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Janáına Sant’Anna Gomide Gomes

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia de Sistemas e

Computação, COPPE, da Universidade Federal

do Rio de Janeiro, como parte dos requisitos
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CARACTERIZAÇÃO E IDENTIFICAÇÃO DE SINÔNIMOS EM REDES

SOCIAIS ANÔNIMAS

Janáına Sant’Anna Gomide Gomes

Maio/2019

Orientador: Daniel Ratton Figueiredo

Programa: Engenharia de Sistemas e Computação

Em muitos cenários objetos são referenciados por meio de vários nomes e essa

diversidade de nomes gera ambiguidade. Abordar o problema de ambigüidade de

nome é um passo importante na consolidação de dados e com o crescimento da quan-

tidade de dados digitais, tornou-se indispensável. Além disso, o cont́ınuo aumento

da preocupação com privacidade por parte de indiv́ıduos e empresas está alterando

a forma como os dados ficam dispońıveis. Em particular, a remoção de informações

pessoalmente identificáveis (PII) está se tornando uma prática comum. Nesse tra-

balho é feita a caracterização e identificação de sinônimos em redes sociais anônimas

e somente a estrutura da rede é considerada, toda PII foi removida. As principais

contribuições desta tese são classificar os padrões de uso de diferentes nomes pe-

los indiv́ıduos que possuem múltiplos nomes, propor um modelo probabiĺıstico para

sinônimos em redes sociais, e propor algoritmos para identificar sinônimos em re-

des sociais anônimas. O primeiro algoritmo considera disância entre nós e número

de vizinhos em comum para identificar sinônimos em uma rede social. O segundo

algoritmo considera perfis de indiv́ıduos em redes de colaboração e identifica difer-

entes nós que correspondem ao dono do perfil. O algoritmo é baseado no problema

do conjunto dominante e conjunto independente em grafos. O último algoritmo é

um framework que classifica nós como tendo duplicatas em redes sociais. Esse algo-

rithmo extrai subgrafos para gerar as caracteŕısticas que são utilizadas como entrada

para rede neural de dois ńıveis, projetada especificamente para esse problema. Bases

de dados reais de redes de colaboração, extráıdas do DBLP e Google Scholar, assim

como redes de famı́lias são utilizadas para avaliar os algoritmos propostos. Resul-

tados experimentais indicam que sinônimos podem ser efetivamente identificados

mesmo em redes sociais anônimas considerando apenas a estrutura da rede.
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In many scenarios objects are referred to using multiple labels and this diversity

leads to ambiguities. Addressing name ambiguity is an important step in data con-

solidation and with the growth in the amount of digital data has become even more

pressing. Moreover, the growing privacy concerns among individuals and enterprises

is leading to the removal of personally identifiable information (PII) in data that

is publicly available. In this work, we focus on the characterization and identifica-

tion of synonyms in anonymous social networks where only the network structure

is considered, all PII has been discarded. The main contributions of this thesis are

to classify name usage patterns by individuals that use multiple names, to propose

a probabilistic model for synonyms in social networks, and to propose algorithms

to identify synonyms in anonymous social networks. The first algorithm considers

distance between nodes and number of common neighbors to identify synonyms in

a social network. The second algorithm considers ego-centered collaboration net-

works and identifies the different nodes that correspond to the egonet owner. The

algorithm is based on the dominating set and independent set problems in graphs.

The last algorithm is a framework that classifies nodes as having duplicates in social

networks. This algorithm extracts subgraphs to generate features for nodes that

are then used as input to a two-level neural network designed specifically for this

problem. Real collaboration networks, extracted from DBLP and Google Scholar, as

well as familial networks are used to evaluate the proposed algorithms. Experimen-

tal results indicate that synonyms can effectively be identified even on anonymous

social networks leveraging only network structure.
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Chapter 1

Introduction

In many scenarios unique objects are referred to using multiple labels. For exam-

ple, in the Web a city like New York can be referred to by labels such as, “New

York”, “NYC” and “Big Apple”; in bibliographical data a person can be referred

to with various names, such as “von Neumann”, “John von Neumann” and “J. von

Neumann”. The diversity of labels used to refer to objects leads to ambiguities

and is a recurring problem in structured and unstructured data such as the Web

and bibliographic datasets. Addressing name ambiguity is an important step in

data consolidation and has long been subject of study in academia and industry

[2, 3]. With the incredible growth in the amount of digital data in the past years,

addressing name ambiguity has become even more pressing.

Collaboration networks encode the structure of the collaborative effort to jointly

produce an outcome such a book, a movie or a scientific paper. In such networks,

individuals are represented as nodes and pair-wise collaborations are represented

by edges. Most collaboration networks are constructed using the names associated

with individuals as they appear in a given collaboration recorded in a dataset. Con-

sequently, since such names are usually ambiguous, the constructed network will

also have ambiguities. For example, Table 1.1 shows three papers co-authored by

John von Neumann in which his name appeared with different spellings such as “J.

v. Neumann”, “J. von Neumann” and “John von Neumann” (as recorded in the

bibliographic records of the journals). The collaboration network induced by these

three publications is illustrated in Figure 1.1 where three nodes for John von Neu-

mann are created, each corresponding to a different label (name) associated with

the person.

As illustrated above, one of the disambiguation problems in collaboration net-

works consists of identifying nodes (names) that correspond to the same individual,

known as the synonym problem1, a task far from trivial despite continued efforts in

1Another disambiguation problem occurs when a single name is used by different individuals,
thus a single network node can represents multiple individuals (homonym problem).
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Table 1.1: Three publications of John von Neumann cataloged with different names.

Authors Title Journal Year
B. O. Koopman, J. v.
Neumann

Dynamical systems of con-
tinuous spectra

Proceedings of
the National
Academy of
Sciences

1932

J. von Neumann,
R. H. Kent, H. R.
Bellinson, B. I. Hart

The mean square succes-
sive difference

The Annuals of
Mathematical
Statistics

1941

B. I. Hart, John von
Neumann

Tabulation of the probabil-
ities for the ratio of the
mean square successive dif-
ference

The Annuals of
Mathematical
Statistics

1942

Figure 1.1: Collaboration network induced by three publications of John Von Neu-
mann in Table 1.1 showing three nodes for the same individual.

the literature (see Chapter 2).

Another kind of social network where ambiguities are present is familial networks.

In these networks, multiple partial representations of a family tree are provided from

the perspective of different family members. For example, different family members

when describe their relatives using different names and when the family tree is

constructed there are duplicate nodes for the same person. The challenge is to

identify the duplicate nodes and reconstruct the family tree from these ambiguous

views.

The continuous increase in privacy concerns by both individuals and enterprises

is bound to increase the amount of data that is only available anonymously. In

particular, the removal of personally identifiable information (PII) is becoming a

common practice by both individuals and enterprises when releasing data into the

public realm. Thus, a scenario where node labels are not available and neither any

other information concerning nodes and edges is likely to become very important

for different problems, including removing ambiguities.

Can synonyms be identified on an anonymous social network, when all PII has

2



been removed? This thesis focus on this problem and address different facets. In

particular, we characterize and model the problem and propose algorithms to iden-

tify synonyms on anonymous social networks in the sense that node labels have no

information (ex. randomly assigned integers). We will show that just the network

structure encodes enough information to perform disambiguation in many cases.

1.1 Problem statement

In this section we formalize the network ambiguity problem. Consider a graph

G = (O,E) where the vertex set O = {o1, . . . , on} represents objects and the edge

set E represents pairwise relationships among the objects. Lets assume that objects

have labels and, in particular, let Li = {li,1, . . . , li,si} denote the set of labels that are

assigned to object oi, where si is the number of different labels that can be assigned

to object Oi. Note that objects have one or more labels that are not necessarily

unique. Thus, labels of different objects can be identical.

Consider an observation process of relationships among objects that reveals ob-

ject labels. Thus, a relationship (oi, oj) ∈ E is observed as (li, lj) where li ∈ Li and

lj ∈ Lj. Let L =
⋃n

i=1 Li denote the set of all different labels. The observation

process applied to many (possibly all) relationships (oi, oj) ∈ E will then yield a

graph G′ = (L′, E ′) where the vertex set L′ ⊂ L represents all observed labels and

the edge set E ′ represents all observed relationships among labels. Note that a single

label, l ∈ L′, can refer to one, two or more objects and different labels, l1, l2 ∈ L′,
can refer to the same object.

The network disambiguation problem is to recover G (network of objects) having

observed G′ (network of labels) and this leads to two challenges. One is to identify

when identical labels are used to refer to different objects and, thus, one vertex in

G′ could be mapped into two or more vertices in G. This is known as the homonym

problem. The other challenge is to find different nodes that refer to the same object

and, thus, merge two or more nodes of G′ into one in G. This is known as the

synonym problem. In this thesis we focus on the synonym problem and in this

context we consider that labels of different objects are different, thus, li 6= lj for any

li ∈ Li and lj ∈ Lj and for any i 6= j. Moreover, we assume there is no information

on the labels themselves (i.e., labels are random numbers) and no information on

the number of labels assigned to each object.

Figure 1.2 illustrates a network of labels and in Figure 1.3 the respective network

of objects generated after solving the synonym problem. Note that the nodes l1,1,

l1,2 and l1,3 refer to the same object (o1), while all other labels refer to their corre-

sponding objects. Our goal is to study this problem in the context of social networks

where nodes correspond to individuals and edges correspond to collaborations such
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Figure 1.2: The network of labels G′. Note that the nodes l1,1, l1,2 and l1,3 in G′ all
refer to the same object (o1)

Figure 1.3: The network of objects, G, after solving the synonym problem.

as co-authorship of scientific papers.

1.2 Contributions

The main contributions of this thesis are listed bellow:

Characterization of name usage pattern

Consider the synonym problem where an object can be identified by different names.

For example, consider a person and all its publications within her career. This person

can use one name to sign her publications and then change her name and start use

another name to sign her publications; or can sign alternating different names mixing

them; or even can use one name the majority of the time and once use a different

name, due to a mistake for example. We refer to these as name usage patterns.

Although most related works focus on solving name ambiguities, we first focus

on classifying and characterizing multiple name usage pattern - the root cause for

name ambiguity. By considering real examples of bibliographic datasets, extracted

from DBLP and Google Scholar, we identify and classify patterns of multiple name

usage by individuals, which can be interpreted as name change, rare name usage,

and name co-appearance.
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We propose a method to classify name usage patterns through a supervised

classification task and show that different classes are robust (across datasets) and

exhibit significantly different characteristics. In particular, for the usage of each

individual we construct a time series for each of its names and then extract features

from the time series in order to capture the individual’s name usage pattern. These

features are used in a data classification task to determine the type of pattern. A

clustering algorithm separates the individuals by their name usage patterns.

We show that the collaboration network emerging around nodes corresponding

to ambiguous names having different name usage patterns have strikingly different

characteristics, such as their common neighborhood and degrees.

To the best of our knowledge, this is the first work that looks into the causes

and types of ambiguity in synonyms and is described in Chapter 3. This work has

lead to the following publication:

• Janáına Gomide, Hugo Kling and Daniel Figueiredo. Root causes for name

ambiguity in scientific collaboration networks. In Scientometrics (2017) (jour-

nal).

Probabilistic model for name ambiguity in social networks

It is difficult to correctly characterize name ambiguity in real data. In the literature

there are few studies that proposes mathematical models to study name ambiguity.

For example, a model for homonym problem is to use the initials of the names

leading to different persons having the same short name [4]. We are interested in

the synonym problem and to the best of our knowledge, there is no mathematical

model to characterize this phenomenon.

We propose a probabilistic model that introduces synonyms in a social network.

The idea is to duplicate vertices and add/remove edges to neighbours of the orig-

inal vertex. A duplicated vertex represents a second identification for the original

vertex. Therefore, one object (vertex) of the original network can be represented by

two vertices in the ambiguous network and relationships among the original object

(vertex) can be copied to its duplicate and removed from the original.

The model has three intuitive parameters used for tuning the desired amount of

ambiguity and can operate over any original social network. The proposed model

has three phases, each with a parameter: (1) vertex duplication - with probability

p a vertex is duplicated; (2) edge addition - with probability q an edge between

a neighbour of the original vertex and the duplicated vertex is created; and (3)

edge removal - with probability r an original edge that was copied to a duplicated

vertex is removed. By varying these parameters, the model produces very different

ambiguous networks. More details are in Chapter 4. This work was published in:
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• Janáına Gomide, Hugo Kling and Daniel Figueiredo; A model for ambiguation

and an algorithm for disambiguation in social networks. In CompleNet 2015,

New York. 6th Workshop on Complex Networks (full paper).

Algorithms to identify synonyms in anonymous social networks

The growing privacy concerns among individuals and enterprises is leading to the

removal of ever more personally identifiable information (PII) in data that is pub-

licly available. However, classic solutions of name disambiguation heavily relies on

contextual information with few recent exceptions, [4–6]. However all of them have

considered the homonyms problem, where a single name could be used to identify

multiple persons. We are not aware of any work that has specifically addressed the

synonym problem in social networks when no PII is available.

We propose three different algorithms to solve the synonym problem using only

the network structure. The algorithms tackle different aspects and scenarios: one

uses heuristics based on the network structure to identify the duplicate nodes in the

whole network; another one considers an ego-centered collaboration network and

identifies all the vertices that represents the same individual; and the last algorithm

is a framework that generate features based on subgraphs used as input to a neural

network that classifies duplicate nodes. The three algorithms are described next.

The first is a simple and efficient algorithm that considers the entire synonymous

network and identifies nodes that represent the same person. No label information

is used but only structural characteristics such as distance, degree and common

neighbours.

The algorithm leverages several structure-based heuristics to identify nodes in the

network that represents the same person. For example, we consider that two nodes

might refer to the same person if they are at distance 2, since it is unlikely that a node

will have a relationship with itself using two different labels. Moreover, the same

is considered if the common neighbourhood between two vertices strongly overlaps,

and is contained in one another. We aim in developing a conservative approach to

merge nodes, in order to minimize false-positives, allowing greater applicability of

the algorithm. We apply this algorithm to ambiguous networks generated by the

proposed probabilistic model. More details are in Chapter 4. This algorithm is

published in:

• Janáına Gomide, Hugo Kling and Daniel Figueiredo; A model for ambiguation

and an algorithm for disambiguation in social networks. In CompleNet 2015,

New York. 6th Workshop on Complex Networks (full paper).

• Hugo Kling, Janáına Gomide and Daniel Figueiredo. A simple label-free algo-

rithm for removing ambiguities in collaboration networks. In NetSci-x 2015,
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Rio de Janeiro. International School and Conference on Network Science

(poster).

The second algorithm that we propose considers the synonym ambiguity problem

in the context of collaboration networks where individuals have a profile such as

Google Scholar and DBLP. The goal is to consolidate the names appearing in the

ego-centered collaboration network induced by the bibliographic records of profile

owner.

Using just the network structure and no other information such as the node labels

or metadata, we propose an algorithm based on the dominating set problem and the

independent set problem that finds all nodes that correspond to the individual in

its ambiguous ego-centered network. We apply this algorithm to real bibliographic

data obtained from researchers’ profiles. More details are in Chapter 5. This work

has lead to the following publications:

• Janáına Gomide, Hugo Kling and Daniel Figueiredo. Consolidating identities

of authors through egonet structure. In WebSci 2017, Troy. ACM on Web

Science Conference (extended abstract).

• Janáına Gomide, Hugo Kling and Daniel Figueiredo. Consolidating author

identities in anonymous ego-centered collaboration networks. Under prepara-

tion for submission (journal).

The third algorithm is an inductive learning framework to identify duplicate

nodes in anonymous social networks. This novel framework is node centered and

consists of first extracting induced and connected subgraphs from a graph rooted at

the node. These subgraphs are matched to a reference graph to align the features

across different instances of the same subgraph as well as to identify the equivalence

classes within a subgraph. Finally, the features are aggregated across all extracted

rooted subgraphs that are isomorphic, generating a single feature vector for each

reference graph. The set of such vectors (across all reference graphs) is taken as the

structural feature for the node.

These structural features are used as input to a two-level neural network designed

to learn to identify duplicates. The first level learns to identify duplicates from the

point of view of a single subgraph (and for every subgraph pattern). The second level

integrates the classification of all subgraphs patterns to learn to identify duplicates.

