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Concept-drift gradual refere-se à mudança suave e gradual na distribuição dos

dados conforme o tempo passa. Este problema causa obsolescência no modelo de

aprendizado e queda na qualidade das previsões. Além disso, existe um complicador

durante o processamento dos dados: a latência de verificação extrema (LVE) para se

verificar os rótulos. Métodos do estado da arte propõem uma adaptação do modelo

supervisionado usando uma abordagem de estimação de importância baseado em

mı́nimos quadrados ou usando uma abordagem semi-supervisionada em conjunto com

a extração de instâncias centrais, na sigla em inglês (CSE). Entretanto, estes métodos

não tratam adequadamente os problemas mencionados devido ao fato de requererem

alto tempo computacional para processar grandes volumes de dados, falta de correta

seleção das instâncias que representam a mudança da distribuição, ou ainda por

demandarem o ajuste de grande quantidade de parâmetros.Portanto, propomos um

modelo adaptativo baseado em densidades para dados não-estacionários (AMANDA),

que tem como base um classificador semi-supervisionado e um método CSE baseado

em densidade. AMANDA tem duas variações: percentual de corte fixo (AMANDA-

FCP); e percentual de corte dinâmico (AMANDA-DCP). Nossos resultados indicam

que as duas variações da proposta superam o estado da arte em quase todas as bases

de dados sintéticas e reais em até 27,98% em relação ao erro médio. Conclúımos

que a aplicação do método AMANDA-FCP faz com que a classificação melhore

mesmo quando há uma pequena porção inicial de dados rotulados. Mais ainda, os

classificadores semi-supervisionados são melhorados quando trabalham em conjunto

com nossos métodos de CSE, estático ou dinâmico.
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Gradual concept-drift refers to a smooth and gradual change in the relations

between input and output data in the underlying distribution over time. The

problem generates a model obsolescence and consequently a quality decrease in

predictions. Besides, there is a challenging task during the stream: The extreme

verification latency (EVL) to verify the labels. For batch scenarios, state-of-the-art

methods propose an adaptation of a supervised model by using an unconstrained

least squares importance fitting (uLSIF) algorithm or a semi-supervised approach

along with a core support extraction (CSE) method. However, these methods do

not properly tackle the mentioned problems due to their high computational time

for large data volumes, lack in representing the right samples of the drift or even

for having several parameters for tuning. Therefore, we propose a density-based

adaptive model for non-stationary data (AMANDA), which uses a semi-supervised

classifier along with a CSE method. AMANDA has two variations: AMANDA

with a fixed cutting percentage (AMANDA-FCP); and AMANDA with a dynamic

cutting percentage (AMANDA-DCP). Our results indicate that the two variations of

AMANDA outperform the state-of-the-art methods for almost all synthetic datasets

and real ones with an improvement up to 27.98% regarding the average error.We have

found that the use of AMANDA-FCP improved the results for a gradual concept-drift

even with a small size of initial labeled data. Moreover, our results indicate that

SSL classifiers are improved when they work along with our static or dynamic CSE

methods. Therefore, we emphasize the importance of research directions based on

this approach.
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Chapter 1

Introduction

Scenarios where data are not generated by law physics are fated to suffer changes

in their statistical distribution (WIDMER e KUBAT, 1996). These complex envi-

ronments are denominated non-stationary environments (MORRISON e DE JONG,

1999). Non-stationary environments are highly probable that class-distributions

change over time (GAMA et al., 2004) due to contextual and temporal reasons

(GAMA et al., 2014a). These changes create an important problem denominated

concept-drift (WIDMER e KUBAT, 1996).

Concept-drift refers to the change in the relations between input and output data

in the underlying distribution over time (GAMA et al., 2004). For example, human

preferences (DING et al., 2006) and robotic tasks such as autonomous navigation

(MARRS et al., 2010) that changes through time. The problem generates a model

obsolescence and quality decreasing in the predictions. Formally, the concept drift

problem is defined by GAMA et al. (2014a) as:

∃X : Pt0(X, y) 6= Pt1(X, y), (1.1)

where Pt0 denotes the joint distribution at time t0 between the set of input variables

X and the target variable y. Thus, the prior probabilities of classes P (y) and the class

conditional probabilities P (X|y) may change resulting in changes in the posterior

probabilities of the classes P (y|X), affecting predictions (GAO et al., 2007, KELLY

et al., 1999).

Beyond the definition, we must characterize the concept-drift problem as follows:

type, behavior and data flow. Regarding its type, there are two distinct variations:

gradual and abrupt. The first type refers to a smooth and gradual change in a data

distribution over time, that is, the probability of an instance being in concept A

declines linearly as the probability of an instance being in concept B increases until A

is completely replaced by B (STANLEY, 2003). The second type refers to a sudden

change, that is, the concept shifts instantaneously between A and B STANLEY

1



(2003).

Regarding its behaviour, we can divide it by rotational, translational and volu-

metric (DYER et al., 2014). The rotational behaviour occurs when the data rotates

around its center. The translational behaviour occurs when the data shifts in one

direction. Finally, the volumetric behaviour occurs when the distribution expand or

contract itself around its center.

In relation to data flow, the data can come in the form of stream or batch.

Depending on its type, the algorithm must be prepared for it. Worth to mention

that labeling data is an expensive task in stream scenarios. For example, in robotics,

the acquisition of the labels is a challenging task due to the latency to verify the

labels during the stream (XU et al., 2017). This problem is denominated extreme

verification latency (EVL) (KREMPL et al., 2014). Therefore, due to its importance,

we also investigate our method under the EVL condition.

In batch scenarios, DYER et al. (2014) and CAPO et al. (2014) proposed a

semi-supervised learning (SSL) approach along with a core support extraction (CSE)

method to deal with gradual drift and EVL. Their methods extract samples from a

core support region and discard the remaining instances. Hence, the methods use

these samples as training instances for the classifier in the next batches of unlabeled

data. The main disadvantage of these methods is the expensive computational cost

of the CSE methods chosen for these works. Besides, the CSE method of the second

work (CAPO et al., 2014) seems to be suitable for Gaussian distributions. However,

Gaussian distributions are not common in real problems. Thus, further research to

apply new CSE approaches is very important.

To address the same set of problems in a stream scenario, SOUZA et al. (2015b)

and SOUZA et al. (2015a) proposed a semi-supervised approach guided by a clustering

algorithm to classify an instance. The main disadvantage of these methods is the high

processing time for datasets with more than 100,000 instances. Another weakness

is the variability of its results due to the change of a parameter that controls the

number of clusters.

1.1 Objectives

Taking into account the issues of the state-of-the-art methods, we propose a SSL

classifier with a density-based CSE method that helps to adapt itself to the drift.

This density-based CSE is responsible for weighting and filtering the instances for

the next SSL algorithm iterations. Hence, instances containing old concepts are

discarded while the remaining instances, that are able to represent the new concepts,

are kept for the next subsequent steps. This approach is able to deal with the gradual

drift in EVL scenarios and is faster than the state-of-the-art methods since it removes

2



up to 90% of instances needed for the training step in some datasets.

Therefore, we propose a density-based adaptive model for non-stationary data

(AMANDA) under EVL scenarios, with two variations: fixed cutting percentage

(AMANDA-FCP) and dynamic cutting percentage (AMANDA-DCP). We evaluate

these two variations of AMANDA at seventeen artificial datasets and three real ones.

We compare the proposal to the static, incremental and sliding window classifiers,

and two other state-of-the-art methods as well.

1.2 Summary of Results

Our results are illustrated in Figure 1.1 and indicate that AMANDA-FCP outper-

forms the state-of-the-art method (LEVELiw) regarding the average error in the real

datasets: Electricity (ELEC2), NOAA and Keystroke. However, AMANDA-DCP is

surpassed in the Electricity dataset. Negative values mean an increase in the error.

Additionally, AMANDA-FCP outperforms the LEVELiw and COMPOSE-GMM,

another state-of-the-art method, in fifteen of seventeen artificial datasets.

Figure 1.1: Summary of results.

1.3 Contributions

Our main contributions are:

• Two methods for gradual concept-drift

Two methods based on our adaptive framework AMANDA: a fixed cutting

percentage (AMANDA-FCP); and an alternative dynamic cutting percentage

(AMANDA-DCP) that diminish the only free parameter of the former method

3



• A density-based CSE method for core support regions

A density approach for weighting and filtering samples that best represent the

concepts in the data distribution

• A method that learns under extreme verification latency scenarios

A semi-supervised approach that presents high accuracy for unlabeled data

under EVL scenarios

• A Comparison and analysis

A comparison between the proposal and the most relevant methods for the

concept-drift problem

1.4 Document Structure

This work is organized as follows: in Chapter 2, we introduce the concept-drift

fundamentals and related works regarding machine learning for dynamic environments.

In Chapter 3, we present a semi-supervised approach for gradual concept-drift on

EVL scenarios. Next, in Chapter 4, we describe our methodology for conducting the

experiments, datasets and our results. Finally, in Chapter 5, we present our final

considerations, work’s limitations, and research directions.

4



Chapter 2

Concept-Drift Fundamentals

Often in data mining and machine learning problems, data is collected and

processed offline. Hence, the model is built and refined with historical data and

posteriorly applied to new data at online environment. However, it is usual that

digital data are generated as streams which may present many challenges such as

size, high rate arrival, data evolution over time (KHAMASSI et al., 2018) and others.

In online environments, data processing needs to be real time, and preferentially

has to be computational inexpensive since the high volume of data makes the strategy

of processing all information in memory computationally infeasible (L’HEUREUX

et al., 2017). Online environments are often non-stationary (HAYKIN e LI, 1995).

This condition is referred as an environment with concept-drift problem (TSYMBAL,

2004), also denominated as covariate shift (MORENO-TORRES et al., 2012). Hence,

the input data characteristics or the relation between the input data and the target

variable may change, affecting the prediction.

In this environment, there is a necessity to build methods for extracting patterns

from continuous batches of data. These methods are denominated incremental

(online) learning algorithms. The incremental assumption is that upon receiving a

new instance, it is much less expensive to update an existing model than to build

a new one. On the other hand, as indicated by DOMINGOS e HULTEN (2000),

incremental algorithms have several shortcomings such as high sensitivity to the

order of training examples, and longer training times than the non-incremental

(batch) methods. Pure incremental methods consider every new instance, which may

be impractical in environments where transactions arrive at the rate of thousands

per second. Thus, it is necessary to use adaptive algorithms, that is considered an

extension of incremental-learning algorithms. Adaptive algorithms adapts and evolve

according time, working properly in non-stationary environments.

According to ŽLIOBAITĖ et al. (2015), static machine-learning models assume

that data is independent and identically distributed (iid). Identical distribution

means that the joint probability Pt(X, yi) of an observation X and its label yi is

5



the same at any time t, that is, Pt0(X, yi) = Pt1(X, yi). Independent distribution

means that the probability of a label does not depend on what was observed earlier,

that is, P (yt) = P (yt|yt−1). However, non-stationary environments exhibit temporal

dependence and data is not iid (GAMA et al., 2014a, ŽLIOBAITĖ et al., 2015), that

is:

∃X : Pt0(X, y) 6= Pt1(X, y), (2.1)

ŽLIOBAITĖ et al. (2015) indicated that a naive classifier, considering the temporal

dependence, can outperform several state-of-the-art classifiers on non-stationary

environments.

Non-stationary data are found in several real problems, specially when there is a

necessity for mining high-speed streams of data (DOMINGOS e HULTEN, 2000),

where a drift occurs in the distribution due to the large amount of incoming data or

seasonality factors. Intrusion detection in computers and computer networks (LANE

e BRODLEY, 1998) is an example of non-stationary data. Here, the user’s behaviors

and tasks change with time and the anomaly detection agent must be capable of

adapting to these changes while still recognizing hostile actions and take care to not

adapting to them. Another example is the e-mail classification task (CARMONA-

CEJUDO et al., 2011), where the criteria to classify emails within a folder may

change over time. Traffic management (MOREIRA, 2008) also suffers influence of

drifts in the distribution. Here a travel planning for a long-term prediction becomes

challenging due to the drift that occurs in distribution of buses and their time travels

through the time.

Non-stationary data also is produced from other problems such as activity recog-

nition (ZHOU et al., 2008), where drift occurs in data provided by humans in

interactive applications. Sentiment classification in user’s opinions in Twitter data

(BIFET e FRANK, 2010). Production quality control (PECHENIZKIY et al., 2010),

where control systems used in circulating fluidized bed (CFP) processes may fail

to compensate the fluctuations due to fuel inhomogeneity. The author argues that

these drifts makes the whole plant to suffer from dynamics, reducing efficiency and

the lifetime of process components.

Concept-drift is also present in telecommunication monitoring (PAWLING et al.,

2007), where the task is to identify anomalous events in streaming cell phone data

due to the way in which people use the services provided by a mobile communication

network over time. Besides, concept-drift is present in problems such as controlling

robots (PROCOPIO et al., 2009) and controlling vehicles (THRUN et al., 2006),

where the navigation task requires identifying safe and crossable paths. This task

is important to allow the robots to progress toward a goal while avoiding obstacles

even occurring change in the patterns of the paths and obstacles.
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Dynamic environments are also present in intelligent appliances problems

(RASHIDI e COOK, 2009), where an environment has to adapt for the user be-

haviour through time. Computer games where the game adapts to player actions and

increase its efficiency against the player (CHARLES et al., 2005). Flight simulators

(HARRIES et al., 1998), where hidden changes of context are extracted from a flight

simulator control with dynamic flight patterns. Change-detection in wireless sensor

networks (ASL et al., 2016) since the change in the distribution of sensors is quickly

detected, reducing propagation time of environmental changes to sensors.

