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RIO DE JANEIRO, RJ – BRASIL
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Detecção de comunidades é um problema fundamental em Ciência de Redes,

onde os vértices de uma dada rede devem ser particionados de maneira que vértices

num mesmo grupo sejam estruturalmente relacionados. Este problema encontra

aplicações em diversas áreas e tem atráıdo muita atenção a seus aspectos práticos

e teóricos. Algoritmos de propagação de rótulos (label propagation algorithms) se

baseiam num procedimento que iterativamente atualiza a classificação de cada nó

através do voto da maioria dos rótulos de comunidade de seus vizinhos. Estes algorit-

mos são conhecidos por serem simples e rápidos, e são muito utilizados em aplicaçoes

práticas. Nesta dissertação, estudamos variações de um algoritmo de propagação de

rótulos aplicado ao problema da recuperação de duas comunidades intŕınsecas a

uma rede (majority vote algorithm, ou MVA), e propomos as seguintes novas contri-

buições: (i) um limiar dinâmico que generaliza o limiar fixo utilizado pelo MVA, (ii)

um critério de parada que resolve o problema de oscilação das soluções produzidas

por algoritmos de propagação de rótulos, e (iii) estratégias de bootstrapping que re-

utilizam soluções para alcançar melhores resultados. Estas modificações dão origem

a novos algoritmos de propagação de rótulos que chamamos Global Average Majo-

rity (GAM) e Global Average Majority with Bootstrapping (GAMB). Finalmente, o

comportamento e a perfomance dos novos algoritmos são avaliados através de expe-

rimentos numéricos com redes sintéticas geradas pelo stochastic block model (SBM)

e redes do mundo real com comunidades conhecidas.
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Community detection is a fundamental problem in network science, where the

vertices of a given network are to be partitioned such that vertices in the same group

are structurally related. This problem finds applications in a wide range of areas

and has attracted much attention towards both its theoretical and practical aspects.

Label propagation algorithms are based on a procedure that iteratively updates the

classification of each node by a majority vote of its neighbors’ community labels.

These algorithms are known to be simple and fast, and are widely used in practical

applications. In this dissertation, we study variations of a label propagation algo-

rithm applied to the problem of recovering two communities embedded in a network

(majority vote algorithm, or MVA), and propose the following new contributions:

(i) a dynamic threshold that generalizes the fixed threshold used by the majority

vote algorithm, (ii) a stopping criterion that solves the oscillation problem displayed

by the solutions produced by label propagation, and (iii) bootstrapping strategies

that re-utilize solutions to achieve better results. These modifications give rise to

new label propagation algorithms which we call Global Average Majority (GAM)

and Global Average Majority with Bootstrapping (GAMB). Finally, the behavior

and performance of the new algorithms are evaluated by numerical experiments with

synthetic networks generated by the stochastic block model (SBM) and real world

networks with known communities.
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Chapter 1

Introduction

In various domains of science and technology, one wants to understand systems com-

posed of many interacting elements. Often times, not only the elements themselves

and the nature of their relations are important, but also the pattern of interactions

between them. Out of concerted efforts to better understand the role of structure

in this kind of phenomena was born the discipline now called Network Science.

In the simplest form, a network (or a graph) is just a collection of points called

vertices or nodes joined together by edges. The power of this abstract definition

lies on the fact that these nodes and edges can represent many different entities and

relations between them, and thus the study of this mathematical object can lead to

widely applicable results.

An important example of system studied under this framework is the Internet,

in which vertices represent computers and other devices like servers and routers,

and the edges represent physical connections capable of transmitting data between

those devices. Since the Internet was built and is maintained until the present day

by many independent groups of people, with little centralized control, its structure

and how it affects its function are not fully understood. To give a concrete example

of how the structure influences function, consider how two computers in different

parts of the network (perhaps in different continents) communicate. To establish

and maintain a connection, the two computers exchange data packets, which are

transmitted through a series of routers and servers that compose the infra-structure

of the network. A first question can be easily posed: is the network connected?

That is, given any two vertices A and B, is there a sequence of intermediary nodes

connected by edges (also called a path) linking point A to point B? If not, then com-

munication between them is impossible. Are there multiple paths connecting A to

B? If not, then a the communication between A and B will be succeptible to failures

happening in the nodes and edges between them. A less trivial question involves the

dynamics of packets sent through the network. Given that multiple devices want to

send and receive data at the same time, and that middle equipment cannot always
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support the volume of traffic received, how can communications protocols be engi-

neered to ensure fast and reliable transmission of data without congesting too much

the network?

A very different kind of network that is intensely studied are social networks.

Although nowadays the term social network is more frequently associated with online

services such as Facebook and Instagram, researchers interested in the dynamics of

social interactions of groups of people have been acquiring and analyzing related

data since 1930s [3]. In this context, nodes can represent anything from individuals

to institutions and markets, and edges may correspond to professional or intimate

relationships, financial transactions, and many others. The questions posed on these

kinds of networks can involve the diffusion of ideas and behaviors, spread of diseases,

formation and evolution of associations, and robustness of the financial system, to

give a few examples.

Figure 1.1: Collaboration network of scientists working at the Santa Fe Institute.
Source: [1]

A prominent property in many networks is the presence of groups of vertices

that are more densely connected among themselves than with the rest, which are

called communities or, depending on the context, also modules or clusters. This

organization often correlates with important information about the network, such

as identity, spatial location, and function of the vertices. Consider for instance the
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collaboration network of scientists working at the Santa Fe Institute (SFI) in New

Mexico, United States, depicted in Figure 1.1. In this network vertices represent

scientists, an edges links two scientists if they co-authored an article, and the differ-

ent node labels indicate the research areas of the scientists. It is clearly seen that

co-authorships tend to involve scientists working in the same area, with only a few

edges joining different areas, which illustrates the concept of community mentioned

above.

An important example of application of community structure knowledge is in

the context of biochemical networks. Many systems in the body are adequately rep-

resented as networks, such as interacting proteins, genes, or cells. Mechanisms such

as protein production, metabolism, and cell regulatory behavior are fundamentally

dependent on the patterns of interactions between these components, and knowledge

of the network structure facilitates in searching for genes that are related to a dis-

ease, proteins that can be combined together to form new molecular products, and

even in designing experiments to test unknown interactions. Since these networks

are often too large to investigate exhaustively and related components tend to form

clusters, community structure can serve as a very useful guide [4].

Other applications of community detection include product recommendation sys-

tems [5], medical prognosis [6], image segmentation [7], product-customer segmen-

tation [8], and many others. Detecting the presence and recovering the composition

of communities is therefore a fundamental problem in the study of networks and its

applications.

As the networks in each domain of study may possess very different properties,

there is no single clear-cut definition of what constitutes a community. In conse-

quence, many models and algorithms have been proposed, and choosing the “right”

one is largely a matter of adequacy to the task at hand. Even then, understand-

ing which approaches are adequate for any specific task is still very much an open

problem, and the subject of ongoing research.

One very popular type of algorithm used to recover communities known for its

simplicity and speed, is the label propagation algorithm [9], which starts from an

arbitrary initial configuration of community labels, and iteratively updates the label

of each node based on the majority vote of the neighbors’ labels. This algorithm

provides the basis and inspiration for this work.

1.1 Contributions

In this dissertation, we study variations of a label propagation algorithm applied to

the problem of recovering two communities embedded in a network (majority vote

algorithm, or MVA), sometimes called graph bisection. We identify in this work the

3



following contributions:

• A generalization of the fixed threshold that MVA uses to determine label as-

signments. In particular, the basic algorithm that we propose, Global Average

Majority (GAM), uses a time varying threshold given by the global average

of local fractions at each iteration. Besides giving a formal definition, some

theoretical properties are established, connecting it to the MVA under some

restrictions. This method also introduces a new stopping criterion that deals

with the cycling problem displayed by solutions produced by label propagation.

• Two techniques to improve classification accuracy by re-utilizing the solutions

obtained in successive GAM rounds, which we call hard and soft bootstrapping.

This gives rise to a new method Global Average Majority with Bootstrapping

(GAMB).

• A thorough evaluation of GAM and GAMB under the planted bisection ran-

dom graph model highlighting important properties, as well as indicating its

superiority in comparison to other approaches, such as higher accuracy and

comparable running times. We also evaluate the performance of the algorithms

on a couple of real world networks in which a meaningful two-community struc-

ture is known.

The first two contributions are independent from each other, and show significant

advantages over the simple majority voting. These ideas could in principle be applied

to other popular community detection algorithms, and we believe that they provide

fresh ideas to community detection in general.

The research in this work originated an article submitted for publication in the

2019 ACM SIGMETRICS / IFIP Performance conference.

1.2 Document organization

The remainder of this dissertation is organized as follows. Chapter 2 covers the

concept of community structure and related definitions and models. Chapter 3 re-

views theoretical and practical approaches to the problem of community detection.

