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Antônio Augusto de Aragão Rocha

Programa: Engenharia de Sistemas e Computação

Neste trabalho, apresentamos uma nova heuŕıstica para particionamento de um

banco de dados NoSQL de chave-valor baseado em seu espaço de valores. Nossa

heuŕıstica leva em consideração a distribuição de operações de busca e atualização

no intuito de particionar o espaço de valores em regiões mutuamente exclusivas e

exaustivas que são contatadas de maneira justa por tais operações. A distribuição

de cada uma dessas operações pode mudar com o tempo e, por isso, fazemos uso

de uma versão do algoritmo de Greenwald-Khanna (um algoritmo de data stream

bem conhecido), baseado em janelas deslizantes, no intuito de sempre ter dispońıvel

um resumo para encontrar quantis (que são os pontos onde o espaço de valores é

particionado) e, então, realizar reparticionamentos de modo que as regiões ainda

sejam contatadas de maneira justa. Nós realizamos experimentos variando a fração

de buscas e atualizações, bem como suas distribuições, com o objetivo de avaliar

o desempenho de nossa heuŕıstica e também compará-la com outras soluções. Os

resultados mostram que, conforme a fração de buscas e atualizações muda, bem

como suas distribuições, as regiões ainda são contatadas de maneira justa, além de

não impor um número demasiado de mensagens a serem enviadas para as máquinas

associadas a essas regiões.
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In this work, we present a novel heuristic for partitioning a NoSQL key-value

store based on its value-space. Our demand-aware heuristic takes into account

the updates and search queries ’ distribution in order to partition the value-space

into mutually exclusive and exhaustive regions that are fairly contacted by these

operations (updates and searches). The operations’ distributions might change with

time and thus we make use of a sliding window based variation of the Greenwald-

Khanna algorithm - a well-known data stream algorithm - in order to always have a

summary available for finding quantile points (the value-space is partitioned at these

points) and then to perform repartitioning so that regions are still fairly contacted.

We also executed experiments varying the fraction of searches and updates, as well

as their distributions, in order to evaluate the performance of our heuristic and

compare it with other solutions. The results show that, as the fraction of searches

and updates varies, as well as their distributions, regions are still contacted fairly

and do not impose a higher number of messages to be sent to the machines associated

to these regions.
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Chapter 1

Introduction

In the last years there has been an increasingly adoption of NoSQL solutions mainly

because of its flexibility when compared to traditional RDBMSes.1 This is because

RDBMSes require that a database administrator design the whole database schema

beforehand, which means one must define the structure of the data before working

with it. Even a small change in a single table could mean having to change many

other parts of the system. This operation could cost lots of money to a company.

On the other hand, NoSQL databases have dynamic schema for unstructured data,

which means one can insert data without a predefined schema. One can even add

fields to data anytime, and different data can have different structure. Moreover,

RDBMSes are usually only vertically scalable, which means in order to increase the

capacity as the amount of data and users grow, the single server’s hardware must be

upgraded, as Figure 1.1 shows. This approach can become prohibitively expensive.

NoSQL databases, on the other hand, are horizontally scalable (see Figure 1.2),

which means it can increase the capacity by adding more inexpensive servers and

then replicate and/or partition the database across servers.

NoSQL databases can store data in many different ways. One of the most com-

mon ways of storing data by a NoSQL database is using a key-value data store. In a

database like this, data is stored as a collection of key-value pairs and a key is used

as the unique identifier of a record. The key can be of any type and the value can

not only be of any type, but also can be another key-value pair or even a collection

of key-value pairs. Each record can have its own fields. Figure 1.3 shows an example

of a key-value store which contains information on android devices (like latitude and

longitude) on each of its records. Each record is uniquely identified by the unique

identifier of an android device. Operations of update and search can be performed

over this key-value store. For instance, one may want to search for all the records

whose latitude and longitude satisfy some criteria. Or one may want to update the

1”NoSQL Market by Type and Application - Global Opportunity Analysis and Industry Fore-
cast.” Available at: https://www.alliedmarketresearch.com/NoSQL-market

1
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Figure 1.1: Vertical
Scalability Figure 1.2: Horizontal Scalability

values of latitude and longitude of a given record.

In order to achieve horizontal scalability, different key-value databases implement

different ways of partitioning. A naive approach would be replicating the whole

database at all servers (replicate-at-all). Other approach could be using consistent

hashing to map keys to servers (query-all). The problem with these two approaches

is that they cannot handle update and search operations in a balanced way. If

there are only search operations, replicating content balances server load and thus,

replicate-at-all approach seems to be a good idea. On the other hand, if there are

only update operations, using the second approach seems to be a better option as

using consistent hashing would distribute fairly the keys among servers. However,

the first approach handles poorly updates as one single operation would have to be

propagated to all servers, and the second approach handles poorly searches, as a

single search would have to query all servers.

Figure 1.3: A key-value store containing information on android devices on each of
its records.

2



HyperDex[1] uses subspace partitioning to create many lower-dimensional hyper-

spaces called subspaces. Each subspace is built using a unique subset of attributes

as its axes. A subspace is then divided into disjoint regions, and is assigned to a

unique subset of servers. Then, each region is assigned to a server. If there is a

search, it will never contact more than the number of servers assigned to a single

subspace. If there is an update, it will contact up to 2 servers for each existing

subspace (assuming the object to be updated has all the attributes defined). The

problem with this approach is that the subspaces are built upfront and some servers

may be contacted more times than others. This problem should not arise if the oper-

ations’ distributions2 are known in advance. Moreover, it requires O(2m) servers for

a m dimensional hyperspace, which means HyperDex requires a unique O(2m)-sized

subset of servers for each existing subspace.

CNS[2] uses value-space partitioning to create
√
n disjoint regions based on the

values of attributes, where n is the total number of servers. Each region is assigned

to a unique
√
n-sized subset of servers, and they are created in such a way they are

all fairly contacted. For this purpose, the knowledge on the operations’ distributions

is used to do the partitioning. An update contacts up to 2
√
n machines and a search

contacts up to
√
n servers. The downside of this approach is that, in order to create

the regions, it must check multiple partitioning configurations to keep the one that

maximizes an objective function for each iteration of the algorithm. This process

is highly compute-intensive. Moreover, if
√
n (i.e. the number of regions) is not a

power of 2, some regions are bigger than others (they cover twice the value space

the others cover), which means some regions may be more contacted than others.

Both HyperDex and CNS solutions present another problem to be considered -

the operations’ distributions might change. Even making use of the prior knowledge

on the operations’ distributions to do the partitioning does not prevent the case

that some regions are more contacted than others. This is because the operations’

distributions may change and make the current partitioning configuration not valid

(if its aim is to provide regions that are contacted fairly). Thus, we find that it is

imperative to support repartitioning in order to consider the most recent operations’

distributions.

We want to devise a solution for the horizontal scalability problem on a key-value

store, that partitions its value-space into regions that are contacted in a balanced

way. We also want to be able to repartition the value-space so that regions are still

2We call operations’ distributions the distribution of load of each type of operation (search and
update) across the servers. Each operation may impose load by contacting one or more servers as
we will see in the next chapters. We will call these contacts generated by operations into servers as
touches at these servers. It is important to consider the distribution each type of operation follows
when contacting servers in order to organize the key-value store in such a way these servers are
always fairly contacted.

3



contacted fairly.

In this sense, the objective of this work is to contribute in three ways. Our first

contribution is the proposal of a demand-aware heuristic for value-space partitioning

of a key-value store. It partitions the value-space into disjoint regions taking into ac-

count the operations’ distributions so that regions are contacted fairly. The heuristic

has an initial configuration for the regions, and after observing a certain amount of

search and/or update operations, it divides the value-space into disjoint regions in a

way they are contacted in a balanced way (and thus, the servers associated to these

regions).

Our second contribution is the application of a data stream algorithm - the

Greenwald Khanna algorithm - to assist in the partitioning. The use of this data

stream algorithm enables a much less compute-intensive partitioning. It also en-

ables repartitioning, as a summary is always available for finding quantiles (the

points where we partition the value-space). Repartitioning is important because the

operations’ distributions might change.

Our third contribution is the evaluation of our heuristic. We executed exper-

iments varying the fraction of searches and updates (and their distributions) in

order to evaluate the performance of our heuristic and compare it with other ap-

proaches like replicate-at-all, query-all, HyperDex and CNS. The results show that

our heuristic creates regions that are always contacted fairly, while not imposing a

higher number of messages to be sent to the servers (because of update and search

operations, and repartitioning messages) as the fraction of searches and updates

varies, as well as their distributions.

The remainder of this work is organized as follows. The chapter 2 presents a

background review and related works. The chapter 3 describes our heuristic in

detail. The chapter 4 describes the experiments we performed, and presents their

results and some discussions. And, the chapter 5 presents our conclusions.

4



Chapter 2

Background Review and Related

Works

In this chapter, we review some approaches on partitioning a key-value data store

such as replicate-at-all, query-all, HyperDex and CNS. We also review quantiles and

the GK algorithm.

2.1 Key-Value Store Partitioning Solutions

2.1.1 HyperDex

HyperDex uses subspace partitioning to create multiple lower-dimensional hyper-

spaces, called subspaces, from a higher-dimensional hyperspace. The term hyper-

space here means a D-dimensional Euclidean space with D > 3 where its dimensions

are defined by the attributes of the objects stored in the key-value store. Typically,

HyperDex partitions a D-dimensional hyperspace into multiple m-dimensional sub-

spaces where D >> m. Each of these subspaces uses a unique subset of object

attributes as its dimensional axes, and is assigned to a unique subset of machines

(or nodes). Each attribute axis of a subspace is then partitioned, dividing the sub-

space into disjoint regions (or blocks), and a machine is assigned to each region.

Next we give an example of how this partitioning is done. The Figure 2.1 shows

one of the four 3-dimensional subspaces generated from a 12-attribute hyperspace.

Each subspace is mapped to a unique subset of 4 nodes (from a datacenter consisting

of 16 nodes). Each dimension (attribute axis) is divided into 2 partitions, generating

23 blocks per subspace. Each block is assigned to one of the nodes associated to

the subspace that contains the block (in this example, 2 blocks are assigned to each

node).