Many other important fields are illustrated in Figure 2.1. Thus, aiming to explain

the importance of learning under non-stationary environments, in this chapter we

describe common problems that occurs in such environments and common challenges

that learning algorithms needs to face in order to perform learning tasks properly in

non-stationary environments.

Figure 2.1: Concept-drift applications (KADWE e SURYAWANSHI, 2015).

There are many different strategies to deal with non-stationary environments in

industry and academia (GAMA et al., 2014b). The different types of concepts on

these real scenarios present many challenges such as model obsolescence, necessity

to build adaptive models and real time analysis (ŽLIOBAITĖ et al., 2016). Worth

mentioning that even though the temporal factor is present in the dataset, when we

deal with concept-drift we are not necessarily dealing with temporal series. Temporal

series may be non-stationary but not all non-stationary problems are temporal series.

For example, if the prediction is conditioned on history, the problem is a time-

series prediction and solutions to this problem are related to feeding the prediction

history to the model as input. Otherwise, when there is a necessity to update

the model then it is generally related to non-stationarity. Therefore, time-series

prediction and prediction in non-stationary distributions are two different problems.
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However, MUTHUKRISHNAN et al. (2007) and BIFET et al. (2013) suggest to

inherit concepts and methods from time-series analysis to drift detection when there

are temporal dependencies. For example, analyzing instances through a time window

can be effective to exploit temporal dependence.

2.1 Adaptive Learning

A few non-stationary problems may be solved just retraining the learning model

with the most recent data and determining according to performance if a model is

inaccurate or not. However, for several types of problems that need a fast response

and contain constant changes in distribution this approach is inaccurate. For instance,

computational interfaces that collect brain signals and perform analysis in different

human cerebral patterns. Therefore, learning algorithms often need to operate in

dynamic environments. These environments change unexpectedly. One desirable

property of these algorithms is their ability for incorporating new data. If the data

that generates the process is not strictly stationary, and it applies to most of the

real world applications, the underlying concept may change over time (GAMA et al.,

2014a). For example, interests of a user reading news.

Adaptive learning algorithms adapts to data in an iterative way with partial

labeled data, updating itself when there are indications that the model is obsolete.

Few adaptive models are incremental algorithms with partial memory (MALOOF

e MICHALSKI, 2004) and assume that data comes in real time, considering this

stream infinite and for this reason, it is normal that data change according time. The

model adjustment is performed through triggering methods or evolving according

to the time. There are strategies suitable for these two types of model adaptation

(BOSE et al., 2011). Figure 2.2 illustrates these strategies.

Inside these adaptive strategies there are recent efforts to detect when a drift

will occur in data distribution. For example, a framework for detecting changes in

multidimensional data using principal component analysis (PCA) (WOLD et al.,

1987), which is applied for projecting data into a lower dimensional space, facilitating

density estimation and change-score calculations (QAHTAN et al., 2015). However,

in applications where drift is continual, these may be of limited use, as they should

always flag the drift as present.

In such cases, rather than simply flagging whether drift is occurring or not, it

may be more useful to generate a detailed description of the nature and form of the

drift, a concept-drift map (WEBB et al., 2017). WEBB et al. (2016) proposed four

quantitative measures of concept-drift including the key measure drift magnitude

which measures the distance between two concepts Pt(X, Y ) and Pu(X, Y ). The

author argues that any measure of distance between distributions could be employed
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Figure 2.2: Adaptive strategies for machine learning (ŽLIOBAITĖ et al., 2016).

and the chosen one was the Hellinger Distance (HOENS et al., 2011).

2.1.1 Machine Learning in Non-stationary Environments

Machine learning in non-stationary environments increased its popularity due

to the temporal information present in many real problems. Besides, up to 90’s

there were few mature solutions and systems collecting data for long periods of time.

Thus, in the course of time, we fed these datasets and now, it contains drifts about

our preferences, behaviors and other human characteristics collected over time. For

instance, with the fast growth of users accessing virtual stores and buying through

the internet, this trend made the problem of concept-drift easier to identify (DING

et al., 2006).

As previously explained, in dynamic environments a model learnt from the original

data may become inaccurate over time since the fundamental processes generating

most real-time data may change over years, months and even seconds (COHEN

et al., 2008). These changes may come from non-deterministic processes generated

from humans, robots or sensors. For example, human preferences that changes

through time or robotic tasks such as autonomous navigation. Beyond the fast model

obsolescence, non-stationary environments are characterized by the delay to obtain

the real labels. For example, in robotics, the acquisition of the real labels are an

expensive and challenging task (XU et al., 2017).
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GAMA et al. (2014b) consider that at time t + 1, the previous label yt of the

sample (xt, yt) is available. However, this is a weak assumption and it is not applicable

in several real problems. For instance, in sensors applications where exists failures

in sensor readings; in robotics where the labels are not present or are outdated due

to a new environment explored by a robot (MARRS et al., 2010). This problem is

denominated as extreme verification latency (EVL) and was recently pointed out as

one of eight open challenges in data stream mining (KREMPL et al., 2014). Worth

to mention that a learning model needs to be differently addressed in stationary and

non-stationary environments as illustrated in Figure 2.3.

Figure 2.3: Stationary versus non-stationary learning (ŽLIOBAITĖ et al., 2016).

2.1.2 Concept-Drift Types

A natural outcome of the gradual drift assumption is that class distributions

overlap at subsequent time steps. As long as drift is limited, the core region of each

class data distribution will have the most overlap with upcoming data, regardless of

drift type (DYER et al., 2014). Figure 2.4 illustrates three different types of drift:

rotational, translational, and volumetric.

Figure 2.4: Progress of a single class experiencing: a) Translational b) Rotational c)
Volumetric drift (DYER et al., 2014).

The Figure 2.4 shows that the compacted core region (outlined) has the most

overlap with the drifted distribution (dashed line). Besides, data distribution changes
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in five different ways (GAMA et al., 2014a) such as illustrated in Figure 2.5: abrupt,

incremental, gradual, recurrent and due to outliers reasons.

Figure 2.5: Patterns of changes over time (GAMA et al., 2014a).

Recurrent concepts are previously active concepts that may reappear after a

time. As stated by MINKU et al. (2010), recurrent drifts can have cyclic or acyclic

behavior. The cyclic behaviour occur according to a periodicity or due to a seasonal

trend. For instance, in electricity market, the prices may increase in winter due to

the increase of demand, then return to previous price in the other season. The acyclic

behaviour may not be periodic and is not clear when the concept may reappear. For

instance, the fuel prices may suddenly increase due to the increase of petrol prices

then return to previous price when petrol prices decrease.

Active drift is an abrupt drift in the distribution and may be detected by an

update mechanism. The mechanism detect this change and apply a model correction

routine since the distribution drastically changed and the error increased. For

instance, when a sensor or group of sensors stop working. On the other hand, the

passive drift is harder to perceive than active drift due to the gradual or incremental

changes in the distribution.

These changes slightly decrease the model accuracy and when the problem is

perceived the model is already inaccurate. For example, sensor measurements may

present errors due to thermal or time effect conditions. A general observation is

that, while active approaches are quite effective in detecting abrupt drift, passive

approaches are efficient at overcoming gradual drift (WANG et al., 2018). Besides,

drifts can be permanent since the change is not limited according time. After a

certain period of time the drift may disappear, becoming recurrent. Beyond the

drifts in distribution, there are two types of drifts that a data can suffer in the

concept-drift problem: real concept-drift and virtual concept-drift.

Virtual Drift

Virtual drift refers to a change in distribution of the incoming data p(X) and does

not affects the posterior probability p(y|X) (LAZARESCU et al., 2004). This drift

originally has been defined to occur due to incomplete data representation rather

than change in concepts (WIDMER e KUBAT, 1993). It also corresponds to change

in distribution that leads to changes in the decision boundary (TSYMBAL, 2004).

Moreover, it does not affect the target concept (DELANY et al., 2005). The term
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virtual drift has been also referred to as sampling-shift (SALGANICOFF, 1997),

temporary drift (LAZARESCU et al., 2004) and feature change (GAO et al., 2007).

For example, it is considered as virtual drift when there is class imbalance but this

not affect the decision boundaries.

Real Drift

Real concept-drift refers to changes in posterior probability p(y|X) and can

happen either with or without change in p(X). Real concept-drift also is referred

as concept-shift (SALGANICOFF, 1997) or conditional change (GAO et al., 2007).

Techniques that handle real concept-drift typically rely on feedback from the predic-

tive performance while virtual concept-drift can operate without such feedback. The

term real drift does not mean that other types of drift are not concept-drifts. Figure

2.6 illustrates the main differences between the drifts. For example, it is considered

as real drift when there are prior class evolution, affecting the decision boundaries

(DITZLER et al., 2015).

Figure 2.6: Original data, virtual and real drifts, respectively (KHAMASSI et al.,
2018).

Beyond these two types of concept-drift, there is the class prior concept-drift

(KHAMASSI et al., 2015). This is considered as a distinct drift type where the main

challenge is to precise that the class prior distribution has changed. For example,

when users have to rate a movie that they initially enjoyed for their special effects.

After a long period of time, they may no longer enjoy the movie as their special

effects become outdated. This is denominated real concept-drift due to a change in

the user preference.

On the other hand, when users enjoyed a particular movie, and after a certain

period of time, their preferences changed but they are still enjoying the movie. This

evolution is denominated virtual concept-drift since it does not affect their preference.

Finally, when the users may no longer be interested by a particular movie because of

the emergence of new TV series, this can considered as class prior concept-drift.
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2.1.3 Extreme Verification Latency

Often, we presume that classification algorithms always will receive labeled data

from the same set of classes and this presumption not always is true. The incoming

data right after the initial labeled data may not contain labels for a long period

of time or even for the rest of the processing. Thus, that kind of environment

demand a high effort to obtain new labels in the classification phase. This time

between classification and label availability is denominated as verification latency

(MARRS et al., 2010) and the scenario with high time delay or label unavailability

is denominated as extreme verification latency (CHAO, 2015).

The initial labeled data, generally 5% of the data, are necessary to define the

problem as classification, also the number of classes and their initial disposition in

the feature space. A simple explanation would be an autonomous robot previously

trained inside a specific environment and sent to explore an unknown environment

without external help or human supervising. This robot needs to adapt itself to the

scenario changes without have the actual label of the incoming data. In this scenario,

retraining the learning model while it explores new environments is important for

robotic field (CHAO, 2015).

Environments with such extreme conditions are rapidly growing due to massive

automated and autonomous acquisition of data. Creating a labeled database for this

scenario is difficult and expensive. For instance, robots, drones and autonomous

vehicles encountering surrounding environment. This change happens at a pace too

fast for a human to verify all actions. A concrete application that requires extreme

verification latency in non-stationary environments: consider a behavioral biometric

application where users are recognized by their typing profile (ARAÚJO et al., 2005).

In this security system, all users type the same password and should be recognized

by their typing pace. Such a characteristic evolves over time, the system need to

constantly adapt to the new behavior of each user without any supervision.

2.1.4 Density-based Methods for Core Support Extraction

Aiming to detect the change in the distribution through the time, an usual

approach is to extract the most representative instances from the core region of

the new distribution. For this purpose, CSE methods may be applied along with

semi-supervised classifiers CAPO et al. (2014). CSE methods attempt to accurately

identify which instances lies in the core region of the existing class distributions.

However, a common problem of these methods is to decide how many instances

to store and what region of the decision space should be considered WILSON e

MARTINEZ (2000).

In probability theory, a probability density function (PDF) is the probability of
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a random variable falling within a particular distribution. The greater PDF of that

instances the greater the probability that instances belongs to that distribution. This

assumption is considered in this work to select the most representative instances from

a distribution. In an online scenario, this is possible comparing the old instances

with the new arriving distribution. Therefore, density-based algorithms are able to

select instances containing the new concepts of the new data distribution, capturing

the drift of the distribution. Density-based algorithms can be suitable for work as

a CSE. For example, CAPO et al. (2014) use Gaussian mixture models (GMM) as

CSE method along with a semi-supervised algorithm for capturing new concepts in

the distribution.

GMM

GMM is a parametric probability density function represented as a weighted

sum of Gaussian component densities (REYNOLDS, 2015) and uses the expectation-

maximization algorithm (MOON, 1996) to estimate its parameters. Its complexity is

O(nk), where n is the data cardinality and k is the number of components.

One of the GMM’s drawbacks is that the algorithm is not robust against noise

(XIE et al., 2011). Moreover, GMM seems to be suitable when the distribution

is Gaussian and in the majority of the real datasets this condition is not true. A

density-based algorithm that works even with noisy distributions (WU e QIN, 2018)

is the Kernel Density Estimation (KDE).

KDE

KDE, also denominated as Parzen window (DUDA et al., 2012), is a density-based

method that uses non-linear functions such as Sigmoid and Gaussian functions to

compute local density values in the distribution and is widely applied to normalize

and to smooth data. It can be considered as a generalization of the histogram. The

complexity of the algorithm is O(n2k) due to the fact that this method is a sum of

matrix products. Thus, depending on the number of dimensions k, the algorithm

become slow to calculate the PDF.