We evaluate our framework on two kinds of social network: collaboration net-

works and family networks. In particular, the model trained in one network can

effectively identify synonyms in another unseen network. More details are in Chap-

ter 6. This work has lead to the following publication:
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• Janáına Gomide, Daniel Figueiredo and Bruno Ribeiro. Inductive Learning for

Duplicate Identification in Anonymous Social Networks. Under preparation

for submission (journal).

The various results of this thesis strongly suggest that the network structure

alone has enough information to identify and remove synonyms in many social net-

works. This is a fundamental finding given the importance of data consolidation

and privacy concerns.

This text is structured in the following sequence. Chapter 2 presents the main

results in literature concerning name ambiguity. Name usage pattern in the syn-

onym problem is discussed in Chapter 3, in which we propose propose a method to

identify and classify different patterns of multiple name usage. Chapter 4, presents

a model to introduce synonyms in a collaboration network and a naive algorithm

using just a few network features to identify duplicated nodes in the collaboration

network. Chapter 5 presents our algorithm based on the dominating set and inde-

pendent set problems to identify nodes of an ambiguous egonet that correspond to

the egonet owner using only structural properties. Chapter 6 presents and evaluates

an inductive learning framework to identify duplicate nodes in anonymous social

networks. The conclusions and future perspectives are presented in Chapter 7.
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Chapter 2

Related Work

The name ambiguity problem occurs when there is an uncertainly about the match-

ing between names and objects. The uncertainty is caused because more than one

name could have been applied to a single object (synonym) or the same name could

have been assigned to different objects (homonym).

This problem has been subject of study from a variety of fields, including

databases, machine learning, natural language processing and information retrieval.

In [7] the different views of this problem are summarized as: (1) deduplication prob-

lem, to cluster different mentions to the same entity are clustered; (2) record linkage

problem, to link records that match across databases and (3) reference matching

problem, to match noisy records to clean records in a reference table. In this work

we will focus on the deduplication problem in a social network where a single person

can have different representations.

Name ambiguity observed in real datasets has been widely studied over the past

decades in different contexts, such as person’s names in web searchs [8, 9], name

references in email archives [10], gene-protein names [11], geographic names [12] and

author’s names in digital libraries [2, 13].

There are some initiatives to solve this problem by manual inspection such as

manual assignment by librarians [14] or collaborative efforts1. Another attempt is

the use of an unique identifier for each author such as the one proposed by Open

Researcher Contributor Identification2 (ORCID), which provides a persistent digital

identifier to uniquely identify the researchers and link them to their professional

activities. Although interesting, these initiatives apply only for the context of digital

libraries and require heavy human efforts, which prevent them from being used

in massive name disambiguation tasks and in existing datasets that are already

ambiguous.

A taxonomy concerning name ambiguity is proposed in [2] to organize the most

1https://meta.wikimedia.org/wiki/WikiAuthors
2http://orcid.org
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representative automatic methods. According to this taxonomy, the methods may

be classified following the type of exploited approach and also following the exploited

evidences. The approaches are be author grouping [4, 10, 15–17], which tries to group

the references to the same author using some type of similarity among reference

attributes, or author assignment [18, 19], which aims at assigning the references to

their respective authors.

Alternatively, the methods may be grouped according to the evidence explored

in the disambiguation task: attributes of the citation, web information, or implicit

data that can be extracted from the available information. The majority of methods

[3, 16, 17, 19–26] uses at most the three main citation attributes: author names,

work title and publication venue. Few methods [27, 28] exploit additional evidence

such as emails, addresses, paper headers etc., which are not always available or

easy to obtain. Some methods exploit relationships among authors and co-authors,

usually represented as a graph [3, 4, 19, 23–25, 29, 30].

The majority of the methods use machine learning techniques to tackle the prob-

lem and most of them tackle the homonym problem. Supervised algorithms are

used in [3, 4, 15, 16, 20, 31] and unsupervised algorithm (clustering) are used in

[17, 21, 32]. Some methods receive the correct number of authors in the collection

as input [19, 21, 22] or this number corresponds to the number of authors in the

training data [20]. Other methods, such as those proposed in [16], try to estimate

this number. In [33] the proposed algorithm mix clustering algorithm with human

annotations to improve the results.

The problem of imbalanced training data has been treated in [34] where nega-

tive training data are often significantly larger than positive training data for the

homonym problem. When we evaluate our algorithms for the synonym problem,

most of the datasets are imbalanced and we analyze the metrics that are more

appropriated for this scenario. Another issue is the scalability problem when dis-

ambiguating an entire repository. In [35] a new method, specially designed for the

incremental scenario is proposed for the homonym problem. One of the algorithms

proposed in our work, Chapter 6, shows that with a small percentage of network

nodes it is possible to train a classifier to obtain a good performance for the synonym

problem across the network. In that algorithm, each node is considered separately

and as a new node requires just the extraction of its features (by looking a neigh-

bourhood of distance at most five). It is not necessary to have access to the entire

network.

A lot of the effort in name disambiguation is dedicated to the case where a single

name is used by multiple individuals (homonym) [3, 4, 17, 19, 25, 30, 36]. Wang et al.

[36] describe the homonyms problem as given a person with name a and a collection

of N associated documents Da the goal is to find how many distinct persons the
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documents should belong to and to cluster the documents by the groups (persons)

with high accuracy. In the perspective of networks, the homonym problem leads to

a network where a node can represent multiple people. This scenario is prevalent in

a context where people have few and short names, such as with Chinese or Japanese

names, or when the names are abbreviated.

On the other hand, in a context where people have many and long names, such

as in Brazil, ambiguities where a single individual appears with multiple names

(synonym) is more prevalent. Also, when the network is constructed by multiple

user views, such as in [1] where a familial network are created by different members

that report theirs family relationships using different names to represent the same

person. According to Kouki et al. [1] the problem is addressed using name similarity

(based on string matching), relational information such as sibling overlap and logical

constraint such as transitivity and probabilistic soft logic model. While in other

works [1, 29] the synonym ambiguity problem is considered separately, and it has

always been studied in the literature jointly with the homonym problem [15, 20–

24, 27, 28, 37].

Another perspective of the ambiguity problem is approached in [38] and is the

entity linking with a knowledge base. So, given a knowledge base containing a set of

entities and a text collection in which a set of named entity mentions are identified

in advance, the goal of entity linking is to map each textual entity mention to its

corresponding entity the knowledge base.

This thesis focus on the ambiguity problem that arises when multiple names are

used for one object (synonyms) in the context of social networks. Moreover, since

networks are anonymous, the only available evidence is the relationships between the

nodes and no other information is available. We show that just these relationships

encode enough information in contrast to the works presented in survey [2].

Methods proposed in [1, 23, 24, 29] both consider the synonym problem and use

network information. Despite using the network structure to solve the synonyms

problem, these methods measure name similarity and leverage other contextual in-

formation, an approach very different from what this thesis considers.

2.1 Name ambiguity problem in anonymous net-

works

The growing privacy concerns is leading to the removal of even more personally

identifiable information (PII) in data that is publicly available. With the removal

of all PII, the social network becomes anonymized, and no contextual information

is available (i.e., nodes have random labels).
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Recently, a few works have considered the name disambiguation task in the

context of privacy. In [4, 5] relational data is used and a collaboration network is

built to solve name ambiguity using structure features. In [4] no context information

is leveraged in the network, the authors characterize the similarity between two

nodes based on their local neighborhood structure using graph kernels and solve the

resulting classification task using SVM. The evaluation of their methodology used a

proprietary dataset and the Internet Movie Database (IMDb) where they artificially

introduced ambiguities (to have a ground truth).

In [5] a collaboration network is used in a method for solving entity disambigua-

tion from timestamped link information obtained from the collaboration network.

The method uses only the graph topology of an anonymized network and apply an

unsupervised approach based Markov clustering. Experimental results are reported

on two real-life academic collaboration networks, DBLP and Artminer.

In [6] a set of documents is partitioned according to name references and three

different networks involving person to person, person to document and document

to document are constructed and leveraged to solve name ambiguity without name

information. The proposed method uses a novel representation learning model to

embed each document in a low dimension vector space and identify ambiguities

by hierarchical agglomerative clustering algorithm. To evaluate the algorithm they

used the Arnetminer and CiteSeerX repositories and considered 10 highly ambiguous

name references (homonym problem).

All these works that tackle the ambiguity problem considering anonymous net-

work, [4–6], consider the homonym problem. Our work focus on the synonym prob-

lem using anonymous network.

Unlike most of the related work, in Chapter 3 we do not propose a mecha-

nism to remove name ambiguities. The focus is to characterize the root causes for

ambiguities (in the synonym problem) by studying multiple name usage patterns of

individuals over time. By identifying classes of name usage patterns in bibliographic

data and their consequences on the structure of the collaboration network, we con-

tribute to building more effective name disambiguation algorithms. In Chapters 5

and 6 we propose algorithms that consider an anonymous network to the synonym

problem. In Chapter 5 the algorithm finds duplicate nodes of the authors by solv-

ing a variation of the the dominating set and independent set problem specifically

for the synonym problem, and excellent results are obtained in real ego-centered

networks. Finally Chapter 6 proposes a framework to generate features based on

rooted induced subgraphs and presents a two level neural network that uses these

features to train and classify nodes as duplicate and results are excellent even when

training with a small portion of the dataset and evaluating in networks never seen

before during training.
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Chapter 3

Name usage pattern in the

synonym ambiguity problem in

bibliographic data

Although various approaches have been proposed to tackle name disambiguation in

collaboration networks, we believe that is necessary to take a step back to explore

why and how individuals use multiple names thus leading to ambiguities. We believe

that knowing the root causes of name ambiguity could help to design better solutions.

We focus on understanding and classifying multiple name usage patterns of indi-

viduals. By considering positive examples in real collaboration networks, we identify

and classify patterns of multiple name usage by individuals, which can be inter-

preted as name change, rare name usage, and name co-appearance. In particular,

we propose a method to discover patterns of name ambiguity as a supervised classi-

fication task and show that different classes are robust (across datasets) and exhibit

significantly different properties. We show that the collaboration network struc-

ture emerging around nodes corresponding to ambiguous names from different root

causes have strikingly different characteristics, such as their common neighborhood

and degree evolution. We believe such differences in network structure and in name

usage patterns with respect to different root causes can be leveraged to design more

efficient name disambiguation algorithms.

Figure 3.1 shows the name usage pattern of three individuals as it appears in

a real bibliographic dataset. The plots show the total number of publications ap-

pearing with the individual’s two most frequently used names. The difference in the

multiple name usage pattern of the individuals is striking. Individual in Fig. 3.1a

consistently uses one name across many years with a second name being used in just

one year (2009). In contrast, individual in Fig. 3.1b used one name for a long period

of time and in a given year (1995) switched to using another name. Last, individual
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in Fig. 3.1c used two different names interchangeably across all the years.
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Figure 3.1: Different name usage patterns measured as the total number of publi-
cations with each name of a given individual over time: individual in Fig. 3.1a con-
sistently uses a name with a second name only used in 2009; individual in Fig. 3.1b
uses a single name until 1995 when changing to using another name; individual in
Fig. 3.1c frequently and consistently uses two names along the years.

In this chapter, we address the following questions:

• Are these different name usage patterns representative and consistent across

individuals suffering from the synonym problem?

• What are the consequences of these patterns to the structure of collaboration

network?

As we will show, such patterns are indeed representative of the name usage for

synonyms. Moreover, different patterns induce different fingerprints in the structure

of the collaboration network. Although our focus here is not to remove ambiguity,

our findings could be leveraged to design more effective algorithms. Last, to the best

of our knowledge, this is the first work to classify name usage patterns of synonyms

in real bibliographic data and quantify its effect on the collaboration network – a

fundamental step to understand the origins of ambiguities emerging from synonyms.

By keeping with our objectives, we make the following contributions:
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1. Propose a methodology to identify and classify different patterns of multiple

name usage in bibliographic data.

2. Characterize the structural features in the collaboration network induced by

different root causes for ambiguity.

The proposed method consists in building time series from the multiple name

usage pattern of individuals and extracting features from them that are then used

to classify the patterns using unsupervised and supervised classification tasks. Note

that the methodology assumes knowledge of the multiple names of individuals since

the goal here is not to identify such names but rather to unveil common patterns of

name usage in real data and their consequences on the structure of the collaboration

network. In particular, we show that a few very distinctive patterns are behind the

majority multiple name usage in real data.

3.1 Synonym name patterns

The examples illustrated in Figure 3.1 suggest threes types of name usage pattern:

• Rare: When the individual uses one name the majority of the time and in rare

cases uses the other name. The alternative name might have been misspelled

or is the result of a typo.

• Swap: When the individual starts publishing with a name and some time

later switches to another name. We consider that the individual in this case

consciously changed the name used to sign publications.

• Co-appearance: When the individual has publications with both names in the

same year or uses both names along the years it publishes. We consider that

the individual has more than one form to write his name in publications.

Indeed, these three types are representative of patterns of multiple name usage

found in real data, as we will soon demonstrate. Thus, we proposed a methodology

to classify the name usage patterns of individuals that suffer from synonym into one

of three classes. The idea is to map the multiple name appearances of an individual

(across its publications in a bibliographic dataset) to a time series and use machine

learning algorithms to classify the time series (one per individual) based on its

features. Figure 3.2 exemplifies each step of the methodology that we describe next.

3.1.1 Duplicated name appearances

We start by assuming knowledge of a set of individuals and the names they have

used within a given bibliographic dataset, for example, John von Neumann and its
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Figure 3.2: Steps of the proposed methodology to classify synonym patterns: multi-
ple name appearances of an individual, time series representation, features extracted
from the time series, classification of patterns using machine learning, and network
analysis of different classes.

two names “J Neumann” and “JV Neumann” as they appear in Google Scholar. For

each individual, we collect the corresponding set of publication records that include

date of publication and names of co-authors.

In particular, let U = {u1, u2, u3, ..., un} denote the set of individuals with more

than one name and let li1, li2, i = 1, ..., n denote the two most frequently used names

for individual ui in the dataset. We limit the analysis to two names per individual

because this is by far the most common case: in the official synonym data for

DBLP, 95.8% of individuals with multiple names appear with exactly two names.

Information concerning the ground-truth on synonyms for DBLP is described in

Section 3.2.1.

3.1.2 Time series representation

For each individual we construct a time series for each of its names with the number

of publications that have appeared with the given name per year. Thus, the time

series has a yearly time scale. Let T l1
i and T l2

i denote the time series of individual ui

associated with its two names li1 and li2. We provide empirical support for choosing

just two names (the two most used) in Section 3.2.

We combine the multiple time series of an individual into just one time series

as follows: for each year, if either label li1 or li2 is used then the new time series is

assigned the value -1 or 1, respectively, for that year. If both labels are used in the

same year then the new time series is assigned the value 0 for the respective year.

Let Ti denote the combined time series for individual ui.

To illustrate the construction of the time series, considers the individual shown

in Figure 3.1(c). He has published using the name “G. Batista” from 1997 to 2014

and in 2000 he started to use the name “G. E. Batista” until 2015. Table 3.1 shows

the time series representation for this individual. Note that 1998 does not appear

in the time series since no publications appeared in the dataset for that year.
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Table 3.1: Time series representation: example of how to combine the multiple time
series of an individual. A value of 1, -1 or 0 is assigned to the combined time series
if just label li1 or li2 or both are used in respective year.

Name 97 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

G. E. Batista X X X X X X X X X X X X X X X
G. Batista X X X X X X X X X X X X X X X
Result −1 −1 0 0 0 0 0 0 −1 1 0 1 0 0 0 0 0 1

3.1.3 Time series features

We extract features from the time series in order to capture the individual’s name

usage pattern. In particular, since we would like to classify individuals into one of

the above three classes, features of the time series should reflect these classes. Thus,

the first insight is related to the number of changes that occur in the time series. Is

name change frequent or rare for a given individual? The second insight is related

to the number of times that both names are used. Does the individual really has

two ways of writing his name? The third insight is related to the appearance of

the least used name. Is this frequently or rarely used with respect to the most used

name?

