��

|oo Boo

(B,EA(EA(M)B),A)

��
Z

(d) Message sent from A to Z

A |oo Boo

(B,EA(EA(M)B),A)

��
Z

(Z,EA(EA(M)Z),A)

__

(e) Second message sent from Z to A

A

(A,EZ(EZ(M)A),Z)

��

|oo Boo

(B,EA(EA(M)B),A)

��
Z

(f) Second message sent from A to B

Figure 2.3: Illustration of Example 2.1.3

2.1.3 Rules

These rules are not formulated in the original paper, but we can easily obtain them

from the theory presented there. They permit the intruder to make deductions from

6

the intercepted and sent messages.

Here, we are assuming an enumerable set K = {k1, . . . } of keys, T as all the

information that the intruder has and an encryption function {M}k, which encrypts

the message M under the key k.

The entailment relation T ` M has the intuitive meaning that M can be com-

puted from T . This relation is defined inductively, in a natural deduction-like system.

Works such as [18, 19] have defined a similar notation:

Reflexivity
M ∈ T
T `M

Encryption
T `M T ` k
T ` {M}k

Decryption
T ` {M}k T ` k

T `M

Pair-Composition
T `M T ` N
T ` (M,N)

Pair-Decomposition
T ` (M,N)

T `M
T ` (M,N)

T ` N

2.2 Multi-agent epistemic logic

The study of knowledge, epistemology, and modalities started with the early Greek

philosophers [11, 20], but it was VON WRIGHT [21] who motivated a formal log-

ical analysis of reasoning about knowledge, while HINTIKKA [22] extended these

notions, resulting in the epistemic logic as we know it today.

Using Kripke structure, the multi-agent approach allows us to represent knowl-

edge and belief of an agent or a group of agents. It’s useful for many applications,

such as puzzles, negotiations and protocols.

2.2.1 Language and semantics

The multi-agent epistemic logic S5 presented below is based on [1, 11].

Definition 2.2.1. The multi-agent epistemic language consists of an enumerable

set Φ of propositional symbols, a finite set A of agents, the Boolean connectives ¬
and ∧ and a modality Ka for each agent a. The formulae are defined as follows,

represented in BNF-notation:

ϕ ::= p | > | ¬ϕ | ϕ1 ∧ ϕ2 | Kaϕ

7

where p ∈ Φ, a ∈ A and Kaϕ is intended to mean that “agent a knows ϕ”.

We are considering the standard abbreviations and conventions:

• ⊥ ≡ ¬>

• ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2)

• ϕ1 → ϕ2 ≡ ¬(ϕ1 ∧ ¬ϕ2)

• ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) ≡ ¬(ϕ1 ∧ ¬ϕ2) ∧ ¬(ϕ2 ∧ ¬ϕ1)

• Baϕ ≡ ¬Ka¬ϕ

Baϕ may be read as “agent a believes ϕ”.

Definition 2.2.2. A multi-agent epistemic frame is a tuple F = 〈W,∼a〉 where:

• W is a non-empty set of states;

• ∼a is a reflexive, transitive and symmetric binary relation over W , for each

a ∈ A.

In this case, we say that ∼a is an equivalence relation.

Formally, the property of Reflexivity is defined by:

for all w ∈ W,w ∼a w

which means that any state is accessible from itself [Figure 2.4].

w
a

Figure 2.4: Reflexive relation

Transitivity is defined by:

for all w, v, u ∈ W, if w ∼a v and v ∼a u then w ∼a u

which means that, if there exists a state that is accessible via an intermediate then

the former is also directly accessible [Figure 2.5].

8

w v

u

a

aa

Figure 2.5: Transitive relation

Finally, Symmetry is defined by:

for all w, v ∈ W, if w ∼a v then v ∼a w

that is, the relation is reversible [Figure 2.6].

w v

a

a

Figure 2.6: Symmetric relation

Definition 2.2.3. A multi-agent epistemic model is a pair M = 〈F , V 〉, where

F is an epistemic frame and V is a valuation function V : Φ → 2W . We call a

rooted multi-agent epistemic model (M , w) an epistemic state and we will often

write M , w rather than (M , w).

Definition 2.2.4. Let M = 〈W,∼a, V 〉 be a multi-agent epistemic model. The

notion of satisfaction M , w |= ϕ is defined as follows (where iff stands for “if and

only if”):

1. M , w |= > always

2. M , w |= p iff w ∈ V (p)

3. M , w |= ¬α iff M , w 6|= α

4. M , w |= α1 ∧ α2 iff M , w |= α1 and M , w |= α2

5. M , w |= Kaα iff for all w′ ∈ W , if w ∼a w′ then M , w′ |= α

9

2.2.2 Axiomatization

The axioms and inference rules (also called derivation rules) for S5 are given below:

Axioms

1. All instantiations of propositional tautologies.

2. Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)

3. Kaϕ→ ϕ

4. Kaϕ→ KaKaϕ [positive introspection]

5. ¬Kaϕ→ Ka¬Kaϕ [negative introspection]

Inference Rules

Modus Ponens
ϕ ϕ→ ψ

ψ
Universal Generalization

ϕ

Kaϕ

Substitution
ϕ

σϕ

where σ is a map uniformly substituting formulae for propositional variables.

2.2.3 Example

This example is found in [1]. There are three players, a (Anne), b (Bill) and c (Cath).

Each one receives a card. They don’t know each other’s card and they can only see

their own card; they know these facts, they know that they know them, and so on.

We denote by 0x, 1x, 2x, for x ∈ {a, b, c}, each card that each player holds in their

hand and each state by every possible deal of cards, for example, state 210 represents

the state that Anne holds card 2, Bill holds card 1 and Cath holds card 0. Suppose

that, in fact, 0a, 1b and 2c are true. Leaving out all reflexive relations (to provide

an economical representation of the model), we have the following epistemic model

Hexa = 〈W,∼, V 〉 [Figure 2.7]:

• W = {012, 021, 102, 120, 201, 210}

• ∼a = {(012, 021), (102, 120), (201, 210)}

• ∼b = {(021, 120), (012, 210), (102, 201)}

• ∼c = {(012, 102), (021, 201), (120, 210)}

• V (0a) = {012, 021}, V (1a) = {102, 120}, V (2a) = {201, 210}

10

• V (0b) = {102, 201}, V (1b) = {012, 210}, V (2b) = {021, 120}

• V (0c) = {120, 210}, V (1c) = {021, 201}, V (2c) = {012, 102}

012 021

120

210201

102

c

a

b

c

a

b
bc

a

Figure 2.7: Epistemic model Hexa, based on DITMARSCH et al. [1]

These equivalence relations represent the players’ ignorance about each other

players’ cards, since they can only see their own card. Thus, by the actual distri-

bution of card, we have the epistemic state (Hexa, 012) and we can assert some

formulae:

• Hexa, 012 � Ka0a

• Hexa, 012 � Kb1b

• Hexa, 012 � Kc2c

So, in this epistemic state, it holds that ‘Anne knows she holds card 0’, ‘Bill knows

he holds card 1’ and ‘Cath knows she holds card 2’. We also have, for instance, that

‘Bill doesn’t know Anne’s card’ and ‘Anne knows that Bill doesn’t know her card’,

formally represented as follows:

• Hexa, 012 � ¬(Kb0a ∨Kb1a ∨Kb2a)

• Hexa, 012 � Ka¬(Kb0a ∨Kb1a ∨Kb2a)

2.3 Tableaux method

We choose the tableau method theorem-proving for our proposal motivated by its

Kripke model-like representation, which is very intuitive to work with. This system

is a tree-structured refutational method, which, to prove a formula ϕ, we start the

proof supposing ¬ϕ and then we try to obtain unsatisfiable subformulae in each

11

branch from this negation. If every branch is unsatisfiable, then ¬ϕ is unsatisfiable

as well, therefore ϕ is valid. We can also consider it in the sense of logical consequence

checking: for a database DB = {φ1, . . . , φn} and a question ϕ,

DB � ϕ

if and only if (φ1 ∧ · · · ∧ φn)→ ϕ is a tautology, that is, if its negation is a contra-

diction.

2.3.1 Semantics

The method presented below is based on the tableaux method for modal logics found

in [23, 24]. As our main concern at the moment is to prove and model the deductions

resulted from the bad behaviour of a particular agent, the intruder, certain changes

were made to adapt the method to our needs, slightly abusing the notation.

Definition 2.3.1. A branch θ of a tableau T is closed if there is ϕ and ¬ϕ for any

formula ϕ.

Definition 2.3.2. A tableau T is closed if every branch is closed.

