

UNDERSTANDING FACTORS AND PRACTICES OF SOFTWARE SECURITY AND

PERFORMANCE VERIFICATION

Victor Vidigal Ribeiro

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia de Sistemas

e Computação, COPPE, da Universidade

Federal do Rio de Janeiro, como parte dos

requisitos necessários à obtenção do título de

Doutor em Engenharia de Sistemas e

Computação.

Orientadores: Guilherme Horta Travassos

Daniela Soares Cruzes

Rio de Janeiro

Setembro de 2019

UNDERSTANDING FACTORS AND PRACTICES OF SOFTWARE SECURITY AND

PERFORMANCE VERIFICATION

Victor Vidigal Ribeiro

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS

NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM

ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

__

Prof. Guilherme Horta Travassos, D.Sc.

__

Profa. Daniela Soares Cruzes, D.Sc.

__

Profa. Claudia Maria Lima Werner, D.Sc.

__

Prof. Toacy Cavalcante de Oliveira, D.Sc.

__

Prof. Marcos Kalinowski, D.Sc.

__

Prof. Raphael Carlos Santos Machado, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

SETEMBRO DE 2019

iii

Ribeiro, Victor Vidigal

Understanding factors and practices of software security

and performance verification / Victor Vidigal Ribeiro. – Rio de

Janeiro: UFRJ/COPPE, 2019.

XVII, 245 p.: il.; 29,7 cm.

Orientadores: Guilherme Horta Travassos

Daniela Soares Cruzes

Tese (doutorado) – UFRJ/ COPPE/ Programa de

Engenharia de Sistemas e Computação, 2019.

 Referências Bibliográficas: p. 146-158.

1. Verificação de software. 2. Verificação de segurança. 3.

Verificação de desempenho. I. Travassos, Guilherme Horta, et al.

II. Universidade Federal do Rio de Janeiro, COPPE, Programa de

Engenharia de Sistemas e Computação. III. Título.

iv

À minha esposa Thalita e minha filha Lara.

v

AGRADECIMENTOS

Entendo o doutorado como uma longa jornada que nos permite desfrutar de

sensações em intensidades extremas que sem ele, talvez, não seriam possíveis. Ao

final desta jornada o resultado é evolução. Uma pessoa que passa por um doutorado

aprende a pensar e a utilizar sua capacidade intelectual como ferramenta para

qualquer situação de sua vida.

Contudo, este longo caminho não é percorrido de forma solitária, mas acompanhado

pelas pessoas que nos cercam. Por isso, sou eternamente grato a absolutamente

todos que passaram por mim vida durante esses anos. Algumas pessoas são

especiais, pois acompanharam esta jornada de perto. Assim, inicio agradecendo meus

orientadores.

Ao meu Orientador, Professor Guilherme H. Travassos, que acompanha minha

jornada acadêmica desde o mestrado. Agradeço por você representar o genuíno

significado da palavra Orientador. Você fez a diferença em minha vida, me

transformando em uma versão evoluída de mim mesmo. Agradeço por compartilhar

sua visão sobre Engenharia de software com tanta dedicação e paciência. Agradeço

também por seus ensinamentos que ultrapassam os limites da pesquisa e atingiram

todas as áreas da minha vida. Você será sempre minha referência e fonte de

inspiração.

À minha orientadora Daniela S. Cruzes, pelos conselhos relacionados à pesquisa e

motivações pessoais durante os momentos de baixa autoestima. Agradeço por ter

viabilizado minha viagem à Noruega, experiência extremamente importante para

fortalecer minha formação.

À Profa. Claudia M. L. Werner, por participar da minha banca de defesa de doutorado

e pelo conhecimento que pude adquirir nas disciplinas disponibilizadas por ela:

reutilização de software (2010) e tópicos especiais em engenharia de software IV

(2013).

Agradeço ao professor Toacy Cavalcante pela disponibilidade em participar de minha

banca de doutorado, pelas importantes contribuições durante minha qualificação e

pela troca de experiências durante a disciplina de tópicos especiais em engenharia de

software I (2010).

Agradeço ao Prof. Marcos Kalinowski, por ter se disponibilizado em participar da

minha banca de doutorado. Agradeço também pelas importantes contribuições

fornecidas durante minha qualificação. Agradeço também por sua postura como

vi

Pesquisador em engenharia de software, pois você é exemplo e inspiração para novos

pesquisadores.

Agradeço ao Prof. Raphael C. S. Machado, por participar da minha banca de

doutorado. Mesmo conhecendo seu trabalho a pouco tempo, tenho certeza que suas

contribuições serão de extrema importância para minha pesquisa.

Ao Prof. Marco Antônio P. Araújo, meu professor na graduação, por ter possibilitado

meu primeiro contato com o universo da pesquisa em engenharia de software.

Ao meu Pai (in memoriam), pois mesmo sem ter estudado, teve a inteligência de

perceber e me convencer que estudar é o melhor caminho. Agradeço à minha Mãe,

pelo apoio constante e irrestrito à todas as decisões que tomei em minha vida.

À minha esposa, Thalita, por me apoiar e suportar todas as ausências e ansiedades

resultantes desta fase da minha vida. Agradeço também à minha filha Lara, pois ela foi

uma fonte de motivação para que eu fosse adiante nessa jornada.

Agradeço a todos os 34 companheiros do grupo ESE dos quais fui contemporâneo.

Em especial, agradeço aqueles que tiveram participação mais intensa em minha

pesquisa: Talita V. Ribeiro, Hélvio J. Junior, Rebeca C. Motta, Thiago Souza, Bruno

Pedraça, Luciana Nascimento, Jobson Massolar, Paulo Sérgio M. dos Santos, Andrea

Doreste, Breno de França. Aqui aprendi a admirar diferentes personalidades. Acredito

que fiz amizades verdadeiras que levarei para vida toda.

Ao pessoal do PESC, Gutierrez da Costa, Claudia Prata, Maria Mercedes, Solange

Santos e Sônia Galliano pela ajuda administrativa.

À COPPE/UFRJ, por dispor de um ambiente propício à realização deste trabalho.

vii

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

COMPREENDENDO PRÁTICAS E FATORES RELACIONADOS À VERIFICAÇÃO DE

SEGURANÇA E PERFORMANCE DE SOFTWARE

Victor Vidigal Ribeiro

Setembro/2019

Orientadores: Guilherme Horta Travassos

Daniela Soares Cruzes

Programa: Engenharia de Sistemas e Computação

As atividades diárias da sociedade são fortemente apoiadas por sistemas de

software. Assim, falhas de software podem trazer grandes perdas. Por isso, as

atividades de verificação são essenciais e devem avaliar as funcionalidades do

software e também as propriedades representadas pelos requisitos não-funcionais.

Desta forma, esse trabalho torna disponível um corpo de conhecimento contendo a

caracterização dos requisitos não-funcionais mais relevantes para os sistemas de

software e as abordagens de teste que podem ser utilizadas para avaliar esses

requisitos. Particularmente, o trabalho aprofunda-se na caracterização das práticas de

verificação de segurança e desempenho utilizadas por organizações de

desenvolvimento de software e os fatores que apoiam as tomadas de decisão

relacionadas à essas práticas. Adicionalmente, são apresentados fatores moderadores

das atividades de verificação de segurança e desempenho bem como ações que

podem ser realizadas para promovê-los. A organização desse corpo de conhecimento

fez uso de revisões estruturadas da literatura, estudos de caso, rapid reviews e survey,

os quais permitiram gerar resultados baseados em evidência que podem ser

utilizados com mais confiança pela indústria para aprimorar suas práticas de

verificação de requisitos não-funcionais e pela academia para identificação de desafios

de pesquisas na área.

viii

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

UNDERSTANDING FACTORS AND PRACTICES OF SOFTWARE SECURITY AND

PERFORMANCE VERIFICATION

Victor Vidigal Ribeiro

September/2019

Advisors: Guilherme Horta Travassos

Daniela Soares Cruzes

Department: Computer Science and Systems Engineering

Software systems strongly support the daily activities of society. Thus, software

failures can bring huge losses. Therefore, verification activities are essential and

should evaluate not only the functionality of the software but also its properties

represented by the non-functional requirements. Thus, this work proposes a body of

knowledge containing the characterization of the most relevant non-functional

requirements for software systems. Besides, the body of knowledge includes the

testing approaches that can be used to verify these requirements. In particular, the

work goes more in-depth into characterizing security and performance verification

practices used by software development organizations and the factors that support

decision-making related to these practices. Additionally, moderating factors of security

and performance verification activities are presented, as well as actions to their

promotion. The organization of this body of knowledge made use of structured

literature reviews, case studies, rapid reviews, and surveys. Such investigation

strategies enabled the generation of evidence-based results, which can support the

software practitioners to improve their non-functional requirement verification practices

and software researchers to identify research challenges in the area.

ix

INDEX

1 INTRODUCTION .. 1

1.1 MOTIVATION AND CONTEXT .. 1

1.2 PROBLEM DEFINITION AND RESEARCH QUESTIONS ... 3

1.3 RESEARCH APPROACH, PRIMARY RESULTS, AND CONTRIBUTIONS 6

1.4 DOCUMENT OUTLINE ... 13

2 FROM NON-FUNCTIONAL REQUIREMENTS TO SECURITY AND

PERFORMANCE VERIFICATION: ESSENTIAL DEFINITIONS AND PERSPECTIVES

 15

2.1 SHORTCUT TO MAIN CONCEPTS .. 15

2.2 A PERSPECTIVE ABOUT NON-FUNCTIONAL REQUIREMENTS 17

2.3 SOFTWARE SECURITY .. 24

2.4 SOFTWARE PERFORMANCE .. 25

2.5 SOFTWARE VERIFICATION .. 26

2.6 SECURITY AND PERFORMANCE VERIFICATION ... 32

3 TESTING NON-FUNCTIONAL REQUIREMENTS: A BODY OF KNOWLEDGE 36

3.1 THE METHODOLOGY SUPPORTING THIS CHAPTER .. 36

3.2 OVERVIEW OF THE MAIN FINDINGS AND IMPLICATIONS 42

3.3 THE RELEVANT NON-FUNCTIONAL REQUIREMENTS: A LITERATURE REVIEW 43

3.4 NON-FUNCTIONAL TESTING APPROACHES: A LITERATURE REVIEW 49

3.5 COMBINING THE RESULTS OF RELEVANT NFRS AND TESTING APPROACHES

LITERATURE REVIEWS ... 55

3.6 THE BODY OF KNOWLEDGE OF RELEVANT NON-FUNCTIONAL REQUIREMENTS AND

THEIR TESTING TECHNIQUES .. 57

3.7 CONCLUSIONS FROM THE LITERATURE REVIEWS RESULTS 62

4 A PERCEPTION OF THE STATE OF THE PRACTICE OF SECURITY AND

PERFORMANCE VERIFICATION .. 63

4.1 THE METHODOLOGY TO CHARACTERIZE S&P VERIFICATION 63

4.2 THE CASE STUDY CONTEXT: ORGANIZATIONS AND PARTICIPANTS 68

4.3 SECURITY AND PERFORMANCE VERIFICATION PRACTICES 72

4.4 DECISION-MAKING FACTORS OF SECURITY AND PERFORMANCE VERIFICATION ... 77

4.5 CONCLUSION .. 81

5 MODERATOR FACTORS OF SECURITY AND PERFORMANCE

VERIFICATION .. 82

x

5.1 THE METHODOLOGY USED TO IDENTIFY THE MODERATOR FACTORS 82

5.2 INTRODUCTION .. 91

5.3 MF1: ORGANIZATIONAL AWARENESS OF THE IMPORTANCE OF SECURITY AND

PERFORMANCE ... 93

5.4 MF2: CROSS-FUNCTIONAL TEAMS .. 98

5.5 MF3: SUITABLE REQUIREMENTS ... 104

5.6 MF4: SUPPORT TOOLS .. 109

5.7 MF5: ADEQUATE VERIFICATION ENVIRONMENT .. 114

5.8 MF6: SYSTEMATIC VERIFICATION METHODOLOGY .. 120

5.9 MF7: PLAN SECURITY AND PERFORMANCE VERIFICATION ACTIVITIES 125

5.10 MF8: REUSE PRACTICES ... 129

5.11 CONCLUSIONS .. 134

6 CONCLUSION .. 136

6.1 FINAL CONSIDERATIONS ... 136

6.2 RESEARCH CONTRIBUTIONS REVISITED ... 138

6.3 THREATS TO VALIDITY .. 141

6.4 FUTURE WORK .. 143

REFERENCES ... 146

APPENDIX A THE FULL RESEARCH METHODOLOGY 159

APPENDIX B LR1 PROTOCOL: SEARCHING RELEVANT NON-FUNCTIONAL

REQUIREMENTS ... 177

APPENDIX C LR2 PROTOCOL: SOFTWARE TESTING TECHNICS TO NON-

FUNCTIONAL REQUIREMENTS ... 184

APPENDIX D IDENTIFIED SECURITY AND PERFORMANCE VERIFICATION

SUPPORT TOOLS ... 191

APPENDIX E CASE STUDY PROTOCOL ... 193

APPENDIX F C1: CASE STUDY PRESENTATION LETTER 199

APPENDIX G I1: CASE STUDY ORGANIZATION AGREEMENT TERM 203

APPENDIX H I2: CASE STUDY – PARTICIPANT AGREEMENT TERM 204

APPENDIX I I3: CASE STUDY – ORGANIZATION CHARACTERIZATION 206

APPENDIX J I4: CASE STUDY – PROJECT CHARACTERIZATION................. 207

xi

APPENDIX K I5: CASE STUDY – PARTICIPANT CHARACTERIZATION 210

APPENDIX L I6: CASE STUDY – VERIFICATION PRACTICES IDENTIFICATION

 211

APPENDIX M I7: CASE STUDY – IDENTIFICATION OF DECISION-MAKING

FACTORS 212

APPENDIX N I8: CASE STUDY – PARTICIPANT OPINION 214

APPENDIX O RR01 – SUITABLE ENVIRONMENT PROTOCOL 215

APPENDIX P RR02 – CROSS-FUNCTIONAL TEAM PROTOCOL 218

APPENDIX Q RR03 – SUITABLE REQUIREMENTS PROTOCOL 221

APPENDIX R RR04 – SUPPORT TOOLS PROTOCOL 223

APPENDIX S RR05 – SUITABLE ENVIRONMENT PROTOCOL 226

APPENDIX T RR06 – SUITABLE METHODOLOGY PROTOCOL 229

APPENDIX U RR07 – VERIFICATION PLANNING PROTOCOL 232

APPENDIX V RR08 – REUSE PROTOCOL .. 235

APPENDIX W SURVEY PLAN ... 238

xii

INDEX OF FIGURES

FIGURE 1 - RESEARCH STEPS OVERVIEW ... 7

FIGURE 2 – AUTO-VEHICLES CLASSIFICATION ANALOGY .. 20

FIGURE 3 - FR-NFR CLASSIFICATION LEVEL OF ABSTRACTION ... 20

FIGURE 4 - SOFTWARE VERIFICATION STRATEGY SCHEME – ADAPTED FROM ISO-29119

[2013] ... 30

FIGURE 5 - OPEN CODING EXAMPLE ... 39

FIGURE 6 - HIERARCHICAL STRUCTURE OF NFRS ... 40

FIGURE 7 - NFR TESTING APPROACHES VS. DOMAIN/SYSTEM TYPE 52

FIGURE 8 - NFR TESTING APPROACHES VS. TYPE OF EVALUATION 53

FIGURE 9 - NFR TESTING APPROACHES VS. TESTING PROCESS PHASE 54

FIGURE 10 - NFR TESTING APPROACHES VS. TESTING LEVEL .. 54

FIGURE 11 - NFR TESTING APPROACHES VS. TESTING TECHNIQUE 55

FIGURE 12 - RELEVANT NFRS WITHOUT SOFTWARE APPROACHES................................... 56

FIGURE 13 - TESTING APPROACHES TO ASSESS LESS RELEVANT NFRS 56

FIGURE 14 - NFR-BOK - RELEVANT NON-FUNCTIONAL REQUIREMENTS 57

FIGURE 15 - PERFORMANCE DETAILS IN THE NFR-BOK .. 59

FIGURE 16 - EXAMPLE OF A PAPER DESCRIBING NON-FUNCTIONAL REQUIREMENTS 60

FIGURE 17 - LIST OF TESTING APPROACHES OF AN NFR ... 60

FIGURE 18 - DETAILED INFORMATION ON A TESTING APPROACH 61

FIGURE 19 - DATA COLLECTION PROCESS .. 66

FIGURE 20 - STRUCTURE USED TO CHARACTERIZE VERIFICATION PRACTICES (RQ 1) 67

FIGURE 21 - STRUCTURE USED TO IDENTIFY DECISION-MAKING FACTORS (RQ 2) 68

FIGURE 22 - IDENTIFIED SECURITY AND PERFORMANCE VERIFICATION PRACTICES 72

FIGURE 23 - SOFTWARE SECURITY VERIFICATION PRACTICES DETAILS 73

FIGURE 24 - SOFTWARE PERFORMANCE VERIFICATION PRACTICES DETAILS 74

xiii

FIGURE 25 - DECISION-MAKING FACTORS REGARDING SECURITY AND PERFORMANCE

VERIFICATION ... 78

FIGURE 26 - EXAMPLE OF A QUESTION OF THE SURVEY ... 87

FIGURE 27 - SURVEY PARTICIPANTS COUNTRY ... 88

FIGURE 28 - SURVEY PARTICIPANTS PRIMARY ROLE .. 88

FIGURE 29 - SURVEY PARTICIPANTS EXPERIENCE (MONTHS) ... 89

FIGURE 30 - ORGANIZATIONS SIZE (NUMBER OF EMPLOYEES) .. 89

FIGURE 31 - ORGANIZATIONS DOMAIN .. 90

FIGURE 32 - LEVEL OF AGILITY OF THE ORGANIZATIONS .. 90

FIGURE 33 - MODERATOR FACTORS OF SECURITY AND PERFORMANCE VERIFICATION 92

FIGURE 34 - MF1: ORGANIZATIONAL AWARENESS OF SECURITY AND PERFORMANCE

IMPORTANCE .. 93

FIGURE 35 - MF1 CONFIRMATION (CONTROL GROUP) .. 95

FIGURE 36 - MF1 RELEVANCE ACCORDING TO EXTERNAL PARTICIPANTS 95

FIGURE 37 - MF1 DISTRIBUTION .. 96

FIGURE 38 - MF1 BIAS TEST (MEAN TEST) .. 96

FIGURE 39 – MF2: CROSS-FUNCTIONAL TEAM MODERATOR .. 99

FIGURE 40 - MF2 CONFIRMATION (CONTROL GROUP) .. 101

FIGURE 41 - MF2 RELEVANCE ACCORDING TO EXTERNAL PARTICIPANTS 101

FIGURE 42 – MF2 DISTRIBUTION ... 102

FIGURE 43 - MF2 BIAS TEST (MEAN TEST) .. 102

FIGURE 44 – MF3: SUITABLE REQUIREMENTS MODERATOR FACTOR 104

FIGURE 45 – MF3 CONFIRMATION (CONTROL GROUP) ... 106

FIGURE 46 - MF3 RELEVANCE ACCORDING TO EXTERNAL PARTICIPANTS 106

FIGURE 47 - MF3 DISTRIBUTION .. 106

FIGURE 48 - MF3 BIAS TEST (MEAN TEST) .. 107

FIGURE 49 - MF4: SUPPORT TOOLS MODERATOR FACTOR .. 109

FIGURE 50 - MF4 CONFIRMATION (CONTROL GROUP) .. 112

xiv

FIGURE 51 - MF4 RELEVANCE ACCORDING TO EXTERNAL PARTICIPANTS 112

FIGURE 52 - MF4 DISTRIBUTION .. 112

FIGURE 53 - MF4 BIAS TEST (MEAN TEST) .. 113

FIGURE 54 - MF5: ADEQUATE VERIFICATION ENVIRONMENT MODERATOR FACTOR 115

FIGURE 55 - MF5 CONFIRMATION (CONTROL GROUP) .. 117

FIGURE 56 - MF5 RELEVANCE ACCORDING TO EXTERNAL PARTICIPANTS 118

FIGURE 57 - MF5 DISTRIBUTION .. 118

FIGURE 58 - MF5 BIAS TEST (MEAN TEST) .. 118

FIGURE 59 - MF6: SYSTEMATIC METHODOLOGY MODERATOR FACTOR 121

FIGURE 60 - MF6 CONFIRMATION (CONTROL GROUP) .. 123

FIGURE 61 - MF6 RELEVANCE ACCORDING TO EXTERNAL PARTICIPANTS 124

FIGURE 62 - MF6 DISTRIBUTION .. 124

FIGURE 63 - MF6 BIAS TEST (MEAN TEST) .. 124

FIGURE 64 - MF7: PLANNING SECURITY AND PERFORMANCE VERIFICATION MODERATOR

FACTOR ... 126

FIGURE 65 - MF7 CONFIRMATION (CONTROL GROUP) .. 127

FIGURE 66 - MF7 RELEVANCE ACCORDING TO EXTERNAL PARTICIPANTS 128

FIGURE 67 - MF7 DISTRIBUTION .. 128

FIGURE 68 - MF7 BIAS TEST (MEAN TEST) .. 128

FIGURE 69 - MF8: REUSE PRACTICES MODERATOR FACTOR .. 130

FIGURE 70 - MF8 CONFIRMATION (CONTROL GROUP) .. 131

FIGURE 71 - MF8 RELEVANCE ACCORDING TO EXTERNAL PARTICIPANTS 132

FIGURE 72 - MF8 DISTRIBUTION .. 132

FIGURE 73 - MF8 BIAS TEST (MEAN TEST) .. 132

FIGURE 74 - OVERVIEW OF THE METHODOLOGY OF CYCLE 1 ... 159

FIGURE 75 - OVERVIEW OF THE METHODOLOGY OF CYCLE 2 ... 160

FIGURE 76 - OPEN CODING EXAMPLE ... 163

xv

FIGURE 77 - HIERARCHICAL STRUCTURE OF NFRS ... 164

FIGURE 78 - GENERAL RESEARCH METHODOLOGY OF CYCLE 2 167

FIGURE 79 - DATA COLLECTION PROCESS .. 170

FIGURE 80 - STRUCTURE USED TO CHARACTERIZE VERIFICATION PRACTICES (RQ 1) 171

FIGURE 81 - STRUCTURE USED TO IDENTIFY DECISION-MAKING FACTORS (RQ 2) 172

xvi

INDEX OF TABLES

TABLE 1 - MAIN CONCEPTS INDEX .. 15

TABLE 2 - ASSERTIONS REGARDING NFRS IMPORTANCE AND THE LACK OF TECHNOLOGIES

 ... 21

TABLE 3 - AMOUNT OF LR1 PAPERS ... 37

TABLE 4 - AMOUNT OF LR2 PAPERS ... 41

TABLE 5 - INITIAL FINDINGS AND THEIR IMPLICATIONS .. 42

TABLE 6 - AMOUNT OF IDENTIFIED NFRS .. 44

TABLE 7 - THE SET OF RELEVANT NON-FUNCTIONAL REQUIREMENTS 44

TABLE 8 - SOFTWARE TESTING APPROACHES TO ASSESS NFRS 50

TABLE 9 - CASE STUDY RESEARCH PROTOCOL ... 63

TABLE 10 - CASE STUDY INSTRUMENTS DESCRIPTION ... 65

TABLE 11 - ORGANIZATIONS’ DESCRIPTION... 69

TABLE 12 - ORGANIZATION AGILITY LEVEL .. 70

TABLE 13 - PARTICIPANTS’ CHARACTERIZATION .. 71

TABLE 14 - RAPID REVIEWS RESEARCH QUESTIONS STRUCTURE 84

TABLE 15 - RAPID REVIEWS RESEARCH QUESTIONS STRUCTURE 85

TABLE 16 - NUMBER OF PAPERS OF RR AND SNOWBALLING .. 86

TABLE 17 - STRENGTH OF ORGANIZATIONAL AWARENESS (MF1) 94

TABLE 18 - ACTIONS TO PROMOTE MF1 ... 97

TABLE 19 - NEW ACTIONS TO PROMOTE MF1 ... 98

TABLE 20 - STRENGTH OF CROSS-FUNCTIONAL TEAM MODERATOR (MF2) 100

TABLE 21 - ACTIONS TO PROMOTE MF2 ... 102

TABLE 22 - NEW ACTIONS TO PROMOTE MF2 ... 103

TABLE 23 - STRENGTH OF SUITABLE REQUIREMENTS MODERATOR FACTOR (MF3) 105

TABLE 24 - ACTIONS TO PROMOTE MF3 ... 107

xvii

TABLE 25 - NEW ACTIONS TO PROMOTE MF3 ... 108

TABLE 26 - STRENGTH OF SUITABLE SUPPORT TOOLS MODERATOR FACTOR (MF4) 110

TABLE 27 - ACTIONS TO PROMOTE MF4 ... 113

TABLE 28 - NEW ACTIONS TO PROMOTE MF4 ... 114

TABLE 29 - STRENGTH OF ADEQUATE VERIFICATION ENVIRONMENT MODERATOR FACTOR

(MF5) ... 117

TABLE 30 - ACTIONS TO PROMOTE MF5 ... 119

TABLE 31 - NEW ACTIONS TO PROMOTE MF5 ... 120

TABLE 32 - STRENGTH OF SUITABLE METHODOLOGY MODERATOR FACTOR (MF6) 122

TABLE 33 - ACTIONS TO PROMOTE MF6 ... 125

TABLE 34 - NEW ACTIONS TO PROMOTE MF6 ... 125

TABLE 35 - STRENGTH OF PLAN SECURITY AND PERFORMANCE VERIFICATION ACTIVITIES

MODERATOR FACTOR (MF7) ... 127

TABLE 36 - ACTIONS TO PROMOTE MF7 ... 129

TABLE 37 - NEW ACTIONS TO PROMOTE MF7 ... 129

TABLE 38 - STRENGTH OF REUSE PRACTICES MODERATOR FACTOR (MF8) 131

TABLE 39 - ACTIONS TO PROMOTE MF8 ... 133

TABLE 40 - NEW ACTIONS TO PROMOTE MF8 ... 134

TABLE 41 - MODERATOR FACTORS ORDERED BY RELEVANCE .. 135

TABLE 42 - AMOUNT OF LR1 PAPERS ... 161

TABLE 43 - AMOUNT OF LR2 PAPERS ... 165

TABLE 44 - CASE STUDY RESEARCH PROTOCOL.. 167

TABLE 45 - CASE STUDY INSTRUMENTS DESCRIPTION ... 169

TABLE 46 - RAPID REVIEWS RESEARCH QUESTIONS STRUCTURE 174

TABLE 47 - RAPID REVIEWS RESEARCH QUESTIONS STRUCTURE 174

TABLE 48 - NUMBER OF PAPERS OF RR AND SNOWBALLING .. 175

1

1 Introduction

This chapter describes what motivated this investigation, defining

the research goals and questions. Besides, it presents an overview

of the research approach, highlighting the main results. Finally, it

presents the outline of this document.

1.1 Motivation and context

The first software-based systems were built to operate in isolation; they had a

simple user interface based on a keyboard and a command terminal. Besides, such

systems were built to run in specific hardware or platform, and the users operating

these systems had significant experience in the application domain and, usually,

having computing knowledge.

Such needs changed over time, and the contemporary software systems

require integration with other systems for their proper functioning. For instance,

software systems use the services provided by a third-party system to user

authentication; other systems use maps services of third-party systems or integrate

with various social networks (a kind of software).

Additionally, the systems' user interface became more complex, still based on

traditional interfaces such as keyboard and mouse, but adding new ways of

interactions such as touchscreen, voice, and gesture.

Many contemporary systems run in a set of distinct hardware and platforms to

reach a broad spectrum of users. Many software systems now should be able to run in

different operating systems (Linux, Windows, Android, iOS) and devices (desktops,

laptops, smartphones, tablets, wearables). Such devices can have different

configurations and hardware capabilities. For instance, a contemporary software

system may have to run on smartphones with Android and iOS. Besides, such

smartphones could have different hardware capabilities: processing power, amount of

memory, screen size, and availability or absence of technologies such as GPS and 4G.

Such needs impose a significant challenge to the developers.

Contemporary systems also have another challenge concerning the users that

operate them. Nowadays, daily tasks are performed using software: shopping, food

2

delivery, search for transit routes. Thus, these systems should be built to be operated

by people who have little knowledge in the application domain and may not have

proper technical expertise.

Besides, many contemporary systems should be context-sensitive, adapting

themselves according to the environment. For instance, a video streaming service can

decrease the video quality if it detects a slow internet connection. Other systems may

provide custom suggestions to their users using artificial intelligence algorithms based

on previously collected data.

Therefore, it is feasible to say that the popularization and extensive use of

software systems bring benefits to modern life. However, the importance of software

systems to contemporary society increases specific concerns regarding some critical

quality properties.

Software engineers usually classify such properties as non-functional

requirements (NFRs). NFRs represent software properties that are not related to the

problem domain, such as security, performance, usability, maintainability, portability.

NFRs have always been essential to the success of software systems [Hammani 2014]

[Ameller et al. 2012], but contemporary software systems have NFRs as essential

properties. For instance, energy efficiency, and portability are crucial features of mobile

applications as the energy source of these devices is a battery, and there are different

platforms and hardware settings with which the software should be performed

[Joorabchi et al. 2013] [Rashid et al. 2015].

Thus, although there are several technologies supporting software

development, this is a human-dependent activity and, therefore, error-prone. Therefore,

as software systems should meet NFRs, the software development organizations

include quality assurance activities throughout the software life cycle to evaluate these

properties, preventing the occurrence of failures after software release. Software

verification [IEEE-610.12 1990], including testing and reviews, encompasses a set of

activities to analyze whether the software is meeting their requirements (including

NFRs) without presenting defects.

Therefore, the overall motivation of this thesis is summarized as follows:

 The importance of non-functional requirements for contemporary software

systems;

 The need to include quality assurance activities (verification) aiming to assess if

the software meets non-functional requirements.

3

1.2 Problem definition and research questions

Software verification encompasses a set of activities aiming to identify defects.

The general idea behind verification activities is to exercise the software or analyze its

artifacts to identify defects before the software release [Delamaro et al. 2007].

However, these activities may consume much of development effort, influencing on

software cost and time to delivery [NIST 2002].

Some organizations include software verification activities in their software

development life cycle, but these activities are often performed ad-hoc, without using

any specific approach or planning. For instance, there are organizations performing

software testing, but exercising only the happy path of a use case [Ng et al. 2004].

Regarding the verification of NFRs, the scenario becomes more worrying than

the verification of functional requirements. Usually, (1) there is no assessment of NFRs,

(2) the assessment of NFRs is performed only at the end of the development process,

or (3) verification activities do not prioritize these requirements. Besides, (4) some

organizations only run a toolkit without awareness of its efficiency or the techniques

implemented by these tools [Larsson et al. 2016] [Camacho et al. 2016].

In this scenario, researches addressing NFRs verification can improve the way

the organizations assess such kind of requirement. Thus, our research strategy started

with the identification of what are the relevant NFRs and what are the software testing

approaches supporting their assessment (Chapter 3). It is essential to mention that in

this thesis the relevance of an NFR is the number of works citing it as important.

After this first research cycle, it was possible to increase the understanding of

NFRs and order them by relevance. Thus, we realized that the number of relevant

NFRs is too extensive, and so we decided to focus on the most relevant NFRs: security

and performance (S&P).

Security is relevant owing to critical and sensitive information manipulated and

stored by the software systems while performing their tasks. For instance, software

systems are responsible for the manipulation of personal data, strategic information of

organizations, and control of financial transactions. This information usually requires

high confidence and different levels of classification, resulting in a growing interest in

accessing it to obtain improper benefits [Labs 2016] [Threat and Index 2017].

Performance is relevant owing to the limitations of computational resources

[Zhu et al. 2015]. Long response time can make users migrate to rival software

systems, a delayed financial transaction can result in financial losses, and excessive

4

power consumption can make the use of systems unfeasible (if hosted on battery-

based devices) or can increase the energy costs of systems running in large data

centers.

Security and performance verification are activities that search for defects

regarding these specific quality perspectives. Various verification practices and

techniques can be used individually or combined, promoting specific benefits and

posing various challenges to the verification of S&P [Atifi et al. 2017] [Felderer et al.

2016] [Meira et al. 2016].

However, despite the existence of some S&P verification techniques, software

systems still present several defects related to these quality properties. Performance

issues account for a significant fault category in specific domains (e.g.,

telecommunications) [Bertolino 2007], and news reporting systems attacks are

increasingly frequent [Symantec 2017]. These may be consequences of (1) the

inefficiency of security and performance verification practices, (2) the fact that software

organizations do not adopt suitable verification practices, or (3) the lack of evidence-

based verification practices owing to the apparent disconnection between academy

and industry in this context [Garousi and Felderer 2017]. Furthermore, automated

attack scripts, the abundance of attack information, and global interconnection make it

easier to attack systems than it was previously [Vaughn et al. 2002].

1.2.1 Research goals

The research goal in its broader scope is to characterize the state of the

practice regarding non-functional requirements verification. By presenting the

reasoning of the issues of this topic, this work may provide insights for further research

to investigate essential points in depth. It is a broad goal, so we have focused on some

specific goals that are following listed.

 Propose a Body of knowledge, including a characterization of relevant non-

functional requirements and the software techniques that can be used to assess

such requirements (NFR-BoK):

 Identify and understand the non-functional requirements representing

the most important software properties, i.e., the most relevant non-

functional requirements;

5

 Identify software testing approaches supporting the assessment of non-

functional requirements;

 Provide information on which testing approaches can be used for each

of the non-functional requirements;

 Provide information on the capability of testing approaches to cover test

dimensions (process phases, levels, and techniques);

 Provide information on which requirements do not have testing

techniques that support their evaluation;

 Identify and characterize the security and performance verification practices

used by software development organizations regarding used techniques, the

definition of done criteria, automation level, and asset covered;

 Identify the decision-making factors related to security and performance

verification used by software development organizations;

 Identify the moderator factors influencing the security and performance

verification; and

 Identify actions used to promote security and performance moderator factors.

1.2.2 Research questions

Different groups of research questions guided the two cycles (Section 1.3),

composing this research. The first one, aiming to improve the understanding of non-

functional requirements and the software testing approaches used to assess them. The

results allowed us to observe that security and performance were the most relevant

NFRs. Therefore, the second investigation cycle focuses on security and performance

verification.

1.2.2.1 Research questions of cycle 1

 RQ0.1 What are the most relevant non-functional requirements, according to

software practitioners?

 RQ0.2 What are the software testing approaches used to test non-functional

requirements?

6

 RQ0.3 To what extent do testing approaches support the assessment of non-

functional requirements?

 RQ0.3.1 What are the relevant NFRs that are not covered by testing

approaches?

 RQ0.3.2 What are the test dimensions met by the test approaches?

1.2.2.2 Research questions of cycle 2

 RQ1 Which are the practices used by the organizations to support the

verification of security and performance?

 RQ1.1 What are the standard techniques?

 RQ1.2 Which definition of done do they adopt?

 RQ1.3 How is the level of automation?

 RQ1.4 What are the assets covered?

 RQ2 How do the organizations define their security and performance

verification strategies?

 RQ2.1 What are the factors influencing the decision-making regarding

security and performance verification strategies?

 RQ2.2 When are the decisions on the verification strategy made?

 RQ2.3 How often are the decisions on the verification strategy made?

 RQ2.4 Who is responsible for the decision making regarding the

verification strategy?

 RQ3 What are the moderator factors influencing security and performance

verification?

 RQ3.1 What actions can be taken to promote moderator factors?

1.3 Research approach, primary results, and contributions

As illustrated in Figure 1, two investigation cycles with six steps compose this

research. The scope of the first investigation cycle was related to software testing

approaches supporting the assessment of non-functional requirements. Thus, we use

the technical literature to gain a better understanding of non-functional testing

approaches.

7

However, as we gained knowledge on the topic, we realized that it would not be

feasible to investigate all NFRs in-depth and that software testing is not a suitable

approach to assess some NFRs. Therefore, in the second investigation cycle, the

scope of this thesis has been adjusted to focus on security and performance, and to

encompass static verification activities (including software review).

Figure 1 - Research steps overview

1.3.1 The first investigation cycle

 S1: this step aims to identify relevant non-functional requirements

(Section 3.3)

 RQ0.1: What are the most relevant non-functional requirements,

according to software practitioners?

 Results

 R1: identification of 224 non-functional requirements classified

as relevant;

 R2: identification of 87 non-functional requirements having

description;

8

 R3: identification of 137 requirements without description. These

requirements were not analyzed in depth because there was no

confidence in the properties of the software they represented;

 R4: characterization of 87 non-functional requirements;

 R5: identification of non-testable requirements.

 Contributions

 C1: provides information to build a body of knowledge with 87

non-functional requirements (NFR-BoK) and their

characterization;

 Implications

 I1: tunes the thesis scope to the most relevant non-functional

requirements: security and performance;

 I2: tunes the thesis scope from testing to verification (testing and

reviews) (Section 3.3.1).