In order to capture these insights we introduce three features that will be ex-

tracted from the time series. Let Ni be the length of time series Ti defined by

the number of years with a -1, 0 or 1 entry, and Ni,0, Ni,1 and Ni,−1 the number

of zeros (both names), ones (only li1) and minus ones (only li2) in the Ti, respec-

tively. Let Ti,j denote the j-th element of the time series of individual ui. Let

Si =
∑N

j=2 1(Ti,j 6= Ti,j−1) denote the number of changes with respect to the pre-

vious year of user ui and Xi =
∑N

j=2 1(Ti,jTi,j−1 = −1) denote the number name

alternations for user ui. Note that Xi does not count when both names are used in

the same year (Ti,j = 0). The features are defined as follows, noting that all of them

are used in the range [0,1]:

• Persistence (Pi): fraction of time that the same name appears in the following

years:

Pi = 1− Si

Ni − 1
(3.1)

• Co-appearance (Ci): fraction of time both names appear in a year combined

with fraction of name swaps:

Ci =
Ni,0 +Xi

Ni

(3.2)

• Rare (Ri): fraction of time the least frequently used name does not appear
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alone:

Ri = 1− min(Ni,1, Ni,−1)

Ni

(3.3)

3.1.4 Data classification

Can individuals be correctly classified based on their features by an unsupervised

classification algorithm? To answer this question, we create a small training set by

selecting randomly selecting time series and manually labeling them with one of the

three classes (by inspection of the time series). Next, we run a clustering algorithm

that takes as input just the features (i.e., three values) of the time series in this

training set (and not the labels). If the features are an adequate discrimination of

the data, then the clustering algorithm should classify the data in accordance to the

manual labels.

In this work, we adopt the simple k-means clustering algorithm [39] using the

Euclidean distance between points (with k = 3, since we have three classes). To

assess the quality of the clustering produced by the algorithm, we consider the

following metrics: homogeneity – measures if clusters contain only members of a

given class; completeness – measures if all members of a given class are assigned to

the same cluster; and Adjusted Rand Index (ARI) – measures the similarity between

pairs of clusters.

Next, we train a model to learn to classify the time series into one of the three

classes. We use the same training set where each individual has three features

(the three proposed metrics) and the label (manually assigned by inspection of

the time series). This trained model is then used to classify all individuals in our

dataset (using as input the corresponding feature values), allowing us to study the

characteristics of different classes with a large dataset, such as the impact of the

class in the collaboration network.

For this supervised learning, we adopt the Support Vector Machine (SVM) al-

gorithm [40]. An SVM model is a representation of the training data as points

in space, projected such that data from different classes are as far as possible from

one another. In particular, the algorithm searches for an optimal hyperplane which

separates the training data. A large fraction of the training set is used to create the

model, while the complement fraction is used to verify the quality of the trained

model.

3.1.5 Network analysis under ambiguity

It has recently been observed that structural features of collaboration networks

depend and are crucial in tackling both kinds of ambiguity problems [3, 24, 41–43].

These networks are usually constructed from datasets by considering each record
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(e.g., paper or book) separately. In particular, each record has a set of names

(e.g., co-authors of the paper) that are mapped to nodes and form a clique in the

collaboration network. Thus, the network is formed by the union of cliques, one

per record, with nodes identified by the names appearing in the record. Clearly,

individuals subject to synonyms will appear as multiple nodes in the network, giving

rise to a misleading network structure [41, 43, 44].

To measure the impact of different causes of ambiguity in the collaboration net-

work we consider the following structural characteristics concerning nodes (names)

of a given individual:

• Node degree: we will compare the degree of the two nodes (names) for the

different types of ambiguity;

• Number of common neighbors: the size of the common neighborhood of the

two nodes (names);

• Distance: the distance between the two nodes (names) in the network;

• Degree evolution: the derivative with respect to time of the degree growth

for both nodes (names). By looking to this metric we want to verify how is

the growth of the degree of an node through the time and note if it has not

increased or if it is constantly growing, for example. Let us define the first

(tmin
i ) and last (tmax

i ) year of publications of a given author ui as follows:

tmin
i = min(min(T l1

i ),min(T l2
i ))

tmax
i = max(max(T l1

i ),max(T l2
i ))

(3.4)

Let the degree variation of an author’s label be the difference in number of

neighbors in the network between it’s first and last publication year. Finally,

degree evolution for a label (e
l1,2
i ) is defined as the ratio between degree vari-

ation and period of publications as follows:

e
l1,2
i =

d
l1,2
i (max(T

l1,2
i ))− dl1,2i (min(T

l1,2
i ))

min(1, tmax
i − tmin

i )
(3.5)

3.2 Empirical evaluation

In this section we describe the datasets and the results obtained by applying the

proposed method.
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3.2.1 Datasets

The dataset used to evaluate the proposed method can be any collections of records

of collaboration with positive instances of individuals that appear in the data with

multiple names. In order to study the patterns of name usage in the synonym

ambiguity problem, it is necessary to know the names used by a given individual in

a given dataset.

We used two different real bibliographic records that are used to build collabo-

ration networks and are readily available online: the DBLP (Digital Bibliographic

Library Project)1 and a small subset of Google Scholar2 that we collected.

DBLP

The DBLP contains bibliographic information for publications in Computer Science

and it has been widely used in many studies. In particular, we considered the entire

DBLP dataset and the version of May 2014, which can be freely downloaded in

XML format3. In this repository, some individuals do appear with different names

in distinct publication records, giving rise to the synonym problem. However, DBLP

maintains a record for a known set of authors that appear with multiple names in

the database, that are identified in a different section of the same XML file.

In particular, some elements of the XML file have a tag <www> and attribute

key="homepages...". These elements represent the homepages of individuals

within the DBLP website and include a list of names used in the publications

of the corresponding individual. To illustrate, the example below was extracted

from the XML file. The first tag <www> is for the homepage homepages/75/6127

which corresponds to the individual R. Alberdi. The second tag <www> is for the

homepage homepages/75/3969 which corresponds to an individual that uses two

names in its publications: Yusuke Mitari and Yusuke Mitarai, as indicated by the

tag <author>.

...

<www mdate="2009-06-10" key="homepages/75/6127">

<author>R. Alberdi</author>

<title>Home Page</title>

</www>

<www mdate="2012-09-26" key="homepages/75/3969">

<author>Yusuke Mitari</author>

<author>Yusuke Mitarai</author>

1http://dblp.uni-trier.de
2http://scholar.google.com
3Link to download the XML of the entire DBLP database: http://dblp.uni-trier.de/xml/
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<title>Home Page</title>

</www>

...

Thus, DBLP has identified some authors that use more than one name in their

publications, as well as the names used by these authors4. Therefore, we use only this

set of individuals and their corresponding names as our ground truth for synonyms

in DBLP not performing any sort of data pre-prossessing. Last, the DBLP dataset

used in this work listed 14,290 individuals with more than one name and a total of

29,126 different names among them, although most of them have just two names

(see Table 3.2).

Google Scholar

Google Scholar provides a wide range of bibliographic records from the academic

publications. It draws on information from university repositories, publishers and

websites that were identified as scholarly. Google Scholar maintains a profile for

each individual that lists all publications of the person along with other information,

such as full name and affiliation. After approval by the owner, the profile becomes

publicly accessible.

The name appearing in the author’s profile is not the same name that appears

in the list of publications of the profile. In particular, Google Scholar shows only

the initials and the last name of the authors of the publication. In spite of this

simplification, the owner of the profile still appears with different names in the list

of publications, giving rise to the synonym problem.

In order to select profiles in Google Scholar, we considered individuals that were

awarded a research fellowships from CNPq5 in six different areas (Biophysics, Com-

puter Science, Electric Engineering, Philosophy, Medicine and Sociology). We chose

this target group since Brazilians tend to have many first and last names, and use

them rather freely in publications.

From the 1629 researchers that receive a research fellowship from CNPq, 1060

have a public Google Scholar profile (we automatically search for their public profiles

on Google Scholar using their names). We collected all publications available in

the profile for each individual, and found 881 profiles where the listed publications

exhibit more than one name for the profile owner. We mapped 3408 different names

used to refer to these 881 individuals.

4See details on DBLP’s handling of synonyms at http://dblp.uni-
trier.de/faq/How+does+dblp+handle+homonyms+and+synonyms.html

5CNPq is the Brazilian National Research Council responsible for funding research, similar to
the National Science Foundation (NSF) in the United States of America.
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Note that Google Scholar does not have a ground truth, meaning that it does not

mark which name in a given publication corresponds to the profile owner. However,

since we know the name of the profile owner and the name appearing in the profile

heading, we search within the author names of the publication for the name that

most likely corresponds to the profile owner (using text-based heuristics and string

distances). Thus, for each publication, we determine the corresponding name for

the profile owner.

In order to measure the quality of the data collected, we should verify if the

profile is really from the person we are expecting, if the profile owner appears in the

publications listed in the profile, and if the name we identified in the publication

corresponds to the profile owner. We randomly selected 20 Google Scholar profiles

and manually verified these issues. We found that all profiles do correspond to the

expected individual. Among all publications listed for 19 individuals (a total of

1679), 6% of them do not contain the name of the profile owner. However, these

publications are discarded and have no impact in our analysis. One individual had

1042 publications listed but his name did not appear in 388 of them (they seem

to belong to a different person), and thus these publications were discarded. Last,

in all cases that a name was identified within the co-authors of a publication, the

heuristic did find the profile owner.

3.2.2 Time series and number of names

After creating the datasets we built the time series for each individual for its two

most used names (T l1
i and T l2

i ) and combined them into a single time series Ti. Then,

for each Ti the features Pi, Ci and Ri were computed, as described in Section 3.1.

Although our methodology is limited to two names per individual, most indi-

viduals in the dataset here considered tend to appear with just two names or tend

to use more frequently just two names. Table 3.2 shows the number of the names

used by an individual in its publications in the datasets. Note that in the DBLP

ground truth, the vast majority of individuals use just two names (96%), while in

the profiles collected in Google Scholar, this value is much lower (24%). However,

name usage frequency is far from uniform, meaning that an individual can appear

with many names across all its publications, but mostly use one or two names.

Without loss of generality, let |T lj
i | denote the number of times that the j-th

most used name of an individual i has appeared. Thus, the ratio |T lj
i |/|T

l1
i | ≤ 1

denotes the relative frequency of the j-th most used name with respect to the most

used name. Figure 3.3 shows the average and standard deviation for this ratio (for

different values of j) across all individuals (of both datasets) with more than one

name. Note that the third most used name appears (on average) less than 10% of
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Table 3.2: Number of names per individual in the DBLP ground truth and in the
collected Google Scholar profiles.

Number of names DBLP ground-truth Google Scholar
1 0 (0%) 179 (16.9%)
2 13700 (95.9%) 256 (24.2%)
3 569 (4.0%) 201 (19.0%)
4 21 (0.2%) 121 (11.4%)

5 or more 0 (0%) 303 (28.6%)
Total 14290 1060
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Figure 3.3: Average and standard deviation of the relative ratio (|T lj
i |/|T

l1
i |, across

all i) of the number of appearances of the j-th most used name.

the time with respect to the most used name. The name usage frequency decreases

very fast for less frequent names. Thus, considering just the two most frequently

used names, they account for the vast majority of the individuals in DBLP or the

majority of name appearances in Google Scholar.

We discard individuals with too few name appearances in order to avoid outliers,

keeping just individuals with at least 10 name appearances among its two most used

names (|T l1
i |+|T

l2
i | ≥ 10). After this filter, there were 5497 individuals with multiple

names in DBLP and 608 individuals in Google Scholar.

3.2.3 Data classification

We selected 200 random individuals from the dataset and manually labelled their

time series (by inspection) into one of the three classes. This labelled data will be

used to assess the quality of the clustering algorithm that produces clusters using

just the data features (persistence, co-appearance and rare). The labelled data will

also be used to train and assess the quality of the classification algorithm.

We run the k-means algorithm (k = 3) to cluster the training dataset based

on its features (Pi, Ci and Ri). Figure 3.4 shows a 2D projection of the points
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Figure 3.4: Clusters generated based on the features of the individuals’ time series.
The letters represents the true label (manually determined by inspection) and the
colors represent the cluster assigned by the clustering (unsupervised) algorithm. The
x axis represents the value of the feature R and the y axis represents the value of
the feature C.

corresponding to the different individuals (x-axis and y-axis correspond to the values

for features R and C, respectively). The letters represent the manual labels given to

each data point (individual) and the colors represent the cluster of each individual

assigned by the algorithm. Note that there is very good correspondence between

the manual (true) label and the assigned cluster. This indicates that the features

can be used to classify the individuals into their corresponding class.

Table 3.3 shows five examples of individuals from each cluster. Note that indi-

viduals in the red cluster have used both names most of the time (many 0 entries

in their time series) or changes the name very often and thus characterizes the Co-

appearance class. Individuals in the green cluster have time series with mostly just 1

or just -1, meaning that these individuals use one name most of the time and rarely

use the other name. This behavior characterizes the Rare class. Finally, individuals

in blue cluster have time series that start with -1 but switch to 1 after some time,

meaning that in the beginning one name was used and later another one. This

behavior is expected for the Swap class.

Table 3.4 presents the three metrics to measure the quality of the cluster pro-

duced by the algorithm, taking as ground truth the manual labels. Note that both

homogeneity and completeness is larger than 75% (in a scale from 0 to 1), mean-

ing that the clusters are quite homogeneous and complete. Moreover, the Adjusted
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Table 3.3: Peaking into the clusters: feature values and time series of the individuals
in each cluster. The color also corresponds to Figure 3.4.

Cluster Features Time series
R C P

Red

0.4000 0.6000 0.6429 -1 1 0 0 0 0 0 -1 -1 0 0 0 -1 -1 -1
0.3077 0.6154 0.4167 -1 0 0 0 0 -1 1 1 0 0 1 0 1
0.1111 0.8333 0.7647 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0.2727 0.7273 0.7000 -1 -1 0 0 0 0 -1 0 0 0 0
0.5000 0.5000 0.6364 -1 0 0 0 -1 -1 0 0 0 -1 -1 -1

Green

0.8000 0.2000 0.7778 -1 -1 -1 -1 -1 -1 -1 0 0 -1
0.9091 0.0909 0.8000 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1
0.9167 0.0833 0.9091 -1 1 1 1 1 1 1 1 1 1 1 1
0.9333 0.0667 0.8571 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0.9231 0.0769 0.9167 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1

Blue

0.5000 0.1667 0.6364 -1 -1 -1 0 -1 0 1 1 1 1 1 1
0.6364 0.0909 0.9000 -1 -1 -1 -1 1 1 1 1 1 1 1
0.6364 0.0909 0.9000 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
0.5714 0.2143 0.7692 -1 -1 -1 -1 -1 -1 -1 0 0 -1 1 1 1 1
0.7857 0.0714 0.9231 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1

Table 3.4: Measuring the quality of the (unsupervised) clustering using the manual
labels as ground truth.

Homogeneity Completeness Adjusted Rand Index
0.751 0.759 0.788

Rand Index (ARI) value is 78% (in a scale from -1 to 1, with 0 being random),

meaning that the clusters found by the algorithm are almost perfect. Thus, we

conclude that the proposed features can indeed be used to classify individuals into

their corresponding name usage class.

We proceed to classify all individuals from both datasets into their corresponding

class. In order to accomplish this, we consider the 200 manually labeled individuals

and use their features (Pi, Ci and Ri) to create a training set with examples from

all the three classes. We next create a model with this training set using the SVM

algorithm and, in order to assess the robustness of the learned model, we measure

the performance of the 10-fold cross validation (90% of training set used to training

the model, 10% to validate it) and the performance when varying the training set

size. We repeat the 10-fold cross validation 1,000 times and report on the average

result across these independent runs (usually much more accurate than a single run).

The results obtained by the 10-fold cross validation are shown in Table 3.5. Note

that the error inside and outside the training set is very low, and that the precision

and recall achieved by the classifier (on the remainder of the training set) is around

96% indicating that the learned model is robust and that classification was very
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Table 3.5: Measuring the quality of the training set using 10-fold cross validation.

Ein Eout Precision Recall
0.0319 (0.0008) 0.0340 (0.0030) 0.9727 (0.0028) 0.9660 (0.0030)
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Figure 3.5: Performance of the classification as a function of the training set size.

accurate.