For S5, we must use the sub-tableaux concept to obtain a refutation. A sub-

tableau intends to simulate the possible world relation. So, if a sub-tableau is closed,

the branch that originated it also closes. As we should use rules that creates a new

sub-tableau or add a new formula to previously generated one, we need a mechanism

to label it.

Definition 2.3.3. A prefix is any expression used to name a tableau.

Each tableau will have a different name, so a formula ϕ in a tableau refutation

is unique, identified by (σ, ϕ), where σ is the prefix.

To manage the creation of new tableaux and the addition of new formulae to

a previously generated tableau, we denote ρ as the operator which applied on a

formula (σ, ϕ) it will:

• create a new tableau σ′, starting with ϕ, if σ′ is not a name for a previously

generated tableau subordinated to the branch which ϕ holds; or

• add ϕ to the tableau specified by the prefix σ.

2.3.2 Rules

First, we present the propositional tableaux rules, for all formulae α and β:

12

R∧
α ∧ β
α

β

RDneg
¬¬α
α

R¬∧
¬(α ∧ β)

¬α ¬β
R→

α→ β

¬α β
R¬→
¬(α→ β)

α

¬β

When rules R∧, RDneg and R¬→ are applied, we add the derived subformulae in

the same branch of the original formula, while rules R¬∧ and R→ splits the original

branch.

The rules for S5 are defined as follows, based on [24]:

Rπ
¬Kaα

ρ(T ′,¬α)
, where T ′ is a new tableau

Rt
Kaα

α
Rr

4

ρ(T ′′, Kaα)

Kaα

R4
Kaα

ρ(T ′′, Kaα)
, where T ′′ is a previously generated tableau

The subscripts t and 4 indicate the correspondence between axioms Kaϕ → ϕ

and Kaϕ→ KaKaϕ, respectively, and properties of accessibility relations.

2.3.3 Example

In order to illustrate the usage of tableaux method, we give the following examples:

Example 2.3.1. Let’s prove the theorem α→ (β → (α ∧ β)):

1. ¬(α→ (β → (α ∧ β))) [negation of the question]

2. α [from 1, by R¬→]

3. ¬(β → (α ∧ β)) [from 1, by R¬→]

4. β [from 3, by R¬→]

5. ¬(α ∧ β) [from 3, by R¬→]

�� ��

6. ¬α ¬β [from 5, by R¬∧]

Since each of the branches is closed, we have a closed tableau.

Example 2.3.2. Let’s prove the theorem (Kaα ∧Kaβ)→ Ka(α ∧ β):

1. ¬((Kaα ∧Kaβ)→ Ka(α ∧ β)) [negation of the question]

2. Kaα ∧Kaβ [from 1, by R¬→]

13

3. ¬Ka(α ∧ β) [from 1, by R¬→]

4. Kaα [from 2, by R∧]

5. Kaβ [from 2, by R∧]

Now, we generate a new tableau:

3.1. ¬(α ∧ β) [from 3, by Rπ]

3.2. Kaα [from 4, by R4]

3.3. Kaβ [from 5, by R4]

3.4. α [from 3.2, by Rt]

3.5. β [from 3.3, by Rt]

�� ��

3.6. ¬α ¬β [from 3.1, by R¬∧]

Since each of the branches is closed, we have a closed tableau.

14

Chapter 3

Dolev-Yao Multi-Agent Epistemic

Logic

This section presents the S5DY , a multi-agent epistemic logic designed to analyze

security protocols, based on Dolev-Yao model. We prove soundness and completeness

of our system and also show some examples. An early version of this work was

presented as a short paper at CSBC 2017 [25].

3.1 Language and semantics

There is a novelty in the language of S5DY : formulae are built from expressions

and not only from propositional symbols. Intuitively, an expression is any piece

of information that can be encrypted, decrypted or concatenated in order to be

communicated.

Definition 3.1.1. The Dolev-Yao multi-agent epistemic language consists of an

enumerable set Φ of propositional symbols, a finite set A of agents, an enumerable

set of keys K = {k1, · · · }, the Boolean connectives ¬ and ∧ and a modality Ka for

each agent a. The expressions and formulae are defined as follows, represented in

BNF-notation:

E ::= p | k | (E1, E2) | {E}k

where k ∈ K and p ∈ Φ.

ϕ ::= e | > | ¬ϕ | ϕ1 ∧ ϕ2 | Kaϕ

where e ∈ E and a ∈ A.

We are also considering the standard abbreviations and conventions as specified

in Definition 2.2.1.

15

Definition 3.1.2. A Dolev-Yao multi-agent epistemic frame is a tuple F = 〈S,∼a〉
where:

• S is a non-empty set of states;

• ∼a is a reflexive, transitive and symmetric binary relation over S, for each

agent a ∈ A.

Definition 3.1.3. A Dolev-Yao multi-agent epistemic model is a pairM = 〈F , V 〉,
where F is a Dolev-Yao multi-agent epistemic frame and V is a valuation function

V : E → 2S satisfying the following conditions for all m ∈ E and k ∈ K:

1. V (m) ∩ V (k) ⊆ V ({m}k)

2. V ({m}k) ∩ V (k) ⊆ V (m)

3. V (m) ∩ V (n) = V ((m,n))

We call a rooted Dolev-Yao multi-agent epistemic model (M, s) an epistemic

state and again, we will often write M, s rather than (M, s).

We will see that these conditions are necessary for the soundness and complete-

ness proofs.

The first one ensures that, in any state, if we have a message m and a key k then

we must be able to have the encrypted message {m}k.
Condition 2 establishes that if we have an encrypted message {m}k and a key k

then we must be able to decrypt it and obtain m.

Finally, the last condition says that, in any state, we have messages m and n if

and only if we have the pair (m,n).

Definition 3.1.4. LetM = 〈S,∼a, V 〉 be a Dolev-Yao multi-agent epistemic model.

The notion of satisfaction M, s |= ϕ is defined as follows:

1. M, s |= > always

2. M, s |= e iff s ∈ V (e)

3. M, s |= ¬ϕ iff M, s 6|= ϕ

4. M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2

5. M, s |= Kaϕ iff for all s′ ∈ S, if s ∼a s′ then M, s′ |= ϕ

16

3.2 Axiomatization

In the axiomatization of S5DY we have the same axioms listed in Definition 2.2.2,

plus the last three axioms of the following list:

Axioms

1. All instantiations of propositional tautologies.

2. Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)

3. Kaϕ→ ϕ

4. Kaϕ→ KaKaϕ [positive introspection]

5. ¬Kaϕ→ Ka¬Kaϕ [negative introspection]

6. m ∧ k → {m}k [encryption]

7. {m}k ∧ k → m [decryption]

8. m ∧ n↔ (m,n) [pair composition & decomposition]

Inference Rules

Modus Ponens
ϕ ϕ→ ψ

ψ
Universal Generalization

ϕ

Kaϕ

Substitution
ϕ

σϕ

where σ is a map uniformly substituting formulae for propositional variables.

Axioms 1, 2, 3, 4 and 5 are standard in multi-agent epistemic logics literature

[11], while axioms 6, 7 and 8 enforce the semantical properties of the valuation

function (conditions 1, 2 and 3 of Definition 3.1.3).

Lemma 3.2.1. The following formulas are theorems of S5DY :

1. Kam ∧Kak → Ka{m}k

2. Ka{m}k ∧Kak → Kam

3. Kam ∧Kan↔ Ka(m,n)

Proof. This proof is straightforward from axioms 2, 6, 7, 8, inference rule Universal

Generalization and the fact that Ka distributes over conjunction, that is:

` Ka(ϕ ∧ ψ)↔ (Kaϕ ∧Kaψ)

�

17

3.3 Soundness

We only prove the soundness of axioms 6, 7, 8. The others axioms and inference

rules are standard in multi-agent epistemic logics and are well-known to be sound

for the class of S5 models.

Lemma 3.3.1. The following axioms are sound with respect to the class of S5DY

models:

1. m ∧ k → {m}k [encryption]

2. {m}k ∧ k → m [decryption]

3. m ∧ n↔ (m,n) [pair composition & decomposition]

Proof.

1. suppose we have a Dolev-Yao multi-agent epistemic model M and a state s

such that

M, s m ∧ k

Then we have that

M, s m

and

M, s k

But this is if and only if s ∈ V (m) and s ∈ V (k). By condition 1 of Definition

3.1.3, we have that s ∈ V ({m}k) and thus

M, s {m}k

and

M, s m ∧ k → {m}k

2 & 3. analogous to the above proof, but we use conditions 2 and 3 of Definition 3.1.3,

respectively.