When there is a search, it picks the subspace with the subset of attributes that

best matches the search attributes in order to contact the fewest machines. If it is a

5



Figure 2.1: Example of a HyperDex subspace (Source: CNS article)

D-dimensional subspace, a search query specifying Q attributes will need to contact

2D−Q regions and thus, this same amount of machines (assuming each dimension is

split into 2 parts).

Figure 2.2: Resolving a search for two attributes (Source: HyperDex article)

The Figure 2.2 shows a search for the name ”John Smith”. This search is a

query for first name = ”John” and for last name = ”Smith”. The query for

first name is represented by the yellow hyperplane that passes through all points

in which first name = ”John”. The query for last name is represented by the grey

hyperplane that passes through all points in which last name = ”Smith”. Their

intersection form a line that corresponds to all phone numbers for people whose

name is ”John Smith”. This line passes through two regions of this hyperspace that

are represented by the two cubes. The search for the name ”John Smith” needs to

contact only these two regions and thus, the machines associated to these regions.

6



An update needs to contact up to two regions (and thus, two machines) - the one

where the object was stored and the one where it will now be stored - per existing

subspace, as each subspace stores a full copy of each object (the object attributes

that serve as the subspace’s dimensional axes and the other ones). This is because

storing the full copy of objects optimizes search. If, instead, each subspace were

to store only the object attributes that serve as its dimensional axes, an update

would not need to contact all the subspaces anymore; however, a search would now

need to contact up to all the existing subspaces. It happens that an update when

contacts a subspace, also contacts up to two regions (and thus, two machines); a

search, however, may contact much more than two of its regions (and thus, much

more than two of its machines). It means that it might be a better approach to

optimize searches.

The main criticism of this approach is that, in general, an m dimensional hy-

perspace requires O(2m) machines (assuming each dimension is split into 2 parts).

This is too many machines even when reducing the dimension D >> m of the

original hyperspace by creating multiple m-dimensional subspaces, as it requires

multiple unique O(2m)-sized subsets of machines (each to be assigned to a single

subspace). Moreover, the fact that the subspaces are built upfront makes it possi-

ble for some machines to be more contacted than others, as it does not take into

account the operations’ distributions. There is, however, the case of knowing the

operations’ distributions in advance, in which case this problem would not arise if

the distributions do not change. Unfortunately, this is not always the case that

these distributions do not change.

2.1.2 Replicate-at-all

Instead of splitting the key-value store and distributing its partitions across multiple

servers, this solution replicates the entire key-value store and stores this replica at

all servers (see Figure 2.3). Thus, a search query would only need to contact one of

the servers, and one could implement a round-robin scheduling in order to distribute

the search operations fairly across the machines. On the other hand, a single update

would have to be propagated to all machines.

This approach is ideal for scenarios in which there are only search operations or

when the amount of searches is much greater than that of updates. However, there

is another major problem with this approach. If the key-value data store grows

inadvertently, the only way to scale is vertically scaling (even deferring updates), as

adding more servers does not help.

7



Figure 2.3: Replicating an entire key-value store across all machines

2.1.3 Query-all

The path to solve the horizontal scalability problem is to divide data across multiple

servers (machines). One could try to use a classical hash function (for example, the

linear congruential function x 7→ ax+b (mod n), where n is the number of machines)

to map object keys to servers. This way objects would be evenly distributed across

machines. The problem with this approach is that whenever n changes, almost every

object has to be moved because it is now hashed to a different machine.

Consistent Hashing[3] solves this problem by representing the hash key space as

a ring, called hash ring, and placing objects and machines in this ring in such a way

changing n does not affect all the objects. The hash function maps each machine to

a specific place on the ring. Then, it also maps object keys to places on the ring. An

object can be placed in a position that was previously assigned to a machine. In such

a case, this object is mapped directly to that machine. When it does not happen -

when it is placed where there is no machine - it is mapped to the closest machine

that is located in a greater address than that of the object. Because objects might

be non-uniformly distributed across servers in a hash ring, more than one position

in the ring may be assigned to a single server.

Figure 2.4 shows a hash ring with machines (M0 and M1) and objects (from

OBJ0 to OBJ3) distributed across it. In this example the ring is ordered in a

clockwise fashion. Thus, each object is mapped to the closest machine in a clockwise

fashion. Objects OBJ1 and OBJ2 are both mapped to the machine M0. Similarly,

objects OBJ0 and OBJ3 are both mapped to the machine M1. If we were to insert

a machine M2 between OBJ1 and OBJ2, only the OBJ2 would have to be moved.

If the second node of machine M1 were to be removed (the second one clockwise),

only OBJ3 would have to be moved. Now, consider the scenario in which the second

node M1 does not exist and the second node M0 also does not exist (in a clockwise

8



Figure 2.4: Objects and machines distributed across the hash ring

fashion). In this case, all the objects but OBJ3 would be mapped to machine M1

(which represents 75% of all objects). Assigning more than one position in the ring

(i.e. adding more nodes) for each machine prevents that.

As we have seen, consistent hashing distributes evenly the objects across ma-

chines (see Figure 2.5). If we were to use it in our key-value store, we could perform

updates in constant time, O(1), by contacting only one machine. This is because the

machine where the object is located is immediately found by hashing the object key.

Since changing the values of the object attributes does not move the object from

a machine to another, only one machine is contacted due to an update operation.

However, as it distributes the objects based solely on its keys, there is no way of

knowing where an object was placed based on its attributes. Thus, a single search

query would have to go over all the machines in order to find the objects that meet

its criteria - this is why we call this approach as query-all. This approach is ideal for

scenarios in which there are only update operations or when the amount of updates

is much greater than that of searches.

9



Figure 2.5: Using consistent hashing to uniquely map keys to servers

2.1.4 Global Name Service and Contextual Notification Ser-

vice

It is a common sense that mobile devices are the most popular way to access the

Internet today3. In addition, there are more mobile devices than people around the

world4. However, the Internet continues to provide poor infrastructure support for

mobility. The Internet’s conflation of identity and location, i.e., the use of an IP

address to both identify and localize a device on the network, implies that whenever

a device changes its location, it also changes its identity. Moreover, the DNS’s heavy

reliance on TTL-based caching is unsuitable in high mobility scenarios as it increases

update propagation delays, load on name servers, and client-perceived latency. The

authors of Auspice GNS propose a Global Name Service (GNS) [4, 5] that replicates

authoritative name servers in a globally geo-distributed manner based on demand

and load. Wherever a name is popular, Auspice places a replica of that name-record

at that location in a way it does not create a load imbalance. In comparison to DNS,

this replication policy significantly reduces the reliance on passive caching, and its

placement policy reduces the client-perceived latency (as opposed to DNS’s static

placement). Auspice GNS also supports arbitrary names, as opposed to DNS, that

works with hierarchical names. The authors argue that structure of names should

not be restricted as names carry application-specific semantics.

The GNS is designed as a massively geo-distributed key-value store. Each name

record of this key-value store is associated with a globally unique identifier (GUID)

that is the record’s primary key. A name record contains an associative array of

key-value pairs, wherein each key Ki is a string and the value Vi may be a string, a

primitive type, or recursively a key-value pair. Next there is an example of a name
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record for a GUID X.

{X : {IPs : [{IP : 23.55.66.43, plan : Unlimited}, {IP : 62.44.65.75, plan : Limited}],

geoloc : {[lat, long], readWhitelist : [Y, Z]},multihome policy : Unlimited}}

When an endpoint Y wants to start a communication, it performs a query - a

keyword-based search - seeking the GUIDs of the endpoints that meet the search

criteria. This query is sent to a Contextual Notification Service (CNS)5[2] (also a

key-value store like GNS), which then returns the proper GUIDs (if they exist). Say

one of the GUIDs returned by CNS is the one associated to the endpoint X. Once

Y knows its GUID, Y can send a lookup request to GNS in order to retrieve the IP

of X’s phone, as the Figure 2.6 illustrates.

The Figure 2.7 shows how Auspice GNS handles mobility between two endpoints.

Whenever Y wants to communicate with X again, it just has to directly query GNS

for X’s up-to-date IP, since X’s GUID is already known. If X moves after Y ’s

query but before a connection has been established, Y has to query GNS again.

After a connection has been established, if either endpoint moves one at a time, the

connection can be re-synchronized without relying upon the GNS. If both endpoints

move simultaneously, one or both endpoints must query the GNS and then re-

synchronize the connection.

Figure 2.6: GNS and CNS working side by side

3”Mobile devices become most popular way to access internet”,
New York Post. Available at: https://nypost.com/2016/11/03/

mobile-devices-become-most-popular-way-to-access-internet/
4”There are officially more mobile devices than people in the world”, Indepen-

dent. Available at: https://www.independent.co.uk/life-style/gadgets-and-tech/news/

there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
5CNS paper is expected to be submitted by some of the GNS’s authors any time soon.
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Figure 2.7: Auspice GNS handling mobility between two endpoints (Source: CNS
article)

The authors argue that the proposed GNS-CNS separation guarantees privacy

since, despite collusion, the CNS or the GNS can only know of the existence of

attribute-value pairs but not be able to correlate them to user identities in the

absence of external information or side-channels.

Figure 2.8 illustrates other scenarios in which CNS might be useful. Using CNS,

a meteorological agency is able to notify people (through their mobile devices) to

leave the area they are in (by searching for mobile phones that meet some criteria

based on their longitude and latitude) because of a coming hurricane. It can also

be used in order to issue security alerts or even epidemic alerts, for example.

Figure 2.8: Example of application for CNS (Source: CNS article)

In order to guarantee a decent performance for searches and updates, it is desir-
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able that CNS partitions its key-value datastore across several machines with some

special care. The CNS authors propose a heuristic for this purpose. It partitions

the value-space into
√
n mutually exclusive and exhaustive (MEE) partitions, called

regions, where n is the number of machines. In each iteration of this heuristic (for a

total of
√
n− 1 iterations), it picks a preexisting region, then it picks a point on one

of the attribute axes and divides the region at that point creating two new regions.