We now consider different training set sizes (chosen uniformly at random from the

full training set) to train the classifier, and measure the same performance metrics

(error inside and outside the training set, precision and recall). Results are shown

in Figure 3.5, as a function of training set size. Note that with just forty examples

we can achieve low error in and outside the training dataset and good precision and

recall. As the training dataset grows the precision and recall are both higher than

90%. Thus, the size of (full) training set manually annotated is adequate.

After verifying the excellent performance of the classifier on the training set, we

used the trained SVM model to classify all the individuals in both datasets. The

distribution of the individuals among the three classes is shown in Table 3.6. Around

half of the individuals were placed in the Rare class in both datasets, indicating

that this is likely to be the main cause for synonym ambiguity, probably due to

a rare name variation (i.e., using the middle initial) or even name misspelling. In

DBLP, the percentage of individuals that change names (Swap class) and that use

both names (Co-appearance class) are approximately the same, while in Google

Scholar there is a smaller percentage of individuals classified in the Swap class. This

difference might be caused by the preprocessing done by Google Scholar to the names

of authors as found in publications, in a explicit attempt to reduce synonyms.
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Table 3.6: Percentage and number of individuals from the DBLP and Google Scholar
classified into each synonym ambiguity class.

Classes DBLP Google Scholar
Rare 40.82% (2244) 49.84% (303)
Swap 33.78% (1857) 17.93% (109)

Co-appearance 25.40% (1396) 32.23% (196)

Table 3.7: Average and standard deviation of feature values for each class. Note the
distinctive combination of values of the various classes.

Classes Pi Ci Ri

Rare 0.81(0.11) 0.12(0.07) 0.88(0.06)
Swap 0.74(0.11) 0.25(0.10) 0.63(0.10)

Co-appearance 0.50(0.15) 0.49(0.13) 0.46(0.14)

The average value within each class of the features used for classification are

shown in Table 3.7, illustrating the differences between the classes. Notice that

feature Ci has the largest average value for individuals classified as Co-appearance

indicating that individuals in this class most of time publish with both names. For

the class Rare, Ri and Pi have a high average value, indicating that individuals in

this class have a name that appears very seldom and that one name persists for most

of the time. For the class Swap Pi has the largest average value indicating that there

are not many swaps between names, Ri is moderate indicating that there is not a

name that appears only seldom, and the low value for Ci indicates that both names

are not common for the individual.

3.2.4 Network under ambiguity

We now assess the impact that synonyms have on the structure of the collaboration

network. We consider a collaboration network constructed by the superposition

of all publications in found in our datasets, and not just the individuals that have

been identified with multiple names. Moreover, the synonym ambiguity found in our

ground truth was not removed, so each name appearing in the dataset corresponds

to a node in the network. This allows to measure statistics and compare the different

nodes that correspond to the same individual.

Table 3.8 shows some statistics of the networks constructed for both DBLP

and Google Scholar datasets. Note that DBLP is a much larger network since we

consider the entire database and we only have a rather small sample collected from

Google Scholar (about 10 times smaller in number of nodes than DBLP, but with

comparable average degree).

Figures 3.6 and 3.7 show the distribution for the degree and number of common

neighbors for the DBLP and Google Scholar datasets. The degree distribution for
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Table 3.8: Date and size of datasets and details of corresponding collaboration
network.

DBLP Google Scholar
Date collected May, 2014 August, 2015
Publications 2,553,549 154,012

Nodes 1,397,510 153,112
Edges 5,450,815 705,394

Avg. deg. (std) 7.8 (16.3) 9.2 (22.4)
Max. deg. 1,638 3,172

both primary and secondary vertices for both datasets (Figures 3.6a and 3.7a) ex-

hibits a heavy tail behavior, following suit with the overall degree distribution of

the network (not shown). As expected, the distribution for the primary vertex has

a longer tail since its definition implies it has appeared in more publications. As

indicated by the distributions, the average degree of primary nodes is much larger

than that of secondary nodes, as shown in Table 3.9. Moreover, as with the most

heavy tail distributions, the standard deviation is also quite high, in the order of

the average, as shown in Table 3.9. Note that Google Scholar has a much larger

average primary degree than DBLP, possibly because individuals in Google Scholar

are recipients of a research fellowship which means they tend to publish more and

thus have more collaborators.

The degree distribution of primary vertices conditioned on each class are rela-

tively similar (not shown), while being quite distinctive for secondary vertices, as

shown in Figures 3.6b and 3.7b. In particular the tail for the Rare class is much

shorter than for the other classes, while Co-appearance exhibit the heaviest tail.

Observe in Table 3.9 that the average degree of the secondary vertex of class Rare

is the lowest in both datasets. This is because the individuals of this class seldom

use its second name, while individuals of the class Co-appearance use their second

name more frequently and, thus, have the highest average value of degree, in both

datasets.

Figures 3.6c and 3.7c show the distribution of the number of common neighbors

between the primary and secondary nodes, illustrating that this statistic is also

class dependent and consistent across the two datasets (averages shown in Table

3.9). Again, we observe that the distributions exhibit a heavy tail, with the classes

Rare and Swap having a shorter tail than Co-appearance, for both datasets. For

class Rare this is intuitive as the second name is rarely used and thus tends to

have a much lower degree, and consequently a lower number of common neighbors.

For the class Swap, a possibility is that the two names (primary and secondary)

are used in different contexts (e.g., areas of research) and thus have fewer common

collaborators. In contrast, the two names of individuals in class Co-appearance have
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Figure 3.6: Degree and common neighbors distributions for DBLP. In Figure 3.6a
degree distribution of the primary and secondary vertices (names) across all classes
and in Figure 3.6b for each class for the secondary vertex. In Figure 3.6c distribution
of common neighbors between primary and secondary vertices (names), per class.

the largest number of common collaborators, indicating that both names indeed are

used interchangeably with the same set of collaborators.

We also consider the distance between the two nodes that represent the same in-

dividual in the network, with results shown in Table 3.10. Note that in both datasets

the vast majority are at distance two, meaning that the two vertices (primary and

secondary) have at least one common collaborator. Also note that some pairs lie in

different connected components having no distance between them. Curiously, there

are a few pairs that are at distance one (thus, they are neighbors), which implies

that the two names must have appeared in the same publication. This can be due to

having a collaborator (co-author in a paper) with a name that is identical to either

the primary or secondary names, or to errors in preprocessing of the data by the

curators (DBLP and Google Scholar). In any case, this is a very small percentage

of cases and does not significantly impacts our analysis.

The last analysis considers the degree evolution for both nodes (names) during
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Figure 3.7: Degree and common neighbors distributions for Google Scholar. In
Figure 3.7a degree distribution of the primary and secondary vertices (names) across
all classes and in Figure 3.7b for each class for the secondary vertex. In Figure 3.7c
distribution of common neighbors between primary and secondary vertices (names),
per class.

Table 3.9: Average and standard deviation of degree and number of common neigh-
bors (between primary and secondary vertices).

DBLP Google Scholar
Degree

Primary 48.71 (46.43) 138.46 (172.45)
Secondary 14.07 (16.85) 36.40 (51.65)

Degree of secondary
Rare 5.32 (5.78) 13.81 (21.27)
Swap 16.83 (16.37) 43.85 (48.75)

Co-appearance 24.46 (21.59) 67.17 (66.98)
Common neighbors

Rare 2.62 (2.90) 3.26 (3.65)
Swap 6.28 (6.81) 10.01 (14.82)

Co-appearance 10.05 (10.17) 18.26 (17.45)
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Table 3.10: Percentage and number of individuals whose corresponding nodes (pri-
mary and secondary names) are at distance one, two, three, four or more, or not
connected in the collaboration network.

Distance DBLP Google Scholar
1 0.07% (4) 1.15% (7)
2 89.79% (4936) 80.92% (492)
3 2.83% (155) 4.12% (25)
≥ 4 4.44% (244) 5.92% (36)
∞ 2.87% (158) 7.89% (48)

Table 3.11: Average and standard deviation of the derivative of the degree evolution
for primary and secondary nodes (names) for each class in each dataset.

Dataset Class Primary Secondary

DBLP

Rare 2.84 (2.75) 0.12 (0.24)
Swap 2.25 (2.03) 0.77 (0.83)

Co-appearance 2.47 (2.15) 1.25 (1.14)
Rare 4.79 (3.70) 0.38 (0.62)

Google Swap 5.21 (3.52) 1.48 (1.42)
Scholar Co-appearance 4.91 (7.00) 2.17 (1.95)

the period of time that the individual has published. Figure 3.8 shows the degree

evolution for each name of the three individuals of Figure 3.1. Interestingly, these

two figures are very similar, indicating that publishing and building collaborations

are strongly related. Note that the degree evolution of these three individuals are

quite different and, thus reflects the difference between the three classes (Rare, Swap

and Co-appearance).

Figure 3.9 shows a boxplot of the derivative with respect to time of the degree

evolution for both nodes (names) for the three classes in both datasets. Note that

the for all classes, and in both datasets, the degree evolution for the primary node

is much larger than the corresponding secondary node. As expected, the degree of

the primary node tends to grow faster than the corresponding secondary node. The

Rare class exhibits the largest difference between primary and secondary nodes, with

the average of the first being more than ten times larger (shown in Table 3.11). In

contrast, the Co-appearance class shows a smaller difference between primary and

secondary, indicating that both nodes grow their degrees over time. Thus, degree

evolution is also a distinctive feature both among classes and among node types

(primary or secondary), consistently across datasets. Finally, note that the metric

has a broad range when considering primary nodes (illustrated by the large boxes),

indicating that individuals have quite different behaviors.
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Figure 3.8: Degree evolution for the nodes (names) associated with the individuals
in Figure 3.1. These examples are representative of the different causes of ambiguity,
Rare, Swap and Co-appearance.

 0

 2

 4

 6

 8

 10

 12

 14

D
e
g
re

e
 E

v
o
lu

ti
o
n
 D

e
ri

v
a
ti

v
e Co-Apperance(Primary)

Co-Apperance(Secondary)
Rare(Primary)

Rare(Secondary)
Swap(Primary)

Swap(Secondary)

(a) DBLP

 0

 5

 10

 15

 20

 25

D
e
g
re

e
 E

v
o
lu

ti
o
n
 D

e
ri

v
a
ti

v
e Co-Apperance(Primary)

Co-Apperance(Secondary)
Rare(Primary)

Rare(Secondary)
Swap(Primary)

Swap(Secondary)

(b) Google Scholar
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of the degree evolution for primary and secondary nodes (names) for each class in
each dataset.
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3.3 Discussion and conclusion

Despite the various reasons for individuals to appear with multiple names in bibli-

ographic data, we show that a few very distinctive patterns are the cause for most

appearances. In particular, assuming knowledge of the multiple names used by in-

dividuals, the proposed method constructs time series based on the usage patterns

of such names and classifies individuals into one of three classes: Rare, Swap, Co-

occurrence. When applied to two real datasets (obtained from DBLP and Google

Scholar) our method reveals that these three classes are consistent and representa-

tive of the patterns for synonyms use. The Rare class represents the cases where

individuals use one name most of the time with the second name appearing in just

a few publications. The Swap represents individuals that start using one name but

then stop and change to another name. The co-appearance class represents individ-

uals that use two names (or more) regularly and interchangeably. Despite intuitive,

these classes indeed consistent and representative of multiple name usage patterns

present in real data, with the class Rare being the most common (43% and 53% of

individuals in DBLP and Google Scholar, respectively).

Interestingly, we also show that different causes of ambiguity produces different

network structures, such as the number of common neighbors (between the primary

and secondary names) and the degree evolution of the nodes (names). This finding

is also robust across the two datasets and seems inherent to name usage patterns

of the individuals. Thus, the fingerprint in the collaboration network produced

by ambiguous names is class dependent and very different. The observation name

ambiguity across different individuals appears to have different network structure

was also made recently, albeit without an explanation [3], while another recent work

investigates the impact on the network of different kinds of ambiguity (synonyms

and homonyms) [41, 44]. Exploring the specific structural fingerprints of different

causes for synonyms might lead to the design of more effective name disambiguation

algorithms.

Our approach and method is not constrained to bibliographic data and could be

applied to other contexts where name ambiguity is also present. For example, the

appearance of different names for the same character in novels or movies may also

exhibit distinctive usage patterns.
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Chapter 4

A model and a naive algorithm

In this chapter we first propose a probabilistic model to introduce ambiguity in a

network by duplicating vertices and adding and removing edges. Then, we propose

a simple label-free algorithm to remove ambiguities by identifying duplicate vertices

based only in structural features. We evaluate the performance of this algorithm

under two classical random network models. Results indicate that such network

structure can indeed be used to identify ambiguities, yielding very high precision

when local structure is preserved.

Towards this direction, we make the following contributions:

1. Ambiguity model: based on intuition and empirical observations of real data,

we propose a probabilistic model that introduces ambiguity in a social network.

The model has three intuitive parameters used for tuning the desired amount

and structure of ambiguity and can operate over any original social network.

This model is presented in Section 4.1.

2. Disambiguation algorithm: again, based on intuition and empirical observa-

tions on real data, we propose a simple and efficient label-free algorithm for

removing ambiguity. Our algorithm uses only the structure of the network of

observed labels but not the labels themselves to identify nodes (labels) that

refer to the same person. We present an extensive analysis of the performance

(precision and recall) of this algorithm when applying the proposed ambigu-

ity model to random graph models. The algorithm and its evaluation are

presented in Sections 4.2 and 4.3, respectively.

4.1 Ambiguation model

In this section we present a novel probabilistic model that introduces ambiguity in a

network. The model is mostly tailored for social networks and is based on intuition

and empirical observations. The idea is to duplicate nodes and add/remove edges
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(a) (b) (c)

Figure 4.1: Parameters of the probabilistic model for create ambiguity in a network.
In (a) vertex duplication phase, (b) edge addition phase, and (c) edge removal phase.

to neighbours of an original node. A duplicated node represents a second label

for the original node. Therefore, one object (node) of the original network can be

represented by two nodes (labels) in the ambiguous network and relationships among

the original object (node) can be copied to its duplicate and removed from itself.

Consider a network represented as a graph G = (V,E) in which V is the set of

vertices (e.g., people) and E is the set of edges (e.g., friendship relationship). In

this graph, each vertex uniquely identifies an object in the network. The proposed

model has three phases, each with a parameter:

1. Vertex duplication: with a probability p a vertex is duplicated;

2. Edge addition: with a probability q an edge between a neighbour of the

original vertex and the duplicated vertex is created;

3. Edge removal: with a probability r an original edge that was copied to a

duplicated vertex is removed.

In the vertex duplication phase, the vertices are duplicated creating ambiguity.

Each vertex u ∈ V is sampled with probability p independently to generate another

graph with a duplicate vertex, u′, as shown in Figure 4.1a. Note that p controls the

amount of ambiguity introduced in the network, so that with p = 1 all vertices will

have a duplicate in a network.

In the edge duplication phase, the neighbours from the original vertex are copied

to the duplicated vertex. For each neighbour v ∈ Nu(neighbours of u) of an original

vertex u that has been duplicated, with probability q independently, an edge e =

(u′, v) is created as illustrated in Figure 4.1b. Note that with q = 1 all neighbours

from u will become neighbours of u′.

In the edge removal phase, edges between an original vertex u and a neighbour v,

which has become a neighbour of u′, is removed with probability r, independently, as

shown in Figure 4.1c. Note that for r = 1 all edges between the original vertex u and
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its neighbours that became neighbours of the duplicate vertex u′ will be removed.

Algorithm 1 describes this ambiguity model.

Algorithm 1: Model to introduce ambiguity with parameters: p, q, r.

Data: G = (V,E), p, q, r
Result: G′ = (V ′, E ′)
E ′ ←− E ; Vd ←− ∅ ; Ed ←− ∅
for v in V do

with probability p, duplicate v into v′ and Vd ←− Vd ∪ v′

for v’ in Vd do
v ←− original(v′)
N ←− neighbours(v)
for u in N do

with probability q, create e′ = (v′, u) and Ed ←− Ed ∪ e′
if e′ in Ed then

with probability r, remove e = (v, u) from E ′

V ′ ←− V ∪ Vd ; E ′ ←− E ′ ∪ Ed

4.2 Algorithm for removing ambiguities

In this section we present a simple algorithm to identify ambiguities in a social

network. In particular, we consider just the case where a single object, due to ambi-

guities, can be represented in the observed label network by more than one vertex.