 S2: this step aims to identify software testing approaches to assess non-

functional requirements (Section 3.4)

 RQ0.2: What are the software testing approaches used to test non-

functional requirements?

 Results

 R6: identification and characterization of 47 non-functional

testing approaches;

 R7: lack of confidence in testing approaches as they are not

empirically evaluated.

 Contributions

 C2: populates the NFR-BoK with the testing approaches that

support the assessment of the relevant non-functional

requirements;

 Implications

 I3: strengthens the need for research on the proposed theme.

 S3: it aims to analyze the adequacy of testing approaches regarding the

relevant NFRs (Section 3.5)

 RQ0.3.1: What are the relevant NFRs that are not covered by testing

approaches?

 RQ0.3.2: What are the test dimensions met by the test approaches?

9

 Results

 R8: identification of 13 NFRs with no testing approach to assess

them;

 R9: software testing approaches do not cover all testing

dimensions (levels and type of techniques) and testing process

phases (planning, design, implementation, execution, and

analysis).

 Contributions

 C3: includes the information in the NFR-BoK on how testing

approaches met relevant NFRs.

 I4: Highlight the strengthens the need for researches on the

proposed theme owing to the lack of suitable testing approaches;

1.3.2 The second investigation cycle

 S4: it aims to identify and characterize the security and performance

verification practices have been used by software development

organizations (Chapter 4)

 RQ1: Which are the practices used by the organizations to support the

verification of security and performance?

 RQ1.1: What are the standard techniques?

 RQ1.2: Which definition of done do they adopt?

 RQ1.3: How is the level of automation?

 RQ1.4: What are the assets covered?

 Results

 R10: identification of six verification practices the software

developments organizations use to assess security and

performance;

 R11: identification of the techniques type of each verification

practice;

 R12: identification of the definition of done criteria

 R13: identification of the automation level – if the practice is

automated or manual, and what are the supporting tools;

 R14: identification of the assets covered by the practices.

10

 S5: this step aims to identify decision-making factors related to security

and performance verification (Chapter 4)

 RQ2: How does the organization define its security and

performance verification strategies?

 RQ2.1: What are the factors influencing the decision-

making regarding security and performance verification

strategies?

 RQ2.2: When are the decisions on the verification

strategy made?

 RQ2.3: How often are the decisions on the verification

strategy made?

 RQ2.4: Who is responsible for the decision making

regarding the verification strategy?

 Results

 R15: Identification of decision-making factors influencing

the choice of security and performance verification

practices;

 R16: identification of decision-making factors influencing

the choice of support tools

 R17: identification of decision-making factors influencing

the choice of coverage criterion

 R18: identification of decision-making factors influencing

the choice of definition of done

The results of steps S4 and S5 were analyzed together. Thus, the following

implications are the consequences of these two steps:

 Contributions of S4 and S5

 C8: improvement of the knowledge of how verification practices

are performed in software development organizations;

 C9: identification of nine conjectures related to security and

performance verification – these conjectures were validated

through the technical literature (rapid reviews) and practitioners’

opinion (survey), and then they became the eight moderator

factors.

11

 S6: this step aims to confirm the relevance of the moderator factors of

security and performance verification (Chapter 5)

 RQ3: What are the moderator factors influencing security and

performance verification?

 RQ3.1: What actions can be taken to promote moderator

factors?

 Results

 R19: confirmation of the relevance of eight moderator

factors of security and performance verification;

 R20: identification of a set of actions to promote the

moderator factors.

 Contributions

 C10: Provides a set of moderating factors influencing the

security and performance verification and actions to

promote them.

1.3.3 Publications

Five papers disclose the findings of this thesis. Our publishing strategy was to

disseminate the results when we understood that they would be relevant to the

community of researchers or practitioners:

 P1: “Testing non-functional requirements: lacking technologies or researching

opportunities?” XV Brazilian Symposium on Software Quality (2016) – This

paper consolidates the results of the first investigation cycle. It presents the

NFR-BoK including the most relevant NFRs and the software testing

approaches used to assess them (Chapter 3);

 P2: “Tecnologia de apoio à composição de estratégias de verificação de

segurança e desempenho (A technology to support the combination of security

and performance verification strategies)”, XV Workshop de Teses e

Dissertações em Qualidade de Software (2017) – It presents the proposal of

technology to support the definition of a testing strategy to assess security and

performance. This proposal was not evolved, but the paper presents findings

that can help future researches;

12

 P3: “Desafios na verificação de segurança de sistemas de software

(Challenges of software systems security verification),” Workshop de Qualidade

de Produto de Software (2017) - This paper provides a warning about the

challenges of verifying the software security (Section 2.6.1);

 P4: “A perception of the practice of software security and performance

verification in the Brazilian industry,” 25th Australian Software Engineering

Conference (2018) – This paper presents the characterization of security and

performance practices used by software development organizations. Besides, it

is the first disclosure of a set of nine conjectures that later became the

moderator factors of security and performance verification (Chapter 4).

 P5 (under review): “Study on practices, moderator factors, and decision-

making factors of security and performance verification”, Software Quality

Journal – This journal article encompasses the complete findings of the

performed case study, including the characterization of S&P verification

practices, the decision-making factors related to S&P verification, and the eight

moderator factors influencing S&P verification (Chapters 4 and 5).

1.3.4 Methodological contributions

The main methodological contribution of this thesis is to show how different

research methods can be combined into a research project. The description of the

methodological steps is presented at the begin of each thesis chapter. Thus, it is

possible to understand the applied research methods, increasing the confidence of the

findings.

Additionally, Appendix A provides the entire description of the followed

methodology to facilitate a broad understanding of the methodological steps followed.

The main contributions regarding methodological issues are the following:

 Demonstrate how to use structured literature reviews to build a trustworthy body

of knowledge;

 Demonstrate how to use the coding phase of grounded theory to analyze the

results of a literature review;

 Relevant insights on how to use rapid reviews to increase the confidence of

case study findings;

13

 Example of use of thematic analysis to analyze the data of a case study

research;

 Present an approach on how to use a survey to bring knowledge from industry

to academia, validating theoretical results.

1.4 Document outline

After the introduction chapter, this document is organized as follows:

 Chapter 2: From Non-Functional Requirements to Security and Performance

Verification: Essential Definitions and Perspectives – presents the theoretical

background, including the definitions of main concepts related to this thesis.

The main objective of this chapter is to bring the reader to our perspective,

facilitating the thesis understanding.

 Chapter 3: Testing Non-Functional Requirements: A Body of Knowledge –

presents the findings of the first research cycle. It includes a body of knowledge

encompassing the most relevant non-functional requirements and the testing

approaches used to assess them. The findings presented in this chapter helped

to define the scope of this thesis. Methodological issues regarding the of two

structured literature reviews performed and the data analysis are also

presented.

 Chapter 4: A Perception of the State of the Practice of Security and

Performance Verification – it starts describing the methodology followed by the

case study that supports the presented findings. Next, it presents the security

and performance verification practices used by software development

organizations. These findings come from a case study research and show a

characterization of the practices regarding their techniques, the definition of

done, automation level, and asset covered. Besides, it presents the decision-

making criteria related to verification practices.

 Chapter 5: Moderator Factors of Security and Performance Verification – this

chapter presents the methodology of performed research methods (case study,

14

rapid reviews, and survey). Next, it presents moderation factors that influence

the verification of security and performance. Such moderation factors emerged

from observations of the practice (case study), and then they were later

confirmed through technical literature (rapid reviews) and practitioners’ opinions

(survey).

 Chapter 6: Conclusion – This chapter presents the final considerations of the

thesis highlighting the research contributions. Besides, it describes the threats

to validity and indicates possible future works.

15

2 From Non-Functional Requirements to

Security and Performance Verification:

Essential Definitions and Perspectives

This chapter presents the main concepts of the thesis, trying to bring

the reader to our perspective. It is crucial owing to the lack of

consensus regarding such fundamental concepts. In this way, the

chapter presents a discussion about non-functional requirements,

showing issues regarding this classification. Besides, it presents the

concepts of software verification, software security, and software

performance.

2.1 Shortcut to main concepts

Table 1 presents the main global concepts adopted by this work, and the next

sections provide the reasoning that led to the adoption of these.

Table 1 - Main concepts index

Concept Adopted definition

Functional requirement

Describes properties1 related to the problem domain,

specifying functions that a software system must

perform.

Non-functional requirement
Describes properties that define conditions2 for the

software system.

Software security

A kind of non-functional requirement. It represents the

capability of a software system to protect information

and functionalities while allowing authorized users to

access information and functionality they have

1 “a quality or trait belonging and especially peculiar to an individual or thing” [Merriam-
Webster.com 2019a]
2 “a restricting or modifying factor” [Merriam-Webster.com 2019b]

16

permission.

Software performance

A kind of non-functional requirement. It represents the

capability of a software system to provide data and

functionalities using specified resources and time.

Software verification

A set of activities performed during the software

lifecycle aiming to identify discrepancies between what

was specified and what is accomplished. It

encompasses two different groups of activities: testing

and reviews.

Software testing

Dynamic technique aiming to identify software failures.

Dynamic means the artifact under testing must be

executed.

Software review
Static technique aiming to identify software faults. Static

means the artifact reviewed is not executed.

Security verification
A set of activities aiming to identify failures and faults

related to the security of a software system.

Performance verification
A set of activities aiming to identify failures and faults

related to the performance of a software system.

In addition to the concepts previously presented, other specific concepts are

also crucial for a better understanding of this thesis.

 Asset: The part of the system covered by the verification practice, e.g., the

source code is an asset regarding static code analysis. It is not defined as an

artifact because the verification may target the running system, which is not

an artifact.

 Attack: The steps a malicious entity performs to the end of turning a threat

into an actual corruption of an asset’s properties. Usually, this is done by

exploiting a vulnerability. A user who does not have the explicit intention to

violate the system can also perform an attack if it performs harmful steps

inadvertently.

 Defect: a general concept used as a synonym for Failure or Fault. The term

‘vulnerability’ represents a security defect (or fault).

17

 Definition of done, acceptance criteria, or stop criteria: overlapping

concepts. The definition of done is used as a criterion to conclude a

verification activity.

 Exploit: From the perspective of an invader, it is a concrete malicious input

making use of the vulnerability in the SUT aiming to violate the property of an

asset. From the perspective of the verification team, it is a good test case to

identify a software security failure.

 Failure: the inability of a system or component to perform its required

functions. A manifestation of a Fault.

 Fault: an incorrect step, process, or data definition in a computer program. A

Vulnerability represents a security Fault.

 Invader, malicious user, or cracker: a person who has the explicit intention

to exploit the software vulnerabilities. Usually, invaders have great expertise

in computation.

 Malicious insider: a specific kind of invader having privileged information

about the software.

 Mistake: developers' action that introduces faults in a software artifact.

 Performance mechanism: a software component aiming to increase

performance capability. The use of cache technology is an example of a

performance mechanism.

 Security mechanism: a software component aiming to protect the software

against attacks. The authentication functionality is an example of a security

mechanism.

 Threat: the potential cause of an undesired incident that harms or reduces

the value of an asset. For instance, a threat may be a hacker, power outages,

or malicious insiders.

 Verification practice: what is performed for supporting verification, e.g., unit

testing and source code inspection.

 Vulnerability: designate security-related faults.

2.2 A perspective about non-functional requirements

Software systems are developed to meet a goal, a purpose. For instance,

manage banking transactions, solve civil engineering calculations, or control

18

autonomous vehicles. Therefore, software systems should have a set of properties that

lead them to achieve such goals. In the context of software development, such

properties are named software requirements.

IEEE 610.12 [1990] provides a widely known definition of a software

requirement:

(1) A condition or capability needed by a user to solve a problem or
achieve an objective.
(2) A condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard,
specification, or other formally imposed documents.

The presented definition leads to the perception that requirements always arise

from the users’ needs or a formal document. However, requirements may arise from

other stakeholders (e.g., technical staff) [Aurum and Wohlin 2005], or they can

represent technical constraints. Despite, such technical constraints may conflict with

users’ requirements.

Therefore, this work extends the IEEE 610.12 [1990] concept of software

requirements so that it is not relevant from who or what the requirement arises. Thus,

requirement represents properties specifying a system capability or a condition

a system must meet.

The set of a system’s properties may be numerous, requiring a large number of

requirements to represent them. Besides, the properties may be heterogeneous so that

requirements may be classified in different ways. Thus, there are different classification

proposals of software requirements [Glinz 2007] [Boehm and Kukreja 2015].

However, this work adopts the classification that split the requirements between

functional (FR) and non-functional requirements (NFR). Despite some criticisms

regarding that classification, it is widely used by researchers and practitioners, easing

the understanding of this work. Thus, it supports the decision to choose this

classification.

Additionally, it is essential to note that there is no consensus definition for RF

and NFR. In this way, this work adopts the definitions proposed by IEEE 610.12 [1990],

but evolving them based on the discussions presented by Afreen et al. [2016], Glinz

[2005], Chung and Leite [2009], Broy [2015], Boehm and Kukreja [2015], and Eckhardt

et al. [2016].

19

A functional requirement describes properties related to the problem

domain, specifying functions that a software system must perform. For instance,

“The system should allow users to obtain a monthly bank statement.” It is important to

note that an FR always represents a property of the product at runtime.

A non-functional requirement describes properties that define conditions

for the software system. For example, (1) “The bank statement should be displayed

to the user in a maximum of 4 seconds” or (2) “The system’s methods should not have

more than five cyclomatic complexity.” It is important to note that an NFR can represent

a property of the product at runtime (1) at the development phase (2).

Some authors understand the NFRs as a more general class, encompassing a

broader range of system properties. Sommerville [2011] understand that NFRs may

represent properties of the product, organizational, or external. Within this kind of

understanding, properties such as ‘price,’ ‘cost,’ and ‘time to produce’ can be classified

as NFRs [Becha and Amyot 2012].

However, this work aims to deal with the product-related NFRs only, both those

representing runtime and development time properties. Such limitation is significant

because it is not possible to observe the properties that are not directly related to the

product through verification activities.

2.2.1 Functional vs. non-functional requirements: a dangerous but widely used

classification

The core issue regarding FR-NFR classification is that it is an exclude-based

classification. In this case, the class representing FR is well defined, but the class

representing NFRs encompasses every requirement that is not a functional

requirement.

An analogy can be used for a better understanding of this issue. Imagine a

classification of the existing auto-vehicles (Figure 2). If the auto-vehicles is classified

into the classes “Cars” and “Non-cars,” the first class will encompass elements that

should have similar pre-defined characteristics (four wheels, a road vehicle, and

others). However, the second class will contain elements with distinct characteristics,

since there is not a set of pre-defined characteristics defining that an element belongs

to this class, but the single criterion an auto-vehicle needs to belong to the class “Non-

cars” is not to be a car (exclusion-based classification).

20

Figure 2 – Auto-vehicles classification analogy

In order to solve this issue, it is necessary to replace the class created by

exclusion (“Non-cars”) with other classes that specify well-defined characteristics to its

elements - for instance, replacing the “Non-cars” by the classes “aircraft” and

“watercraft.”

Similarly, it is essential to note class NFR should be divided into other classes,

allowing a better classification of the requirements of a software system. In this way,

Figure 3 shows a more suitable classification of the requirements within two abstraction

levels.

Therefore, class FR is subdivided into only one class (Functionality) so that it

encompasses requirements representing software functionalities related to the problem

domain. Class NFR is subdivided into seven classes so that each one encompasses

requirements representing conditions related to a specific quality attribute. For

example, the class “Performance” encompasses requirements representing conditions

related to the response time of the system.

Figure 3 - FR-NFR classification level of abstraction

21

2.2.2 The importance of NFRs and the lack of suitable supporting technologies

If compared with previous software systems, contemporary software systems

require a more significant and heterogeneous set of properties to their success. The

NFRs, such as interoperability, portability, usability, performance, and security,

represent these properties, and so the importance of NFRs is increased.

Such reasoning let us coin two hypotheses: (I) NFRs represent the most

important properties of a software system, and (II) there are not suitable testing

techniques to handle such NFRs. However, this initial perception could be a

researcher's bias caused by his contextualized development experience, and it might

not be a reality in other projects.

In this way, an ad-hoc literature review was performed aiming to identify if there

is an overall perception of the NFRs' importance and if there are suitable techniques to

handle such NFRs. Table 2 highlights the main assertions that led to the hypotheses

confirmation, and afterward, we provide descriptions of the included papers.

Table 2 - Assertions regarding NFRs importance and the lack of technologies

Importance of NFRs

Compliance with FR is not enough [Ebert, 1998].

RNFs are as important as RF [Ameller et al. 2013].

The NFRs have a global and multiplicative influence on the system [Boehm and Kukreja 2015].

The economics of a software product is related to the RNFs [Barney et al. 2008] [Berntsson

Svensson et al. 2009] [Boehm and Kukreja 2015].

Non-compliance to NFRs harms the user experience [Baltes et al. 2015].

Compliance with NFRs is essential to keep the software systems alive along the time. It is

necessary for the economic viability and ongoing functioning of the organizations and

segments of society that depend on those software systems [Carroll et al. 2015].

Lack of suitable technologies targeting NFRs

Inadequate Verification & Validation technologies targeting NFRs [Borg et al. 2003] [Ameller et

al. 2012] [Hammani 2014] [Larsson et al. 2016] [Camacho et al. 2016].

Unsuitable technologies to identify, document, and manage trade-offs of the NFRs [Chung et

al. 2000] [Borg et al. 2003] [Svensson et al. 2010] [Ullah et al. 2011] [Hammani 2014].

Lack of technologies to estimate the cost of NFRs [Svensson et al. 2010].

FRs drive most technologies to system design [Chung et al. 2000].

22

2.2.2.1 The importance of the NFRs

Ebert [1998] discussed the importance of NFRs to the success of a software

product. He states that even if a system meets the FRs, it could present a set of

operating issues such as a large number of failures.

 Barney et al. [2008] performed a case study aiming to identify the factors used

to prioritize requirements. This study concluded that the value of a software product is

directly related to NFRs.

In a study encompassing five software development organizations, Berntsson

Svensson et al. [2009] concludes the NFRs are essential for software products to

achieve their goals. They got statements like “If the product is not usable, we will not be

able to sell it.”

A survey aiming to identify the opinion of developers and practitioners regarding

the importance of NFRs compared to FRs. Among 31 valid answers, 21 participants

considered NFRs as important as FRs, and 4 participants considered NFRs more

important than FRs [Ameller et al. 2013].

According to Baltes et al. [2015], a software system that does not meet the

NFRs presents critical failures as they corrupt the user experience, reduce the system

performance, and result in loss of computing resources.

The NFR effect on the system is system-wide because one NFR can make an

influence in a set of FR. For example, if the maximum response time of 1s is defined

globally, every FR of the system should meet such response time condition. Besides,

the effect of NFRs on the system cost is multiplicative. In a real example, changing the

maximum response time from 1 to 4 seconds reduced the cost to build the software

from $100 million to $30 million. In this example, it was possible to show that a

response time of 4 seconds was acceptable for 90% of the transactions and achievable

via industrial technology. Thereby, the use of an expensive custom technology was

avoidable [Boehm and Kukreja 2015].

The (non-)compliance with NFRs can result in consequences beyond the

software system boundary. For instance, the maintainability is essential to keep a

software system operational and valuable for a long time. Besides, the long life of

software systems is essential for the viability and ongoing functioning of organizations

and segments of the society that depend on those systems [Carroll et al. 2015].

Therefore, it is possible to conclude that the importance of NFRs is a consensus

between researchers and practitioners.

23

2.2.2.2 The lack of technologies targeting NFRs

According to Chung et al. [2000], most of the conventional approaches to

design software systems are guided and prioritized by RFs, although some approaches

include NFRs in a non-systematic way and often do not documenting them.

Consequently, NFRs are seen more because of development decisions than a goal to

be achieved.

Borg et al. [2003] presented the findings of a case study showing the software

development organizations face difficulties in identifying NFRs because requirements

gathering phase focus on RFs. Thus, NFRs documentation is often vague. Besides,

NFRs management is insufficient and sometimes missing. Regarding the testing

phase, they conclude that to evaluate RNFs is a challenge because of their nature and

the way they are represented (non-measurable). Thus, NFRs testing is sometimes an

impossible or time-consuming activity.

 Svensson et al. [2010] presented the findings of a literature review aiming to

identify experimental studies of NFRs management. Such a study concludes that there

is no clear view of how to elicit NFRs; some NFRs are inaccurately specified, impairing

their assessment; only one of the approaches found presented a way to estimate the

cost of NFRs. Additionally, another literature review aiming to identify challenges

regarding NFRs elicitation concluded that most of the techniques that handle NFRs are

partial and incomplete [Ullah et al. 2011].

Ameller et al. [2012] performed a set of structured interviews with software

architects. The researchers concluded that the users understand the importance of the

NFRs in the final product. However, during the requirements gathering phase, the

users do not mention this kind of requirement. Besides, most of the respondents said

that they do not document NFRs, and the NFRs assessment (verification & validation)

is subjective.

Hammani [2014] published the findings of a literature review regarding

approaches to modeling NFRs in the context of software product lines. The identified

approaches addressed specific NFRs (reliability and performance), excluding important

NFRs, and most of them were initial proposals of limited tools.

Larsson et al. [2016] highlighted five challenges of NFRs testing: (1) changing

NFRs documentation because NFRs evolve according to system understanding

increase; (2) Managers need to understand the business because NFRs cannot be

interpreted in isolation; (3) NFRs are not quantified, impairing assessment; (4) NFR are

24

not prioritized; (5) challenge to generate test cases data to simulate the possible

system production time states.

Finally, Camacho, Marczak, and Cruzes [2016] performed research aiming to

characterize how agile organizations are conducting NFRs testing. The researchers

identified seven factors influencing NFRs testing activities. (1) Priority – focusing on

NFR depends on the moment, business priority, budget, feature characteristic. (2) Time

pressure – it is a factor to define testing priority, and FR testing takes the prioritization

over NFR in case of time pressure. (3) Cost – if the cost of NFRs testing is higher than

the cost of a failure, it is unfeasible. (4) Technical issues – representing the lack of

techniques addressing NFRs and the lack of awareness about their importance. (5)

Awareness – every stakeholder should be aware of the importance of NFRs. (6)

Culture – it is related to the default developers’ habits. (7) Experience – the most

experienced team members defend NFRs testing.

Therefore, the above-presented challenges reflect the lack of technologies

addressing NFRs during every phase of the software life cycle.

2.3 Software security

First, it is crucial to understand that the term 'software security' refers to a

different concept of 'security software.' Security software is a kind of software system

that aims to protect other systems against security issues — for example, firewalls,

antivirus, antispyware. This thesis does not intend to address such kind of software

system. This thesis address security as a software property, classifying security as an

NFR. Therefore, this research is about software security.

Software security or security engineering is the idea of engineering a software

system so that it keeps working correctly even under malicious attack [Mcgraw 2004],

i.e., how to use software engineering to build secure software. Thus, it is essential to

provide the meaning of the term security.

This thesis adopts the definition of ISO-25010 [2011] so that security is a

capability of the software to protect information and functionalities while

allowing authorized users to access information and functionality they have

permission.

Additionally, security may be broken down in other more specialized NFRs,

despite there is no consensus regarding the NFRs composing security. Therefore, an

25

ad-hoc literature review was performed to identify the NFRs composing security

[McDonald et al. 2006] [ISO/IEC 25010 2011] [Stallings et al. 2013] [Felderer et al.

2016].

 Authenticity: software capability to recognize that the claimed identity of an

entity3 is true.

 Availability: software capability to guarantee timely and reliable access to data

and information services for authorized uses.

 Confidentiality: software capability to not disclose information to an entity that

does not have access permission.

 Integrity: software capability to ensure that information and the system itself is

changed only by entities having the correct access permission.

 Non-repudiation: software capability to provide mechanisms to prove the

actions and events so that they cannot be denied.

 Accountability: software capability to provide mechanisms allowing the

performed actions could be assigned to only one entity.

2.4 Software performance

Performance is a low complexity NFR as it is easy to understand and observe.

However, it is identified as one of the most critical NFR [Ribeiro and Travassos, 2016].

In this thesis, performance is the capability of a software system to provide data

and functionalities using specified resources and time.

Performance encompasses three more specialized NFRs representing the

dimensions of time, resources, and usage intensity. The NFRs composing performance

were identified through an ad-hoc literature review [Vara et al. 2011] [Daud and Kadir

2012] [Soares et al. 2014] [Mairiza et al. 2010] [Ameller et al. 2016] [Caro et al. 2008]

[Becha and Amyot 2012] [Ermilov et al. 2014].

 Resource consumption: software capability to provide data and functionalities

using the specified amount of resources. Usually, the resources are related to

3 Users, process, systems, resources, messages, transmissions

26

hardware, such as memory usage, CPU, and disk storage. However, other

kinds of resources can also be considered, for example, papers used in prints

or the amount of printer ink.

 Time behavior: software capability to provide data and functionalities obeying

specified time constraints. For instance, it encompasses the time from a request

to a response, the processing time required by a functionality, time to

communicate with other systems or devices.

 Scalability: software capability to maintain the specified performance when

used under high demand. For example, a system must use the specified

amount of memory and response on time, even when a significant number of

users are using it.

2.5 Software verification

Despite the software development technologies evolution (methodologies,

methods, supporting tools, process), it remains an intensive human activity, so that

software development is error-prone. For example, the development of a software

product is divided into phases: requirements, design, coding, and assessment. Each

phase generates a model representing the software (requirements document, UML

diagrams, source code) so that the next phase uses the previous model, evolving them

to represent a more detailed view of the software system. The creation of the models

representing the system and the transformations of such models depend on the

knowledge and interpretation of the development team - being an error-prone activity.

Software engineering provides technologies to support software development

activities aiming to produce software that meets their goals (avoiding failures), on time

and cost. However, such technologies are also performed by humans so that the risk of

mistakes is imminent. Therefore, software engineering contemplates a topic aiming to

mitigate such risk - Verification and Validation (V&V) [Sommerville 2011].

The validation aims to assess the system regarding users' needs, that is,

assess if the correct system was built. They are essential activities because failure-free

software can be built, but if it does not meet users' needs, then it is useless [Delamaro

et al. 2007]. However, validation activities are not the subject of this thesis.

The verification aims to assess if the built software system meets its

requirements, that is, assess if the system was built correctly [Sommerville 2011].

27

Verification techniques are classified regarding the need to execute (or not) the

software. The dynamic techniques are those requiring software execution, and they are

named software testing. The static techniques do not require the execution of the

software, and they are named software reviews.

At this point, it is essential to advertise that some practitioners are misleading

such classification as they coined the concept of static testing. For example, they are

classifying automated code analysis as a static testing technique because there is a

software running. However, what is running is the code analysis tool, not the assessed

software. Besides, such techniques could be manually performed. Therefore, what

some practitioners are naming static testing is an automated software review.

2.5.1 Software review

Software reviews are static verification techniques aiming to identify defects on

software artifacts (e.g., requirements document, design diagrams, source code). They

are classified as static techniques as they do not require the execution of the software.

The inspections stand out among the other review categories because they have a

rigorous and well-defined process for defect identification [Fagan 1976].

The cost of defect fixing increases according to software development progress

[Boehm 1984]. Therefore, the reviews are important activities as they can detect

defects since initial phases of software development. Besides, researchers are

showing that the reviews decrease the global development effort [Conradi et al. 1999],

time [Gilb and Graham 1993], and cost [Laitenberger and Atkinson 1999]. It can also

increase productivity as Russell [1991] reported: for each hour of inspection activity,

there was a reduction of 33 hours of software maintenance.

The traditional inspection process developed by Fagan [1976] includes the

phases overview, preparation, inspection, rework, and follow-up. Besides, the

participants of inspections are moderators, authors, or inspector.

In the overview, an optional phase, the authors present the characteristics of

the artifacts to the inspectors. Following, in the preparation phase, the inspectors study

each of the artifacts to gain an understanding of it. Errors can be found, but not as

many as will be found at the next phase. The inspection phase involves all team

members. A reader reads the artifacts, and the other members can stop the reader and

raise any issues they have discovered. Next, in the rework phase, the author of the

28

artifact fixes the identified defects. Finally, the moderator assesses the quality of the

fixed artifacts defining if a new round of inspections is needed.

Since then, the process of inspection has been evolving, and the significant

change is that some authors do not consider the correction of a defect as part of the

inspection [Macdonald and Miller 1995] [Kalinowski 2011].

2.5.1.1 The importance of reviews in the context of this thesis

Non-functional requirements represent different properties of a software system,

and some NFRs are not observable during software runtime. For instance, it is

unfeasible to observe the maintainability of the software by operating it. Consequently,

it is essential to use static techniques to assess the software to enable the observation

of NFRs (or a piece of the NFR) that are not visible at runtime.

Besides, there are other benefits of reviews as they can look for defects since

initial phases of software development (Section 2.5.1). Therefore, they are essential to

the verification of security and performance requirements.

2.5.2 Software testing

Software testing is a dynamic verification technique as it requires the software

execution. Testing aims to identify software failures running a piece of software that

contains faults. By knowing the failures, it is possible to identify their cause (fault)

through the software debugging activity.

Software testing by itself does not increase software quality because it does not

include the activity of fault fixing. However, it is reasonable to say that software testing

contributes to software quality because the identification of failure is the first step to fix

a fault [Delamaro et al. 2007].

Six phases constitute the software process: planning, design and

implementation, environment set-up, execution, and incident reporting [ISO 29119-2

2013].

The planning phase includes the creation of a testing plan specifying the testing

project scope, testing strategy, schedule, and necessary resources.

29

At the design and implementation phase, the test cases and test procedures are

built based on artifacts (e.g., requirements document, design diagrams) and the

techniques previous defined at the test plan.

The environment set-up phase contemplates activities aiming to create and

maintain the testing environment, for instance, defining the starting parameters of the

software and the initial database data.

Next, the execution phase consists of the execution of the test procedures in

the configured environment.

Finally, at the incident-reporting phase, the incidents are reported to key

stakeholders. The identified issues are classified as incidents as they can be false

positives. Besides, it is essential to note that the software testing process does not

include a fault correction phase.

2.5.2.1 The importance of testing in the context of this thesis

Despite the effectiveness and efficiency of the review techniques, they have

some weaknesses, and thus, they cannot replace software testing.

Reviews techniques are not suitable to identify some defect categories [Basili

and Selby 1987] [Myers 1978] [Wood et al. 1997]. Besides, inspectors can make

mistakes during the application of a review technique. Additionally, it is only possible to

ensure a system is meeting an RNF through its running. For example, the inspection of

source code can detect structures impacting the system response time, but the real

response time of the system is observed only through the system execution.

Therefore, software testing and reviews are complementary techniques so that

when they are combined, the possibility of defect detection increases.

2.5.3 Verification strategy

The software verification activities may consume a significant amount of project

effort, budget, and time. Thus, if such activities are not conducted with some formality

or criterion, then they may lose their effectiveness regarding defect detection capability,

becoming a waste of resources. For example, using unsuitable methodologies for

30

software testing results in an annual loss of USD 59.5 billion to American society [NIST

2002].

Consequently, a verification strategy is essential because it helps in the

definition of the most suitable way to perform the verification activities so that such

activities can perform efficiently and effectively.

This thesis adopts the concept of the strategy proposed by ISO-29119 [2013],

using six dimensions to define a software verification strategy (Figure 4): type, level,

technique, the definition of done, practice, automation level.

Figure 4 - Software verification strategy scheme – Adapted from ISO-29119 [2013]

 Verification sub-process: a sequence of activities used to perform a specific

type or level/phase of verification.

 Type: a set of verification activities for a specific quality attribute (non-

functional requirements, including functionalities). The type is a sub-

process because it is possible to define specific configurations of a

strategy according to it. For instance, it is possible to define a strategy in

31

which the security verification should include the unit and integration

testing levels, but the performance verification should include only the

unit testing level.

 Level/phase: it defines the granularity of the verification (unit,

integration, system), and it is a specific instantiation of the test sub-

process. For example, it is possible to define a strategy in which the unit

test level should use structure-based techniques, but the system testing

level should use specification-based techniques.

 Verification technique: activities, concepts, standards, or process used to (1)

identify assessment conditions to a software asset, (2) derive corresponding

test coverage items, and (3) derive or select test cases. Boundary value

analysis, equivalence class partitioning are examples of testing techniques.

Examples of review techniques are OORTs (Object-Oriented Reading

Techniques) [Travassos et al. 2000] and the techniques proposed by Conte et

al. [2007].

 Definition of done: it represents criteria defining that verification activities are

finished. Usually, the definition of done criteria is the verification coverage, the

number of defects identified at the last verification battery, project budget, or the

schedule.

 Practices: it is the theoretical framework used for decision-making regarding

verification activities. Informally, it is the philosophy that the organization will

base verification strategies. Examples of types of practices are specification-

based, risk-based, model-based, and mathematical based.

 Automation level: it defines whether a verification activity should be performed

manually or automated. In the case of automation, it includes the identification

of the supporting tools. Examples of supporting tools are verification

management tools, testing execution tools, and static code analysis tools.

It is important to note that a strategy may be defined based on the Type or the

Levels/Phases. If based on the Type, the team select the set of requirements (e.g.,

usability, performance, security) should be assessed and then defines the verification

Levels, Techniques, Definition of done, and Automation level for each verification Type

(quality attributes such as security and performance). The second option is to define

the verification Levels/Phases and then define the verification Type, Techniques,

Definition of done, and Automation level. These two ways to define a verification

strategy have the same result. However, the reasoning to get the strategy is distinct.

32

Besides, these strategy dimensions were used in the case study presented in

this thesis aiming to characterize the practices employed on security and performance

verification.

2.6 Security and Performance verification

The security verification aims to identify defects (faults and failures) that make

the software violating security requirements, including the sub-requirements

authenticity, availability, confidentiality, integrity, non-repudiation, and accountability. In

the same vein, performance verification aims to identify defects that cause the software

to not meet performance requirements (including resource consumption, time behavior,

and scalability).

Therefore, security and performance verification is a Type of verification, and

they can benefit from the already consolidated knowledge of the verification area. For

instance, it is possible to use the same conceptual framework in a verification strategy

(section 2.5.3) to evaluate a functional requirement and to evaluate the security (or

performance) of a software system. Thus, it may be a mistake to discard all experience

of software verification and to handle security and performance assessment as a topic

unrelated to it.

It is important to emphasize that the content that composes the conceptual

structure must be specific to the requirement in evaluation. What should be used is the

conceptual structure and not its content. For example, the technique for test case

selection named boundary value analysis aims to identify functional defects. Therefore,

this technique should not be used to assess security or performance. However, it is

necessary to use a specific technique to select test cases for security and

performance.

2.6.1 Security verification challenges

The security requirement has some characteristics that make its verification

painful. For example, it is hard to observe the security of a software system because it

33

should be invisible to the end-users. It is easier to observe the insecurity of software

because the failure consequences are visible to the end-users.

For instance, users do not know if their passwords are being stored encrypted

or not. They only find out their passwords are stored in plain text after an invader

publishes them.

Thus, the intrinsic characteristics of the security NFR impose some challenges

to security verification [Ribeiro 2017].

 Challenge 1: Deep technology expertise

Security is related to the solution domain because it is an NFR. Thus, the

technologies employed in software building have a direct influence on their security.

In this way, the effectiveness of security verification requires expertise in the set of

technologies used to build it. For instance, when inspecting a source code of a

system built with the C language, the inspector needs to know the details of the

language to identify code patterns that can lead to buffer overflow failures.

However, this concern does not have the same priority in languages that do not

directly manipulate memory, such as Java or Python.

Since the set of technologies used to build software can be numerous, the need for

deep expertise of each of the technologies is a challenge for security verification

activities.

 Challenge 2: Explicit invader intention to cause a failure

Every day, users hope the software correctly works so that they can take

advantage of its functionalities. However, the invader has the explicit intention of

causing failures. Additionally, the attacker usually has computer knowledge and

uses this knowledge as an advantage. For instance, a user operates the software

using its default interface. However, the invaders look for alternative ways to

interact with the system, such as using hidden web form fields, disabling browser

JavaScript validations, or using malicious tools.

Therefore, the security team should be updated regarding invasion methods to

protect the system against them.

 Challenge 3: Lack of security requirements specification

The lack of security requirements description or the existence of imprecise

descriptions has a negative influence on verification activities. The requirements

34

are the oracle for the verification activities. Therefore, without an oracle, it is not

possible to asses if the software behavior is correct.

 Challenge 4: Security verification coverage

The verification coverage is regarding the parts of the software should be embraced

by verification and the intensity of it. The challenge is to know what the suitable

coverage is so that there is a balance among employed resources and the defects

remaining.

In this respect, developers have a disadvantage if compared with the invaders. The

developers need to find as many defects as possible, and the invaders only need to

find a vulnerability (defect) to misuse the system and its information.

 Challenge 5: Lack of secure development culture

Software development organizations do not have secure development as a culture.

They are probably influenced by the past, when systems were not made available

over the internet, preventing access by a large number of malicious users. The

security verification is neglected, or it is only performed when the software is in

production, jeopardizing the identification of the defects.