KDE has two variations: Univariate, that is suitable for one dimensional data

and multivariate, suitable for data with two or more dimensions. It is widely applied

in many machine learning algorithms such as support vector machines (HEARST

et al., 1998). The kernel function needs to be carefully adjusted due to underfitting

or overfitting problems (BISHOP et al., 2006) and has many variants (SILVERMAN,

2018). However, KDE may have difficulties to distinguish noise and drift in the

distribution. Thus, another density-based algorithm can be applied: the Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) (ESTER et al.,
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1996).

DBSCAN

DBSCAN is a non-parametric density-based clustering technique that assumes

that a cluster is a region in the data space with a high density. It considers the

proximity and the number of instances inside a radius. If the instance has a minimum

quantity of other instances inside its radius, then this instance is considered a core

sample. Instances that does not have other instances inside its radius is considered

noise. The remaining instances that are neither core sample or noise are influenced

by the decision of the core samples. The complexity of the algorithm is at least

O(nlog(n)). The algorithm requires two parameters: ε, that is, the minimum distance

between the points and minPts, that is, the minimum points that forms a dense

region. Thus, if ε is too small, a large part of data will not be clustered and the

algorithm will consider this data as outlier, or noise. TheminPts parameter, generally

is adjusted from the number of dimensions D in the data set, as minPts ≥ D + 1

SANDER et al. (1998).

2.2 Related Work

There are frameworks that provides environments for making experiments with

concept-drift. The Massive online analysis (MOA) (BIFET et al., 2010), is a software

environment for implementing algorithms and running experiments for evolving online

learning. MOA includes a collection of offline and online methods as well as tools for

evaluation. In particular, it implements boosting, bagging, and Hoeffding trees, all

with or without Naıve bayes classifiers at the leaves. MOA supports bidirectional

interaction with the Waikato environment for knowledge analysis (WEKA) (HOLMES

et al., 1994) and is released under the GNU GPL license.

Change detection framework for massive online analysis (CD-MOA) (BIFET

et al., 2013) is a framework for evaluating change detection methods against intended

outcomes. Another software, denominated scalable advanced massive online analysis

(SAMOA) (MORALES e BIFET, 2015) is a platform for mining big data streams. It

provides a collection of distributed streaming algorithms for the most common data

mining and machine learning tasks such as classification, clustering, and regression,

as well as programming abstractions to develop algorithms. It features a flexible

architecture that allows it to run on several distributed stream processing engines.

TAVASOLI et al. (2016) applies the stochastic learning weak estimator (SLWE)

(OOMMEN e RUEDA, 2006) for non-stationary environments. This algorithm

uses weak estimators and counters to keep important data statistics at each time
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instant as a new labeled instance arrives. Thus, the algorithm does not need

retrain with each upcoming instances. SLWE was built to estimate the parameters

of a binomial/multinomial distribution. DEMŠAR e BOSNIĆ (2018) proposed a

concept-drift detector based on computing multiple model explanations over time

and observing the magnitudes of their changes. Next, the model explanation is

computed using a methodology that yields attribute-value contributions for prediction

outcomes. Thus, it provides insight into the decision-making process and enables its

transparency.

An ensemble learning method, denominated diversity and transfer based ensemble

learning (DTEL) (SUN et al., 2018), was proposed for incremental learning with

concept-drift. DTEL employs a decision tree as the base learner and a diversity-based

strategy for storing previous models. When a new data chunk arrives, the preserved

models are exploited as initial points for searching/training new models via transfer

learning. Thus, the newly obtained models are combined to form the new ensemble.

In semi-supervised learning, the data stream is typically divided into equal-sized

chunks where only a small fraction of data is labeled. Thus, the goal is to label

the remaining unlabeled data in the chunk. These algorithms can use labeled and

unlabeled data together to perform the classification. One of the first semi-supervised

algorithms applied to the problem of concept-drift was proposed by DITZLER e

POLIKAR (2011b) and denominated weight estimation algorithm (WEA). The

algorithm performs GMM on the unlabeled data and use the Bhattacharyya distance

(KAILATH, 1967) between the resulting components from GMM.

WEA assumes that there is a limited concept-drift in the incremental learning

scenario. By limited concept-drift, the assumption is that the drift is not completely

random but there is a pattern in the drift. The work formalize limited drift assumption

using the Bhattacharyya distance between a labeled component and its upcoming

position. Thus, the unlabeled data at the time of testing must be less than the

Bhattacharyya distance between the known component and every other unlabeled

component from a different class.

DYER et al. (2014) proposed a semi-supervised framework for concept-drift,

denominated compacted object sample extraction (COMPOSE). COMPOSE re-

ceive an initial amount of labeled data and perform the cluster-and-label algorithm

(GULDEMIR e SENGUR, 2006) for labeling the remaining samples divided in

equal-sized batches. COMPOSE uses geometric techniques, applying convex-hull

and α-shape algorithms, in order to map core support regions and extract optimal

instances from predicted data. After, COMPOSE uses these extracted instances as

training data in the next batch of unlabeled data.

Despite the interesting results of COMPOSE, the authors mentioned that the

method becomes slow when the dimension of the data is greater than eight or when

16



the method is applied in streams. This is due to α-shape algorithm that performs

the convex-hull algorithm whose complexity is O(nbd/2c) for dimensions d higher

than three (EDELSBRUNNER et al., 1983). The authors propose that this part of

framework could be changed by a GMM.

An improvement of COMPOSE was developed using GMM in place of geometrical

methods (CAPO et al., 2014). The best number of GMM’s components is chosen

through a number of tests with K number of components. These tests range between

a set of numbers that represents the GMM’s components. The Bayesian information

criteria (BIC) (SCHWARZ et al., 1978) adds a penalty for large K to the negative

log likelihood in order to prevent overfitting. Once the best model is chosen, core

supports are extracted by calculating the Mahalanobis distance (MAHALANOBIS,

1936) for each xi and each component in the GMM. The number that returns the

smallest distance in these tests is chosen.

Even though COMPOSE using GMM achieved competitive accuracy results and

better processing time than the original COMPOSE, there is still a high computational

cost in the GMM’s components choice. The reason is that for each batch of data, the

algorithm needs to process GMM several times whose complexity is O(nk), where n

is the data cardinality and k is the number of components. Besides, GMM may not

fit well in distributions that is not derived from a Gaussian process.

Seeking for a balance between accuracy and processing time, UMER et al. (2016)

proposed to improve the performance by replacing the selection of the core instances

using a semi-supervised learning classifier with a sliding window approach. Their

results indicate that training a semi-supervised classifier with all data overcome the

previous issues.

SOUZA et al. (2015b) proposed the stream classification guided by clustering

(SCARGC) algorithm. It was developed to perform classification on streams over a

clustering strategy for non-stationary environments with EVL. The authors provide

an amount of initial labeled data in the beginning of the stream. The classes are

known and the algorithm tries to discriminate the classes apart. SCARGC classifies

one instance at a time and updates the current and past cluster positions from

clustering of the unlabeled data. Therefore, their approach can track the drifting

classes over time.

After SCARGC, the same authors proposed MClassification (SOUZA et al.,

2015a). Based on its predecessor, they apply a clustering method to classify one

instance at a time. This method is an adaptation from BIRCH algorithm (ZHANG

et al., 1997) also denominated as Micro-Cluster (AGGARWAL et al., 2003). BIRCH

is a compact representation that uses a triple: number of data points in a cluster;

the linear sum of the N data points; the square sum of data points. Thus, for the

adaptation to the classification problem, the MClassification method introduces
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the received label in this triple, becoming a 4-tuple of information, doing the same

approach of the BIRCH algorithm.

MClassification update the values of the micro-clusters according to the changes in

the underlying distribution, retraining the classifier without the need of all instances

but with the information contained in this 4-tuple. Thus, the method achieve a

better processing speed than its predecessor SCARGC, since this model needs less

instances to retrain due to the information contained in these 4-tuple. However,

SCARGC presented better results.

UMER et al. (2017) proposed a framework for learning in EVL scenarios using

importance weighting (LEVELiw). The authors argue that there is a significant

overlap in gradual concept-drift scenarios and suggest to apply the importance

weighting approach on this overlap. According to HACHIYA et al. (2012), importance

weighting approaches have two assumptions: shared support of class-conditional

distributions at two consecutive time steps; posterior distribution for each class

remains the same.

However, according to UMER et al. (2017), importance weighting is intended for

a single time step scenario with mismatched training and test datasets. The authors

argues that iteratively performing importance weighting for each consecutive time

step makes it a suitable method for online environments. Therefore, the authors

propose that the classifier and CSE steps of COMPOSE can be replaced with an

importance weighting based approach. In the next subsections, we detail COMPOSE

GMM and LEVELiw, the most relevant algorithms for concept-drift. The main

objective is to elucidate such algorithms for future comparisons with the proposal.

2.2.1 COMPOSE-GMM

The first version of COMPOSE (DYER et al., 2014), applies a semi-supervised

learning model using a geometric approach. Firstly, it learns a model with initial

labeled data. Next, with the current labeled samples, it selects a subset of labeled

instances, named core samples, from a geometric compaction method. Hence, samples

that are not in the core subset are removed, remaining this new subset of samples.

Finally, with the subset, the overall process repeats for the next unlabeled samples.

The authors suggest a cluster-and-label or label-propagation as a semi-supervised

algorithm. According to the authors, COMPOSE iteratively adapts itself to the

drifting environment and is intended for non-stationary environments that face

incremental or gradual drift, rather than abrupt drift. Figure 2.7 illustrate the entire

process performed by COMPOSE.

In the first step of the process, illustrated in the step a, COMPOSE trains with

5% of labeled data L0. Next, in the step b, the framework receives batch of unlabeled
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Figure 2.7: COMPOSE - Framework flow (DYER et al., 2014).

samples U t at time t and as illustrated in the step c, the SSL algorithm classifies the

unlabeled data U t. Step d shows the use of convex-hull for construct the boundaries

of each class while the step e, illustrates the use of α-shape algorithm that shrinks

the boundaries of each class. At last, in step f, the framework extract the samples Lt

from these boundaries. These samples will be used in the next batch of data (step

b), restarting the process.

COMPOSE has two parameters: α and CP . The first, controls the size of the

convex-hull algorithm. The higher this value is, the greater is the region. Hence,

less core samples are included in the core subset. Figure 2.8 illustrates how the

parameter α influence the construction of the core support region. On the other side,

reducing the value, the region’s size reduces and splits in more than one disjointed

regions. The second parameter, controls the compaction percentage of the core region

previously formed by the convex-hull and α-shape methods. However, instead of

shape size, the CP parameter controls the density of the core set. Therefore, a high

value of CP decreases the probability of getting instances in the core set. Conversely,

we have a density increase in the core set for low values of CP .

Figure 2.8: Evolution of the effects of decreasing the α parameter (DYER et al.,
2014).

An alternative approach of COMPOSE,denominated COMPOSE-GMM, replaces

the geometric alpha-shape to GMM. As previously stated by DYER et al. (2014),

alpha-shape has a high execution time for data with dimensions higher than eight.

Hence, infeasible for a stream scenario. Thus, the GMM approach of the COMPOSE

is considered as an improvement and for this reason, this approach was chosen for
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comparative purposes.

Additionally, the COMPOSE-GMM approach has two more distinct features

than the original COMPOSE approach. One of these features is that the algorithm

applies a Mahalanobis distance to measure the distance between an instance and

a distribution. If the distance is zero then the point lies in the mean of the points

from that distribution. How far a point is from that distribution more the distance

increases. The second feature is that it depends on the EM learning procedure that

has no guarantees of global optimum. However, local optimum are often sufficient.

In real world scenario is hard to know the global optimum values of its parameters.

In order to optimize the GMM parameter K, the authors select the best value from

a set of predetermined values. Additionally, the authors apply BIC to add a penalty

for large values in order to prevent overfitting. In Algorithm 1, we detail the

COMPOSE-GMM approach.

Algorithm 1 COMPOSE-GMM

Input: Initial training data T ; batch of unlabeled data U t; Number of core

supports p

Output: Updated BaseClassifier; Label y for each x ∈ U t

for t = 0, 1, ... do

Receive unlabeled data, U t ← {xtu ∈ X, u = 1, ..., N}
Call BaseClassifer with Lt, yt and U t; Obtain ht : X → Y , Let Dt ←

{(xtl , ytl ) : x ∈ Lt∀l} ∪ {(xtu, htu) : x ∪ U t∀u}
Set Lt+1 ← φ, yt+1 ← φ

end for

for each class c = 1,...,C do

α←∞
for each number of components K ← {1, 2, 3, 4, 5, 10, 20} do

Apply GMM with K and stores the log likelihood result

Apply BIC in the stored log likelihood

if BIC value ≤ α then

α←BIC value

end if

Choose the best model according to the smallest BIC value

Extract core support and add to labeled data for next time step, Lt
c ←

Mahalanobis distance(p, U t
c)

end for

Lt+1 ← Lt+1 ∪ Lt
c

yt+1 ← yt+1 ∪ {yu : u ∈ [|Lt
c|], y = c}

end for
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Since COMPOSE-GMM only replaces the geometric procedures by GMM algo-

rithm, the initial steps are the same of its predecessor, that is, the steps a, b and c

in Figure 2.7. Next, GMM method is applied k times to labeled data Lt
c, for each

class C. Each k is extracted from a set of elements representing a number of GMM

components. Next, BIC procedure is applied at the log likelihood previously stored

from GMM results. The α parameter stores the lower value of BIC. Hence, the best

model is chosen based on its smallest BIC associated. After that, core supports are

extracted from the labeled data Lt
c by calculating the Mahalanobis distance for each

sample and each component in the GMM. The number of core supports p with the

smallest distances in these tests is chosen. Thus, the process is restarted with labeled

data Lt+1 for training the classifier and receive the next batch of unlabeled data, as

previously illustrated at step b and c, in Figure 2.7.