Our algorithm identifies network nodes that represent the same entity without re-

sorting to label information, i.e., only structure information is used.

We developed several structure-based heuristics to identify nodes in the label

network that might represent the same entity. For example, we consider that two

nodes might refer to the same entity if they are at distance 2, since it is unlikely that

a node will have a relationship with itself using two different labels. Moreover, the

same is considered if the common neighbourhood between two vertices strongly over-

laps and is contained in one another. We aim at developing a conservative approach

to merge nodes, in order to minimize false-positives, allowing greater applicability

of the algorithm. The proposed algorithm is described in Algorithm 2.

4.3 Evaluation

In this section we present an extensive evaluation of the performance of the proposed

algorithm to remove ambiguities when applied to networks generated by the ambi-

guity model. The evaluation has the following steps: (i) generate the networks, (ii)

introduce ambiguity using the model , (iii) apply the algorithm proposed in Section

4.2 to remove ambiguity and (iv) measure the precision and recall of the algorithm.
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Algorithm 2: Algorithm - Remove ambiguity

Data: G = (V,E), α
for v in V do

P ←− ∅ ; Nv ←− neighbours(v) ; D2
v ←− {u|distance(u, v) = 2}

for u in D2
v do

if degree(v) ≥ α and degree(v) ≤ degree(u) then
Nu ←− neighbours(u)
if Nv ⊆ Nu then

P ←− P ∪ u

if sizeOf(P) = 1 then /* Ambiguity found! Unify v and P.first()

*/
merge(v,P.first())

In order to generate the networks, we use two models, the Erdos-Renyi model,

that generates graphs connecting nodes randomly, and the Watt-Strograts model,

that generates graphs with small-world properties [45]. Both networks were gener-

ated with n = 100, 000 vertices and average degree of eight (rewiring probability of

two percent was used in the Watts-Strogats model).

Next, we introduce ambiguity into the two networks created. We apply the

probabilistic model with different values for the parameters p, q and r aiming to

evaluate how these parameters affect the identification of duplicated vertices. The

values used for each parameter are 0.1, 0.3, 0.5, 0.7 and 0.9. We apply the algo-

rithm to remove the duplicated vertices, with parameter α = 0, and we evaluate

the performance by measuring the precision and recall of the algorithm. For each

parameter configuration, we perform thirty independent runs and report the sample

average of performance metrics. The algorithm performance for the Erdos-Renyi

and Watts-Strogatz networks models with ambiguity are shown in Figures 4.2 and

4.3, respectively, for all combinations of model parameters.

The precision and recall for the Erdos-Renyi model are shown in Figures 4.2a and

4.2b, respectively. Note that the parameter p is not critical to the algorithm, when

ten or ninety percent of the vertices are duplicated the performance of the algorithm

remains roughly the same. This occurs because in the Erdos-Renyi network model

lacks local structure and, therefore, any duplication of vertices and edges creates

a local structure that is detected by the algorithm. In these figures the lines are

grouped by the parameter r, so that with smaller values of r we get around 100%

of precision and 50% of recall.

In Figures 4.2c and 4.2d we observe an inflection point with respect to parameter

q, with precision and recall growing and then decreasing. This occurs because the

number of edges that are removed from the original grows with q. However, for

lower values of q the duplicated vertex has a small degree and thus there are many
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vertices that are candidates to be its original version and the algorithm fails to make

a decision yielding a lower precision and recall. The inflection point changes with

the value of r because the expected number of removed edges is duqr where du is

the degree of the node u.

Figures 4.2e and 4.2f shows the precision and recall as a function of parameter

r, respectively. Clearly, r is the most sensitive parameter for the performance of

the algorithm. Note that precision is more than 90% for values of r lower than 0.5,

independent of the other parameters p and q. As r grows the precision and the

recall decrease as more original edges are removed and the algorithm fails to find

the original vertex that corresponds to the duplicated one.

Results under the Watts-Strogatz network model are shown in Figure 4.3. In

general, results have the same qualitative trends as for the Erdos-Renyi model,

with a higher sensitivity for the parameter r. For example Figures 4.3e and 4.3f

illustrate that performance degrades quickly as r increses. This occurs due to the

local structure present in the Watts-Strogatz model, which makes the algorithm fail

if few edges are removed.

4.4 Conclusion

In this chapter we proposed a probabilistic model that introduces ambiguity in the

context of social networks using three parameters for tuning the desired amount of

structural ambiguity. We also propose a simple disambiguation algorithm that uses

only structure to identify duplicate nodes. We extensively evaluate the performance

of the algorithm using random graphs subject to ambiguation introduced by the

proposed ambiguity model. Results indicate that the structure of a network can

successfully be used to identify ambiguities and does not strongly depend on the

amount (fraction) of objects with double identity (duplicated nodes), but on the

local structure between the main and the alternative labels. In particular, local

network features such as absence of direct edge and common neighbourhood play a

key role in disambiguation of social networks.
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Figure 4.2: Evaluation in Erdos-Renyi network with ambiguity. In (a,c,e) precision
and in (b,d,f) recall. The pair of values in the legend correspond to p, q, r with the
exception of the value appearing in the x-axis.
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Figure 4.3: Evaluation in Watts-Strogatz network with ambiguity. In (a,c,e) preci-
sion and in (b,d,f) recall. The pair of values in the legend correspond to p, q, r with
the exception of the value appearing in the x-axis.
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Chapter 5

Finding ambiguous nodes in

egonets

Many digital libraries have a profile page for authors with some information about

them and their publications. For example, DBLP1, Google Scholar2 and Lattes3 all

have a specific page for each individual listing all their publications and other infor-

mation, such as affiliation and projects. Specifically in Google Scholar and Lattes

the author must include or verify their publications and give permission to make

the profile public. Although these profiles contain publications of an individual.

Different names for this author appear in its publications, leading to the synonym

name ambiguity problem.

In this chapter we consider the problem of finding the names used by an indi-

vidual across its publication as listed in its profile on Google Scholar. In particular,

we build an anonymous egonet with edge weights and propose an algorithm that

considers only the network structure to discover all the ambiguous nodes. The al-

gorithm does not use any label information as seen in the related work described in

chapter 2.

We make the following contributions:

1. Build an anonymous egonet with edge weights that encode structural infor-

mation about the author (profile owner);

2. Design and implement an algorithm based on the network structure to identify

the multiple nodes in the egonet that correspond to the individual that owns

the profile.

1http://dblp.uni-trier.de
2https://scholar.google.com
3http://lattes.cnpq.br
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5.1 Problem statement

Consider an individual and the corresponding profile that lists publications co-

authored by the individual. Let P denote the set of publications in the profile,

where |P| denotes the number of publications. Let Li denote the set of labels

corresponding to the co-author names of publication pi ∈ P . Note that in every

publication there is exactly one label that corresponds to the profile owner. Let

L =
|P|⋃
i=1

Li denote the set of labels that appear across all publications in the profile

with n = |L| denoting the number of (different) labels. Without loss of generality

we enumerate the labels from 1 to n, and thus have l1, l2, . . . , ln.

The problem that we address is to determine the set of labels that correspond

to the profile owner. Moreover, we assume the labels themselves (i.e., the string

corresponding to the name) have no information about the profile owner or the co-

authors, and can thus be viewed as a random number. Note, however, that the sets

Li provide the only information that can be exploited to craft a solution. But the

amount of information available will depend on the sets. For example, if every label

in L appears exactly once across all publications, then there is no information to

be exploited. At the same time, if a single label l1 appears in all publications (i.e.,

every set Li) while all other labels appear just once, then very likely l1 is the only

label that corresponds to the profile owner. In practice, the sets Li will be diverse

across profile owners.

Note that, by ignoring the content of the names (i.e., the name string), we focus

solely on the co-authorship structure. In a sense, our goal is to determine the power

of the structure in resolving name ambiguities in social networks. Can structure

alone help? As we will soon show, the answer to this question is quite positive.

5.2 The method

EgoIds starts by constructing an egonet for every profile owner. In particular, every

profile will be treated separately and independently from one another, so we focus

the discussion on a single profile. Using the publication information in the profile,

the egonet is constructed as follows. Let G = (V,E) be an undirected weighted

graph with vertex set V = {1, 2, . . . , n} where vertex i ∈ V corresponds to label li

in L. Thus, note that every label has a corresponding node in the graph. Now every

set Li created a clique in G with the nodes corresponding to the labels that appear

in Li. Thus, G is a superposition (i.e., union) of cliques, one for each publication

pi. Thus, (x, y) ∈ E if and only if lx, ly ∈ Li for some publication pi ∈ P .

Three different weights are associated with each edge e = (i, j) ∈ E. These

weights will soon be used in the algorithm that identifies the nodes that correspond
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to the profile owner. The weights are defined as follows:

w1i,j =

|P|∑
k=1

1(li, lj ∈ Lk) (5.1)

w2i,j =

|P|∑
k=1

1(li, lj ∈ Lk)

|Lk| − 1
(5.2)

w3i,j =

|P|∑
k=1

1(li, lj ∈ Lk)(|Lk|
2

) (5.3)

where 1(·) is the indicator function. Intuitively, w1i,j denotes the number of publi-

cations where labels li and lj appear as co-authors, whereas w2i,j and w3i,j denote

the normalized collaboration strength between labels li and lj with the former pe-

nalizing more large sets of co-authors. Moreover, w2 and w3 can be used to recover

other aspects concerning the labels and publications. For example, for any i ∈ V ,∑
j w2i,j corresponds to the number of publications where li is listed as a co-author.

Also,
∑

i,j w3i,j corresponds to the number of publications in the profile, namely

|P|. These observations will be used soon.

To exemplify lets build the egonet of John Von Neumann using his Google Scholar

profile page4. Table 5.1 shows the publications that will be considered in this ex-

ample. For each author name appearing in the publications, an identifier is given

to him (shown in Table 5.2a). Note that three different identifiers are given to John

Von Neumann since he appears with three different labels. Next, the edge weights

are calculated (shown in Table 5.2b). To illustrate, consider the edges created by the

first publication of Table 5.1: (1,3), (1,2) and (2,3). The edge weights corresponding

to this publication are given by w11,3 = w11,2 = w12,3= 1, w21,3 = w21,2 = w22,3

= 0.5 and w31,3 = w31,2 = w32,3= 0.33. After all publication in table are consid-

ered, the weights of edge (1,3) will correspond to w11,3=2, w21,3=1.5, w31,3=1.33.

The John Von Neumanns egonet is shown in Figure 5.1. Note that nodes 3, 7 and

11 represent John Von Neumann while all other nodes correspond to collaborators.

Moreover, the egonet has two connected components.

5.2.1 The algorithm

Recall that the profile owner is a co-author in every publication in the profile and

thus appears exactly once in each publication. How can this information be exploited

to identify labels of the profile owner?

Consider an egonet and the following statement: “Every node that represents

a profile owner is at distance two from at least another node that also represents

4https://scholar.google.com.br/citations?user=6kEXBa0AAAAJ
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Table 5.1: Some of John Von Neumann’s publications listed in his Google Scholar
profile.

Authors Title

AW Burks, HH Goldstine, J Von Neu-
mann

Preliminary discussion of the logical design of an
...

S Chandrasekhar, J Von Neumann The Statistics of the Gravitational Field Arising
from a Random ...

BI Hart, John von Neumann Tabulation of the probabilities for the ratio of the
mean ...

BO Koopman, J V Neumann Dynamical systems of continuous spectra

HH Goldstine, J V Neumann Blast wave calculation

J Von Neumann, RH Kent, HR
Bellinson, BI Hart

The mean square successive difference

D Hilbert, J Neumann, L Nordheim Uber die grundlagen der quantenmechanik

R Zeller, J Neumann Calibration-test member for a coordinate-
measuring instrument

J Von Neumann, AW Burks Theory of self-reproducing automata

Table 5.2: In (a) the identifiers of the co-authors from John Von Neumanns publi-
cations and in (b) the corresponding edge weights.

(a)

Name id

AW Burks 1
HH Goldstine 2

J Von Neumann 3
S Chandrasekhar 4

BI Hart 5
BO Koopman 6

J V Neumann 7
RH Kent 8

HR Bellinson 9
D Hilbert 10

J Neumann 11
L Nordheim 12

R Zeller 13

(b)

Edge(id1, id2) Weights[w1, w2, w3]

(1,2), (2,3) [1,0.5,0.33]
(1,3) [2,1.5,1.33]

(4,3), (5,3), (6,7), (2,7) [1,1.0,1.0]
(3,8), (3,9), (3,5), (8,9), (8,5), (9,5) [1,0.33,0.17]

(10,11), (10,12), (11,12) [1,0.5,0.33]
(13,11) [1,1.0,1.0]
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Figure 5.1: Example of part of John Von Neumann’s egonet as defined by Google
Scholar. Note that nodes 3, 7 and 11 correspond to John Von Neumann while all
other nodes correspond to collaborators.

the profile owner”. Under our assumptions, this statement is true. Consider a

node i that corresponds to the profile owner. Consider the connected component of

node i and assume it has at least one other node at distance 2. These nodes must

have appeared in a publication with at least one common neighbor of i (necessary

condition to be as distance 2). Since the profile owner is in every publication, one of

these nodes must corresponds to the profile owner. Thus, we can use this observation

to determine the set of nodes that could correspond to the profile owner.

Let S denote a set of nodes that could correspond to the profile owner of an

egonet defined by G = (V,E). Then the following must be true:

1. For every i ∈ V , either i ∈ S or there exists an edge (i, j) ∈ E such that j ∈ S.

2. For every i, j ∈ S, edge (i, j) 6∈ E.

3. If |S| > 1, then for every iS, there exists j ∈ S such that d(i, j) = 2, where

d(i, j) is the hop distance between nodes i and j.

Note that statement 1 is identical to the definition of a dominating set in a graph.

Statement 2 is identical to the definition of an independent set in a graph. Thus, S is

an independent and dominating set of G. However, statement 3 adds an additional

constraint to nodes in the independent and dominating set. Computing the minimal

dominating set that is also an independent set of an arbitrary graph G is known to

be NP-Complete problem [46]. Moreover, there could be various solutions. In fact,

we would like to find the set S that most likely corresponds to the exact set of labels

of the profile owner. Note that the minimal independent and dominating set, even

if unique, may not be the correct solution!

In order to tackle this problem, we propose the following greedy algorithm to

construct the set S. Using some domain knowledge about the problem (encoded in
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the weights and structure) we hope to generate a set S that is likely to have the

nodes corresponding to the profile owner. The algorithm works as follows. Let Sc

denote the set of nodes that can still be chosen to compose the set S. Note that Sc

is the current set of candidate nodes for S and initially, let Sc = V , and the set of

nodes corresponding to the owner S = ∅.

1. Choose the node with highest degree in Sc and include it in the set S, remove

all its neighbors from the set Sc;

2. Choose a node from Sc that is at distance two from at least one of the nodes

in S. If there is more than one option, use the following list of preferences:

(a) Choose the nodes with the largest degree;

(b) From that set, select the node with more common neighbors with nodes

already in S;

(c) From that set, select the node that the edges have a higher sum of weight

w2 (across all edges incident to the node);

(d) From that set, select the node with lowest sum of weight w3 (across all

edges incident to the node).

Note that largest weight w2 means more publications (sum of w2 is equal

to number of publications with at least one co-author) and smallest sum w3

means to give priority to the authors that collaborate with more authors.

3. If it is not possible to distinguish between the selected vertices, stop the al-

gorithm returning its partial set of owners S. For example, when nodes i and

j appear together in all publications of an individual they are structurally

identical and it is impossible to distinguish between them.

4. Repeat steps 2 and 3 until Sc is empty, and return the nodes in S.

Note that different connected components will be treated identically and indepen-

dently. Thus, the above algorithm is really applied to each connected component of

the egonet. A more precise pseudo-code of the algorithm is given below.

When the algorithm is applied to the example shown in Figure 5.1, it first selects

node 3 (largest degree), then node 7 (only node at distance 2 from node 3), and then

node 11 (largest degree in the second connected component). Note that these three

nodes correspond exactly to the profile owner, and thus the algorithm has perfect

precision and perfect recall in this example.