2.6.2 Performance verification challenges

It was possible to identify two challenges of performance verification. The first

one regarding the verification environment and the second is related to intensive

software demand.

 Challenge 1: set-up an isolated verification environment

Regarding the environment, the organizations' first challenge is to replicate the

configuration of the production environment in the verification environment. The

servers running the system at production time are often powerful and consequently

expensive. Thus, it becomes financially unfeasible to replicate such configuration in

the verification environment.

Besides, the performance verification often uses the standard infrastructure of the

organization (e.g., network, switches, routers). It can impact the results of

35

performance verification because a device may be overloaded due to requests from

other users of the infrastructure.

 Challenge 2: reproduce a significant amount of requests

One of the performance activities goals is to assess software behavior when it is

massively being used, for example, when numerous users are operating the

software. Performing such kind of assessment, the verification team uses a

computer (or a few) to simulate requests against the system (agents). Each agent

can simulate tens, hundreds, or thousands of users operating the software.

However, the performance discrepancies found by this kind of testing can be

results of computational resources limitations of the agents and not performance

failures of the system under evaluation.

36

3 Testing Non-Functional Requirements: A Body

of Knowledge

This chapter presents a body of knowledge, including the most

relevant non-functional requirements and the testing approaches to

assess them. The knowledge used to build the body of knowledge

arose from the findings of two structured literature reviews. The body

of knowledge represents a significant achievement of this research

as it was used to direct the research objectives.

3.1 The methodology supporting this chapter

The findings presented in this chapter result from two structured literature

reviews described in the following.

3.1.1 A literature review on the relevant non-functional requirements

LR1 followed the protocol presented in Appendix A. It aimed to identify the

relevant NFRs, searching for secondary studies or surveys presenting NFRs

mentioned as relevant by practitioners. It was carried out in March 2015, retrieving

papers from 1996 to 2015, and driven by the following research question:

 What are the most relevant non-functional requirements, according to

software practitioners?

Aiming to answer this question, it was built a search string with two parts — the

first one to filter systematic reviews or survey researches; the second part to limit the

search for non-functional requirements.

37

("systematic review" OR "systematic literature review" OR "systematic mapping" OR

"systematic investigation" OR "systematic analysis" OR "mapping study" OR

"structured literature review" OR "evidence-based literature review" OR "survey" OR

"review of studies" OR "structured review" OR "systematic review" OR "literature

review" OR "systematic literature review" OR "literature analysis" OR "meta-analysis"

OR "analysis of research" OR "empirical body of knowledge" OR "overview of existing

research" OR "body of published knowledge")

AND

("non-functional requirements" OR "non-functional software requirement" OR "non-

behavioral requirement" OR "non-functional property" OR "quality attribute" OR

"quality requirement" OR "software characteristic")

The search string was applied to the search engine Scopus so that 266 papers

could be found. After the search string execution, the primary author reads the title and

abstract of each paper, classifying them on Included or Excluded using the following

criteria:

 Inclusion criteria

 The paper must present a systematic literature review, a survey or a

similar study; AND

 The paper must Identify relevant non-functional requirements; AND

 The paper must express practitioners’ opinions, OR practitioners must.

 Exclusion criteria

 The paper is not available; AND

 The paper presents an already included study (duplicity).

Then, another researcher of this thesis analyzed the excluded papers set and

reclassified them on Included or kept it out. Table 3 shows the number of papers of

LR1. It is important to note that there is a paper manually included because the search

engine was not indexing correctly.

Table 3 - Amount of LR1 papers

Papers found Excluded Included Manual included Total included

266 252 14 1 15

38

The researchers analyzed the 15 included papers and extracted the following

information:

 Reference information: it aims to identify the paper by title, author, and

publisher;

 Abstract: it aims to contextualize the research when querying the form;

 Study type: it identifies the type of study, e.g., systematic literature review,

survey, along with others;

 System domain/type: it identifies the system type or domain in which the

research has been done;

 Non-functional requirements: it identifies the NFRs presented in the paper

and their description when presented.

At this point, we had the extraction form of each NFR. Analyzing extracted

information was possible to realize that some NFRs did not have a description. Thus,

for the sake of comprehensibility, the group of NFRs without description was not

considered at this point.

The next followed step relates to the understanding of each NFR to organize

them into a body of knowledge. However, it was possible to identify a lack of

agreement regarding NFRs' names and descriptions. Thus, to organize all described

NFRs, we performed open coding, as described in Grounded Theory [Corbin and

Strauss 1998].

Figure 5 shows an example of the resulting code on performance definition

where the first box is the final performance definition extracted from subject papers. For

instance, the highlighted text in blue associate performance on resource consumption

and the text of green color to time behavior.

39

Figure 5 - Open coding example

 Section 3.6 presents the body of knowledge (NRF-BoK) organized as a result

of this analysis.

The coding process allowed identifying a hierarchical structure of NFRs. Figure

6 shows the structure in which the class NFR represents high-level abstract system

properties such as Usability, Security, and Performance. These properties are

perceived through a set of Sub_NFR, which are also NFR but, they represent more

specific system properties such as Navigability (Usability), Confidentiality (Security), or

Resource Consumption (Performance). Moreover, some NFRs may own

Operationalization, which are features that must be present on the system for it meets

the NFR. For instance, the usage of an image compression algorithm is one

operationalization of Resource Consumption.

40

Figure 6 - Hierarchical structure of NFRs

3.1.2 A literature review on the non-functional testing approaches

The second structured literature review (LR2) followed the protocol presented in

Appendix B. It aims to identify proposed software testing approaches concerned with

NFRs and their testing covering. In this context, testing covering is regarding software

testing process phases, levels, and techniques of the proposed approaches. Unlike

LR1, LR2 does not look at other literature reviews because previous ad-hoc searches

do not retrieve that kind of study concerning testing approaches for NFRs. LR2 was

performed in March 2016, naturally retrieving papers from 1991 to 2015, and driven by

the following research question:

 What are the software testing approaches used to test non-functional

requirements?

Two parts search string was organized and submitted to the Scopus search

engine. The first section of the search string aims to limit the results to software testing

approaches, and the second one restricts the search to non-functional requirements.

("software test design" OR "software test suite" OR "software test" OR "software

testing" OR "system test design" OR "system test suite" OR "system test" OR "system

testing" OR "middleware test" OR "middleware testing" OR "property based software

test" OR "property based software testing" OR "fault detection" OR "failure detection"

OR "GUI test" OR "Graphical User Interfaces test" OR "test set" OR "non-functional

41

testing" OR "model based testing" OR "test case" OR "testing infrastructure" OR

"testing approach" OR "testing environment")

AND

("non-functional requirements" OR "non-functional software requirement" OR "non-

behavioral requirement" OR "non-functional property" OR "quality attribute" OR

"quality requirement" OR "software characteristic")

The filtering process followed a similar procedure as in LR1. The

inclusion/exclusion are:

 Inclusion criteria

 The paper should present a software testing procedure, technique, or

any other type of proposal about non-functional requirements software

testing.

 Exclusion criteria

 The paper is not available; AND

 The paper presents an already included study (duplicity).

Table 4 shows the number of papers of LR2. There were three papers manually

included because they were not directly available through the Scopus search engine.

Table 4 - Amount of LR2 papers

Papers found Excluded Included Manual included Total included

331 287 44 3 47

The 47 papers were analyzed using an extraction form with the following fields:

 Reference Information: it aims to identify the paper by title, author, and

publisher;

 Abstract: it aims to provide an overall idea of the paper subject;

 System Domain/Type: it indicates whether the approach is proposed to

specific software domain or type, e.g., embedded systems, telecommunication

systems;

 Test Phase: the coverage of the testing approach regarding testing process

phases: Planning, Design, Implementation, Execution, and Analysis;

 Test Level: testing granularity, with the options Unit, Integration, System,

Acceptance, Not Informed, and Not Applied;

42

 Test Technique: with the options Structural, Functional, Fault Based, Not

Informed, and Not Applied;

 Evaluation: it represents how the software testing approach has been

evaluated, e.g., proof of concept, experiment, case study, simulation, not

applied, and not informed. Evaluation values emerged from the subject papers;

 Non-Functional Requirements Considered: it represents the list of NFRs

considered by the software testing approach with their description.

After data extraction and analysis, the information regarding software testing

approaches was included in the NFR-BoK. Thus, besides including the relevant non-

functional requirements and their characterization, it also contains information about

which testing techniques are suitable to assess each of the NFRs.

3.2 Overview of the main findings and implications

Table 5 presents the main findings of two literature reviews and how they

influence the scope of this thesis.

Table 5 - Initial findings and their implications

Observed fact Implication

Identification of 224 NFRs

(1) Inadequacy to handle all these

requirements.

(2) Setting the research focus on the most

relevant: security and performance.

There are non-testable NFRs

(1) Software testing is not enough to

assess NFRs.

(2) Setting the research scope to software

verification (testing and reviews).

Identification of NFRs not covered by

testing approaches

(1) Identification of the need for new

approaches to assessing NFRs.

Testing approaches do not cover all

testing dimensions (phases and levels)

(1) Identification of the need for the

evolution of proposed approaches to

assess NFRs.

43

The significant amount of NFRs identified as relevant threw the warning

regarding the inadequacy to address all these requirements in the same research. In

this way, this research was directed to the two most quoted NFRs in the papers

included in the literature review (Section 3.3). Therefore, this thesis focused on security

and performance requirements.

Additionally, the initial findings showed that there are no approaches to evaluate

some NFRs, and there are incomplete approaches as they do not cover all testing

phases and levels. Such findings were essential to the initial hypothesis about the

importance and the need for researches related to NFR verification.

3.3 The relevant non-functional requirements: a literature

review

The initial overall objective of this research was to assist practitioners in

assessing NFRs. In this way, the first logical step was the identification of the most

relevant NFRs for these professionals. Thus, we performed a structured literature

review searching for works that had identified which NFRs were relevant to the

software industry. Appendix B presents the protocol of this literature review.

The literature review aimed to identify other literature reviews or surveys that

have collected the perception of practitioners about which NFRs are relevant to a

software system, having the following research question:

 What are the most relevant non-functional requirements, according to

software practitioners?

It was possible to include 16 papers and identify an amount of 224 different

names of NFRs. However, there were inconsistencies within the names of some NFRs

and the software property they represent — NFRs with different names having the

same definition (synonyms); and NFRs having the same name but presenting a

discrepant definition. For instance, fault tolerance [Sucipto and Wahono 2015] and

robustness [Bajpai and Gorthi 2012] have an equivalent definition, representing a

single software property. On the other hand, the name performance is used to

represent software properties related to resource consumption [Ameller et al. 2016] or

time behavior [Montagud et al. 2012].

44

Thus, merely counting the number of NFRs aggregating them by name would

be a careless attitude. For example, even if two papers present the performance as a

relevant requirement, it is not possible to conclude that performance has two citations.

Maybe one of the papers is talking about resource consumption and the other paper

about time behavior.

Within this scenario, it was necessary to analyze the description of every

identified NFRs and exclude NFRs without description due to the risk they represent.

Therefore, 87 NFRs having a description are considered. Next, the analysis of NFRs

descriptions allows the aggregation of some synonyms, resulting in 60 unique NFRs

(Table 6).

Table 6 - Amount of identified NFRs

Identified NFRs 224

NFRs without description 137

NFRs with description 87

Unique NFRs 60

Table 7 presents the set of unique NFRs hierarchically organized by the number

of papers citing them.

Table 7 - The set of relevant non-functional requirements

NFR Sub-NFR Description

Security

System capability to protects data or resources from people or other

systems that do not have access permission, providing correct

access level from people or other systems that have access

permission. It means that the system must have the capability to

continue providing essential services even under attack.

Confidentiality

System capability to allow only users with an

appropriate access level to access resources

(data, print, services, etc.), including data

traffic.

Auditability

The availability of auditing capability of

service invocations that can be traced to

specific users for logging and repudiation.

Vulnerability System capability to prevent attacks. It

45

means that the system must have the

capability to continue providing essential

services even under attack.

Performance

System capacity to provide functionalities using a specified amount

of resources and time

Scalability

System capability to maintain a required

performance when it is used in increasing

workload.

Resource

consumption

System capacity to provide functionalities

using a specified amount of resources.

Timeliness

System capability to provide data and

functionalities "on time." It means the

system's capability to provide data and

functionalities within the time constraints

specified by the destination organization.

Usability

It comprehends how users can easily operate and control software

systems.

Understandability

System capacity to provide clear ways to

users to understand the goals and data

provided.

Accessibility

Capability to be used by different people with

different capabilities, including people with

particular necessity.

Satisfaction User satisfaction in a specified context of use.

Learnability

System capability to enable the user to learn

how to use it to achieve specified system

goals.

Organization

The way that system works with data

organization, visual settings or typographical

features (color, text, font, images), and the

harmonious combinations of these various

components.

Attractiveness System capability to be attractive for users.

Reliability
Software capability to operate without failure under specified

conditions during a given period and the system capability to deal

46

with failures.

Availability

Represents how much time the system is

operating on the correct state (functional and

non-functional) delivering its services.

Recoverability

System capacity to return to the operating

state after some damage (e.g., network

failure or system failure).

Fault tolerance

System capability to adapt to keep

operational and performance level in the

presence of environment and software faults.

Maintainability

Represents the capability of the system to be effectively and

efficiently modified by the maintenance team, specialized support

staff, business, or operational staff, or end-users. The modifications

can be changing functionality, bug fixing, system improvement.

Analyzability

System capacity to provide ways of

discovering deficiencies, causes of failures,

or identify parts to be modified.

Stability
System capability to avoid unexpected effects

from system modifications.

Portability

Related to a software infrastructure configuration defining settings in

which software should be executed.

Adaptability

System capability to adapt itself for different

specified environments, situations, or use

cases without applying actions provided for

this purpose.

Testability Defines how easy software allows being tested to expose its defects.

Functional

suitability

The capacity of the system to provide specified functions to enable

users to achieve specified goals with accuracy and completeness in

a specified context.

Accuracy
Degree of the proximity of a measured or

calculated result to its real result.

Completeness

Software ability to provide adequate functions

and data (breadth, depth, and scope) to do a

specified task.

Compatibility System capability to be operable sharing the same environment with

47

other systems or applications exchanging information with other

products, systems, or components.

Interoperability
System capability to interact with another

system.

Reputation The opinion of consumers toward a system.

Data quality

It is related to the quality of input and output data regarding the

accuracy, timeliness, data policy (how system behave concerning

the data it operates on or produces when it fails), and data integrity.

Data traceability

The extent to which data are well-

documented, verifiable, and easily attributed

to a source.

Data flexibility
The extent to which data are expandable,

adaptable, and easily applied to other needs.

Data trustability
The extent to which data and their sources

are accepted as correct.

Data expiration
The extent to which the date until which data

remain current is known.

Data novelty

The extent to which data obtained from the

system influence knowledge and new

decisions.

Information source

The extent to which information about the

author/owner of a web portal is delivered to

the data consumers.

Data specialization
Degree of specificity of data/information

contained in and delivered by the system.

Value-added
The extent to which data are beneficial and

provide advantages from their use.

Data Validity
The extent to which users can judge and

comprehend data delivered by the system.

Data reputation
The extent to which data are trusted or highly

regarded in terms of their source or content.

Price It is the fee that the consumer is expected to pay for a system.

Collaboration
System capacity to support collaborative work between different

users of the system.

Invisibility System capability to decrease user sensation of explicit use of

48

computer and exchanging the perception that objects or devices

provide services or some kind of “intelligence.”

Context

sensitivity

System capability to collect and use information from the

environment where it is being used to adapt dynamically to offered

services according to the environment where it is being used,

respecting its limitations.

Certification

Confirmation of specific characteristics of the system such as

affiliation, signature, specification, policy, standard, law, regulation.

Standards

compliance

The specification of what are the standards

that the system should be following.

Jurisdiction

Determines countries/territories for which a

service complies with national/territorial

regulations.

Configuration

management

System capability to provide information about the current

configuration and the changes applied to the configuration to every

stakeholder.

Service versioning

System capability to provide documentation

about the nature of changes for a system

such as an interface update, backward

compatibility, added or removed

functionalities, or fixed bugs

Documentation It is related to the quantity and usefulness of documents.

Currency The extent to which the system provides non-obsolete data.

Customer

support

System capability to provide some form of support, e.g., provide

support through text, e-mail, telephone.

Server location Defines a place in physical space that a system is installed.

Service

omnipresence

System capability to provide ways to allow users to move around

with the sensation of carrying computing service with them.

Function

composition

System capability to join services in a way that creates a service

required by the user.

49

3.3.1 Determining the testability of a non-functional requirement

The improvement of the knowledge about NFRs brought by the literature review

shows that some NFRs are not observable at runtime, and then they cannot be

assessed through software testing. Thus, NFRs can be classified as behavioral or

representational [Broy 2015], indicating if they can be assessed through software

testing:

 Behavioral NFRs: these requirements represent behaviors that the system

exposes at runtime, during their operation. For instance, "the system services

must respond to a request within 1 second (max)." Note that the response time

can be observed at run time, so it is a testable NFR.

 Representational NFRs: these requirements represent a syntactic or technical

system property. The observation of such properties does not require the

system execution, and it can be impossible to observe them at runtime. For

instance, "The system must be developed using the MySQL database." Note

that it may be impossible to assess if the system is using the MySQL database

at runtime because there are techniques to hide the technologies used in

software development. Therefore, this NFR is non-testable, but it can be

assessed through a static technique such as inspection.

3.4 Non-functional testing approaches: a literature review

After identifying the most relevant NFRs, another structured literature review

was performed to identify software testing approaches used to assess non-functional

requirements. Thus, combining previous literature review results (Section 3.3) with

these new results, it is possible to identify what are the relevant NFRs that do not have

suitable testing techniques to assess them.

It is important to note that the need to include static verification techniques

(reviews) within the scope of this thesis was perceived only after the execution of this

literature review. Thus, it focused only on testing approaches.

Appendix C presents its protocol. Besides, it uses the following research

question:

50

 What are the software testing approaches used to test non-functional

requirements?

It was possible to identify 47 software testing approaches to assess non-

functional requirements. Table 8 presents the testing approaches indicating the

publication year, system type, type of study used to evaluate, and the NFRs covered by

the approach.

Table 8 - Software testing approaches to assess NFRs

Year Domain/System type Evaluation Non-functional requirements

1 1999 Real-time distributed Proof of Concept Timeliness

2 2001 Web application Proof of Concept General Approach

3 2004 Service-Oriented Proof of Concept
Performance: Throughput,
Reliability

4 2005 Distributed component Proof of Concept
Performance: Latency, Throughput,
Scalability

5 2007 Component-based Experiment Performance: Time, Efficiency

6 2007 Component-based Proof of Concept General Approach

7 2007 General Case Study

Performance: Resource
Consumption, Time,
Reliability: Recoverability,
Interoperability

8 2008 General Proof of Concept
Performance: Timeliness, Process
capacity, Resource consumption,
Reliability

9 2008 Web Services Proof of Concept Reliability: Fault Tolerance

10 2008 Web Services Proof of Concept General Approach

11 2008 General Proof of Concept General Approach

12 2009 General Not applied

Performance: Execution Time,
Quality of Service
Security: Vulnerability
Usability: Navigability
Safety

13 2009 Component-based Experiment Performance: Time, Efficiency

14 2009 Embedded real-time Proof of Concept
Performance: Timeliness: Response
Time

15 2009 Distributed component Experiment
Performance: Response Time,
Processing Time

16 2009 Embedded Case Study General Approach

17 2009 Component-based Proof of Concept Reliability

18 2009 Web application Proof of Concept
Performance: Scalability, Timeliness,
Usability: Navigability

51

19 2009 Distributed component Case Study Performance: Response Time

20 2010 General Proof of Concept General Approach

21 2010 General Proof of Concept General Approach

22 2010 Web application Proof of Concept Security: Vulnerability

23 2010 General Experiment General Approach

24 2010 Object-Oriented Not informed General Approach

25 2010 Distributed Not applied

Performance: Timeliness, Scalability,
Security: Vulnerability,
Correctness: Avoid deadlock,
Checking conformance,
Reliability

26 2011 General Experiment Performance: Scalability

27 2011 Embedded Proof of Concept Performance: Response Time

28 2011 Reactive Proof of Concept Reliability: Fault Tolerance

29 2011 Embedded Proof of Concept Reliability: Fault Tolerance

30 2012 Not Specified Case Study Reliability: Fault Tolerance

31 2012
Rich Internet
Application

Proof of Concept Usability: Accessibility

32 2013 General Proof of Concept

Performance: Response Time,
Availability
Usability: Organization, Accessibility:
Interactive

33 2013 Service-Oriented Experiment

Security: Confidentiality, Integrity,
Authenticity,
Repudiation (non-repudiation)
Reliability: Fault Tolerance,
Availability

34 2013 Embedded real-time Experiment
Performance: Resource
Consumption

35 2013 Elastic Computing Simulation Elasticity: Plasticity, Resonance

36 2013 General Proof of Concept
Performance: Response Time,
Throughput

37 2013
Using ASTERIX
protocol

Experiment General Approach

38 2013 Interactive Proof of Concept Usability: Effectiveness, Efficiency

39 2013
Using the HTTP
protocol

Case Study Performance: Response Time

40 2013 DB2 Database Proof of Concept
Performance: Response Time,
Execution time

41 2014 General Proof of Concept Security

42 2014 Real-time Case Study General Approach

43 2014 Embedded Proof of Concept

Performance: Resource
Consumption, Timeliness,
Reliability: Fault Tolerance,
Security: Vulnerability

44 2014 General Proof of Concept
Performance: workload, timeliness,
think time, Rampup time, Startup
delay

52

Reliability

45 2015 Embedded Not informed Performance: Energy consumption

46 2015 Web application Proof of Concept
Performance: Response Time,
Throughput, Simulated workload
Security: vulnerabilities

47 2015 General Case Study General Approach

Besides identifying the testing approaches, some of their characteristics were

analyzed in order to improve understanding of such proposals. First, it was analyzed

the domain/system type of each testing approach. It is important because if a testing

approach is proposed to assess information systems, then the use of it to assess real-

time systems is risky. Figure 7 shows the number of approaches found for each

domain/system type. It is possible to observe that most of the approaches are generic,

as they are not proposed for a particular type of system. It is important to note that

some domains/system type could be grouped. For example, systems using HTTP

protocol are possibly a web application. However, it was decided to maintain the

original classification presented in the articles to avoid misunderstandings in future

evaluations of the proposed approaches.

Figure 7 - NFR testing approaches vs. domain/system type

Most of the proposed testing techniques were evaluated through a proof of

concept. It is a warning as that kind of study does not have strong confidence. In

practice, it means the use of such testing techniques in real scenarios is risky, and their

benefits are not well-understood. Figure 8 shows the number of techniques and how

they were evaluated. It is also important to note that there are four testing approaches

with the type of evaluation study as not informed.

53

Figure 8 - NFR testing approaches vs. type of evaluation

The effective evaluation of a software system should follow a systematic

process, be able to exercise the software in different stages of the development

lifecycle, and use appropriate techniques. Thus, the testing approaches were analyzed

concerning the phases of the test process, the levels of tests, and the type of technique

used.

Regarding the phases of the software testing process (Figure 9), most of the

testing approaches target the design and implementation phases, some of them target

the execution phase, and a few targets the implementation phase. Besides, there are

not testing approaches targeting the planning phase. It is worrisome because testing

activities consume most of the software development effort so that the lack of planning

can decrease the failure detection rate, resulting in wastage of the resources

employed.

54

Figure 9 - NFR testing approaches vs. testing process phase

Figure 10 shows the software testing levels covered by identified approaches.

Most of them are proposed to solve aspects related to the testing system level. It was

not possible to identify researches indicating which testing level is suitable for

evaluating NFRs. However, each test level is more effective in finding some specific

types of failures.

Figure 10 - NFR testing approaches vs. testing level

55

Regarding the testing technique of the identified approaches, most of them are

requirement-based (Figure 11). It means the approaches use the software

requirements as the base to plan and build software testing. This result is consistent

with previous results (testing level) because system-level testing often uses

requirement-based techniques. However, this may indicate risk in the application of

these approaches since NFRs are rarely adequately described [Matoussi and Laleau

2008].

Figure 11 - NFR testing approaches vs. testing technique

3.5 Combining the results of relevant NFRs and testing

approaches literature reviews

After finishing the literature reviews, it was possible to make a combination of

their findings. The result is the mapping of what are the most relevant NFRs without

corresponding software testing techniques. Figure 12 summarizes this matching, where

13 of 87 classified NFRs miss a software testing approach. The first number inside the

brackets is the number of papers referencing the NFR, and the second one is the

amount of software testing approaches dealing with the NFR.

56

Figure 12 - Relevant NFRs without software approaches

After, the combination was done in the opposite direction to identify the software

testing approaches dealing with less frequent NFRs. Figure 13 summarizes this result

in which seven approaches are proposed to less relevant NFRs. It is important to note

that there are not testing approaches covering correctness and elasticity, but they are

displayed to keep the hierarchical structure of the NFRs.

Figure 13 - Testing approaches to assess less relevant NFRs

There may be two explanations for explaining the existence of testing

approaches to assess NFRs of little relevance: First, the lack of clear research agenda,

causing researchers to focus on NFRs according to their self-interests. It means a

waste of resources, so that effort was expended in the creation of testing approaches

covering less relevant (low interest) NFRs. Second, these approaches could be

proposed for a specific context in which these less relevant NFRs are essential and

needed to be verified. However, it is not possible to claim any of them without more

comprehensive information from the researchers.

57

3.6 The body of knowledge of relevant non-functional

requirements and their testing techniques

A body of knowledge4 (NFR-BoK) consolidates the results of the two previous

literature reviews. The NFR-BoK presents detailed information about identified NFRs,

including the testing approaches that can be used to assess each of them. It is

organized as a wiki to facilitate user navigation. Figure 14 presents the relevant NFRs

so that by clicking on that the user can view a page of detailed information. The first

numerical character inside the brackets represents the number of papers that identify

the NFR as relevant, and the second represents the number of testing approaches to

assess it. For instance, six papers cite confidentiality as a relevant NFR, and there are

two testing approaches to assess it.

Figure 14 - NFR-BoK - Relevant non-functional requirements

The detailed information about each NFR includes the following attributes:

4 http://lens.cos.ufrj.br/nfrwiki

58

 Definition: NFR definition. Usually, an NFR description explains some

system’s capability, e.g., performance: It is the system capacity to provide

appropriate use of resources (memory, CPU) needed to perform full

functionality under stated conditions;

 Synonyms: names having the same meaning, e.g., reliability is presented as a

synonym of dependability;

 Composed by: other NFRs that are part of the main NFR, e.g., scalability,

resource consumption, and timeliness compose performance.;

 Target object: system element through which the NFR can be observed.

Examples of target objects of the performance NFR: (1) system performance

(how the system is using memory during execution), (2) function performance

(what is the response time of specific function observing the messages among

system functions), (3) interaction with user performance (response time

observing user request and time until response);

 Observed through: how the NFR can be observed or how the software

exposes it. For instance, performance can be observed through resources

monitoring or time observation in execution time;

 Specification examples: suggest how to specify an NFR, e.g., usability can

be observed through user feedback;

 Operationalization: describes the mechanisms (system characteristics,

properties, or features) used to operationalize the NFR. An example of security

operationalization is to store the password encrypted;

 Risks: risks related to non-compliance with an NFR. For example, risks of no

compliance with availability requirement: loss of business opportunities or slow

productivity;

 It contains behavior NFR: defines if an NFR represents a software behavior,

e.g., “system services must response every request at most one second.”

Behaviors properties can be observed in execution time, therefore can be

tested;

 It contains representational NFR: represents syntactical or technical

software properties, e.g., “Software must use MySQL database.”

Representational properties are static properties, and so they cannot be tested.

However, it can be assessed through static techniques such as inspections;

 Assessable through testing: defines if the NFR is testable. It is yes if the

NFR represent a system behavior;

59

 Who is affected by: the roles directly affected by the NFR. For example,

Internal Stakeholders, Owner, Manager, Software Engineer, Programmer, Final

User;

 Mentioned by: list of papers identifying the NFR, but not describing it;

 Defined by: list of papers identifying and describing the NFR.

Figure 15 presents an example of detailed information about performance.

Figure 15 - Performance details in the NFR-BoK

60

Clicking on a reference to the paper mentioning the NFR, the NFR-BoK

presents the information extracted from the paper. For example, Figure 16 presents the

information of the paper named as Ameller2015.

Figure 16 - Example of a paper describing non-functional requirements

The software testing approaches covering the NFR are also presented in the

NFR detail page (Figure 17).

Figure 17 - List of testing approaches of an NFR

61

Clicking on the reference, the NFR-BoK displays detailed information about the

testing approach. For instance, Figure 18 presents information about Assad2010272.

The fields Reference information and Abstract are directly extracted from the paper that

proposes the testing approach. The other fields are information extracted from the

paper but interpreted the author of this thesis. The Proposal is a brief description of the

testing approach, and the System Domain/Type represents the context the testing

approach was proposed. Software Test Step, Test Level, and Test Technique describe

the testing dimensions covered by the testing approach, and the Evaluation the kind of

study was used to evaluate it. Finally, the field Non-functional requirements covered

presents the NFRs the approach is able to assess.

Figure 18 - Detailed information on a testing approach

62

It is important to note that literature reviews were not specifically planned to

identify some of the attributes of the body of knowledge. For instance, the aim of the

literature review was not to identify the operationalization mechanisms of an NFR.

Thus, the NFR-BoK is not a wholly finished knowledge repository, but it should evolve

as new researches focus on specific points.

3.7 Conclusions from the literature reviews results

These literature reviews are a preliminary initiative aiming to identify and

understand relevant NFRs to the success of software systems and to figure out the

testing approaches to assess such NFRs. Consequently, through the analysis of the

results of the two literature reviews, it was possible to identify gaps between the

relevant RNFs and the proposed testing approaches.

Identifying and understanding the most relevant NFRs was an important step in

to limit the scope of this thesis to the security and performance since it would be

unfeasible to deal with all relevant NFRs. Besides, the results help to understand the

need to expand the thesis scope to software verification (testing and reviews) since

there are NFRs that cannot be assessed by testing approaches.

Regarding the software testing approaches, it is a topic that needs research

presenting new proposals and evolving the consolidated knowledge since the proposed

testing approaches do not fully cover the testing process phases, the different testing

levels, and the testing techniques. Moreover, most of the identified software testing

approaches are evaluated through experimental methods that offer weak confidence

results, such as proof of concept. It results in the lack of evidence on the benefits and

risks that the use of these approaches can bring. Therefore, the literature reviews

emphasize the importance of research related to the evaluation of NFRs.

63

4 A Perception of the State of the Practice of

Security and Performance Verification

This chapter presents the characterization of the security and

performance practices employed by software development

organizations. It begins by introducing the study context, labeling the

organizations and participants. After, it describes the security and

performance verification practices performed by such organizations

and the decision-making criteria related to these practices.

4.1 The methodology to characterize S&P verification

A case study supports the results presented in this chapter. It is classified as a

characterization case study, and it follows the recommendations presented in the

guidelines proposed by Runeson and Höst [2009]. Table 9 shows the mains sections of

the case study protocol (Appendix E).

Table 9 - Case study research protocol

Objectives

Understand how security and performance verification has been performed in the

software development industry.

Scope

Software development organizations that perform Security OR Performance

Verification activities.

Research method

 Multiple case studies: one of them including an observational phase and others
with only semi-structured interviews and questionnaire data collection phases

o 1 organization with 1 project as the primary case: including observational,
semi-structured, and questionnaires data collection method;

o 3 organizations with 1 project each as complementary cases: including
semi-structured and questionnaires data collection method;

 Flexible design
o Trying to improve the protocol during the study execution

 Predominantly qualitative

 Criteria for case selection

64

o Projects in progress for at least two months

Data sources

Organizations employers, researcher observations, institutional websites

Unit of analysis

Software development projects, including security or performance verification

activities.

Besides, the research protocol contains the research questions grouped by two

mains subjects. The first aiming to identify the practices used by organizations on the

security and performance verification and to characterize such practices. The second

one aiming to identify factors influencing the decisions regarding the verification

practices:

 RQ 1 Which are the practices used by the organizations to support the

verification of security and performance?

 RQ 1.1 What are the standard techniques?

 RQ 1.2 Which definition of done do they adopt?

 RQ 1.3 How is the level of automation?

 RQ 1.4 What are the assets covered?

 RQ 2 How does the organization define its security and performance

verification strategies?

 RQ 2.1 What are the factors influencing the decision-making on security

and performance verification strategies?

 RQ 2.2 When does the decision on the verification strategy happen?

 RQ 2.3 How often the decisions on the verification strategy occur?

 RQ 2.4 Who is responsible for the decision making on the verification

strategy?

After, the organizations were selected by convenience. We tried to identify

among our personal contacts people who work in software development organizations.

Thus, we selected ten people working in different organizations, and we started the

initial contact. However, three organizations did not answer to our request, and three of

them said they do not perform security or performance verification. Thereby, we were

able to select a set of four organizations as subjects of the study.

65

4.1.1.1 The data collection process of the case study

A set of artifacts was used to support the study, including the case study

protocol (Appendix E) and a presentation letter (Appendix F). Additionally, instruments

(Appendices G-N) were used to collect data to answer the research questions directly

and to formalize the research agreement and the characterization of the organizations

and participants. The author of this thesis filled the instruments when collecting data

during observations and interviews. The participants filled out the questionnaire when it

was used to collect data. Table 10 presents a summary of the used instruments.

Table 10 - Case study instruments description

ID Description Objectives

P1 Case study protocol The protocol followed by the case study.

C1 Presentation letter
A letter used to make the first contact with the
organizations, characterizing the researchers
involved and the objectives of the study.

I1
Organization agreement
term

After the organization agrees with the research,
its representative signs the agreement term. It
marks the beginning of the case study.

I2
Participant agreement
term

In the first contact with each participant, they
must sign the consent term to allow us to collect
and use data.

I3
Organization
characterization

Data can be gathered from different sources as
the participants and organization websites. It was
filled in during different moments of the case
study execution.

I4 Project characterization
It supports data collection while interviewing
participants through a questionnaire.

I5
Participant
characterization

It supports data collection after interviewing
participants through a questionnaire.

I6
Verification practices
identification

Data collected in different stages of case study
execution. It was gathered from observation,
interviews, and questionnaires.

I7
Identification of decision-
making factors

Data collected in different stages of case study
execution. It was gathered from observation,
interviews, and questionnaires.

I8 Participant opinion
It supports data collection after interviewing
participants through a questionnaire.

The first step of the data collection process was to sign the organizational

agreement represented by the instrument I1. This is crucial to ensure the integrity of

research and organization privacy. In the second step, data regarding organizational

characterization (I3), project characterization (I4), and participant characterization (I5)

66

were collected. Furthermore, the participant agreement term is signed because it is the

first contact with some of the participants.

 The semi-structured interview step used instrument I4 to collect data related to

the development process and the environment. This step aims to understand more fully

how the organization operates. The instruments I5 and I6 were used to identify the

security and performance practices and decision-making factors, respectively. It is

important to note that some semi-structured interviews were recorded. In these cases,

the instruments were not filled, but they were used as a guide for the interviews.

 The observational step aims to confirm previously collected data and to

understand how the verification practices were performed in detail. This step was

performed in only one of the organizations, and its main output is the researcher’s

manual notes.

 The last step is the application of a questionnaire to collect the opinion of the

participant about security and performance verification.

It is essential to mention that the researcher collected data in the form of

manual notes at every stage. Figure 19 shows the data collection process, and the

instruments were filled.

Figure 19 - Data collection process

67

4.1.1.2 The data analysis process of the case study

Approximately 47 artifacts were filled out. Then, the author qualitatively

analyzed them by following a coding process. The MAXQDA5 tool, into which all

instruments were imported, was used to support the coding process, and 955 artifact

excerpts were grouped in 1112 codes.

The coding process was divided into two parts. The first part aimed to answer

RQ1 and RQ2. Thus, the author read the artifacts looking for verification practices and

practices characteristics. Additionally, the two other researchers revised the generated

codes in several meetings sections throughout the process. Figure 20 presents a

model representing the structure of codes built during the coding process.

Figure 20 - Structure used to characterize verification practices (RQ 1)

5 https://www.maxqda.com/

68

The process to answer RQ 2 was similar to the process to answer RQ 1, but the

aim was to identify decision-making factors. Figure 21 represents the structure used to

identify decision-making factors (RQ 2) during the coding process.

Figure 21 - Structure used to identify decision-making factors (RQ 2)

4.2 The case study context: organizations and participants

It is essential to highlight the characteristics of organizations and participants of

the study to allow the application of the results in other contexts. We believe the

diversity of the organizations’ profiles will facilitate the generalization of the results of

this thesis.

69

4.2.1 Describing the organizations

Table 11 presents an overview of the organizations participating in the case

study. The name of organizations is hidden to preserve their privacy.