It then calculates the Jain’s Fairness Index (JFI) value6[6] for this partitioning con-

figuration. The function that returns this value is actually an objective function

based on JFI that takes into account update and search operations seen so far in

order to create regions that are contacted fairly. It repeats the process so that in

the end of each iteration it stays with the partitioning configuration that gives the

best JFI value. Each region is then assigned to a unique subset of
√
n machines

(which means it is replicated
√
n times). Thus, an update may contact up to 2

√
n

machines - the
√
n machines associated to the previous region and the

√
n machines

associated to the new region; a search may contact up to
√
n machines, as a subset

of
√
n machines already covers the entire value-space.

The authors of CNS prove in their article that there is no subspace partitioning

or replication scheme - even with complete knowledge of the workload - for which

it is possible to achieve better than Ω(
√
n) scalability, unless there is either only

updates or only searches in the workload. They also prove that it is possible to

achieve
√
n scalability if the number of regions is

√
n and each of these regions is

assigned to a unique subset of
√
n machines, and updates and searches are uniformly

distributed across regions. This is the reason for so many
√
n appearing here.

The problem with this heuristic is that in order to know the configuration that

gives the best JFI value, it must check all possible partitioning configurations. This

process is highly compute-intensive. Also, if the number of regions,
√
n, is not a

power of 2, the value-space is not equally divided; some regions are bigger than

others - a region may cover the double of the area the other cover. It means that

some regions may be more contacted than others.

Next we give an example of how CNS does the partitioning of its key-value

datastore.

Let A = {A1, A2, A3} be the set of attributes.

Let N = {N1, N2, · · · , N16} be the set of machines.

Thus, n = 16 and the number of MEE regions,
√
n, is 4.

Let R = {[(A1, [0, 1]), (A2, [0, 1]), (A3, [0, 1])]} be the set of regions.

In the first iteration, we pick the hyperplane A1 = 0.35 to divide the

region [(A1, [0, 1]), (A2, [0, 1]), (A3, [0, 1])] into two new regions. Thus, R =

{[(A1, [0, 0.35]), (A2, [0, 1]), (A3, [0, 1])], [(A1, [0.35, 1]), (A2, [0, 1]), (A3, [0, 1])]}.
6The function that returns the JFI value is shown in the section 4.1.1.
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In the second iteration, we pick the hyperplane A2 = 0.35 to divide the

region [(A1, [0.35, 1]), (A2, [0, 1]), (A3, [0, 1])] into two new regions. Thus, R =

{[(A1, [0, 0.35]), (A2, [0, 1]), (A3, [0, 1])], [(A1, [0.35, 1]), (A2, [0, 0.35]), (A3, [0, 1])],

[(A1, [0.35, 1]), (A2, [0.35, 1]), (A3, [0, 1])]}.
In the third and final iteration, we pick the hyperplane A3 = 0.5 to divide the

region [(A1, [0.35, 1]), (A2, [0.35, 1]), (A3, [0, 1])] into two new regions. Thus, R =

{[(A1, [0, 0.35]), (A2, [0, 1]), (A3, [0, 1])], [(A1, [0.35, 1]), (A2, [0, 0.35]), (A3, [0, 1])],

[(A1, [0.35, 1]), (A2, [0.35, 1]), (A3, [0, 0.5])], [(A1, [0.35, 1]), (A2, [0.35, 1]), (A3, [0.5, 1])]}.
Figure 2.9 illustrates this example.

Figure 2.9: Example of partitioning using CNS (Source: CNS article)

Next, we give another example of how the partitioning can generate un-

balanced regions. For this purpose, consider a scenario in which n = 9.

Thus, the final number of regions is 3, which is not a power of 2. Ini-

tially, we have R = {[(A1, [0, 1]), (A2, [0, 1]), (A3, [0, 1])]}. Let us pick the

hyperplane A1 = 0.5 to divide this initial region into two new regions. Now,

R = {[(A1, [0, 0.5]), (A2, [0, 1]), (A3, [0, 1])], [(A1, [0.5, 1]), (A2, [0, 1]), (A3, [0, 1])]}.
Finally, we pick the hyperplane A2 = 0.5 to divide the

region [(A1, [0.5, 1]), (A2, [0, 1]), (A3, [0, 1])] into two new re-

gions. In the end we have the following regions: R =

{[(A1, [0, 0.5]), (A2, [0, 1]), (A3, [0, 1])], [(A1, [0.5, 1]), (A2, [0, 0.5]), (A3, [0, 1])],

[(A1, [0.5, 1]), (A2, [0.5, 1]), (A3, [0, 1])]}. One can note that the first region (the

green one) has the double of the size of each one of the other two regions (see

Figure 2.10). And, there is no other way to partition the value-space into 3 regions,
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by splitting one region into two new ones at every iteration, that would not create

this unbalance. This is because the way the partitioning is done, it is required that

the number of regions must be always a power of 2.

Figure 2.10: Dividing the value space into
√
n regions when n = 9.

There is another major problem with this heuristic. Even taking into account the

operations’ distributions to create regions, it does not consider the case that these

distributions might change. In fact, CNS does generate regions that are contacted

fairly (assuming
√
n is a power of 2) until the operations’ distributions change, when

the configuration of partitioning it created is not valid anymore. We believe that the

solution to this problem is to support repartitioning, which consists of performing a

new partitioning from time to time based on new observed operations. The problem

is that CNS partitioning process is highly compute-intensive as we stated earlier,

which makes repartitioning impracticable.

2.2 Quantiles over a data stream

Quantiles are points that divide an ordered dataset into subsets of (nearly) equal

sizes. The φ-quantile, with 0 < φ ≤ 1, of a dataset of size n is the value whose

rank is φ · n. Median and quartiles are examples of quantiles. The median is the

0.5-quantile that divides a dataset into 2 halves. The quartiles are the 0.25-quantile,

the 0.5-quantile and the 0.75-quantile that divide a dataset into 4 quarters.

As data streams can theoretically be infinite and a computer’s memory is always

finite, one cannot afford to know every element from a data stream to sort them and

then compute the quantile points. It is desirable that an algorithm to find quantiles

over data streams is able to operate by doing a single pass over the data. In addition,
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some data has to be discarded to save memory and, for this, a margin of error ε is

allowed. Therefore, the ε-approximate φ-quantile, with 0 < φ ≤ 1 and 0 ≤ ε ≤ 1, of

a dataset of size n is any value whose rank is inside [n · (φ− ε), n · (φ+ ε)].

2.2.1 The Greenwald-Khanna (GK) Algorithm

At each unit of time an observation represented by its value v is seen, such that at a

given instant of time n, n observations were seen. The GK algorithm [7, 8] maintains

a data structureQ(n) – called summary – that contains an ordered sequence of tuples

that correspond to a subset of the n observations seen thus far. The summary

also maintains for each observation v, the lower and upper bounds – rmin(v) and

rmax(v) respectively – on the rank of v, which correspond to the minimum and

the maximum possible rank of v among the observations seen so far. Formally, the

summary is an ordered collection of tuples Q(n) = {t0, t1, · · · , ts−1}, where each

tuple ti = (vi, gi,∆i) contains 3 values: i) vi that is a value which represents one of

the n observations seen thus far; ii) gi that is a value equals to rmin(vi)−rmin(vi−1);

and iii) ∆i that is a value equals to rmax(vi) − rmin(vi). The values v0 and vs−1

always correspond, respectively, to the lowest and highest values seen so far. Some

observations can be taken from the definitions above:

1. rmin(vi) = gi + rmin(vi−1) =
∑

j≤i gj

2. rmax(vi) = rmin(vi) + ∆i =
∑

j≤i gj + ∆i

3. gi+∆i−1 = rmax(vi)−rmin(vi−1)−1 is an upper bound on the total number

of observations that may have fallen between vi−1 and vi

4.
∑

i gi = n

Proposition: Given a summary Q(n), a φ-quantile can always be identified to

within an error of maxi(gi + ∆i)/2.

Corollary: If at any time n, the summary Q(n) satisfies the property that

maxi(gi + ∆i) ≤ 2εn, then we can answer any φ-quantile query to within an εn

precision.

The capacity of a tuple ti at time n, denoted by cap(ti, n), is defined as b2εnc−∆i

and it increases over time (as n increases). It is important to state that ∆i of a tuple

ti never changes, while gi may increase over time because of merge operations. It

is said that a tuple is full at time n if gi + ∆i = b2εnc, i.e., if gi = cap(ti, n).

Therefore, the capacity of a tuple ti is the maximum number of observations that

can be counted by gi before ti becomes full.

Lower capacity tuples will eventually be merged into larger capacity ones (or

into tuples of similar capacity) in order to minimize the size of Q(n). The choice
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for preserving higher capacity tuples is that they correspond to values whose ranks

are known with higher precision (recall that their ∆’s are smaller, which means the

difference rmax − rmin is also smaller). Tuples with similar capacity, i.e., with

approximately equal values of log2(capacity), are grouped into the same geometric

classes referred to as bands. Thus, at time n, a tuple ti is in a band α if cap(ti, n) ≈
2α. As the capacities increase over time, the band of a tuple also increases over time.

The band of a tuple ti at time n is denoted by band(ti, n). If at some time m, we have

band(ti,m) ≤ band(tj,m) then for all times n > m, we have band(ti, n) ≤ band(tj, n)

(since ∆i ≥ ∆j for all n). Thus, if tuples are ever in the same band, they never

appear in different bands as n increases. The band(ti, n) is α if

p− 2α − (p mod 2α) < ∆i ≤ p− 2α−1 − (p mod 2α−1),with p = b2εnc
(or equivalently, 2α−1 + (p mod 2α−1) ≤ cap(ti, n) < 2α + (p mod 2α))

Especial cases: If ∆i = p, then band(ti, n) = 0 (the lowest band); else if ∆i = 0,

then band(ti, n) = dlog2(p)e (the highest band).

An additional data structure – an ordered tree structure – is used in order to as-

sist the merge operation among bands. Given a summary Q(n) = {t0, t1, · · · , ts−1},
a quantile tree T (n), at time n, associated with Q(n), contains a node Vi for each

ti, and a special root node R. The parent of a node Vi is the node Vj such that

j is the least index greater than i with band(tj, n) > band(ti, n). If no such index

exists, then R is set to be the parent. The children of each node are ordered as they

appear in Q(n). All children (and all descendants) of a given node n correspond to

tuples that have capacities smaller (or equivalently, have ∆ values larger) than that

of tuple ti. The idea is that firstly child nodes are merged into their parent nodes

and only then merge sibling nodes.