Chapter 4 presents GAM along with some basic properties, and numerical evalua-

tion on artificial networks. In Chapter 5, GAM is enhanced with a bootstrapping

procedure and its performance evaluated, and in Chapter 6 the algorithms are then

evaluated on three real world networks. Finally, conclusions and future perspectives

are presented in chapter 7.
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Chapter 2

Community structure

In this work we shall focus on networks represented by unweighted, undirected simple

graphs. That means a network is represented by a graph G = (V,E) composed by a

finite set of vertices V – which unless specified otherwise can be taken to be the set of

integers [n] := {1, 2, . . . , n} for some n ∈ N – and a set of edges E consisting of pairs

of distinct elements of V . We shall denote (u, v) the edge between u, v ∈ V , noting

that the order in which the vertices are written is irrelevant, i.e (u, v) is the same

as (v, u) (undirected), only one edge may exist between two distinct vertices and no

self-loops are allowed (simple), and no weight is given to the edges (unweighted).

Throughout this work, we will generally assume that the graphs under consideration

are connected.

Letting n = |V | be the number of vertices in G, we shall speak of the adjacency

matrix of G as the binary n × n matrix A such that Aij = 1 when (i, j) ∈ E, and

Aij = 0 otherwise. Note that since the edges are undirected, the adjacency matrix

is symmetric. The degree of a vertex i ∈ V is defined as di :=
∑

j∈V Aij, and it is

easy to see that if m = |E| is the number of edges in G, then
∑

i∈V di = 2m.

If C is a subset of V and i ∈ V , we also define the internal and external degrees

of i with respect to C as dinti :=
∑

j∈C Aij and dexti :=
∑

j∈V \C Aij.

2.1 What is a community?

Traditionally, the idea behind the concept of community is that of a subset of vertices

more densely connected within itself than with the rest of the network. This notion is

sufficiently vague so as to allow many different formalizations. One of the first to be

proposed relied on the concept of a clique, which is a subset of vertices K ⊂ V such

that there is an edge between any pair of vertices in K. This definition is evidently

too strict, since many groups of vertices that may be considered communities do not

display such regular connections. Other definitions based on similar concepts such

as n-clans, n-clubs, and k-plexes have also been put forward (see [1] and references
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therein). RADICCHI et al. [10] proposed the following two more flexible definitions,

which we describe below.

• A community in a strong sense is a subset C of V such that

dinti > dexti for all i ∈ C

That is, every vertex in C has more connections to other vertices in C than

to the rest of the graph.

• A community in a weak sense is a subset C of V such that∑
i∈C

dinti >
∑
i∈C

dexti

In other words, the sum of all degrees within C is greater than the sum of

degrees toward the rest of the network.

Even this definition has tangible drawbacks: for instance, a sufficiently large subset

of vertices may be considered a community in the strong or weak sense regardless

of internal density, and the union of disjoint communities is also a community, even

when there are no edges between them [11]. A similar definition which has gathered

some interest is due to HU et al. [12]. The issue of properly defining communities

has also been brought up by COSCIA et al. [13].

Going in the opposite direction, more recent efforts have avoided altogether the

question of exactly defining a community, and have instead relied on quality functions

that assess how “community-like” a given subset of vertices is, or on the comparison

with known clusters in real or artificial benchmark networks (often called ground

truth communities) by similarity metrics [1, 14].

One of the most popular quality functions is undoubtedly the modularity due

to NEWMAN and GIRVAN [15, 16]. This concept has been explored from many

different viewpoints, and inspired the development of various algorithms and related

metrics. It also displays a prominent characteristic of modern community detection

methods, which is the reduced focus on counting and comparing the number of

internal and external edges in subgraphs, and instead focusing on the probability of

two vertices sharing a link with respect to a probabilistic model of how the edges

are formed.

This leads us to the stochastic block model (SBM). It first appeared in social

network literature [17], in mathematics as the inhomogeneous random graph [18],

in computer science as the planted partition model [19, 20], and is arguably the

simplest and most studied probabilistic network model with embedded community

structure.

6



In the next sections, we provide more details on these two concepts which are

central to community detection.

2.2 Modularity

The concept of modularity was proposed by NEWMAN and GIRVAN [16] as a way

to quantify the community strength of a partition of vertices found by an algorithm,

something particularly important in practical scenarios where community detection

algorithms are applied to networks with unknown community structure. Modularity

is based on the property of assortative mixing [15], that is, if vertices v in a network

belong to a class or possess a characteristic cv, and if the network displays assortative

mixing, then vertices of the same class or characteristic tend to be more connected

than would be if connections were made at random, independently of the vertex

classes.

To be more precise, let ci ∈ [k] = {1 . . . k} denote the class of a vertex i ∈ V .

The total number of edges between vertices of the same class can be written as

∑
(i,j)∈E

1(ci = cj) =
1

2

∑
i,j

Aij 1(ci = cj)

The expected number of edges if connections were random is computed following a

random graph model called configuration model. In this model, the degree di of each

vertex is fixed, and thus so is the number of edges in the network, m = 1
2

∑
i∈V di.

Each vertex i then has di “stubs” of edges, and the edge set is realized by connecting

pairs of stubs uniformly at random, until all the stubs have been used. Thus every

possible matching of stubs is generated with the same probability. Technically,

this may produce networks with self-loops and multiple edges between two vertices.

However, when degrees are bounded, the probability of multiple edges and self-loops

goes to zero as the number of edges grows, which in practice means that for large

networks these effects can in general be ignored. The probability of an edge between

vertices i and j can be computed as

ki
kj

2m− 1
≈ kikj

2m

Modularity (Q) is then the difference between the number of edges between vertices

of the same class in the network and in the configuration model, divided by the total

number of edges:

Q =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
1(ci = cj)

The quantity Q takes positive values when there are more edges between vertices
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of the same class than what would be expected by chance, and negative otherwise.

It is strictly less than 1, even in a “perfectly mixed” network, and depending on

sizes of classes and degrees it might even be considerably less. It is possible then to

normalize by the modularity of this perfectly mixed value, though this is not usually

done in practice [3].

Modularity is often used to evaluate communities found by various algorithms

[21, 22], and also the basis of a popular class of modularity maximization algorithms

[8, 23, 24].

2.3 Random Graph Models

The main benchmark graphs used in this work are stochastic block models with

two symmetric commmunities, also known as planted bisection models. Stochastic

block models are naturally understood as a generalization of Erdős-Rényi random

graphs with an embedded community structure. In this section we define and review

relevant properties of these models.

2.3.1 Erdős-Rényi (ER) model

This is one of the simplest random graph models one can conceive of, which is both a

precursor and a particular case of the general SBM. It was first proposed by Edgar

Gilbert in 1959 [25], but received the name of Erdős and Rényi who at the time

studied a similar model. It is useful to us as a null model of a network that has no

underlying community structure and as building block of the SBM.

Definition 1 (Erdős-Rényi random graph G(n, p)). Let n be a positive integer, and

p ∈ [0, 1]. A graph G is said to be drawn according to G(n, p) if it has n vertices

and each pair of distinct vertices has probability p of being connected by an edge.

A few important properties of the G(n, p) model are collected below

Proposition 2. Let G ∼ G(n, p). Then

1. The degree distribution of a fixed vertex i in G is given by di ∼ Binom(n−1, p).

Thus, the expected degree of every vertex is (n−1)p, which is also the expected

average degree in the graph.

2. The number of edges m = |E| is also a binomial random variable, with distri-

bution Binom(
(
n
2

)
, p). Therefore the expected number of edges in G is n(n−1)

2
p,

and the expected graph density (ratio of edges present to the total of possible

edges) is p.
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3. If pn = c logn
n

and Gn ∼ G(n, pn), then lim
n→∞

Pr
[
Gn is connected

]
= 1 if and

only if c > 1. We say in this case that the property of G being connected

happens asymptotically almost surely (aas), and that p(n) = n−1 log(n) is a

threshold function for this property.

2.3.2 General Stochastic Block Model (SBM)

In the general SBM, each of the n vertices in the graph is randomly assigned to one of

k communities (k fixed) according to a specified probability vector p = (p1, . . . , pk).

Then, given the vector of community labels σ ∈ [k]n, each edge (i, j) has probability

Wci,cj of appearing in the graph, where the matrix of probabilities W is also a

parameter of the model. Below we give the formal definition as presented in [26].

Definition 3 (General Stochastic Block Model (SBM)). Let n, k ∈ N, p =

(p1, . . . , pk) a probability vector over [k], and W a k × k symmetric matrix with

coefficients in [0, 1]. We say that the pair (G, σ) is drawn under SBM(n, p,W ) if σ

is an n-dimensional random vector with iid components distributed under p, and G

is an n-vertex simple graph such that the vertices i, j are connected with probability

Wσi,σj .

The SBM is called symmetric when the probability vector p is uniform and W

takes a constant value qin on the diagonal, and a constant value qout outside the

diagonal, denoted SSBM(n, k, qin, qout). This means that two vertices that belong

to the same community are adjacent with probability qin, and vertices in any two

distinct communities are adjacent with probability qout.

Another possibility commonly considered in the SBM is to require σ to be drawn

such that 1
n
|{v ∈ [n] : σv = i}| = pi, which in the symmetric case amounts to

|{v ∈ [n] : σv = i}| = n/k (for suitable values of n, k) and is referred to as being

strictly balanced.

2.3.3 Planted Bisection Model (PBM)

By far the most studied instance of the SBM is the strictly balanced SSBM with

k = 2 communities, and it is the one on which we focus on this work. This model

will be used both to provide intuition as well as for numerical evaluation of the

algorithms. For completeness, a formal definition is given below, where we note that

since the probability vector p is not used, we use p to denote the intra-community

edge probability (qin), and q for the inter-community edge probability (qout).