Table 11 - Organizations’ description

Id Nature
#Employees

(#Developers)
#Subjects

Data

collection

method

Org1 Governmental
~10599

(Unknown)
5

Observation;

Interview;

Questionnaire

Org2
University tech transfer

laboratory

~154

(~132)
2

Interview;

Questionnaire

Org3 Private
~250

(150)
2

Interview;

Questionnaire

Org4 Military
~80507

(Unknown)
3

Interview;

Questionnaire

Org1 is a large governmental organization that provides information technology

services to the Brazilian government with 10599 employees (most of them are

developers). We performed observations, interviews, and questionnaires with a

verification team composed of five employees.

The university tech transfer lab, identified as Org2, with about 154 employees

(132 are developers), develops technical solutions to the Brazilian government,

including the development of software. We performed interviews and questionnaires

with two employees that are responsible for security and performance verification.

Org3 is a private company with about 250 employees and 150 developers. The

company develops credit card payment systems, and we gathered data from two

employees through interviews and questionnaires.

Org4 is a military organization in which it was possible to investigate a big

department of software development. Org4 has about 80 thousand employees, but we

couldn’t identify how many people have been working directly with software

development. In this organization, the data were collected from 3 participants by

interviews and questionnaires.

70

Table 12 presents the agility level of the organizations. It is not exhaustive, but it

provides a perception of the practices adopted by them. Thus, we asked the

participants about the agile practices used by them. Besides, some participants

reported that they failed to implement agile practices. A participant of Org3 said it is

challenging to keep frequent contact with the clients because of client availability. The

difficult to implement an agile methodology in Org4, a military organization, is related to

its rigid employee hierarchy.

Table 12 - Organization agility level

Agile Practice

O
rg

1

O
rg

2

O
rg

3

O
rg

4

Automated testing X X X X

Continuous integration X X X

Frequent meets with the client X

Internal daily meetings X

Kanban X X X

Scum based X X X X

Self-allocation of tasks X

Squad-based X

Test-driven development X

It is possible to note that automated testing and scrum are practices adopted by

all organizations. Continuous integrations and Kanban are the next most used

practices. We advise that this data must not be used to claim that an organization is

more agile than another one. For example, it is not possible to claim that Org1 is more

agile then Org2 because Org1 implements six agile practices, and Org2 implements

four agile practices. The number of agile practices implemented by an organization

could be influenced by the number of observations points (number of participants,

described in the next section). Thus, such information aims to enrich the organization's

characterization, making it easy to use the study results in similar contexts.

71

4.2.2 Describing the participants

Table 13 shows information about the twelve study participants. It is important

to note that the participants have a professional profile without executive power, and

the values of participants’ experience are not accurate because it is a self-reported

experience. The × means the participant did not answer the question.

Regardless of the primary role of the participants (for instance, P1.4 is a

software architect), all participants of Org 1, 2, 3, and P4.1 directly perform some

activity related to S&P verification. Participants P4.2 and P4.3 are not directly

performing verification activities, but they are involved indirectly by requesting and

evaluating the output of such activities.

Participant P4.2 does not have experience in testing and NFR testing. However,

he is part of a project that contemplates S&P verification. Thus, his report is considered

essential.

Table 13 - Participants’ characterization

Question Main role
Education

level

Software
development
experience
(months)

Software
testing

experience
(months)

NFR
testing

experience
(months)

of software
development

projects

O
rg

 1

P1.1 Test analyst Master D. 144 96 12 20

P1.2
Develop.
analyst

Undergrad. 168 96 12 12

P1.3
Develop.
analyst

Undergrad. 144 6 6 20

P1.4
Software
architect

Lato sensu
specializ.

132 24 12 20

P1.5 Test analyst
Lato sensu
specializ.

276 × × 20

O
rg

 2

P2.1
Security test
analyst

Undergrad. × 84 48 70

P2.2
Security test
analyst

Undergrad. × 60 60 ×

O
rg

 3

P3.1 Programmer Undergrad. 120 48 × 20

P3.2
Security test
analyst

Lato sensu
specializ.

× × 120 ×

O
rg

 4

P4.1
Security test
analyst

Master D. 360 12 12 15

P4.2
Full stack
developer

Lato sensu
specializ.

120 0 0 20

P4.3
Software
architect

Lato sensu
specializ.

180 72 72 10

72

4.3 Security and performance verification practices

This section presents the S&P verification practices (RQ 1) and their

characterization regarding techniques (RQ 1.1), the definition of done criteria (RQ 1.2),

automation level (RQ 1.3), and assets (RQ 1.4). Figure 22 presents a brief overview of

the practices supporting S&P verification, and the next section describes the practices.

Figure 22 - Identified security and performance verification practices

4.3.1 RQ1: Security and performance verification practices

Security static code analysis is performed in two ways, either triggered by a

tester analyst or embedded in a continuous integration tool (e.g., Jenkins). In the first

case, the code inspection depends on human action, and it is the verification team’s

responsibility to perform this practice. In the second, the code inspections mandatorily

happen when the programmer commits the code to the repository.

The penetration testing practice is performed at the end of the software

development lifecycle. It is usually performed only for critical systems (or a part of

them), and if the product owner defines delivery as critical because an attack could

harm the organization's reputation. Security specialists or the verification team are who

usually perform the penetration tests.

Regarding log inspection, we classify it as a verification practice when it is used

to identify software failures and as a debugging practice when it is used to identify

73

software faults (failures cause). Further, this classification became comfortable

because specialists participating in the case study mentioned such activity as a

verification practice. For instance, one interviewee said: “In a project I participated in,

there was one IP accessing the system, trying to identify if it was built in PHP and

Wordpress. So, it was a well-known vulnerability they were searching for”. Therefore,

the log inspection allows the identification of what could be considered a security

failure: the application was configured to show the technologies used.

The verification team performs a response time test, resource consumption, and

log inspection. Response time test is the execution of the software aiming to evaluate

the amount of time from a request to a response. This practice is performed at the end

of a development iteration (e.g., a sprint), and it is not used to assess all system

scenarios, but the analysts (e.g., architecture, business) or the verification team selects

some system scenarios to be assessed.

The resource consumption test is also performed at the end of a development

iteration and uses the same test cases regarding response time tests. However, the

system scenarios evaluated by this practice are a subset of scenarios evaluated by the

response time test.

Log inspection is also used as a practice to performance verification, and it is

performed aiming to identify significant delays from a request to a response.

Figure 23 presents the characterization of identified security verification

practices regarding their techniques, the definition of done, automation level, and

assets. Figure 24 presents the same information regarding performance practices.

Figure 23 - Software security verification practices details

74

Figure 24 - Software performance verification practices details

4.3.2 RQ 1.1: The techniques supporting security and performance verification

practices

The security and performance verification practices are executed using

verification techniques, providing a systematic way to build test cases or review

procedures, and supporting the definition of coverage and stop criterion. There were

different categories of techniques used to evaluate security: tool-based, failure-based,

experience-based, based on a similar system, and ad-hoc.

4.3.2.1 Techniques of security practices

Regarding the techniques of security practices (Figure 23), if it is tool-based, the

technique is embedded in the tool. Failure-based techniques make use of known

failures (e.g., common vulnerabilities databases), generating test cases addressed to

identify these faults. In experienced-based techniques, the verification team makes use

of their own experience to generate test cases or perform inspections. If the technique

is ad-hoc, then the practice is performed in an aleatory and nonsystematic way.

The Static Code Analysis is usually performed through a tool (tool-based),

meaning that a tool is executed, and the verification results are analyzed. An observed

issue with the usage of this technique is that in many cases, the verification team is

usually not aware of what the tool is verifying and what are the limitations of the tools

regarding their fault detection capability.

75

The Penetration Test is usually performed through a failure-based technique,

and the test cases are built, aiming to explore known defects available on common

security vulnerabilities repositories. Another technique used for the penetration test is

experience-based in which a security specialist knowledge plays the role of a malicious

user trying to access the system.

The Log Inspection can be considered an ad-hoc practice because the

inspection is based on unknown criteria. A security specialist performs it.

4.3.2.2 Techniques of performance practices

Regarding the techniques used by performance practices (Figure 24), both the

Response Time Test and Resource Consumption Test use techniques based on the

tester experience or based on similar systems. In the second case, the verification

team verifies whether the current system can reuse test cases from previous systems

of the same company. As for security, the performance Log Inspection is ad-hoc, and

the verification team performs it.

4.3.3 RQ 1.2: Criteria to define security and performance activities as done

The definition of done is the criterion used to define the conclusion of

verification activities, signalizing that the software development can move to the next

phase, usually delivery. We identified four categories to the definition of done, based

on fault criticality, team-experience, a similar system, and ad-hoc.

On the definition of done based on fault criticality, the faults identified by

verification are classified regarding their criticality level (e.g., low, medium, and high).

Verification activities are defined as completed when no more defects of a defined

criticality level are identified. The static code analysis makes use of this criterion.

However, the minimum criticality level to define code analysis should re-run is not

formally defined. One of the participants said: “The defects (vulnerabilities) reported by

Fortify (security verification tool) are classified by the tool, according to the criticality

level. So, in some situations, we used such a criticality level to define what faults would

be fixed. Thus, the most critical faults were fixed. However, no rules were established

to limiting what the criticality level determines that faults must be fixed. Such a decision

76

was a cross-team agreement.” When based on team experience, the verification team

meets to decide whether verification activities should be continued, or a new

verification battery is needed.

Besides, the verification team may decide to investigate a similar system to

decide when the verification activities should end. For instance, in the last similar

system, the tests were set as concluded after each test ran three times successfully.

Thus, the current system tests stop after three tests battery. The response time makes

use of these two kinds of the definition of done. If the definition of done is ad-hoc, there

is no systematic way to set the verification as concluded, and it is randomly performed.

The penetration test, log inspection, and resource consumption use the ad-hoc

definition of done.

4.3.4 RQ 1.3: The automation level of security and performance verification

practices

The evaluation of the automation level classifies the verification practice

between manually and automated. If it is automated, then we identify the tools

supporting the verification practice. Appendix D presents the identified supporting tools.

Static Code Analysis is always automated; the most common tools in our case

studies were Brakeman and HP Fortify SCA. Additionally, Jenkins, Sonar, and

Threadfix are used as auxiliary tools to orchestrate the execution or to visualize results.

When using static code analysis tools, participants reported that a problem is a large

number of false positives.

The Penetration Test practice is performed manually (supported by scripts) or

by using a support tool; the most common tools are Arachni, OWASP Zed Attack Proxy

(ZAP), XSS ME, SQL Injection ME, Burp Suite, Meta Exploit, NMAP, and Whatweb.

The Response Time and Resource Consumption Tests are always automated

and make use of similar tools, such as JMeter, Postman, BlazeMeter, Goldeneye,

HTTPerf, SoapUI, CA APM, and tools developed by the organization. There are also

auxiliary tools such as Jenkins, spreadsheets.

The Log Inspection for both security and performance is manual. Probably, it

indicates a lack of log inspection tools. One of the participants informed the

performance failures identified by performing log inspection might have many false

positives. It is not easy to conclude if a detected anomaly is a regular user behavior or

77

a system bottleneck: “...when looking at logs, if I identify a 10 minutes delay from a

request to another request, the problem is that I do not know if the request took 10

minutes to complete or if the user clicked on one option and then clicked on another

only 10 minutes later.”

4.3.5 RQ 1.4: Assets covered by security and performance verification

practices

Here, we aim to identify which part of the system the verification activities are

intended to assess.

The assets covered by security verification practices are source code,

application server log, the system in execution, and the environment. Performance

verification practices cover REST services, the system in execution, database, and

application server log.

It is important to note that verification practices in the case studies do not cover

early development phases artifacts.

4.4 Decision-making factors of security and performance

verification

Regarding decision-making factors, it was possible to answer RQ 2.1 (What are

the factors influencing the decision-making regarding security and performance

verification strategies?) and 2.4 (Who is responsible for the decision making regarding

the verification strategy?), but not RQ 2.2 (When are the decisions on the verification

strategy made?) and 2.3 (How often are the decisions on the verification strategy

made?). Nevertheless, such findings are an initial set of decision-making factors

related to security and performance verification. These results can facilitate future

studies on a deeper understanding of how software development organizations have

been making decisions regarding security and performance verification.

Figure 25 presents the decision-making factors regarding the choice of tools,

verification practices, coverage criteria, and the definition of done. Besides, it presents

who is responsible for decision-making.

78

Figure 25 - Decision-making factors regarding security and performance verification

4.4.1 RQ 2.1: The factors influencing the decision-making of security and

performance verification

4.4.1.1 Choosing security and performance support tools

Two factors influencing the use of a tool are interrelated: community active and

popularity. It means that the choice of a tool can be influenced by the fact that it has

been widely used, that several developers contribute to its development (providing

suggestions for improvements and bug fixes), and that it is broadly discussed in blogs,

professional websites, and social networks.

Defect detection capability is a self-explanatory decision-making factor, implying

that the tool should be efficient. The effort of use is an essential factor because the tool

can meet all other decision-making factors, but if its use requires additional effort, it

becomes inviable owing to economic or time issues.

If the tool has a free license, it can be included in the verification process if

there is technical staff consensus. Thus, the management staff need not be included in

the choice process because it is not necessary to approve the tool purchase order.

Therefore, some participants said they often favor to free tools for avoiding the

bureaucracy of the buying process.

79

Another factor weighed in choosing the tools is related to the availability of

suitable documentation. Such a factor is also essential because it provides the way

users can understand how to operate the tool and understand if it meets other

decision-making requirements. For instance, the tool documentation should provide

information supporting the perception of the effort of use and defect detection capability

factors, as well as explain the license by which the tool is available.

To choose a tool, it is also essential to consider its upgradeability. This

decision-making factor can be perceived by the periodicity and the date of the last

release. Finally, a tool can be selected because a member of the team has previous

experience using it in other projects.

4.4.1.2 Choosing verification practices

Regarding the decision-making factors used to select the security and

performance verification practices, the coverage capacity is used to identify which

assets are covered by the practice (e.g., source code, design artifacts, and

requirements), and the effort to perform it is related to its financial and time viability.

System criticality is a decision-making factor because it defines the severity of

verification practices. If a system is highly critical, more verification practices are

performed. For instance, performing only static code analysis may suffice for a non-

critical system. However, for a critical system, other practices, such as threat modeling

and penetration testing, should be included.

The technology used to construct the system is also an essential factor. There

are security and performance verification practices specific to software technology. For

example, if the system does not use an SQL database, it is useless to perform

practices exploiting SQL-injection vulnerabilities.

Previous experience using a verification practice is a decision-making factor

because some members of the verification team tend to use practices of past projects.

Thus, it is possible to mitigate the effort and time spent learning the verification

practice.

80

4.4.1.3 Choosing the coverage criteria

Coverage criteria define the percentage that a part of the system (an asset)

should be exercised by a test suite or revised by a static technique. For instance, it is

used to decide if the static code analysis should be performed considering all source

code or a piece of it.

The decision-making factors related to coverage criteria are architectural

complexity, previous experience, and volume of manipulated data. It was possible to

realize that when a system has a very complex architecture or the expectation that part

of the system will manipulate a high data volume, the coverage of the tests is

reinforced.

Previous experience is also a decision-making factor used to select coverage

criteria. In this case, the verification team looks at other similar systems evaluating the

possibility of using the same coverage criterion.

It was not possible to identify decision-making factors related to the selection of

the definition of done.

4.4.2 RQ 2.4: The decision-makers

Initially, it was hoped to collect information aiming to answer RQ 2.4 with the

roles (e.g., manager, product owner, and architect) responsible for decision making.

However, it was possible to identify only the level these decisions are made.

Sometimes, there is a client solicitation for the use of a tool. In this case, the

verification team does not have the autonomy to make a choice and use their favorite

tools. This way of choosing the tools can be harmful to verification as a participant said:

“I would like to use a specific tool, but the customer asked me to use another tool. But

after, he regretted it because the tool does not work as he thought…”

The institutional decision means that a higher-level department of the

organization is responsible for the decision-making, and the verification teams must

follow such decisions. The selection of tools, verification practices, and the definition of

done can be decisions made at the institutional level.

The tools and verification practices can be select through a recommendation of

specialized teams. In this case, a team of experts selects tools or verification practices

suitable for a project.

81

Finally, it was not possible to identify who may select a coverage criterion.

4.5 Conclusion

Characterization studies allow the understanding of the state of the practice,

providing insights to guide new studies to target real and relevant issues. Thus, there is

an evolution of the knowledge of the state of the art, and then, this knowledge can

return to the practice.

In this sense, this chapter presented the results of a case study performed in

the context of Brazilians software development organizations. The case study aims to

characterize the state of the practice of S&P verification activities. Besides, it presents

the decision-making factors related to these activities.

It was possible to realize that there is an increasing awareness of the

importance of security and performance of software systems, and consequently, the

importance of verification activities. However, there is a lack of knowledge about how

verification should be accomplished.

Thus, the use of systematic verification techniques is low. For instance,

techniques aiming to systematize the test case generation or inspection procedure. It

may result in inefficient test cases (low chance to reveal a failure). Such a warning is

emphasized by the profile of the professionals who perform the verification. Usually,

they do not have suitable experience and training regarding security or performance.

Finally, it was not possible to identify verification activities addressed to artifacts

related to the early stages of the software development cycle (e.g., requirements and

design diagrams). It contradicts the recommendations of established guidelines

[Howard and Lipner 2006] [OWASP 2014].

82

5 Moderator Factors of Security and

Performance Verification

This chapter presents the eight moderator factors influencing

security and performance verification, explaining the reasoning

behind them. Besides, it presents a set of actions to promote each of

the factors. Such factors emerged from the practice (case study),

and then their confidence and pertinence were confirmed through

the technical literature (rapid reviews) and the opinion of

practitioners (survey).

5.1 The methodology used to identify the moderator factors

The case study described in Section 4.1 is part of the research method used to

identify the moderator factors. While we were analyzing the collected data through a

coding process, it was possible to identify some significant findings for the security and

performance verification. Such findings were organized in a set of conjectures

(inference formed statements without proof or sufficient evidence [Merriam-Webster

2011]) about S&P verification.

The coding process was performed to identify the conjectures following the

principles of the coding phase of grounded theory [Corbin and Strauss 1998]. This

methodology includes three coding phases. The open coding phase is an analytical

process to identify concepts, their properties, and dimensions. In this phase, the data is

fragmented and conceptually labeled in codes. When similarities between codes are

found, they are grouped into categories. In axial coding, the categories can be

rearranged in subcategories, and new categories can be created. Subsequently, the

created categories are unified around a central core category, and relationships are

established among them. This last phase was not performed in this study. Finally, step

4 of thematic synthesis [Cruzes and Dyba 2011] was used to translate the codes into

themes.

Instantiating the coding process to this work, first, the author of this thesis read

every artifact creating codes related to each relevant part of the collected information.

83

In this step, the researchers were not concerned about grouping codes into categories,

but when the excerpts were similar, they were linked to the same code. For instance,

when a participant said: “The problem on using these tools is a large number of false

positives,” and another said “There are organizations that perform security testing only

with automated tools, but this generates a large number of false positives.” These two

excerpts were linked to the same code “Automated tools generate a large number of

false positives.” After, two other researchers reviewed the first phase of coding,

suggesting corrections, mainly in the names assigned to each coding.

In the axial coding phase, the author compared the created codes interactively,

for example, by comparing code 1 with code 2, code 3, up to code N. Subsequently, by

comparing code 2 with code 3, up to code N (code 1 is ignored because code 1 and

code 2 have already been compared) and so on. When similarity was found between

two codes, they were grouped into a category. This step required approximately four

interactions, and some codes could not be grouped in a category. Then, the categories

(as well as the codes in them) were analyzed to concatenate similar categories into

one. It also required more than one interaction. Finally, the author iterated through the

categories to group them in a more general category, creating the structure: category >

subcategory > codes. This phase was not performed in a linear way; the process was

interrupted several times so that other researchers could review the coding already

done. Thus, they suggested changes such as the inclusion of categories, change of

category names, and rearrangement of coding between categories.

Finally, the author iterated through the consolidated structure of categories,

subcategories, and codes, translating them into a set of eight high-level themes

representing conjectures about security and performance verification. Additionally, it is

highly relevant to note that other researchers always iteratively check this phase in

several sessions throughout the process.

Additionally, given the importance of these unexpected but essential findings,

we performed a set of secondary studies, in the form of rapid reviews (RRs) [Tricco et

al. 2015] and Snowballing [Wohlin 2014], searching for literature to support them. After

analyzing the extraction forms of secondary studies through a coding process and

thematic analysis, it was possible to consider the conjectures as moderator factors that

influence the verification of security and performance.

84

5.1.1 Rapid reviews and snowballing methodology

Because the conjectures arose from practice and the participants’ opinions, a

set of rapid reviews (RR) were performed, consulting the technical literature and

searching for confirmations for these conjectures.

RRs are a type of secondary study aiming to deliver evidence to practice

promptly with lower effort than a traditional systematic review. To be faster, RR

simplifies some steps of systematic reviews. For instance, the database search is

limited, the quality appraisal is eliminated, or only one researcher is used to analyze

the collected data [Tricco et al. 2015].

Eight RRs were conducted following the same protocol template, but core parts

were replaced to guide each RR to target a specific conjecture. The protocols used by

each RR are presented in Appendices O-V. Table 14 shows the terms representing

each conjecture and the keywords related to them.

Table 14 - Rapid reviews research questions structure

Conjecture Term Keywords

C01 suitable environment
Awareness OR recognition OR
understanding OR comprehension OR
importance OR relevance

C02 cross-functional team Team* OR Staff* OR “Working Group”

C03
greater precision on the
requirements definition

Requirement*

C04 suitable support tools “support tool”

C05 suitable environment environment*

C06 suitable methodology methodolog*

C07 suitable planning planning OR plan

C08
reuse of artifacts and
knowledge

reuse OR reusability OR reusing

The research questions followed the structure presented in Table 14 by

replacing <<CONJECTURE>> by the term representing the conjecture. For instance,

the RR related to the verification environment had <<CONJECTURE>> replaced by a

“suitable environment.”

85

Table 15 - Rapid reviews research questions structure

RR-RQ 1
What are the benefits of a <<CONJECTURE>> for the verification of
security and performance?

RR-RQ 2
What problems do cause a <<CONJECTURE>> for the verification of
security and performance?

RR-RQ 3
What are the challenges of creating a <<CONJECTURE>> for the
verification of security and performance?

RR-RQ 4
What are the strategies to create a <<CONJECTURE>> for the verification
of security and performance?

The search string followed the same principle of RQs. A search string template

was defined and was adapted to target each conjecture. Table 12 presents the search

string template used in each RR. For instance, in the search for conjecture C03,

<<KEYWORD>> was replaced by Requirement*, for C05 it was replaced for

environment* and so on.

Template ("security verification" OR "performance verification" OR "security

testing" OR "performance testing")

AND (<<KEYWORD>>)

AND ("software")

AND ("benefit*" OR "problem*" OR "challenge*" OR "strateg*" OR

"empirical stud*" OR "experimental stud*" OR "experiment*" OR

"case stud*" OR "survey*")

After a search on the Scopus search engine, the following criteria guided the

process of paper selection:

 Inclusion criteria

 The paper must be in the context of software engineering; and

 The paper must be in the context of performance and/or security

verification; and

 The paper must report a study related to <<CONJECTURE>> of

security or performance verification activities; and

 The paper must report an evidence-based study grounded in empirical

methods (e.g., interviews, surveys, case studies, formal experiment,

among others) or a proof of concept; and

86

 The paper must provide data to answer at least one of the RR research

question; and

 The paper must be written in the English language.

After data extraction, it was performed a snowballing to increase the literature

coverage. The snowballing was backward with only one interaction, and the starter set

was the included papers of the RRs. Table 16 presents the total number of papers

founded, included in RR, and included in snowballing.

Table 16 - Number of papers of RR and snowballing

Conjecture # Founded # RR # Snowballing # Total

C01 63 2 0 2

C02 42 3 0 3

C03 129 6 8 14

C04 185 12 5 17

C05 117 3 1 4

C06 77 4 9 13

C07 41 3 0 3

C08 11 2 0 2

After, we imported the extraction forms in the MAXQDA tool and performed a

coding and a thematic analysis process similar to the process described in Section

4.1.1.2. Thus, the output of the RRs is a set of mind maps with high-level themes

representing the findings from the technical literature.

Finally, the themes of the RRs were matched to the themes of the case study.

Thereby, the findings that emerged from the state of the practice are supported by the

findings extracted from state of the art. Accordingly, credence was lent to the

conjectures, turning them into security and performance verification moderator factors.

5.1.2 Survey methodology

Appendix W presents the survey planning protocol, including the followed

strategy to recruit participants and the survey questions. The objectives of the survey

87

are twofold, but using the same questions – the first one aims to validate our

understanding regarding the information supporting the moderator factors and the

actions used to promote them. As this information was collected through the case

study, people who already participated in the case study were used as the subjects. In

this validation phase, it was possible to get answers from four participants.

The second objective of the survey is to assess the relevance of the moderator

factor and the actions used to promote them. Thus, we presented the survey to the

software development community using blog posts, social networks, software testing

communities, questions-answers services, e-mail groups, and direct private messages.

Thus, the survey was available for one month (July 2019), including 37 valid answers

from different participants.

The survey used the VAS scale [Wewers and Lowe 1990] to capture

participants' opinions regarding the relevance of moderation factors and yes/no

questions to capture participants' opinions regarding the relevance of actions. Figure

26 presents an example of a question.

Figure 26 - Example of a question of the survey

5.1.2.1 Characterization of the population

The survey included a characterization section to get information about the

participants and organizations they work. Such characterization is vital to understand

the context the moderator factors can be applied.

88

It was possible to obtain responses from 12 countries, but most of them come

from Brazil. Besides, 7 participants did not answer about the country they live in (Figure

27).

Figure 27 - Survey participants country

We were looking for practitioners who are involved in S&P verification activities,

but they could play another role in the organization in which they work. Then we gather

information about the primary role played by the participants. As can be seen in Figure

28, most of the participants are programmers, testers, or quality analysts.

Figure 28 - Survey participants primary role

89

We also asked the participants for their experience in software development

(Figure 29). The results are divided according to the quartiles. Besides, 5 participants

did not answer this question.

Figure 29 - Survey participants experience (months)

The size of the organizations (the number of employees) is also divided

according to the quartiles. Most of the organizations (22) have from 2 to 100

employees. However, 5 participants did not answer the organization size.

Figure 30 - Organizations size (number of employees)

As shown in Figure 31, it was possible to collect the opinion of participants

working in organizations that develop software to distinct domains. The banking

90

domain is the most frequent. It can indicate that the people working in this kind of

organization care more about the S&P requirements. As some organizations develop

software for different domains, the total is different from 37.

Figure 31 - Organizations domain

Finally, we asked the participants regarding the agile practices used in their

organizations. Such information can be used to understand better the context where

the participant works (Figure 32).

Figure 32 - Level of agility of the organizations

91

5.2 Introduction

A set of nine conjectures emerged from the observation of the practice (case

study). At that time, we realized these conjectures represented significant findings

regarding S&P verification, but we did not have proper confidence regarding them.

Thus, we decided to perform an in-depth investigation about such conjectures aiming

to endorse their confidence. In this way, a set of rapid reviews and snowballing

(Section 5.1.1) was performed to identify works supporting these conjectures in the

technical literature. Thus, it was possible to rearrange the conjectures and improve

their confidence. Therefore, they have presented now as eight moderator factors of

security and performance verification (MF1-8).

Next, we make use of a survey (Section 5.1.2) to collect the opinion of

practitioners regarding the relevance of moderator factors. The participants of the

survey were divided into two groups - the control group, composed of people who had

already participated in the case study, and another group of external participants. The

control group’s answers aimed to confirm our understanding and interpretation of the

information collected during the case study. The answers of the external participants

were used to identify the relevance of the moderator factors and the actions used to

promote them.

Besides, the survey allowed us to identify new actions to promote each of the

moderator factors. These actions are also presented in this thesis, but they should be

further evaluated to increase their understanding and assess their relevance.

It is essential to mention that we use the visual analog scale (VAS) that is used

to capture participants' perceptions of a particular event [Wewers and Lowe 1990]. The

VAS consists of a horizontal line with two anchor points – the left point indicates the

absence of the observed event and the right point the total agreement of the observed

event. Appendix W presents the survey plan.

The eight moderator factors (Figure 33) can be seen as confirmed

recommendations that a software development organization should meet to perform

S&P verification activities successfully. The next sections describe the moderator

factors, and the actions can be performed to promote them. It is important to note that

the set of actions is not intended to be complete. New actions can be identified through

future research focusing on a specific moderating factor.

92

The moderator factors are also available as a technical report in Portuguese6

and English7.

Figure 33 - Moderator factors of security and performance verification

6 http://lens-ese.cos.ufrj.br/spvsurvey/moderators-presentation-ptbr.pdf

7 http://lens-ese.cos.ufrj.br/spvsurvey/moderators-presentation.pdf

93

5.3 MF1: Organizational awareness of the importance of

security and performance

Figure 34 presents the main points of MF1, and the reasoning regarding this

moderator factor is discussed in the following.

Figure 34 - MF1: Organizational awareness of security and performance importance

Security and performance should not be the responsibility of a separate

organization department. The global organizational perception of the importance of

these software properties affects verification activities. Thus, S&P verification activities

require the support of every stakeholder:

 High-level managers should financially support S&P activities. For instance,

they should support the purchase of verification tools and include the costs of

S&P verification in the project budget planning;

 The support of the development team (e.g., programmers, system analysists,

and system architects) is also necessary. They should consider security and

performance verification an advantage, understanding that if the verification

team reports a failure, this is not against the project. Furthermore, the

94

development team has in-depth knowledge of domain and software

architecture. Thus, they can aid decision-making regarding what should be

verified, the prioritization of verification scenarios, and the identification of the

verification scenario dependencies;

 The project customer should also be aware of the importance of security and

performance, understanding the importance of S&P verification activities.

Moreover, customers should understand that S&P verification activities do not

ensure a fully secure system or a system with no performance issues.

Continuous training is required to keep stakeholders up to date about the

importance of security and the performance of developed software systems.

Participants reported that organizations generally do not pay proper attention to system

security and performance properties, considering security and performance verification

a waste of resources. Usually, organizations are inclined to be concerned about the

security and performance of their systems only after they have a problem. Another

situation where organizations invest more in security and performance assessment is

before a major release in which a security or performance failure could negatively

affect the organization's image. One of the participants said: “By my own experience

working in different places, what I see is that people only care about testing when a

problem occurs.”

Besides, training is also essential to normalize the concepts related to security

and performance, furthering the communication between different stakeholders.

5.3.1 Strength of organizational awareness moderator factor

We could observe MF1 in three organizations. It was identified through

observation and mentioned by five participants, as shown in Table 17.

Table 17 - Strength of organizational awareness (MF1)

Organizations Participants Quotes

O1 Observation; P4; P5

27 O2 P1; P2

O4 P1

95

Besides, it was possible to identify studies supporting this moderator factor in

the technical literature. Horký et al. [2015] report an experiment demonstrating that

keeping programmers well-informed about performance can decrease the number of

bad decisions influencing system performance. Moreover, Ferrell and Oostdyk [2010]

emphasize the challenge of security awareness: programmers are not concerned about

security because they have a false impression that new development technologies are

immune to security problems.

5.3.1.1 Survey results of MF1

Figure 35 summarizes the opinion of the control group regarding MF1. The dark

blue square represents the position of the mean and the area filled with light blue -1

and +1 standard deviation. It is possible to conclude that the control group agrees with

our conclusion stating that organizational awareness of the importance of security and

performance is a factor influencing the security and performance verification.

Figure 35 - MF1 confirmation (control group)

Figure 36 presents the relevance of MF1 according to the opinion of the

external participants. The results plotted on the VAS scale graphically show that this

moderation factor has high relevance for security and performance verification

activities.

Figure 36 - MF1 relevance according to external participants

Besides, the Shapiro-Wilk test (Figure 37) shows the answers do not follow a

normal distribution, as most of the responses are not proportionally concentrated

around the mean, but at the highest level of the VAS scale. It indicates that most of the

96

participants understand MF1 as relevant. Besides, the median is 10, allowing to state

that at least half of the participants understand that this moderation factor has

maximum relevance.

Figure 37 - MF1 distribution

Besides, we tested whether the result was biased owing to the way the

questions were presented to the participants. Thus, we performed a mean test

hypothesizing a distribution with mean five because the VAS scale was presented to

the participants in the central position. The test showed that there was no bias in the

responses (Figure 38).

Figure 38 - MF1 Bias test (mean test)

5.3.2 Actions to promote organizational awareness

Table 18 highlights the actions that can be used to promote the organizational

awareness of S&P importance. The relevance given by survey participants orders the

actions. Thirty-one participants answered about MF1 and the actions to promote this

97

moderator factor. The ‘#’ and ‘%’ represents the number, and the percentage of

participants agree that the action contributes to the promotion of MF1.

Table 18 - Actions to promote MF1

Actions to promote the organizational awareness of security and

performance importance
%

Keeping programmers well-informed about security and performance 28 90%

Promoting training 25 81%

Informing the customer about the real state of software security and

performance
19 61%

It is vital to keep programmers well-informed about S&P of the software system

they are developing. Thus, they can understand the consequences of the way they are

coding and then improve the coding practices to avoid previous mistakes.

It is essential to promote training to the technical staff, the managers, and

external stakeholders (customers). The programmers should be aware of intrinsic

defects of the technologies used in software development and the coding patterns

resulting in failures. Thus, they can avoid the use of defective technologies and

improve their capability to build failure-free code.

The managers benefit from training as they improve awareness regarding S&P

issues during software development. Thus, they understand the importance of S&P

verification, including them in the project development life cycle and the project budget.

Customers do not need to be trained in technical stuff. However, they can take

advantage of training because they can understand the importance of S&P properties.

Therefore, they can agree more easily to the inclusion of S&P verification activities in

the project budget.

It is also essential to keep the customer informed about the real state of

software security and performance — usually, software development organizations

ignore the cost of verification activities in the project budget, offering a cheaper

software to the customers. Thus, when a failure occurs, the development organization

does not notify the customer. Therefore, the customer thinks that it is all right and keep

believing that verification activities are a waste of resources. However, the

consequences of S&P failures can be catastrophic.

98

5.3.2.1 New actions to promote MF1

The survey allows the identification of four new actions to promote the MF1.

Further investigations are necessary to confirm the relevance of these new actions.

The column ‘#’ represents the number of participants mentioned in action.

Table 19 - New actions to promote MF1

New actions to promote the organizational awareness of security and

performance importance

Simulation of security and performance failures and show business impact 1

Regular meetings to discuss security practices 1

External audit to mitigate human problems 1

Having an ethical hacker would be extremely good for security and creating

performance indicators
1

5.4 MF2: Cross-functional teams

Verification activities are not performed in isolation by only one team. They

require interaction between different teams as well as different skills. In the case

studies, a need was identified for a team of experts in security verification,

infrastructure, legislation, and databases (Figure 39).

99

Figure 39 – MF2: Cross-functional team moderator

Security verification experts are responsible for providing knowledge related to

security, such as information security policies, security development standards, digital

certification, and cryptography. Furthermore, the security verification team should have

the required knowledge to perform the fingerprinting step, identifying the technologies

for developing the software (database, web server, and programming language).

The support of the infrastructure team is outstanding because sometimes the

verification teams are unable or do not have the knowledge to take some actions. For

instance, it may be necessary to allow a specific IP to access the server, make some

changes in the kernel of the operating system, or restart the server after a catastrophic

failure. A participant reported a need to interact with an infrastructure specialist: “...we

have to ask to change the (operating system) kernel because it has a limit on the size

(of requests) that can be sent...”

The verification activities may occasionally affect databases irrevocably. In this

case, the database team may also aid in the verification activities using its knowledge,

for instance, to repair or restore a functional database version.

A need for legislation expert support was also identified. Such an expert can be

useful in assessing legal risks.

100

A cross-team interaction is also essential to identify the technologies used for

software development and how these may influence the verification results. For

example, the verification team observes that performance tests of a software scenario

result in a decreasing response time. Thus, talking to the development team, they

discovered that the system was using the content delivery network (CDN) cache

technology.

5.4.1 Strength of cross-functional moderator factor

Issues regarding the need for a cross-functional team were observed in O1, and

this was mentioned by four participants from organizations O2 and O4 (Table 20).

Table 20 - Strength of cross-functional team moderator (MF2)

Organizations Participants Quotes

O1 Observation

26 O2 P1; P2

O4 P1; P3

In the technical literature, some studies identify the need for teams with different

skills and propose strategies to encourage information exchange between teams

[Brucker and Sodan 2014] [Williams et al. 2010] [Johnson et al. 2007].

A card game called protection poker provides security knowledge sharing,

involves the entire development team, and increases the awareness of software

security needs. Another recommendation is to consider programmers' allies rather than

enemies.

Regarding performance, Johnson et al. [2007] demonstrate how weekly

meetings involving performance architects, domain experts, marketing stakeholders,

and developers can improve team interactions.