�

We will also see in the next chapter that the contrapositive of these axioms are

true, which will help us later on.

18

3.4 Completeness

Now we prove the completeness of S5DY by Canonical Models, based on [26]. First,

we need some definitions:

Definition 3.4.1 (Maximal Consistent Set). Given a system S and a set of

formulae Γ, we say:

1. Γ is S-inconsistent if for some subset {α1, . . . , αn} ⊆ Γ we have

`S ¬(α1 ∧ . . . ∧ αn)

and Γ is S-consistent if it is not S-inconsistent;

2. Γ is maximal if for any formula α, either α ∈ Γ or ¬α ∈ Γ;

3. Γ is maximal S-consistent if it is both maximal and S-consistent. In this case,

we say that Γ is a S-MCS.

Next, we list and prove the MCS properties:

Proposition 3.4.1 (MCS Properties). Let Γ be a S-MCS. Then for all formulae

φ and ψ:

1. either φ ∈ Γ or ¬φ ∈ Γ, but not both;

2. Γ is closed under Modus Ponens: if φ ∈ Γ and φ→ ψ then ψ ∈ Γ;

3. φ ∨ ψ ∈ Γ iff either φ ∈ Γ or ψ ∈ Γ;

4. φ ∧ ψ ∈ Γ iff both φ ∈ Γ and ψ ∈ Γ;

In particular, if Γ is a S5DY -MCS then for all messages m and {m}k, pair (m,n)

and key k:

5. all theorems of S5DY ⊆ Γ;

6. if m ∈ Γ and k ∈ Γ then {m}k ∈ Γ;

7. if {m}k ∈ Γ and k ∈ Γ then m ∈ Γ;

8. (m,n) ∈ Γ iff both m ∈ Γ and n ∈ Γ.

Proof.

1. by maximality, one of them must be in Γ;

19

2. suppose ψ 6∈ Γ, then {φ, φ→ ψ,¬ψ} ⊆ Γ, which is an absurd because {φ, φ→
ψ,¬ψ} is S-inconsistent. Therefore ψ ∈ Γ;

3 & 4. analogous to property 2;

5. for all theorems ω ∈ S5DY , `S5DY
ω. Suppose ¬ω ∈ Γ, as Γ is S5DY -consistent,

Γ `S5DY
¬ω, which is a contradiction. Then ¬ω 6∈ Γ. By maximality, ω ∈ Γ.

Therefore all theorems of S5DY ⊆ Γ;

6, 7 & 8. follow straightforward from properties 2 and 5.

�

Now, our aim is to state and prove Lindenbaum’s Lemma, which shows that any

consistent set of formulae can be extended to a MCS:

Lemma 3.4.1 (Lindenbaum’s Lemma). For any S-consistent set Σ, there is a

set Σ+ such that:

• Σ ⊆ Σ+; and

• Σ+ is a S-MCS.

Proof. Let φ0, φ1, φ2, . . . be an enumeration of formulae of our language. We define

the set Σ+ as the union of a chain of S-consistent sets as follows:

• Σ0 = Σ; Σi+1 =

{
Σi ∪ {φi+1}, if it is S-consistent

Σi ∪ {¬φi+1}, otherwise

Claim: Σj is S-consistent for any j. We prove that by induction on j.

Base case: Σ0 = Σ is S-consistent by hypothesis.

Induction hypothesis: suppose that Σj is S-consistent.

Now, we want to show that Σj+1 is also consistent. By construction, we have:

Σj+1 =

{
Σj ∪ {φj+1}, if it is S-consistent

Σj ∪ {¬φj+1}, otherwise

By the above construction we have directly that Σj+1 is also S-consistent.

Thus, Σi is S-consistent for any i.

• Σ+ ∪i≥0 Σi. Now we have to prove that Σ+ is a S-MCS.

20

Σ+ is S-consistent. Because otherwise some finite subset of the set Σi ⊆ Σ+

would be S-inconsistent, but we just proved that any Σi is S-consistent. There-

fore, by item 1 of the definition of Maximal Consistent Set (Definition

3.4.1), Σ+ is S-consistent.

Σ+ is maximal. Because given any formula φ, either φ ∈ Σj or ¬φ ∈ Σj, for

some j. Then Σj ⊆ Σ+. So, Σ+ is maximal.

Therefore Σ+ is a S-MCS.

�

The Canonical Model for S is defined as follows:

Definition 3.4.2 (Canonical Model). The canonical model M over S is the triple

〈SS ,∼Sa , V S〉, where:

1. SS is the set of all S-MCS;

2. ∼Sa is the canonical relation, a binary relation on SS , for each agent a ∈ A,

defined by s ∼Sa r if for all formula ψ, if Kaψ ∈ s then ψ ∈ r;

3. V S is the canonical valuation, defined as V S(e) = {s ∈ SS | e ∈ s}, where

e ∈ E.

F = (SS ,∼Sa) is called the canonical frame.

Next, we prove the Existence Lemma, in order to prove later the Truth Lemma:

Lemma 3.4.2 (Existence Lemma). Let Γ ∈ SS be a S-MCS such that Baφ ∈ Γ.

Then, there exists a S-MCS Σ such that {ϕ | Kaϕ ∈ Γ} ∪ {φ} ⊆ Σ.

Proof. We first prove that Σ− = {ϕ | Kaϕ ∈ Γ} ∪ {φ} is S-consistent.

Suppose that Σ− is S-inconsistent. Then, there exists a finite subset ϕ1, . . . , ϕn

such that ¬(ϕ1 ∧ · · · ∧ ϕn ∧ φ) is a theorem:

`S ¬(ϕ1 ∧ . . . ∧ ϕn ∧ φ)

`S ϕ1 ∧ . . . ∧ ϕn → ¬φ [propositional tautology]

`S Ka(ϕ1 ∧ . . . ∧ ϕn → ¬φ) [inference rule Universal Generalization]

`S Kaϕ1 ∧ . . . ∧Kaϕn → Ka¬φ [axiom 2]

By hypothesis, Kaϕ1 ∈ Γ, . . . , Kaϕn ∈ Γ, so, by property 2 of the MCS Prop-

erties (Proposition 3.4.1), Ka¬φ ∈ Γ, and also, by duality and as Γ is S-MCS,

¬Baφ ∈ Γ, which is a contradiction. Thus, Σ− is S-consistent. By Lindenbaum’s

Lemma (Lemma 3.4.1), there exists a S-MCS extension Σ that extends Σ−.

�

21

Lemma 3.4.3 (Truth Lemma). For any formula φ, MS , s φ iff φ ∈ s.

Proof. By induction on the length of φ.

Base case:

MS , s e iff s ∈ V S(e) iff e ∈ s

Induction hypothesis: it holds for |φ| < i:

MS , s φ iff φ ∈ s

Booleans: follows from the property 1 of the MCS Properties (Proposition

3.4.1).

Knowledge operator:

⇒ Suppose

MS , s Kaφ (i)

and Kaφ 6∈ s. Thus, by maximality, we have that Ba¬φ ∈ s. So, by Existence

Lemma (Lemma 3.4.2) there exists a r such that

{ϕ | Kaϕ ∈ s} ∪ ¬φ ⊆ r (ii)

By definition of Canonical Model (Definition 3.4.2) s ∼Sa r. From (i), for all

s′, if s ∼Sa s′ then

MS , s′ φ

By the induction hypothesis, φ ∈ s′ for all s′ and in particular φ ∈ r, which is

a contradiction with (ii). Thus, Kaφ ∈ s

⇐ Suppose Kaφ ∈ s and

MS , s 6 Kaφ

then there exists a r such that s ∼Sa r and

MS , r ¬φ

But by induction hypothesis, ¬φ ∈ r. By Canonical Model (Definition 3.4.2)

if s ∼Sa r, for all formula ψ, if Kaψ ∈ s then ψ ∈ r. So, φ ∈ r, which is a

contradiction. Thus,

MS , s Kaφ

�

Lemma 3.4.4. The canonical model relations ∼Sa are reflexive, transitive and sym-

metric.

22

Proof. This follows from the definition of∼Sa and this proof can be found in epistemic

and modal logics literature [1, 11, 26].

�

Theorem 3.4.1. The canonical model MS5DY is a S5DY model.