Since we are interested in clusters of vertices more densely connected inside the

cluster than with the rest of the network, we will in general assume that p > q

(although the model imposes no restriction other than p, q ∈ [0, 1]). For simplicity

9



of notation, we denote n the number of vertices in each community, thus the total

number of vertices in the graph is 2n.

Definition 4 (Planted Bisection Model (PBM)). Given n ∈ N and p, q ∈ [0, 1], we

define a random graph with 2n nodes (G, σ) ∼ PBM(2n, p, q), by first choosing a

balanced labelling σ (uniformly at random from the set {τ ∈ {0, 1}2n :
∑2n

i=1 τi = n})
and then randomly drawing the set of edges of G = (V,E), where V = {1, . . . , 2n},
according to

Pr
[
{i, j} ∈ E | σ

]
=

p, if σi = σj

q, if σi 6= σj
for all i, j ∈ V, i 6= j

We now remark a few properties of this model.

Proposition 5. Let (G, σ) ∼ PBM(2n, p, q).

1. The subgraph induced by the vertices in each community is an ER random

graph with parameters n, p.

2. The number of edges inside each community is distributed as a Binom(
(
n
2

)
, p)

random variable, thus the total of intra-community edges has distribution

Binom(n(n− 1), p), with expected value n(n− 1)p.

3. Since there are n vertices in each community, the number of inter-community

edges has distribution Binom(n2, q). Thus the expected number of edges be-

tween communities is n2q. The expected number of edges in the whole graph

is therefore n(n− 1)p+ n2q.

It is easy to see that, according to the notion of community we have specified,

the parameter p− q is roughly proportional to the difference of intra-communty and

inter-community edges (for fixed n), and may be taken as a measure of the “strength”

of the community structure in the PBM model. Notice that in the degenerate case

p = q, the probability of an edge between two vertices is independent of community

assignment, and there is effectively no community structure in the model, which is

then equivalent to a G(2n, p) random graph.
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Chapter 3

Community detection

As hinted towards in the previous chapters, the general goal of community detection

is to find groups of vertices in the network that are somehow more connected within

the group than with the rest of the network. There are many different approaches

to this task. Some are more principled, such as the ones which define exactly the

conditions under which a subset of vertices is considered a community (e.g clique)

and then attempt to find such subsets in the network, or the ones which define

a quality function for the strength of community structure and then finds vertex

clusters by optimization. Others are heuristic: a procedure is defined that outputs

clusters of vertices based on the features of the network, and the quality of such

groups is assessed a posteriori by quality functions and/or by comparison to known

communities in benchmark networks via similarity metrics.

Next, we review some relevant theoretical results and practical approaches to

community detection.

3.1 Theoretical approach

On the theoretical side of community detection, we are mainly interested in results

that ascertain under which conditions the following two kinds of problems can be

solved:

1. Detection (also called distinguishability or testing). Given a network (which

may be an instance of a random graph model), determine if there exists non-

trivial community structure present in the network (or model).

2. Recovery (or reconstruction). Given a network with non-trivial community

structure, find a partition of the vertex set that maximizes the agreement

with the planted communities.

These questions have been more mainly studied in the stochastic block model. As

said before, the reason for this is that the SBM is simple enough so that it allows
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analytical treatment, yet it captures very well our intuitive notion of community

and is flexible enough to display many interesting phenomena. In this work we are

only concerned with the recovery problem.

To provide a formal definition of the problem in the SBM, we first define how we

compare two different vectors of community labels. We first state the definition in

the case of the general SBM, and then what it amounts to in the PBM. The similarity

between two vectors of community labels (community vectors) is computed simply by

the fraction of vertices on which the two community labels agree. This is considered

up to any permutation of the community labels, since what matters is the subset of

vertices that compose each community and not the assigned labels.

Definition 6. Let σ, σ′ ∈ {0, 1}[2n] be two strictly balanced community vectors. We

define the agreement between σ and σ′ as

A(σ, σ′) = max

{
1

2n

2n∑
i=1

1(σi = σ′i),
1

2n

2n∑
i=1

1(σi = 1− σ′i)

}
.

Let σ be a community vector and denote P(σ) = {Pi(σ)}i∈[k] with Pi(σ) = {v ∈
[n] : σv = i} the partition encoded by σ. Then we can see that

A(σ, σ′) = 1 if and only if P(σ) = P(σ′) (3.1)

thus corresponding to equality of the encoded partitions. If σ̂ is an estimate of the

ground truth labels σ of any SBM instance, we shall refer to the quantity A(σ̂, σ)

as the accuracy of σ̂.

We will now state formally and then describe some of the most important recon-

struction problems in the PBM.

Definition 7. Let {pn}, {qn} be sequences in [0, 1], and (Gn, σn) ∼ PBM(2n, pn, qn).

Omitting the subscript n for clarity, we say that the following recovery requirements

are solved if there exists an algorithm that takes G as an input and outputs σ̂ such

that

• Exact recovery: Pr{A(σ, σ̂) = 1} = 1− on(1)

• Almost exact recovery: Pr{A(σ, σ̂) = 1− on(1)} = 1− on(1)

• Weak recovery: Pr{A(σ, σ̂) ≥ 1/2 + Ωn(1)} = 1− on(1)

Moreover, for any of the above conditions, when all that is known is that there

exists an algorithm that satisfies it, we say that the condition is information-

theoretically achived; when there is an algorithm polynomial in n that satisfies the

condition, then we say that it is efficiently achieved.
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Put in words, the above definitions mean that exact recovery requires that exact

reconstruction of the partition; almost exact recovery allows for a vanishing fraction

of misclassified vertices; and weak recovery only asks for an estimator performing

better than random guesses. All of the above must be satisfied only asymptotically

with high probability, i.e with probability tending to 1 as n goes to infinity. Note

that there are also analogous versions of the above statements in the more general

SBM [26].

Let us comment on the motivation for the high probability requirement. If

(G, σ) ∼ PBM(2n, p, q), then given any realization of σ (which we will call the

ground truth labels), and assuming that p, q are strictly between 0 and 1, it is easy

to see that any graph on 2n vertices can be generated, and reciprocally, a realization

G of the graph can correspond to any one of the strictly balanced ground truth

community vectors. Thus, a procedure that outputs an estimate σ̂ of the ground

truth labels using only the graph G cannot be always accurate. In this situation,

the best that we can hope for is to maximize the agreement between σ and σ̂ in

probability.

Many other related problems and approaches have been studied. We refer to [26]

for a comprehensive survey of recent results.

3.1.1 Exact recovery

Before stating the main result concerning exact recovery in the planted bisection

model, let us remark an easy necessary condition. Adapting property 3 of the ER

model in Proposition 2, it is easily concluded that PBM is connected aas if and

only if pn, qn ≥ (1 + ε) log(n)/n for some ε > 0. Since it is not possible to exactly

recover the partition of a disconnected graph using the topology alone, this gives

necessary condition for exact recovery. When pn = a log(n)/n, qn = b log(n)/n for

constant a, b > 0, we say that the PBM is in the logarithmic degree regime (recall

from Proposition 5 the expected average degree in the PBM).

Theorem 8. [27] Consider sequences {pn}, {qn} in [0, 1] such that pn = an log(n)/n

and qn = bn log(n)/n, where an, bn ∈ Θ(1). There exists an algorithm that achieves

exact recovery for PBM(2n, pn, qn) if and only if

(an + bn − 2
√
anbn − 1) log n+

1

2
log log n→∞ (3.2)

From the result above we can recover the result in the logarithmic regime by

ABBE et al. [28]:

Theorem 9. Exact recovery in PBM(2n, a log(n)/n, b log(n)/n) is solvable and ef-

ficiently so if (a+ b)/2−
√
ab > 1 and unsolvable if (a+ b)/2−

√
ab < 1.
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MAP estimation and minimum-bisection

Let P stand for the ground truth partition corresponding to (G, σ) ∼ PBM(2n, p, q)

and P̂(G) the partition corresponding to estimated community labels σ̂(G). To

achieve exact recovery, we want the estimator σ̂(G) to maximize Pr{A(σ, σ̂) = 1} =

Pr{P = P̂(G)}. By the law of total probability, we may write

Pr{P = P̂(G)} =
∑
g

Pr{P = P̂(G) |G = g}Pr{G = g}

Therefore the best we can do is to find an estimator that maximizes Pr{P =

P̂(G) |G = g} for every possible realization g. This is the maximum a posteri-

ori (MAP) estimator of P .

Let us emphasize that by its very definition, the MAP estimator maximizes the

probability of recovering the entire partition. Thus if MAP fails, then no other

algorithm can achieve exact recovery. This is true not only for the PBM, but for the

general SBM with k communities.

In a strictly balanced symmetric SBM, it is easy to see that Pr{P = π} is uniform

over the set of permissible partitions π. Using Bayes’ Theorem, we can write

Pr{P = π |G = g} ∝ Pr{G = g | P = π}Pr{P = π},

thus MAP is equivalent to maximum likelihood estimation.