Operations supported by GK:

Quantile(φ): Computes an ε-approximate φ-quantile from the summary Q(n)

after n observations. It looks for vi such that rmin(vi) ≥ r − εn and rmax(vi) ≤
r+εn, where r is the rank associated with the φ-quantile and is equal to bφ ·(n−1)c.
Any vi that satisfies the rmin and rmax conditions is eligible to be returned as an

ε-approximate φ-quantile.

Insert(v): Inserts a tuple t containing v into the summary. Firstly, it sets g = 1,

as t is a new tuple. Secondly, it sets ∆ following some conditions: if v is the new

minimum or the maximum observation seen (or equivalently, if t is the new t0 or

ts−1), then ∆ = 0. Otherwise, ∆ = b2εnc − 1. Once set, ∆ will never change.

Finally, it looks for the smallest i, such that vi−1 ≤ v < vi and inserts t between ti−1

and ti.
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Compress(): Compresses the summary by merging adjacent tuples based on

their bands. Figure 2.11 shows how this operation works.

Figure 2.11: The GK’s compress operation (Source: GK article)

At every instant of time n, GK firstly checks whether it is time to compress the

summary or not. It will run Compress() whenever n ≡ 0 mod (1/2ε). Then, GK

runs Insert(v) to insert into the summary a new tuple associated to the observation

v seen at time n. Figure 2.12 show the pseudocode for GK algorithm.

Figure 2.12: The GK algorithm (Source: GK article)

2.2.2 Sliding Window Greenwald-Khanna (GK-window) Al-

gorithm

GK-window [8] summarizes the most recent W observations seen. For this purpose,

it implements a fixed sliding window of size W . While the window does not cover

W elements, it increases its size whenever a new observation is seen. After the

first W arrivals, the window will always cover precisely W observations. From this

point on, for each newly arrived observation, the oldest observation in the window
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is deleted. The window is divided into blocks of εW/2 consecutive observations.

Each block is summarized using the GK algorithm with an ε/2 precision. Thus,

the window will contain 2/ε summaries (assuming the window already covers W

observations). The only block summarizing data is the most recent one and is

called under construction. The blocks that already contains εW/2 observations are

called complete and are no longer modified. When a single observation in a block

exits the window (i.e., when the oldest observation from the W most recent ones

is discarded), this block is said to be expired. Whenever a query for a φ-quantile

is done, the algorithm combines all the summaries from the 2/ε non-expired blocks

- the summaries from the complete blocks and from the under construction block

are combined together but the expired block’s summary is ignored - into a single

ε/2-precision quantile summary. Then, it computes an ε/2-approximate φ-quantile

from that summary using the GK algorithm.

The combine operation: Combine(Q′, Q′′)

Let Q′ = {x1, x2, · · · , xa} and Q′′ = {y1, y2, · · · , yb} be two quantile summaries.

This operation [8, 9] produces a new quantile summary Q = {z1, z2, · · · , za+b} by

performing the union of Q′ and Q′′, and setting the rank of each element as follows.

Let xr and yr be, respectively, the smallest elements in Q′ and Q′′ that are not

already in Q. At each iteration i, we pick the smallest element between xr and yr to

be zi. For now, assume that zi corresponds to some element xr in Q′. Let ys be the

largest element in Q′′ that is not larger than xr (ys is undefined if no such element

exists), and let yt be the smallest element in Q′′ that is not smaller than xr (yt is

undefined if no such element exists). Then

rminQ(zi) =

rminQ′(xr) if ys undefined

rminQ′(xr) + rminQ′′(ys) otherwise

rmaxQ(zi) =

rmaxQ′(xr) + rmaxQ′′(ys) if yt undefined

rmaxQ′(xr) + rmaxQ′′(yt)− 1 otherwise

If at some iteration i, zi corresponds to some element yr in Q′′, the process of

setting the rank of zi follows the same rules, except that there would be xs and xt

instead of ys and yt.

2.2.3 A Test Case for the GK Algorithm

Lets consider the following input sequence: {12, 10, 11, 10, 1, 10, 11, 9}. We are going

to show how the GK algorithm performs when observes this sequence of values. We

are going work with an error ε = 0.25. Thus, we are going to perform a new
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compression every 1/2ε = 2 new observations.

Let N be the number of observations seen so far, and S our summary. Then,

N = 0 and S = {} as no observation was seen so far.

I) Iteration 1: Observation 12 arrives

a) Before inserting the new value we check whether we need to perform a

compression. In our case we do not need compression, as there is no

observation in our summary.

b) Now we insert 12 into our summary S.

g(12) = 1 as we are inserting a new tuple.

∆(12) = 0 as 12 is the new minimum / maximum observation seen so

far.

This is our summary so far: S = {(12, 1, 0)}.
Now that we have seen one new observation N = N+1 = 1. Then, we are

able to calculate p = b2εNc = b2 ·0.25 ·1c = b0.5c = 0. We calculate p in

order to know the band of each tuple. This information is required when

performing compressions. Recall that, by definition, if a tuple has ∆ = p

then it is in band 0. Also, if a tuple has ∆ = 0 then it is in band log2(dpe).
In order to know the band of a tuple when its ∆ 6= 0 or ∆ 6= p, we use the

following formula: p− 2α − (p mod 2α) < ∆ ≤ p− 2α−1 − (p mod 2α−1).

Now we know that band 0 contains the tuples with the following deltas :

band 0: Deltas = {0}. We can also draw the tree structure T mentioned

in the section 2.2.1:

R

0

II) Iteration 2: Observation 10 arrives

a) No compression to be performed as N mod 1/2ε = 1 mod 1/2ε 6= 0

b) Insert observation 10 into summary S

∆(10) = 0 as 10 is the new minimum observation seen.

S = {(10, 1, 0), (12, 1, 0)}
N = N + 1 = 2→ 2εN = 1→ p = b2εNc = 1

band 0: Deltas = {0, 1}
T:

20



R

0 0

III) Iteration 3: Observation 11 arrives

a) N mod 1/2ε = 0: must perform compression

Now we must test whether we can delete one of the tuples:

(10, 1, 0) (12, 1, 0).

band(10) ≤ band(12)? True, because 0 ≤ 0.

g(10) + g(12) + ∆(12) < 2εN ? False, because 1 + 1 + 0 < 1.

Since the result was false to at least one of the requirements for compres-

sion, we cannot delete (10, 1, 0).

b) Insert observation 11 into summary S

∆(11) = b2εNc − 1 = b1c − 1 = 0

S = {(10, 1, 0), (11, 1, 0), (12, 1, 0)}
N = N + 1 = 3→ 2εN = 1.5→ p = b2εNc = 1

band 0: Deltas = {0, 1}
T:

R

0 0 0

IV) Iteration 4: Observation 10 arrives

a) N mod 1/2ε 6= 0: no compression to be performed

b) Insert observation 10 into summary S

∆(10) = b2εNc − 1 = b1.5c − 1 = 0

S = {(10, 1, 0), (10, 1, 0), (11, 1, 0), (12, 1, 0)}
N = N + 1 = 4→ 2εN = 2→ p = b2εNc = 2

band 0: Deltas = {2}
band 1: Deltas = {0, 1}
T:

R

1 1 1 1
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V) Iteration 5: Observation 1 arrives

a) N mod 1/2ε = 0: must perform compression

Testing: (11, 1, 0) (12, 1, 0)

band: 1 <= 1→ True

1 + 1 + 0 < 2→ False

Cannot delete (11, 1, 0)

Testing: (10, 1, 0) (11, 1, 0)

band: 1 <= 1→ True

1 + 1 + 0 < 2→ False

Cannot delete (10, 1, 0)

Testing: (10, 1, 0) (10, 1, 0) band: 1 <= 1→ True

1 + 1 + 0 < 2→ False

Cannot delete (10, 1, 0)

b) Insert observation 1 into summary S

∆(1) = 0 as 1 is the new minimum observation seen.

S = {(1, 1, 0), (10, 1, 0), (10, 1, 0), (11, 1, 0), (12, 1, 0)}
N = N + 1 = 5→ 2εN = 2.5→ p = b2εNb= 2

band 0: Deltas = {2}
band 1: Deltas = {0, 1}
T:

R

1 1 1 1 1

VI) Iteration 6: Observation 10 arrives

a) N mod 1/2ε 6= 0: No compression to be performed

b) Insert observation 10 into summary S:

∆(10) = b2εNc − 1 = b2.5c − 1 = 1

S = {(1, 1, 0), (10, 1, 0), (10, 1, 0), (10, 1, 1), (11, 1, 0), (12, 1, 0)}
N = N + 1 = 6→ 2εN = 3→ p = b2εNc = 3

band 0: Deltas = {3}
band 1: Deltas = {1, 2}
band 2: Deltas = {0}
T:
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R

2 2 2 2

1

2

VII) Iteration 7: Observation 11 arrives

a) N mod 1/2ε = 0: must perform compression

Testing: (11, 1, 0) (12, 1, 0)

Band: 2 <= 2→ True

2 + 1 + 0 < 3→ False

Cannot delete (11, 1, 0)

Testing: (10, 1, 1) (11, 1, 0)

Band: 1 <= 2→ True

1 + 1 + 0 < 3→ True

Can delete (10, 1, 1): Merge (10, 1, 1) with its parent (11, 1, 0).