Proof. First we prove that MS5DY satisfies conditions 1, 2 and 3 of Definition 3.1.3:

• Suppose we have s ∈ V (m) ∩ V (k) for a generic state s ∈ SS5DY . So, we have

that s ∈ V (m) and s ∈ V (k). Also,

MS5DY , s m

and

MS5DY , s k

which entails

MS5DY , s m ∧ k

As SS5DY is a S5DY -MCS, all the axioms of S5DY are valid in s. Using axiom

6 and inference rule Modus Ponens, we have

MS5DY , s {m}k

Therefore, by the Truth Lemma (Lemma 3.4.3), we have that {m}k ∈ s, that

is, s ∈ V ({m}k). Thus, V (m) ∩ V (k) ⊆ V ({m}k) (condition 1 of Definition

3.1.3).

• The proofs of conditions 2 and 3 of Definition 3.1.3 are analogous to the above

proof, but we use axioms 7 and 8, respectively.

Together with Lemma 3.4.4, we are done.

�

Theorem 3.4.2. Let Σ be a S5DY -consistent set of formulae. Then, Σ is satisfiable.

Proof. By Existence Lemma (Lemma 3.4.2), there exists a S5DY -MCS Σ+ such

that Σ ⊆ Σ+ and, by Truth Lemma (Lemma 3.4.3), MS5DY ,Σ+ |= Σ.

�

3.5 Examples

Let’s return to the examples in subsection 2.1.2. At the moment, the protocols

actions are represented in a kind of extra or metalanguage. The mentioned theorems

refer to Lemma 3.2.1.

23

We have three agents, A,B and Z. Assuming that kXY = kY X for every agent

X and Y , KB stands for Knowledge Base and i.k. for initial knowledge:

Example 3.5.1. Returning to Example 2.1.1, A wants to send a message m to user

B. The receiver always replies a message using the key shared with the sender:

0. KB0 = {KAkAB, KBkAB, KBkBZ , KZkBZ , KAm} i.k.

KB0 ` KA{m}kAB

sendAB({m}kAB
)

��

thrm. 1

−−−
Z intercepts

��
1. KB1 := KB0 ∪KZ{m}kAB

sendZB({m}kAB
)

��
2. KB2 := KB1 ∪KB{m}kAB

KB2 ` KBm thrm. 2

KB2 ` KB{m}kZB

sendBZ({m}kBZ
)

��

thrm. 1

3. KB3 := KB2 ∪KZ{m}kBZ

KB3 ` KZm thrm. 2

Intruder Z knows m.

Example 3.5.2. Returning to Example 2.1.2, A also sends an encrypted message

to agent B, but now the receiver always replies a message using the key shared with

the indicated agent that is encrypted with the plaintext:

24

0. KB0 = {KAkAB, KBkAB, KBkBZ , KZkBZ , KAm} i.k.

KB0 ` KA(kAB,m) thrm. 3

KB0 ` KA{(kAB,m)}kAB

sendAB({(kAB ,m)}kAB
)

��

thrm. 1

−−−
Z intercepts

��
1. KB1 := KB0 ∪KZ{(kAB,m)}kAB

sendZB({(kAB ,m)}kAB
)

��
2. KB2 := KB1 ∪KB{(kAB,m)}kAB

KB2 ` KB(kAB,m) thrm. 2

KB2 ` KBm thrm. 3

KB2 ` KB{(kAB,m)}kAB

sendBZ({(kAB ,m)}kAB
)

��

thrm. 1

3. KB3 := KB2 ∪KZ{(kAB,m)}kAB

KB3 6` KZm

Intruder Z does not know m.

Example 3.5.3. Returning to Example 2.1.3, A sends a double-encrypted message

to agent B and B replies, but the intruder intercepts the message and starts com-

municating with A. The receiver also replies a message using the key shared with the

indicated agent that is encrypted with the plaintext:

25

0. KB0 = {KAkAB, KAkAZ , KBkAB, KZkAZ , KAm} i.k.

KB0 ` KA{m}kAB
thrm. 1

KB0 ` KA(kAB, {m}kAB
) thrm. 3

KB0 ` KA{(kAB, {m}kAB
)}kAB

sendAB({(kAB ,{m}kAB
)}kAB

)

��

thrm. 1

1. KB1 := KB0 ∪KB{(kAB, {m}kAB
)}kAB

KB1 ` KB(kAB, {m}kAB
) thrm. 2

KB1 ` KB{m}kAB
thrm. 3

KB1 ` KBm thrm. 2

KB1 ` KB{(kAB, {m}kAB
)}kAB

sendBA({(kAB ,{m}kAB
)}kAB

)

��

thrm. 1

−−−
Z intercepts

��
2. KB2 := KB1 ∪KZ{(kAB, {m}kAB

)}kAB

KB2 ` KZ{m̃}kAB
= KZ{(kAB, {m}kAB

)}kAB

KB2 ` KZ{(kAZ , {m̃}kAB
)}kAZ

sendZA({(kAZ ,{m̃}kAB
)}kAZ

)

��

thrm. 1

3. KB3 := KB2 ∪KA{(kAZ , {m̃}kAB
)}kAZ

KB3 ` KA(kAZ , {m̃}kAB
) thrm. 2

KB3 ` KA{m̃}kAB
thrm. 3

KB3 ` KAm̃ thrm. 2

26

KB3 ` KA{(kAZ , {m̃}kAZ
)}kAZ

sendAZ({(kAZ ,{m̃}kAZ
)}kAZ

)

��

thrm. 1

4. KB4 := KB3 ∪KZ{(kAZ , {m̃}kAZ
)}kAZ

KB4 ` KZ(kAZ , {m̃}kAZ
) thrm. 2

KB4 ` KZ{m̃}kAZ
thrm. 3

KB4 ` KZm̃ thrm. 2

KB4 ` KZm̃ = KZ(kAB, {m}kAB
)

KB4 ` KZ{m}kAB
thrm. 3

KB4 ` KZ{(kAZ , {m}kAB
)}kAZ

sendZA({(kAZ ,{m}kAB
)}kAZ

)

��

thrm. 1

5. KB5 := KB4 ∪KA{(kAZ , {m}kAB
)}kAZ

KB5 ` KA(kAZ , {m}kAB
) thrm. 2

KB5 ` KA{m}kAB
thrm. 3

KB5 ` KAm thrm. 2

KB5 ` KA{(kAZ , {m}kAZ
)}kAZ

sendAZ({(kAZ ,{m}kAZ
)}kAZ

)

��

thrm. 1

6. KB6 := KB5 ∪KZ{(kAZ , {m}kAZ
)}kAZ

KB6 ` KZ(kAZ , {m}kAZ
) thrm. 2

KB6 ` KZ{m}kAZ
thrm. 3

KB6 ` KZm thrm. 2

27

Intruder Z knows m.

Inspired by BAN Logic [2], we also tested our system on some well-known proto-

cols: the Kerberos [27] and the Andrew Secure RPC Handshake [28] protocols. These

analyses can be found in appendices A and B, respectively.

28

Chapter 4

Tableaux Method for Dolev-Yao

Multi-Agent Epistemic Logic

Now, we present the tableaux method for S5DY . Here we provide a set of rules that

allow us to verify if a malicious user can obtain private messages from a communica-

tion network, for example, deriving this information from the messages he received

or intercepted.

We also prove the soundness and completeness of our method, we briefly explain

the termination argument and, finally, we give some examples.

4.1 Semantics

The semantics for our method are the same as in subsection 2.3.1.

4.2 Rules

The rules for our method are the same as in subsection 2.3.2, for all formulae α and

β:

R∧
α ∧ β
α

β

RDneg
¬¬α
α

R¬∧
¬(α ∧ β)

¬α ¬β
R→

α→ β

¬α β
R¬→
¬(α→ β)

α

¬β

Rπ
¬Kaα

ρ(T ′,¬α)
, where T ′ is a new tableau

Rt
Kaα

α
Rr

4

ρ(T ′′, Kaα)

Kaα

R4
Kaα

ρ(T ′′, Kaα)
, where T ′′ is a previously generated tableau

And now we add the following ones:

29

RDec

{m}k
k
m

R¬Enc
¬{m}k
¬m ¬k

RPair
(m,n)
m

n

R¬Pair
¬(m,n)

¬m ¬n

where m, {m}k, n, (m,n) ∈ E and k ∈ K.

4.3 Soundness

The soundness proof for our method is inspired by [23]. First, we need some defini-

tions:

Definition 4.3.1. Let Γ be a set of formulae:

1. we denote s Γ to represent s α, for all α ∈ Γ;

2. we say Γ is satisfiable if there exists a model M and some possible state s ∈ S
such that s Γ;

3. a tableau branch is satisfiable if the set of all its formulae is satisfiable. A

tableau is satisfiable if at least one branch is satisfiable.