The worst case time complexity of the algorithm is O(nd∗2), where d∗ is the

largest degree in the graph. Note that the set D2 has size at most d∗2 and the inner

loops traverse this set once. The outer loop (including nodes in the set S) runs for
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Algorithm 3: EgoIds

Data: Egonet G = {V,E} and corresponding edge weights
S ← ∅;
foreach Connected component c, c ∈ G do

Sc ← all nodes in c;
u← node with the highest degree in Sc;
add u into S;
remove u and all its neighbors from Sc;
while Sc 6= ∅ do

D2 ← {u ∈ Sc | ∃v, v ∈ S, distance(u, v) = 2};
if |D2| = 0 then

continue to next connected component;
else if |D2| > 1 then

remove from D2 all nodes with degree < ∆(D2);
if |D2| > 1 then

foreach ui ∈ D2 do
ni(ui)← sum of common neighbours between ui and each
node in S;

remove from D2 all nodes ui such that ni(ui) < max(ni);
if |D2| > 1 then

foreach ui ∈ D2 do
w2i(ui)←

∑
ui∈ew2(e);

remove from D2 all nodes ui such that w2i(ui) < max(w2i);
if |D2| > 1 then

foreach ui ∈ D2 do
w3i(ui)←

∑
ui∈ew3(e);

remove from D2 all nodes ui such that
w3i(ui) < max(w3i);

if |D2| > 1 then
continue to next connected component;

u← only element from D2;
add u into S;
remove u and all its neighbours from Sc;

return S;
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at most n steps. In practice, the algorithm runs very fast because n (size of egonets)

is rather small as we will see in the following section.

5.3 Empirical evaluation

In this section, we present experimental results that demonstrate the effectiveness,

efficiency and practicability of our method. First we describe in details the datasets

used and then we show the results obtained when applying EgoIds to discover the

identities of the profile owners in the datasets.

5.3.1 Datasets

We used two different real bibliographic records that are used to build collaboration

networks and are readily available online: the DBLP5 and a small subset of Google

Scholar6 that we collected.

DBLP

In particular, we considered three different collections from this database.

The first is the entire DBLP7 version of May 2014. This version of DBLP listed

14,290 individuals with more than one name, and a total of 29,126 different names

among them.

A collection derived from DBLP with 477 individuals collected and used by

Santana et al. [26]. The individuals in this dataset were manually labelled based on

the individuals’s publication home page, affiliation, e-mail, and co-author names in

a complete name format. This collection will be called DBLP-UFMG.

The last dataset is a collection derived from DBLP referred by KISTI8 built by

the Korean Institute of Science and Tecnology Information for English homonym

author name disambiguation, [47]. The top 1,000 most frequent author names from

a late-2007 DBLP version were obtained jointly with their bibliographic records (i.e.,

publications). This collection has 6,908 individuals and 41,659 name instances.

Google Scholar

In order to select profiles in Google Scholar, we considered all individuals that

were awarded a research fellowships from CNPq9. We chose this target group since

5http://dblp.uni-trier.de
6http://scholar.google.com
7Link to download the XML of the entire DBLP database: http://dblp.uni-trier.de/xml/
8http://www.kisti.re.kr
9CNPq is the Brazilian National Research Council responsible for funding research, similar to

the National Science Foundation (NSF) in the United States of America.
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Brazilians tend to have many first and last names, and use them rather freely in

publications.

From the 13,473 researchers that receive a research fellowship from CNPq, 7624

have a public Google Scholar profile (we automatically search for their public profiles

on Google Scholar using their names). We collected all publications available in the

profile for each individual and found 7089 profiles where the listed publications

exhibit more than one name for the profile owner.

5.3.2 Dataset characterization

In what follows we first characterize the different datasets in order to illustrate their

differences. In particular, we consider features such as the number of publications

per individual and the number of names per individual. We also looked at the

structural features of the egonets across the different datasets, such as their size and

number of connected component.

Consider the number of publications per author in each dataset. Figure 5.2 show

sthat the datasets DBLP-UFMG and KIST, both used in [26], have a very small

number of publication per author. Around 80% of the individuals in the KISTI

dataset and 60% in the DBLP-UFMG dataset have less than ten publications, while

for Google Scholar dataset around 80% have more than 100 publications. As we can

see there is a big difference in the number of publications per profile in the datasets.

Since EgoIds uses only the relationships among collaborations to reveal the various

identities of the profile owner, having more publications is better since it will better

reflect the actual egonet of the profile owner. When there are few publications, the

egonet has little information and thus the algorithm may not correctly identify nodes

corresponding to the profile owner.

Table 5.3 shows the number of individuals with exactly k names in each of the

datasets. Note that the datasets used by Santana et al. [26] has fewer names per

author in contrast with the DBLP-GT and the Google Scholar datasets. In the

Google Scholar dataset, most of the individuals have 3 or more names meaning that

there are more ambiguity in this dataset and, thus, posing a harder problem to

solve. In the DBLP-GT dataset all individuals have more than one name because

the dataset is constructed only with individuals that the DBLP has recognized as

having duplicated names. In both DBLP-UFMG and KISTI datasets the majority

of the individuals have a single name. This is because Santana et al. [26] focus

on the homonym ambiguity problem where the goal is to find names that represent

different individuals.

Next we considered the network structural features to characterize the datasets.

First, we look at the size of the egonets as measured by the number of nodes.
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Figure 5.2: CCDF (Complementary Cumulative Distribution Function) of the num-
ber of publications in a profile for different datasets.

Table 5.3: Number of profile owners with k names.

k DBLP-GT DBLP-UFMG KISTI Google Scholar

1 0 267 6296 1249
2 13700 163 544 1853
3 569 35 55 1422
4 21 8 13 950
5 or
more

0 4 0 2150
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Figure 5.3: CCDF of the size of egonets (number of nodes).

Table 5.4: Number of individuals with egonets that have exactly k connected com-
ponents .

k DBLP-GT DBLP-UFMG KISTI Google Scholar

1 12623 448 6358 4344
2 1624 23 289 1823
3 24 1 19 620
4 0 0 3 245
5 or
more

0 0 0 366

The number of nodes represents the number of labels among the co-authors of the

profile owner (including the multiple labels of the profile owner). Figure 5.3 shows

the CCDF of the size of the egonets for all datasets. The KISTI dataset has the

smallest egonets where 80% of them has less than 10 nodes in contrast with the

egonets from the Google Scholar dataset where 35% of the individuals have more

than 100 nodes. Table 5.5 shows the average and the standard deviation of the size

of the egonets and we can see that the smallest egonets are from DBLP-UFMG and

KIST datasets.

Table 5.4 shows the number of individuals with egonets that have exactly k

connected components. For all datasets, the majority of the individuals have one

egonet with a single connected component. With the exception of Google Scholar,

a relative small fraction of individuals have egonets with more than one connected

component. In Google Scholar, since many more publications were collected for

each individual, we expect that the larger number of labels per individual will also

generate a larger number of connected components.
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Table 5.5: Size of the egonets (number of nodes) and fraction of nodes that belong
to the largest connected component (LCC).

Database Size of egonet Fraction of nodes in LCC

DBLP-GT 34.72 ± 39.44 0.97 ± 0.09
DBLP-UFMG 16.55 ± 23.68 0.99 ± 0.06

KISTI 8.41 ± 11.75 0.99 ± 0.07
Google Scholar 100.89 ± 129.31 0.94 ± 0.11

The last characterization considers the fraction of nodes that belong to the largest

connected component. Although the egonet of many individuals have more than

one connected component, the size of these components are not similar. In fact, the

majority of the egonets have one very large connected component, as show in Table

5.5. The table shows the average and standard deviation across the individuals.

Note that for all datasets, more than 90% of the nodes of the egonet are in the

largest connected component. Again, Google Scholar has some individuals with

fewer nodes on its largest connected component, leading to a smaller average.

5.3.3 Evaluation

The EgoIds algorithm outputs a set of vertices that represent the nodes of a egonet

that correspond to the profile owner. Of course, this set may not be correct in

the sense that vertices identified by EgoIds may not correspond to the profile owner

(precision) as well as nodes that do correspond to the profile owner are not identified

by the algorithm (accuracy). In this section we evaluate the performance of EgoIds

on the datasets considering precision, recall and F1 measure. We also compare

EgoIds results on DBLP-UFMG and KIST datasets with the results of Santana et

al. [26].

Note that an egonet may be symmetric in the sense that all nodes are identical

with respect to the structural features used by the EgoIds. For example, if two or

more nodes have the same largest degree and no other structural differences with

respect to edge weights, then the algorithm does have a clear starting point. In

this cases, EgoIds does not start and returns an empty set of nodes (as opposed to

simply guessing). This situation clearly occurs if a profile has a single publication

or if all publications have the same set of co-authors.

Moreover, structural symmetries may also occur during the execution of EgoIds,

after a set of nodes have been already identified by the algorithm. In this case, the

algorithm also stops execution and returns a partial cover, as opposed to a full cover.

Again, faced with structural symmetries the algorithm stops instead of randomly

guessing. As we will see, both situations (not starting and partial cover) occur in
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Table 5.6: About the algorithm and the datasets: total number of individuals,
number of individuals that the algorithm does not start, number of individuals that
the algorithm produces a partial cover and a full cover.

DBLP-GT DBLP-UFMG KISTI Google Scholar

Number of individ-
uals

14,290 477 6,908 7,624

Algorithm does not
start

1,416(9.90%) 163(34.17%) 4,664(67.52%) 535(7.01%)

Individuals with-
out co-authors

19(1.34%) 5(3.07%) 239(5.12%) 226(42.24%)

Individuals with
only one publica-
tion

63(4.45%) 16(9.82%) 2,744(58.83%) 56(10.47%)

Algorithm pro-
duces partial
cover

2,762(21.45%) 77(24.76%) 135(6.02%) 1,860(26.24%)

Algorithm pro-
duces full cover

10,112(78.55%) 237(75.24%) 2,109(93.98%) 5229(73.76%)

real datasets.

Table 5.6 shows for each dataset the total number of individuals, the number of

individuals for which the algorithm does not start and the number of individuals

for which the algorithm produces a partial cover and a full cover. Considering the

number of individuals, the DBLP-GT is the largest dataset with 14,290 individu-

als while the DBLP-UFMG has only 477. Google Scholar and KIST datasets have

around 7,000 individuals. For some individuals the algorithm does not start due to

structural symmetries, and thus produces no output (these cases are not considered

in the evaluation for precision and recall). However, this occurs for less than 10% of

the individuals for the DBLP-GT and Google Scholar datasets, but this number is

quite large for DBLP-UFMG and KIST, being over 50% in the latter. The percent-

age is high for DBLP-UFMG and KIST datasets because the number of publications

per individual is very small, as shown in Figure 5.2 and, consequently, the egonets in

these datasets are also smaller, as shown in Figure 5.3. When the algorithm starts

it may finish producing a full cover, according to the rules for the set. In fact, a

full cover is generated for more than 73% of the individuals in each datasets. In the

remainder of the cases, the algorithm produces a partial cover meaning that only a

fraction of the egonet is covered, due to structural symmetries.

For each individual in the datasets that the algorithm starts, we calculate the

precision, recall and the F1 score (F-measure). The F1 is calculated using the

precision and the recall as follows:

F1 = 2× precision× recall
precision+ recall

(5.4)
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Table 5.7: The average and the standard deviation for the precision, recall and F1
scores of the individuals in all datasets.

Dataset Precision Recall F1 F1 (in [26])

DBLP-GT 0.77 ± 0.42 0.68 ± 0.41 0.71 ± 0.41 n/a
DBLP-UFMG 0.83 ± 0.37 0.74 ± 0.38 0.77 ± 0.37 0.92 ± 0.02

KISTI 0.95 ± 0.21 0.89 ± 0.25 0.92 ± 0.23 0.82 ± 0.01
Google Scholar 0.97 ± 0.15 0.66 ± 0.28 0.76 ± 0.22 n/a

Table 5.7 shows the value for the average and standard deviation for the precision,

recall and F1 score across all individuals in all datasets. The precision is more than

77% for all datasets, and for KIST and Google Scholar the results are more than

95% on average meaning that the proportion of the nodes that the EgoIds algorithm

suggests to be consolidated as the same identity were in more than 95% of the cases

correct. For the recall measures, the proportion of all identities that were correctly

identifies by the algorithm. The KISTI dataset is the one with highest recall, 89%

on average, and the DBLP-UFMG dataset also showed a high value with around

74%. For the DBLP-GT and Google Scholar datasets the recall is around 66% and

that is because these two datasets have the most names per author, as seen in Table

5.3, and thus when this algorithm does not find all the identities then the recall

decreases. The F1 measure combines precision and recall and is more than 71%

on average for all datasets. For the KIST dataset the value is 92% and performed

better than the algorithm proposed in [26]. It is important to notice that EgoIds

considers only the network structure and no other information, while in [26] the

name string and other informations such as affiliation and email address are used

during disambiguation.

Figure 5.4 shows the CCDF of the precision and recall for all datasets. Note that

the precision is up to 75% for all individuals in all datasets representing that the in

more than 75% of the cases the identities found by the algorithm were correct. The

precision for Google Scholar is excellent, more than 94% for all individuals, and for

KIST is more than 95%. The recall is good for the KISTI dataset, up to 80%, but

it is not that high for DBLP-GT and DBLP-UFMG, which have almost the same

behavior with around 20% of the individuals having less than 40% of the recall.

Google Scholar present different result from the others, with 70% of the individuals

having a recall higher than 50% but for some individuals the recall is less than 35%.

This occurs for those individuals with many names (nodes in the egonet). In Google

Scholar around 30% of the individuals have five or more names, as shown in Table

5.3.

The CCDF of the F1 score is shown in Figure 5.5. For the KISTI dataset the

F1 score is high because its precision and recall are also high. For DBLP-GT and
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(a) (b)

Figure 5.4: CCDF of precision (a) and recall (b) for all datasets.

Figure 5.5: CCDF of F1 measure for all datasets.

DBLP-UFMG the F1 scores are quite similar and for around 80% of the individuals

in these datasets the algorithm was able to achieve more than 65% of F1 score.

Google Scholar has more than 70% of the individuals with more than 65% of F1

but there are some individuals with F1 lower than 40%. This occurs due the recall

curve for Google Scholar that drives the trend for F1 measure.

5.4 Conclusion

In this Chapter we proposed an algorithm based on vertex cover to find the ambigu-

ous nodes of an egonet. The algorithm finds a cover by looking only at structural

properties of the egonet such as degree, number of neighbours and the edge weights.

55



To evaluate the algorithm we collected a subset of the Google Scholar dataset and

measured the size of the covers and the quality of them.

The results obtained by this work were considered extremely satisfactory and

show that the proposed algorithm can be useful in problems related to correctly

identifying author’s names among bibliographical data. It also presented a high

success rate in solving these types of name ambiguity.
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Chapter 6

Rooted subgraph matching on

two-layer neural network

The continuous increase in privacy concerns by both individuals and enterprises

is bound to increase the amount of data that is only available anonymously. In

particular, the removal of personally identifiable information (PII) is becoming a

common practice by both individuals and enterprises when releasing data into the

public realm. In this scenario, classic data science problems that leverage contextual

information in their solution must be revisited. A prominent example is entity

resolution (aka. name disambiguation) where the goal is to match references (names)

to objects (entities) within a large (now anonymized) dataset [2, 33].

A particular but important scenario are social networks which, are often only

made available without any PII. Here nodes represent pseudonyms (i.e., random

labels) of individuals and edges represent some relationship, such as friendship or

collaboration. A fundamental problem when considering large social networks gen-

erated from heterogeneous data is name ambiguity. In particular, multiple network

nodes may refer to the same individual. This can occur if the individual appears

in the original data with multiple names, in which case each name can become a

different node in the network. Figure 6.1 illustrates this scenario with a real example

of a collaboration network.

