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Abstract

In this note, some results are introduced considering the assumptions of quasiconvexity and
nonmonotonicity, finally an application and an idea to solve the quasiconvex equilibrium prob-
lem are presented considering these new results.
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Resumo

Nesta nota, alguns resultados sao introduzidos considerando as suposigoes de quase-convexidade
e nao -monotonicidade, finalmente uma aplicacdo e uma idéia para resolver o problema de
equilibrio quase-convexa sao apresentadas considerando estes novos resultados.
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1 Introduction and Preliminaries

The equilibrium problems generalize minimization problems, variational inequalities problems,
fixed point problems, linear complementarity problems, vector minimization problems and Nash
equilibria problems with noncooperative games, see Blum and Oettli [8], Flores-Bazan [14],
Iusem and Sosa [17]. Some recent work on equilibrium problems are Mansour et al. [1] and
Cotrina and Garcia [9].

Now, let K be a nonempty closed and convex subset of IR™ and f : K x K — IR be a bi-
function such that f(z,z) = 0 for every z € K. The equilibrium problem, shortly (EP) is, find
Z € K such that

f(z,y) >0, Vy € K. (1.1)



On the other hand, in the literature there are two properties for f, which are called by

V. Strict paramonotonicity property (cutting property)

reS(f,K), ye K, fy,r) =0=y € S(f, K).

M. Paramonotonicity property

veS(f,K), ye K, fly,z) = f(z,y) = 0=y € S(f, K).

where S(f,K) = {x € K : f(z,v) > 0,Yv € K} is the solution for the problem (1.1). The
condition V is normaly used in Lemma 4.1 by Raupp and Sosa [23]. Note that M is obtained
through V and considering f pseudomonotone, see Anh and Muu [3]. We can also see that M
is important to guarantee convergence in the equilibrium problem, see Bello Cruz et al. [5].

Definition 1.1 Let K be a nonempty convex set. A bifunction f: K x K — IR is said to be

(i) monotone on K if
f@,y) + fly,x) <0, Va,y € K;

(ii) pseudomonotone on K if

(i1i) quasimonotone on K if
flz,y) > 0= f(y,x) <0, Va,y € K.
We can easily verify that (i) = (i) = (¢i1).
Definition 1.2 A bifunction f will be called cyclically monotone if one has
f(zo,z1) + f(z1,22) + ... + f(zm,x0) <0,
for any m € IN and any set of points xg, x1, ..., Tm € K.

Definition 1.3 A bifunction f(w,-) : K C IR" — IR is quasiconvez if for every z,y € K and
t € [0, 1] the following inequality holds

flw, (1 = t)x +ty) < maz{f(w,z), f(w,y)}.

Definition 1.4 The function f : K x K — IR is said to be properly quasimonotone if for all
T1y ey n € K and all Ay, ...; A\, > 0 such that Y ;- \; = 1 it holds that

i < 2 | <o. :
1r§nz‘1£nf (1‘2,; )\Ja:]) <0 (1.2)



The Definition 1.4 is studied and widely used in Bianchi and Pini [6] and Farajzadeh and Za-
farani [12], respectively. Now, consider the following conditions.

hl. f(z,x) =0 for each z € K.
h2. f(z,-) : K — IR is lower semicontinuous for all z € K.
Now consider the following variant of properly quasimonotone.

H2. For every z1, 9, ...,xx € K and Ay, ..., \p > 0 such that Zle A; = 1, it holds that

k k
S OXif (@i, Y Ajzg) <0. (1.3)
i=1 j=1

H3. f: K x K — IR is positively homogeneous means that there exists p > 0 such that

7 f(x,y) = f(z,z +t(y — x)),

for every t > 0.
H5. f(w,-) is quasiconvex.

H6. The bifunction —f is triangular, i.e.,
flu,w) + f(w,v) < f(u,v), Yu,v,w € K.

Remark 1.1 The conditions hl, h2 and H2 are used in Iusem et al. [18]. The condition H3
is used in Bianchi and Pini [6], Hu and Fang [16], a similar definition of H3 can be seen in
Polyak [22], pp. 84. Condition H5 is studied by Bianchi and Pini [7], Cruz Neto et al. [10]
and Flores-Bazdin [13].

2 Main Results

Lemma 2.1 Let K # (), convex, closed subset of IR™ and let f : K x K — IR a bifunction, f
satisfying the following assumptions h2, H3 and H6. Then, if

f(#,y)=0= f(y,z) <0.

Proof. We take any y and z € K, and z # y with f(z,y) = 0, for each ¢ € ]0, 1], define
2zt =T+ t(y — ) € K, then by H3, there is a p > 0 and H6, we obtain

@ y) + fly,2) <P f(Z,y),

by f(Z,y) =0
f(yvzt) < Oa

now, use h2 with ¢t — 0, so we get the desired f(y,z) < 0. [

Remark 2.1 The first proposed lemma, can be applied in Anh and Muu [3] (proof of claim 3).



Corollary 2.1 Let K # 0, convex, closed subset of IR™ and let f : K x K — IR a bifunction,
f satisfying the following assumptions hl, h2, H5 and H6. Then, if

f(Z,y) =0= f(y,z) <0.