Lemma 4.3.1. The rules of tableaux method preserve satisfiability. That is, if a

tableau T is satisfiable then the tableau resulting from the application of a rule to T
is satisfiable.

Proof. Let T be a satisfiable tableau. By property 3 of Definition 4.3.1, T has at

least one satisfiable branch, although it could have unsatisfiable ones. So, or the rule

is applied to a satisfiable branch or to an unsatisfiable one.

First case: if the rule is applied to an unsatisfiable branch, each originally

satisfiable branch remains unchanged. Therefore, the tableau resulting from the

application of a rule is satisfiable.

Second case: if the rule is applied to a satisfiable branch θ, which consists of

a set of formulae Γ and some specific formulae γ and δ which the rule is applied.

As θ is satisfiable, by property 2 of Definition 4.3.1, there exists a model M and a

possible state s ∈ S such that s Γ, in particular, s γ and s δ. Let’s θ′ be

the new branch obtained by the application of an inference rule to θ. We have the

following cases for each possible structure of γ and/or δ:

• for γ or δ of type ¬¬α, α ∧ β, ¬(α ∨ β), ¬(α → β), α ∨ β, ¬(α ∧ β), α → β,

Kaα or ¬Kaα, the proof can be found in tableaux for modal logics literature

[13, 23].

30

• RDec: for γ of type m and for δ of type k, where m, k ∈ Γ, since s m and

s k, that is, s m ∧ k, by the soundness of axiom 1 of Lemma 3.3.1, we

have s {m}k. Therefore, θ′ is satisfiable.

• R¬Enc: for γ or δ of type ¬{m}k and s ¬{m}k. By the contrapositive of

axiom 1 of Lemma 3.3.1 and its soundness, we have s ¬(m ∧ k) and also

s ¬m∨¬k. Suppose s ¬m, then θ′ is satisfiable. Suppose s ¬k, then θ′

is also satisfiable. Therefore, θ′ is satisfiable.

• the cases for rules RPair and R¬Pair are analogous to the cases for rules RDec and

R¬Enc, respectively, but using axiom 3 of Lemma 3.3.1.

�

The soundness of our tableaux method follows straightforward from the above

lemma. If a formula ¬α has a closed tableaux, then it is unsatisfiable. Thefore α

must be a valid formula.

4.4 Completeness

As pointed by COSTA [23], in [29] it is proven the completeness of tableaux method

for classical logic, based on the construction of a completed tableaux and showing

that when we cannot build a closed tableau for a formula ¬α, we have what is

necessary to build a counter-model for α, therefore, α is not valid. Then, FITTING

[13] extended this approach by adding the notion of prefixed tableaux, with the

definition of a completed tableau and proving that if a formula α is valid, then every

completed tableau for ¬α is closed. The completeness proof found in [23] is inspired

by this approach and is also the base for the proof below.

Let’s begin with some definitions:

Definition 4.4.1. Formulae of the form X∧Y , ¬(X∨Y), ¬(X → Y), ¬¬X, (m,n)

or occurrences of m and k are called type-α formulae, while every formulae of the

form X ∨Y , ¬(X ∧Y), X → Y , ¬(m,n) or ¬{m}k are called type-β formulae. The

components α1 and α2 from a type-α formula and the components β1 and β2 from a

type-β formula are given in the tables bellow:

31

α α1 α2

X ∧ Y X Y

¬(X ∨ Y) ¬X ¬Y
¬(X → Y) X ¬Y
¬¬X X X

(m,n) m n

m

k
{m}k {m}k

Table 4.1: Components of a type-α formula

β β1 β2

X ∨ Y X Y

¬(X ∧ Y) ¬X ¬Y
X → Y ¬X Y

¬(m,n) ¬m ¬n
¬{m}k ¬m ¬k

Table 4.2: Components of a type-β formula

Definition 4.4.2. A branch θ of a tableau σ is called complete if it satisfies the

following conditions (where Σ is a set of formulae of θ and γ a specific formula):

1. if (σ, α) ∈ Σ, then (σ, α1) ∈ Σ and (σ, α2) ∈ Σ;

2. if (σ, β) ∈ Σ, then (σ, β1) ∈ Σ or (σ, β2) ∈ Σ;

3. if (σ,Kaγ) ∈ Σ, then (σ′, γ) ∈ Σ for every tableau σ′ that occurs in Σ and is

accessible from σ;

4. if (σ,¬Kaγ) ∈ Σ, then (σ′, γ) ∈ Σ for some tableau σ′ that is accessible from

σ;

5. every branch of any tableau which is accessible from θ is complete or closed as

well.

Definition 4.4.3. We say that a tableau T is completed if every branch of σ is

complete or closed.

So, if a branch θ of a tableau T is complete and open, then we have at least one

open branch (that is also complete) per subordinated tableaux to θ.

Theorem 4.4.1. Every complete and open branch of a tableau is satisfiable.

32

Proof. Let θ be a complete and open branch of a tableau T and Σ be a set of

formulae of θ and of the tableaux T1, T2, . . . (which are recursively subordinated

to θ). We construct a model M where S is the set of tableaux {T , T1, T2, . . . }, ∼a
is built from the pairs (T1, T2), such that T2 is subordinated to T1 and satisfying

the following conditions, where E is an expression and the prefixes σ, σ1, σ2, . . . are

associated to {T , T1, T2, . . . }, respectively:

1. if (σ,E) ∈ Σ, then V (σ,E) = T ;

2. if (σ,¬E) ∈ Σ, then V (σ,E) = F ;

3. if (σ,E) 6∈ Σ and (σ,¬E) 6∈ Σ, then V (σ,E) = T can have any value. Let’s

choose F by default.

Now, for any (σ, γ) ∈ Σ, we have s γ, where γ is a formula and s a possible

state associated to σ. According to γ structure:

• for (σ, p), (σ, α), (σ, β), (σ,Kaγ) and (σ,¬Kaγ) the proof is found in [23]. We

only show the case for rules presented in Definition 4.2;

• The pair (σ, {m}k) ∈ Σ, for some prefix σ. By condition 1 of Definition 4.4.2,

we have (σ,m) ∈ Σ and (σ, k) ∈ Σ and by the induction hypothesis s m

and s k and also s m ∧ k, by the soundness of axiom 1 of Lemma 3.3.1,

we have s {m}k;

• The pair (σ,¬{m}k) ∈ Σ, for some prefix σ. By condition 2 of Definition 4.4.2,

we have (σ,¬m) ∈ Σ or (σ,¬k) ∈ Σ and by the induction hypothesis s ¬m
or s ¬k and also s ¬m ∨ ¬k and s ¬(m ∧ k), by the soundness of the

contrapositive of axiom 1 of Lemma 3.3.1, we have s ¬{m}k;

• the cases for rules RPair and R¬Pair are analogous to the cases for rules RDec and

R¬Enc, respectively, but using axiom 3 of Lemma 3.3.1.

Therefore, our model satisfies Σ.

�

Theorem 4.4.2. If a formula γ is valid, then γ has a proof by tableaux method.

Proof. Let T be a completed tableau, started with ¬γ. If it is open, then ¬γ is

satisfiable by theorem 4.4.1. So, γ cannot be valid. Therefore, if γ is valid, then T
is closed and γ has a proof by tableaux method.

�

33

4.5 Termination property

For the tableaux rules presented in Definition 2.3.2, MASSACCI [24] provides the

termination argument below, adapted for our semantics.

4.5.1 Classical and modal rules

To guarantee the termination of the proof search it’s used the “loop checking” ap-

proach, a combination of techniques to apply any rule only after check if it was not

applied already to the same antecedent. First we need some definitions:

Definition 4.5.1. In a branch θ of a tableau σ, a prefixed formula (σ, γ) is reduced

for a rule in θ:

• if the rule generates (σ′, γ′) and (σ′, γ′) is in θ; or

• if the rule splits the tableau into (σ1, γ1) and (σ2, γ2) and at least one of those

is in θ.

The formula (σ, γ) is fully reduced in θ if it is reduced for all applicable rules

and σ is (fully) reduced if all prefixed formula (σ, γ) are (fully) reduced as well.

So, for tableaux method for logic K, the following technique is sufficient to ter-

minate:

Technique 4.5.1. Apply a rule to a prefixed formula (σ, γ) in θ only if the formula is

not already reduced according to Definition 4.5.1, except for the knowledge operator.

But for our case, the “loop checking” concept is required. Let’s begin with the

definition of a copy of a prefix:

Definition 4.5.2. A prefix σ is a copy of a prefix σ0 for branch θ if for every formula

γ one has (σ, γ) ∈ θ iff (σ0, γ) ∈ θ.