Now we consider specifically the planted bisection case. Observing that for any

two distinct i, j ∈ [n] we can write

Pr{(i, j) ∈ E(G) | P = π} =

p, if {i, j} ⊂ π` for ` = 1 or ` = 2

q, otherwise

and letting Nin, Nout be respectively the numbers of intra-community and inter-

community edges, then M := |E(G)| = Nin +Nout, and

Pr{G = g | P = π} =
∏

1≤i<j≤M

Pr{(i, j) ∈ E(G) | P = π}

= pNin(1− p)M−NinqNout(1− q)M−Nout

= pM(1− q)M
[

(1− p)q
p(1− q)

]Nout

(3.3)

M depends only on G, and Nout is a function of G and P . In a rather cumbersome
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way, we can explicitly write

Nout(G,P) =
∑

1≤i<j≤2n

1 ((i, j) ∈ E(G)) 1 ({i, j} 6⊂ P1 and {i, j} 6⊂ P2)

Since 0 < q < p < 1 implies 0 < (1−p)q
p(1−q) < 1, for given G = g the likelihood

(3.3) is maximized when the number of inter-community edges Nout(g, π) is mini-

mized. With the restriction of balanced partitions, this is the classical min-bisection

problem. We know that in terms of worst-case complexity, the minimum bisection

problem is NP-hard [29]. However, for (efficiently) achieving exact recovery, it is

sufficient that there exist a polynomial time algorithm that solves min-bisection with

high probability.

The spectral algorithm

Let (G, σ) ∼ PBM(2n, p, q) and A be the adjacency matrix of G. Without loss

of generality, we work with community vectors in {−1, 1}2n. The restriction to

strictly balanced partitions imposes
∑

v∈[2n] σv = 0, or equivalently σ>1 = 0, with

1 = (1, . . . , 1). Also note that the number of edges m = |E(G)| is fixed, and

Aijσiσj =


1, if (i, j) ∈ E and σi = σj

−1, if (i, j) ∈ E and σi 6= σj

0, if (i, j) /∈ E

Letting Nin(σ), Nout(σ) be the number of inter and intra-community edges according

to σ, it is easy to see that

σ>Aσ =
∑
i,j

Aijσiσj = Nin(σ)−Nout(σ) = m− 2Nout(σ),

so that the min-bisection problem is equivalent to

max σ>Aσ

subject to σ>1 = 0

σ ∈ {−1, 1}2n
(3.4)
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The integer constraint implies ‖σ‖22 = σ2
1 + . . . + σ2

2n = 2n, which suggests the

following spectral relaxation

max σ>Aσ

subject to σ>1 = 0

‖σ‖22 = 2n

(3.5)

Since A is symmetric, without the linear constraint σ>1 = 0, the above problem

amounts to the variational characterization of the largest eigenvalue of A [30].

The solution of the problem with the linear constraint is the eigenvector corre-

sponding to the largest eigenvalue of the projection of A on the subspace orthogonal

to the vector 1. Notice that A1 is the vector containing the degrees of the vertices,

and since the binomial distribution of degrees concentrates very strongly around its

mean µ := (n − 1)p + nq, the vector A1 will be close to µ1 with high probability.

Thus it is reasonable to suppose that the solution to the spectral relaxation will be

close to the eigenvector v2(A) corresponding to the second largest eigenvalue of A

instead. Finally, we obtain a solution with integer coefficients by truncating v2(A):

σ̂spec
i =

−1, if (v2(A))i < 0

1, if (v2(A))i ≥ 0

3.1.2 Weak recovery

The recent interest in weak recovery in the SBM was sparked by the following

conjecture by DECELLE et al. [31], based on non-rigorous ideas from statistical

physics.

Conjecture 10. Let (G, σ) ∼ SSBM(n, k, a/n, b/n), and define SNR = (a−b)2
k(a+(k−1)b) .

Then for every k ≤ 2, it is possible to solve weak recovery efficiently if and only if

SNR > 1. This is called the Kesten-Stigum threshold.

In the case k = 2, the threshold is reduced to

(a− b)2 > 2(a+ b)

This conjecture was first established for the case k = 2 by [32, 33], who proved

achievability above the threshold, and [34], that showed the impossibility below the

threshold. A slightly more flexible characterization was achieved by [35]:

Theorem 11. Weak recovery is solvable in SSBM(n, 2, an/n, bn/n) when an, bn =

π(1) and (an − bn)2/(2(an + bn))→ λ if and only if λ > 1.
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3.2 Practical Approach

On the practical side, there are a great number of possible approaches to community

detection, exploring different notions of community, of similarity metrics between

partitions, and heuristic principles, each combination leading to different algorithms

and methods of evaluation. In particular, one remarkable characteristic of practi-

cal community detection is that in general the number of clusters in a network is

not known a priori [3], are often varied in connectivity and size [36], and display

hierarchical structures [37, 38]. So far there is no consensus in the community on

the most appropriate, although many previous works have evaluated and compared

the performance of such algorithms and metrics under various conditions, and some

principles for choosing a suitable algorithm have been put forward [1, 39–41].

Let us now see some different algorithms that have been proposed for practical

community detection.

3.2.1 Traditional approaches

The first algorithmic approaches to community detection appeared in social network

analysis literature and can be broadly divised into two types, agglomerative, and di-

vise methods [16]. The first proceed by grouping together vertices that are similar

according to some given metric. This process could be halted at any given point,

and the resulting clusters would be taken to be the communities in the network.

Divise methods, on the other direction, start with the full network and proceeds by

removing edges between least similar pairs of vertices, eventually segmenting the

network into smaller components, which are declared communities. Adapting this

idea, Newman and Girvan [16] proposed their popular Edge-betweenness algorithm.

One remarkable feature of these algorithms is the production of dendrograms, which

display a division of networks into clusters at multiple levels. Because of this, these

methods are also referred to as hierarchical clustering algorithms. They, however,

lack a bit of justification for the significance of their results, since the network den-

drograms are always constructed, regardless of the actual presence of communities.

3.2.2 Modularity optimization

To address this issue, later came algorithms based on the optimization of modu-

larity (cf. Section 2.2). This optimization problem was shown to be NP-hard by

BRANDES et al. [42], and several ways of approximating its solution have been

proposed, such as the original greedy algorithm proposed by NEWMAN [43], Fast-

greedy algorithm by CLAUSET et al. [8], Louvain by BLONDEL et al. [23], and

many others. Although the concept of modularity has been shown to not always
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capture significant community structure [44–46], it remains very popular due to its

principled nature and simplicity.

3.2.3 Spectral methods

Methods employing the eigenvectors of matrices such as the adjacency and the

Laplacian matrix of a graph have been known for a long time, and go back to the

problem of graph partitioning encountered in applications such as distribution of

parallel computing workload, and VLSI circuit design. [47].

Noticing that the partitions found using the Laplacian matrix did not really cor-

respond to natural subdivisions found in networks, NEWMAN [24, 48, 49] proposed

methods based on the modularity matrix which have since become very popular.

3.2.4 Dynamics based methods

As a way to capture more fluid notions of community, and higher-level community

structures, some methods have explored dynamic network processes like random

walk diffusion, spin dynamics, and synchronization [1].

Walktrap [50] measures the similarity of two vertices using the transition proba-

bility of a random walker moving from one to the other in a fixed number of steps,

and then applies traditional hierarchical clustering to detect community structure.

ROSVALL et al. [51] proposed Infomap, which finds communities by minimizing the

description length of a random walk. Spinglass [52] is based on ideas from statisti-

cal mechanics, and maps the community detection problem to energy minimization

in a model of ferromagnetic and antiferromagnetic interactions (spin glass model),

by simulated annealing. An interesting feature of this method is that it not only

favors intra-community edges and penalizes inter-community edges, but also favors

inter-community non edges and penalizes intra-community non edges.

3.2.5 Statistical inference based

Another broad class of methods finds communities by fitting statistical network

models to the data. HASTINGS [53], used planted partition models with multiple

communities and a belief propagation algorithm to perform maximum likelihood es-

timation of the unknown paramaters. NEWMAN et al. [54] use a mixture model

with directed edges and the expectation-maximization (EM) algorithm. Similar ap-

proaches were undertaken by [55–57].

18



3.2.6 Label propagation (LP)

Finally, starting with the work of RAGHAVAN et al. [9], a new class of simple and

fast methods emerged, based on the idea of label propagation. In this type of method,

each vertex is initially given some label, and then iteratively updated according to

a function of their neighbors’ labels, such as the majority among them. [58, 59]

The working of the original LP algorithm can be described as follows. At first,

each vertex i ∈ V is initialized with a community label ci(0) = i. Then each one

has its label updated, assuming the label of the majority of its neighbors, with

ties broken uniformly at random. In a synchronous version of the algorithm, all

vertices have their labels updated in parallel for each iteration t = 1, 2, . . ., thus

ci(t) is a function of {cj(t − 1)}j∈Ni
, where Ni is the neighborhood of i. In the

asynchronous version, at each iteration t, the vertices are randomly ordered, and

their labels updated sequentially. The algorithm stops when each vertex has a label

that reaches the majority among their neighbors. That is, letting dC`
i be the number

of neighbors vertex i has in community C`, and Ck be the community assigned to i

at the current iteration, the process stops if each vertex i satisfies

dCk
i ≥ dC`

i for all `
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Chapter 4

Majority voting

In this chapter we motivate and present one of the main contributions of this work,

which is a generalization of the majority vote idea used by label propagating algo-

rithms.