Proof. We take any y and z € K, and = # y with f(z,y) = 0, for each t € |0, 1[, define
2zt =T+ t(y —T) € K, then by H6 and H5 we obtain

F@,y) + [y, 20) < f(7,2) < max{f(z,y), f(z,2)},

the following is similar to Lemma 2.1. |

Remark 2.2 Note that the condition hl and H6, imply monotonicity, when uw = v. Note also,
that from the condition H6, we can obtain the cyclic monotonicity of f, see Giuli [15].

Corollary 2.2 Let K # 0, convez, closed subset of IR™ and let f : K x K — IR a bifunction,
f satisfying the following assumptions h2, H2 and H3. Then, if

f(@,y)=0= f(y,z) <0,

Proof. We take any y and z € K, and z # y with f(z,y) = 0, for each ¢ € ]0, 1], define
2z =% +t(y — ) € K, then by H2 we obtain

(1 - t)f('fa Zt) + tf(y7 Zt) < 07

then, now by H3, we obtain

(1 =)t f(x,y) +tf(y,2z) <0,

the following is similar to Lemma 2.1. |

Remark 2.3 We note that the condition H2 is proposed in Zhou and Chen [25] and in Bianchi
and Pini [6], the condition H2 is used to guarantee the solution existence of the dual equilibrium
problem.

3 Application

In this section will be apply the lemma 2.1, corollary 2.1 and corollary 2.2.

3.1 Paramonotonicity Property

Consider the following assumptions.

T1. If 2*, = € K, satisfy f(z,2*) = f(z*,2) =0 then 2* € S(f,K) = z € S(f,K)
(paramonotonicity property).

L1. S(f, K) # 0.



Lemma 3.1 Let K # (), convez, closed subset of IR™ and let f : K x K — IR a bifunction.
Now assume that h2, H3, H6, T1 and L1 hold. Then, given = € K and x* € S(f,K), if
f(@,2*) =0 then Z is a solution of S(f, K).

Proof. Let & € K and by L1, z* € S(f, K) with f(Z,z*) = 0, then by the lemma 2.1, we
obtain f(z*,Z) < 0 and as z* € S(f,K), we obtain f(z*,z) > 0. In this way we get that
f(z,z*) = f(z*,z) =0, then by T1 we get what we want. [

Corollary 3.1 Let K # 0, convex, closed subset of IR™ and let f : K x K — IR a bifunction.
Now assume that hl, h2, H5, H6, T1 and L1 hold. Then, given & € K and z* € S(f, K), if
f(z,x*) =0 then T is a solution of S(f, K).

Proof. Let z € K and by L1, z* € S(f, K) with f(z,2*) = 0, then by the Corollary 2.1,
we obtain f(z*,z) < 0 and as z* € S(f, K), we obtain f(z*,z) > 0. In this way we get that
f(z,x*) = f(z*,z) = 0, then by T1 we get what we want. [

4 Future Works

In this section, we propose some suggestions for future work, where we could apply the Section
2 of this work in Section 5 of Mallma et al. [20].

4.1 “An inexact proximal method with proximal distances for quasimono-
tone equilibrium problems”. Mallma, Papa and Oliveira. 2017.

Now, we consider the notation, the assumptions and results obtained in Mallma et al. [20]. In
this section, we will use the results obtained in the Section 2 of this paper.

We are interested in Section 4 of Mallma et al. [20], which is called “Convergence Results”, in
that section, the authors use the following particular solution set

S*(f,C)={x € S(f,C): f(z,w) >0,VweC}, (4.4)

this set will be important, to introduce the quasimonotonicity in the convergence of the proposed
algorithm. Now, we will introduce our proposed lemmas in the following proposition of [20],
for this reason, we consider the following particular set

S*(f,C)={z € S(f,0): f(z,w) =0,V w € C}, (4.5)

and we consider the following assumption.

Assumption H5’ S*(f,C) # 0.

Proposition 4.1 Under the assumptions by Mallma et al. [20]: H2, H3 and H4, (d, H) €

F(C) and considering the new conditions hl, h2, H5, H6 and H5’ (of this note), we obtain
1

H(x*, z%) §H($*,xk_1)+—<ek,mk—x*>, (4.6)
Ak

for all z* € S*(f,C).



Proof. Given z* € S*(f,C) by H5’, then f(2*,w) = 0, Vw € C and as z¥ € C, we obtain
f(z*,2¥) = 0, by Corollary 2.1 (from this note) we have f(x*, 2*) < 0. What follows from the
proof is equal to Proposition 4.1 by Mallma et al. [20]. [

Remark 4.1 The definitions of proximal distance and induced proximal distance it was intro-
duced by Auslender and Teboulle [4], and for example used in Papa et al. [21] to solve the
quasiconvex minimization problem, this proximal distance is also studied in Alvarez et al. [2].

Now, the idea is to get an inexact proximal method with proximal distances for quasiconvexity
equilibrium problems, then it will be a later work to future analyze the implications of the
Proposition 4.1 in the paper of Mallma et al. [20].

On the other hand, one last future work would be to apply the Lemma 2.1 in the Theorem
6.1, case (a), by Khatibzadeh et al. [19], also apply it in the Section 4 of the paper of Tusem
et al. [18] and also in Santos and Scheimberg [24]. Another natural idea would be to extend
the results in the work of Cruz Neto et al. [11], in order to generate an algorithm to solve the
quasiconvex equilibrium problem on Hadamard manifolds.
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