S = {(1, 1, 0), (10, 1, 0), (10, 1, 0), (11, 2, 0), (12, 1, 0)}
Testing: (10, 1, 0) (11, 2, 0)

Band: 2 <= 2→ True

1 + 2 + 0 < 3→ False

Cannot delete (10, 1, 0)

Testing: (10, 1, 0) (10, 1, 0)

Band: 2 <= 2→ True

1 + 1 + 0 < 3→ True

Can delete (10, 1, 0): Merge (10, 1, 0) with its sibling (10, 1, 0)

S = {(1, 1, 0), (10, 2, 0), (11, 2, 0), (12, 1, 0)}
Testing: (1, 1, 0) (10, 2, 0)

Band: 2 <= 2→ True

1 + 2 + 0 < 3→ False

Cannot delete (1, 1, 0)

b) Insert observation 11 into summary S:

∆(11) = b2εNc − 1 = b3c − 1 = 2

S = {(1, 1, 0), (10, 2, 0), (11, 2, 0), (11, 1, 2), (12, 1, 0)}
N = N + 1 = 7→ 2εN = 3.5→ p = b2εNc = 3

band 0: Deltas = {3}
band 1: Deltas = {1, 2}
band 2: Deltas = {0}
T:
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R

2 2 2 2

1

VIII) Iteration 8: Observation 9 arrives

a) N mod 1/2ε 6= 0: No compression to be performed

b) Insert observation 9 into summary S:

∆(9) = b2εNc − 1 = b3.5c − 1 = 2

S = {(1, 1, 0), (9, 1, 2), (10, 2, 0), (11, 2, 0), (11, 1, 2), (12, 1, 0)}
N = N + 1 = 8→ 2εN = 4→ p = b2εNc = 4

band 0: Deltas = {4}
band 1: Deltas = {3}
band 2: Deltas = {0, 1, 2}
T:

R

2 2 2 2 2 2

Now lets take a look at our summary so far:

S = {(1, 1, 0), (9, 1, 2), (10, 2, 0), (11, 2, 0), (11, 1, 2), (12, 1, 0)}

We will try to find a 0.5-quantile. We first calculate the rank

r = b0.5 · 8c = 4. Then we calculate rmax and rmin for each value v ∈ S.

If rmax(v) ≤ r + bεNc = 6 (εN = 0.25 · 8 = 2) and rmin(v) ≥ r − bεNc = 2, then v

is a 0.25-approximate 0.5-quantile.

rmin(1) = 1

rmax(1) = rmin(1) + ∆(1) = 1 + 0 = 1

rmin(9) = rmin(1) + g(9) = 1 + 1 = 2→ 2 ≥ 2

rmax(9) = rmin(9) + ∆(9) = 2 + 2 = 4→ 4 ≤ 6

rmin(10) = rmin(9) + g(10) = 2 + 2 = 4→ 4 ≥ 2

rmax(10) = rmin(10) + ∆(10) = 4 + 0 = 4→ 4 ≤ 6
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rmin(11) = rmin(10) + g(11) = 4 + 2 = 6→ 6 ≥ 2

rmax(11) = rmin(11) + ∆(11) = 6 + 0 = 6→ 6 ≤ 6

rmin(11) = rmin(11) + g(11) = 6 + 1 = 7

rmax(11) = rmin(11) + ∆(11) = 7 + 2 = 9

rmin(12) = rmin(11) + g(12) = 7 + 1 = 8

rmax(12) = rmin(12) + ∆(12) = 8 + 0 = 8

As we can see each one of the values 9, 10 and 11 is a 0.25-approximate 0.5-

quantile.
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Chapter 3

A Demand-Aware Heuristic for

Value-Space Partitioning and

Repartitioning

3.1 Model

Let A denote a set of attributes of size m, and let {ai}1≤i≤m denote the elements

of A. Let R(ai) denote the range set that corresponds to the values ai can assume.

We define a value-space - represented as an m-dimensional vector of attribute-range

pairs [(a1, [l1, h1]), · · · , (am, [lm, hm])], where ai ∈ A and [li, hi] ⊆ R(ai) - as the

set of all vectors [v1, · · · , vm] such that vi ∈ [li, hi], with 1 ≤ i ≤ m. Let H(A)

denote the global value-space represented as [(a1, R(a1)), · · · , (am, R(am))]. Let D

denote a key-value datastore (i.e., a collection of key-value records) represented as

{〈g1, [(a1, v1), · · · , (am, vm)]〉, · · · }, where g1 is a globally unique identifier (GUID)

that is the key of the record 〈g1, [(a1, v1), · · · , (am, vm)]〉, and [(a1, v1), · · · , (am, vm)]

is an m-dimensional vector of attribute-value pairs (with ai ∈ A and vi ∈ R(ai),

1 ≤ i ≤ m) that is the value of the record 〈g1, [(a1, v1), · · · , (am, vm)]〉. We use the

notation gi.ai to represent the value vi of attribute ai of GUID gi.

Our model supports two operations over D. i) A search that is represented as

a k-dimensional vector of attribute-range pairs [(an1 , In1), · · · , (ank
, Ink

)] with 1 ≤
n1 ≤ · · · ≤ nk ≤ m, where ani

∈ A and Ini
= [lowni

, highni
] ⊆ R(ani

), 1 ≤ i ≤ k.

This operation returns every GUID g such that (lown1 ≤ g.an1 ≤ highn1) ∧ · · · ∧
(lownk

≤ g.ank
≤ highnk

). We use the notation s.Ini
to represent the range Ini

of

search s. ii) An update that is represented as a 2-tuple consisting of a GUID and

a k-dimensional vector of attribute-value pairs 〈g, [(an1 , vn1), · · · , (ank
, vnk

)]〉 with

1 ≤ n1 ≤ · · · ≤ nk ≤ m, where ani
∈ A and vni

∈ R(ani
), 1 ≤ i ≤ k. This operation

assigns g.ani
← vni

for every 1 ≤ i ≤ k.
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We define a region as a value-space that is represented as anm-dimensional vector

of attribute-range pairs [(a1, I1), · · · , (am, Im)], where ai ∈ A and Ii = [li, hi) ⊆
R(ai), with 1 ≤ i ≤ m. We use the notation r.Ii to represent the range Ii of region

r. A region is a partition of the global value-space H(A). Therefore, the intersection

of any two regions is empty and the generalized union of regions is H(A). Next we

give an example of regions:

• H(A) : [(a1, [0, 1)), (a2, [0, 1)), (a3, [0, 1))]

• Regions: R = {r1, r2, r3, r4}, where

r1 = [(a1, [0, 0.35)), (a2, [0, 1)), (a3, [0, 1))]

r2 = [(a1, [0.35, 1)), (a2, [0, 0.35)), (a3, [0, 1))]

r3 = [(a1, [0.35, 1)), (a2, [0.35, 1)), (a3, [0, 0.5))]

r4 = [(a1, [0.35, 1)), (a2, [0.35, 1)), (a3, [0.5, 1))]

The attributes (or equivalently, the elements of A) can be seen as the axes of the

global value-space. The Figures 3.1 and 3.2 show respectively the global value space

before and after being partitioned into the four regions from the previous example.

Figure 3.1: Global value-space before being partitioned: there is only one region
that covers the entire value space

3.2 Touches

In this section we define what we call touches. We first define update touches, and

then we define search touches. In the end we illustrate the idea with a comprehensive

example.
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Figure 3.2: Global value-space after being partitioned into 4 regions: r1, r2, r3 and
r4

3.2.1 Update touches

Let r denote a region (i.e., an m-dimensional value space).

Case 1)

Let g denote a GUID that has not yet been assigned to any record.

Let u denote an update operation that sets the attributes {an1 , · · · , ank
} of g, with

1 ≤ n1 ≤ · · · ≤ nk ≤ m, such that every g.ani
∈ r.Ini

, with 1 ≤ i ≤ k.

In such case, we say that u touches r.

Case 2)

Let g denote a GUID such that for every 1 ≤ i ≤ m, g.ai ∈ r.Ii.
Let u denote an update operation that modifies the attributes {an1 , · · · , ank

} of g,

with 1 ≤ n1 ≤ · · · ≤ nk ≤ m.

Case 2.1)

Suppose u modifies the attributes of g such that it is still true that for every 1 ≤
i ≤ m, g.ai ∈ r.Ii.
In such case, we say that u touches r.

Case 2.2)

Suppose u modifies the attributes of g such that there exists 1 ≤ i ≤ m, g.ai /∈ r.Ii.
Then there must exist a region r′ such that for every 1 ≤ i ≤ m, g.ai ∈ r′.Ii.
In such case, we say that u touches r and r′.

28



3.2.2 Search touches

Let R denote the set of all regions.

Let s denote a search operation.

Let R′ ⊆ R denote a subset of regions such that for all r ∈ R′ it is true that

s.Ini
∩ r.Ini

6= ∅, for every 1 ≤ i ≤ k.

Then we define a set Gr of GUIDs, for every r ∈ R′, such that for all g ∈ Gr it is

true that g.ani
∈ s.Ini

∩ r.Ini
, for every 1 ≤ i ≤ k. (Note that Gr can be an empty

set)

For every r ∈ R′, we say that the cardinality of Gr is the number of touches on r

because of s.

3.2.3 Example

Assume the global value-space is divided into these 3 regions:

• r1 = [(a1, [0, 0.33)), (a2, [0, 1]), (a3, [0, 1])]

• r2 = [(a1, [0.33, 0.66)), (a2, [0, 1]), (a3, [0, 1])]

• r3 = [(a1, [0.66, 1)), (a2, [0, 1]), (a3, [0, 1])]

We will organize this example into epochs. At each epoch, one operation will be

issued.

Epoch 1: Assume that an update operation is issued:

〈GUID1, [(a1, 0.78), (a2, 0.36), (a3, 0.91)]〉

This update touches the region r3 (because the value for each attribute is inside

the respective range of this region) and, thus, the GUID1 is placed in this region.

Thus,

r1 r2 r3

GUIDs {} {} {1}
# touches 0 0 1

Epoch 2: An update operation is issued:

〈GUID2, [(a1, 0.15), (a2, 0.43), (a3, 0.02)]〉

This update touches the region r1 and, thus, the GUID2 is placed in this region.

Thus,
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r1 r2 r3

GUIDs {2} {} {1}
# touches 1 0 1

Epoch 3: An update operation is issued:

〈GUID3, [(a1, 0.49), (a2, 0.22), (a3, 0.1)]〉

This update touches the region r2 and, thus, the GUID3 is placed in this region.

Thus,

r1 r2 r3

GUIDs {2} {3} {1}
# touches 1 1 1

Epoch 4: An update operation is issued:

〈GUID4, [(a1, 0.24), (a2, 0.9), (a3, 0.37)]〉

This update touches the region r1 and, thus, the GUID4 is placed in this region.