2.2.2 LEVELiw

The algorithm matches distributions between two consecutive time intervals,

estimating a posterior distribution of the unlabeled data using the importance

weighted least squares probabilistic classifier algorithm (IWLSPC) (HACHIYA et al.,

2012). The estimated labels are then iteratively chosen as the training data for the

next time step, providing an alternate solution to COMPOSE GMM with reduced

parameter sensitivity.

The importance weights are estimated through unconstrained least squares impor-

tance fitting (uLSIF). In summary, the authors suitably modified IWLSPC, originally

proposed for only single time step problems, where it was applied to match the

divergence in the training and test distributions on a non-streaming data application.

The method was extended to problems in which data arrive in a continuous streaming

fashion with EVL.

At initial time step t = 0, LEVELiw receives data x with their corresponding

labels y. Initializes the test data xt=0
te to initial data x received and sets their

corresponding labels yt=0
te equal to the initial labels y. Then, the algorithm iteratively

processes the data at each time step t. Hence, a new unlabeled test dataset xtte is

first received.

The previously unlabeled test data from previous time step xt−1te which is now

labeled by the IWLSPC subroutine, becomes the labeled training data xttr for the

current time step. Similarly, the labels yt−1te obtained by IWLSPC during the previous

time step become the labels of the current training data xttr. The training data at

the current time step xttr, the corresponding label information at the current time

step yttr, the kernel bandwidth value σ and the unlabeled test data at the current

time step xtte are then passed into the IWLSPC algorithm, which predicts the labels
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ytte for the test unlabeled data.

The critical parameter in model selection for IWLSPC is the kernel width α, which

is obtained through importance weighted cross validation (IWCV) in IWLSPC’s

original description and is updated each time step separately. In this effort, the

author keeps the parameter constant through the experiment. The reason is because

a cross validation is unrealistic for each time step in an online environment, and

the authors wanted to determine the sensitivity of this parameter on the algorithm

classification performance. We detail the Algorithms correspondent to IWLSPC 2

and LEVELiw 3.

Algorithm 2 IWLSPC

Input: Unconstrained least squares importance fitting uLSIF; Importance

weighted cross validation IWCV

Receive training data xtr

Receive test data xte

Run uLSIF to estimate importance weights

Run IWCV to estimate Gaussian kernel width σ

Compute Gaussian Kernel Function using σ as defined in Equation 2

Estimate parameter θy by minimizing squared error Jy(θy) as defined in Equation

3

Use θy, and the Gaussian Kernel function to compute posterior probability as

defined in Equation 1

Algorithm 3 LEVELiw

Input: Initial training data T ; batch of unlabeled data U t; Importance weighted

least squares probabilistic classifier - IWLSPC; Kernel bandwidth value σ

Output: Updated classifier; Label y for each x ∈ U t

At tt = 0, receive initial data x ∈ X and the corresponding labels y ∈ Y = 1, ..., C

Set xt=0
te ← x

Set yt=0
te ← y

for t = 1, ... do

Receive unlabeled test data xtte ∈ X
Set xttr ← xt−1te

Set yttr ← yt−1te

Call IWLSPC with xttr, x
t
te, y

t
tr and σ to estimate ytte

end for

As stated by UMER et al. (2017), if there is a significant overlap, there is also a

significant shared support. Thus, LEVELiw assigns higher weights to those instances
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that are drawn from the shared support region. The authors observed its robustness

and higher tolerance to fluctuations around the optimal value of its free parameter.
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Chapter 3

AMANDA - Density-based

Adaptive Model for

Non-stationary DAta

In non-stationary environments, single adaptive, or dynamic learning algorithms,

are widely applied for handling concept changes (KHAMASSI et al., 2018). Despite

the efficiency of ensemble algorithms (JACKOWSKI, 2014, LU et al., 2015), using

single learner approaches are interesting for controlling the complexity of the system,

since they were designed to be adapted in real time and with minimum computational

efforts (KHAMASSI et al., 2018). Therefore, the first experiments of AMANDA

were developed using this strategy. Besides, the key point of handling concept drift

is to define the way how the learner will be adapted. For this purpose, there are two

main categories: informed methods and blind methods (KHAMASSI et al., 2018).

Informed methods, explicitly detect the drift using triggering mechanisms whereas

blind methods implicitly adapts to changes without any drift detection. Blind meth-

ods discard old concepts at a constant speed, independently of whether changes have

happened or not. For this work we chose a blind method approach since this approach

is suitable for handling gradual continuous drifts where the dissimilarity between

consecutive data sources is not quite relevant to trigger a change (KHAMASSI et al.,

2018).

As explained in the Chapter 2.2, there are a few drawbacks in current state-of-the-

art methods. For example, COMPOSE-GMM and LEVELiw do not exploit properly

the temporal dependence in concept-drift datasets, since they have difficulties to

keep the most representative instances in the last batch of data. Besides, these

methods have higher computational times, decreasing their performances in batch

scenarios for a large number of samples or high dimensionality of data. Taking into

account the mentioned problems, here we propose a semi-supervised framework,
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denominated AMANDA, with two derived classifiers: AMANDA-FCP and AMANDA-

DCP. Additionally, we propose a core selection method in order to support these

classifiers for dealing with gradual drift on scenarios with extreme verification latency.

3.1 Amanda Framework

AMANDA framework, as illustrated in Figure 3.1, has five processing steps:

starting, learning, classification, weighting, and filtering. The first step is the starting

phase. At this step, the framework receives labeled samples. This step is critical

because it defines where the distributions of each class begin. Moreover, it occurs

once since labeled samples are supplied only here, according to EVL assumption.

The second step is the learning phase. At this step, a model learns using a SSL

classifier.

The third step is the classification phase. At this step the SSL classifies upcoming

batches with unlabeled samples. The fourth step is the instance weighting phase.

At this step, a density-based algorithm measures the importance of the classified

samples by weighting them. Finally, the fifth step that is the filtering phase. At

this step, the weighted samples are filtered and only the most representative samples

remains. With these selected samples, the process backs to the second step. Worth

to mention that the dashed line in Figure 3.1 is related to the core support extraction

method. This method contains the weighting and filtering phases that is explained

in Section 3.2.

Figure 3.1: AMANDA framework.
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3.2 Core Support Extraction

The core support extraction (CSE) procedure that we explore attempts to ac-

curately identify which instances lies into the core region of the existing class

distributions. These instances are previously labeled by the last SSL step. After

that, these instances are weighted and filtered by our CSE method. Hence, these

filtered instances are chosen as training data for the next iteration’s SSL step for

labeling the new unlabeled data. Our assumption is that these instances are the

most representatives samples of the distribution. Therefore, in this section, we detail

the two phases that compose our CSE method: weighting and filtering methods.

The weighting method receives a set of instances as input and returns the

same set of instances associated with weights. These weights are estimated by the

KDE algorithm. Therefore, KDE calculates density curves from a given number

of observations n. These curves takes into account the distance of each point in

distribution from a central value, the kernel. The kernel is a standardized weighted

function and determine the smoothing of the probability density function (PDF).

Thus, each instance is associated with a PDF value. These values indicate the denser

samples of the distribution. The choice of this algorithm among the other existent

density-based algorithms is explained in Chapter 4.

The filtering method receives a set of weighted instances and the percentage α

of available observations to retain as training data for upcoming time steps. We

select the α-most-dense instances from the set of weighted instances. The remaining

samples are discarded and the filtering method returns the subset of instances that

are determined to be the core supports.

3.3 AMANDA-FCP

AMANDA with fixed cutting percentage (AMANDA-FCP) uses a SSL classi-

fier along with a density-based algorithm that works as a CSE method. Besides,

the amount of instances to be discarded is determined by the α parameter. The

AMANDA-FCP is presented by the Algorithm 4.

Firstly, AMANDA-FCP receives a batch of labeled data L0, a SSL Classifier φ and

a cutting percentage parameter α. The online processing begins and AMANDA-FCP

receives T batches of unlabeled data in an iterative way. Thus, for each batch U t for

an instant t, the SSL uses the initial instances X t−1 and their respective labels yt−1

from Lt−1 for learning. After, SSL classifies the unlabeled data U t. The instances U t

and their recent classified labels yt are stored in Lt. Thus, the current distribution

Lt along with the past distribution Lt−1 becomes an input of the CSE method.

Our CSE method uses the KDE algorithm as a weighting method. The weighting

26



Algorithm 4 AMANDA - FCP

Input: Labeled data L0; Unlabeled data U ; SSL Classifier φ; Cutting percentage

α

Output: Updated classifier φ; Label y for each x ∈ U t

for t = 1, ..., T do

X t−1 ← {X t−1
l ∈ Lt−1, l = 1, ..., N}

yt−1 ← {yt−1l ∈ Lt−1, l = 1, ..., N}
φ← Train φ(X t−1, yt−1)

yt ← φ(U t)

Lt ← U tyt

Dt ← CSE(Lt ∪ Lt−1)

Lt−1 ← ∅
for each class c ∈ C do

Lt−1
c ← σ(Dt, 1− α)

end for

end for

method calculates a PDF for Lt in relation to Lt ∪ Lt−1. After, the filtering method

receives the weighted instances Dt and for each class, the method σ selects the

densest instances Lt−1
c . The number of instances to be kept is given by 1−α. Finally,

these densest instances become the training data Lt−1 for the SSL in the next batch

and the overall process repeats until no batch of data is available.

3.4 AMANDA-DCP

AMANDA with dynamic cutting percentage (AMANDA-DCP) uses a SSL clas-

sifier and a density-based algorithm along a modified version of HDDDM method

(DITZLER e POLIKAR, 2011a) that works as CSE method. AMANDA-DCP receives

a batch of labeled data L0 and a SSL Classifier φ. The online processing begins and

AMANDA-DCP receives T batches of unlabeled data in an iterative way. Thus, at

each batch U t for an instant t, the SSL uses the instances X t−1 and their respective

labels yt−1 from Lt−1 for learning.

After, SSL classifies the unlabeled data U t. The instances U t and their recent

classified labels yt are stored in Lt. Thus, the current distribution Lt along with past

distribution Lt−1 becomes an input of the CSE method. Our CSE method uses the

KDE algorithm as a weighting method. Our weighting method calculates the PDF

of Lt in relation to Lt ∪Lt−1. Until this phase, AMANDA-DCP and AMANDA-FCP

works in a similar way.

Next, Lt−1 and Lt distributions become input for the filtering method. Our
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cutting percentage calculation method ρ sets dynamically the parameter α. It

uses the support of a modified version of HDDDM method. The HDDDM method

compares the past and the current attributes of instances using the Hellinger distance.

Therefore, the amount of discarded instances is calculated dynamically. The cutting

percentage calculation method is presented in Algorithm 6.

Finally, similarly to the AMANDA-FCP, the filtering method σ receives the

weighted instances Dt and, for each class, selects the densest instances Lt
c. The

number of instances to be kept is given by 1− α. These densest instances become

the training data Lt−1 for the SSL and the process repeats until there are no more

batches. The Algorithm 5 illustrates AMANDA-DCP.

Algorithm 5 AMANDA - DCP

Input: Labeled data L0; Unlabeled data U ; Classifier φ

Output: Updated classifier φ; Label y for each x ∈ U t

for t = 1, ..., T do

X t−1 ← {X t−1
l ∈ Lt−1, l = 1, ..., N}

yt−1 ← {yt−1l ∈ Lt−1, l = 1, ..., N}
φ← Train φ(X t−1, yt−1)

yt ← φ(U t)

Lt ← U tyt

α← ρ(Lt, Lt−1)

Dt ← CSE(Lt ∪ Lt−1)

Lt−1 ← ∅
for each class c ∈ C do

Lt−1
c ← σ(Dt, 1− α)

end for

end for

The cutting percentage algorithm receives two distributions Lt−1 and Lt. The

algorithm iterates through N number of data attributes creating two vectors, u and

v, with the nth attributes from Lt−1 and Lt, respectively. After, two histograms, hu

and hv, are calculated from the vectors u and v, respectively. The number of bins

used in the histograms is the squared root of the length of the vectors. Thus, the

Hellinger distance can be applied to a multidimensional data. Hence, the Hellinger

distance τ is computed between hu and hv.

After, the algorithm computes the average distance between the two distributions

and sets the temporary value of cutting percentage α. This temporary value is

normalized by the difference between Z and the average distance, calculated early.