Now we define what is a π-reduced prefix:

Definition 4.5.3. A prefix is π-reduced in θ if it is reduced for all rules except Rπ.

A branch θ is π-completed if:

• all prefixes are π-reduced in θ;

• for every σ that is not fully reduced there is a fully reduced copy σ0 shorter

than σ.

So, the idea is to restrict the usage of Rπ to formulae belonging to copies. The

following technique together with Technique 4.5.1 prove that we will always have a

π-completed branch:

34

Technique 4.5.2. Select the prefixed formulae with the shortest prefix.

As we have a π-completed branch, the next technique guarantees termination:

Technique 4.5.3. Check if the prefix of a π-formula is not a copy of a shorter prefix

before reducing it.

4.5.2 Dolev-Yao Multi-Agent Epistemic Logic rules

As rules RDec, R¬Enc, RPair, R¬Pair always yield a smaller conclusion than the premises,

that is, they are considered analytic rules, the argument explained in subsection

4.5.1 is not interfered.

4.6 Examples

In order to illustrate the usage of our tableaux method, we present the following

examples:

Example 4.6.1. Let’s consider a generic database DB = [k,m, n, {(m,n)}k → p].

We want to know if DB ` (n, p):

1. k [DB]

2. m [DB]

3. n [DB]

4. {(m,n)}k → p [DB]

5. ¬(n, p) [negation of the question]

�� ��

6. ¬n ¬p [from 5, by R¬Pair]

The left branch is closed and from the right branch we have:

zz $$

7. ¬{(m,n)}k p [from 4, by R→]

Now, the last right branch is closed. From the last left branch we have:

zz $$

8. ¬(m,n) ¬k [from 7, by R¬Enc]

35

Again, the last right branch is closed and, finally, from the last left branch:

�� ��

9. ¬m ¬n [from 8, by R¬Pair]

Thus, we have a closed tableau.

Example 4.6.2. Let’s prove theorem 1 from Lemma 3.2.1:

1. ¬(Kam ∧Kak → Ka{m}k) [negation of the question]

2. Kam ∧Kak [from 1, by R¬→]

3. ¬Ka{m}k [from 1, by R¬→]

4. Kam [from 2, by R∧]

5. Kak [from 2, by R∧]

Now, we generate a new tableau:

3.1. ¬{m}k [from 3, by Rπ]

3.2. Kam [from 4, by R4]

3.3. Kak [from 5, by R4]

3.4. m [from 3.2, by Rt]

3.5. k [from 3.3, by Rt]

�� ��

3.6. ¬m ¬k [from 3.1, by R¬Enc]

Since each of the branches closes, we have a closed tableau.

Example 4.6.3. Let’s prove theorem 2 from Lemma 3.2.1:

1. ¬(Ka{m}k ∧Kak → Kam) [negation of the question]

2. Ka{m}k ∧Kak [from 1, by R¬→]

3. ¬Kam [from 1, by R¬→]

Now, we generate a new tableau:

3.1. ¬m [from 3, by Rπ]

36

3.2. Ka{m}k [from 2, by R∧]

3.3. Kak [from 2, by R∧]

3.4. {m}k [from 3.2, by Rt]

3.5. k [from 3.3, by Rt]

3.6. m [from 3.4 and 3.5, by RDec]

Thus, we have a closed tableau.

Example 4.6.4. Let’s prove theorem 3 from Lemma 3.2.1, using the fact that Kam∧
Kan↔ Ka(m,n) ≡ (Kam ∧Kan→ Ka(m,n) ∧Ka(m,n)→ Kam ∧Kan):

1. ¬(Kam ∧Kan↔ Ka(m,n)) [negation of the question]

rr ,,

2. ¬(Kam ∧Kan→ Ka(m,n)) ¬(Ka(m,n)→ Kam ∧Kan)

As we can see, the initial tableau splitted into a left and right branch. From

the left branch we have:

2.1.l. Kam ∧Kan [from left-hand side of 2, by R¬→]

2.2.l. ¬Ka(m,n) [from left-hand side of 2, by R¬→]

2.3.l. Kam [from 2.1, by R∧]

2.4.l. Kan [from 2.1, by R∧]

Now, we generate a new tableau:

2.2.l.1. ¬(m,n) [from 2.2, by Rπ]

2.2.l.2. Kam [from 2.3, by R4]

2.2.l.3. Kan [from 2.4, by R4]

2.2.l.2. m [from 2.2.2, by Rt]

2.2.l.3. n [from 2.2.3, by Rt]

�� ��

2.2.l.4. ¬m ¬n [from 2.2.1, by R¬Pair]

Thus, all this left branch of 2 is closed. Now, from the right branch we have:

37

2.1.r. Ka(m,n) [from right-hand side of 2, by R¬→]

2.2.r. ¬(Kam ∧Kan) [from right-hand side of 2, by R¬→]

zz $$

2.3.r. ¬Kam ¬Kan [from 2.2, by R¬Pair]

From the left-hand side of 2.3 we generate a new tableau:

2.3.r.1.l. ¬m [from left-hand side of 2.3, by Rπ]

2.3.r.2.l. Ka(m,n) [from 2.1., by R4]

2.3.r.3.l. (m,n) [from 2.3.2., by Rt]

2.3.r.4.l. n [from 2.3.3., by RPair]

2.3.r.5.l. m [from 2.3.3., by RPair]

Thus, the left branch is closed. From the right-hand side of 2.3 we generate a

new tableau:

2.3.r.1.r. ¬n [from right-hand side of 2.3, by Rπ]

2.3.r.2.r. Ka(m,n) [from 2.1., by R4]

2.3.r.3.r. (m,n) [from 2.3.2., by Rt]

2.3.r.4.r. m [from 2.3.3., by RPair]

2.3.r.5.r. n [from 2.3.3., by RPair]

Since each of the branches is closed, we have a closed tableau.

38

Chapter 5

Conclusion

In this work, we presented a new epistemic logic for reasoning about security pro-

tocols, the S5DY . This logic introduces a new semantics based on structured propo-

sitions. Instead of building formulas from atomic propositions, they are built from

expressions. The latter, are any peace piece of information that can appear in proto-

cols: keys, messages, agents and properties or some combination of this information

in pairs, encrypted messages and so forth. We propose this new semantics and an

axiomatization for this logic. Proofs for soundness and completeness are given as

well.

It is also provided a tableaux method for S5DY . This theorem prover is based on

prefixed tableaux, we made an extension of this concept with our semantics and we

proved soundness and completeness, according to satisfiability results and analytic

tableaux conditions, respectively.

We believe that this work contributes to the growing demand for security studies,

by integrating concepts of logic in intuitive way and using knowledge formalisms.

Now we list some possible extensions to our work.

5.1 Knowledge de re/de dicto

The knowledge operator Ka is meant to capture the standard notion of knowledge

de dicto that a has about a propositional sentence. An example of a sentence is

KaKbm, of which the intuition is that agent a knows (that it is the case that) agent

b knows message m. What do we mean by an agent to know the message m? Does

he knows the content of the message or the message itself?

We can extend the language with a new knowledge operator K̆am in order to

capture the notion of knowledge de re that a has of m [30], that is, K̆am denotes the

fact that agent a knows the content of m. For instance, now we can express KaK̆bm,

of which the intuition is that agent a knows (that it is the case that) agent b knows

(the content of) message m.

39

5.2 Common knowledge

We also can extend our work by expressing notions of common knowledge [1, 11],

obtaining the logic S5CKDY by adding the operator CGϕ (ϕ is common knowledge for

agents in group G). A proposal for an axiomatization could be:

• Axioms and rules of S5DY .

• EGϕ↔
∧
a∈GKaϕ

• CG(ϕ→ ψ)→ (CGϕ→ CGψ)

• CGϕ→ (ϕ ∧ EGCGϕ)

• CG(ϕ→ EGϕ)→ (ϕ→ CGϕ) [+ induction]

5.3 Adding actions

As we said in subsection 3.5, the protocols actions are in a kind of extra or metalan-

guage, but it would be interesting to formalize these actions. In dynamic epistemic

logic [1], for instance, we can reason about information change. We already had out-

lined some concepts using propositional dynamic logic [31, 32]. The PDLDY modality

[m,K]α is intended to mean that “α holds once the intruder have message m and

the keys in set K”. Some possible validities are:

1. [m,K]ϕ↔ [{m}k,K]ϕ, if k ∈ K

2. [(m,n),K]ϕ↔ [m,K]ϕ ∧ [n,K]ϕ

3. [{m}k,K]ϕ↔ [�,K]ϕ, if k 6∈ K

where � may be read as “undecryptable” and we can define

` [m,K]ϕ↔ [�, K]ϕ

as a Secrecy.