Thus,

r1 r2 r3

GUIDs {2, 4} {3} {1}
# touches 2 1 1

Epoch 5: An update operation is issued:

〈GUID5, [(a1, 0.75), (a2, 0.53), (a3, 0.93)]〉

This update touches the region r3 and, thus, the GUID5 is placed in this region.

Thus,

r1 r2 r3

GUIDs {2, 4} {3} {1, 5}
# touches 2 1 2

Epoch 6: An update operation is issued:

〈GUID6, [(a1, 0.42), (a2, 0.12), (a3, 0.33)]〉

This update touches the region r2 and, thus, the GUID6 is placed in this region.

Thus,
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r1 r2 r3

GUIDs {2, 4} {3, 6} {1, 5}
# touches 2 2 2

Epoch 7: An update operation is issued:

〈GUID7, [(a1, 0.13), (a2, 0.39), (a3, 0.07)]〉

This update touches the region r1 and, thus, the GUID7 is placed in this region.

Thus,

r1 r2 r3

GUIDs {2, 4, 7} {3, 6} {1, 5}
# touches 3 2 2

Epoch 8: An update operation is issued:

〈GUID8, [(a1, 0.96), (a2, 0.18), (a3, 0.65)]〉

This update touches the region r3 and, thus, the GUID8 is placed in this region.

Thus,

r1 r2 r3

GUIDs {2, 4, 7} {3, 6} {1, 5, 8}
# touches 3 2 3

Epoch 9: An update operation is issued:

〈GUID2, [(a1, 0.85), (a2, 0.62), (a3, 0.96)]〉

This update touches the regions r1 and r3. It touches r1 because it is where

GUID2 was previously in (it needs to touch this region in order to update this

GUID). It also touches r3 because its where GUID2 is moving to.

Thus,

r1 r2 r3

GUIDs {4, 7} {3, 6} {1, 2, 5, 8}
# touches 4 2 4

Epoch 10: An update operation is issued:

〈GUID6, [(a1, 0.34), (a2, 0.55), (a3, 0.28)]〉

This update touches only the region r2, as GUID6 stays in this region after being

updated.

Thus,
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r1 r2 r3

GUIDs {4, 7} {3, 6} {1, 2, 5, 8}
# touches 4 3 4

Epoch 11: An update operation is issued:

〈GUID1, [(a1, 0.18), (a2, 0.51), (a3, 0.17)]〉

This update touches the regions r1 and r3. Also, GUID1 goes to r1.

Thus,

r1 r2 r3

GUIDs {1, 4, 7} {3, 6} {2, 5, 8}
# touches 5 3 5

Epoch 12: An update operation is issued:

〈GUID3, [(a1, 0.65), (a2, 0.66), (a3, 0.92)]〉

This update touches only the region r2, and GUID3 does not move.

Thus,

r1 r2 r3

GUIDs {1, 4, 7} {3, 6} {2, 5, 8}
# touches 5 4 5

Epoch 13: An update operation is issued:

〈GUID9, [(a1, 0.55), (a2, 0.41), (a3, 0.94)]〉

This update touches the region r2 and, thus, the GUID9 is placed in this region.

Thus,

r1 r2 r3

GUIDs {1, 4, 7} {3, 6, 9} {2, 5, 8}
# touches 5 5 5

Epoch 14: An update operation is issued:

〈GUID10, [(a1, 0.41), (a2, 0.61), (a3, 0.31)]〉

This update touches the region r2 and, thus, the GUID10 is placed in this region.

Thus,
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r1 r2 r3

GUIDs {1, 4, 7} {3, 6, 9, 10} {2, 5, 8}
# touches 5 6 5

Next we show the GUIDs after the update operations:

a1 a2 a3

GUID1 0.18 0.51 0.17

GUID2 0.85 0.62 0.96

GUID3 0.65 0.66 0.92

GUID4 0.24 0.9 0.37

GUID5 0.75 0.53 0.93

GUID6 0.34 0.55 0.28

GUID7 0.13 0.39 0.07

GUID8 0.96 0.18 0.65

GUID9 0.55 0.41 0.94

GUID10 0.41 0.61 0.31

Epoch 15: A search operation is issued:

[(a1, [0.14, 0.42]), (a2, [0.5, 1]), (a3, [0, 0.4])]

This search touches the regions r1 and r2 (because the ranges of these regions

overlap the range of this search for all attributes), and the GUIDs 1, 4, 6 and 10

(because these GUIDs satisfy the range of this search). The search touches each

region for each GUID that meets the search criteria (r1 and r2 are touched twice

each).

Thus,

r1 r2 r3

GUIDs {1, 4, 7} {3, 6, 9, 10} {2, 5, 8}
# touches 7 8 5

Epoch 16: A search operation is issued:

[(a1, [0.55, 0.9]), (a2, [0.4, 0.7]), (a3, [0.9, 1])]

This search touches the regions r2 and r3, and the GUIDs 2, 3, 5 and 9. Region

r2 and r3 are touched twice each.

Thus,

r1 r2 r3

GUIDs {1, 4, 7} {3, 6, 9, 10} {2, 5, 8}
# touches 7 10 7
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Epoch 17: A search operation is issued:

[(a1, [0.3, 0.7]), (a2, [0.41, 0.66]), (a3, [0.28, 0.94])]

This search touches only region r2, but touches all its GUIDs (3, 6, 9 and 10).

Region r2 is touched 4 times.

Thus,

r1 r2 r3

GUIDs {1, 4, 7} {3, 6, 9, 10} {2, 5, 8}
# touches 7 14 7

Region r2 was touched 14 times, while region r1 and r3 were touched only 7 times

each. As one can see in this example, it is clear the system’s unbalance. The aim of

our heuristic is to re-split the regions in such a way it reaches a better balance for

future operations.

A new configuration for these regions could be:

• r1 = [(a1, [0, 0.35)), (a2, [0, 1]), (a3, [0, 1])]

• r2 = [(a1, [0.35, 0.64)), (a2, [0, 1]), (a3, [0, 1])]

• r3 = [(a1, [0.64, 1)), (a2, [0, 1]), (a3, [0, 1])]

3.3 Our heuristic

Let n denote the size of the global set of machines. We partition the global value-

space H(A) into
√
n mutually exclusive and exhaustive (MEE) regions. Each region

is assigned to
√
n machines and, thus, it is replicated

√
n times7. Each update

touches at most 2
√
n machines (

√
n machines assigned to the previous region and

√
n machines assigned to the current region). A search never touches more than

√
n

machines, as a subset of
√
n machines already covers the entire value space. The

Figure 3.3 shows the global value space partitioned into three regions (partitions

P1, P2, and P3), with each region assigned to a different subset of three machines.

We partition the global value-space H(A) regarding a single attribute axis. We

look for
√
n − 1 quantiles (points) on that attribute axis; then we divide H(A) at

those points, creating
√
n partitions (regions). In order to find the quantiles, we

compute the touches generated by each operation; then we utilize a variation of the

Greenwald-Khanna algorithm with a sliding window to find the quantiles, using the

7We will use
√
n regions and replicate each region

√
n times because the authors of CNS prove

in their article that there is no way of reaching linear scalability and the closest one can achieve is
sublinear scalability of

√
n.
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Figure 3.3: Global value space partitioned into 3 regions (partitions P1, P2, and
P3) and assigned to a set of 9 machines

touches as input. Next we give an example on how our heuristic handles operations

as input.

Say we have just seen three update operations:

• {”GUID” : ”android-450e0415e1fb32b1”, ”Latitude” : 55.859129}

• {”GUID” : ”android-1dbf1ed7cd014c85”, ”Latitude” : 45.233800}

• {”GUID” : ”android-e2ae1c3e2914c9ce”, ”Latitude” : 37.428524}

The input to the Greenwald-Khanna algorithm would be 55.859129, 45.233800

and 37.428524. We essentially convert a stream of operations into a stream of touches

(i.e. touches at those points or equivalently at the regions associated with those

points). Then we partition the global value-space so that touches are distributed

among regions in a balanced way. This way we also ensure that touches are fairly

distributed among machines.

3.4 The Algorithm

At every instant of time an operation is issued. Each operation is then converted

into an observation so that it can be an input to the GK algorithm. This is what

the Algorithms 1 and 2 do.

The Algorithm 1 receives an operation as its input. It then calls the Algorithm 2

in order to create an array of observations from that operation. These observations

are essentially the points that were touched by the operation. Each observation is

then inserted into the GK-Window algorithm so that it can create its summary,

which will help us later on finding the quantiles points that are used to partition

the value-space into regions.

The Algorithm 2 also receives an operation as its input. It firstly creates an

empty array of observations. Then, it checks whether the operation is an update

or a search. If its an update, it checks the GUID’s previous value associated to a

certain axis (recall that we are going to partition the value-space regarding a single
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Algorithm 1 insertGK(Operation op)

1: observations← convertTouchesIntoGKObservations(op)
2: for all obs ∈ observations do
3: greenwaldKhannaWindow(obs) . Inserts the observation into the

GK-Window algorithm, which then updates its list of blocks (summaries)
4: end for

attribute), and the new value (also recall that each update has a GUID associated

with it and that it updates the values of its GUID). If this GUID is not new, it

means that it has a previous value for that attribute axis. It also means that this

update touches the point represented by this value. Thus, we add this value to the

observations array. Because updating the values of a GUID might mean that this

GUID is moving from a point to another, we update the number of GUIDs at the

former point by decreasing it by one (we maintain a map or dictionary to keep this

kind of information). Also, if the new value (for that axis) is actually a new value,

then we add this value to the array of observations. We now have to update the

number of GUIDs at the point represented by this new value - we do it by increasing

it by one. On the other hand, if the operation is a search, we iterate over the points

with GUIDs located at it. For each of these points, we check whether it is in the

search’s range. If it is inside the range, the number of GUIDs at this point is the

number of touches at it. This is because the search must return all the GUIDs that

meet its criteria. Thus, we add this point to the array of observations the amount

of times it was touched.

By this time, GK-Window algorithm has already created a list of blocks or

summaries that enables us to compute the quantile points at any moment, should

we need to partition or repartition the value-space.