4.1 Majority vote algorithm

Since the original label propagation algorithm proposed [9] started with one different

label for each vertex, allowing for an arbitrary number of communities, we shall start

here with a modified version of the synchronous algorithm, specialized for the case of

two communities, which we call majority vote algorithm (MVA). With two balanced

communities, we suppose the graph has 2n vertices, and the labels are specified by

a vector in {0, 1}2n. The initial assignment is made uniformly at random for each

vertex. As does the label propagation algorithm, MVA assigns to each vertex the

label assumed by the majority of its neighbors at the current iteration, breaking ties

arbitrarily at random.

It will be useful to formalize the algorithm in the following manner: let A denote

the adjacency matrix of G and D = diag(d1, . . . , d2n), where di is the degree of node

i. Given σ ∈ {0, 1}2n, we denote the fraction of 1-labelled neighbors of i in σ as

fi(σ) := (D−1Aσ)i =
1

di

∑
j∈V

Aijσj , (4.1)

The complementary fraction of 0-labelled neighbors of i is then given by
1
di

∑
j∈V Aij (1− σj). Thus the majority of vertex i’s neighbors has label 1 when∑

j∈V

Aijσj >
∑
j∈V

Aij (1− σj) ⇐⇒ fi(σ) > 1/2 .

Letting σ(t) denote the community labels assigned at iteration t, the updating
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scheme can then be written as

σi(t) =


1, if fi (σ(t− 1)) > 1/2

0, if fi (σ(t− 1)) < 1/2

∼ Ber(1/2), otherwise

for every node i ∈ V . (4.2)

As the LP algorithm, MVA may oscillate between states when a vertex has the

same number of 1 and 0 neighbors. Instead of proceeding as in the original version

of the algorithm, the MVA stops when it finds a cycle (or fixed point) on its sample

path. This condition may be implemented by storing the previously visited states

in a list or hash table, and checking if the new state has already been visited or not

at each iteration. As the state space of all possible label assignment is finite, this

stoppage criterion will always be eventually satisfied. Although in theory cycles can

be very long and appear only after a very large number of iterations, in practice they

are short and appear quite early (as we show in Section 4.4). The MVA pseudocode

is shown in Algorithm 1.

Algorithm 1: Majority Vote Algorithm (MVA)

Input: Graph G = (V,E), initial nodes label σ(0) ∈ {0, 1}V
Output: Estimated community labels σ̂

1 Let A be the adjacency matrix of G
2 Let D = diag(d1, . . . , d|V |)
3 HT.add(σ(0)) /* hash table with key σ */

4 t = 1
5 repeat
6 f = D−1Aσ(t− 1)
7 for i ∈ V do

8 σi(t) =


1, if fi > 1/2

0, if fi < 1/2

∼ Ber(1/2), if fi = 1/2

9 end
10 if HT.exists(σ(t)) then break
11 HT.add(σ(t))

12 until True
13 σ̂ = σ(t)
14 return σ̂

A couple of remarks about this algorithm. Note first that the initial label assign-

ment σ(0) is generated uniformly at random, thus no prior information concerning

node labels is assumed. Also, the algorithm is synchronous in the sense that the

label of all nodes are updated before the start of a next iteration. Last and most

importantly, note that the MVA has a fixed threshold of 1/2 to decide label assign-
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ments, as indicated in (4.2) and line 8 of Algorithm 1. This threshold seems too rigid

as it does not depend on the network structure nor the labels currently assigned to

nodes. This provides the motivation for an improved version of this algorithm.

4.2 Global Average Majority

In order to overcome the stiffness in the threshold of the MVA, we propose a thresh-

olding technique that is dynamic (across the iterations) and leverages the labels

assigned in a given iteration as well as the network structure. Intuitively, the struc-

ture of a given graph instance has particularities that should be leveraged to define

a more appropriate threshold.

We propose using as threshold the average fraction of 1-labelled neighbors (across

all nodes), defined as follows. Given a label assignment σ ∈ {0, 1}2n in G,

f̄(σ) :=
1

2n

∑
i∈V

fi(σ) , (4.3)

where fi(σ) is given in Equation (4.1). Note that f̄(σ) depends on the label as-

signment and on the graph structure via the definition of fi(σ), leveraging “global”

information relative to this graph instance. Moreover, the averaging across all nodes

provides robustness to small changes in σ.

The Global Average Majority (GAM) algorithm is the MVA modified to use f̄

as threshold across its iterations. In particular, given a label assignment σ(t− 1), it

computes σ(t) recursively as follows:

σi(t) =


1, if fi (σ(t− 1)) > f̄(σ(t− 1)) ,

0, if fi (σ(t− 1)) < f̄(σ(t− 1)) ,

∼ Ber(1/2), otherwise ,

(4.4)

for every node i ∈ V . Note that this new threshold condition means that if the

fraction of 1-labelled neighbors of i in σ(t − 1) is greater than the average fraction

of 1-labelled neighbors in the graph, then assign label 1 to node i. Otherwise assign

label 0, or break a tie by flipping a fair coin. For completeness, GAM is shown in

Algorithm 2. Note that lines 14−−15 will be be used later, as information needed

to drive the next algorithm, and can be ignored for now. Last, GAM will surely

terminate since it must revisit a label assignment, given that the state space (i.e.,

all possible label assignments) is finite.

Some observations about the GAM and the threshold function f̄ are stated below.
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Algorithm 2: Global average majority (GAM)

Input: Graph G = (V,E), initial nodes label σ(0) ∈ {0, 1}V
Output: Estimated community labels σ̂

Subset of nodes S
1 Let A be the adjacency matrix of G
2 D = diag(d1, . . . , d|V |)
3 HT.add(σ(0), 0) /* hash table with key-value pair */

4 k = 1
5 repeat
6 f = D−1Aσ(t− 1)
7 f̄ = 1

|V |
∑

i∈V fi

8 for i ∈ V do

9 σi(t) =


1, if fi > f̄

0, if fi < f̄

∼ Ber(1/2), if fi = f̄

10 end
11 if HT.exists(σ(t)) then break
12 HT.add(σ(t), k)

13 until True
14 j = HT.get(σ(t))
15 S = {i ∈ V : σi(`) = σi(t) for all j ≤ ` < k}
16 σ̂ = σ(t)
17 return σ̂, S

Proposition 12. Let G = (V,E) be graph on 2n vertices and σ ∈ {0, 1}2n be a label

assignment on G. Then, it holds that

dmin

dmax

σ̄ ≤ f̄(σ) ≤ dmax

dmin

σ̄ ,

where σ̄ := 1
2n

∑
i∈V σi and dmin, dmax denote the minimum and maximum degrees of

G, respectively.

In particular, if G is regular, then for all label assignment σ it holds that f̄(σ) =

σ̄. Thus, if we only consider balanced label assignment on regular graphs, f̄(σ) =

1/2, i.e., the GAM threshold reduces to MVA.

Proof of Proposition 12. Let us write i ∼ j if i and j are neighbors.

f̄(σ) =
1

2n

∑
i∈V

∑
j∼i

σj
di
≥ 1

2n

∑
i∈V

∑
j∼i

1

dmax

σj =
1

(2n) dmax

∑
i∈V

∑
j∼i

σj .
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Since, each j contributes djσj in the sums on the RHS, we have that

f̄(σ) ≥ 1

(2n) dmax

∑
j∈V

djσj ≥
dmin

(2n) dmax

∑
j∈V

σj =
dmin

dmax

σ̄ .

The proof of the upper bound is similar.

GAM enjoys an interesting property: if a label assignment is a fixed point of (4.4)

(no ties occur), then the swapped assignment (i.e., exchanging 1 for 0, and vice-versa)

is also a fixed point. This is important because the algorithm should also stop with

a swapped label assignment, as this is irrelevant from the perspective of assessing

the accuracy of the assignment returned by the algorithm.

The following proposition shows that the fixed points of (4.4) have this property.

In passing, we remark that the MVA also has the same property.

Proposition 13. Let G = (V,E) be a graph on 2n vertices and σ ∈ {0, 1}2n be a

label assignment. Let σ−1 ∈ {0, 1}2n denote the assignment obtained by swapping

0’s and 1’s in σ. Then,

σ is a fixed point of (4.4) ⇐⇒ σ−1 is a fixed point of (4.4) .

Proof of Proposition 13. If σ is a fixed point of (4.4) and we set σ(t) = σ, we must

have that σ(t + 1) = σ. Let i ∈ V and let us assume, without loss of generality,

σi = 1. Since σi(t+ 1) = 1 (and ties do not occur in the fixed point) it must be the

case that fi(σ) > f̄(σ). Given that fi(σ
−1) = 1−fi(σ) and f̄(σ−1) = 1− f̄(σ) (both

properties can be derived from Definition 4.1 and 4.3, using that σ−1i = 1− σi), we

obtain that fi(σ
−1) < f̄(σ−1). From the assumption σi(t) = σi = 1 we have that

σ−1i (t) = 0, which together with fi(σ
−1) < f̄(σ−1) assures that σ−1i (t + 1) = 0, and

the result follows.

4.3 Complexity

The computational complexity of GAM can be determined as follows. The com-

putation of f(σ) can be performed visiting the neighbors of every node, and thus

requires
∑

i∈V di = 2m, twice the number of edges in the graph. Computing f̄(σ)

and σ(t) requires 2n operations with the later updating the labels for every node,

each of which in constant time (this may require the generation of a random num-

ber). Last, cycle detection can be performed in constant time with the usage of hash

table, where the hash key is the label assignment σ(t) and the hash value is k. This

procedure repeats until a cycle is found. If η denotes the number of iterations until

a cycle is found, then the complexity of GAM until stopping is Θ (η(m+ n)).