5.4.1.1 Survey results of MF2

Figure 40 summarizes the opinion of the control group regarding MF2. It is

possible to conclude that the control group agrees with our conclusion stating that

101

keeping a cross-functional team is a factor influencing security and performance

verification. However, this factor is not unanimous, as the average of the responses is

not high, and the standard deviation is wide. It indicates that most participants in the

control group agree with MF2, but some participants understand that this factor is not

relevant.

Figure 40 - MF2 confirmation (control group)

Figure 41 presents the relevance of MF2 according to the opinion of the

external participants. The results plotted on the VAS scale graphically show that this

moderation factor is relevant for security and performance verification activities.

However, the significant standard deviation means that there are practitioners who

disagree with the average opinion, understanding that MF2 is more or less relevant

compared with the average opinion.

Figure 41 - MF2 relevance according to external participants

Besides, Figure 42 shows the answers does not follow a normal distribution, as

most of the responses are not proportionally concentrated around the mean, but at the

highest level of the VAS scale. It indicates that most of the participants understand

MF2 as relevant.

102

Figure 42 – MF2 distribution

Also, we tested whether the result was biased owing to the way the questions

were presented to the participants. Thus, we performed a mean test hypothesizing a

distribution with mean five because the VAS scale was presented to the participants in

the central position. As shown in Figure 43, the test confirmed that there was no bias in

the responses.

Figure 43 - MF2 Bias test (mean test)

5.4.2 Actions to promote cross-functional teams

Table 21 presents the actions that can be used to build a cross-functional team.

The actions are ordered by the relevance, according to the 29 participants that

answered about MF2.

Table 21 - Actions to promote MF2

Actions to promote the build of a cross-functional team # %

Building a team having multiple skills 23 79%

103

Disseminating the view that the verification team is not the enemy but allied 23 79%

Stimulating interaction between members of different teams 18 62%

Building a team having many skills complements the previous practice. The

exchange of knowledge between teams is not so useful if every member has the same

set of skills.

Disseminating the view that the verification team is not the enemy helps the

verification team work together with the other teams. Otherwise, the verification team

could have problems in identifying what should be assessed and requesting failure

fixes.

Additionally, stimulating interaction between members of different teams (i.e.,

programmers, architects, and requirements analysts) is a way of making explicit the

capabilities of each team and personal skills. So, when the verification team is faced

with a problem that requires specific knowledge to solve, they know whom to ask for

help.

5.4.2.1 New actions to promote MF2

It was also possible to identify eight new actions to promote MF2. Table 22

shows the newly identified actions. Column ‘#’ represents the number of participants

that mentioned the action.

Table 22 - New actions to promote MF2

New actions to promote the build of a cross-functional team #

The team should have leaders swapping places (for example, marketing and

development). team leaders can get to know limitations, capabilities, and point of

view which can lead to better teamwork and results

1

Highlight the positive results of having a multidisciplinary team 1

Knowing what is problematic in other sectors of the organization 1

Encouraging integration between teams working on similar topics 1

Value verification professionals 1

Select qualified people for the position 1

Invest in the training and qualification of the verification team 1

Apply Scrum 1

104

5.5 MF3: Suitable requirements

It is crucial to make sure the organization can produce precise S&P

requirements. Figure 44 presents the themes of composing MF3.

The lack of S&P requirements prevents the verification from fulfilling its original

purpose (i.e., assessing whether the software meets its requirements) because, in the

absence of an oracle it is impossible to know if the verification results are correct.

Moreover, inaccurate requirements result in teams overloading (e.g., analysts,

architects, and developers) because the verification team must continuously contact

them.

Figure 44 – MF3: Suitable requirements moderator factor

In the organizations used in this study, there were occasionally no written

performance requirements that could be used as an oracle. In such cases, the

verification activities were not performed to assess whether the software meets its

requirements but to evaluate the capacity of the system. In other instances, the

verification activities were performed based on subjective or imprecise requirements.

For example, a participant reported a case where the tests were performed based on a

brief description of users’ behavior: “In this system, everyone comes in at 8 in the

morning and stays until 10 o'clock. Then they leave the system and come back at

lunch”.

The lack of S&P requirements can be dangerous because the verification team

may determine the requirements by their own experience, which may not reflect

105

customer expectations. Furthermore, it was possible to observe that the verification

team has some difficulties in determining security and performance requirements.

Participants from two organizations suggest that the verification team must

participate in requirement planning, understanding, and evaluating their testability.

5.5.1 Strength of suitable requirements moderator factor

As shown in Table 23, the need for the suitable requirements moderator factor

was observed in organization O1, and seven participants from three different

organizations mentioned it.

Table 23 - Strength of suitable requirements moderator factor (MF3)

Organizations Participants Quotes

O1
Observation; P1;
P2; P3

26 O2 P1; P2

O4 P1; P2

It was possible to identify a set of issues and challenges regarding S&P

requirements in the technical literature: lack of support tools and techniques,

techniques are not suitable to their users' profile, lacking requirements, and wrong

requirement descriptions. These issues make verification impossible, ambiguous, or

generic [Harjumaa and Tervonen, 2010] [Tondel et al. 2008] [Stephanow and

Khajehmoogahi, 2017] [Weyuker and Vokolos, 2000].

A set of proposed techniques and recommendations to handle security and

performance requirements can also be identified: misuse cases, SETAM UMLsec,

abuse cases and description of attack patterns [McDermott and Fox 1999] [Harjumaa

and Tervonen 2010] [Weyuker and Vokolos 2000] [Sindre and Opdahl 2001] [Hui and

Huang 2012] [Jürjens 2002] [Bozic and Wotawa 2014] [Haley et al. 2008] [Bulej et al.

2017].

The availability of the techniques to handle S&P requirements points to the gap

between practice and academy, as these techniques are not applied.

106

5.5.1.1 Survey results of MF3

Visualizing the results through the VAS (Figure 45) allows us to confirm our

conclusion about the influence of MF3 in the S&P verification. The result shows the

agreement of the control group regarding the influence of suitable requirements in the

S&P verification.

Figure 45 – MF3 confirmation (control group)

Figure 46 presents the relevance of MF3 according to the opinion of the

external participants. The results plotted on the VAS scale graphically show that this

moderation factor is relevant for S&P verification activities. Moreover, even having a

significant standard deviation, the value -1sd is above the midpoint of the scale,

indicating a consensus about the relevance of this factor.

Figure 46 - MF3 relevance according to external participants

Besides, the statistical analysis of the results shows a non-normal distribution

(Figure 47), and most of the participants evaluate MF3 with high relevance.

Figure 47 - MF3 distribution

107

In addition, we tested whether the result was biased owing to the way the

questions were presented to the participants. Thus, we performed a mean test

hypothesizing a distribution with mean five because the VAS scale was presented to

the participants in the central position. As shown in Figure 48, the test confirmed that

there was no bias in the responses.

Figure 48 - MF3 Bias test (mean test)

5.5.2 Actions to promote the building of suitable requirements

Table 24 presents an overview of the actions an organization can perform to

promote the building of suitable requirements. We asked the survey participants for the

relevance of each action and ordered them by the participant's opinion. Thirty-one

participants answered about the relevance of MF3 and the actions to promote it.

Column ‘#’ represents the number of participants understanding the action as relevant

to promote the MF3 and the column ‘%’ the percentage.

Table 24 - Actions to promote MF3

Actions to promote the building of suitable requirements # %

Using techniques to handle security and performance requirements 25 81%

Involving the verification team in the requirements phase 24 77%

Stimulating the verification team to assess the testability of requirements 24 77%

Using techniques to identify and represent the S&P requirements is another

action the organizations can perform to improve the way they handle S&P

requirements. The use of a technique supports the verification team to be more

systematic, avoiding misconceptions resulting from subjective decisions. There are

different techniques available such as abuse cases, NFR-Framework, Sec-UML.

108

However, it was possible to realize that these techniques did not reach the software

development industry.

Regarding the actions, the organizations can further the involvement of the

verification team in the requirements phase. Thus, the verification team increases their

knowledge in the problem domain, favoring the identification of S&P requirements.

Besides, if the requirements phase includes the verification team members,

they can provide criticisms regarding how requirements have been represented,

improving the specification, and assessing the testability of the S&P requirements.

5.5.2.1 New actions to promote MF3

Table 25 presents the actions to promote MF3 that were not previously

identified. Initially, we could identify that ‘involving the verification team in the

requirements phase’ is crucial to produce proper S&P requirements but a participant

suggested broader actions stating that it is essential to ‘involve the verification team in

all phases of the software life cycle.’ Besides, another participant suggested an action

with the reverse logic, stating that the requirements team needs to be involved in the

verification activities. These actions seem to make sense, but they need further

researches to improve their understanding and identify their relevance in different

contexts.

Table 25 - New actions to promote MF3

New actions to promote the building of suitable requirements #

Involving the verification team in all phases of the software life cycle 1

The verification team and Product Owner should discuss the specification in order

to identify and adjust any deviations before the specification goes into

development.

1

Infrastructure team should assess security and performance 1

Involving the requirements team in verification activities 1

109

5.6 MF4: Support tools

Figure 49 presents the topics composing the support tools moderator (MF4).

The use of suitable support tools is essential in S&P verification activities because it

can decrease the effort of manual activities. It was possible to identify an inclination to

choose free tools because the acquisition process is faster, as it involves the technical

team only. In the case of adopting proprietary tools, it is necessary to ask managers for

permission, and the price of the tool may hinder or impede the buying process.

Figure 49 - MF4: Support tools moderator factor

Moreover, the verification team (technical staff) should have the autonomy to

suggest and adopt new support tools. In the choice of these tools, the capacity of the

team is an essential decision-criterion as the verification team may not have the

necessary knowledge to use advanced features of the tools.

110

Some findings were identified regarding the tools’ reports. The first finding

regards the excessive number of false-positives. In this case, the development team

can ignore the results of verification because it takes substantial effort to analyze each

of the reported incidents and classifying them as false-positives or real failures.

Additionally, the tools’ report should not be delivered to the customer or the

developers immediately. The results can scare people unfamiliar with verification

activities. Therefore, these results should be analyzed and processed by the

verification team. Thus, a consistent report can be delivered to the customers or the

developers. A participant talks about this: “…tools generate ‘cold’ reports. My team and

I should analyze and consolidate them, making them more understandable for the

users, programmers, and managers.”

It was also possible to identify vital information that a verification report should

contain. Therefore, a suitable tool should generate reports with this information. First, it

should provide the system version and configuration information because software or

environment settings changes may require verification re-execution. It is also

necessary to provide information on which tests have been performed, defining each of

them, and reporting which incidents were detected. In the case of incidents, it is

necessary to provide information to replicate the incident, a possible explanation, and

instructions for resolving it.

Additionally, it is crucial to inform which tests were planned and not performed

(usually due to deadlines/budget constraints). It makes the customers more aware of

the system capability and the possible failures that may occur in the production

environment. Finally, it is also essential to make explicit in the reports the verification

activities that did not reveal incidents. It is psychologically positive for the client or

developer to know that the system operates correctly in several aspects.

5.6.1 Strength of suitable support tools moderator factor

Findings supporting this moderator factor were identified in all organizations, as

shown in Table 18.

Table 26 - Strength of suitable support tools moderator factor (MF4)

Organizations Participants Quotes

O1 Observation; P1; P4; P5 35

111

O2 P1; P2

O3 P1

O4 P1; P2

In the technical literature, various studies were found stating that the use of

support tools is vital for verification activities [Thompson 2003] [Yee 2006] [Johnson et

al. 2007]. Some claim that certain types of verification would not be possible without

support tools. For instance, long-running tests, significant data volume testing, and

concurrent user tests are not feasible without the use of tools [Guo et al. 2010].

Moreover, support tools are essential for specific practices or development

methodologies, such as continuous integration [Ferme and Pautasso 2017] and agile

software development [Shu and Maurer 2007].

However, it is also important to stress that automated support tools cannot

replace manual verification. They are complementary practices because some defects

cannot be identified by current support tools [Johnson et al. 2007] [Dukes et al. 2013].

Some studies highlight the lack of suitable support tools, reporting issues

related to the need for integration of different tools [Guo et al. 2010] [Barbir et al. 2007],

the high cost of proprietary tools [Kabbani et al. 2010], the need of experimental

evaluation, the lack of standard-compliant tools [Türpe 2008], and lack of support tools

targeting specific technologies [Shu and Maurer 2007] [Barbir et al. 2007] [Kim et al.

2009] [Parveen and Tilley 2008].

Additionally, various studies emphasize the excessive false-positives generated

by current tools [Türpe 2008] [Luo and Yang 2014] and consider this a criterion to

choose a suitable support tool [Shu and Maurer 2007] [Zhioua et al. 2014].

Finally, Türpe [2008] presents some requirements for useful support tools, also

confirming our findings: in line with the team’s capability, idealized site conditions

should not be required, and the right problems should be addressed.

5.6.1.1 Survey results of MF4

The results of the survey show that the control group agrees with the relevance

of the moderator factor support tools (Figure 50). Therefore, we can conclude that our

understanding of MF4 is genuine.

112

Figure 50 - MF4 confirmation (control group)

When asking the external participants about the relevance of the use of suitable

tools in S&P verification activities, the results were also satisfactory. Figure 51 shows

the mean is ~7.71, and the VAS scale shows that external participants have the

perception that MF4 has high relevance to verification activities.

Figure 51 - MF4 relevance according to external participants

The statistical analysis of the survey answers shows that most participants

attributed the maximum value to the relevance of this moderating factor (Figure 52).

Thus, it is possible to conclude that the use of suitable tools is relevant to S&P

verification in different contexts.

Figure 52 - MF4 distribution

Besides, we performed a test aiming to check if the answers were biased. We

used the hypothesized value five because the VAS scale was initially displayed at the

middle position. However, it did not reveal bias (Figure 53).

113

Figure 53 - MF4 Bias test (mean test)

5.6.2 Actions to promote the selection of suitable support tools

A software development organization can use some practices to promote the

selection of suitable support tools. Thirty-one participants of the survey answered about

MF4, allowing the ordering of the actions by their relevance (Table 27).

Table 27 - Actions to promote MF4

Actions to promote the selection of suitable support tools # %

Allowing the technical team to suggest and adopt support tools 24 77%

Using tools consistent with the verification team knowledge 22 71%

Supporting the use of free tools 13 42%

It is crucial to allow the technical team to suggest and adopt support tools. As

intrusion practices evolve constantly, it is necessary to replace the used tools with a

new one or a new version. The verification team is composed of people having the

skills to evaluate if a tool is outdated and to suggest the use of another.

It is also essential to use tools consistent with the verification team's knowledge.

An inexperienced verification team using a tool having a lot of sophisticated features

get lost and cannot correctly perform the activities. The opposite is also not

recommended. A very experienced team using tools that have a limited set of features

cannot apply all their knowledge and can be considered a waste of resources.

Besides, the usage of free tools should be encouraged. This practice allows the

technical team to make decisions regarding the choice of tools without necessarily

involving the management team. It makes the process of selecting and changing the

used tools more agile because it avoids the bureaucracy of buying a proprietary tool.

However, this action had low relevance, according to the survey’s participants. It would

114

mean that there is no preference between the use of a free or proprietary tool in the

context of some organizations. We can hypothesize that the cost of a verification tool

may be irrelevant to organizations with high economic power, or that some

organizations have a light purchase tools process, reducing the difficulty of acquiring a

proprietary tool.

5.6.2.1 New actions to promote MF4

The survey results revealed new practices that can be used to promote the

choice of appropriate tools. It is essential to highlight that five of the participants

suggested providing training on the tools adopted by an organization. Thus, this action

is stronger than the others.

Table 28 - New actions to promote MF4

New actions to promote the selection of suitable support tools #

Providing training to the verification team to enable them to operate the adopted

tools
5

Institutionalize the use of tools 1

Using industry best-practice toolsets 1

Support from the tool provider 1

5.7 MF5: Adequate verification environment

A suitable environment is essential for verification. In this context, the

environment encompasses both the configurations of the infrastructure responsible for

system operation (e.g., application server and database parameters) and the

configuration of the system itself (e.g., the data stored in the database while verification

activities are performed). Figure 54 presents the themes of composing MF5.

115

Figure 54 - MF5: Adequate verification environment moderator factor

It was possible to observe that the S&P verification occasionally shares the

same environment used by other activities. For example, in one organization, the

performance tests were performed on the same server used for user acceptance tests.

In this case, there was a bidirectional influence; the performance tests may jeopardize

the user acceptance activities because the simulation of a large number of users

operating the system causes hardware overload. Furthermore, when the system was

used for acceptance testing, the performance tests presented random results (e.g.,

aleatory response time) because it was not possible to know how the users were using

the system. In this case, the organization should appropriately schedule the verification

activities (performed by the verification team) and the acceptance tests (performed by

end-users) so that these two activities never be performed in parallel.

The use of a production environment causes a similar issue to those mentioned

above because it is difficult to predict the behavior of the system’s real users. Thus, the

verification results could be misleading if the system is in actual operation.

The local network (or virtual private network) also influences the performance

testing results. For instance, if the machine used for performance tests uses the default

organization network, the requests and responses may be delayed due to an overload

of the network nodes (e.g., routers and sweets) that route them to the server on which

the system is running.

116

Some technologies can also influence the results of the verification activities.

For instance, the use of the cache to retrieve data from a database can lead to

inaccurate response time test results.

The verification team should resolve network and technology issues by, for

example, performing each test case more than once and at different times to mitigate

external influences on the test results. One of the participants said: “It is not possible to

rely on the response time of only one scenario execution because there may be

interference that impairs the operation of the system. Thus, response time analysis

should be only performed after the scenario has been successfully executed three

times.”

Another issue regarding the verification environment is the difference between

the hardware configuration used for verification and that used at production time. In

some cases, the hardware used in the production environment is more powerful than

the hardware used in verification activities, and this may result in false results regarding

system performance.

The difficulty in configuring the system with suitable data for verification

activities was also an issue that was observed. In this case, some participants stated

that to populate the database with suitable data is a difficult task and occasionally

requires support from other teams (e.g., database administrators). An alternative to

minimizing the dependence on other teams is to allow the verification team to access

the database used in the verification activities.

Finally, it was realized that virtualization technologies are used for two

purposes. First, to simulate the system execution environment, trying to obtain an

environment more similar to the production environment. Second, to set up the

environment through which tests will trigger, for example, the creation of several virtual

machines to simulate simultaneous access to the system.

5.7.1 Strength of adequate verification environment moderator factor

MF5 was identified in organizations O1, O2, and O4. Moreover, six participants

endorsed this moderator factor (Table 29).

117

Table 29 - Strength of adequate verification environment moderator factor (MF5)

Organizations Participants Quotes

O1 Observation; P1; P2; P3; P5

26 O2 P1

O4 P1

There are studies concerned with the verification environment, corroborating the

use of virtualization technologies in the context of verification. Netto et al. [2011]

mention the financial unfeasibility of using physical machines to compose the

verification environment, whereas other studies point to virtualization as the most

appropriate technology for verification environments. However, some issues should be

addressed for the practical use of virtualization technology: the estimation of the

number of supported virtual machines, the limit of the number of virtual machines, the

instability of test trigger response time and the physical machine overload [Arif et al.

2018] [Kim et al. 2015] [Gaisbauer et al. 2008].

5.7.1.1 Survey results of MF5

The control group confirmed our findings regarding the relevance of having an

appropriate environment to perform security and performance verification activities

(Figure 55).

Figure 55 - MF5 confirmation (control group)

The VAS scale (Figure 56) summarizing the results of the survey shows that the

MF5 (adequate verification environment) is a relevant moderator factor according to the

opinion of external participants.

118

Figure 56 - MF5 relevance according to external participants

The statistical analysis of the MF5 responses shows a concentration of the

responses at the high values of the VAS scale. Besides, the median of 10 indicates at

least 50% of the participants positioned the VAS scale in the highest value. Thus, it can

be concluded that most of the external participants understand that an appropriate

environment is exceptionally relevant to the success of the S&P verification activities.

Figure 57 - MF5 distribution

Besides, as shown in Figure 58, the statistical test was unable to show a bias in

the sample.

Figure 58 - MF5 Bias test (mean test)

119

5.7.2 Actions to promote the configuration of an adequate verification

environment

Table 30 presents the actions that can be used to configure an adequate

verification environment. Thirty-one survey participants answered about the pertinence

of MF5 and the actions used to promote it. Thus, it is possible to order the actions by

relevance according to the participants’ opinions.

Table 30 - Actions to promote MF5

Actions to promote the adequate verification environment # %

Using virtualization technologies to simulate execution environment 26 84%

Keeping the verification team well-informed about used technologies 22 71%

Using virtualization technologies to set up tests agents 19 61%

Performing each test case more than once and at different period of time to

mitigate external influences
16 52%

Scheduling the verification activities if it is not possible to instantiate a

specific verification environment so that verification should never be

performed in parallel with any other activity

15 48%

The participants of the study understand the virtualization technologies as allies

of S&P verification. It was also possible to confirm the suitability of such technologies in

the technical literature. Using a virtual environment at verification-time allows

configuring an environment similar to the production environment. Thus, the results of

verification become more realistic.

It is also essential to keep the verification team well-informed about the

technologies used during software building because such technologies can bias the

verification results. For instance, the use of cache technologies can result in different

response time according to the software state, masking the real performance of the

system.

The virtualization technologies can also be used to simulate testing agents (i.e.,

machines from which the tests are trigged). Thus, it is possible to simulate, for

example, several users operating the software in parallel, which would be impeditive

using real machines.

Different activities use the network infrastructure of the organization (e.g., file

transfer, backup routines). These activities can overload the devices (e.g., routers,

switches), interfering with the verification results (mostly for performance). Therefore,

120

the test cases should be performed more than once and at different periods of time to

mitigate external influences.

Finally, If it is not possible to isolate the verification environment using

virtualization technologies, the organization should create a schedule to perform the

verification activities. This action prevents verification from occurring in parallel with

other activities (e.g., users performing acceptance testing), avoiding external

interferences in the verification results. This is a low relevance action as only less than

half (48%) of the survey's participants understand that it can be used to obtain the

appropriate verification environment.

5.7.2.1 New actions to promote MF5

Table 31 presents the new actions that emerged through the survey and can be

used to configure an appropriate verification environment. As this is the first time these

actions are emerging, they still need to be investigated in the future.

Table 31 - New actions to promote MF5

New actions to promote the adequate verification environment #

Using automated verification 1

Simulating a defined behavior that constitutes real user behavior 1

Using techniques to generate suitable testing data 1

5.8 MF6: Systematic verification methodology

A finding of the case study relates to the existence of a methodology of security

and performance verification and recommendations regarding its suitability (Figure 59).

When an organization does not follow a suitable methodology, the verification of S&P is

performed in a non-systematic way, impairing its effectiveness and efficiency. For

example, if there is no methodology to guide the verification team, the test case

selection criteria and the definition of done are performed informally, following the

tester’s intuition.

121

Figure 59 - MF6: Systematic methodology moderator factor

According to the participants of the case study, there are various publications

(e.g., pre-defined methodologies, norms, and laws) that can be used as the basis for

the definition of a methodology in an organization. However, it is not advisable to use

these publications verbatim. It is necessary to understand the recommendations and

adapt them to the context of the organization, aligning the proposed practices with the

practices already used in the organization and with the team’s capability. A participant

said: “…knowing that our team is small, I have to work according to our ability,

performing the tests for which we have the capacity. I took some courses and could

apply other verification activities, but I would need an infrastructure that I do not have.”

A verification methodology should be adaptable to the technologies used in the

development of a software system. For example, it is useless to perform web

vulnerability analysis if the system is embedded, or database verification if the system

does not hold any data.

Moreover, a verification methodology should allow the increasing adoption of

the proposed practices. Thus, the teams can have time to adapt to the new practices. A

participant said: “So, we started using basic open-source tools. Then, we adopted more

advanced tools. Thus, using the initial tests, we could understand how we could

perform verification and deliver the results to the customers.”

122

Moreover, a methodology should evolve because system security and

performance also evolve with time. Regarding security verification, evolution is

mandatory, as new invasion techniques are continuously created.

Appropriate points that the methodology should consider were also identified.

The first is a risk assessment step, where the assets should be identified, and the

criticality level should be assessed. Furthermore, if the verification activities are

performed by a third-party company, the need for legal authorization should be

considered.

Finally, the verification methodology should make it clear that the S&P

verification activities should be performed after the verification activities targeting the

functional requirements; otherwise, the security and performance verification may

identify functional failures, contrary to its real purpose.

5.8.1 Strength of systematic verification methodology moderator factor

Seven participants from three different organizations mentioned the need for a

suitable verification methodology (Table 32).

Table 32 - Strength of suitable methodology moderator factor (MF6)

Organizations Participants Quotes

O1 Observation; P1; P2; P3; P4

44 O2 P1; P2

O4 P1

In the technical literature, Martin and Xie [2007] present the results of an

experiment showing the use of a technique increasing the defect detection capability

and the coverage of security verification. Furthermore, the use of suitable techniques in

different phases of software development (e.g., abuse cases in requirements and

modeling, misuse cases and threat trees in design) promotes the identification of

defects in early stages of software development [McDermott and Fox 1999] [Alexander

2003] [Woodraska et al. 2011] [Omotunde and Ibrahim 2015]. Some studies also

suggest a combination of techniques to increase the ability to detect different types of

defects, e.g., complementing the automated tests with manual reviews [Omotunde and

Ibrahim 2015] [Ghindici et al. 2006] [Brucker and Sodan 2014]. Thus, a methodology

123

guides the verification team to choose the suitable technique to assess each of the

software assets.

It was confirmed that organizations should not develop an entirely new

methodology from scratch. It is more suitable to adapt to an existing methodology

[Study 2014] [Choliz et al. 2015].

Some studies discuss the inadequacy of existing methodologies in an agile

development process [Ge et al. 2006] [Erdogan et al. 2010] [Sonia and Singhal 2012]

[Ayalew et al. 2013] [Wäyrynen et al. 2004] [Siponen et al. 2005] and how such

methodologies can be adapted to be more agile. In an agile development process, the

lack of documentation [Kongsli 2006] and constant refactoring [Beznosov and Kruchten

2005] can be impeditive characteristics in implementing current methodologies.

Furthermore, the demanding activities proposed by real S&P methodologies can hinder

development process agility [Keramati and Mirian-Hosseinabadi 2008]. In this sense,

there is a proposed metric that can be used to measure the agility of a verification

methodology. It can be used to evaluate if the adoption of a methodology will impact

the agility of the development process [Keramati and Mirian-Hosseinabadi 2008].

Finally, it was confirmed that considering asset identification and risk analysis is

an essential requirement of a sound methodology [Study 2014] [De Win et al. 2009].

5.8.1.1 Survey results of MF6

Figure 60 presents the summary of the control group opinions regarding MF6

on the VAS scale. The position of the mean (dark blue square) in the visual scale

allows us to conclude that our understanding of the relevance of a systematic

verification methodology is correct.

Figure 60 - MF6 confirmation (control group)

The external participants of the survey also agree regarding the pertinence of

MF6 (Figure 61). However, the significant standard deviation indicates that the

systematic methodology does not have high relevance in some contexts.

124

Figure 61 - MF6 relevance according to external participants

According to the Shapiro-Wilk test, the answers do not follow a normal

distribution, and the diagram (Figure 62) shows that the high level of the scale includes

most of the answers.

Figure 62 - MF6 distribution

The statistical test aiming to identify bias in the response shows it is not biased

(Figure 63).

Figure 63 - MF6 Bias test (mean test)

5.8.2 Actions to promote the use of a systematic verification methodology

We could find a single action to promote the use of a systematic methodology

(Table 33). This action consists of choosing a methodology already proposed (e.g.,

125

OWASP, Microsoft SDL) and adapting it to the context and particular needs of the

organization. The survey result shows that 21 out of 27 participants agree that this

action can be used to promote MF6.

Table 33 - Actions to promote MF6

Actions to promote the systematic verification methodology # %

Using a proposed methodology and adapting it to the context of the

organization
21 78%

5.8.2.1 New actions to promote MF6

As shown in Table 34, the survey allowed the identification of 4 new actions to

promote the use of a systematic verification methodology.

Table 34 - New actions to promote MF6

New actions to promote the systematic verification methodology #

Modify the company culture at some level by fostering a new methodology 1

Search for a methodology aligned with stakeholders needs 1

Use appropriately trained testers; avoid using a dopey methodology 1

Create processes and revise them according to proposed methodology and

company context
1

5.9 MF7: Plan security and performance verification activities

Another issue regarding security and performance verification relates to the

planning activity (Figure 64). Usually, verification is not well planned, leading to the

need to reprioritize the verification activities, and consequently to the reduction of their

coverage.

126

Figure 64 - MF7: Planning security and performance verification moderator factor

The study participants have the perception that S&P verification activities

require additional effort and cost. The managers neglect these activities, excluding

them from verification planning. A participant presented his opinion about why security

and performance verification activities are not planned (or were included in the project

planning stage): “… ‘- How much does it cost to develop a software system?’. ‘- It costs

300 thousand’. ‘- And with security?’. ‘- Well, it depends. So, I should evaluate it. There

is a need to have a team performing the verification, and this will have a cost and time

impact’. ‘- So, then leave it for later, for a second version.’…”

Additionally, while a team of Org1 was performing response time tests, the

release time was changed, and some test cases could not be executed. Thus, the team

expended more effort reprioritizing the test cases (the activity of planning phase) than

executing them.

Moreover, the participants reported that the stakeholders (e.g., managers and

customers) have the perception that verification activities can change the delivery time

or the cost of a system. However, they do not consider the benefits of these activities.

A participant said: “…every time I talk to someone about testing, about security, or

things like that, people always think that it will change the delivery deadline: ‘Wow, I

need to do it fast.’ ‘Folks, you are not going to get rework if you do it well.’…”

127

5.9.1 Strength of plan security and performance verification activities

moderator factor

Table 35 presents the strength of this moderator factor. It is mentioned only six

times by two participants.

Table 35 - Strength of plan security and performance verification activities moderator

factor (MF7)

Organizations Participants Quotes

O1 Observation

6 O2 P1

O4 P1

In technical literature, it can be identified that successful planning can reduce

the number of redundant test cases without losing efficiency [Omotunde et al. 2018].

Furthermore, in a study aiming to identify the skills of good testers, planning ability was

recognized, although it was not the most important [Iivonen et al. 2010]. Finally,

according to Bozic and Wotawa [2015], the planning phase can be guided by support

tools, decreasing the testers’ effort.

5.9.1.1 Survey results of MF7

Figure 65 presents the results summarizing the opinion of the control group

plotted on the VAS scale. The position of the mean (dark blue square) allows us to

conclude that the participants of the control group agree with the pertinence of MF7,

revealing that we correctly interpret the information that pointed to this moderator

factor.

Figure 65 - MF7 confirmation (control group)

The 29 valid answers show the external participants understand the planning of

S&P verification as an essential moderator factor (Figure 66).

128

Figure 66 - MF7 relevance according to external participants

Figure 67 presents the graphic and some information about the statistical

analysis performed on the answers related to MF7. The graphic shows the answers are

majority concentered in the high levels of the VAS scale. Besides, the median of 9.8

indicates that at least 50% of the participants positioned the VAS scale extremely close

to its maximum value, manifesting a high agreement regarding the pertinence of the

moderator factor.

Figure 67 - MF7 distribution

As shown in Figure 68, the mean test with the hypothesized value of five does

not identify a bias.

Figure 68 - MF7 Bias test (mean test)

129

5.9.2 Actions to promote the planning of security and performance verification

Table 36 presents the only practice we can find to foster the creation of a plan

for the S&P verification activities. Such action is the use of tools to guide the planning,

decreasing the effort, and improving the formality of planning activities. 25 out of 29

survey participants agree that this action is relevant to promote the planning of security

and performance verification.

Table 36 - Actions to promote MF7

Actions to promote the planning of security and performance

verification
%

Using a tool to guide the security and performance verification planning 25 86%

5.9.2.1 New actions to promote MF7

Additionally, it was possible to identify two new actions to promote the planning

of security and performance verification. Further investigations are required for

understanding the relevance of these new practices and the context they could be

applied.

Table 37 - New actions to promote MF7

New actions to promote the planning of security and performance verification #

Including the security and performance verification activities as part of the

development and maintenance cycle

1

Having business knowledge helps prioritize the parts of the system that should be

evaluated

1

5.10 MF8: Reuse practices

The reuse of knowledge and artifacts was also identified as a recommendation,

bringing more agility to security and performance verification activities (Figure 69). The

functional test cases of the system may be used in performance tests because they

130

represent real usage scenarios. Moreover, it is possible to adapt the parameters of the

test cases of previous systems, reducing the construction effort and time.

It was possible to observe that previous similar systems might be used as a

basis for the definition of the requirements. For instance, the required response time of

a scenario can be defined based on a similar scenario of a production system. A

participant said: “The number of concurrent users the system should support is defined

by a similar system that is already in production.”

Finally, it is important to know common defects (e.g., common vulnerabilities

and exposures) and to use pre-defined test cases to identify the failures caused by

these faults. While talking about penetration tests, a participant mentioned the use of

well know cross-site scripting strings (test cases): “I have a database with more than

350 XSS queries… it is populated with my own knowledge and aggregating other

internet databases… OWASP has a database that we can download. Usually, they are

the most frequent attacks... I also keep an eye on Exploitdb and vulnerability

monitoring platforms. Usually, when they publish an exploit, they also present the XSS

query together. So, these XSS queries are well known, and it is possible to make them

more generic to use in other systems”.

Figure 69 - MF8: Reuse practices moderator factor

131

5.10.1 Strength of reuse practices moderator factor

As shown in Table 38, it was possible to identify MF8 in two organizations. In

the first, it was observed and mentioned by two participants. In the second, it was

mentioned by one of the participants.

Table 38 - Strength of reuse practices moderator factor (MF8)

Organizations Participants Quotes

O1 Observation; P2; P3
6

O2 P2

There are studies that present the benefits of reusing functional testing as non-

functional testing. The functional test cases can be reused both as security and

performance test cases, bringing benefits such as an increase in the coverage,

improvement of failure detection rate and cost reduction to perform tests and generate

suitable testing data set [Dazhi Zhang et al. 2010] [Santos et al. 2011]. Furthermore,

Santos et al. [2011] claim that the reuse of functional testing can bring indirect benefits:

an increase in the quality of functional testing because the effort saved in performance

testing can be used to improve functional testing; an increase in the diffusion of

functional testing due to the increased importance of them in the development process.

5.10.1.1 Survey results of MF8

Figure 70 summarizes the opinions of the control group regarding reuse

practices. As the participants agreed with the moderator factor, we can conclude that

we were able to correctly interpret the information that led to the creation of this

moderator.

Figure 70 - MF8 confirmation (control group)

132

The outside group, composed of 29 participants, understand reuse practices as

relevant to the S&P verification activities (Figure 71).

Figure 71 - MF8 relevance according to external participants

The statistical analysis revealed a distribution similar to the others - most of the

participants positioned the VAS scale in a position indicating the moderator factor has

high relevance (Figure 72).

Figure 72 - MF8 distribution

Finally, the mean test also shows there is no bias (Figure 73).

Figure 73 - MF8 Bias test (mean test)

133

5.10.2 Actions to promote reuse of practices

A software development organization can make use of some actions to

encourage the reuse of practices (Table 39). The opinions of 29 survey participants

were used to order the actions by relevance.

Table 39 - Actions to promote MF8

Actions to promote the reuse of practices # %

Knowing common defects (e.g., vulnerabilities) and using pre-defined test

cases to identify the failures caused by these defects
25 86%

Reusing the knowledge acquired from other similar systems as a basis for

the definition of the requirements
23 79%

Reusing functional test cases as they represent real usage scenarios 19 66%

Reusing test cases from similar systems adapting parameters 13 45%

Different services analyze and disclose common vulnerabilities and exposures

(CVE). CVEs are defects related to security. In disclosing these defects, these

services also provide instructions on how to detect these defects (test cases). The

verification team should regularly consult these services to be aware of common

defects and reuse the available test cases.

Besides, the verification team can use similar systems as a basis to define S&P

requirements. As mentioned before, the S&P requirements may not exist. Thus, using

the experience with similar systems already in production can be considered because it

allows gaining insight into the needs of the new system based on the behavior of actual

real users of a similar system.

It is possible to reuse functional test cases as they represent real usage

scenarios. For instance, it is more appropriate to assess the response time of a

software feature using real data as input than using randomly generated data.

Finally, it is also possible to reuse the structure of test cases of similar systems,

avoiding building them from scratch. However, this action is not relevant according to

the opinion of most survey participants (55%) as only 45% state it is relevant. Thus, it

can be considered a low relevance action.

134

5.10.2.1 New actions to promote MF8

Table 40 presents the new five new actions we could identify through the

survey. As the new actions identified to promote the other moderator factors, these

actions should be further investigated to increase their understanding and their

relevance in different contexts.