Here, Z =
√

2 since this value is the upper bound value of the metric. Finally, the

algorithm verifies if the value of the temporary α parameter is between the range
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that we stipulated for our α parameter. Thus, it corrects values lower than the β

parameter or greater than the ω parameter. More details about the experiments

regarding this parameter α is presented in Section 4.4.2.

Algorithm 6 Cutting percentage calculation

Input: Two distributions Lt−1 and Lt

Output: Cutting percentage α

N ← number of attributes of Lt−1

for i = 1, ..., N do

u← vector of ith attribute of the instances X t−1 from Lt−1

v ← vector of ith attribute of the instances X t from Lt

hu ← histogram(u, bins)

hv ← histogram(v, bins)

h← h+ τ(hu, hv)

end for

α← max(min(Z − h
N
, ω), β)

CIESLAK e CHAWLA (2009) suggest Hellinger distance, not for detecting concept

drift in an incremental learning setting, but rather to detect bias between training

and test data distributions. In probability and statistics, the Hellinger distance is

applied to quantify the similarity between two probability distributions. It is a type

of f-divergence (LIN, 1991) and is closely related to, although different from, the

Bhattacharyya distance (KAILATH, 1967). The authors applied a non-parametric

statistical test, measuring the significance between the probability estimates of the

classifier on a validation set and the corresponding test dataset. Thus, a baseline

comparison is made by calculating the Hellinger distance between the original training

and test datasets. Bias is then injected into the testing set. Finally, the results

between the baseline Hellinger distance and the distance after bias is injected are

observed.

For this work, two cutting percentage approaches were applied and define how

much data needs to be discarded. The first is fixed during all process and must be

chosen a priori. However, determining a cutting percentage value is not an easy

task and demands that the initial training phase identifies the distribution changes,

to posteriorly apply the model in production. This concern motivated the second

approach, where we suggest the use of the Hellinger distance metric to compare two

distributions, past and current. Thus, this metric determines how much these two

distributions are similar between them.

This approach is applied for every batch, and indicates how much data could

be discarded from these two distributions. Therefore, we assume that the cutting

percentage is the percentage of similar data inside the union of the two distributions.
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Since this calculation is applied for every batch, the cutting percentage becomes

dynamic, assuming different values during the process.

The cutting percentage method was inspired by a work that suggested a Hellinger

distance drift detection method (HDDDM), that is, a Hellinger distance adaptation

for drift detection for non-stationary environments (DITZLER e POLIKAR, 2011a).

The HDDDM is a feature based drift detection method, using the Hellinger distance

between current data distribution and a reference distribution that is updated as

new data are received. The Hellinger distance is an example of divergence measure,

similar to the Kullback-Leibler (KL) divergence (JOYCE, 2011). However, unlike

the KL-divergence, the Hellinger distance is a symmetric metric and makes three

assumptions: firstly, labeled training datasets are presented in batches to the drift

detection algorithm, as the Hellinger distance is computed between two histograms

of data.

Secondly, data distributions have finite support, fixing the number of bins in

the histogram required to compute the Hellinger distance at
√
N , where N is the

number of instances at each time stamp presented to the drift detection algorithm.

Finally, in order to follow a true incremental learning setting, each instance is only

seen once by the algorithm.

The Hellinger distance is given by
‖√p−√q‖√

2
and forms a bounded metric on the

space of probability distributions over a given probability space. The maximum

distance is achieved when p assigns probability zero to every set to which q assigns a

positive probability, and vice-versa. Hellinger distance ranges from zero to
√

2.

The choice of Hellinger distance over other measures such as the Mahalanobis

(MAHALANOBIS, 1936), is due to the no assumptions made about the distribution

of the data. Also, the Hellinger distance is a measure of distributional divergence

that allow to measure the change between the distributions of data at two subsequent

time stamps.
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Chapter 4

Empirical Evaluation

This chapter presents the objectives of the experiments, the chosen datasets, the

methodology for conducting experiments and our empirical findings.

4.1 Experiment Objectives

One objective of the experiments is to evaluate how the core support extraction

method along with a SSL is capable to overcome the concept-drift problem. Another

objective is to validate AMANDA-FCP and AMANDA-DCP through the most

representative datasets with concept drift, comparing against three baselines and two

state-of-the-art classifiers: COMPOSE (CAPO et al., 2014) and LEVELiw (UMER

et al., 2017).

4.2 Datasets

For this work we chose seventeen synthetic datasets and three real ones. These

datasets were extensively applied as a benchmark of semi-supervised learning algo-

rithms on batch and stream scenarios with extreme verification latency (CAPO et al.,

2014, DYER et al., 2014, SOUZA et al., 2015a,b). Table 4.1 present the properties of

artificial and real datasets (marked with ’*’). All datasets present at least one type

of concept-drift changes. Moreover, the datasets are balanced, except by: 1CSurr,

Electricity and NOAA.

4.2.1 Synthetic Datasets

For the synthetic datasets, we adopt the following acronyms: One Class Diag-

onal Translation (1CDT), Two Classes Diagonal Translation (2CDT), One Class

Horizontal Translation (1CHT), Two Classes Horizontal Translation (2CHT), Four
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Table 4.1: Datasets.

Datasets Classes Features Instances Drift

1CDT 2 2 1.6×104 4×102

2CDT 2 2 1.6×104 4×102

1CHT 2 2 1.6×104 4×102

2CHT 2 2 1.6×104 4×102

4CR 4 2 1.4×105 4×102

4CRE-V1 4 2 1.2×105 1×103

4CRE-V2 4 2 1.8×105 1×103

5CVT 5 2 4×104 1×103

1CSurr 2 2 5.5×104 6×102

4CE1CF 5 2 1.7×105 7×102

UG 2C 2D 2 2 1×105 1×103

MG 2C 2D 2 2 2×105 2×103

FG 2C 2D 2 2 2×105 2×103

UG 2C 3D 2 3 2×105 2×103

UG 2C 5D 2 5 2×105 2×103

GEARS 2C 2D 2 2 2×105 2×103

CheckerBoard 2 2 6×104 3×102

NOAA* 2 8 18159 unknown

Electricity* 2 7 27552 unknown

Keyboard* 4 10 1600 200

Classes Rotating Separated (4CR), Four Classes Rotating with Expansion V1 (4CRE-

V1), Four Classes Rotating with Expansion V2 (4CRE-V2), Five Classes Vertical

Translation (5CVT), Two Bidimensional Unimodal Gaussian Classes (UG-2C-2D),

Two Bidimensional Mulitimodal Gaussian Classes (MG-2C-2D), Two Bidimensional

Classes as Four Gaussians (FG-2C-2D), Two 3-dimensional Unimodal Gaussian

Classes (UG-2C-3D), Two 5-dimensional Unimodal Gaussian Classes (UG-2C-5D),

Two Rotating Gears (GEARS-2C-2D) and Rotating Checkerboard.

It should be noted that the majority of the synthetic datasets contains two

dimensions with two balanced classes. However, the UG 2C 3D and UG 2C 5D

32



datasets have three and five dimensions, respectively, while 4CR, 4CRE-V1 and

4CRE-V2 datasets have two dimensions and four classes. The 4CE1CF, 5CVT

datasets contain two dimensions and five classes. The only synthetic imbalanced

dataset is the 1CSurr with two dimensions and two classes. Thus, we believe

that conducting the experiments in these synthetic data can lead us to a better

understanding of the behavior of the proposal and other approaches, since these

datasets represent the various types of drift.

4.2.2 Real Datasets

The first real dataset is provided by The U.S. National Oceanic and Atmospheric

Administration (NOAA). It has weather measurements from over 9000 weather

stations worldwide 1. Records date back to the 1930s, providing a wide scope of

weather trends. Daily measurements include a variety of features such as temperature,

pressure, wind speed, indicators of precipitation and other weather-related events.

Data comes from the Offutt Air Force Base in Bellevue, Nebraska, due to its extensive

range of 50 years (1949-1999) and diverse weather patterns.

This dataset has eight features based on their availability, eliminating those with

a missing feature rate above 15%. The remaining missing values were imputed by

the mean of features in the preceding and following instances. Class labels are based

on the binary indicator(s) provided for each daily reading of rain with 18,159 daily

readings: 5,698 (31%) positive (rain) and 12,461 (69%) negative (no rain). This

normalized data was built and applied in the experiments of DITZLER e POLIKAR

(2011a), DYER et al. (2014), ELWELL e POLIKAR (2011). The dataset contains

583 consecutive months time steps covering 50 years. Besides, this dataset was

applied in two of the state-of-the-art algorithms (CAPO et al., 2014, SOUZA et al.,

2015a) chosen for this work.

The second dataset is the electricity market dataset (ELEC2). Data was collected

from the Australian New South Wales electricity market and it was first described

by HARRIES e WALES (1999). In this market, prices change every time and are

affected by demand and supply. HARRIES e WALES (1999) shows the seasonality

of prices and their sensitivity to short-term events such as weather fluctuations.

Another factor on price changes is the the electricity market evolution through time.

During the time of market events, the electricity market was expanded with the

inclusion of adjacent areas. This allowed for a more elaborated management of the

supply. The excess production of one region could be sold on the adjacent region.

A consequence of this expansion is a dampener of the extreme prices (HARRIES e

WALES, 1999).

1FTP: ftp.ncdc.noaa.gov/pub/data/gsod
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The normalized and cleaned ELEC2 dataset contains 27,552 instances dated

from 7 May 1996 to 5 December 1998. Each example of the dataset refers to an

interval of 30 minutes. Hence, there are 48 instances for each interval of day. Each

example of the dataset has five attributes: the day of the week, the time stamp,

the NSW electricity demand, the Vic electricity demand, the scheduled electricity

transfer between states and a class label. The class label represents the change of

the price related to a moving average of the last 24 hours. The class label only

reflects deviations of the price on a one day average without impact of longer term

price trends. Finally, it should be noted that this dataset were extensively applied

regarding non-stationary environments research (BAENA-GARCÍA et al., 2006,

BIFET e GAVALDA, 2007, BIFET et al., 2009, BRZEZIŃSKI e STEFANOWSKI,

2011, GAMA et al., 2004).

The third real dataset is the Keystroke. It is based on the use of keystroke

dynamics to recognize users by their typing rhythm instead of the simple login and

password verification. The detection of this pattern inserted as a second security

layer for user authentication without any additional hardware costs. However, the

system needs regularly updating the user profile because it evolves incrementally over

time as suggested by ARAÚJO et al. (2005). This dataset was built from keystroke

dynamics based on CMU data (KILLOURHY e MAXION, 2010). In CMU data, 51

users type the password .tie5Roanl plus the Enter key 400 times. This typed word

is captured in 8 sessions performed in different days.

In the keystroke dataset, the task is to classify between four users based on

typing patterns. To perform the user classification task, SOUZA et al. (2015a) chose

ten features extracted from the flight time for each pressed key. The flight time

corresponds to the time interval between a key is released and a next key is pressed.

The data is generated by having each user type a phrase repeatedly. It is expected

that the users will become faster at typing the phrase over time and therefore induce

concept drift. In this stream dataset, SOUZA et al. (2015a) randomly chose four

users and merged them respecting the chronological order in a total of 1,600 examples.

It is worth mentioning that this dataset was applied for non-stationary environments

(SOUZA et al., 2015a, UMER et al., 2017).

4.3 Methodology and Empirical Setup

In this subsection we show the scenarios simulated for this work and the chosen

metrics to validate the experiments. Besides, we present the methods that were

chosen as baselines for this work.

34



4.3.1 Simulation Scenarios

In our experiments, we simulate a batch scenario, beginning with 5% of labeled

samples. The remaining samples are unlabeled and are divided in 100 parts such

that they arrive in a chronological order (CAPO et al., 2014, DYER et al., 2014,

UMER et al., 2016, 2017). It should be noted that the amount of initial labeled data

follows the definition of extreme verification latency scenarios (CAPO et al., 2014,

DYER et al., 2014, UMER et al., 2016, 2017).

4.3.2 Validation and Metrics

In order to evaluate the classifiers, we apply a prequential evaluation with a sliding

window (DAWID, 1984). In prequential evaluation, the error is computed sequentially

and in chronological order. The overall error is computed based on an accumulated

sum of a loss function (GAMA et al., 2009). Moreover, once each classifier has

hyper-parameters, we fine tuned them through a grid search (MARKELLOS et al.,

1974).

Regarding the metrics attached into prequential, we chose the classification error

and macro-F1 metrics for balanced datasets. Once the classification error measure

the overall error considering all classes, it is not suitable for imbalanced datasets.

Therefore, we switched to Matthews Correlation Coefficient (MCC) (MATTHEWS,

1975). It should be noted that macro-F1 is already suitable for both balanced and

imbalanced datasets. We decided not applying micro-f1 due to its preference for the

majority class. Finally, we measure processing time and the average reduction error

over the static classifier for all datasets.

4.3.3 Classifiers and Baselines

For the choice of the SSL classifier, five different learning classifiers were chosen:

Stochastic gradient descent (SGD) (ROBBINS e SIEGMUND, 1971), K-nearest

neighbors (K-NN) (DUDANI, 1976), label propagation (LP) (ZHU e GHAHRAMANI,

2002), random forests (RF) (LIAW et al., 2002) and Gaussian naive Bayes (GNB)

(JOHN e LANGLEY, 1995). In order to define reliable baselines for the problem

(CHAO, 2015, DE SOUZA et al., 2013, ŽLIOBAITĖ et al., 2015), we chose three

specific baseline methods for non-stationary environments:

• Static Classifier: A classifier learnt from the first labeled samples. The goal

here is to measure the relevance of the first labeled samples regarding upcoming

drifts.