Example 5.3.1. Returning to Example 2.1.2, agent A wants to send an encrypted

message to agent B, and the receiver always replies a message using the key shared

with the indicated agent that is encrypted with the plaintext. The initial knowledge

only refers to the intruder. We assume that kXY = kY X for every agent X and Y :

40

0. [−, {kAZ , kBZ}]ϕ
sendAB({(kAB ,m)}kAB

)

��

i.k.

−−−
Z intercepts

��
1. [{(kAB,m)}kAB

, {kAZ , kBZ}]ϕ
sendZB({(kAB ,m)}kAB

)

��
2. [{(kAB,m)}kAB

, {kAZ , kBZ}]ϕ
sendBZ({(kAB ,m)}kAB

)

��
3. [{(kAB,m)}kAB

, {kAZ , kBZ}]ϕ↔ [�, {kAZ , kBZ}]ϕ val. 3

Intruder Z does not know M

It is still in its incipient stages, but it would allow us to track each step of a

protocol and recognize where exactly an error of specification occurs.

41

Bibliography

[1] DITMARSCH, H. V., VAN DER HOEK, W., KOOI, B. Dynamic Epis-

temic Logic. Springer Publishing Company, Incorporated, 2007. ISBN:

1402058381, 9781402058387.

[2] BURROWS, M., ABADI, M., NEEDHAM, R. “A Logic of Authentication”,

ACM Transactions on Computer Systems, v. 8, n. 1, pp. 18–36, 1990.

[3] BOUREANU, I., COHEN, M., LOMUSCIO, A. “Automatic verification of

temporal-epistemic properties of cryptographic protocols”, Journal of

Applied Non-Classical Logics, v. 19, n. 4, pp. 463–487, 2009. doi:

10.3166/jancl.19.463-487.

[4] CHEN, Q., SU, K., LIU, C., et al. “Automatic Verification of Web Service

Protocols for Epistemic Specifications under Dolev-Yao Model”. In: 2010

International Conference on Service Sciences, pp. 49–54, May 2010. doi:

10.1109/ICSS.2010.33.

[5] SYVERSON, P. “The use of logic in the analysis of cryptographic protocols”.

In: Proceedings. 1991 IEEE Computer Society Symposium on Research in

Security and Privacy, pp. 156–170, May 1991. doi: 10.1109/RISP.1991.

130784.

[6] ABADI, M., GORDON, A. D. “A Calculus for Cryptographic Protocols: The

Spi Calculus”. In: Proceedings of the 4th ACM Conference on Computer

and Communications Security, pp. 36–47. ACM, 1997.

[7] GOLDWASSER, S., MICALI, S. “Probabilistic Encryption.” J. Comput. Syst.

Sci., v. 28, n. 2, pp. 270–299, 1984.

[8] BLUM, M., MICALI, S. “How to Generate Cryptographically Strong Sequences

of Pseudo-random Bits”, SIAM J. Comput., v. 13, n. 4, pp. 850–864, nov.

1984. ISSN: 0097-5397. doi: 10.1137/0213053.

[9] ABADI, M., ROGAWAY, P. “Reconciling Two Views of Cryptography (The

Computational Soundness of Formal Encryption)”. In: Proceedings of the

42

International Conference IFIP on Theoretical Computer Science, Explor-

ing New Frontiers of Theoretical Informatics, TCS ’00, pp. 3–22, London,

UK, UK, 2000. Springer-Verlag. ISBN: 3-540-67823-9.

[10] DOLEV, D., YAO, A. C. “On the Security of Public Key Protocols”, IEEE

Transactions on Information Theory, v. 29, n. 2, pp. 198–208, 1983.

[11] FAGIN, R., HALPERN, J. Y., MOSES, Y., et al. Reasoning about Knowledge.

MIT Press, 1995.

[12] GABBAY, D. M. Labelled Deductive Systems. Oxford University Press, 1996.

[13] FITTING, M. Proof Methods for Modal and Intuitionistic Logics. Solid Earth

Sciences Library. Springer, 1983. ISBN: 9789027715739.

[14] KRIPKE, S. A. “A Completeness Theorem in Modal Logic”, Journal of Sym-

bolic Logic, v. 24, n. 1, pp. 1–14, 1959.

[15] NEEDHAM, R. M., SCHROEDER, M. D. “Using encryption for authentication

in large networks of computers”, Commun. ACM, , n. 12, pp. 993–999,

1978.

[16] DIFFIE, W., HELLMAN, M. “New directions in cryptography”, IEEE Trans-

actions on Information Theory, v. IT-22, pp. 664–654, 1976.

[17] RIVEST, R. L., SHAMIR, A., ADLEMAN, L. “A method for obtaining digital

signatures and public-key cryptosystems”, Commun. ACM, v. 21, pp. 120–

126, 1978.

[18] ABADI, M., ROGAWAY, P. “Reconciling Two Views of Cryptography (The

Computational Soundness of Formal Encryption)”, IFIP International

Conference on Theoretical Computer Science, 2000.

[19] AYALA-RINCÓN, M., FERNÁNDEZ, M., SOBRINHO, D. N. “Elementary

Deduction Problem for Locally Stable Theories with Normal Forms”. In:

Proceedings Seventh Workshop on Logical and Semantic Frameworks, with

Applications, LSFA 2012, Rio de Janeiro, Brazil, September 29-30, 2012.,

pp. 45–60, 2012. doi: 10.4204/EPTCS.113.7.

[20] BLACKBURN, P., BENTHEM, J. F. A. K. V., WOLTER, F. Handbook of

Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning). New

York, NY, USA, Elsevier Science Inc., 2006. ISBN: 0444516905.

[21] VON WRIGHT, G. H. “An Essay in Modal Logic”, 1951. doi: 10.1017/

S0031819100026176.

43

[22] HINTIKKA, J. Knowledge and belief: an introduction to the logic of the two

notions. Contemporary philosophy. Cornell University Press, 1962.

[23] COSTA, M. M. D. C. Introdução à Lógica Modal Aplicada à Computação.

UFRGS, 1992.

[24] MASSACCI, F. “Single Step Tableaux for Modal Logics”, J. Autom. Reasoning,

v. 24, n. 3, pp. 319–364, 2000. doi: 10.1023/A:1006155811656.

[25] BENEVIDES, M. R. F., FERNANDEZ, L. C. F., OLIVEIRA, A. C. C. M.

“Epistemic Logic Based on Dolev-Yao Model”. In: Anais do XXXVII

Congresso da Sociedade Brasileira de Computação - II ETC. Sociedade

Brasileira de Computação, 2017.

[26] BLACKBURN, P., RIJKE, M. D., VENEMA, Y. Modal Logic. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press,

2001. doi: 10.1017/CBO9781107050884.

[27] MILLER, S. P., NEUMAN, B. C., SCHILLER, J. I., et al. “Kerberos authenti-

cation and authorization system”. In: In Project Athena Technical Plan,

1987.

[28] SATYANARAYANAN, M. “Integrating Security in a Large Distributed Sys-

tem”, ACM Trans. Comput. Syst., v. 7, n. 3, pp. 247–280, ago. 1989. ISSN:

0734-2071. doi: 10.1145/65000.65002.

[29] SMULLYAN, R. First-order Logic. Ergebnisse der Mathematik und ihrer Gren-

zgebiete. Springer-Verlag, 1968.

[30] KRAMER, S. “Cryptographic Protocol Logic: Satisfaction for (Timed) Dolev-

Yao Cryptography”, Journal of Logic and Algebraic Programming, v. 77,

n. 1–2, 2008.

[31] FISCHER, M. J., LADNER, R. E. “Propositional dynamic logic of regular

programs”, Journal of Computer and System Sciences, v. 18, n. 2, pp. 194

– 211, 1979. ISSN: 0022-0000. doi: https://doi.org/10.1016/0022-0000(79)

90046-1.

[32] HAREL, D., TIURYN, J., KOZEN, D. Dynamic Logic. Cambridge, MA, USA,

MIT Press, 2000. ISBN: 0262082896.

44

Appendix A

Kerberos Protocol

Based on [15], the Kerberos protocol was developed for Project Athena at MIT. It

is used to provide a shared key between two users when a server is requested to do

so, using timestamps.