(a) (b) (c)

Figure 6.1: Ambiguous nodes identified

y(1) = 1
y(2) = 0
y(3) = 0
y(4) = 1
y(5) = 0
y(6) = 0
y(7) = 0
y(8) = 1
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Duplicates often occur in unstructured and heterogeneous data. For example,

consider bibliographic data from one or more digital libraries, or medical records

from one or more hospitals. In such datasets, a single individual can appear with

multiple names, for example “R Baeza-Yates” and “RA Baeza-Yates” both refer to

the Chilean computer scientist in Google Scholar. When data is anonymized and a

social network is released such name instances become different nodes with random

labels. Can these duplicate nodes be identified in the anonymous social network?

A significant challenge in tackling this problem is the lack of positive instances

(i.e., a set of nodes identified as duplicates). In fact, there is usually no available

positive instances when a given social network is released anonymously. Thus, dupli-

cates must be identified using a model that has never seen the given social network.

In such scenario, inductive learning is the only alternative for tackling duplicate

identification. Fortunately, social networks have particular local structures that are

related to high level node characteristics and similar across different networks. Such

information can be leveraged to learn an effective classification function to identify

duplicate nodes (a high level characteristic).

For example, consider a social network where a set of duplicate nodes have been

identified, possibly before the network was anonymized, using PII. Local structural

features can be extracted from these nodes to serve as a signal for duplicate nodes

that depends only on the structure. The same features can be extracted for non-

duplicate nodes. These examples can then be used to train a classification model

that can be applied to identify duplicate nodes in any social network of the same

relationship (i.e., collaboration).

The main contribution of this chapter is an inductive learning framework to

identify duplicate nodes in anonymized social networks. Our method is indicated by

Rooted Subgraph Matching on Two-Layer Neural Network (RSM2NN ). In particular:

• We propose a fundamental and novel framework for characterizing local struc-

tures around nodes (i.e., rooted unlabelled subgraphs with up to 5 nodes).

This procedure requires the alignment of local subgraphs with a reference

graph (graph isomorphism) to retain consistency. We show how to perform

graph alignment efficiently using equivalence classes under automorphism.

• We propose a two-level neural network that learns to identify duplicates from

features of the subgraphs. The first level learns to identify duplicates from the

point of view of a single subgraph (and for every subgraph). The second level

integrates the classification of all subgraphs to learn to identify duplicates.

• We evaluate our framework on two kinds of social networks: collaboration

networks and family networks. For collaboration networks we consider 3000

different ego-centered social networks extracted from Google Scholar, as well
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as a single social network extracted from DBLP with over 1 million nodes. For

family networks we consider an NIH dataset with 162 different family networks

and Wikidata with 255. Using nodes from just one network for training, the

framework has an median AUC of 97% and 83% when identifying duplicates

in networks that it has never seen in the Google Scholar and NIH datasets,

respectively.

The remainder of this Chapter is organized as follows. Section 6.1 presents the

problem statement. Section 6.2 describes the proposed framework, RSM2NN . The

four different datasets that are used to evaluate RSM2NN are described in section 6.3

together with the different experiments. Section 6.4 presents a brief conclusion.

6.1 Problem statement

The main goal of this work is to identify duplicate nodes in anonymous social net-

works, a problem we precisely define below. Let G = (V,E) denote an network with

node set V and undirected edge set E. Nodes in V are enumerated such that each

node corresponds to a unique natural. Thus, V = {1, 2, . . . , n} where n = |V | is the

number of nodes in the network.

Since G is a social network, every node maps to an individual. Let xG : V → N
denote the identity (e.g., social security number) of the person that corresponds to

node u ∈ V . We assume that identities are unique such that xG(u) = xG(v) if and

only if nodes u and v correspond to the same individual. Let yG : V → {0, 1} be an

indicator function that determines if node u ∈ V has a duplicate. In particular,

yG(u) =

{
1 , if ∃ v 6= u : xG(u) = xG(v)

0 , otherwise
(6.1)

Since network G is anonymous we assume there is information between the node

label v and its identity x(v). We also assume there is no other side information

about G, such as edge weights or edge labels or node classes. The only available

information is its edge set E.

Consider a set of social networks G1, G2, . . . , Gk, possibly with overlapping node

and edge set, however without any PII or correlation among node labels of different

networks. In particular, let u ∈ V1, v ∈ V2, then u = v does not imply that

xG1(u) = xG2(v). Thus, note that each network has its own function yG. Assume

yGi
is given for all i = 1, . . . , k networks.

Problem Statement: Given the set of anonymized social networks G1, G2, . . . , Gk

and the duplicate identification function for each network, yG, learn a model that

can evaluate the function yG′ on any anonymized social network G′.

59



Note that since the networks are anonymized and there is no information on

the labels across different networks, the model must leverage the structure of the

network, as no other information is available. Moreover, note that k is usually small

since duplicate information is often not available. This poses a difficult classification

task that we tackle with a novel framework that we next describe.

6.2 Framework

Recall the goal of determining if a node of an anonymized social network has a

duplicate. Since the focus is on the node, RSM2NN will take a local approach (which

will also help its computational performance). In particular, only the network struc-

ture around the node of interest will be leveraged to determine if the node has a

duplicate. Thus, the proposed framework is node centered and consists of three core

steps:

1. Extract induced and connected subgraphs from G rooted at the node. Extract

features concerning the nodes of this subgraph (e.g., its degree on G).

2. Match an extracted rooted subgraph from G to a reference graph. This is

required to align the features across different instances of the same subgraph

as well as identify the equivalence classes.

3. Aggregate the features across all extracted rooted subgraphs that are isomor-

phic, generating a single feature vector for each reference graph. The set of

such vectors (across all reference graphs) is taken as the structural feature for

the node.

Figure 6.2 illustrates the steps of RSM2NN . The first step is to extract rooted sub-

graphs of node 1, then match theses subgraphs with reference graph identifying the

equivalence classes, then extract features according to the nodes in the different

equivalence classes of the reference graph, and finally aggregate statistics across the

multiple isomorphic subgraphs. In what follows these steps are described in detail.

At the end of these three steps, a node will have a feature vector that consists

of multiple values for each possible reference graph. This information is then used

to train a two-phase neural network model soon to be described. We first provide

details of each step above.

6.2.1 Reference graphs

A fundamental aspect of the framework is the set of reference graphs as they drive

the structural information that will be extracted from the network. A reference

60



Figure 6.2: Framework

graph is a rooted connected small graph without node labels (except for the root).

Figure 6.3 shows all possible reference graphs with three and four nodes. Since

reference graphs are rooted, note that graph 7 is different from graph 8 in Figure 6.3.

Although graphs 7 and 8 are isomorphic, the position of the root node makes them

different. Let R denote the set of reference graphs under consideration. In this

work, R is given by the set of all rooted connected graphs with 3, 4 or 5 nodes. In

particular, |R| = 72 in this case.

Figure 6.3: All possible reference graphs with three and four nodes.

Note that extracted subgraphs will have to be matched against a reference graph.

Since node labels do not matter (except for the root), a canonical labelling of the

graph will be used to establish the matching. Thus, for every reference graph we first

perform a canonical labeling that labels the nodes uniquely and consistently, with

the root node always identified as node 1. The canonical labelling cannot distinguish

between nodes that belong to the equivalence class under automorphism. Thus, if

there exists an automorphism between two (or more) nodes in a reference graph,

their labels could be reversed in two different instances of this graph. Therefore,

nodes cannot be reliably aligned based only on their canonical labels. For example,
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in reference graph 8 (in Figure 6.3) there exists an automorphism between the two

nodes with degree 2

This misalignment problem is avoided by considering the equivalence classes

under automorphism and not nodes individually. Thus, for each reference graph

R ∈ R, we determine its set of equivalence classes QR along with the canonical

labeling of its nodes, given by LR. Note that the root node has its own equivalence

class, as this node is always identified (and labelled as 1 by the canonical labeling).

However, the equivalence classes will strongly depend on the reference graph. For

example, the canonical labelling of reference graph 8 gives label 1 to the root, label

2 to the node with degree 1, and labels 3 and 4 to the nodes with degree 2. Thus, it

has the following equivalence classes Q8 = {{1}, {2}, {3, 4}}, while reference graph

4 has only two equivalence classes Q4 = {{1}, {2, 3, 4}}. Note that the minimum

and maximum number of equivalence classes for a reference graph R ∈ R is 2 and

5, respectively. We use a very efficient canonical labelling algorithm known as bliss

that also provides the equivalence classes [48].

Finally, the features extracted from a reference graph observed in the data will

be associated to its equivalence classes, and not its nodes. Thus, equivalence classes

is thee basic unit for feature identification, as we soon discuss.

6.2.2 Extracting subgraphs

The next step in the framework is to extract rooted induced subgraphs from the

anonymized social network. Let G = (V,E) denote the social network and consider

a node v ∈ V denoted as the root. An instance of a given reference graph is an

induced subgraph of G rooted at v that is isomorphic to the reference graph (with

the root corresponding to v). Since only rooted induced subgraphs are considered,

it can be identified by the root and the node set, as edges are given by E.

Algorithm 4 shows the iterative strategy to extract all induced subgraphs rooted

at v that correspond to a reference graph. The main idea of the algorithm is to use

a subgraph of size i to construct subgraphs of size i+1 by considering every possible

neighbor of a node in the smaller subgraph. The algorithm is iterative and starts

with all edges (subgraphs of size 2) incident on v. For each edge, all subgraphs of

size 3 that include that edge are constructed. Then, for each subgraph of size 3,

all subgraphs of size 4 that include this subgraph of size 3 are constructed, and so

on. The procedure augmentSubgraph is called to construct all subgraphs that

can be constructed by adding a single node to a given subgraph. Note that the Li

contain all subgraphs of size i, for i = 3, 4, 5, and an element of Li is a node set

(without v). Finally, the parameter k is used to sample the subgraphs as opposed

to considering all subgraphs. In particular, k denotes the number of subgraphs of
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size i + 1 that will be generated from a given subgraph of size i. Moreover, given

the subgraph of size i, these k subgraphs are chosen uniformly at random among all

possible subgraphs of size i+ 1.

Note that Algorithm 4 is executed for every node v ∈ V in the anonymized social

network G. Note that each subgraph rooted at node v will give rise to structural

features that will characterize v, as we soon discuss.

Algorithm 4: Algorithm to extract rooted subgraphs.

Procedure subgraphsExtraction(v, k):
L2 ← augmentSubgraph(v, degree(v));
for i ∈ (2, 3, 4) do

Li ← ∅; ; // Li is a set of sets

for i ∈ (2, 3, 4) do
for S ∈ Li do

Li+1 ← Li+1 ∪ augmentSubgraph(S, k);

return L3, L4, L5

Procedure augmentSubgraph(S,k):
U ← ∅;
for i ∈ S do

U ← U ∪ {N(i)} ; // N(i) denotes neighbors of i

U ← U \ S ; // Only consider new nodes in U
if |U | > k then

U ← randomly select k elements from U
P ← ∅ ; // P is a set of sets

for i ∈ U do
S ′ ← S ∪ {i};
P ← P ∪ {S ′};

return P

6.2.3 Matching subgraphs with reference graphs

The extracted rooted subgraphs of the previous step must be matched to a reference

graph. Moreover, the nodes of the subgraph must be aligned to a reference graph

such that the equivalence classes can also be identified. This matching and node

alignment (between a rooted subgraph and a reference graph) requires solving a

rooted graph isomorphism problem. However, since the set R is small and every

reference graph is also small (at most five nodes), this computation can be performed

efficiently, as illustrated in Algorithm 5.

In particular, let Rk,l denote the set of reference graphs with k nodes and l

edges, and note that it defines a partition of the set R. Thus, |Rk,l| is rather small

for any k and l and in particular is always smaller than 8. Recall that LR is the
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pre-computed canonical label for reference graph R. Thus, only the canonical label

of the identified subgraph must be computed during matching, denoted by L′ in the

algorithm.

Algorithm 5: Algorithm to match subgraphs to reference graphs

Procedure matchingSubgraph(S):
E ′ ← {(u, v) : u, v ∈ S ∧ (u, v) ∈ E};
L′ ← canonicalLabel(G′ = (S,E ′));
k ← |S|;
l← |E ′|;
foreach R ∈ Rk,l do

if L′ == LR then
return nR ; // id of reference graph R

6.2.4 Extracting and aligning features

The subgraph S is used to extract features for this subgraph from the original graph

G. Recall that in order to be properly aligned, features must be associated to

equivalence classes of this subgraph (that has been matched to a reference graph).

Although any structural feature concerning the nodes of this subgraph can be ex-

tracted, this work considers the following features:

• degree and local clustering coefficient [45] of the root node;

• for each equivalence class, the minimum, maximum and average node degree

within the nodes in the equivalence class;

• for each equivalence class, the minimum, maximum and average Adamic-Adar

similarity coefficient [45] between the root node and each node in the equiva-

lence class.

Note that the number of features generated by a subgraph depends on its number of

equivalence classes. Moreover, the number of nodes in a given equivalence class will

also vary, but the minimum, maximum and average is taken within this set (even if

the size of the equivalence class is one). For example, since reference graph 8 has

equivalence classes Q8 = {{1}, {2}, {3, 4}}, it will have 2 + 6 + 6 = 14 features.

6.2.5 Feature aggregation

Note that a given reference graph may appear several times as different rooted

subgraphs of a node v. Recall that each of these subgraph will have its features

extracted from G. Since these features can vary significantly across these isomorphic
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subgraphs, we summarize them using their average. To be sure, let Hi(v) denote all

the subgraphs rooted at v that correspond to reference graph i. Let Fi(v) denote

the average feature vector of node v for reference graph i, which is determined

as the average across all feature vectors in Hi(v). This feature vector along with

the number of subgraphs considered, namely |Hi(v)|, is the feature associated with

reference graph i for node v. Thus, every node in the network will have a vector

Fi(v) along with |Hi(v)| for each reference graph i ∈ R. This final feature vector has

information concerning all 72 reference graphs (size of R) and has dimension 1350.

6.2.6 Two-level neural network

Recall that the main goal is to classify nodes in a social network with respect to

their duplicity. In particular, a binary classifier receives as input structural features

for a node and outputs one if the node has a duplicate in the same network.

We propose a novel two-level neural network as the classification model. In the

first level, each reference graph is considered separately, and has its own neural net-

work and a single output. This first level leverages the potential of each reference

graph in determining node duplicity. The second level is a different neural network

that takes as input the output of the neural networks corresponding to the refer-

ence graphs. Thus, this second level leverages the potential of the set of reference

graphs in determining node duplicity. Figure 6.4 show the architecture of the pro-

posed neural network. Note that there are 72 neural networks in the first level,

corresponding to the 72 reference graphs. The input to each of these networks is

the feature vector Fi(v) of node v along |Hi(v)| and its dimension depends on the

number of equivalence classes of reference graph i.

The neural networks associated with each reference graph, and also the neural

network in the second level, all have the same structure, formed by two hidden layers

each with 20 neurons and a single output neuron with a Sigmoid activation function.

The Relu activation function is used within the network. The choice of 2 and 20 is

assessed in Section 6.3.

Note that the input to the model are features of a node from a social network,

but the social network is not required. Thus, nodes of a network can be classified in

a trained model even if the model has never seen any node from that network. This

is possible because only structural features that are local to the node are considered,

and not label information or global network information (i.e., number of nodes in

the network).
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Figure 6.4: The proposed two-level neural network: while the first level considers
references graphs separately to identify duplicates, the second level integrates the
output of the reference graphs.

6.3 Experiments and results

We evaluate our approach using different experiments and datasets focusing on the

following questions: 1) Inductive learning: Model trained using nodes from one

network is used to classify nodes of different networks; 2) Training size trade off:

performance improvement when training with nodes of multiple networks; 3) Impact

of subgraph sampling, and 4) Comparison with other existing approaches.