Table 40 - New actions to promote MF8

New actions to promote the reuse of practices #

Creating a base of knowledge of recurring defects 1

Mapping vulnerability according to the domain to promote the identification of

vulnerabilities applicable to specific situations
1

Functional test cases specify what could be added for performance verification 1

Design real-time scenario with production volume data, per hour, per day

transaction, Per week, etc
1

Reusing multiple test scenarios is very useful for both professional and runtime

scenarios that we can insert in the context of similar new projects
1

5.11 Conclusions

The eight moderator factors presented in this chapter represent topics a

software development organization should consider in order to perform the S&P

verification activities successfully. These moderator factors arose from a case study,

and they were confirmed thought the technical literature and a survey.

As shown in Table 41, the moderator factors can be ordered by their relevance

according to the practitioners' opinions (survey).

135

Table 41 - Moderator factors ordered by relevance

MF5

MF1

MF7

MF3

MF8

MF2

MF4

MF6

MF1: Organizational awareness of the importance of security and performance

MF2: Cross-functional team

MF3: Clear requirements

MF4: Suitable support tools

MF5: Adequate verification environment

MF6: Systematic verification methodology

MF7: Plan security and performance verification activities

MF8: Reuse practices

Therefore, through the survey results, it is possible to conclude that every

presented moderator factor is relevant to the S&P activities.

Besides, the chapter presents the actions that can be used to promote each of

the moderator factors and their relevance according to practitioners' opinions. The

relevance level of each of the actions can be used as a selection criterion if it is not

possible to implement all actions.

Therefore, this chapter provides a kind of guideline presenting essential topics

to the success of S&P verification and how to achieve these topics (actions).

136

6 Conclusion

This chapter presents the final thesis considerations, highlighting the

main contributions as we describe the answers to the research

questions. Besides, it outlines the research limitations represented

by the threats to validity and the actions we took to mitigate them.

Finally, it presents the open questions indicating future works that

can arise from the current findings.

6.1 Final considerations

In general, this work can be classified as descriptive research as it presents a

characterization of a phenomenon (non-functional verification). This kind of research

results in an organized description of a phenomenon that can be used to foment future

researches and provide information to support decision-making in practice [Jackson

2012]. Therefore, as descriptive research, the thesis describes the “What” regarding

the verification of NFR without emphasizing the “Why.”

The thesis used the results of two structured literature reviews to provide an

organized body of knowledge of non-functional requirements and the testing

approaches that can be used to assess them (NFR-BoK). NFR-BoK is ordered by

relevance according to the number of papers citing them. Thus, software development

organizations can use these findings to prioritize the NFRs and to select the software

testing approaches that could be used to assess these NFRs.

These initial findings showed that there are some difficulties in testing NFRs

because (1) there is no consensus regarding the software properties each NFR

represents, (2) there are NFRs that are not covered by a testing approach, (3) the non-

functional testing approaches do not cover all testing dimensions, and (4) some testing

approaches are not evaluated experimentally. Therefore, it indicates that non-functional

testing is a topic that still needs researches to evolve.

After organizing NFR-BoK, we realized it was essential to focus our efforts on

understanding the most relevant NFR (security and performance) and open the

research scope to software verification (broader than software testing). Thus, following

137

the recommendations of our qualifying committee, we started understanding how S&P

verification has been performed in practice.

By using a case study as a research method, this thesis provides a

characterization of the S&P verification practices performed by software development

organizations. The characterization describes the S&P verification practices regarding

the used techniques, definition of done criteria, automation level, and the assets the

practice covers. Besides, it provides a set of factors used to make decisions regarding

S&P verification: the selection of tools, verification practice, coverage criteria, and

definition of done.

The set of identified S&P verification practices and decision-making factors did

not intend to be exhaustive but indicates they work on practical contexts as the

organizations are using them. Besides, it can be used as input to future research.

In addition, we realized that security and performance are not adequately

treated by many organizations, as when we were recruiting organizations to participate

in the case study, several of them said they did not perform verification of security and

performance.

Finally, this thesis provides a set of eight moderator factors influencing the S&P

verification activities. The moderator factors represent points a software development

organization should be concerned in order to perform the S&P verification activities

successfully. Additionally, it also provides a set of actions that software organizations

development can use to promote each moderator factor. These findings showed that

software development organizations should (1) promote the awareness of the

importance of the S&P, (2) keep a cross-functional verification team, (3) produce

precise S&P requirements, (4) make use of suitable S&P verification tools, (5)

configure an adequate S&P verification environment, (6) use an S&P verification

methodology, (7) plan the S&P verification activities, and (8) encourage reuse

practices.

The moderator factors and their actions were evaluated using the technical

literature and practitioner’s opinion using a systematic research methodology.

Therefore, we are confident about the use of these findings as practical guidance to

introduce or improve the S&P verification.

Therefore, the main outputs of this thesis are (1) the book of knowledge of non-

functional requirements and their software testing techniques, (2) the characterization

of the S&P verification practices and their decision-making factors, and (3) the set of

eight moderator factors influencing the S&P verification and the actions used to

promote them.

138

6.2 Research contributions revisited

The overall objective of this thesis was to characterize the verification of

software non-functional requirements. Organizing the knowledge involving this topic

allows a better understanding of the area and the identification of appropriate practices

(recommendations) as well as the weaknesses (opportunities for evolution).

Thus, we describe the contributions of this research as we present a summary

of the answers to the research questions:

 RQ0.1: What are the most relevant non-functional requirements, according to

software practitioners?

 RQ0.2: What are the software testing approaches used to test non-functional

requirements?

 RQ0.3.1: What are the relevant NFRs that are not covered by testing

approaches?

 RQ0.3.2: What are the test dimensions met by the test approaches?

We used two structured literature reviews to answer these initial questions. The

first literature review looked for papers describing the opinion of practitioners

regarding the relevance of NFRs to a software system. Thus, it allowed the

identification of the most relevant NFRs and a set of characteristics describing

them. Therefore, it was possible to answer RQ0.1 ordering the NFRs by their

relevance according to the number of practitioners who cited them. Besides, the

description of the NFRs characteristics provides a deep understanding of their

meaning. It is essential due to the lack of consensus on the software property

each NFR represents.

The second literature review allowed the identification of software testing

approaches supporting the assessment of NFRs. Thus, we were able to create

a catalog of non-functional testing approaches and their target NFRs, answering

RQ0.2.

After, by combining the findings of the literature reviews, it was possible to

identify relevant NFRs that do not have a software testing approach supporting

their assessment. This result answered RQ0.3.1 and indicated research

opportunities.

139

Besides, we provide information regarding the testing dimensions (phases,

levels, and type of technique) each identified testing approach can evaluate

(RQ0.3.2). This information is vital because specific testing strategies can only

identify some categories of defects.

Finally, these findings were organized into a body of knowledge (Chapter 3) that

can be accessed and evolved by the software engineering researchers’

community. The compilation of these findings allowed us to realize the need to

focus on the most relevant NFRs: security and performance.

 RQ1: Which are the practices used by organizations to support the verification

of security and performance?

We performed a case study aiming to identify S&P verification practices used by

software development organizations. Thus, we identified six S&P verification

practices and their characterization regarding used techniques, the definition of

done, the automation level, and assets covered (Section 4.3).

As we used a case study as a research method, it was not feasible to obtain

information from a large number of organizations. Thus, the results cannot be

used to affirm that these are the standard S&P verification practices used by

software organizations. However, these results can be used by future

researches to understand, for example, why these practices have been used.

 RQ2: How does the organization define its security and performance

verification strategies?

The case study was also used to identify decision-making criteria regarding

S&P verification. Thus, we were able to identify factors influencing the choice of

S&P verification tools, S&P verification practices, and S&P verification coverage

criteria. Besides, it was possible to identify who is responsible for the decision-

making regarding the choice of S&P verification tools, S&P verification

practices, and definition of done of S&P verification (Section 4.4).

These findings cannot be generalized due to the intrinsic limitations of the case

study method (a small number of organizations). However, these results can be

used as a starting point for further researches aimed to confirm and identify new

factors influencing the decision-making related to S&P verification activities.

 RQ3: What are the moderator factors influencing security and performance

verification?

140

This thesis provides a set of eight moderator factors influencing the S&P

verification. It also includes actions that can be used to promote each of the

moderator factors (Chapter 5).

The moderator factors arose from the data collected during the case study, and

then they were improved and confirmed though a set of rapid reviews. In

sequence, the relevance of each moderator factor was identified according to

practitioners’ opinions (survey). Therefore, if it is not possible to address all

moderating factors, software development organizations may use relevance as

the selection criterion.

6.2.1 Contributions to the software industry

The findings presented in this thesis can contribute to the software development

industry in different ways. First, the NFR-BoK can support organizations to define and

understand the NFRs their software products should meet. Besides, the information

provided by the NFR-BoK support organizations to select suitable testing approaches

to evaluate NFRs. Additionally, the NFR-BoK increases the awareness of organizations

regarding the lack of testing approaches to evaluate some NFRs. Thus, it is possible to

estimate the risk of do not verify such NFRs.

This thesis identified a set of security and performance verification practices

used by the software industry. Besides, the presented decision-making factors support

the organizations to choose the criteria to make decisions regarding S&P verification.

Finally, the moderator factors indicate topics that software development

organizations should invest to improve S&P verification activities. Such moderator

factors can be addressed by a set of actions also provided in this thesis.

6.2.2 Contributions to academia

This thesis contributes to the software engineering research area as it shows

how different research methods can be combined into a research project. It

Demonstrate how to use structured literature reviews to build a trustworthy body of

knowledge, how to use the coding phase of grounded theory to analyze the results of a

literature review, present relevant insights on how to use rapid reviews to increase the

141

confidence of case study findings, present example of use of thematic analysis to

analyze the data of a case study research, and present an approach on how to use a

survey to bring knowledge from industry to academia, validating theoretical results.

Therefore, other researches can make use of these mythological steps in their

researchers.

Besides, the organization of the NFR-BoK provides initial information regarding

the NFRs, which can support further investigations of such NFRs.

Additionally, it evidenced different research opportunities. For example, the

opportunity to create new testing approaches to evaluate the NFRs and improve the

coverage of the existing testing approaches.

6.3 Threats to validity

The threats to validity are presented according to the research cycle as they are

influenced by the research methods performed in each of the cycles.

6.3.1 Threats to validity of cycle 1

Cycle one used structured literature reviews as the research method. Besides,

the collected data were analyzed through a qualitative approach (open coding). Thus,

the threats to the validity of this cycle are related to subjective evaluations carried out

on this phase. For instance, the open coding is an interpretative process, and it could

have led us to a wrong categorization of non-functional requirements. Moreover, the

NFR-BoK is based on NFR descriptions provided by LR1. Thus, further investigation

can direct effort on understanding a specific NFR, resulting in the restructuring of the

body of knowledge, and it could result in changes in our initial findings.

Furthermore, papers included in LR2 are not clear about test dimensions.

Therefore, defining a particular approach coverage (testing phases, levels, and

techniques) was an interpretative task. Thus, despite having followed a systematic

methodology, the process is failure-prone.

Another threat to validity is related to the use of a single search engine. The

strategy of only using Scopus was adopted because, through previous literature

142

reviews, we realized that other search engines have a low contribution to the research

coverage.

6.3.2 Threats to validity of cycle 2

As the case study was the core research method of cycle two, we describe here

how we tried to mitigate the threats to validity following the recommendations of Cruzes

and Othmane [2018] and using the quality criteria (Q1-4) and proposed methods (M1-

6) to handle them [Lincoln and Guba 2016] [Maxwell 2012].

Credibility (Q1), representing the quality of being convincing or believable, was

addressed using rich data/persistent observations (M1) and through data collection

using three methods (observation, interviews, and questionnaires), by making notes

about what happened, and by verbatim transcripts of what participants said.

Furthermore, quotes from the participants were provided.

The transferability (Q2) quality refers to the degree to which the results can be

generalized to other contexts or settings. This quality is problematic in the case of

studies because it is not possible to have a significant number of subjects, as was in

the present case. However, to improve transferability, we used the intensive long-term

involvement (M2) method, whereby the research was conducted on-site, making it

possible to have a more accurate contextual perception. Thus, it was possible to

provide an in-depth description of the organizations’ characteristics and the context in

which data were collected.

Regarding dependability (Q3), data stability and reliability over time and various

conditions, the study was conducted in four different organizations with participants of a

variety of profiles. Thereby, the results can be triangulated (M3), improving

dependability. Additionally, the research protocol is available, making it possible to

replicate the study in different contexts.

To avoid researcher bias and improve confirmability (Q4), peer debriefing (M4)

was used, exposing the main findings to a research group and discussing their

coherence. Furthermore, multiple meetings among the thesis author and other

researchers were held to discuss the codes. Additionally, a search in the literature was

performed to support the conjectures. A survey was performed as an instance of the

methods of respondent validation (M5) and member checking (M6).

143

Furthermore, the case study was conducted among Brazilian organizations,

where Portuguese is the native language. Thus, the participants’ quotes reproduced

here are translations of what they said. Moreover, the artifacts and codes were initially

in Portuguese and translated into English to be presented here. This translation does

not affect the results reported, as no sentiment/feelings analysis was performed on the

answers.

Finally, investigating two non-functional requirements together can be risky.

There were situations in which it was not possible to determine whether a respondent

was reporting issues related to security or performance.

6.4 Future work

As a work describing a software engineering topic in its broader scope, there

are several opportunities for further investigations of each individual part from a deeper

perspective. Such opportunities are described below as future work.

Improvements to NFR-BoK regarding the NFRs characterization – we

organized NFR-BoK based on the results of a literature review aimed to identify

relevant NFRs. Thus, we were not focused on the understanding of a particular NFR.

Therefore, further researches focusing on a particular NFR can identify additional

characteristics, resulting in the improvement of NFR-BoK. Besides, the relevance of the

NFRs can change and shall be reflected in NFR-BoK.

Work on spreading usage of NFR-BoK – we provided a body of knowledge of

relevant NFRs, and the software testing techniques can be used to assess them.

However, further investigations can go further by providing technologies that use the

NFR-BoK as input to support the prioritization of the NFRs a software should meet and

describe how to assess the selected NFRs using the available testing techniques.

It involves the identification of the software characteristics influencing the

selection of relevant NFRs. For instance, understanding the relevance of each NFR

according to the software domain. Besides, automated tools can support these future

technologies aiding the use of the body of knowledge by software development

organizations.

Understand the trade-off of handling different NFRs in a project – time and

budget pressures prevent software development organizations from handling each

NFR separately. Thus, many NFRs must be handled together over the software life

144

cycle. For example, there is no time to assess the system usability, then the system

performance, after the system usability, and so on. Therefore, researches investigating

how to assess multiple NFRs at the same time is needed.

Researchers have been studying the conflicts between NFRs, but they are

concerned with determining how the accomplishment of a particular NFR can prevent

the software to achieve other NFRs [Boehm and In 1996] [Mairiza et al. 2013].

However, we are suggesting researches that answer how to handle multiple NFRs

during the software development process.

We believe that organizing a body of knowledge about NFRs can improve the

understanding of these requirements and be the first step in dealing with trade-offs

during the process of developing a software system.

New non-functional testing approaches and evolution of the existing ones

– as we could identify NFRs classified as relevant to the success of software systems,

and there are no testing approaches to assess these NFRs, the need to create new

testing approaches is evident.

Besides, the existing non-functional testing approaches do not fully cover the

software testing dimensions (testing level, phases, and techniques). It is warning as

some failure categories can be identified only by specific software strategy. Moreover,

most of the identified non-functional testing approaches were not formally evaluated, or

they were evaluated through a weak experimental method (proof of concept).

Identify new security and performance verification practices – a case study

is a restrictive method regarding the size of the investigated population. Thus, we were

able to research only four organizations. Therefore, new S&P verification practices can

be identified by performing the case study in other contexts or using another research

method (e.g., literature review, survey). For the first option, it is possible to reuse our

case study planning and artifacts to replicate the investigation.

Identify new factors influencing the decision-making of S&P verification –

similar to the S&P verification practices, and the decision-making factors were also

identified using a small population. Therefore, further researches can identify new

decision-making factors used in distinct contexts.

Improve the understanding regarding the influence of moderator factors

in S&P verification – we presented the moderator factors stating that they are relevant

to the S&P verification. However, we do not provide information about how they

influence the S&P verification. For instance, what are the consequences of producing

precise requirements (MF3)? Does it increase the defect identification rate? Does it

145

decrease the S&P verification cost? Does it decrease the effort? Such questions are

unanswered. Therefore, further researches can address these questions in the future.

Improve the understanding regarding the applicability of the S&P

moderator factors – some of the factors may not be relevant in specific contexts. For

instance, it could be unfeasible to have a cross-functional team (MF2) in the context of

extra-small organizations (1, 2, or 3 employees). Therefore, further researches can

address each of the factors to understand the context in which they can be applied.

It is possible to apply similar reasoning to the actions used to promote each

moderator's factors. Thus, there is also a need for further researches investigating the

context they could be applied.

Understand why software development organizations do not use the

proposed technologies to manage S&P requirements – one of the moderator

factors states about the importance of having clear security and performance

requirements (MF3). However, despite the existence of different technologies

supporting the management of S&P requirements [McDermott and Fox 1999] [Tondel

et al. 2008] [Mohammed et al. 2017], we realized that the organizations manage the

S&P requirements ad-hoc.

Therefore, future research should evaluate the applicability of the proposed

technologies and propose ways to introduce them in the software development

industry.

Identify the criteria used to select a suitable methodology – we concluded

that it is vital to use a systematic S&P verification methodology. However, we do not

provide indications of how to choose a suitable methodology. Therefore, further

researches should identify the factors influencing the choice of a suitable methodology

according to the context of each software development organization and the software

characteristics.

146

REFERENCES

Afreen, N., Khatoon, A., and Sadiq, M. (2016). A Taxonomy of Software’s Non-

functional Requirements. In: Satapathy, S. C.; Raju, K. S.; Mandal, J. K.; Bhateja,

V.[Eds.]. Philosophy and Rhetoric. Advances in Intelligent Systems and

Computing. New Delhi: Springer India. v. 379p. 47–53.

Alexander, I. (Jan 2003). Misuse cases: use cases with hostile intent. IEEE Software,

v. 20, n. 1, p. 58–66.

Ameller, D., Ayala, C., Cabot, J. and Franch, X. (Sep 2012). How do software

architects consider non-functional requirements: An exploratory study. In 2012

20th IEEE International Requirements Engineering Conference (RE), Chicago, IL,

USA. IEEE. http://ieeexplore.ieee.org/document/6345838/.

Ameller, D., Galster, M., Avgeriou, P. and Franch, X. (2013). The Role of Quality

Attributes in Service-Based Systems Architecting: A Survey. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). v. 7957 LNCSp. 200–207.

Ameller, D., Galster, M., Avgeriou, P. and Franch, X. (8 Jun 2016). A survey on quality

attributes in service-based systems. Software Quality Journal, v. 24, n. 2, p. 271–

299.

Arif, M. M., Shang, W., and Shihab, E. (3 Jun 2018). Empirical study on the

discrepancy between performance testing results from virtual and physical

environments. Empirical Software Engineering, v. 23, n. 3, p. 1490–1518.

Atifi, M., Mamouni, A., and Marzak, A. (2017). A Comparative Study of Software

Testing Techniques. In: El Abbadi, A.; Garbinato, B.[Eds.]. Lecture Notes in

Computer Science. Cham: Springer International Publishing. v. 10299p. 373–

390.

Aurum, A., and Wohlin, C. (2005). Requirements Engineering: Setting the Context. In:

Aurum, A.; Wohlin, C.[Eds.]. Engineering and Managing Software Requirements.

Berlin/Heidelberg: Springer-Verlag. v. 44p. 1–15.

Ayalew, T., Kidane, T., and Carlsson, B. (2013). Identification and Evaluation of

Security Activities in Agile Projects. p. 139–153, Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-41488-6_10

Bajpai, V., and Gorthi, R. P. (Mar 2012). On non-functional requirements: A survey. In

2012 IEEE Students’ Conference on Electrical, Electronics, and Computer

147

Science. IEEE. http://ieeexplore.ieee.org/document/6184810/.

Baltes, S., Moseler, O., Beck, F., and Diehl, S. (Oct 2015). Navigate, Understand,

Communicate: How Developers Locate Performance Bugs. In 2015 ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement

(ESEM). IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7321208.

Barbir, A., Hobbs, C., Bertino, E., Hirsch, F., and Martino, L. (2007). Challenges of

Testing Web Services and Security in SOA Implementations. Test and Analysis

of Web Services. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 395–440.

Barney, S., Aurum, A., and Wohlin, C. (Jun 2008). A product management challenge:

Creating software product value through requirements selection. Journal of

Systems Architecture, v. 54, n. 6, p. 576–593.

Basili, V. R., and Selby, R. W. (Dec 1987). Comparing the Effectiveness of Software

Testing Strategies. IEEE Transactions on Software Engineering, v. SE-13, n. 12,

p. 1278–1296.

Becha, H. and Amyot, D. (1 Mar 2012). Non-Functional Properties in Service Oriented

Architecture – A Consumer’s Perspective. Journal of Software, v. 7, n. 3, p. 575–

587.

Berntsson Svensson, R., Gorschek, T., and Regnell, B. (2009). Quality Requirements

in Practice: An Interview Study in Requirements Engineering for Embedded

Systems. Requirements Engineering: Foundation for Software Quality. v. 4542p.

218–232.

Bertolino, A. (May 2007). Software Testing Research: Achievements, Challenges,

Dreams. In Future of Software Engineering (FOSE ’07). IEEE.

http://ieeexplore.ieee.org/document/4221614/.

Beznosov, K., and Kruchten, P. (2005). Towards agile security assurance. In

Proceedings of the 2004 workshop on New security paradigms - NSPW ’04. ACM

Press. http://portal.acm.org/citation.cfm?doid=1065907.1066034.

Boehm, B. and In, H. (1996). Identifying quality-requirement conflicts. In Proceedings of

the Second International Conference on Requirements Engineering. IEEE

Comput. Soc. Press. http://ieeexplore.ieee.org/document/491448/.

Boehm, B., and Kukreja, N. (Oct 2015). An Initial Ontology for System Qualities.

INCOSE International Symposium, v. 25, n. 1, p. 341–356.

Boehm, B. W. (Jan 1984). Software Engineering Economics. IEEE Transactions on

Software Engineering, v. SE-10, n. 1, p. 4–21.

Borg, A., Yong, A., Carlshamre, P., and Sandahl, K. (2003). The Bad Conscience of

148

Requirements Engineering : An Investigation in Real-World Treatment of Non-

Functional Requirements. Third Conference on Software Engineering Research

and Practice in Sweden (SERPS’03), Lund, n. January 2003, p. 1–8.

Bozic, J., and Wotawa, F. (Mar 2014). Security Testing Based on Attack Patterns. In

2014 IEEE Seventh International Conference on Software Testing, Verification,

and Validation Workshops. IEEE. http://ieeexplore.ieee.org/document/6825631/.

Bozic, J., and Wotawa, F. (Aug 2015). PURITY: A Planning-based secURITY Testing

Tool. In 2015 IEEE International Conference on Software Quality, Reliability, and

Security - Companion. IEEE. http://ieeexplore.ieee.org/document/7322124/.

Broy, M. (May 2015). Rethinking Nonfunctional Software Requirements. Computer, v.

48, n. 5, p. 96–99.

Brucker, A. D., and Sodan, U. (2014). Deploying static application security testing on a

large scale. v. P-228p. 91–101.

Bulej, L., Bureš, T., Horký, V., et al. (13 Mar 2017). Unit testing performance with

Stochastic Performance Logic. Automated Software Engineering, v. 24, n. 1, p.

139–187.

Camacho, C. R., Marczak, S., and Cruzes, D. S. (Aug 2016). Agile Team Members

Perceptions on Non-functional Testing: Influencing Factors from an Empirical

Study. In 2016 11th International Conference on Availability, Reliability, and

Security (ARES). IEEE. http://ieeexplore.ieee.org/document/7784622/.

Caro, A., Calero, C., Caballero, I., and Piattini, M. (15 Dec 2008). A proposal for a set

of attributes relevant to Web portal data quality. Software Quality Journal, v. 16,

n. 4, p. 513–542.

Carroll, C., Falessi, D., Forney, V., et al. (Oct 2015). A Mapping Study of Software

Causal Factors for Improving Maintenance. In 2015 ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7321183.

Choliz, J., Vilas, J., and Moreira, J. (Aug 2015). Independent Security Testing on Agile

Software Development: A Case Study in a Software Company. In the 2015 10th

International Conference on Availability, Reliability, and Security. IEEE.

http://ieeexplore.ieee.org/document/7299961/.

Chung, L. and Do Prado Leite, J. C. S. (2009). On Non-Functional Requirements in

Software Engineering. International Series in Software Engineering. p. 363–379.

Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. (2000). The NFR Framework in

Action. Non-Functional Requirements in Software Engineering. Boston, MA:

Springer US. p. 15–45.

149

Conradi, R., Amarjit Singh Marjara, Hantho, Ø., Frotveit, T. and Skåtevik, B. (1999). A

study of inspections and testing at Ericsson , Norway. In Rewritten version of

chapter presented at PROFES’99.

Corbin, J., and Strauss, A. (1998). Basics of Qualitative Research: Techniques and

Procedures for Developing Grounded Theory. 2nd. ed. London: SAGE

Publications.

Cruzes, D. S., and Dyba, T. (Sep 2011). Recommended Steps for Thematic Synthesis

in Software Engineering. In 2011 International Symposium on Empirical Software

Engineering and Measurement. IEEE.

http://ieeexplore.ieee.org/document/6092576/.

Cruzes, D. S., and Othmane, L. Ben (2018). Threats to validity in empirical software

security research. Boca Raton: CRC Press.

Daud, N. M. N., and Kadir, W. M. . W. (2012). Systematic mapping study of quality

attributes measurement in service-oriented architecture. In the 8th International

Conference on Information Science and Digital Content Technology (ICIDT).

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84866998707&partnerID=40&md5=a7fad9b2f2d879fe0b8d347d9936099b%5Cn

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84866998707%7B&%7DpartnerID=40%7B&%7Dmd5=a7fad9b2f2d879fe0b8d34

7d9936099b.

Dazhi Zhang, Donggang Liu, Yu Lei, et al. (Jun 2010). Detecting vulnerabilities in C

programs using trace-based testing. In 2010 IEEE/IFIP International Conference

on Dependable Systems & Networks (DSN). IEEE.

http://ieeexplore.ieee.org/document/5544310/.

De Win, B., Scandariato, R., Buyens, K., Grégoire, J. and Joosen, W. (Jul 2009). On

the secure software development process: CLASP, SDL, and Touchpoints

compared. Information and Software Technology, v. 51, n. 7, p. 1152–1171.

Delamaro, M. eduardo, Maldonado, J. C. and Jino, M. (2007). Introdução ao Teste de

Software. Rio de Janeiro: Elsevier.

Dukes, L., Yuan, X. and Akowuah, F. (Apr 2013). A case study on web application

security testing with tools and manual testing. In 2013 Proceedings of IEEE

Southeastcon. IEEE. http://ieeexplore.ieee.org/document/6567420/.

Ebert, C. (Jan 1998). Putting requirement management into praxis: dealing with

nonfunctional requirements. Information and Software Technology, v. 40, n. 3, p.

175–185.

Eckhardt, J., Vogelsang, A., and Fernández, D. M. (2016). Are “non-functional”

150

requirements really non-functional? In Proceedings of the 38th International

Conference on Software Engineering - ICSE ’16. ACM Press.

http://dl.acm.org/citation.cfm?doid=2884781.2884788.

Erdogan, G., Meland, P. H., and Mathieson, D. (2010). Security Testing in Agile Web

Application Development - A Case Study Using the EAST Methodology. Lecture

Notes in Business Information Processing. v. 48 LNBIPp. 14–27.

Ermilov, T., Khalili, A. and Auer, S. (Jan 2014). Ubiquitous Semantic Applications.

International Journal on Semantic Web and Information Systems, v. 10, n. 1, p.

66–99.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program

development. IBM Systems Journal, v. 15, n. 3, p. 182–211.

Felderer, M., Büchler, M., Johns, M., et al. (2016). Security Testing: A Survey. v. 101p.

1–51.

Ferme, V., and Pautasso, C. (2017). Towards Holistic Continuous Software

Performance Assessment. In Proceedings of the 8th ACM/SPEC on International

Conference on Performance Engineering Companion - ICPE ’17 Companion.

ACM Press. http://dl.acm.org/citation.cfm?doid=3053600.3053636.

Ferrell, B. and Oostdyk, R. (Mar 2010). Modeling and performance considerations for

automated fault isolation in complex systems. In the 2010 IEEE Aerospace

Conference. IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5446817.

Gaisbauer, S., Kirschnick, J., Edwards, N. and Rolia, J. (Sep 2008). VATS: Virtualized-

Aware Automated Test Service. In 2008 Fifth International Conference on

Quantitative Evaluation of Systems. IEEE.

http://ieeexplore.ieee.org/document/4634959/.

Garousi, V., and Felderer, M. (2017). Living in two different worlds: A comparison of

industry and academic focus areas in software testing. IEEE Software, n.

October, p. 1–1.

Ge, X., Paige, R. F., Polack, F. A. C., Chivers, H., and Brooke, P. J. (2006). Agile

development of secure web applications. In Proceedings of the 6th international

conference on Web engineering - ICWE ’06. ACM Press.

http://portal.acm.org/citation.cfm?doid=1145581.1145641.

Ghindici, D., Grimaud, G., Simplot-Ryl, I., Liu, Y. and Traore, I. (Nov 2006). Integrated

Security Verification and Validation: Case Study. In Proceedings. 2006 31st IEEE

Conference on Local Computer Networks. IEEE.

http://ieeexplore.ieee.org/document/4116692/.

151

Gilb, T., and Graham, D. (1993). Software Inspection. Addison-Wesley Professional.

Glinz, M. (2005). Rethinking the Notion of Non-Functional Requirements. Proceedings

of the Third World Congress for Software Quality, n. September, p. 55–64.

Glinz, M. (Oct 2007). On Non-Functional Requirements. In 15th IEEE International

Requirements Engineering Conference (RE 2007). IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4384163.

Guo, W., Fu, X. and Feng, J. (Dec 2010). A Data-Driven Software Testing Tools

Integration System. In 2010 International Conference on Computational

Intelligence and Software Engineering. IEEE.

http://ieeexplore.ieee.org/document/5676878/.

Haley, C. B., Laney, R., Moffett, J. D., and Nuseibeh, B. (Jan 2008). Security

Requirements Engineering: A Framework for Representation and Analysis. IEEE

Transactions on Software Engineering, v. 34, n. 1, p. 133–153.

Hammani, F. Z. (May 2014). Survey of Non-Functional Requirements modeling and

verification of Software Product Lines. In 2014 IEEE Eighth International

Conference on Research Challenges in Information Science (RCIS). IEEE.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6861085.

Harjumaa, L., and Tervonen, I. (2010). Introducing Mitigation Use Cases to Enhance

the Scope of Test Cases. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). v. 6434 LNCSp. 337–353.

Horký, V., Libič, P., Marek, L., Steinhauser, A., and Tůma, P. (2015). Utilizing

Performance Unit Tests To Increase Performance Awareness. In Proceedings of

the 6th ACM/SPEC International Conference on Performance Engineering - ICPE

’15. ACM Press. http://dl.acm.org/citation.cfm?doid=2668930.2688051.

Howard, M., and Lipner, S. (2006). The Security Development Lifecycle: SDL: A

process for Developing Demonstrably More Secure Software. Microsoft Press.

Hui, Z. and Huang, S. (14 Dec 2012). Comparison of SETAM with security use case

and security misuse case: A software security testing study. Wuhan University

Journal of Natural Sciences, v. 17, n. 6, p. 516–520.

IEEE-610.12 (1990). 610.12-1990 - IEEE Standard Glossary of Software Engineering

Terminology. IEEE Computer Society, v. 121990.

Livonen, J., Mäntylä, M. V., and Itkonen, J. (2010). Characteristics of high performing

testers. In Proceedings of the 2010 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement - ESEM ’10. ACM Press.

http://portal.acm.org/citation.cfm?doid=1852786.1852862.

152

ISO/IEC 25010 (2011). ISO 25010 - Systems and software Quality Requirements and

Evaluation (SQuaRE) — System and software quality models. Iso/Iec Fdis

25010:2011, v. 2010, p. 1–34.

ISO 29119-1, (2013). Software and systems engineering - Software testing - Part 1:

Concepts and definitions. v. 2013.

ISO 29119-2, (2013). Software and systems engineering - Software testing - Part 2:

Test processes. v. 2013.

Jackson, S. L. (2012). Research methods and statistics: A critical thinking approach. 4.

ed. Cengage learning.

Johnson, M. J., Ho, C.-W., Maximilien, E. M., and Williams, L. (May 2007).

Incorporating Performance Testing in Test-Driven Development. IEEE Software,

v. 24, n. 3, p. 67–73.

Joorabchi, M. E., Mesbah, A. and Kruchten, P. (Oct 2013). Real Challenges in Mobile

App Development. In 2013 ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement. IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6681334.

Jürjens, J. (2002). Using UMLsec and goal trees for secure systems development. In

Proceedings of the 2002 ACM symposium on Applied computing - SAC ’02. ACM

Press. http://portal.acm.org/citation.cfm?doid=508791.508990.

Kabbani, N., Tilley, S., and Pearson, L. (Apr 2010). Towards an evaluation framework

for SOA security testing tools. In the 2010 IEEE International Systems

Conference. IEEE. http://ieeexplore.ieee.org/document/5482322/.

Kalinowski, M. (2011). Uma abordagem para prevenção de defeitos provenientes de

inspeções para apoiar a melhoria dos processos de engenharia do software.

Federal University of Rio de Janeiro.

Keramati, H., and Mirian-Hosseinabadi, S.-H. (Mar 2008). Integrating software

development security activities with agile methodologies. In 2008 IEEE/ACS

International Conference on Computer Systems and Applications. IEEE.

http://ieeexplore.ieee.org/document/4493611/.

Kim, G.-H., Kim, Y.-G. and Chung, K.-Y. (14 Oct 2015). Towards virtualized and

automated software performance test architecture. Multimedia Tools and

Applications, v. 74, n. 20, p. 8745–8759.

Kim, H., Choi, B., and Yoon, S. (2009). Performance testing based on test-driven

development for mobile applications. In Proceedings of the 3rd International

Conference on Ubiquitous Information Management and Communication -

ICUIMC ’09. ACM Press. http://www.scopus.com/inward/record.url?eid=2-s2.0-

153

70349093096&partnerID=40&md5=61b34bacedccc680fec6061fc8c91fbd.

Kongsli, V. (2006). Towards agile security in web applications. In Companion to the

21st ACM SIGPLAN conference on Object-oriented programming systems,

languages, and applications - OOPSLA ’06. ACM Press.

http://portal.acm.org/citation.cfm?doid=1176617.1176727.

Labs, M. (2016). McAfee Threat Predictions.

https://www.mcafee.com/us/resources/reports/rp-threats-predictions-2016.pdf.

Laitenberger, O., and Atkinson, C. (1999). Generalizing perspective-based inspection

to handle object-oriented development artifacts. In Proceedings of the 21st

international conference on Software engineering - ICSE ’99. ACM Press.

http://portal.acm.org/citation.cfm?doid=302405.302680.

Larsson, J., Borg, M. and Olsson, T. (17 Feb 2016). Testing Quality Requirements of a

System-of-Systems in the Public Sector - Challenges and Potential Remedies.

Linåker, Johan; Sulaman, Sardar Muhammad; Maiani de Mello, Rafael; Höst, M.

(2015). Guidelines for conducting surveys in software engineering v. 1.1. n. May.

Lincoln, Y. and Guba, E. (2016). Naturalistic Inquiry. Encyclopedia of Research Design.

2455 Teller Road, Thousand Oaks California 91320 United States: SAGE

Publications, Inc.

Luo, J., and Yang, W. (Jan 2014). A Performance Testing Tool for Source Code.

Applied Mechanics and Materials, v. 490–491, p. 1553–1559.

Macdonald, F., and Miller, J. (1995). Modelling Software Inspection Methods for the

Application of Tool Support. v. 44, n. 0, p. 1–30.

Mairiza, D., Zowghi, D., and Gervasi, V. (Sep 2013). Conflict characterization and

Analysis of Non Functional Requirements: An experimental approach. In 2013

IEEE 12th International Conference on Intelligent Software Methodologies, Tools,

and Techniques (SoMeT). IEEE. http://ieeexplore.ieee.org/document/6645645/.

Mairiza, D., Zowghi, D., and Nurmuliani, N. (2010). An investigation into the notion of

non-functional requirements. In Proceedings of the 2010 ACM Symposium on

Applied Computing - SAC ’10. ACM Press.

http://portal.acm.org/citation.cfm?doid=1774088.1774153.

Martin, E., and Xie, T. (May 2007). Automated Test Generation for Access Control

Policies via Change-Impact Analysis. In Third International Workshop on

Software Engineering for Secure Systems (SESS’07: ICSE Workshops 2007).

IEEE. http://ieeexplore.ieee.org/document/4273331/.

Matoussi, A., and Laleau, R. (2008). A Survey of Non-Functional Requirements in

Software Development Process. Laboratory of Algorithmic, Complexity, and

154

Logic. http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-2008-7.pdf.