24



Note that recovering the set S (set of fixed nodes) can be performed in time

proportional to the cycle length. Moreover, since every node must be considered,

the complexity of this operation is Θ(ηn). Thus, the final computation complexity

of GAM is Θ (η(n+m)) which is considered almost linear in the case η scales slowly

with the size of the graph. Indeed, empirical evaluations indicate that η is rather

small, depending mostly on the hardness of detecting communities.

4.4 Numerical evaluation

To evaluate the performance of the GAM algorithm, we performed numerical simula-

tions using the planted bisection model PBM(2n, p, q) as benchmark, and compared

the results to the MVA and a vanilla spectral method. The algorithms were imple-

mented in the Python language, using the packages networkx to facilitate network

generation and manipulation, and scipy and numpy for numerical computations, in-

cluding the eigenvector computation for the spectral method. All experiments were

repeated multiple times independently (including generation of the graph instance),

and using various parameter choices for the PBM. For every graph instance, the

algorithms were executed a number of times, each one with a new random initial

state. Results indicate the sample average and the 95% confidence interval shown

as error bars in the plots, over all repetitions.

4.4.1 Accuracy

Figure 4.1 shows the average accuracy of MVA, GAM and spectral method as a

function of p− q for fixed n = 1000 and p = 0.01, 0.02, 0.05, over 10 graph instances

and 30 repetitions each. As p− q goes from 0 (where there is no planted community

structure in the network) to p−0.01, we observe a phase transition as the algorithms

perform no better than random guesses, to the point where almost all vertices are

labelled correctly. This is in agreement with the idea that p − q quantifies the

strength of the planted community structure.

Also, the location of the phase transition differs between the algorithms, but

keeping the relative order: first the spectral algorithm, then GAM, and MVA. Fur-

thermore, as p increases, i.e the network becomes denser, the beginning of the phase

transition starts closer to p− q = 0.

4.4.2 Other metrics

To quantify and analyze the behavior of MVA and GAM, a number of other behavior

metrics were employed.
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(a) n = 1000, p = 0.01 (b) n = 1000, p = 0.02

(c) n = 1000, p = 0.05

Figure 4.1: Accuracy of MVA and GAM for different values of p− q. Each value is
computed as the average over M = 10 instances with R = 30 repetitions each.
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(a) n = 1000, p = 0.01 (b) n = 1000, p = 0.02

(c) n = 1000, p = 0.05

Figure 4.2: Number of iterations for different values of p−q. Each value is computed
as the average over M = 10 instances with R = 30 repetitions each.

Figure 4.2 shows the average number of iterations until each algorithm stops, with

fixed n = 1000, p = 0.01, 0.02, 0.05, and varying p−q between 0 and p−0.001. It can

be seen that the number of iterations performed by MVA increases very slowly with

p− q, with decreasing slope as p becomes larger. In sharp contrast, GAM displays

a very interesting phase transition, where the number of iterations starts relatively

high, decreasing slowly with p− q until it peaks out, and then decreases rapidly to

the same number of iterations as MVA. This suggests that GAM explores the label

assignment space more effectively than MVA, converging faster to a solution when

there is more structural evidence (larger p− q), and spending more time when it is

scarce.

Another interesting figure is the cycle length, seen in the upper left of Figures 4.3,

4.4, and 4.5 for p = 0.01, 0.02, 0.05. MVA almost always stops by reaching a fixed

point, that is, a cycle of length 1. On the other hand, GAM again shows a sort

of phase transition, going from length 2 near p − q = 0 to 1 (fixed point) when
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p− q gets larger. As with the accuracy, the beginning of the transition approaches

p − q = 0 with increasing p, reinforcing the idea that GAM recognizes that the

problem gets easier as p− q and p grow, while the behavior of MVA is less affected

by these changes. The fraction of 1-labelled nodes on the upper right of Figures 4.3,

4.4, and 4.5 show that GAM is always finding perfectly balanced partitions, while

MVA’s behavior is more erratic.

Perhaps the most striking feature of GAM, which is also the motivation for the

next chapter, the fraction and accuracy of fixed vertices, on bottom left and right of

Figures 4.3, 4.4, and 4.5, respectively. Recall that both algorithms stop when they

arrive at a previously found state, i.e a previously found community vector. While

for MVA this usually happens at fixed point, i.e an exact repetition of the last state,

in GAM the cycle length of 2 indicates the appearance of a different state before

repeating. We say that nodes whose labels do not change during the full cycle are

fixed nodes (or vertices). Naturally, the accuracy of fixed vertices is the agreement of

community vector with the ground truth when the coordinates are restricted to the

fixed vertices. Evidently, the fraction of fixed labels for MVA is essentially 1. GAM,

on the other hand, displays a phase transition in which the fraction of fixed vertices

goes from 0.5 to 1 as p−q goes from 0 to p−0.001, with a similar one occurring with

the accuracy. This behavior is very interesting because it shows that, as the problem

instance gets easier, GAM is fixing more nodes in the cycle, and also the accuracy

of the fixed nodes is increasing. Thus, an idea to improve this algorithm would be

to re-initialize the iterations keeping the labels of fixed vertices, and randomizing

the rest. This idea is explored in the next chapter.

Last, Figure 4.6 shows the dynamic threshold value f̄ used in GAM (see Equa-

tion 4.3) across the iterations where each curve corresponds to a different network

instance. One hundred instances were generated, and 8 trajectories were sampled

at random (in color). The thick black line is the average over all trajectories. We

observe that in all scenarios f̄ changes across the iterations due to particularities of

the graph instance and current label assignment. However, f̄ eventually converges

(when a cycle of length one is found), or oscillates between two values (when a cycle

of length two is found). Interestingly, the average of f̄ for each iteration across the

graph instances (red line in the plot) is around 0.5, indicating that it indeed gen-

eralizes the 1/2 threshold of MVA by considering structural features of the graph

instance at hand.
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Figure 4.3: Additional metrics of MVA and GAM iterations. (n = 1000, p = 0.01)
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Figure 4.4: Additional metrics of MVA and GAM iterations. (n = 1000, p = 0.02)
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Figure 4.5: Additional metrics of MVA and GAM iterations. (n = 1000, p = 0.05)

Figure 4.6: Threshold value f̄ of GAM across its iterations. The trajectories in color
were chosen at random from 100 graph instances, and the thick black curve shows
the average over all instances. (n = 1000, p = 0.01, p− q = 0.006).
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Chapter 5

Bootstrapping

Recall that GAM stops when it finds a cycle (or fixed point) after a sufficiently large

number of iterations. Consider the sequence of label assignments in a given cycle

found by the algorithm: σ(1), σ(2), . . ., σ(η) = σ(1) with η ≥ 2 denoting the cycle

length. Consider a node i that retains its label throughout the cycle, i.e., such that

σi(1) = σi(2) = · · · = σi(η), and a node j that changes its label several times in the

cycle. Intuitively, the label of node i is much more likely to be correct than the label

of node j in configuration σ(η). Indeed, retaining its label throughout the cycle is

an indication that this label is robust to other assignments, and thus more likely to

be correct.

This intuition can be confirmed by simulations which show that fixed nodes ex-

hibit a much larger accuracy, specially in regimes where it is more difficult to recover

the correct labels (to be shown). This observation will drive the next contribution.

Since fixed nodes can be easily identified in a cycle and their label assignment

is more likely to be correct, this information can be used to re-initialize GAM with

the expectation that it will find cycles with an even larger number of fixed nodes,

and possibly more accurate assignment. We call this idea bootstrapping. Moreover,

bootstrapping can be applied in successive rounds, pushing GAM towards producing

cycles with ever more fixed nodes and more accurate label assignments.

One important consideration is how to exploit the information concerning fixed

nodes to drive the initialization of the next round. Before proceeding, some instru-

mental concepts need to be introduced.

Consider running GAM for a sequence of rounds, r = 1, 2, . . . Before starting a

round, node labels must be initialized. In round r = 1 labels are initialized uniformly

at random, while in other rounds labels are initialized using the cycle found by the

algorithm in the previous round.

For any given round, let η denote the first time the algorithm produces an as-

signment that has already been observed in this round, thus forming a cycle in the
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sample path, i.e.,

η := min{k > 0 : ∃ l < k : σ(l) = σ(k)} .

Note that η < +∞ since GAM explores states in a finite state space. In fact,

GAM generates a sample path in the corresponding finite state space Markov chain

(where the chain states are label assignments and most transitions have probability

1). Moreover, for a given η there exists only one θ < η such that σ(θ) = σ(η), thus

θ is the time of the first assignment that is identical to σ(η).