6.3.1 Datasets

A challenge in duplicate identification in social networks is the lack of publicly avail-

able datasets with ground truth information, in particular when considering multiple

networks. To overcome this problem, a relatively large dataset was collected in the

context of this work. Moreover, three other datasets were used in the evaluation:

• Google Scholar (GS)1: provides a wide range of bibliographic information from

the academic literature. In particular, GS maintains a profile for each indi-

vidual where its publications are listed. We randomly select 3000 researchers

1Link to Google Scholar website: https://scholar.google.com/
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DBLP Google Scholar NIH Wikidata

Number of networks 1 3000 162 255
Nodes per network 1827903 56.7 (28.4) 71.7 (12.3) 21.1 (24.0)
Smallest network (nodes) - 10 39 10
Largest network (nodes) - 227 103 188
Fraction of ambiguous nodes 0.02 0.07 (0.04) 0.6 (0.1) 0.83 (0.16)

Edges per network 8643727 140.6 (85.2) 449.1 (158.5) 38.3 (76.6)

Table 6.1: Characterizing datasets.

that have a Google Scholar profile. Each individual yields a ego-centered col-

laboration network, formed by all names that appear in the author list of all

publications listed in the profile (edges indicate that two names appear in the

same publication at least once).

• DBLP2: contains bibliographic information mostly for publications in Com-

puter Science and its database is publicly available for download (this work

used the May 2014 version). While some individuals do appear with different

names in distinct publication records, DBLP maintains a record for a known

set of such individuals3, which is taken as the ground truth for synonyms. Note

that a single collaboration network is constructed where names as it appears

in the author list of the publications correspond to nodes.

• NIH4: a clinical dataset provided by the National Institutes of Health (NIH)

and used in [1]. This dataset has 162 networks and records family medical

histories.

• Wikidata5: a public dataset crawled from the structured knowledge repository

Wikidata and used in [1]. The dataset has 419 networks but only 255 have

been considered as some networks are either too small or do not have duplicate

or non-duplicate nodes. Only networks with ten or more nodes that have both

duplicate and non-duplicate nodes have been considered.

Table 6.1 shows the number of networks for each dataset and the average number

of nodes and edges per network. Google Scholar, NIH and Wikidata are formed by

many networks. Whole DBLP dataset has a single network. Note that each network

has duplicate and non-duplicate nodes. The average number of nodes per network

and the fraction of duplicate nodes vary significantly across the datasets allowing

for a more thorough evaluation of the proposed framework.

2Link to DBLP website: https://dblp.uni-trier.de/
3See details on DBLP’s handling of synonyms at http://dblp.uni-trier.de/faq/How does dblp -

handle homonyms and synonyms.html
4Link to NIH: https://www.nih.gov/
5Link to Wikidata: https://www.wikidata.org
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6.3.2 Metrics

The metrics used to evaluate the performance are:

• Average Precision (AP): the precision-recall curve yields precision-recall pairs

for different classification threshold values. The average precision summarizes

the precision-recall curve as the weighted average of precision values at each

threshold where the increase in recall from the previous threshold is used as

the weight [49].

• Area Under ROC Curve (AUC): the ROC curve represent the false positive

ratio and true positive ratio for different classification threshold values. The

area under this curve (AUC) measures the average performance of the classi-

fier [49].

It is important to emphasize that most of the datasets have imbalanced classes

with a large number of negative examples. Thus, if all examples are classified as

negative (non ambiguous), the accuracy would be high but that does not reflect the

performance of the framework in identifying duplicate nodes. Thus, precision and

AP are more adequate metrics in this scenario.

6.3.3 Inductive learning

Can nodes from a single network of the dataset be used to train a model to classify

nodes of another network in the same dataset?

We take one network of a dataset and use all its nodes as examples of duplicate

or non-duplicate nodes to train RSM2NN . Then, we apply the model to classify all

the nodes of another network. This provides the classification performance for this

network. We repeat this classification for 100 test networks, each providing the

performance of classifying all nodes of the network. We repeat this experiment

several times considering different networks to train the model (chosen randomly).

Figure 6.5 shows the Complementary Cumulative Distribution Function (CCDF)

of AP and AUC for the three different datasets. Figure 6.5a shows that around 60%

of the test networks for GS have AP greater than 70% and for NIH and Wikidata

around 60% of the test networks have AP greater than 80%. Figure 6.5b shows AUC

and for GS around 70% of the test networks are greater than 90% and for NIH and

Wikidata are greater than 70%. Note that the AP curve for Google Scholar drops

faster than for NIH and Wikidata and this behaviour is the opposite for AUC. This

happens because the fraction of duplicate nodes is much smaller in GS than in the

other datasets.

Next, we evaluate the performance eight networks are used to train, Figure 6.5c

and 6.5d, the performance improves significantly. For NIH and Wikidata 40% of the
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networks have AP larger than 95%, for Google Scholar this value is around 90%,

Figure 6.5c. The AUC for Google Scholar for 60% of the networks are larger than

95% and for NIH and Wikidata are more than 80%, Figure 6.5d. Of course, the

performance strongly depends on the train and test networks. Intuitively, training

on more networks allows for a more robust classifier since the model will see different

kind of nodes.

(a) Training size of 1 network (b) Training size of 1 network

(c) Training size of 8 networks (d) Training size of 8 networks

Figure 6.5: Distribution of the performance of RSM2NN using 1 or 8 networks to
train the model and 100 different networks from the same dataset to test.

6.3.4 Training size trade off

Section 6.3.3 evaluated the performance from the perspective of networks as all

nodes used in training and testing were from the same network. In this section we

evaluate RSM2NN from the perspective of nodes. We train the network with nodes

from different networks and test with nodes from many different networks.

To run this experiment we use 1, 2, 4, ..., 128 networks to train the classifier and

test with nodes from 20% of the networks in the same dataset. For each scenario

the experiment is repeated ten times.

The results are shown in Figure 6.6. For all datasets both AP and AUC increase
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on average as more networks are used for training, and the gain depends on the

dataset and the metric. For Google Scholar, with sixteen networks we obtain an AP

higher than 80% and a AUC higher than 95%. For NIH and Wikidata an AP higher

than 80% on average is obtained with only one network. The average AP for Google

Scholar grows but not to 100% and in Wikidata it starts high and goes to 100%.

The opposite behavior happens with AUC. This is because the datasets are very

different, GS has an average of 7% duplicate nodes in a network while Wikidata is

around 80%.

(a) Google Scholar (b) NIH (c) Wikidata

(d) Google Scholar (e) NIH (f) Wikidata

Figure 6.6: AP and AUC of classifier when varing the amount of the networks used
to train the classifier.

6.3.5 Impact of sampling

The DBLP dataset is composed of a single large network and its nodes have a rich

neighbourhood making it very expensive to compute all induced subgraphs. An

alternative is to sample the sugraphs. In this section we verify the performance

when using only a small sample of the subgraphs rooted at a node to generate its

features.

The subgraphs of nodes in DBLP have been sampled with k = 20 as given by

in Algorithm 1. To run these experiments 100000 nodes were selected and 80% of

them used for training and 20% for testing. The experiment was repeated 100 times.

Table 6.2 shows the results, the average AP is 76% and the average recall 88%.

For Google Scholar we generate all sugraphs and also a sample using Algorithm1,

with k = 20. Thus, we are able to compare the results of the framework when using
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all subgraphs or a small sample. To run these experiments we use nodes from 80% of

the networks for training and nodes from 20% of the networks for testing, considering

the ensemble of all nodes, without considering the networks separately. Table 6.2

shows the results with AUC of 99% when all subgraphs are used and when a sample

is used. The average AP when using a sample of the subgraphs is 89% and is 1%

better then when considering all subgraphs, recall is 74% and is 9% better. These

results indicate that it is possible to use a sample of the subgraphs without loosing

performance, and some times even improving.

Datasets Subgraphs
extraction

AUC AP Precision Recall F1

GS all 0.990(0.001) 0.870(0.005) 0.905(0.022) 0.655(0.024) 0.759(0.010)
GS sampled

(k = 20)
0.990(0.002) 0.898(0.010) 0.890(0.022) 0.743(0.017) 0.809(0.011)

DBLP sampled
(k = 20)

0.750(0.005) 0.763(0.008) 0.602(0.009) 0.884(0.013) 0.716(0.003)

Table 6.2: Performance of the framework when using a sample of the subgraphs.

6.3.6 Hidden layers and neurons

Recall that RSM2NN has two hyper parameters for the neural network: the number

of hidden layers and the number of neurons per layer in the neural network for each

neural network in the two levels.

Table 6.3 shows the performance for different hyperparameter values. These

experiments considered the GS dataset and 80% of the networks were used to train

RSM2NN and 20% to test. As indicated, performance is better when considering 20

neurons instead of 100. Results are similar when considering one or two hidden

layers, so we adopt two.

6.3.7 Baseline comparison methods

To validate the performance of the proposed framework, we compare it against

other features and methods. In particular, we compare RSM2NN with methods that

generate features from the network and also with other classifiers using the same

features of RSM2NN .

node2vec [50]: This framework learns features in a low-dimensional space for nodes

that maximizes the likelihood of preserving network neighborhoods.

SVM [40]: Support Vector Machine (SVM) is a rule established classifier defined

by a separating hyperplane using labeled training data.

NN [51]: compare RSM2NN with a simple neural network with two layers and twenty

neurons each (same parameters adopted in RSM2NN but no two level hierarchy).
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PSL [1]: a model that incorporates statistical signals, such as name similarity,

relational information and logical constraints and showed how to integrate these

features using probabilistic soft logic. This methods used PII such as names and

relationships between individuals.

Table 6.4 shows the results for the GS and DBLP datasets. The performance of

RSM2NN is superior to all others in both datasets. When using node2vec to gener-

ate node features, the performance using SVM or using a simple Neural Network is

lower than when using the features of RSM2NN with these same classifiers. Node2vec

places nodes that are neighbors near each other in feature space and since duplicate

and non-duplicate nodes are neighbors, the classification algorithm cannot easily

distinguish them. When using the features generated by RSM2NN , SVM and the

simple Neural Network outperform node2vec but are inferior to the RSM2NN frame-

work, in both datasets. This indicates that both the features generated by RSM2NN

and the two-level neural network architecture are important for the task at hand.

Table 6.5 compares the results of RSM2NN with the method proposed by Kouki

et al. [1]. Considering recall RSM2NN performed equal or better while the precision

for RSM2NN in both datasets was higher than 84% (the other method was 91%). It

is important to note that our method uses only structural information, while in [1]

Kouki et al. leverages PII training and classification such as names and personal

relationships. Thus, it is quite remarkable that results are similar which indicates

the potential of leveraging structural information.

6.4 Conclusion

In this chapter we proposed a framework to identify duplicates for the synonym

problem. The framework involves creating node features based only on the structure

of the network, and thus, considers an anonymous network. These features are

generated by rooted subgraphs of size 3, 4 and 5 and is used into a two level neural

network. This specific neural network considers in the first level each reference graph

separately. Then, the output of these neural network are concatenated to the second

level of neural network that combines it to a single output that classifies the node

as duplicate or non-duplicate.

The experiments with four different real datasets, DBLP, Google Scholar, NIH

and Wikidata, indicated that RSM2NN can effectively classify duplicate nodes of a

network it has never seen before, when trained with nodes of other networks in

the same dataset. The number of networks used to train increases performance.

With only sixteen networks an AUC higher than 80% for all datasets is achieved.

As computing all subgraphs of some networks is very expensive, we compared the

results using a sample and the result remain competitive. When we compare RSM2NN
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with baseline methods we obtain better results.

The proposed framework can be used to tackle other classification tasks on anony-

mous social networks. In particular, with respect to name ambiguity, a more widely

studied variation is when a single name refers to more than one individual. The

goal here would be to determine if a node in the anonymous social network refers

to multiple individuals.
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Chapter 7

Conclusions

This thesis considered the problem of ambiguity in anonymous social networks where

duplicated references (network nodes) correspond to the same person, the synonym

problem.

First we studied the reasons for individuals to appear with multiple names and

provided a characterization of these name appearance over time for different authors.

The individuals with duplicated names were classified into one of three classes: rare,

representing the cases where individuals use one name most of the time with the

second name appearing in just a few publications; swap, representing individuals

that start using one name but changes to another name; and co-appearance, for

individuals that regularly two use or more names. We could observe that classes in

the DBLP and Google Scholar datasets, and the network structure for individuals

of each class are different. No related work has looked into this problem before, and

we believe that identification of root causes is a fundamental step towards for better

understanding name ambiguity.

We also proposed a probabilistic model to introduce synonyms in a social network

using three parameters. Parameter p is the probability to duplicate a vertex, q is

the probability to copy an edge between a neighbour of the original vertex and its

duplicated version and r is the probability to delete an edge between the original

vertex and the neighbour. When varying these parameters the network structure

changes significantly and we analyze how these differences affects a naive algorithm

that finds the synonym in the network.

Three algorithms were proposed to solve the problem of ambiguity in social

networks using anonymous social networks and no other context information beyond

the network structure. The first one is a simple algorithm that considers the whole

network and identifies the synonym nodes based only on heuristics, such as the

distance between the nodes and the number of common neighbors. It was applied

to networks generated by two models of social networks (Erdos-Renyi and Watts-

Strogatz) after introducing ambiguity using the model previously proposed. For
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both network models the algorithm showed differences when finding the ambiguous

nodes with the variation of parameter p. The most sensitive parameter for the

performance of the algorithm is r, the precision is more than 90% for values of

r lower than 0.5, independent of the other parameters p and q. As r grows the

precision and recall decrease as more original edges are removed and the algorithm

fails to find the original vertex that corresponds to the duplicated one.

The second algorithm considers an ego-centered ambiguous network, a network

that has a profile owner, and the output is the set of nodes that correspond to

that individual. The algorithm is based on the problems of independent set and

dominating set and consider special characteristics of the synonym ambiguity prob-

lem. The algorithm was evaluated using two real bibliographic datasets, DBLP and

Google Scholar, and for all datasets the precision is more than 77% on average and

for Google Scholar dataset the precision is around 97%. This algorithm presented a

very high success rate in solving this name ambiguity.

The last algorithm is a framework that determines if a node of a network has a

duplicate in the same network. First the framework extracts induced subgraphs from

a graph rooted at a node and extract features concerning the nodes of this subgraph.

The second step is to match the subgraphs to a reference graph in order to align

the features across different instances of the same subgraph. Then, the features

are aggregated across all subgraphs that are isomorphic, generating a single feature

vector for the node. This vector is the input of a two-level neural network that

we proposed specifically to tackle the problem. The first level is a neural network

for each subgraph pattern and the output is concatenated to neural network in a

second level. The output of the second level classifies a node as having a duplicate.

We evaluated this framework using two collaborations networks, DBLP and Google

Scholar, and two familial networks, NIH and Wikidata. The framework was able to

identify duplicates with a median AUC of 97% and 83% when trained with nodes

from a single network of the same domain. In comparison to other approaches (node

features or classification models) it is significantly superior and also competitive with

recent methods that leverage contextual information.

All the proposed algorithms have as input an anonymous social network (no

label information is used) and considers only network structure to find nodes that

are synonyms. Experimental results with real available datasets indicate that is

possible to obtain a good performance in identifying the synonym nodes considering

only the network structure.
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7.1 Future work

Below follows some activities to continue and enhance the work already done in this

thesis.

In chapter 4 we proposed a model to introduce ambiguity in a network. This

model is limited because it duplicates nodes only once, so the network does not have

more than two nodes for the same person, which does not represent reality. The

model also treats every node identically and does not reflect the different reasons

that give rise to node ambiguity, as seen in Chapter 3. An improvement could

leverage the knowledge of the root causes for synonyms discussed in Chapter 3 and

consider different mechanisms to generate node duplication and edges in accordance

to our empirical finding, where ambiguous nodes can be very different. An enhanced

model, can be compared to real ambiguous networks to measure its effectiveness in

representing network ambiguity.

Another future work could be the improvement of the algorithm proposed in

chapter 5 which starts by selecting the node with highest degree. If the algorithm

makes a wrong first choice all the following steps lead to wrong conclusions and

it will not succeed. An improvement could be to study other criteria to start the

algorithm and even make it possible to rollback and restart.

In chapter 6 a proposed framework that uses neural network to classify a node

into ambiguous or not is applied to the synonym ambiguity problem and we believe

that it can be used to tackle other classification tasks on anonymous social networks.

In particular, with respect to name ambiguity, a more widely studied variation is

when a single name refers to more than one individual (homonym problem). The

same framework can be applied to determine if a node in the anonymous social

network refers to multiple individuals.

Another application of the framework proposed in chapter 6 could be its use

to classify the nodes of an anonymous network in arbitrary number of classes. The

algorithm could be used to classify nodes into different classes, not just two, without

making any restriction on the network.
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