Maxwell, J. A. (2012). Qualitative Research Design: An Interactive Approach. 3rd Ed.

ed. Sage Publications. v. 41.

McDermott, J., and Fox, C. (1999). Using abuse case models for security requirements

analysis. In Proceedings 15th Annual Computer Security Applications

Conference (ACSAC’99). IEEE Comput. Soc.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=816013.

McDonald, J., Dowd, M., and Schuh, J. (2006). The Art of Software Security

Assessment: Identifying and Preventing Software Vulnerabilities. Addison-Wesley

Professional.

Mcgraw, G. (Mar 2004). Software security. IEEE Security & Privacy Magazine, v. 2, n.

2, p. 80–83.

Meira, J. A., De Almeida, E. C., Kim, D., Filho, E. R. L., and Le Traon, Y. (2016).

“Overloaded!” — A Model-Based Approach to Database Stress Testing. p. 207–

222.

Merriam-Webster.com (2019a). Property. https://www.merriam-

webster.com/dictionary/property, [accessed on Jun 14].

Merriam-Webster.com (2019b). Condition. https://www.merriam-

webster.com/dictionary/condition, [accessed on Jun 14].

Merriam-Webster (2011). Conjecture. https://www.merriam-

webster.com/dictionary/conjecture.

Mohammed, N. M., Niazi, M., Alshayeb, M., and Mahmood, S. (Feb 2017). Exploring

software security approaches in software development lifecycle: A systematic

mapping study. Computer Standards & Interfaces, v. 50, n. May 2016, p. 107–

115.

Montagud, S., Abrahão, S. and Insfran, E. (24 Sep 2012). A systematic review of

quality attributes and measures for software product lines. Software Quality

Journal, v. 20, n. 3–4, p. 425–486.

Myers, G. J. (1 Sep 1978). A controlled experiment in program testing and code

walkthroughs/inspections. Communications of the ACM, v. 21, n. 9, p. 760–768.

Netto, M. A. S., Menon, S., Vieira, H. V., et al. (May 2011). Evaluating Load Generation

in Virtualized Environments for Software Performance Testing. In 2011 IEEE

International Symposium on Parallel and Distributed Processing Workshops and

Ph.D. Forum. IEEE. http://ieeexplore.ieee.org/document/6008948/.

Ng, S. P., Murnane, T., Reed, K., Grant, D., and Chen, T. Y. (2004). A preliminary

survey on software testing practices in Australia. In 2004 Australian Software

155

Engineering Conference. Proceedings. IEEE.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1290464%5Cnpapers3://pu

blication/doi/10.1109/ASWEC.2004.1290464.

NIST (2002). The economic impacts of inadequate infrastructure for software testing.

National Institute of Standards & Technology.

Omotunde, H., and Ibrahim, R. (2015). A Review of Threat Modelling and Its Hybrid

Approaches to Software Security Testing. v. 10, n. 23, p. 17657–17664.

Omotunde, H., Ibrahim, R., and Ahmed, M. (2018). An optimized attack tree model for

security test case planning and generation. Journal of Theoretical and Applied

Information Technology, v. 96, n. 17, p. 5635–5649.

OWASP (2014). 4.0 Testing Guide. OWASP Foundation, n. Cc, p. 224.

Parveen, T., and Tilley, S. (Apr 2008). A Research Agenda for Testing SOA-Based

Systems. In 2008 2nd Annual IEEE Systems Conference. IEEE.

http://ieeexplore.ieee.org/document/4519032/.

Rashid, M., Ardito, L., and Torchiano, M. (Oct 2015). Energy Consumption Analysis of

Algorithms Implementations. In 2015 ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM). IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7321198.

Ribeiro, V. V. (2017). Desafios na Verificação de Segurança de Sistemas de Software.

In Workshop de Qualidade de Produto de Software.

Ribeiro, V. V., and Travassos, G. H. (2016). Testing Non-Functional Requirements:

Lacking of Technologies or Researching Opportunities. XV Brazilian Symposium

on Software Quality.

Ribeiro, V. V. (2017).Tecnologia de apoio à composição de estratégias de verificação

de segurança e desempenho, XV Workshop de Teses e Dissertações em

Qualidade de Software.

Ribeiro, V. V., Cruzes, D. S., and G. H. Travassos (2018) A Perception of the Practice

of Software Security and Performance Verification, in 2018 25th Australasian

Software Engineering Conference (ASWEC), pp. 71–80.

Runeson, P. and Höst, M. (19 Apr 2009). Guidelines for conducting and reporting case

study research in software engineering. Empirical Software Engineering, v. 14, n.

2, p. 131–164.

Russell, G. W. (Jan 1991). Experience with inspection in ultra-large-scale development.

IEEE Software, v. 8, n. 1, p. 25–31.

Santos, I. de S., Santos, A. R., and Neto, P. de A. dos S. (2011). Reusing Functional

Testing in order to Decrease Performance and Stress Testing Costs. In

156

Proceedings of the 23rd International Conference on Software Engineering &

Knowledge Engineering (SEKE 2011), n. January, p. 470–474.

Shu, X. and Maurer, F. (Aug 2007). A Tool for Automated Performance Testing of

Java3D Applications in Agile Environments. International Conference on

Software Engineering Advances (ICSEA, 2007). IEEE.

http://ieeexplore.ieee.org/document/4299917/.

Sindre, G., and Opdahl, A. (2001). Capturing security requirements through misuse

cases. NIK, 2001; Norsk Informatikkonferanse, 2001, p. 12.

Siponen, M., Baskerville, R., and Kuivalainen, T. (2005). Integrating Security into Agile

Development Methods. In Proceedings of the 38th Annual Hawaii International

Conference on System Sciences. IEEE.

http://ieeexplore.ieee.org/document/1385609/.

Soares, L. R., Potena, P., Machado, I. do C., Crnkovic, I. and Almeida, E. S. De (Aug

2014). Analysis of Non-functional Properties in Software Product Lines: A

Systematic Review. In 2014 40th EUROMICRO Conference on Software

Engineering and Advanced Applications. IEEE.

http://ieeexplore.ieee.org/document/6928831/.

Sommerville, I. (2011). Software Engineering. 9. ed. Pearson.

Sonia and Singhal, A. (Feb 2012). Integration Analysis of Security Activities from the

Perspective of Agility. In 2012 Agile India. IEEE.

http://ieeexplore.ieee.org/document/6170016/.

Stallings, W., Brown, L., Bauer, M., and Howard, M. (2013). Computer Security:

Principles and Practice. 2nd. ed. Willford Press.

Stephanow, P., and Khajehmoogahi, K. (Mar 2017). Towards Continuous Security

Certification of Software-as-a-Service Applications Using Web Application

Testing Techniques. In 2017 IEEE 31st International Conference on Advanced

Information Networking and Applications (AINA). IEEE.

http://ieeexplore.ieee.org/document/7921007/.

Study, A. C. (2014). MEFORMA Security Evaluation Methodology - A Case Study. In

Proceedings of the 4th International Conference on Pervasive and Embedded

Computing and Communication Systems. SCITEPRESS - Science and

Technology Publications.

http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/00049199026702

74.

Sucipto, S., and Wahono, R. S. (2015). A Systematic Literature Review of

Requirements Engineering for Self-Adaptative Systems. Journal of Software

157

Engineering, v. 1, n. 1, p. 55–71.

Svensson, R. B., Host, M., and Regnell, B. (Sep 2010). Managing Quality

Requirements: A Systematic Review. In 2010 36th EUROMICRO Conference on

Software Engineering and Advanced Applications. IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5598106.

Symantec (2017). Symantec Internet Security Threat Report.

https://www.symantec.com/security-center/threat-report.

Thompson, H. H. (Jul, 2003). Why security testing is hard. IEEE Security & Privacy

Magazine, v. 1, n. 4, p. 83–86.

Threat, I. B. M. X. and Index, I. (2017). IBM X-Force Threat Intelligence Index.

https://www.ibm.com/security/data-breach/threat-intelligence-index.html.

Tondel, I. A., Jaatun, M. G., and Meland, P. H. (Jan 2008). Security Requirements for

the Rest of Us: A Survey. IEEE Software, v. 25, n. 1, p. 20–27.

Travassos, G. H., Shull, F., and Carver, J. (2000). A Family of Reading Techniques for

OO Design Inspections. In Workshop Qualidade de Software at Brazilian

Symposium on Software Engineering. Brazilian Computer Society.

http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/pdf/wqs00.pdf.

Tricco, A. C., Antony, J., Zarin, W., et al. (16 Dec 2015). A scoping review of rapid

review methods. BMC Medicine, v. 13, n. 1, p. 224.

Türpe, S. (24 Jul 2008). Security Testing: Turning Practice into Theory. In 2008 IEEE

International Conference on Software Testing Verification and Validation

Workshop. IEEE. http://ieeexplore.ieee.org/document/4567023/.

Ullah, S., Iqbal, M., and Khan, A. M. (Jul 2011). A survey on issues in non-functional

requirements elicitation. In International Conference on Computer Networks and

Information Technology. IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6020890.

Vara, J. L. de La, Wnuk, K., Svensson, R. B., Sánchez, J., and Regnell, B. (2011). An

Empirical Study on the Importance of Quality Requirements in Industry. In 2011

23rd International Conference on Software Engineering and Knowledge

Engineering (SEKE 2011).

http://www.ksi.edu/seke/Proceedings/seke11/190_Jose_Luis_de_la_Vara.pdf.

Vaughn, R. B., Henning, R., and Fox, K. (Apr 2002). An empirical study of industrial

security-engineering practices. Journal of Systems and Software, v. 61, n. 3, p.

225–232.

Wäyrynen, J., Bodén, M., and Boström, G. (2004). Security Engineering and eXtreme

Programming: An Impossible Marriage? p. 117–128.

158

Wewers, M. E., and Lowe, N. K. (Aug 1990). A critical review of visual analogue scales

in the measurement of clinical phenomena. Research in Nursing & Health, v. 13,

n. 4, p. 227–236.

Weyuker, E. J., and Vokolos, F. I. (2000). Experience with performance testing of

software systems: issues, an approach, and case study. IEEE Transactions on

Software Engineering, v. 26, n. 12, p. 1147–1156.

Williams, L., Meneely, A., and Shipley, G. (May 2010). Protection Poker: The New

Software Security “Game.” IEEE Security & Privacy Magazine, v. 8, n. 3, p. 14–

20.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a

replication in software engineering. In Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering - EASE ’14.

ACM Press. http://dl.acm.org/citation.cfm?doid=2601248.2601268.

Wood, M., Roper, M., Brooks, A., and Miller, J. (1997). Comparing and Combining

Software Defect Detection Techniques: A Replicated Empirical Study.

Proceedings of the 6th European SOFTWARE ENGINEERING Conference Held

Jointly with the 5th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, v. 44, n. 0, p. 262–277.

Woodraska, D., Sanford, M., and Xu, D. (2011). Security mutation testing of the

FileZilla FTP server. In Proceedings of the 2011 ACM Symposium on Applied

Computing - SAC ’11. ACM Press.

http://portal.acm.org/citation.cfm?doid=1982185.1982493.

Yee, G. (2006). Recent Research in Secure Software. Technical Report.

Zhioua, Z., Short, S., and Roudier, Y. (Jul 2014). Static Code Analysis for Software

Security Verification: Problems and Approaches. In 2014 IEEE 38th International

Computer Software and Applications Conference Workshops. IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903113.

Zhu, H. S., Lin, C., and Liu, Y. D. (May 2015). A Programming Model for Sustainable

Software. In 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering. IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7194624.

159

Appendix A The full research methodology

This appendix presents the methodology followed by this thesis. It describes the

methodology divided into two cycles. The first, presenting the methodological issues of

two literature reviews. The second presents the methodology of the performed case

study and the complementary studies used to confirm its result. Finally, we present the

threat to validity.

Thesis methodology overview

The first research cycle was intended to identify and characterize the relevant

NFRs and identify the software testing approaches that could be applied to those

requirements. As illustrated in Figure 74, two structured literature reviews were

performed. The first one to identify the relevant non-functional requirements (LR1) and

the second one to identify the software testing approaches (LR2). After that, the

information resulting from LR1 and LR2 were qualitatively analyzed through a coding

process and then organized in a body of knowledge (NFR-BoK).

Figure 74 - Overview of the methodology of cycle 1

160

Figure 75 presents the methodology of cycle 2. A case study was performed

aiming to characterize the S&P verification practices performed by software

development organizations, identifying the decision-making factors and moderator

factors influencing such practices.

Next, we performed a set of rapid reviews [Tricco et al. 2015] to improve the

confidence of the moderator factors, and, finally, we performed a survey to confirm the

moderator factors pertinence with practitioners.

Figure 75 - Overview of the methodology of cycle 2

Cycle 1: the methodology to build a body of knowledge

A literature review on the relevant non-functional requirements

The LR1 follows the protocol presented in Appendix B. It aimed to identify the

relevant NFRs, searching for secondary studies or surveys presenting NFRs

mentioned as relevant by practitioners. It was carried out in March 2015, retrieving

papers from 1996 to 2015, and driven by the following research question:

 What are the most relevant non-functional requirements, according to

software practitioners?

Aiming to answer this question, it was built a search string with two parts — the

first one to filter systematic reviews or survey researches; the second part to limit the

search for non-functional requirements.

161

("systematic review" OR "systematic literature review" OR "systematic mapping" OR

"systematic investigation" OR "systematic analysis" OR "mapping study" OR

"structured literature review" OR "evidence-based literature review" OR "survey" OR

"review of studies" OR "structured review" OR "systematic review" OR "literature

review" OR "systematic literature review" OR "literature analysis" OR "meta-analysis"

OR "analysis of research" OR "empirical body of knowledge" OR "overview of existing

research" OR "body of published knowledge")

AND

("non-functional requirements" OR "non-functional software requirement" OR "non-

behavioral requirement" OR "non-functional property" OR "quality attribute" OR

"quality requirement" OR "software characteristic")

The search string was applied to the search engine Scopus so that 266 papers

could be found. After the search string execution, the primary author reads the title and

abstract of each paper, classifying them on Included or Excluded using the following

criteria:

 Inclusion criteria

 The paper must present a systematic literature review, a survey or a

similar study; AND

 The paper must Identify relevant non-functional requirements; AND

 The paper must express practitioners’ opinions, OR practitioners must.

 Exclusion criteria

 The paper is not available; AND

 The paper presents an already included study (duplicity).

Then, another author of this thesis analyzed the excluded papers set and

reclassified them on Included or kept it out. Table 3 shows the number of papers of

LR1. It is important to note that there is a paper manually included because the search

engine was not indexing correctly.

Table 42 - Amount of LR1 papers

Papers found Excluded Included Manual included Total included

266 252 14 1 15

162

The authors analyzed the 15 included papers and extracted the following

information:

 Reference information: it aims to identify the paper by title, author, and

publisher;

 Abstract: it aims to contextualize the research when to query the form;

 Study type: it identifies the type of study, e.g., systematic literature review,

survey, along with others;

 System domain/type: it identifies the system type or domain in which the

research has been done;

 Non-functional requirements: it identifies the NFRs presented in the paper

and their description when presented.

At this point, we had the extraction form of each NFR. Analyzing extracted

information was possible to realize that some NFRs did not have a description. Thus,

for the sake of comprehensibility, the group of NFRs without description was not

considered at this point.

The next followed step is related to the understanding of each NFR to organize

them into a body of knowledge. However, it was possible to identify a lack of

agreement regarding NFRs' names and descriptions. Thus, to organize all described

NFRs, we performed open coding, as described in Grounded Theory [Corbin and

Strauss 1998].

Figure 5 shows an example of the resulting code on performance definition

where the first box is the final performance definition extracted from subject papers. For

instance, the highlighted text in blue associate performance on resource consumption

and the text of green color to time behavior.

163

Figure 76 - Open coding example

 The coding process allowed identifying a hierarchical structure of NFRs. Figure

6 shows this structure in which the class NFR represents high-level abstract system

properties such as Usability, Security, and Performance. These properties are

perceived through a set of Sub_NFR, which are also NFR but, they represent more

specific system properties such as Navigability (Usability), Confidentiality (Security), or

Resource Consumption (Performance). Moreover, some NFRs may own

Operationalization, which are features that must be present on the system for it meets

the NFR. For instance, the usage of an image compression algorithm is one

operationalization of Resource Consumption.

164

Figure 77 - Hierarchical structure of NFRs

A literature review on the non-functional testing approaches

The second structured literature review (LR2) follows the protocol presented in

Appendix C. It aims to identify proposed software testing approaches concerned with

NFRs and their testing covering. In this context, testing covering is regarding software

testing process phases, levels, and techniques of the proposed approaches. Unlike

LR1, LR2 does not look at other literature reviews because previous ad-hoc searches

do not retrieve that kind of study concerning testing approaches for NFRs. LR2 was

performed in March 2016, naturally retrieving papers from 1991 to 2005, and driven by

the following research question:

 What are the software testing approaches used to test non-functional

requirements?

Two parts search string was organized and submitted to the Scopus search

engine. The first section of the search string aims to limit the results to software testing

approaches, and the second one restricts the search to non-functional requirements.

("software test design" OR "software test suite" OR "software test" OR "software

testing" OR "system test design" OR "system test suite" OR "system test" OR "system

testing" OR "middleware test" OR "middleware testing" OR "property based software

test" OR "property based software testing" OR "fault detection" OR "failure detection"

OR "GUI test" OR "Graphical User Interfaces test" OR "test set" OR "non-functional

testing" OR "model based testing" OR "test case" OR "testing infrastructure" OR

"testing approach" OR "testing environment")

AND

165

("non-functional requirements" OR "non-functional software requirement" OR "non-

behavioral requirement" OR "non-functional property" OR "quality attribute" OR

"quality requirement" OR "software characteristic")

The filtering process followed a similar procedure as in LR1. The

inclusion/exclusion are:

 Inclusion criteria

 The paper should present a software testing procedure, technique, or

any other type of proposal about non-functional requirements software

testing.

 Exclusion criteria

 The paper is not available; AND

 The paper presents an already included study (duplicity).

Table 4 shows the number of papers of LR2. There were three papers manually

included because they were not directly available through the Scopus search engine.

Table 43 - Amount of LR2 papers

Papers found Excluded Included Manual included Total included

331 287 44 3 47

The 47 papers were analyzed using an extraction form with the following fields:

 Reference Information: it aims to identify the paper by title, author, and

publisher;

 Abstract: it aims to give an overall idea of the paper subject;

 System Domain/Type: it indicates whether the approach is proposed to

specific software domain or type, e.g., embedded systems, telecommunication

systems;

 Test Phase: the coverage of the testing approach regarding testing process

phases: Planning, Design, Implementation, Execution, and Analysis;

 Test Level: testing granularity, with the options Unit, Integration, System,

Acceptance, Not Informed, and Not Applied;

 Test Technique: with the options Structural, Functional, Fault Based, Not

Informed, and Not Applied;

166

 Evaluation: it represents how the software testing approach has been

evaluated, e.g., proof of concept, experiment, case study, simulation, not

applied, and not informed. Evaluation values emerged from the subject papers;

 Non-Functional Requirements Considered: it represents the list of NFRs

considered by the software testing approach with their description.

After data extraction and analysis, the information regarding software testing

approaches was included in the NFR-BoK. Thus, besides includes the relevant non-

functional requirements and their characterization, it also contains information about

which testing techniques are suitable to assess each of the NFRs.

Cycle 2: the methodology to characterize security and performance

verification

The methodology of cycle 2 was divided into two main parts. First, we executed

a case study with four cases, on four different organizations, aiming to identify how

security and performance verification are performed and how the decision-making

regarding security and performance verification is done on software development

organizations. Thus, we created research questions addressing the identification of

practices and the factors influencing the decision-making of security and performance

verification.

However, while analyzing the collected data through a coding process, it was

possible to answer the previously defined research questions and also identify some

significant findings of the security and performance verification. Such findings were

organized in a set of conjectures (inference formed statements without proof or

sufficient evidence [Merriam-Webster 2011]) about security and performance

verification.

Given the importance of these unexpected but essential findings, we performed

a set of secondary studies, in the form of rapid reviews (RRs) [Tricco et al. 2015] and

Snowballing [Wohlin 2014], searching for support literature to confirm them. After

analyzing the extraction forms of secondary studies through a coding process and

thematic analysis, it was possible to consider the conjectures as moderator factors that

influence the verification of security and performance. Figure 78 presents a big picture

of the methodology, and the next sections describe the methodological details of each

kind of study.

167

Figure 78 - General research methodology of cycle 2

Case study methodology

This part of the research is classified as a characterization case study, and it

follows the recommendations presented in the guidelines proposed by Runeson and

Höst [2009]. Table 9 shows the mains sections of the case study protocol (Appendix

E).

Table 44 - Case study research protocol

Objectives

Understand how security and performance verification has been performed in the

software development industry.

Scope

Software development organizations that perform Security OR Performance

Verification activities.

Research method

 Multiple case studies: one of them including an observational phase and others
with only semi-structured interviews and questionnaire data collection phases

o 1 organization with 1 project as the main case: including observational,
semi-structured, and questionnaires data collection method;

o 3 organizations with 1 project per each as complementary cases:
including semi-structured and questionnaires data collection method;

 Flexible design
o Trying to improve the protocol during the study execution

 Predominantly qualitative

168

 Criteria for case selection
o Projects in progress for at least two months.

Data sources

Organizations employers, researcher observations, institutional websites

Unit of analysis

Software development projects, including security or performance verification

activities.

Besides, the research protocol contains the research questions grouped by two

mains subjects. The first aiming to identify the practices used by organizations on the

security and performance verification and to characterize such practices. The second

one aiming to identify factors influencing the decisions regarding the verification

practices:

 RQ 1 Which are the practices used by the organizations to support the

verification of security and performance?

 RQ 1.1 What are the standard techniques?

 RQ 1.2 Which definition of done do they adopt?

 RQ 1.3 How is the level of automation?

 RQ 1.4 What are the assets covered?

 RQ 2 How does the organization define its security and performance

verification strategies?

 RQ 2.1 What are the factors influencing the decision-making on security

and performance verification strategies?

 RQ 2.2 When does the decision on the verification strategy happen?

 RQ 2.3 How often the decisions on the verification strategy occur?

 RQ 2.4 Who is responsible for the decision making on the verification

strategy?

After, the organizations were selected by convenience. We tried to identify

among our personal contacts people who work in software development organizations.

Thus, we selected ten people working in different organizations, and we start the initial

contact. However, three organizations do not answer to our request, and three of them

said they do not perform security or performance verification. Thereby, we were able to

select a set of four organizations as subjects of the study.

169

The data collection process of the case study

A set of artifacts was used to support the study, including the case study

protocol (Appendix E) and a presentation letter (Appendix F). Additionally, instruments

were used to collect data to answer the research questions directly and to formalize the

research agreement and the characterization of the organizations and participants. The

first author of this thesis filled the instruments when collecting data during observations

and interviews. The participants filled out the questionnaire when it was used to collect

data. Table 10 presents a summary of the used instruments.

Table 45 - Case study instruments description

ID Description Objectives

P1 Case study protocol The protocol followed by the case study.

C1 Presentation letter
A letter used to make the first contact with the
organizations, characterizing the researchers
involved and the objectives of the study.

I1
Organization agreement
term

After the organization agrees with the research,
its representative signs the agreement term. It
marks the beginning of the case study.

I2
Participant agreement
term

In the first contact with each participant, they
must sign the consent term to allow us to collect
and use data.

I3
Organization
characterization

Data can be gathered from different sources as
the participants and organization websites. It was
filled in during different moments of the case
study execution.

I4 Project characterization
It supports data collection while interviewing
participants through a questionnaire.

I5
Participant
characterization

It supports data collection after interviewing
participants through a questionnaire.

I6
Verification practices
identification

Data collected in different stages of case study
execution. It was gathered from observation,
interviews, and questionnaires.

I7
Identification of decision-
making factors

Data collected in different stages of case study
execution. It was gathered from observation,
interviews, and questionnaires.

I8 Participant opinion
It supports data collection after interviewing
participants through a questionnaire.

The first step of the data collection process was to sign the organizational

agreement represented by the instrument I1. This step is crucial to ensure the integrity

of research and organization privacy. In the second step, data regarding organizational

characterization (I3), project characterization (I4), and participant characterization (I5)

170

were collected. Furthermore, the participant agreement term is signed because it is the

first contact with some of the participants.

 The semi-structured interview step used instrument I4 to collect data related to

the development process and the environment. This step aims to understand more fully

how the organization operates. The instruments I5 and I6 were used to identify the

security and performance practices and decision-making factors, respectively. It is

important to note that some semi-structured interviews were recorded. In these cases,

the instruments were not filled, but they were used as a guide for the interviews.

 The observational step aims to confirm previously collected data and to

understand how the verification practices were performed in detail. This step was

performed in only one of the organizations, and its main output is the researcher’s

manual notes.

 The last step is the application of a questionnaire to collect the opinion of the

participant about security and performance verification.

It is essential to mention that the researcher collected data in the form of

manual notes at every stage. Figure 19 shows the data collection process, and the

instruments were filled.

Figure 79 - Data collection process

171

The data analysis process of the case study

Approximately 47 artifacts were filled out. Then, the first author qualitatively

analyzed them by following a coding process. The MAXQDA8 tool, into which all

instruments were imported, was used to support the coding process, and 955 artifact

excerpts were grouped in 1112 codes.

The coding process was divided into two parts. The first part aimed to answer

RQ1 and RQ2. Thus, the first author read the artifacts looking for verification practices

and practices characteristics. Additionally, other researchers revised the generated

codes in several meetings sections throughout the process. Figure 20 presents a

model representing the structure of codes built during the coding process.

Figure 80 - Structure used to characterize verification practices (RQ 1)

The process to answer RQ 2 was similar to the process to answer RQ 1, but the

aiming was to identify decision-making factors. Figure 20 represents the structure used

to identify decision-making factors (RQ 2) during the coding process.

8 https://www.maxqda.com/

172

Figure 81 - Structure used to identify decision-making factors (RQ 2)

Furthermore, in the first step of the coding process, attempting to code data to

answer the RQs, information was identified that does not directly support answering the

research questions, but it could provide essential findings on security and performance

verification, complementing the study results. Thus, this information was organized into

a code category initially classified as conjectures. After a set of literature reviews was

performed to lend credence to these conjectures, they were reclassified as security and

performance verification moderator factors.

The coding process was performed to identify the conjectures following the

principles of the coding phase of grounded theory [Corbin and Strauss 1998]. This

methodology includes three coding phases. The open coding phase is an analytical

process to identify concepts, their properties, and dimensions. In this phase, the data is

fragmented and conceptually labeled in codes. When similarities between codes are

found, they are grouped into categories. In axial coding, the categories can be

rearranged in subcategories, and new categories can be created. Subsequently, the

created categories are unified around a central core category, and relationships are

established among them. This last phase was not performed in this study. Finally, step

4 of thematic synthesis [Cruzes and Dyba 2011] was used to translate the codes into

themes.

173

Instantiating the coding process to this work, first, the first author of this thesis

read every artifact creating codes related to each relevant part of the collected

information. In this step, the researchers were not concerned about grouping codes

into categories, but when the excerpts were similar, they were linked to the same code.

For instance, when a participant said: “The problem on using these tools is a large

number of false positives,” and another said: “There are organizations that perform

security testing only with automated tools, but this generates a large number of false

positives.” These two excerpts were linked to the same code “Automated tools

generate a large number of false positives.” After, other researchers reviewed the first

phase of coding, suggesting corrections, mainly in the names assigned to each coding.

In the axial coding phase, Author 1 compared the created codes interactively,

for example, by comparing code 1 with code 2, code 3, up to code N. Subsequently, by

comparing code 2 with code 3, up to code N (code 1 is ignored because code 1 and

code 2 have already been compared) and so on. When similarity was found between

two codes, they were grouped into a category. This step required approximately four

interactions, and some codes could not be grouped in a category. Then, the categories

(as well as the codes in them) were analyzed to concatenate similar categories into

one. It also required more than one interaction. Finally, Author 1 iterated through the

categories to group them in a more general category, creating the structure: category >

subcategory > codes. This phase was not performed linearly; the process was

interrupted several times so that other researchers could review the coding already

done. Thus, they suggested changes such as the inclusion of categories, change of

category names, and rearrangement of codings between categories.

Finally, Author 1 iterated through the consolidated structure of categories,

subcategories, and codes, translating them into a set of eight high-level themes

representing conjectures about security and performance verification. Additionally, it is

highly relevant to note that other researchers always iteratively check this phase in

several sessions throughout the process.

Rapid reviews and snowballing methodology

Because the conjectures arose from practice and the participants’ opinions, a

set of rapid reviews (RR) were performed, consulting the technical literature and

searching for confirmations for these conjectures.

RRs are a type of secondary study aiming to deliver evidence to practice

promptly with lower effort than a traditional systematic review. To be faster, RR

simplifies some steps of systematic reviews. For instance, the database search is

174

limited, the quality appraisal is eliminated, or only one researcher is used to analyze

the collected data [Tricco et al. 2015].

Eight RRs were conducted following the same protocol template, but core parts

were replaced to guide each RR to target a specific conjecture. The templates used by

each RR are presented in Appendices O-V. Table 14 shows the terms representing

each conjecture and the keywords related to them.

Table 46 - Rapid reviews research questions structure

Conjecture Term Keywords

C01 suitable environment
Awareness OR recognition OR
understanding OR comprehension OR
importance OR relevance

C02 cross-functional team Team* OR Staff* OR “Working Group”

C03
greater precision on the
requirements definition

Requirement*

C04 suitable support tools “support tool”

C05 suitable environment environment*

C06 suitable methodology methodolog*

C07 suitable planning planning OR plan

C08
reuse of artifacts and
knowledge

reuse OR reusability OR reusing

The research questions followed the structure presented in Table 11 by

replacing <<CONJECTURE>> by the term representing the conjecture. For instance,

the RR related to the verification environment had <<CONJECTURE>> replaced by a

“suitable environment.”

Table 47 - Rapid reviews research questions structure

RR-RQ 1
What are the benefits of a <<CONJECTURE>> for the verification of
security and performance?

RR-RQ 2
What problems do cause a <<CONJECTURE>> for the verification of
security and performance?

RR-RQ 3
What are the challenges of creating a <<CONJECTURE>> for the
verification of security and performance?

RR-RQ 4
What are the strategies to create a <<CONJECTURE>> for the verification
of security and performance?

The search string followed the same principle as in the RQs. A search string

template was defined and was adapted to target each conjecture. Table 12 presents

the search string template used in each RR. For instance, in the search for conjecture

175

C03, <<KEYWORD>> was replaced by Requirement*, for C05 it was replaced for

environment* and so on.

Template ("security verification" OR "performance verification" OR "security

testing" OR "performance testing")

AND (<<KEYWORD>>)

AND ("software")

AND ("benefit*" OR "problem*" OR "challenge*" OR "strateg*" OR

"empirical stud*" OR "experimental stud*" OR "experiment*" OR

"case stud*" OR "survey*")

After a search on the Scopus search engine, the following criteria guided the

process of paper selection:

 Inclusion criteria

 The paper must be in the context of software engineering; and

 The paper must be in the context of performance and/or security

verification; and

 The paper must report a study related to <<CONJECTURE>> of

security or performance verification activities; and

 The paper must report an evidence-based study grounded in empirical

methods (e.g., interviews, surveys, case studies, formal experiment,

among others) or a proof of concept; and

 The paper must provide data to answer at least one of the RR research

question; and

 The paper must be written in the English language.

After data extraction, it was performed a snowballing to increase the literature

coverage. The snowballing was backward with only one interaction, and the starter set

was the included papers of the RRs. Table 16 presents the total number of papers

founded, included in RR, and included in snowballing.

Table 48 - Number of papers of RR and snowballing

Conjecture # Founded # RR # Snowballing # Total

C01 63 2 0 2

176

C02 42 3 0 3

C03 129 6 8 14

C04 185 12 5 17

C05 117 3 1 4

C06 77 4 9 13

C07 41 3 0 3

C08 11 2 0 2

After, we imported the extraction forms in the MAXQDA tool and performed a

coding and a thematic analysis process similar to the process described in Section

4.1.1.2. Thus, the output of the RRs is a set of mind maps with high-level themes

representing the findings from the technical literature.

Finally, the themes of the RRs were matched to the themes of the case study.

Thereby, the findings that emerged from the state of the practice are supported by the

findings extracted from state of the art. Accordingly, credence was lent to the

conjectures, turning them into security and performance verification moderator factors.

Survey methodology

The survey aims to confirm our interpretation of the information supporting the

moderator factors and identify the relevance of each of them. The survey was

performed in July 2019.

Four participants who had already participated in the case study were called the

control group. Besides, the survey had 137 access but only 37 valid answers from

external participants. Further information about the survey is available in Appendix W.

177

Appendix B LR1 Protocol: Searching relevant

non-functional requirements

LITERATURE REVIEW PROTOCOL:

SEARCHING RELEVANT NON-FUNCTIONAL REQUIREMENTS

INICIAL LITERATURE REVIEW

Victor Vidigal Ribeiro

Guilherme Horta Travassos

Experimental Software Engineering Group at COPPE/UFRJ

March 2015

178

Review History

Date Version Description Author(s)

27/03/201
5

0.1 Define the initial goal and the first search string (30
papers)

Victor

- 0.2 Define Inclusion Criteria Victor e Guilherme

- 0.3 Search String improvement (266 papers) Guilherme e Victor

179

1. Main Research Scenario

Software testing aims to reveal inconsistencies between the requirements and

implemented software system. Thus, inconsistencies revealed can be fixed,

improving system quality.

However, although several works emphasize non-functional requirements

(NFR) importance, there is an insufficient amount of addressing this type of

requirement.

Lack of NFR evaluation may be the cause of low-quality systems that do not

meet users' needs. In this way, the overall goal of this work investigates how

NFR can be evaluated by software testing.

The first step to arriving at the overall is to know or discover what NFRs are

the most important or relevant. So, to meet this specific goal, a literature review

is performed with aims to find other literature reviews that present important or

relevant NFR.

It is worth mentioning that this is not a systematic literature review, but it

follows search string creation methodology by observing another to improve

synonyms and criteria to include and exclude papers.

2. Research Protocol

Search String is build to return systematic literature reviews that identify non-

functional requirements using PICO (Pai et al., 2004) principle in the way that

synonyms are separated by logical connector “OR” and terms that compose the

string are separated by “AND.” Thus, the first part of the search string is

composed of Systematic Literature Review, and it synonyms separated by

operator “OR” and second part by Non-functional Requirements and synonyms

separated by operator “OR.”

 In the next execution of the protocol, it is planned to evolve the String to

a PICO approach (Pai et al., 2004).

2.1 Question Focus

This study's research objective is to identify relevant non-functional

requirements.

2.2 Question Quality and Amplitude

● Problem: Non-functional requirements were neglected by software

testing works. So it is essential to identify relevant requirements to define

if it can be tested.

● Question:

Main Question:

What are the relevant non-functional requirements?

● First Part: Systematic Literature Review or Survey

Keywords: "systematic review" OR "systematic literature

review" OR "systematic mapping" OR "systematic

investigation" OR "systematic analysis" OR "mapping study"

180

OR "structured literature review" OR "evidence-based literature

review" OR "survey" OR "review of studies" OR "structured

review" OR "systematic review" OR "literature review" OR

"systematic literature review" OR "literature analysis" OR

"meta-analysis" OR "analysis of research" OR "empirical body

of knowledge" OR "overview of existing research" OR "body of

published knowledge"

● Second Part: Non-functional Requirement or Quality Attributes

Keywords: "non-functional requirements" OR "non-functional

software requirement" OR "non-behavioral requirement" OR

"non-functional property" OR "quality attribute" OR "quality

requirement" OR "software characteristic"

● Excluded Keywords: None

● Full String: ("systematic review" OR "systematic literature review" OR

"systematic mapping" OR "systematic investigation" OR "systematic

analysis" OR "mapping study" OR "structured literature review" OR

"evidence-based literature review" OR "survey" OR "review of studies"

OR "structured review" OR "systematic review" OR "literature review" OR

"systematic literature review" OR "literature analysis" OR "meta-analysis"

OR "analysis of research" OR "empirical body of knowledge" OR

"overview of existing research" OR "body of published knowledge") AND

("non-functional requirements" OR "non-functional software requirement"

OR "non-behavioral requirement" OR "non-functional property" OR

"quality attribute" OR "quality requirement" OR "software characteristic")

2.3 Source Selection

● Sources Selection Criteria Definition: Works presented as articles

available on the web.

● Studies Language: English.

● Source Identification

○ Source Search Method: Search through Scopus web search

engines.

2.4 Studies Selection

2.4.1 Studies Definition

● Studies Inclusion and Exclusion Criteria Definition:

Inclusion Criteria:

 The paper must present a systematic literature review, a

survey or a similar study; AND

 The paper must Identify relevant non-functional

requirements; AND

181

 The paper must express practitioners’ opinions, OR

practitioners must.

Exclusion Criteria:

 The paper is not available; AND

 The paper presents an already included study (duplicity).