• Sliding Window Classifier: A classifier that learns initially with the labeled
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samples and updates its model with the predicted upcoming samples. This

classifier uses a sliding window for discarding old samples from training.

• Incremental Classifier: Similar to the Sliding Window Classifier. How-

ever, the window increases with each insertion of upcoming samples without

discarding old ones.

4.4 Results

In this section, we analyze the choice of density-based algorithm as CSE method;

we analyze the parameter’s influence of the AMANDA-FCP method; we present a

detailed analyses of our proposal results for the artificial datasets and real ones; and

present a comparative of our proposal against the baselines and the state-of-the-art

classifiers for all datasets.

4.4.1 Density-based Algorithms Choice for CSE

We tested four approaches for selecting instances: KDE, GMM and two approaches

using DBSCAN. In the first DBSCAN approach, we kept only the core samples,

discarding the noise and the non-core instances. For each batch, the SSL classifier

used only the last core-samples determined by DBSCAN. We denominated this

approach as DBSCAN-1. In the second DBSCAN approach, we only discarded the

samples marked as noise by the algorithm, keeping the core samples along with

non-core samples. The number of instances that the SSL used was bigger than the

DBSCAN-1, decreasing the chance of overffiting. We denominated this approach as

DBSCAN-2.

We tested four approaches for all artificial datasets and for three real ones as

well. The approach using GMM obtained the best results for nine artificial datasets.

The approach using KDE had the best results in five artificial datasets and in one

real dataset. DBSCAN-1 obtained the best results on four artificial datasets whereas

DBSCAN-2 had the best results on three artificial datasets. Therefore, the GMM

and KDE approaches seemed to be the two best approaches for using as a CSE

method.

Figure 4.1 shows how KDE and GMM spread inside a class surrounding another

class. GMM spread in an elliptic way while KDE spread in other directions beyond

the center of data, what gives advantage to select the core sets for the subsequent

steps. Another advantage of KDE over GMM is that KDE does not need to make

strong assumptions about the distribution such as mean and standard deviation.

Besides, GMM needs that the number of mixture models must be chosen a priori.

In real problems this information is not known and may be hard to test and to find
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the best number of components. Therefore, we chose the KDE algorithm to work

as our weighting algorithm for our CSE method. For this work, the KDE uses the

Gaussian kernel due to the smooth estimation that this kernel generates.

Figure 4.1: KDE performance versus GMM performance in CSurr dataset.

4.4.2 AMANDA Parameter’s Influence

The main parameter that has influence over AMANDA-FCP results is the cutting

percentage. Even this parameter reduces the computational time, it must be selected

with caution. With a high value, a large number of samples are discarded from a

training set. Then, the bias of a learnt model increases. Otherwise, for lower values,

there is an increase in variance.

The choice of the values 0.5 and 0.9 as lower bound and upper bound, respectively,

is due to two problems realized during the experiments: increasing of training data;

and overfitting. When the parameter α is lower than |Lt|+|Lt−1|
2

, there is the risk of

the quantity of the kept instances becomes greater through the time. It generates

an increase in the training data and an increase in the possibility of the SSL to use

old concepts to learn working similarly to the incremental classifier. Besides, the

processing time is increased due to the CSE processing.

Otherwise, when the parameter α is greater than 90%, there is a risk to retain

only a few instances for training, generating an overffiting in the training data.

Besides, with a very few instances the model has difficulty to deal with imbalanced

distributions or distributions where the class boundary is surrounded by another.

Therefore, we vary the cutting percentage parameter and perform experiments for

all SSL classifiers described in subsection 4.3.3.

We tested the five classifiers for all datasets and even though label propagation

obtained the best results in 70% of the artificial datasets, the K-NN algorithm had

the best results in two of three real datasets. In Table 4.2, we show the best accuracy

results of five classifiers applied to five datasets on a development set. Our results

indicate that Label Propagation and K-NN obtained the most accurate results. Thus,

the experiments were conducted only with label propagation or K-NN algorithms as
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a parameter of the AMANDA method.

Dataset SGD K-NN LP RF GNB

UG2C5D 50.33 91.79 90.64 73.23 92.77

1CSURR 48.46 93.3503 95.61 61.77 92.58

NOAA 59.48 69.11 68.68 62.30 59.85

Electricity 60.23 67.87 66.53 69.83 65.32

Keyboard 66.44 88.81 88.22 86.51 77.63

Table 4.2: Classifiers accuracy.

In order to elucidate the variation of the cutting percentage parameter α of

the previous experiment, we show the parameter variation over the most accurate

classifiers for the keystroke dataset in Table 4.3. The best parameters for Label

Propagation were K = 4 for the Keystroke dataset and K = 7 for the 1CSURR

dataset, whereas the best parameters for K-NN were K = 7, for the Keystroke and

for the 1CSURR datasets.

Algorithms α = 0.5 α = 0.55 α = 0.6 α = 0.65 α = 0.7

K-NN 85.39 86.18 87.17 87.76 87.76

LP 72.04 70.13 71.38 73.15 87.23

Algorithms α = 0.75 α = 0.8 α = 0.85 α = 0.9 –

K-NN 88.68 90.13 89.27 89.14 –

LP 87.43 88.68 85.46 88.29 –

Table 4.3: Average accuracy for the keystroke dataset
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For the next subsections, we present the batch results for artificial and real

datasets. For the artificial datasets, we analyze the five most representative datasets

among the seventeen synthetic datasets. For the real datasets, we detail the results

for the three datasets. After that, we present a summary of the results for all

datasets.

4.4.3 Artificial Dataset - 2CDT

This is a balanced dataset with two dimensions and two classes that shifts through

the Euclidean space. The evolution of the drift is illustrated in Figure 4.2.

Figure 4.2: Bi-dimensional two classes with diagonal transitioning. Data distribution
evolution through the time (yellow arrow).

The Figure 4.3a illustrates the accuracy of the classifiers over this dataset. Between

the batches 0 and 10 a translational drift occurs on data. At this point, samples

from the two classes are changing in diagonal, where the first class is changing to

the region of the second class and the second class moving to the same direction.

Hence, both static and incremental classifiers start to decrease their accuracy. Once

the static classifier remains with the same classification hypothesis, misclassification

occurs for the samples that are gradually changing from one class region to the other.

The incremental classifier, however, does not discard outdated samples and learns

with data that contains old concepts, hindering the drift detection in data distribution.

After the tenth batch, almost all data of a particular class shifts to the region of the

another class. After interval 90, both classifiers increase their accuracy due to the

fact that data returns to a same state as the initial batch. However, LEVELiw does

not recover the efficiency since at this point, unlikely static classifier, the method

has not the points that represents the original concept. Besides, LEVELiw seems

to be hindered by the previous change in data and now it classifies only one class,

achieving a similar result of a random classifier.

The three methods that use a CSE method to extract core instances, COMPOSE-

GMM, AMANDA-FCP and AMANDA-DCP, were able to select core instances and

continuously capture the gradual change of data. Therefore, they obtained the

most accurate results along with the Sliding Window classifier. In figure 4.3b, we
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illustrate the computational time of all classifiers. It should be noted that LEVELiw,

Incremental SSL and COMPOSE-GMM present higher computational time.

For LEVELiw, the reason is that it has to process a Least Squares Importance

Fitting and a importance weighted cross validation for all batches that both have

high computational time. For COMPOSE-GMM, the reason is that it needs to

learn a set of Gaussian mixture models for each batch of data, that has a high

computational time. The same issue occurs for the Incremental, that has a higher

computational time due to the to continuous growth of samples in the training set.

Finally, regarding AMANDA-FCP and AMANDA-DCP, their processing time were

similar to Static and Sliding SSL classifiers. This is an interesting result, once our

proposals are more accurate than the two classifiers.

(a) Accuracy curve (b) Execution time

Figure 4.3: Bi-dimensional two classes with diagonal transitioning

In the figures 4.4a and 4.4b, we show the accuracy and macro-F1 results, re-

spectively. AMANDA-DCP AMANDA-FCP, COMPOSE-GMM and Sliding SSL

presented similar accuracy and macro-f1 results. However, according to the boxplots,

AMANDA-FCP presented less variance and less outliers on its results. Static SSL

and Incremental SSL have the worst results, with the lowest averages and with the

highest number of ouliers. LEVELiw also had low accuracy and f1 results. This is due

to the difficulty to capture the drift on data from the interval 20. The consequence

was the classification of only one class, decreasing the F1 results.

In Figure 4.5, we show the error reduction percentage over the static classifier.

All classifiers except incremental and LEVELiw obtained similar results and superior

than the static classifier. However, since this dataset has a drift characteristic easily

captured by classifiers, the error reduction was low. The incremental classifier, as

previously explained, obtained the same accuracy than static classifier. LEVELiw

obtained 0.06% less accuracy than the static classifier.
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(a) Accuracy boxplot. (b) F1 boxplot.

Figure 4.4: Bi-dimensional two classes with diagonal transitioning

Figure 4.5: Error reduction over static classifier - Bi-dimensional two classes with
diagonal transitioning.
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4.4.4 Artificial Dataset - 1CSURR

Figure 4.6 illustrates the evolution regarding time for 1CSURR, an imbalanced

dataset with a majority class surrounding a minority class. The class proportion of

this dataset is 60/40 and it contains two dimensions. This is a challenging dataset

due to the classification bounds, that are near each other.

Figure 4.6: 1CSURR data distribution evolution through the time (yellow arrow).

The Figure 4.10a illustrates the accuracy of the classifiers over this dataset.

Between the batches 0 and 10, a gradual drift occurs at data. Thus, samples

from one class are changing to the original region of the other class. Then, it

should be noted that both, static and incremental classifiers, start to decrease their

accuracy. Once the static classifier remains with the same classification hypothesis,

misclassification occurs for the samples that are gradually changing from one class

region to the other.

The incremental classifier, however, does not discard outdated samples and has

a different reason for its decrease on performance. Once samples from one class

gradually change to the region of the outdated samples of the another class, the

decision region of the incremental classifier remains dense with samples from both

classes. Moreover, the incremental classifier learns with data that contains old

concepts, hindering the drift detection in data distribution. After the tenth batch,

almost all data of a particular class shifts to the region of the another class.

After interval 70, both classifiers present a growing accuracy curve due to the

fact that the dataset returns to a similar data distribution as the initial batch. Then,

between batches 85 and 95, both classifiers, static and incremental, has a decrease on

their performance due to a critical drift between the majority and minority classes.

This critical change occurs when the minority class is surrounded by the majority

one. At this moment, the static classifier presents the same problem of initial batches:

The use of the initial classification hypothesis. The incremental classifier, is also

negatively affected since all data of the decision boundary of the classes are kept.

Hence, the overlapping between the classes and the old concepts present in train

data, hinders the classification.

The AMANDA-FCP, obtained satisfactory results due to the cutting method

that selects the most relevant instances from dense regions of data. This selection
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was important to keep the instances that influence the classifier at the moment that

the minority class is surrounded by the majority class, specifically between batches

85 and 95. Worth to mention that selecting fewer and representative instances is

better than keeping all instances at the moment of the minority class is surrounded.

This occurs since a few instances in decision boundary fool the classifier, specially for

lower dimensions. The three methods that uses a CSE method to extract the best

instances, COMPOSE-GMM and AMANDA-FCP and AMANDA-DCP, obtained

the best results and the best recoverability between batches 85 and 95.

Figure 4.7: AMANDA-FCP Core Support Extraction Performance in 1CSURR.

Figure 4.8: AMANDA-DCP Core Support Extraction Performance in 1CSURR.

Figure 4.9: COMPOSE-GMM Core Support Extraction Performance in 1CSURR.

Figure 4.7 and 4.8 illustrates the behaviour of the AMANDA-FCP and AMANDA-

DCP, respectively, whereas Figure 4.9 illustrates the behaviour of COMPOSE-GMM,

over the critical batches. The three methods use a CSE approach to extract the

best instances and for this reason they obtained the best results and the best

recoverability between batches 85 and 95. However, AMANDA-FCP obtained the

best result among them due to the cutting method that selects instances from dense
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regions of data better than the other two methods. This selection was important to

keep the instances that influence the classifier at the moment that the minority class

is entirely surrounded by the majority class, specifically for the batch 93.

In figure 4.10b, we illustrate the classifiers performance for this dataset. The

computational time results are similar to the results indicated by the previous

experiment and the reasons are the same.

(a) Accuracy (b) Computational time

Figure 4.10: One class surrounding another (1CSURR)

In the figures 4.11a and 4.11b, we show the MCC and macro-F1 results, respec-

tively. Both, AMANDA-DCP and FCP present similar macro-f1 results compared

COMPOSE-GMM and Sliding SSL. However, AMANDA-FCP presents higher results

and less outliers. Hence, AMANDA-FCP seems to be a better method regarding

macro-f1. LEVELiw had the worst MCC and F1 results regarding the state-of-the-art

due to surrounding-class properties.

(a) Mathews correlation coefficient boxplot. (b) F1 boxplot.