The Algorithm 3 is invoked to do the partitioning or repartitioning. It firstly

creates an empty array of regions. Then, it calls the Algorithm 4 in order to have a

list of quantiles. Knowing the quantiles, it creates each one of the regions by using

the quantiles to define the region’s range. Each newly created region is then added

to the array of regions. Finally, it returns the array of regions.

The Algorithm 4 is invoked to find the quantile points used to partition or

repartition the value-space. It firstly creates a map (or equivalently, a dictionary)

of quantiles where the key is the phi, and the value is the quantile itself. For each

value of phi, which is i/number of regions with 1 ≤ i ≤ number of regions − 1, it

invokes the GK-Window algorithm to calculate the quantile associated to that phi.

In order to calculate the quantile, GK-Window combines its block summaries into a

single summary. Then, it uses the original GK algorithm to find the quantile from

this combined summary. After calculating the quantile, our algorithm adds it to the

map of quantiles. In the end, it returns this map of quantiles.
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Algorithm 2 convertTouchesIntoGKObservations(Operation op)

1: observations← [ ]
2: if op is UPDATE then
3: guid old value← op.getGUIDPreviousValue(axis) . Gets the GUID’s

previous value associated to axis
4: guid new value← op.getGUIDNewValue(axis) . Gets the GUID’s new

value associated to axis
5: if guid old value 6= −1 then . If it is not a new guid
6: observations.add(guid old value) . Update touches the point

guid old value
7: previous count← guidsPerPoint.get(guid old value) . Checks the

number of guids at that point
8: new count← previous count - 1 . Decreases that number
9: guidsPerPoint.put(guid old value, new count) . Updates the number of

guids at that point
10: end if
11: if guid old value 6= guid new value then . If the update modifies this

attribute value
12: observations.add(guid new value) . then it touches the point

guid new value
13: end if
14: previous count← guidsPerPoint.get(guid new value) . Checks the number

of guids at that point
15: guidsPerPoint.put(guid old value, previous count+1) . Updates the number

of guids at that point
16: else . If op is SEARCH
17: for all point in guidsPerPoint with guids count > 0 do
18: if point ≥ op.search low range AND point ≤ op.search high range then

. If this point is inside the search’s range
19: touchesAtThisPoint← guidsPerPoint(point) . then the number of

guids at this point is the number of touches at this point
20: i← 0
21: while i < touchesAtThisPoint do
22: observations.add(point) . The point is observed the amount of

times it was touched
23: i + +
24: end while
25: end if
26: end for
27: end if
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Algorithm 3 partitionGK()

1: regions← [ ]
2: r← 1
3: low← 0
4: high← 1
5: quantiles← findQuantiles()
6: for all quantile in quantiles do
7: new region← createRegion(“Region #”+r) . Creates new region
8: new region.setRange(axis, low, quantile) . Sets its range to [low, quantile)

for axis
9: regions.add(new region) . Adds this new region to regions

10: r + +
11: low← quantile
12: end for
13: new region← createRegion(“Region #”+r)
14: new region.setRange(axis, low, high)
15: regions.add(new region)
16: return regions

Algorithm 4 findQuantiles

1: quantiles map← { }
2: number of regions←

√
number of machines

3: i← 1
4: while i ≤ number of regions− 1 do
5: phi← i/number of regions
6: quantile← GKWindowQuantile(phi) . GK-Window algorithm finds

quantile given phi
7: quantiles map.put(phi, quantile)
8: i + +
9: end while

10: return quantiles map

38



Chapter 4

Experiments and Results

4.1 Experiments

For the experiments we implemented our own simulator in JAVA. We simulated

64 machines with 24-attribute GUIDs distributed across them. We generated 213

GUIDs and 218 operations for each experiment, for a total of 120 experiments. Let

RHO be the fraction of search queries among all operations. We performed 30

experiments for each one of the following values for RHO: 0, 0.25, 0.5 and 0.75.

Let A1, A2, · · · , A24 be random variables that denote the values that each at-

tribute of an update operation can assume. Let A1,low, A1,high, A2,low, A2,high, · · · ,
A24,low and A24,high be random variables that denote the values for low and high

range that each attribute of a search operation can assume.

We divided each experiment into 4 epochs and for each epoch we randomly pick

a distribution (among uniform, normal and exponential distributions) for A1, A2,

· · · , A24, A1,low, A1,high, A2,low, A2,high, · · · , A24,low and A24,high. We also set the

distributions so that A1,high follows same distribution as A1,low, A2,high follows same

distribution as A2,low, and so on. That is, the random variables for the range of

a single attribute follow the same distribution. The parameters for the random

distributions are also randomly set. Having set the distributions, we generate the

operations.

We generate an update operation by associating a GUID to it and generating a

value for each attribute from the respective random variable. In order to generate a

search query, we firstly randomly set the number of attributes it will define. Once we

know the number of attributes this search will define, we randomly pick attributes

from the set of attributes and generate a value for each attribute range from the

respective random variable. Picking random attributes for a search means that not

every search query will define the attribute our heuristic is using to partition the

value-space. In fact, many searches will not define this attribute. It is important
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for us because it enables us to validate that our heuristic works even when there are

operations that do not define the attribute it picked to perform the partitioning.

We simulated 6 different heuristics for space partitioning: CNS (a heuristic pro-

posed by the authors of CNS), Quantiles (a version of our heuristic that finds the

quantiles without using the GK algorithm), Quantiles+GK (our heuristic that uses

a sliding-window version of GK algorithm), Replicate-At-All, Query-All and Hyper-

Dex.

We implemented a different version of our heuristic which calculates the real

quantiles, without making use of the GK algorithm. The reason for that is we

want to compare these versions of our heuristic and be able to see whether the

GK algorithm makes the heuristic lose performance as this algorithm accepts a

margin of error to create its summary. One may ask why not always use the version

that calculates real quantiles as it does not work with a margin of error. We use

summaries for a reason. We do not want to have to go over the whole stream of

data, especially if it is endless, every time we need to calculate a quantile.

The Replicate-At-All heuristic replicates the entire global value space for all ma-

chines so that each machines has the same content. The Query-All heuristic uses a

consistent hashing algorithm to calculate which machine is associated to each GUID.

The HyperDex heuristic is a well known solution for the problem of subspace parti-

tioning. It divides the global value space into multiple lower-dimensional subspaces.

Each of these subspaces uses a subset of attributes as their axes. It then divides each

subspace into non-overlapping regions and assigns a machine to each region. When-

ever there is a search, it picks the subspace with the subset of attributes that best

match its attributes in order to contact the fewest machines. We implemented our

own HyperDex heuristic: it divides the 24-attribute hyperspace into 8 3-attribute

hyperspaces with 8 regions each. Each region is then assigned to 1 machine. Our

heuristics and CNS divide the global value-space in the same way (into
√
n disjoint

regions, each one assigned to
√
n machines, where n = total number of machines),

but we use quantiles to create regions and CNS uses a weighted JFI function (see

section 4.1.1).

In each experiment, initially all heuristics generate their own region configura-

tion for the global value-space. As operations arrive, the demand aware heuristics

(Quantiles, Quantiles+GK and CNS that take into account the operations’ distri-

butions to create regions) periodically perform repartitionings in order to reach a

better balance of touches on regions. It is particularly useful as in each epoch the

distributions change.
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4.1.1 Metrics

JFI based on touches

This metric captures the notion of how well balanced the regions are in terms of

touches. It returns a value between 0 and 1. The closer to 1, the better the perfor-

mance of the heuristic we are evaluating. The closer to 0, the worse the performance

of this heuristic. We use a weighted function based on the original Jain’s Fairness

Index (JFI)[6] to calculate this metric.

wJFI = ρ · JFIsearches + (1− ρ) · JFIupdates, where:

JFIupdates =
(
∑n

r=1 ur)
2

n ·
∑n

r=1 u
2
r

, with ur = update touches on region r
and n = number of regions.

JFIsearches =
(
∑n

r=1 sr)
2

n ·
∑n

r=1 s
2
r

, with sr = search touches on region r
and n = number of regions.

RHO = ρ = fraction of searches.

CNS works with a variation of this weighted function, but instead of working

with touches of update and search operations per region, it uses the total number

of update and search operations per region.

JFI based on the number of GUIDs per region

This metric captures the notion of how well balanced the regions are in terms of

number of GUIDs per region. The JFI value is calculated based on the following

function:

JFI#GUIDs =
(
∑n

r=1 gr)
2

n ·
∑n

r=1 g
2
r

, with gr = number of guids on region r
and n = number of regions.

Number of Messages per Machine

This metric captures the notion of load (i.e. number of touches) on each machine

represented by the number of messages sent to each machine. For CNS and our

heuristic, an update imposes the sending of 1 message to at least
√
n machines

and at most 2
√
n machines (in case this update moves a GUID from one region to

another), where n is the total number of machines. A search imposes the sending

of 1 message to any machine associated to each touched region. For HyperDex, an

update touches up to 2 machines per existing subspace, which means it imposes

the sending of 1 message to at least 1 machine per existing subspace and at most
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2 machines (per existing subspace). This is because it touches up to 2 regions per

subspace (depending on whether it moves a GUID from one region to another).

A search touches only one subspace and will impose the sending of 1 message to

1 machine associated to each touched region. For Query-All, an update touches

only one machine, which means it imposes the sending of 1 message to 1 machine.

A search touches all the machines and thus it imposes the sending of 1 message to

each existing machine. For Replicate-At-All, an update touches all the machines and

thus it imposes the sending of 1 message to each existing machine. A search touches

only one machine, which means it imposes the sending of 1 message to 1 machine.

We also consider repartitioning messages. These messages are sent to machines in

order to move its content (GUIDs) to other machines because of a repartitioning.

For simplicity’s sake, we consider that a group of contents leaving or coming to a

machine imposes one message to that machine.

At every 30 experiments for a value of RHO we generated 3 graphs: JFI (based

on touches per region) per Repartitioning8, JFI (based on GUIDs per region) per

Repartitioning, and No. of Messages per Machine. Each point in these graphs cor-

responds to the mean of the values for that same point in each of the 30 experiments.

In the end of the 120 experiments, we generated 3 graphs: JFI (based on touches

per region) per RHO, JFI (based on GUIDs per region) per RHO, and No. of Mes-

sages per RHO. Each point (RHO) in these graphs corresponds to the mean of the

values in the previous graphs associated to this RHO.