For a given execution of GAM, consider the following definitions

- σ̂ := σ(η); the label assignment produced by GAM

- C := {σ(l) : θ ≤ l ≤ η}; the cycle encountered by GAM that terminated its

execution

- S := {i ∈ V : σi(l) = σi(η) for all θ ≤ l ≤ η}; the set of nodes that maintain

their labels in the cycle (fixed nodes)

Clearly, σ̂, η, θ, C and S depend on the round which will be emphasized using

the superscript r. Furthermore, for a node i ∈ Sr, we denote

- N r
i := |{j ∈ Sr : Aij = 1}|; the number of neighbors of i that are also fixed

nodes (in round r)

- M r
i := |{j ∈ Sr : Aij = 1 and σ̂rj = σ̂ri }|; the number of nodes in N r

i that have

the same label as node i (in round r)

We propose two different bootstrapping procedures. The first determines the

initial assignments of a round considering only if the node was a fixed node in the

previous round. More precisely,

σr+1
i (0) =

σ̂ri , if i ∈ Sr ,

∼ Ber(1/2) , if i 6∈ Sr .
(5.1)

This procedure is denoted by hard bootstrapping as it is more rigid, assigning fixed

nodes to their labels in the previous round and randomizing non-fixed nodes. In-

tuitively, hard bootstrapping trusts the fixed nodes produced by GAM, since it

maintains their labels in the next round, and randomizes the labels of the others.

The second bootstrapping procedure leverages not only information about the

node itself (fixed or not fixed), but also about its neighbors. Moreover, it will also

assign labels at random (but not necessarily uniform) to all nodes.
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More specifically, a fixed node will retain its label in the next round with a

certain probability, called acceptance probability, and it will swap its label with

the complementary probability. The acceptance probability of a fixed node i is

determined by the number of neighbors of i that are also fixed nodes. Thus, the

larger the number of fixed neighbors that have the same label of node i, the higher

the probability that the label of node i is correct. More precisely,

σr+1
i (0) ∼ Ber(1/2) , i 6∈ Sr

σr+1
i (0) =

σ̂ri , with prob. ρri

1− σ̂ri , with prob. 1− ρri
, i ∈ Sr (5.2)

where ρri is the acceptance probability for i obtained from the output of round r

and used in the initialization of round r + 1, defined as

ρri :=
1

2
+

1

2

M r
i

N r
i

.

In contrast, we denote this procedure by soft bootstrapping, as it allows for a

fixed node to have a different label in a subsequent round. Intuitively, soft bootstrap-

ping trusts less the immediate output of GAM and uses more information (about

the nodes neighbors) to regain trust.

In particular, whenever a fixed node i has the same label as all of its fixed

neighbors (i.e., M r
i = N r

i ), the acceptance probability ρri = 1 and consequently

σr+1
i (0) = σ̂ri with probability one. Under this condition, fixed nodes retain their

labels in the next round. On the other hand, if none of the neighbors of i are fixed,

then ρri = 1/2 and σr+1
i (0) = σ̂ri with probability 1/2. Thus, the fact that node i is

fixed is not enough evidence for soft bootstrapping, if node i has no fixed neighbors

with the same label of itself.

The algorithm enhancing GAM with bootstrapping rounds is called GAM

(Global Average Majority with Bootstrapping) and is shown in Algorithm 3. Note

that GAM is initialized with a uniform random label assignment σr=0(0) ∼ Ber(1/2)

and stops after a maximum number of rounds is reached, denoted by R. Last, the

bootstrapping procedures described here is not dependent on GAM and can be ap-

plied to any other MVA, as long as the algorithm produces a cycle with its output.

5.1 Complexity

The computational complexity of GAMB is proportional to the number of rounds

R. For every round, GAM is executed and σ is updated, with the later having

complexity Θ(n), as all nodes must be updated. Thus, if η∗ is the maximum number
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of iterations of GAM across all R rounds, then GAMB has complexity Θ(Rη∗(n +

m)). Again, this can be considered almost linear time if R does not grow with the

graph size. Indeed, as numerical experiments will soon indicate, R can be relatively

small for GAMB to produce more accurate results.

Algorithm 3: Global Average Majority with Bootstrapping (GAMB)

Input: Graph G = (V,E), initial nodes label σ ∈ {0, 1}V
number of bootstrap rounds R

Output: Estimated community labels σ̂

/* hard bootstrapping */

1 for r = 1, . . . , R do
2 (σ̂r, S) = GAM(G, σ)
3 for i ∈ V do
4 if i ∈ S then
5 σi = σ̂ri
6 else
7 σi ∼ Ber(1/2)
8 end

9 end

10 end
11 return σ̂R

/* soft bootstrapping */

1 for r = 1, . . . , R do
2 (σ̂r, S) = GAM(G, σ)
3 for i ∈ V do
4 Ni = |{j ∈ S : Aij = 1}|
5 Mi = |{j ∈ S : Aij = 1 and σ̂rj = σ̂ri }|
6 if i ∈ S then

7 σi =

{
σ̂ri , with prob. 1

2
+ 1

2
Mi

Ni

1− σ̂ri , with prob. 1
2
− 1

2
Mi

Ni

8 else
9 σi ∼ Ber(1/2)

10 end

11 end

12 end
13 return σ̂R

5.2 Numerical evaluation

Figure 5.1 includes hard and soft GAMB in the same comparison of accuracy as

seen in Figure 4.1). We notice that both bootstrapping strategies display the fast

transition to full accuracy, but with an improved accuracy over MVA and GAM.
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Figure 5.1: Bootstrapping accuracy with n = 1000, p = 0.01, 0.02, 0.05

Their performance is quite comparable to that of the spectral method, and even

slightly superior for some points in the transition, clearly indicating its superiority

over MVA for the accuracy, and spectral method for running time.

Figure 5.2 shows the accuracy of the two strategies as a function of bootstrap

rounds, with various values of p − q. Each curve shows the average over 10 graph

instances with 20 repetitions each. We can clearly see the increase in accuracy with

the bootstrap rounds. Note that round 0 corresponds to the accuracy of the initial

GAM, where the labels are initialized at random. For p− q = 0.007, we remark that

with the first bootstrap round, in both hard and soft bootstrapping, the accuracy

goes from 0.7 to 0.9, an increase of 28%. With more iterations, accuracy stays

near 0.97, corresponding to an accumulated increase of around 38%. The curve

corresponding to p− q = 0.006 shows a similar behavior, even more pronounced in

soft bootstrapping, going from 0.56, almost as bad as random guessing, to 0.9 after

9 rounds, an impressive increase of 60% in accuracy. Lower values of p − q show a

more subtle increase, if at all.

In Figure 5.3, we see the evolution of accuracy and fraction of fixed vertices for

hard (left column) and soft (right) bootstrapping. We observe a similar increase in
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(a) Hard bootstrapping (b) Soft bootstrapping

Figure 5.2: Accuracy as a function of the bootstrap rounds (n = 1000, p = 0.01).

accuracy as the ones in Figure 5.2, and also rapidly growing fraction of fixed vertices,

converging to 1 in hard bootstrapping, and generally increasing in soft bootstrap-

ping. This is to be expected from their definitions, since hard bootstrapping keeps

all of the fixed vertices’ labels, while soft bootstrapping allow for some randomiza-

tion of fixed vertices’ labels. These figures confirm the phenomenom hinted at at

the end of the last chapter, that the fixed nodes in a GAM cycle are better classified

than the rest. Also, comparing hard and soft bootstrapping, we notice that soft

bootstrapping performs better in terms of accuracy, even achieving a pronounced

increase in accuracy for p − q = 0.005 whereas hard bootstrapping does not, thus

suggesting that the more flexible approach, which does not fully “trust” the label

of every fixed vertex and uses fixed neighbors to perform a biased randomization, is

superior.

Figure 5.4 shows the average number of iterations performed by the GAM at

each round of hard and soft bootstrapping. For hard bootstrapping, the number of

iterations decreases monotonically with the rounds and does not depend strongly on

the p− q gap (with the larger gap requiring slightly less iterations). The picture is

quite different for soft bootstrapping where for smaller gaps, the number of iterations

stabilizes at a higher value which also seems to be dependent on p− q. In general,

soft bootstrapping requires more iterations than hard at any given round, justified

by the difference in initialization. Last, all cycles found in all the rounds shown

either by hard or soft bootstrapping had length at most two. Thus, cycles are very

short.
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(a) Hard bootstrapping (b) Soft bootstrapping

Figure 5.3: Accuracy and fraction of fixed vertices by bootstrap rounds (n =
1000, p = 0.01).

5.3 Bootstrapping MVA

In Figure 5.5, we see the effect of trying to apply the bootstapping strategy to

MVA iterations. It is clear that there is no improvement on the accuracy. This is

easily justifiable, since hard bootstrapping does not break out of fixed points (which

are the usual configuration produced by MVA), and soft bootstrapping cannot take

advantage of the biased sampling, once every vertex is a fixed. Thus, the gains

achieved with the bootstrapping strategy are closely tied to the behavior of the

states produced by GAM iterations, in which fixed vertices are more likely to be

correctly classified.
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(a) Hard bootstrapping (b) Soft bootstrapping

Figure 5.4: Number of iterations by bootstrap rounds (n = 1000, p = 0.01).

Figure 5.5: Accuracy of bootstrapped MVA
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Chapter 6

Evaluation on real networks

In this chapter we evaluate the previously discussed methods when applied to some

real world networks for which a meaninful ground truth with two communities is

known. As said previously, real networks often have no clear-cut community ground

truth, and vary greatly in number and composition of communities. Thus, the ap-

plication of our methods without further adaptation is somewhat limited. For every

network, the algorithms were executed 100 times, and the accuracy with respect to

the ground truth partition, and the wall clock execution time were recorded. Sum-

mary information about each one can be found in Table 6.1. All of the datasets

used can be found on Mark Newman’s Network Data repository [60].