Figure 4.11: One class surrounding another

Figure 4.12 illustrates the error reduction over the static classifier. The sliding

window classifier had a similar efficiency in comparison with the state-of-the-art.
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However, this classifier has the advantage to be simpler than the state-of-the-art

algorithms. The AMANDA-DCP achieves more than 30% of improvement whereas

AMANDA-FCP is approximately 5% more assertive than all other state-of-the-art

methods. As previously detailed, the incremental classifier obtained the same average

error than the baseline.

Figure 4.12: Error reduction over static model - One class surrounding another.

4.4.5 Artificial Dataset - 4CRE V1

This is the bi-dimensional four class rotating and expanding dataset. This dataset

is balanced and has as a main characteristic a fast translational and rotational drift,

as illustrated in Figure 4.13. Its a challenging task since data distribution changes

very fast through the time. Thus, adapting to these changes becomes increasingly

difficult in the subsequent batches.

Figure 4.13: bi-dimensional four class rotating and expanding. Data distribution
evolution through the time (yellow arrow).

Figure 4.14a shows the accuracy curve achieved by all methods. All classifiers

presented lower results and similar to the Static Classifier. However, even in this
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adverse scenario, AMANDA-FCP obtained stable results between the interval 75

and 100. At the same interval, the state-of-the-art classifiers alternated regarding

the predictions’ quality.

As illustrated in Figure 4.14b, the incremental classifier, COMPOSE-GMM

and LEVELiw had the higher processing times. AMANDA-FCP obtained lower

computational time than the other state-of-the-art methods. The processing time

of the COMPOSE-GMM and LEVELiw were higher compared to AMANDA-DCP.

AMANDA-DCP processing time reduces markedly for high dimensionality of data.

Once this dataset has only two dimensions, AMANDA-DCP performs equaly to

AMANDA-FCP. In contrast, COMPOSE-GMM and LEVELiw have difficulty for fast

processing when the cardinality of data is high, even when data has low dimensionality,

as previously explained.

(a) Accuracy curve (b) Execution time

Figure 4.14: Four class rotating and expanding (Version 1)

As shown in Figure 4.15a, the classifiers were not able to achieve reliable results.

This is due to the inefficiency to detect the drift. Static, Incremental, COMPOSE-

GMM and LEVELiw classifiers obtained 50% of mistakes. The classifiers were

hindered each time the dataset expanded. Figure 4.15b shows the overall quality of

the predictions. AMANDA-FCP obtained the highest macro F1, but the best results

were obtained by AMANDA-DCP.

In the figure 4.16, we note that only AMANDA-DCP and AMANDA-FCP have

overcome the Static Classifier. The remaining algorithms obtained errors greater

than the baseline. This indicates that the CSE improve the predictions’ quality.
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(a) Accuracy boxplot. (b) F1 boxplot.

Figure 4.15: Four class rotating and expanding (Version 1)

Figure 4.16: Error reduction over static model - Four class rotating and expanding
(Version 1).
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4.4.6 Real Dataset - Keystroke

Keystroke is a balanced dataset with four classes and ten dimensions. The dataset

is divided into eight batches that correspond to the number of times that users typed

their passwords, as explained in the subsection 4.2. We expect a gradual drift of

data distribution due to the users repeatedly type their same passwords. The Figure

4.17a illustrates the accuracy of the classifiers. From the second batch until the sixth,

the static classifier had its prediction quality decreased. This behaviour is due to

the presence of gradual drift in data. In the subsequent batches, the static classifier

had a similar performance of a random classifier. The remaining classifiers obtained

similar performance. However, AMANDA-FCP and AMANDA-DCP had the higher

values in classification accuracy.

As illustrated in Figure 4.17b, the processing time of the COMPOSE-GMM

is almost five times higher than AMANDA-FCP. The reason is that even though

the number of batches and instances is low, the number of dimensions makes the

processing of COMPOSE-GMM become slow. The number of dimensions is also

the reason for the best processing time of AMANDA-DCP. The value was six times

higher than COMPOSE-GMM. AMANDA-DCP has the disadvantage to perform

the multi-dimensional Hellinger distance beyond the KDE processing.

(a) Accuracy curve (b) Execution time

Figure 4.17: Keystroke results

Figure 4.18a shows the accuracy boxplot of all classifiers. It corroborates that

AMANDA-FCP and AMANDA-DCP had higher values regarding accuracy. Besides,

AMANDA-DCP, COMPOSE-GMM and LEVELiw have the most stable results.

However, as illustrated in Figure 4.18b, AMANDA-FCP obtained the best F1 result.

Thus, even the AMANDA-DCP obtained the best average accuracy, AMANDA-FCP

had better quality between the classes. The Incremental classifier had the second

best result due to the dataset characteristic that is gradual and has strong temporal

dependency. Sliding window classifier had similar results to the incremental classifier,

that is, the choice of SSL is more determinant for the results.
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(a) Accuracy boxplot. (b) F1 boxplot.

Figure 4.18: Keystroke results

Figure 4.19 illustrates the percentage reduction of error over the static classifier.

AMANDA-DCP has the lower average error, 34% whereas AMANDA-FCP has the

second lower average error 33%. Besides, even COMPOSE-GMM and LEVELiw

have more than 25% of improvement over the static classifier, their results are worse

than the incremental and sliding classifiers. COMPOSE-GMM worst results are due

to GMM function that was able to select the most representative instances as KDE

performed for AMANDA methods. LEVELiw was a bit better than COMPOSE-

GMM but the unconstrained importance least square function does not capture the

drift between the first and sixth batches. Hence, the average error was compromised

and worse than the other classifiers.

Figure 4.19: Error reduction over static model - Keystroke dataset.
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4.4.7 Real Dataset - NOAA

NOAA is an imbalanced dataset with a class proportion of 60/40 with eight

dimensions and 50 batches, each batch representing a year. Figure 4.20a illustrates

the accuracy curve of all classifiers. The classifiers results are close with an exception

of LEVELiw, that presented its results 2% lower than the static classifier.

This small discrepancy between the remaining classifiers indicates that the Label

Propagation classifier, that is used in the remaining algorithms, was better suited

than the least square classifier used by LEVELiw. The only advantage of CSE on

this dataset is for AMANDA-FCP, that had an increase on its performance over the

other classifiers, between the 33th and 37th batches. Even occurring close results for

all classifiers, the Figure 4.20 shows a drawback of AMANDA-DCP. The method

had its processing time highly increased as the dimension of data grew.

(a) Accuracy curve (b) Execution time

Figure 4.20: NOAA results

In Figure 4.21a, we show MCC boxplots of all classifiers. The results indicate

that COMPOSE-GMM presented similar results compared to a Sliding Classifier.

This lead us to conclude that the approach of using all instances of a recent batch is

as efficient as the selection of the instances of the same batch using GMM. However,

both classifiers is as efficient as a random classifier indicating that the two approaches

tends to classify all instances as one class. On the other hand, AMANDA-FCP had

the best results due to the gradual forgetting approach of the CSE algorithm.

LEVELiw had the worst results since this algorithm considers only the last batch

of data. Thus, it does not take advantage of the temporal dependence of data. The

Sliding Window Classifier has the same approach of LEVELiw regarding the use of

last batch of data. However, the K-NN classifier contained in the Sliding Window

Classifier is more efficient than the Gaussian Kernel function that compute posterior

probability contained in LEVELiw.

Figure 4.21b shows F1 results for all classifiers. The results are similar to the

MCC results illustrated in figure 4.21a. However, LEVELiw MCC results are lower
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(a) Mathews correlation coefficient boxplot. (b) F1 boxplot.

Figure 4.21: NOAA results

compared to its F1 results. This indicates that its results are favoring the majority

class and are not correlated to the labels.

Regarding error reduction, illustrated in Figure 4.22, the Sliding Window and

the COMPOSE-GMM results indicate that discarding old instances is more harmful

than keeping all instances such as the Incremental Classifier performs. The reason

is that this dataset has a small and recurrent drift. LEVELiw had similar results

than COMPOSE and Sliding Window classifiers due to the difficulties of the uLSIF

algorithm, contained in LEVELiw, to adapt to upcoming data. Hence, taking into

account the characteristics of this dataset, the choice of a SSL classifier has more

impact than the use of CSE method, since AMANDA-FCP was only 1% better than

the static classifier. AMANDA-DCP and Incremental Classifier also performed worse

than a Static Classifier. Despite both classifiers have similar average errors, the

Incremental Classifier is faster than AMANDA-DCP.

4.4.8 Real Dataset - Electricity

Electricity is an imbalanced dataset, divided into 100 batches with two classes

and five dimensions. This dataset is challenging since there are several drifts inside

each batch. Figure 4.23a illustrates the accuracy curve for all classifiers. Between the

interval 0 and 55, all methods perform similarly to each other, alternating between

60% and 90% of accuracy. After that, the classifiers are divided into two groups:

The first group achieves more than 60% of accuracy and the second group achieves

less than 60% of accuracy.

Moreover, the performance of COMPOSE-GMM and LEVELiw increases while

the performance of sliding window classifier and AMANDA-DCP decreases. Besides,

from batch 70 to the last batch, AMANDA-DCP and the sliding window classifier
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Figure 4.22: Error reduction over static model - NOAA dataset.

predicts the inverse of each other. Figure 4.23b illustrates the processing time

results. It should be noted that all classifiers except AMANDA-DCP obtained faster

processing time results. The reason, again, is due to the high dimensionality of the

data.

(a) Accuracy curve (b) Execution time

Figure 4.23: Electricity dataset results

Figure 4.24a shows the MCC boxplot for all classifiers. Worth to mention that

the Sliding Window Classifier had a similar performance of a random classifier. Since

the Sliding Window Classifier forgets past data, the classifier was hindered due to the

temporal dependency of dataset. For this reason, static and incremental classifiers

obtained most accurate results than sliding window classifier. LEVELiw also uses

the last batch of data, the classifier applied in the LEVELiw does not learn with a

new distribution.

Figure 4.24b shows that AMANDA-FCP has the most accurate F1 results. The

gradual forgetting of AMANDA-FCP captures the temporal information of the

dataset. COMPOSE-GMM and AMANDA-DCP also have better results than
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Sliding Window Classifier due to the CSE in the method. However, the quantity of

kept instances of these two methods are not enough to learn the new concept. On

the other hand, AMANDA-FCP is better on this aspect.

(a) Mathews correlation coefficient boxplot. (b) F1 boxplot.

Figure 4.24: Electricity dataset results

Figure 4.25 illustrates the reduction of percentage error over the static classifier.

It should be noted that only AMANDA-FCP had better results than the static

classifier. As previously explained, the temporal dependency of dataset decreases the

performance of the Sliding Window Classifier. The number of core instances kept by

AMANDA-DCP and COMPOSE-GMM also hinders their performances.

Figure 4.25: Error reduction over static model - Electricity dataset.
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4.4.9 Overall Results

Aiming to visualize all the information in one table, we renamed the classifiers

using more compact acronyms. Therefore, the acronyms of the classifiers are:

Static classifier (STC), sliding window classifier (SLD), incremental classifier (INC),

COMPOSE-GMM (CMP), LEVELiw (LVL), and the two proposals, AMANDA-FCP

(A-FCP) and AMANDA-DCP (A-DCP). The average error results of all methods for

all datasets are shown in Table 4.4. The reduction of the percentage error over the

static classifier is presented between parentheses.

Table 4.4: Average error results.

Datasets STC SLD INC CMP LVL A-FCP A-DCP

1CDT 0.76 0.06 (-92.10%) 0.30 (-60.52%) 0.08 (-89.47%) 0.04 (-94.73%) 0.02 (-97.36%) 0.05 (-93.42%)

1CHT 3.93 0.43 (-89.05%) 3.20 (-18.57%) 0.48 (-87.78%) 0.40 (-89.92%) 0.33 (-91.60%) 0.39 (-90.07%)

2CDT 46.30 6.13 (-86.76%) 46.14 (-0.34%) 6.73 (-85.46%) 49.74 (+7.42%) 5.46 (-88.20%) 5.83 (-87.40%)

2CHT 45.97 48.45 (+5.39%) 46.01 (+0.08%) 47.41 (+3.13%) 47.41(+3.13%) 14.39 (-68.69%) 19.93 (-56.64%)

4CRT 78.83 0.02 (-99.97%) 78.75 (-0.10%) 0.04 (-99.94%) 0.02(-99.97%) 0.02 (-99.97%) 0.03 (-99.96%)

4CRE-V1 78.15 81.29 (+4.01%) 79.44 (+1.65%) 79.55 (+1.79%) 79.00 (+1.08%) 73.50 (-5.95%) 73.28 (-6.23%)

4CRE-V2 79.61 82.88 (+4.10%) 79.67 (+0.07%) 77.38 (-10.91%) 80.77 (+1.45%) 69.97 (-12.10%) 71.81 (-9.79%)

5CVT 54.51 60.97 (+11.81%) 52.04 (-4.53%) 65.50 (+24.16%) 59.18 (+8.56%) 24.11 (-55.76%) 52.38 (-3.90%)

1CSURR 35.86 9.05 (-74.76%) 36.06 (+0.55%) 9.43 (-73.70%) 9.20 (-74.34%) 4.39 (-87.75%) 7.93 (-77.88%)

4CE1CF 1.98 1.90 (-4.04%) 1.82 (-8.08%) 2.09 (+5.55%) 2.21 (+11.61%) 1.73 (-12.62%) 1.92 (-3.03%)