4.2 Results

The graphs 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 show the JFI over time as more op-

erations arrive to the system and repartitionings are performed. Only the demand

aware heuristics (heuristics I, II and III; or equivalently CNS, Quantiles, Quan-

tiles+GK ) perform repartitioning, as they are the only ones that take into account

the operations’ distributions to perform the partitioning. We also decided to per-

form repartitioning with CNS heuristic (heuristic I), even though it takes too long

to perform each one of the repartitionings, in order to show that performing repar-

titioning improves the balance of regions. The valleys in these graphs are because

of the changes in the distributions that occur in each epoch (regions that were cre-

ated based on the previous distribution of touches are not touched fairly anymore

8Each experiment is divided in 4 epochs. In each of these epochs, operations are generated
following a different distribution. Repartitioning is performed periodically with time. Right be-
fore a repartitioning, we calculate the JFI value in order to check how fair regions are touched.
The x-axis here is repartitionings exactly because we are calculating the metric right before each
repartitioning.
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Figure 4.1: JFI (touches) X Repartition-
ing (RHO 0)

Figure 4.2: JFI (GUIDs) X Repartition-
ing (RHO 0)

because this distribution changed). As repartitionings are performed, the results are

improved.

Figure 4.3: JFI (touches) X Repartition-
ing (RHO 0.25)

Figure 4.4: JFI (GUIDs) X Repartition-
ing (RHO 0.25)

The CNS’ performance is worse when RHO = 0.75 (when there are more

searches). This is due to the metric it adopts to perform the partitioning, which

only takes into account the number of operations processed in each region. Thus,

a search is only counted one time in a region regardless of the amount of GUIDs it

contains. We did not use the metric of touches for this heuristic as it is not adopted

by the authors of the article. Moreover, it would increase the complexity of the

partitioning as it would now have to take into account the GUIDs (it would have

to calculate a touches-based JFI that is more costly than the one for the number of

operations in each region and would have to check which guids are in each one of

the possible new regions at each iteration of this heuristic).

The replicate-at-all heuristic curve stays steady at 1 as update operations touch
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Figure 4.5: JFI (touches) X Repartition-
ing (RHO 0.5)

Figure 4.6: JFI (GUIDs) X Repartition-
ing (RHO 0.5)

all the machines and search operations are distributed uniformly among machines.

The query-all heuristic curve also stays steady near 1 as update operations touches

uniformly the machines (it implements consistent hashing) and search operations

touch all the machines. In the end all the machines have roughly the same amount

of touches for these two heuristics.

Figure 4.7: JFI (touches) X Repartition-
ing (RHO 0.75)

Figure 4.8: JFI (GUIDs) X Repartition-
ing (RHO 0.75)

Because the HyperDex heuristic is not a demand aware heuristic, it does not

make sense to perform repartitioning based on the operations’ distributions. Thus,

it stays the whole experiment with its initial configuration of regions. It shows some

improvement in its results for a time whenever the distributions change. This is

because touches are usually concentrated in some regions. When there is a dis-

tribution change, touches are concentrated in other regions. Thus, it results in a

temporary fairness in terms of touches per region. However, as more operations ar-

rive, this unbalance reappears as touches keep concentrated in some regions because

44



this heuristic does not perform repartitioning.

Figure 4.9: No. Messages X Machine
(RHO 0)

Figure 4.10: No. Messages X Machine
(RHO 0.25)

We observed that the curves for GUIDs and for touches follow the same pattern

for all heuristics. That is, the metrics JFI of touches per region and JFI of GUIDs

per region both capture the notion of how well balanced the regions are. If we

take for instance our heuristic, the idea of partitioning (and repartitioning) is to

uniformize touches among regions, even though the operations’ distributions are

not uniform. In this sense, the tendency is that regions not only have a fair amount

of touches, but also of GUIDs. Recall that GUIDs are distributed among regions by

update operations and that the number of GUIDs in a region influence the number

of touches in that region because of a search.

Figure 4.11: No. Messages X Machine
(RHO 0.5)

Figure 4.12: No. Messages X Machine
(RHO 0.75)

The graphs 4.9, 4.10, 4.11 and 4.12 show the number of messages sent to each

machine. The replicate-at-all heuristic imposes a high number of messages to be

sent to its machines when RHO = 0 as every update operation must touch all the
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machines. As RHO increases, this number of messages decreases as a search only

needs to touch one of the machines. The Query-all heuristic will impose a higher

number of messages to be sent to its machines as RHO increases. This is because

a search must touch all the machines. CNS and our heuristic have almost a steady

curve regarding the number of messages sent to its machines. This is because they

partition in such a way regions are touched fairly (and thus, its machines as well).

The HyperDex curve shows that some regions are much more touched than others.

This is because it does not partition taking into account the operations’ distributions

in order to have a fair number of touches per region.

Figure 4.13: JFI (touches) X RHO

The graphs 4.13 and 4.14 show the average JFI of touches and GUIDs per RHO

value. The demand aware heuristics (I, II and III) presented a good result with their

curves at 0.9. The query all and replicate all heuristics presented the best results

for these graphs (for the reason we explained earlier in this chapter) but as we will

see in the next graph their results are not so good.

The graph 4.15 show the average number of messages sent to each machine per

RHO value. The replicate-at-all heuristic initially presents a high average number

of messages per machine but as RHO increases it rapidly decreases. We observe

the opposite behavior with the query-all heuristic. As RHO increases, the average

number of messages sent to each machine rapidly increases. It happens because

when RHO = 0, i.e., when there are only update operations, messages are sent to

all machines (for every update operation) for replicate-at-all heuristic and messages

are sent uniformly to each machine (one message per update operation) for query-all

heuristic. When RHO increases, the number of search operations also increases and

the number of update decreases. Recall that a search operation imposes touches

on only one machine for replicate-at-all heuristic and touches on every machine
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Figure 4.14: JFI (GUIDs) X RHO

for query-all heuristic. So, for replicate-at-all heuristic one message is sent to one

machine and for query-all heuristic messages are sent to all machines.

Figure 4.15: No. Messages X RHO

Our heuristic, CNS and HyperDex presented very close results. When RHO = 0

we only have updates, and update operations touch all the machines associated to

each touched region. One update can touch up to 2 regions (the one where the

content was stored and the new one where the content will now be stored). Which

means each update operation can impose messages sent to all machines associated

to two distinct regions. When RHO increases and we start dealing with searches

(the number of updates are decreasing), the average number of messages has a slight

fall as a message is sent to only one machine per region touched by that operation.

For HyperDex, an update touches up to 2 regions per existing hyperspace. Thus,

each update imposes the sending of 1 message to at most 2 machines per existing

47



hyperspace. A search touches up to all the regions of a single hyperspace. Thus, it

imposes the sending of 1 message to at most one machine per touched region in a

single hyperspace. In the case of this experiment, it means that an update imposes

the sending of 1 message to at most 16 machines (same number for our heuristic,

which sends 1 message to at most 2
√

64 machines). A search imposes the sending

of 1 message to at most 8 machines (same number for our heuristic, which sends 1

message to at most
√

64 machines). As we can see, this metric captures the amount

of touches per machine.
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Chapter 5

Conclusion

There are many solutions for achieving horizontal scalability in key-value data stores.

We reviewed four solutions for this matter. Replicate-at-all replicates the entire

key-value store at all machines. On the one hand, searches only need to touch

one machine. On the other hand, updates need to be propagated to all machines.

Moreover, as the key-value data store grows considerably in size, there is no other

way but to apply vertical scaling. Query-all uses consistent hashing to uniquely

and evenly map keys to machines. On the one hand, updates only need to touch

one machine. On the other hand, searches need to touch all the machines. Hy-

perDex uses subspace partitioning to create multiple lower-dimensional subspaces

from a higher-dimensional space. A search never touches more than the amount

of machines assigned to a subspace. An update touches up to two machines per

existing subspace. However, this solution does not take into account the operations’

distributions and, thus, some machines may be more touched than others. CNS use

value-space partitioning to partition the value-space into regions. A search touches

up to
√

#machines machines. An update touches up to 2 ·
√

#machines machines.

This solution takes into account the operations’ distributions to create regions that

are touched fairly. However, it does not consider the case that these distributions

might change, which undermines its aim to create regions that are touched fairly.

In this sense, this work contributed in three ways. Firstly, we contributed by cre-

ating a demand-aware heuristic for value-space partitioning and repartitioning of a

key-value store. It is a demand-aware heuristic because it partitions the value-space

into mutually exclusive and exhaustive regions taking into account the operations’

distributions so that regions are contacted fairly. Sencondly, we contributed by

applying the Greenwald-Khanna algorithm (a data stream algorithm) in the parti-

tioning process of our heuristic. It always keep an up-to-date summary for calcu-

lating the quantile points, which are the points at which we divide the value-space

into regions. This approach enables a much less compute-intensive partitioning (as

opposed to the CNS solution) and repartitioning. The fact that our heuristic is
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designed to perform repartitioning (as opposed to other heuristics), enables us to

create regions that are contacted fairly even though the operations’ distributions

change from time to time, while being much less compute intensive. Finally, our

last contribution is the evaluation of our heuristic. We executed experiments vary-

ing the fraction of searches and updates, as well as their distributions, in order to

evaluate the performance of our heuristic and compare it with other solutions like

replicate-at-all, query-all, HyperDex and CNS.

The results show that our heuristic creates regions that are always contacted

fairly, while not imposing a higher number of messages to be sent to the servers

(because of update and search operations, and repartitioning messages) as the frac-

tion of searches and updates varies, as well as their distributions. Our heuristic had

superior performance than that of HyperDex in terms of fairness among machines,

and similar performance than that of CNS without having to make use of its high

compute-intensive way of partitioning. It also did not lose performance even having

accepted a margin of error in the GK algorithm to create the summary. Moreover,

the fact there are operations that do not define the attribute for which we partition

the value-space, validates that our heuristic works well even in scenarios like this.

For a future work, one may want to extend this work by upgrading our heuristic

to switch the partitioning of an attribute axis to another at any moment by creating,

for instance, a GK summary in parallel that enables us to find quantile points on

another attribute axis.
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Appendix A

Algumas Demonstrações
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