Network # nodes # edges source

karate 34 78 [61]
polbooks* 92 374 -
polblogs* 1222 16714 [2]

*after pre-processing

Table 6.1: Summary information of benchmark real world networks

6.1 Karate club

One of the first and perhaps the most popular real world network with known

ground truth communities is the karate club network studied by ZACHARY [61].

It has 34 vertices corresponding to the members of a karate club in the United

States, who were observed for 3 years. The edges in the graph link the indiduals

that participated in activities outside the karate club. When a conflict happened

between the president of the club (node 34 in Figure 6.1) and the instructor (vertex

1), the members of the club split up into two groups, whose members supported

either the instructor (shown in red), or the club president (in red). In Figure 6.1,
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Figure 6.1: Zachary’s karate club network. Source: [1]

we can observe that this division of the group is well reflected in the topology of

the network: almost every node in the graph is connected to either one of nodes 1

or 34, and these connections are strongly correlated to the group in which the club

member stayed after the division.

To assess the performance of the algorithms, we took as ground truth the parti-

tion of the members after the split up of the club, used as a reference to compute

the accuracy of the estimated community vectors for each of the algorithms. The

results are displayed in Table 6.2. We can see that the algorithms’ average accuracy

is ordered as seen before: from lowest to highest, MVA, GAM, hard GAMB, soft

GAMB, Spectral. It is interesting to note that the maximum value of the accu-

racy for each algorithm coincides with the accuracy of the spectral method, and the

minimum value attains the minimum accuracy possible, 0.5. In terms of wall clock

time, the spectral method is clearly more advantageous, since only MVA and GAM

are faster, but offer less accurate solutions.

Method Accuracy Time (s)

min max avg. std. min max avg. std.

Spectral 0.97 0.97 0.97 0.00 0.0006 0.0741 0.0014 0.0074
MVA 0.50 0.97 0.63 0.16 0.0005 0.0016 0.0008 0.0002
GAM 0.50 0.97 0.70 0.16 0.0006 0.0009 0.0007 0.0001
hard GAMB 0.50 0.94 0.84 0.14 0.0035 0.0045 0.0039 0.0002
soft GAMB 0.50 0.97 0.87 0.14 0.0037 0.0056 0.0051 0.0003

Table 6.2: Karate club network
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6.2 Political books

The network of political books was compiled by Valdis Krebs from a list of best-

selling books and recommendations from the Amazon bookseller website that are

based on co-purchasings [62]. In other words, the nodes of this network consist of

105 book titles, and an edge links two books if one has been suggested for a client

viewing the other, which happens with higher probability if many previous clients

bought both books. The books were all related to north-american politics, and top

sellers in a period close to the 2004 presidential elections. They are labelled in the

network according to partisanship as liberal, conservative, or neutral.

Since there are 3 possible ground truth values for each vertex, to apply the

algorithms we took the subgraph induced by the nodes corresponding to liberal and

conservative books, shown in Figure 6.2. This projected network contains 92 vertices

and 374 edges.

In Table 6.3, we can see the results of the algorithms applied to the induced

network mentioned above. It is noticeable that the accuracy obtained by GAM

with and without bootstrapping is much closer to that of the spectral method, and

the latter is even outperformed by soft GAMB. Again, the wall clock execution times

are very low because of the size of the network, and the spectral method is still a

good option for its high accuracy and low execution time. This time, however, GAM

is also competitive, displaying results almost as good as the spectral method, and

taking half the time on average.

Method Accuracy Time (s)

min max avg. std. min max avg. std.

Spectral 0.97 0.97 0.97 0.00 0.0032 0.0038 0.0032 0.0001
MVA 0.50 0.98 0.77 0.21 0.0012 0.0022 0.0015 0.0002
GAM 0.62 0.98 0.97 0.04 0.0013 0.0023 0.0016 0.0002
hard GAMB 0.92 0.98 0.97 0.01 0.0074 0.0091 0.0081 0.0003
soft GAMB 0.96 0.98 0.98 0.01 0.0112 0.0128 0.0117 0.0002

Table 6.3: Political books network

6.3 Political blogs

Last, with the same theme of the last network, the political blogs network was

compiled from links between blogs related to US politics around the 2004 presidential

elections, by ADAMIC and GLANCE [2]. Each vertex corresponds to a blog labelled

as liberal or conservative, based on classifications made by political weblog lists and

on the blog’s contents. A visualization of this network is displayed on Figure 6.3, in
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(a) Original network

(b) Projected network on conservative and liberal books

Figure 6.2: Political books network
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which red nodes and edges correspond to conservative blogs, and the color blue to

liberals. Orange edges point from liberal to conservative, and purple edges in the

opposite direction. Also, the size of each node corresponds to the number of other

blogs linking to it.

The original network consists of 1490 vertices and 19090 directed edges, and

also contains multiple edges linking two vertices, and self-loops. In order to apply

our algorithms, we first pre-process this network, removing directionality, self-loops,

and repeated edges. As the resulting graph is not connected, we take the largest

connected component, which has 1222 vertices and 16714 edges.

In Table 6.4 we see the results of the algorithms applied to this network. It is in

this case that GAM and its bootstrapped versions really shine, attaining accuracies

near 0.95, a higher value than the 0.93 accuracy obtained by the spectral method.

In addition, the execution times of all of these are considerably lower than the time

taken by the spectral method, which is to be expected from the complexity of the

algorithms and the larger size of the network.

Figure 6.3: Political blogs network. Source: [2]
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Method Accuracy Time (s)

min max avg. std. min max avg. std.

Spectral 0.93 0.93 0.93 0.00 2.5872 2.5872 2.5872 0.00
MVA 0.52 0.95 0.66 0.20 0.0785 0.2889 0.1436 0.0779
GAM 0.95 0.96 0.95 0.00 0.0779 0.1233 0.0924 0.0127
hard GAMB 0.95 0.96 0.95 0.00 0.4938 0.5220 0.5042 0.0051
soft GAMB 0.95 0.96 0.95 0.00 0.5983 0.6354 0.6083 0.0055

Table 6.4: Political blogs network
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Chapter 7

Conclusion

As we have seen, community detection is a fundamental problem in the area of net-

work science, involving also insights from mathematics, computer science, statistics,

and even physics. There are many avenues of investigation, some focusing on the-

oretical properties of models and algorithms, and other more practical, attempting

to understand community structures present in real world networks and applying

this knowledge to other tasks.

In this work we have focused on the problem of recovering two planted com-

munities in a network, and proposed new algorithms based on the popular label

propagation method. In particular, Global Average Majority or GAM introduces

a dynamic threshold in substitution of the fixed threshold used in simple majority

voting, and we have shown by theoretical analysis and numerical experiments that

this modification does not incur on substantial penalties in terms of complexity,

and achieves much higher accuracy nearing the spectral method used as reference,

which on the other hand displays worse asymptotic complexity. This method also

introduces a new stopping criterion that deals with the cycling problem displayed

by solutions produced by label propagation.

Furthermore, by investigating other performance metrics of the GAM algorithm

such as fraction and accuracy of fixed vertices, we proposed two bootstrapping

strategies that re-utilize the solutions found by successive GAM rounds in order

to amplify their accuracy, giving rise to the methods which we called hard and

soft GAMB (Global Average Majority with Bootstrapping). Again, using synthetic

networks generated by the planted bisection model and real world networks with

known communities, we performed numerous experiments which allowed us to better

understand the behavior and confirm the perfomance of the methods proposed.
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7.1 Future Directions

Many development directions are left open for this work. We highlight some of the

most interesting below:

• The dynamic threshold, stopping criterion based on cycles, and bootstrapping

of solutions are general ideas that might be explored in other algorithms such as

general label propagation (which allows the detection of an arbitrary number of

communities) and belief propagation. Given the popularity of these algorithms

and the quality of results obtained here, this seems to be a very promising

research direction in practical community detection.

• Another related approach extending this work in the context of practical com-

munity detection would be the direct adaptation of GAM and GAMB to the

problem of detecting an arbitrary number of communities. With such an algo-

rithm, one could repeat the experiments we performed using as benchmarks the

general stochastic block model and real world networks with multiple ground

truth communities.

• On the theoretical side, it would be especially interesting to demonstrate more

properties of the dynamic threshold used by GAM, and to obtain results fur-

ther explaining the superiority of GAM over MVA, perhaps even under other

probabilistic network models.
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Appendix A

Detailed statistics of GAMB

rounds

Figures A.1, A.2, A.3, and A.4 show detailed statistics of each round in GAMB

executions. As explained in the numerical evaluation section of Chapter 5, each

figure shows the results obtained from 10 different network instances produced by

the planted partition model, and for each instance the algorithms were executed 20

times, independently. The results are displayed as boxplots, in which boxes extend

from the lower to upper quartile values of the data, with an orange line indicating

the median and a green triangle marking the mean. The whiskers extend from the

minimum to the maximum value of the distribution.
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Figure A.1: Hard bootstrapping, p = 0.01, p− q = 0.006
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Figure A.2: Soft bootstrapping, p = 0.01, p− q = 0.006
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Figure A.3: Hard bootstrapping, p = 0.01, p− q = 0.007
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Figure A.4: Soft bootstrapping, p = 0.01, p− q = 0.007
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