UG2C2D 55.81 4.97 (-91.09%) 54.42 (-2.49%) 5.32 (-90.46%) 26.34 (-52.80%) 4.30 (-92.29%) 12.64 (-77.35%)

MG2C2D 51.63 22.86 (-55.72%) 50.66 (-1.87%) 49.17 (-4.76%) 9.31 (-81.96%) 8.70 (-83.14%) 14.88 (-71.17%)

FG2C2D 17.79 4.43 (-75.09%) 18.29 (+2.81%) 12.15 (-31.70%) 4.31 (-75.77%) 5.12 (-71.21%) 16.39 (-7.86%)

UG2C5D 30.97 20.11 (-35.06%) 30.62 (-1.13%) 20.82 (-32.77%) 20.82 (-32.77%) 8.21 (-73.49%) 8.53 (-72.45%)

GEARS 5.43 0.81 (-85.08%) 5.33 (-1.84%) 4.03 (-25.78%) 6.18 (+13.81%) 0.81 (-85.08%) 3.74 (-31.12%)

BOARD 51.08 49.96 (-2.19%) 50.98 (-0.19%) 49.73 (-2.64%) 49.73 (-2.64%) 50.11 (-1.89%) 49.98 (-2.15%)

ELEC2 29.22 41.04 (+16.69%) 28.92 (-0.41%) 36.31 (+10.02%) 32.64 (+4.83%) 26.12 (-4.37%) 34.45 (+7.38%)

NOAA 24.07 30.97 (+9.09%) 25.92 (+2.42%) 31.40 (+9.64%) 31.25 (+9.44%) 23.62 (-0.59%) 25.71 (+2.15%)

KEYSTROKE 32.30 12.37 (-29.44%) 12.50 (-29.25%) 14.67 (-26.04%) 12.97 (-28.56%) 9.87 (-33.13%) 9.34 (-33.91%)

It should be noted that AMANDA-FCP obtained the most accurate results for

fourteen datasets among the seventeen artificial datasets and the most accurate

results for two of the three real datasets. Besides, AMANDA-DCP had the best

results in one artificial dataset and one real dataset. Hence, the two variations of

AMANDA together presented better results than the other classifiers for nineteen of

twenty datasets. COMPOSE-GMM along with LEVELiw, had the best result for a

dataset that AMANDA variations did not won: Rotational checkerboard dataset.

LEVELiw obtained the best results for two artificial datasets. In addition, in

all cases where LEVELiw presented inferior results to COMPOSE, the dataset had

experienced drifting posterior probabilities, a violation of the primary assumption of

importance sampling approaches (UMER et al., 2017). Table 4.5 shows all macro-F1

results. AMANDA-FCP had the most accurate results for thirteen datasets among

seventeen artificial datasets. Besides, AMANDA-FCP obtained the best results for

all real datasets. AMANDA-DCP had the best results for two artificial datasets.

COMPOSE-GMM, LEVELiw, Incremental and Sliding Window classifiers had best

results for one artificial dataset.
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Datasets STC SLD INC CMP LVL A-FCP A-DCP

1CDT 0.9935 0.9994 0.9971 0.9995 0.9996 0.9997 0.9994

1CHT 0.9600 0.9950 0.9681 0.9949 0.9960 0.9963 0.9955

2CDT 0.3871 0.9418 0.3884 0.9362 0.4836 0.9480 0.9416

2CHT 0.3954 0.3560 0.3942 0.4758 0.4758 0.8526 0.7880

4CRT 0.2099 0.9998 0.2154 0.9999 0.9998 0.9998 0.9999

4CRE-V1 0.2073 0.1804 0.1997 0.2035 0.2486 0.2670 0.2651

4CRE-V2 0.2043 0.1259 0.2039 0.1971 0.2464 0.3035 0.1810

5CVT 0.3537 0.1812 0.3707 0.2385 0.1767 0.7297 0.3802

1CSURR 0.6403 0.9137 0.6384 0.9094 0.6368 0.9607 0.9267

4CE1CF 0.9807 0.9795 0.9821 0.9781 0.9779 0.9808 0.9803

UG2C2D 0.4425 0.9514 0.4546 0.9491 0.7366 0.9581 0.8706

MG2C2D 0.4795 0.7543 0.4936 0.5050 0.5923 0.9143 0.8499

FG2C2D 0.7322 0.9391 0.7298 0.8596 0.9469 0.9319 0.8190

UG2C3D 0.5046 0.9245 0.4916 0.9217 0.6032 0.9461 0.9426

UC2C5D 0.6680 0.7549 0.6782 0.7918 0.7918 0.9151 0.9129

GEARS 0.9474 0.9957 0.9485 0.9637 0.9382 0.9957 0.9630

BOARD 0.4983 0.4901 0.4957 0.4956 0.4956 0.4841 0.4985

ELEC2 0.6165 0.3740 0.6095 0.6230 0.4469 0.6900 0.5548

NOAA 0.6041 0.4060 0.5509 0.3907 0.4745 0.6790 0.6029

KEYSTROKE 0.7266 0.9520 0.9562 0.85 0.7875 0.9833 0.9351

Table 4.5: Macro-F1 results.

Table 4.6 shows the processing time of all methods datasets. It should be noted

that the Static and Sliding Window classifiers are faster than the other methods.

Static classifier learns its own model only once and perform classification in the

subsequent batches. Sliding Window only retrain using the last batch and classifies

the current samples, the quantity of instances for training and classification is

fixed. Therefore, we put the marker ‘*’ indicating the best processing time between

the proposal and state-of-the-art algorithms. AMANDA-FCP obtained the fastest

processing time for eight artificial datasets and all real datasets in comparison with

COMPOSE-GMM and LEVELiw, that are the state-of-the-art classifiers. AMANDA-

DCP obtained the fastest processing time among the state-of-the-art classifiers for

seven artificial datasets. LEVELiw obtained the best results among the state-of-the-

art in three artificial datasets.

LEVELiw and COMPOSE-GMM had more difficulties to keep low processing

time since these methods perform high cost algorithms to classify data. As explained

in Section 2.2, COMPOSE-GMM performs several times the EM algorithm for each
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batch. Besides, this method applies a distance calculation along with a Bayesian

criteria information method. On the other hand, LEVELiw applies a combination of

quadratic algorithms for each batch of data. Thus, the algorithm becomes slow in a

iterative scenario, since this algorithm was originally built for one-shot learning way.

Worth to mention that, AMANDA-DCP had the worst processing time among

the state-of-the-art algorithms in NOAA and ELEC2 datasets. The reason is the

calculation of the Hellinger distance for each batch of data. The processing time of

this calculation grows according with the quantity of dimensions and the quantity

of instances. Despite the high processing time in NOAA and ELEC2 datasets, the

AMANDA-DCP method has a low processing time in Keystroke dataset with ten

dimensions. For this reason, AMANDA-DCP has poor results when the data has a

combination of high dimensions and vast amount of data.

Datasets STC SLD INC CMP LVL A-FCP A-DCP

1CDT 0.44 0.40 4.90 23.68 1.72 0.83 0.81*

1CHT 0.50 0.49 7.08 24.07 25.94 1.07 0.80*

2CDT 0.57 0.71 11.30 23.96 14.81 0.94* 0.98

2CHT 0.93 0.14 4.31 17.32 14.77 0.55* 0.62

4CRT 4.26 2.97 148.12 79.25 14.77* 20.62 21.57

4CRE-V1 3.82 3.18 114.82 88.99 14.34* 15.97 17.40

4CRE-V2 5.14 4.41 177.64 70.90 14.30* 30.38 35.12

5CVT 0.76 0.67 14.58 79.12 156.46 1.68 1.10*

1CSURR 1.62 1.44 30.46 46.34 123.08 3.66* 3.97

4CE1CF 97.15 10.19 499.34 128.50 213.72 34.45* 44.28

UG2C2D 3.25 2.91 111.52 58.17 25.24 11.77* 12.89

MG2C2D 5.79 5.02 191.34 55.06 41.35 37.35 34.72*

FG2C2D 5.22 5.39 197.09 60.06 187.92 31.34* 33.58

UG2C3D 11.97 5.96 220.57 88.06 95.47 40.63* 41.20

UC2C5D 125.77 12.43 763.18 69.43 229.52 50.78 34.35*

GEARS 6.37 6.35 270.16 50.40 230.34 42.07 35.93*

BOARD 3.76 3.25 99.51 47.23 – 28.63* 28.63*

ELEC2 1.40 0.16 10.11 21.14 236.78 2.82* 1276.07

NOAA 0.64 0.13 4.11 8.28 230.24 2.87* 407.33

KEYSTROKE 0.01 0.01 0.03 4.83 230.53 0.33* 22.77

Table 4.6: Processing time results.
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Chapter 5

Conclusions

In this chapter, we presented our final considerations, a summary of the results,

our main contributions, limitations of the proposal and research directions.

5.1 Proposal

In this work, we investigated gradual concept-drift and extreme verification

latency problems for non-stationary environments. State-of-the-art methods do not

tackle properly the mentioned problems due to the following issues: (a) their high

computational time for large volume of data; (b) their lack of representing the right

samples of the drift or (c) even for having several parameters for tuning.

Therefore, we proposed AMANDA, a density-based adaptive model for non-

stationary data, using a SSL along with a density-based CSE method. AMANDA has

two variations: AMANDA with a fixed cutting percentage (AMANDA-FCP); and

AMANDA with a dynamic cutting percentage (AMANDA-DCP). Both variations

improve the mentioned issues (a) and (b) and, the last one, improves the issue (c).

5.2 Summary of Results

Aiming to evaluate our proposal, we applied the AMANDA-FCP and AMANDA-

DCP in seventeen synthetic datasets and three real ones: Keystroke, Electricity

Market and NOAA. The parameters were chosen through the use of an optimization

method along with a prequential evaluation with 5% of data for each dataset.

Our results indicate that AMANDA-FCP, outperformed the state-of-art methods

in fifteen synthetic datasets and in two real datasets, regarding the average error. In

relation to AMANDA-DCP, it was outperformed by the state-of-the-art methods

and AMANDA-FCP in majority of the datasets. However, AMANDA-DCP achieved

the best result in one real dataset and presented promising results in several datasets.
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Worth to mention that AMANDA-FCP obtained better quality of predictions between

the classes in thirteen synthetic datasets and in all real datasets. The computa-

tional time of AMANDA-FCP was better, in general, than the state-of-the-art and

AMANDA-DCP. Besides, the computational time can be reduced since that KDE is

a parallelizable algorithm.

5.3 Contributions

We have found that applying a semi-supervised learning classifier supported by our

density-based CSE method with a fixed cutting percentage improved the results for

a concept-drift environment. This is due to the samples that contain new concepts

from data that are kept for subsequent steps. CSE method presented relevant

results and with the right value of a cutting percentage parameter, AMANDA-FCP

outperformed state-of-the-art methods, regarding the average error, using only a few

instances. Additionally, AMANDA-FCP presented a computational time lower than

the state-of-the-art, a significant contribution for non-stationary environments.

Another contribution is the dynamic cutting percentage, an alternative for the

core support extraction with a fixed parameter. The dynamic cutting method is

parameter free. We adapted and combined a distance measurement for comparing

two distributions and determine, dynamically, the percentage of instances to be

discarded. Even the dynamic cutting approach was outperformed by the fixed cutting

approach and state-of-the-art, the dynamic approach presented better results than

the baselines. Our results indicate that SSL classifiers are improved when they work

along with our dynamic CSE method.

5.4 Limitations and Research Directions

One limitation of our proposal is the fact that AMANDA-FCP needs some

parameter tuning in order to find the optimal cutting percentage parameter. In

the meantime, once the AMANDA-DCP does not need this tuning, it does not

find a representative data for a cutting percentage value. Hence, the results of

AMANDA-DCP were surpassed by AMANDA-FCP in almost all datasets. Thus, as

future work, we will investigate better approaches for finding the optimal cutting

percentage parameter.

Another limitation is that the two variations of AMANDA had difficulties in real

datasets where the drift is recurrent. As stated by KHAMASSI et al. (2018), using

single learner approaches are not recommended for handling recurrent drifts. As they

process online, they are continuously adapted to the current concept. Hence, when a

previous concept reoccurs, these approaches relearn it from scratch without taking
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benefit from its previously existence. Therefore, deal better with this limitation is

an important issue to be investigated as future work.

Another research direction is the selection of the most representative instances

from data. The results indicate a promising direction regarding non-parametric

methods based on densities. Therefore, alternative methods could be experimented.

Local concept-drift is the change that occurs in some regions of the instance

space. Thus, when looking at the overall instance space, only some subsets are

affected by the drift. Besides, in some cases, local concept-drift can be confused

with noise, which makes the model unstable. Hence, to overcome the instability, the

model has to effectively differentiate between local changes and noises (KHAMASSI

et al., 2018). Therefore, for this reason, a research direction could be the better

understanding of what is noise and how to discard noise from data without harming

the model.

Finally, the handling of concept drift under missing values is a promising research

direction. The problem of missing values, which corresponds to incompleteness of

features, has been investigated extensively for offline and static data. However, only

few works address non-stationary environments. Hence, handling concept drift under

missing value remains an open challenge (KREMPL et al., 2014).
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