Considering two users A and B, an authentication server S (also treated as an

agent), TX as the timestamp generated by agent X and the lifetime L, we can

represent this protocol by the following steps (assuming that every user already has

a shared key with the server):

1. A wants to communicate with B, so he sends a message to S stating it;

2. S replies with an encrypted message containing TS, L, kAB, and an encrypted

message that only B can read (since it was encrypted under a shared key

between S and B), which also contains the timestamp, the lifetime, and the

shared key requested (this message is also called ticket);

3. A forwards the message destined to B together with a timestamp encrypted

under kAB;

4. B the first message and is able to the check the TS and L. If it has been created

recently enough, he uses the kAB to decrypt the second message. Then, he can

take the communication from there, using TA.

Supposing that an intruder Z intercepts the message sent from A to B and he

already got from S what is necessary to communicate with B, let’s analyze this

protocol using S5DY :

45

0. KB0 = {KAA,KAB,KAkAS, KATA, KBkBS, KBTB,

KSTS, KSL,KSkAB, KSkBS, i.k.

KZTZ , KZkZB, KZ{(TS, L′, kZB, Z)}kBS
}

KB0 ` KA(A,B)

sendAS((A,B))

��

thrm. 3

1. KB1 := KB0 ∪KS(A,B)

KB1 ` KSA thrm. 3

KB1 ` KSB thrm. 3

KB1 ` KS(TS, L, kAB, A) thrm. 3

KB1 ` KS{(TS, L, kAB, A)}kBS
thrm. 1

KB1 ` KS(TS, L, kAB, B, {(TS, L, kAB, A)}kBS
) thrm. 3

KB1 ` KS{(TS, L, kAB, B, {(TS, L, kAB, A)}kBS
)}kAS

sendSA({(TS ,L,kAB ,B,{(TS ,L,kAB ,A)}kBS
)}kAS

)

��

thrm. 1

2. KB2 := KB1 ∪KA{(TS, L, kAB, B, {(TS, L, kAB, A)}kBS
)}kAS

KB2 ` KA(TS, L, kAB, B, {(TS, L, kAB, A)}kBS
) thrm. 2

KB2 ` KA{(TS, L, kAB, A)}kBS
thrm. 3

KB2 ` KAkAB thrm. 3

KB2 ` KA(A, TA) thrm. 3

46

KB2 ` KA{(A, TA)}kAB
thrm. 1

KB2 ` KA({(TS, L, kAB, A)}kBS
, {(A, TA)}kAB

)

sendAB(({(TS ,L,kAB ,A)}kBS
,{(A,TA)}kAB

))

��

thrm. 3

−−−
Z intercepts

��
3. KB3 := KB2 ∪KZ({(TS, L, kAB, A)}kBS

, {(A, TA)}kAB
)

Now Z has two possibilities. The first one is to send the same intercepted message

to B:

3. KB3 := KB2 ∪KZ({(TS, L, kAB, A)}kBS
, {(A, TA)}kAB

)

sendZB(({(TS ,L,kAB ,A)}kBS
,{(A,TA)}kAB

))

��
4. KB4 := KB3 ∪KB({(TS, L, kAB, A)}kBS

, {(A, TA)}kAB
)

KB4 ` KB{(TS, L, kAB, A)}kBS
thrm. 3

KB4 ` KB{(A, TA)}kAB
thrm. 3

KB4 ` KB(TS, L, kAB, A) thrm. 2

KB4 ` KBkAB thrm. 3

KB4 ` KB(A, TA) thrm. 2

KB4 ` KBTA thrm. 3

KB4 ` KB{TA}kAB

sendBZ({TA}kAB
)

��

thrm. 1

5. KB5 := KB4 ∪KZ{TA}kAB

KB5 6` KZTA

Intruder Z does not know TA.

47

Or he can send a concatenation of the ticket he previously got from S and the

encrypted message:

3. KB3 := KB2 ∪KZ({(TS, L, kAB, A)}kBS
, {(A, TA)}kAB

)

KB3 ` KZ{(A, TA)}kAB
thrm. 3

KB3 ` KZ({(TS, L′, kZB, Z)}kBS
, {(A, TA)}kAB

)

sendZB(({(TS ,L′,kZB ,Z)}kBS
,{(A,TA)}kAB

))

��

thrm. 3

4. KB4 := KB3 ∪KB({(TS, L′, kZB, Z)}kBS
, {(A, TA)}kAB

)

KB4 ` KB{(TS, L′, kZB, Z)}kBS
thrm. 3

KB4 ` KB{(A, TA)}kAB
thrm. 3

KB4 ` KB(TS, L
′, kZB, Z) thrm. 2

KB4 6` KBkAB

KB4 6` KB(TA, A)

KB4 6` KZTA

Since B is not able to continue the communication, intruder Z cannot know TA.

48

Appendix B

Andrew Secure RPC Handshake

Protocol

The Andrew Secure RPC protocol can be used when an user wants to refresh his

key. So, in this scenario, let’s consider that a handshake between user A and server

S is made when a shared key kAS already exists and A wants to obtain a new key

k′AS. We can represent this protocol by the following steps:

1. A sends a nonce NA encrypted under the key shared with S to state that he

wants a new one;

2. S returns this nonce concatenated with NS, also encrypted;

3. A returns only NS to the server, encrypted under kAS;

4. after check the last message, S can send the new shared key k′AS concate-

nated with N ′S, where the latter “is an initial sequence number to be used in

subsequent communication” [2], and encrypted under the first shared key.

Since there is no indication of who originated the third message, the server will

reply this message using the key shared with the sender. Let’s suppose that an

intruder Z intercepts this message, we can also analyze this protocol:

0. KB0 = {KAkAS, KAkAZ , KANA, KAA,

KSkAS, KSkZS, KSNS, KSk
′
AS, KSN

′
S i.k.

KZkAZ , KZkZS}

KB0 ` KA(A,NA) thrm. 3

49

KB0 ` KA{(A,NA)}kAS

sendAS({(A,NA)}kAS
)

��

thrm. 1

1. KB1 := KB0 ∪KS{(A,NA)}kAS

KB1 ` KB(A,NA) thrm. 2

KB1 ` KBNA thrm. 3

KB1 ` KB(NA, NS) thrm. 3

KB1 ` KB{(NA, NS)}kAS

sendSA({(NA,NS)}kAS
)

��

thrm. 1

2. KB2 := KB1 ∪KA{(NA, NS)}kAS

KB2 ` KA(NA, NS) thrm. 2

KB2 ` KANS thrm. 3

KB2 ` KA{NS}kAS

sendAS({(NS)}kAS
)

��

thrm. 1

−−−
Z intercepts

��
3. KB3 := KB2 ∪KZ{NS}kAS

sendZB({(NS)}kAS
)

��
4. KB4 := KB3 ∪KS{NS}kAS

KB4 ` KSNS thrm. 2

KB4 ` KS(k′AS, N
′
S) thrm. 3

KB4 ` KS{(k′AS, N ′S)}kZS

sendSZ({(k′AS ,N
′
S)}kZS

)

��

thrm. 1

5. KB5 := KB4 ∪KZ{(k′AS, N ′S)}kZS

50

KB5 ` KZ(k′AS, N
′
S) thrm. 2

KB5 ` KZk
′
AS thrm. 3

KB5 ` KZN
′
S thrm. 3

KB5 ` KZ{(k′AS, N ′S)}kAZ

sendZA({(k′AS ,N
′
S)}kAZ

)

��

thrm. 1

6. KB6 := KB5 ∪KA{(k′AS, N ′S)}kAZ

KB6 ` KA(k′AS, N
′
S) thrm. 2

KB6 ` KAk
′
AS thrm. 3

KB6 ` KAN
′
S thrm. 3

Now, intruder Z is able to decrypt any message eventually sent by A or S and

encrypted under k′AS.

51

	List of Figures
	List of Tables
	Introduction
	Objectives
	Roadmap

	Background
	Dolev-Yao model
	Public key protocols
	Examples
	Rules

	Multi-agent epistemic logic
	Language and semantics
	Axiomatization
	Example

	Tableaux method
	Semantics
	Rules
	Example

	Dolev-Yao Multi-Agent Epistemic Logic
	Language and semantics
	Axiomatization
	Soundness
	Completeness
	Examples

	Tableaux Method for Dolev-Yao Multi-Agent Epistemic Logic
	Semantics
	Rules
	Soundness
	Completeness
	Termination property
	Classical and modal rules
	Dolev-Yao Multi-Agent Epistemic Logic rules

	Examples

	Conclusion
	Knowledge de re/de dicto
	Common knowledge
	Adding actions

	Bibliography
	Kerberos Protocol
	Andrew Secure RPC Handshake Protocol