2.5 Information Extraction Strategy

For each selected paper, the following information shall be extracted and

managed using the JabRef 9 reference tool and Microsoft Word:

Table 2: Information extraction fields

Field Description

Reference information

Abstract

Study type

System Domain/Type

Non-Functional Requirements

 Reference information: It aims to identify the paper by title, author, and publisher.

 Abstract: Its aims contextualize the researcher when to query the form.

 Study Type: It identifies the type of study, e.g., systematic literature review, Survey.

 System domain/Type: It identifies the system type or domain in which research was

done.

 Non-Functional Requirements: It identifies NFRs presented by the paper as relevant

and their description.

2.5 Included papers

9
 http://jabref.sourceforge.net/

Ameller, D., Galster, M., Avgeriou, P., and Franch, X. A survey on quality

attributes in service-based systems Software Quality Journal, Kluwer Academic

Publishers, 2015

Bajpai, V. and Gorthi, R.On non-functional requirements: A survey 2012 IEEE

Students' Conference on Electrical, Electronics and Computer Science: Innovation

182

for Humanity, SCEECS 2012, 2012

Becha, H. and Amyot, D. Non-functional properties in service-oriented

architecture - A consumer's perspective Journal of Software, 2012, Vol. 7(3), pp.

575-587

Caracciolo, A., Lungu, M. and Nierstrasz, O. How do software architects

specify and validate quality requirements? Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), Springer Verlag, 2014, Vol. 8627 LNCS, pp. 374-389

Caro, A., Calero, C., Caballero, I. and Piattini, M. A proposal for a set of

attributes relevant for Web portal data quality Software Quality Journal, 2008, Vol.

16(4), pp. 513-542

De La Vara, J., Wnuk, K., Svensson, R., SÃ¡nchez, J. and Regnell, B. An

empirical study on the importance of quality requirements in industry SEKE 2011 -

Proceedings of the 23rd International Conference on Software Engineering and

Knowledge Engineering, 2011, pp. 438-443

Mairiza, D., Zowghi, D. and Nurmuliani, N. An investigation into the notion of

non-functional requirements Proceedings of the ACM Symposium on Applied

Computing, 2010, pp. 311-317

Montagud, S., AbrahÃ£o, S. and Insfran, E. A systematic review of quality

attributes and measures for software product lines Software Quality Journal, 2012,

Vol. 20(3-4), pp. 425-486

Nik Daud, N. and Kadir, W. Systematic mapping study of quality attributes

measurement in service-oriented architecture Proceedings - ICIDT 2012, 8th

International Conference on Information Science and Digital Content Technology,

2012, Vol. 3, pp. 626-631

Poort, E., Martens, N., Van De Weerd, I., and Van Vliet, H. How architects

see non-functional requirements: Beware of modifiability Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2012, Vol. 7195 LNCS, pp. 37-51

Soares, L., Potena, P., Machado, I., Crnkovic, I., and De Almeida, E. d.

Analysis of non-functional properties in software product lines: A systematic review

Rabiser, R., Torkar, R. & Torkar, R. (ed.) Proceedings - 40th Euromicro Conference

Series on Software Engineering and Advanced Applications, SEAA 2014, Institute of

Electrical and Electronics Engineers Inc., 2014, pp. 328-335

Yang, Z., Li, Z. c., Jin, Z., and Chen, Y. A systematic literature review of

183

requirements modeling and analysis for self-adaptive systems, Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), Springer Verlag, 2014, Vol. 8396 LNCS, pp. 55-71

Kaur, H., Ahamad, S., Verna, G. N., A case study upon non-functional

requirements of the online banking system, International Journal of Computer

Applications Technology and Research Volume 4– Issue 4, 220 - 225, 2015, ISSN:-

2319–8656

Emilov, T., Khalili, A., Auer, S., Ubiquitous semantic applications: a

systematic literature review

184

Appendix C LR2 Protocol: Software testing

technics to non-functional requirements

LITERATURE REVIEW PROTOCOL:

SEARCHING SOFTWARE TESTING TECHNICS TO NON-FUNCTIONAL

REQUIREMENTS

INICIAL LITERATURE REVIEW

Victor Vidigal Ribeiro

Guilherme Horta Travassos

Experimental Software Engineering Group at COPPE/UFRJ

March 2016

185

Review History

Date Versi

on

Description Author(s)

- 0.1 Define initial string (114 papers and 37 included) Victor

11/06/2015 0.2 Search String Improvement Guilherme e Victor

18/06/2015 0.3 Search String improvement (81 returned, 58 included, 10
not found, and 13 excluded)

Guilherme e Victor

01/03/2016 1.0 Updating the literature review Guilherme e Victor

18/04/2016 1.1 Inserting information about include/exclude process, e.g.,

the amount of included/excluded paper.
Victor

186

1. Main Research Scenario

Software testing aims to reveal inconsistencies between the requirements and

implemented software system. Thus, inconsistencies revealed can be fixed,

improving system quality.

However, despite the fact that several works emphasize non-functional

requirements (NFR) importance, there is an insufficient amount of addressing

this type of requirement.

Lack of NFR evaluation may be the cause of low-quality systems that do not

meet the user's needs. In this way, the overall goal of this work investigates how

NFR can be evaluated by software testing.

This review is a second step to achieve the overall goal and aims to identify

what non-functional requirements are covered by software testing and at what

level the NFR is covered by software testing.

With the results of this review and review performed to identify important

NFR at hand, we can matching results and identify what NFRs are the relevant

uncovered by software testing.

It is worth mentioning that this is not a systematic literature review, but it

follows search string creation methodology by observing another to improve

synonyms and criteria to include and exclude papers.

2. Research Protocol

Search String is build to return papers about non-functional requirements

software testing using PICO (Pai et al., 2004) principle in the way that

synonyms are separated by logical connector “OR” and terms that compose the

string are separated by “AND.” Thus, the first part of the search string is

composed by the term “Non-Functional Requirements” and its synonyms

separated by operator “OR” and second part by “Software Testing” and

synonyms separated by operator “OR.”

 In the next execution of the protocol, it is planned to evolve the String to

a PICO approach (Pai et al., 2004).

2.1 Question Focus

This study's research objective is to identify relevant non-functional

requirements.

2.2 Question Quality and Amplitude

● Problem: Software testing works neglected Non-functional requirements.

So it is crucial to identify what are non-functional requirements that do

not have proposed software testing procedure or technique.

● Question:

Main Question:

What are the approaches used to testing non-functional

requirements?

● First Part: Software Testing

187

Keywords: "software test design" OR "software test suite" OR

"software test" OR "software testing" OR "system test design"

OR "system test suite" OR "system test" OR "system testing"

OR "middleware test" OR "middleware testing" OR "property

based software test" OR "property based software testing" OR

"fault detection" OR "failure detection" OR "GUI test" OR

"Graphical User Interfaces test" OR "test set" OR "non-

functional testing" OR "model based testing" OR "test case"

OR "testing infrastructure" OR "testing approach" OR "testing

environment"

● Second Part: Non-Functional Requirement

Keywords: "non-functional requirements" OR "non-functional

software requirement" OR "non-behavioral requirement" OR

"non-functional property" OR "quality attribute" OR "quality

requirement" OR "software characteristic"

● Excluded Keywords: None

● Full String: ("software test design" OR "software test suite" OR

"software test" OR "software testing" OR "system test design" OR

"system test suite" OR "system test" OR "system testing" OR

"middleware test" OR "middleware testing" OR "property based software

test" OR "property based software testing" OR "fault detection" OR

"failure detection" OR "GUI test" OR "Graphical User Interfaces test" OR

"test set" OR "non-functional testing" OR "model based testing" OR "test

case" OR "testing infrastructure" OR "testing approach" OR "testing

environment") AND ("non-functional requirements" OR "non-functional

software requirement" OR "non-behavioral requirement" OR "non-

functional property" OR "quality attribute" OR "quality requirement" OR

"software characteristic")

2.3 Source Selection

● Sources Selection Criteria Definition: Works presented as articles

available on the web.

● Studies Language: English.

● Source Identification

○ Source Search Method: Search through Scopus web search

engines.

2.4 Studies Selection

2.4.1 Studies Definition

● Studies Inclusion and Exclusion Criteria Definition:

Inclusion Criteria:

188

 The paper should present a software testing procedure,

technique, or any other type of proposal about non-

functional requirements software testing.

Exclusion Criteria:

 The paper is not available; AND

 The paper presents an already included study (duplicity).

2.5 Included papers

Walter, T.a and Grabowski, J.b, “A framework for the specification of test cases for real-time

distributed systems,” Information and Software Technology, 1999

Denaro, G.a and Polini, A.b and Emmerich, W.c, “Performance testing of distributed

component architectures,” Springer Berlin Heidelberg, 2005

Cangussu, J.W. and Cooper, K. and Wong, E., “Reducing the number of test cases for

performance evaluation of components,” 2007

Feng, Y. and Liu, X. and Kerridge, J., “A product line based aspect-oriented generative unit

testing approach to building quality components,” 2007

MetsÃƒÂ¤, J.a, and Katara, M.b and Mikkonen, T.b, “Testing non-functional requirements

with aspects: An industrial case study,” 2007

Dyrkon, K. and Wathne, F., “Automated testing of non-functional requirements,” 2008

Hanna, S. and Munro, M., “Fault-based web services testing,” 2008

Juszczyk, L. and Truong, H.-L. and Dustdar, S., “GENESIS - A framework for automatic

generation and steering of testbeds of complex Web services,” 2008

Zou, J. and Pavlovski, C.J., “Control cases during the software development life-cycle,” 2008

Afzal, W. and Torkar, R. and Feldt, R., “A systematic review of search-based testing for non-

functional system properties,” Information and Software Technology, 2009

Cangussu, J.W. and Cooper, K. and Wong, W.E., “A segment-based approach for the

reduction of the number of test cases for performance evaluation of components,”

International Journal of Software Engineering and Knowledge Engineering, 2009

Grossmann, J. and Serbanescu, D. and Schieferdecker, I., “Testing embedded real-time

systems with TTCN-3”, 2009

Hill, J.H. and Turner, H.A. and Edmondson, J.R. and Schmidt, D.C., “Unit testing non-

functional concerns of component-based distributed systems,” 2009

Kruse, P.M. and Wegener, J. and Wappler, S., “A highly configurable test system for

evolutionary black-box testing of embedded systems,” 2009

Qu, B. and Ying, H. and Xie, X. and Lu, Y., “A developed dynamic environment fault injection

tool for component security testing,” 2009

Romano, B.L.a and Braga E Silva, G.a and De Campos, H.F.a and Vieira, R.G.a and Da Cunha,

189

A.M.a and Silveira, F.F.b and Ramos, A.C.B.c, “Software testing for web-applications non-

functional requirements,” 2009

Taranti, P.-G.a, and De Lucena, C.J.P.a and Choren, R.b, “An Industry Use Case: Testing SOA

systems with MAS simulators,” 2009

Arnold, D.a and Corriveau, J.-P.a and Shi, W.b, “Modeling and validating requirements using

executable contracts and scenarios,” 2010

Arnold, D.a and Corriveau, J.-P.a and Shi, W.b, “Modeling and validating requirements using

executable contracts and scenarios,” 2010

Assad, R.E.a and Katter, T.b and Ferraz, F.S.a and Ferreira, L.P.a and Meira, S.R.L.a, “Security

quality assurance on web-based application through security requirements tests:

Elaboration, execution, and automation,” 2010

Bertolini, C. and Mota, A., “A framework for GUI testing based on use case design,” 2010

Farhat, S. and Simco, G. and Mitropoulos, F.J., “Using aspects for testing nonfunctional

requirements in object-oriented systems,” 2010

Saifan, A. and Dingel, J., “A survey of using model-based testing to improve quality

attributes in distributed systems,” 2010

De Sousa Santos, I.a and Santos, A.R.b and Neto, P.D.A.D.S.c, “Reusing functional testing in

order to decrease performance and stress testing costs,” 2011

Grigorjevs, J., “Model-driven testing approach for embedded systems specifics verification

based on UML model transformation,” 2011

Kormann, B. and Vogel-Heuser, B., “Automated test case generation approach for PLC

control software exception handling using fault injection,” 2011

Eldh, S.a b and Sundmark, D.c d, “Robustness testing of mobile telecommunication systems:

A case study on industrial practice and challenges,” 2012

Watanabe, W.M. and Fortes, R.P.M. and Dias, A.L., “Using acceptance tests to validate

accessibility requirements in RIA,” 2012

Algroth, E., “Random visual GUI testing: Proof of concept,” 2013

Anisetti, M.a, and Ardagna, C.A.a and Damiani, E.a and Saonara, F.b, “A test-based security

certification scheme for Web services,” ACM Transactions on the Web, 2013

Banerjee, A. and Chattopadhyay, S. and Roychoudhury, A., “Static analysis driven cache

performance testing,” 2013

Gambi, A.a, and Filieri, A.b and Dustdar, S.c, “Iterative test suites refinement for elastic

computing systems,” 2013

GarcÃƒÂa-DomÃƒÂnguez, A.a, and Medina-Bulo, I.a and Marcos-BÃƒÂ¡rcena, M.b, “An

Approach for Model-Driven Design and Generation of Performance Test Cases with UML

and MARTE,” Communications in Computer and Information Science, 2013

190

Manetti, V. and Petrella, L.M., “FITNESS: A framework for automatic testing of ASTERIX

based software systems,” 2013

Sarwar, T. and Habib, W. and Arif, F., “Requirements based testing of software,” 2013

Toledo RodrÃƒÂguez, F.a and Reina, M.a and Baptista, F.a and Polo Usaola, M.b and

PÃƒÂ©rez Lamancha, B.b, “Automated Generation of Performance Test Cases from

Functional Tests for Web Applications,” Communications in Computer and Information

Science, 2013

Zhuang, L.a and Gao, Z.a and Wu, H.b and Yang, C.X.b and Zheng, M.a, “Research on DB2

performance testing automation”, Advanced Materials Research, 2013

Batool, S. and Asghar, S., “Secure state UML: Modeling and testing security concerns of

software systems using UML state machines,” Research Journal of Applied Sciences,

Engineering and Technology, 2014

Marrone, S.a and Flammini, F.b and Mazzocca, N.c and Nardone, R.c and Vittorini, V.c,

“Towards Model-Driven V\&V assessment of railway control systems,” International Journal

on Software Tools for Technology Transfer, 2014

MetsÃƒÂ¤, J.a, and Maoz, S.b and Katara, M.c and Mikkonen, T.c, “Using aspects for testing

of embedded software: Experiences from two industrial case studies,” Software Quality

Journal, 2014

RodrÃƒÂguez, F.T.a c, and Lonetti, F.b and Bertolino, A.b and Usaola, M.P.c and Lamancha,

B.P.c, “Extending UML testing profile towards non-functional test modeling,” 2014

Espada, A.R. and del Mar Gallardo, M. and SalmerÃƒÂ³n, A. and Merino, P., “Runtime

verification of expected energy consumption in smartphones,” Lecture Notes in Computer

Science, 2015

GarcÃƒÂa, B. and DueÃƒÂ±as, J.C., “Web browsing automation for applications quality

control,” Journal of Web Engineering, 2015

Svensson, R.B.a and Regnell, B.b, “Aligning Quality Requirements and Test Results with

QUPER's Roadmap View for Improved High-Level Decision-Making,” 2015

Ricca, F. and Tonella, P., “Analysis and testing of web applications,” 2001

Dustdar, S.a and Haslinger, S.b, “Testing of service-oriented architectures: A practical

approach,” Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2004

Caliebe, P. and Lauer, C. and German, R., “Flexible integration testing of automotive ECUs by

combining AUTOSAR and XCP,” 2011

191

Appendix D Identified security and performance

verification support tools

Tool Link

Brakeman https://github.com/presidentbeef/brakeman

HP Fortify

SCA

https://software.microfocus.com/en-us/products/static-code-analysis-

sast/overview

Jenkins https://jenkins.io/

Sonar https://www.sonarqube.org/

Threadfix https://threadfix.it/

Arachni http://www.arachni-scanner.com/

OWASP Zed

Attack Proxy

(ZAP)

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

XSS ME https://addons.mozilla.org/pt-BR/firefox/addon/xss-me/

SQL Injection

ME
https://addons.mozilla.org/pt-BR/firefox/addon/sql-inject-me/

Burp Suite https://portswigger.net/burp

Meta Exploit https://www.metasploit.com/

NMAP https://nmap.org/

Whatweb https://github.com/urbanadventurer/WhatWeb

JMeter https://jmeter.apache.org/

Postman https://www.getpostman.com/

BlazeMeter https://www.blazemeter.com/

Goldeneye https://www.goldeneyeuk.com/

HTTPerf https://github.com/httperf/httperf

192

SoapUI https://www.soapui.org/

CA APM
https://www.ca.com/br/products/ca-application-performance-

management.html

193

Appendix E Case study protocol

Objectives, issues, and topics being investigated

Objectives

Understand how security and performance verification has been performed in

the software development industry.

Scope

Software development organizations that perform Security OR Performance

Verification activities.

Research questions

 RQ1. What practices have been used in the organization to support the

verification of security and performance?

 RQ1.1 What are the techniques related to the practices?

 RQ1.2 What are the tools used to support the practices?

 RQ1.3 What are the artifacts covered by the practices?

 RQ2. How does the organization define its security and performance

verification strategies?

 RQ2.1 What are the factors influencing the decision-making on security

and performance verification strategies?

 RQ2.2 When does the decision on the verification strategy happen?

 RQ2.3 How often the decisions on the verification strategy occur?

 RQ2.4 Who is responsible for the decision making on the verification

strategy?

Research method

Research method

 Multiple case studies. One of them including an observational phase and

others with only semi-structured interviews and questionnaire phases.

 One organization with one project for the main study: including

observational, semi-structured, and questionnaires;

 Two organizations with one project per each for the complementary

study I: including semi-structured interviews and questionnaires

 One organization and one project for the complementary study II:

including only questionnaires.

 Flexible Design

 try to improve the protocols during the study

 Predominantly qualitative

 Criteria for case selection:

 Projects including security or performance software verification

activities; AND

 Projects with at least four people; AND

194

 Projects in progress for at least two months.

Methodology

 Grounded Theory (Glaser and Strauss, 1967), without pre-conceived

theories – inductive approach – concepts will be suggested by the data

rather than imposed from outside (Agar, 1980)

 Following the principles of Klein and Myers (1999)

 Collecting data from real setting for [3-4] months

Data collection

Data sources

 A questionnaire to characterize the organization;

 Passive observation guided by protocols aiming to characterize the project

regarding team, development process, environment, factors used to

decision making, and practices being used;

 Questionnaires to characterize the participants' background;

 Semi-structured interviews aiming to characterize development process,

environment, factors used to decision making, and practices being used;

AND

 obtain participants' opinions about the development process,

environment, factors used to decision making, and practices being used.

 Literature analysis of the practices used regarding defect type capacity.

Data collection process

The data collection process is made to be flexible, allowing protocol

improvements during the data collection process. It is divided into three different

processes.

1.1.1.1 Main study data collection process
This process includes three different methods for data collection: observational,

semi-structured interviews, and questionnaires.

Complementary study I data collection process

195

This process includes two different methods for data collection: semi-structured

interviews and questionnaires.

Complementary study II data collection process

The data collection is made through questionnaires.

Units of analysis

Software development projects, including security or performance verification

activities.

Methods used to reduce bias

These methods are based on Stake (1995):

 Methodological triangulation: comparisons between data collected with

qualitative methods to data collected with quantitative methods.

 Data triangulation: use of more than one data source or collecting the

same data on different occasions:

 comparing observation data with interview data;

 comparing the perspectives of people from different points of view:

testers view, inspectors view, managers view;

196

 checking for the consistency of what teams’ members say about factors

influencing decision-making regarding verification strategies over time;

 Analyst triangulation: several different researchers to analyze or to review

the findings.

Data analysis

Approach to qualitative data analysis: Interpretative

Qualitative method – dataset reduction

 Grounded-Theory

 Interactive coding analysis with multiple researchers;

 Next stages being directed by the discovered concepts;

Data collection protocol

Schedule

The schedules are different from primary and complementary studies.

Activity Instrument Planned time Data Souce Subject Description

Sign organization agreement

term
Instrument 1 10 min - Manager Sign the term allowing the study on the organization

Organization

characterization
Instrument 3 20 min

External resources and

Presential questionnaire
Manager

Ask about the organization using Instrument 3. Some questions can

be answered by external resources, e.g. official organization

website

Initial project

characterization
Instrument 4 30 min Presential Questionnaire Manager

Questions 1, 2, 3, 7, 8, 9, 10, 11, and 12. After, I know the team

members

Sign individual agreement

term
Instrument 2 10/particip. - Every participant

After initial project characterizaion we have the participant amount

and we can share the individual agreement term

Initial project

characterization
Instrument 4 30 min Presential Questionnaire Tester or Product Owner

Questions 1, 2, 3, 7, 8, 9, 10, 11, and 12. After, I know the team

members

Individual participant

characterization
Instrument 5

10

min/particip.
Presential Questionnaire Each participant

Individual participant characterization bringing better knowledge

about the team. It can be performed in parallel

Identifying security and

performance practices
Instrument 6

20

min/particip.
Presential Questionnaire

at least 3 participants

(manager, tester,

developer)

Ask about security and performance practices. To know what are

the practices and who is responsible. Questions A and B

Project, development

process, and environment

characterization

Instrument 4 30 min Presential Questionnaire product owner Questions 4, 5, 6, 8, 9, 10, 11, and 12

Project, development

process, and environment

characterization

Instrument 4 30 min Presential Questionnaire developer Questions 4, 5, 6, 8, 9, 10, 11, and 12

Project, development

process, and environment

characterization

Instrument 4 30 min Presential Questionnaire tester Questions 4, 5, 6, 8, 9, 10, 11, and 12

Improve the knowledge

about security and

performance practices

Instrument 6
45

min/particip.

Semi-structured

interviews

Responsibles for the

practices
Questions A, B, C, D, and F

Observation of a practice

conduction
Instrument 6 60 min Observational Researcher Observe how at least one practice are conducted

Identifying and

characterizing decisions

factors

Instrument 7 40 min
Semi-structured

interviews
Manager Identify the factors used to decision making

Identifying and

characterizing decisions

factors

Instrument 7 40 min
Semi-structured

interviews
developer Identify the factors used to decision making

Identifying and

characterizing decisions

factors

Instrument 7 40 min
Semi-structured

interviews
tester Identify the factors used to decision making

Observation of a practice

conduction
Instrument 6 60 min Observational Researcher Observe how at least two practices are conducted

Identifying participants

opinion
Instrument 8

30

min/particip.
Questionnaire

Max number of

participants

Identify participants opinions about security and performance

verification

Fi
rs

t
st

ag
e

Se
co

n
d

 s
ta

ge
Th

ir
d

 s
ta

ge

This study includes questionnairies, semi-structured interviews, and observations

197

Publication focus

Title: Characterizing the security and performance verification approaches

on the Brazilian software industry

 Conferences
 ICSE International Conference on Software Engineering, August or

June, Gothenburg/Sweden, A1
 CESI: Workshop on Conducting empirical studies in industry
 SER&IP: Workshop on Software Engineering Research and

Industrial Practice
 FSE Foundations of Software Engineering, A1
 ESEM Empirical Software Engineering and Measurement, A2
 ISSTA International Symposium on Software Testing and Analysis,

February, A2
 ICST International Conference on Software Testing, Verification and

Validation, Västerås/Sweden, September, B2
 Journals

 IJSSE International Journal of Secure Software Engineering
 Software Quality Journal, B2/0.787
 Software Testing, Verification, and Reliability, B1/1.082

Possible organizations

1. INMETRO – Instituto Nacional de Metrologia, Qualidade e Tecnologia: atua de
duas formas diferentes. Certificando empresas para avaliar empresas
desenvolvedoras e também avaliando diretamente empresas desenvolvedoras.
Segue Normas.

2. TCE – Tribunal de Contas do Estado do Rio de Janeiro: contato com o diretor
geral de informática. Não tenho informações sobre o tipo de software
desenvolvido, se seguem normas e se existe equipe de verificação.

3. IBM: Fiz contato com um funcionário que abriu a possibilidade de execução do
case study na equipe dele. A IBM tem equipes de verificação separadas, mas
muitas vezes a verificação ocorre dentro da própria equipe do projeto
dependendo do orçamento do projeto. Pode ser uma ligação com a equipe de
Verificação.

4. Petrobras: pessoa de contato indicou que existem normas de segurança
referentes à manipulação dos dados em tempo de desenvolvimento. Não é
bem o que interessa. Mas disse também que existe uma equipe que é
responsável pela avaliação do software, esse pode ser o ponto.

5. <<Organization>>: ainda sem resposta
6. Tetra tech - empresa de desenvolvimento de Macaé que presta serviço para

Petrobras (área de oceanografia): Contato disse que possui alguns dados
confidenciais, mas que que pode tentar conseguir que um estudo seja
executado.

7. Meliuz – sistema para ganhar pontos com compras e, posteriormente,
recuperar parte do dinheiro. Arilo (ex aluno do GHT) trabalha lá: ainda não
entrei em contato, mas tenho convicção de que é uma porta aberta. Entretanto,
possivelmente não seguem nenhuma norma de segurança ou desempenho,
apesar de terem preocupações com essas questões.

8. Guiando (guiando.com.br) – Empresa desenvolve um software para gestão de
custos:

9. Projetos COPPETE – Prof. Zimbrão: Ainda não entrei em contato diretamente
com Zimbrão por não ter os objetivos totalmente definidos, mas com pessoas

198

que trabalham nos projetos. Disseram que não possuem normas de segurança
ou desempenho para seguir e não se preocupam com segurança, pois os
sistemas são intranet.

10. CAEd – Empresa ligada a UFJF que desenvolve software para escolas: contato
disse que estão fazendo software para gerenciar avaliações online e pode ser
que tenham que seguir normas. Exige maior investigação, depois que tiver os
objetivos bem definidos.

11. NC Brasil – Empresa de telecomunicações que possui equipe de
desenvolvimento em JF: contato diz que não seguem qualquer tipo de Norma

12. Bol.com – e-commerce (Holanda): possível contato com ex-aluno da UFRJ.
Difícil fazer case study pela distância...

13. Tiqs - trabalho com customização do ERP JD Edwards: contato disse que não
seguem nenhum tipo de norma. Só olham para os ‘requisitos’ do cliente,
implementam e entregam.

References

Boehm. B., M.H. Penedo, E.D. Stuckle, R.D. Williams, A.B. Pyster, “A Software

Development Environment for Improving Productivity,” Computer, Vol.17, Issue 6, June

1984. Page 30-44.

T. DeMarco and T. Lister. Peopleware. Productive Projects and Teams. Dorset

House Publishing, 1987.

R. E. Stake. The Art of Case Study Research, Sage, 1995

K. H. Klein and M. D. Myers. A Set of Principles for Conducting and Evaluating

Interpretative Field Studies in Information Systems, MIS Quarterly, vol. 23 no. 1, pp.

67–93, 1999.

B. W., Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R.

Madachy, D. Reifer, and B. Steece. Software Cost Estimation with COCOMO II.

Prentice-Hall, 2000.

G. R. Finnie, G. E. Wittig, and D. I. Petkov. Prioritizing software development

productivity factors using the analytic hierarchy process. Journal of Systems and

Software, 22(2):129–139, 1993.

C.Wohlin and M. Ahlgren. Soft factors and their impact on time to market.

Software Quality Journal, 4(3):189–205, 1995.

R. D. Banker, S. M. Datar, and C. F. Kemerer. A model to evaluate variables

impacting the productivity of software maintenance projects. Management Science,

37(1):1–18, 1991.

199

Appendix F C1: Case study presentation letter

Rio de Janeiro, 22 de Novembro de 2017

Ao Sr. ----------

Assunto: Apoio para Realização de Pesquisa Cientifica na área de Teste de

Requisitos de Desempenho e Segurança de Software (solicita)

Prezado Sr. -----------,

somos um time de pesquisadores da COPPE/UFRJ e SINTEF/Noruega

interessados no desenvolvimento de tecnologias de apoio ao teste de segurança e

desempenho de software. Nossos estudos têm ocorrido em diferentes contextos e

organizações no Brasil e na Noruega.

Considerando o espírito de colaboração existente entre nossas instituições

(COPPE e <<organization>> do Brasil) ao longo do tempo, vimos muito

respeitosamente solicitar seu apoio no sentido de autorizar que possamos

acompanhar os processos de testes de segurança e/ou desempenho de projetos de

software.

O apoio solicitado não envolve qualquer tipo de investimento, gasto ou

obrigação com o estudo, mas apenas autorizar que o pesquisador Victor Vidigal

Ribeiro, aluno de doutorado da COPPE/UFRJ, entreviste desenvolvedores que atuem

em projetos de desenvolvimento software que contemplem atividades de testes para

avaliar aspectos de segurança e desempenho. Informações mais detalhadas do

estudo e atividades a serem realizadas se encontram no documento anexo.

Colocamo-nos a disposição para esclarecimentos e explicações adicionais

relacionados ao estudo, cujos resultados entendemos serão de utilidade para a

evolução da engenharia de software, os quais teremos prazer em compartilhar.

Atenciosamente

Guilherme Horta Travassos – Professor Titular

Programa de Engenharia de Sistemas e Computação - COPPE/UFRJ

ght@cos.ufrj.br – (21) 3938-8712

200

ANEXO

Este documento tem por finalidade apresentar a proposta de estudo a ser

realizada, fornecer informações sobre as instituições de pesquisa envolvidas, os

pesquisadores e os objetivos do estudo a ser realizado.

Organizações envolvidas

Duas instituições de pesquisa estão envolvidas no estudo: Grupo de

Engenharia de Software Experimental da COPPE/UFRJ (Brasil) representado pelo

Prof. Guilherme Horta Travassos e SINTEF (Noruega), representado pela

pesquisadora Daniela Soares Cruzes.

O Grupo de Engenharia de Software Experimental10 (ESE) faz parte do

Programa de Engenharia e de Sistemas e Computação11 (PESC) que, por sua vez,

pertence ao Instituto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia12

(COPPE) da Universidade Federal do Rio de Janeiro (UFRJ). A finalidade do grupo é

realizar pesquisas relacionadas as tecnologias que envolvem o desenvolvimento de

sistemas de software com o apoio de métodos científicos.

O grupo de engenharia experimental foi criado no ano de 2001 e, desde então,

foram concluídas 16 teses de doutorado e 39 dissertações de mestrado. Atualmente, o

grupo é formado por 9 doutorandos, 4 mestrandos e 2 pesquisadores cursando

estágio de pós-doutorado. O coordenador do grupo, professor titular Guilherme Horta

Travassos (http://lattes.cnpq.br/7541486051032916, ght@cos.ufrj.br), possui

excelência reconhecida de pesquisa em engenharia de software com vários trabalhos

publicados em periódicos, anais de eventos e capítulos de livros voltados, dentre

outros, ao teste de software. Em particular, Victor Vidigal Ribeiro

(http://lattes.cnpq.br/5208608664907557, vidigal@cos.ufrj.br), um dos doutorandos do

Grupo ESE, é o principal interessado neste estudo.

O SINTEF13 é uma organização Norueguesa de pesquisas aplicadas,

tecnologia e inovação que conta com um quadro de cerca de 2000 colaboradores

pesquisando em diversas áreas como energia renovável, óleo e gás, saúde e bem-

estar e também desenvolvimento de sistemas de software. Nesse estudo, o SINTEF é

representado pela pesquisadora doutora Daniela Soares Cruzes

(http://lattes.cnpq.br/8004792005050914, daniela@sintef.no) que possui larga

10 http://lens-ese.cos.ufrj.br/

11 http://www.cos.ufrj.br/

12 http://www.coppe.ufrj.br

13 https://www.sintef.no/en/

201

experiência relacionada a pesquisa na área de engenharia de software na indústria

com artigos publicados e orientações de mestrado concluídas.

Objetivo do estudo

O objetivo do estudo é compreender como as organizações que desenvolvem

software conduzem as atividades de verificação (testes e inspeções) de segurança e

desempenho. Dessa forma, é possível identificar problemas reais enfrentados pelas

organizações e, assim, contribuir com resultados de pesquisas que ajudem a

solucionar esses problemas.

É importante esclarecer que não é objetivo do estudo realizar algum tipo de

julgamento quanto as práticas utilizadas pela organização ou sobre seus

colaboradores. Além disso, não há necessidade de que o resultado das atividades de

verificação, por exemplo as falhas reveladas, sejam explicitadas aos pesquisadores,

mantendo assim a confidencialidade dos resultados dessas atividades.

Objeto do estudo

 O objeto do estudo é representado por projetos de desenvolvimento de

software que incluam no processo de desenvolvimento atividades de verificação (teste

e inspeção) de segurança ou desempenho, possuam no mínimo quatro membros na

equipe de desenvolvimento e estejam em andamento a pelo menos dois meses.

Fases e duração do estudo

O estudo contempla uma fase de questionários, na qual alguns membros da

equipe de desenvolvimento serão solicitados a responder perguntas sobre o processo

de desenvolvimento do projeto com a finalidade de caracterização.

Com o projeto caracterizado, a próxima fase contempla entrevistas

semiestruturadas com os membros da equipe de desenvolvimento. Essa fase tem por

finalidade aprofundar o entendimento das práticas de verificação de segurança e

desempenho aplicadas ao projeto. Essas entrevistas têm duração de até 45 minutos.

Contribuições do estudo

A principal contribuição do estudo é auxiliar o entendimento e caracterização

das atividades relacionadas à verificação de segurança e desempenho e, assim,

evidenciar e sugerir oportunidades de melhorias no processo de desenvolvimento.

Essas melhorias aumentarão a capacidade de produção de sistemas com mais

Segurança e melhor Desempenho.

Adicionalmente, há uma contribuição para a sociedade, pois os resultados

podem aumentar a capacidade das organizações de desenvolver sistemas de software

mais seguros e que tenham melhor desempenho.

Sobre Confidencialidade

202

 Os pesquisadores se comprometem a conduzir o estudo com ética e

manter sigilo sobre quaisquer dados que possam ser utilizados para identificar a

instituição ou seus colaboradores.

Considerações finais

Consideramos que pesquisa aplicada, com colaboração explícita entre

academia e indústria, é um dos pilares para a evolução tecnológica de um país. Dessa

forma, entendemos que os resultados deste estudo contribuem efetivamente para

tornar os sistemas desenvolvidos no Brasil mais seguros e com melhor desempenho.

Assim, esperamos que a proposta de estudo seja aceita para que seus resultados

possam ser utilizados em tempo.

203

Appendix G I1: Case study Organization

agreement term

Termo de consentimento organizacional

Eu, __________________________, Brasileiro, portador do RG

___________________, atuando como ____________________________________,

na <<organization>>, autorizo a realização do estudo que tem o objetivo de

caracterizar as atividades de verificação de segurança e desempenho no contexto de

desenvolvimento de software Brasileiro, fomentando o desenvolvimento de software

mais seguros e com melhor desempenho, sob condições de respeito às regras

declaradas a seguir.

 Os pesquisadores comprometem a conduzir o estudo com ética e manter sigilo

sobre quaisquer dados que possam ser utilizados para identificar a instituição

e/ou seus colaboradores;

 O estudo não tem o objetivo de julgar ou avaliar a forma como as atividades da

organização são conduzidas nem a forma como seus colaboradores executam

suas tarefas;

 O estudo deve ser executado de forma a interferir minimamente nas atividades

desempenhadas pelos colaboradores e sem prejudicar suas metas de

produtividade;

 Nenhum dos colaboradores é obrigado a participar do estudo; e

 Qualquer colaborador pode desistir de participar do estudo a qualquer

momento;

Agradecemos a compreensão e colaboração para o progresso da ciência.

__

XXXXXXXXXX

Gerente do Projeto YYYYYYYY

Rio de Janeiro, ____ de ____________ de 2017

204

Appendix H I2: Case study – Participant

agreement term

Termo de consentimento para participantes

Eu declaro ter mais de 18 anos de idade e que concordo em participar do

estudo não invasivo e impessoal conduzido pelos pesquisadores Guilherme Horta

Travassos, Daniela Soares Cruzes e o doutorando Victor Vidigal Ribeiro. O estudo faz

parte de pesquisas realizadas no contexto de uma tese de doutorado na Universidade

Federal do Rio de Janeiro (COPPE/UFRJ).

Objetivo

O objetivo do estudo é melhorar a compreensão sobre como as atividades de

verificação de segurança e desempenho são desempenhadas nas organizações de

desenvolvimento de software no Brasil.

Procedimento

Os participantes serão questionados sobre as atividades de desenvolvimento

de software e principalmente atividades referentes à verificação (testes e inspeções)

de segurança e desempenho. As perguntas serão realizadas na forma de

questionários e entrevistas. O estudo contempla também uma fase de observação, na

qual as atividades executadas pelos participantes do estudo serão observadas pelo

pesquisador.

Confidencialidade

Toda informação coletada neste estudo é confidencial. Dessa forma, o nome

do participante não será divulgado em momento algum. Da mesma forma, o

participante se compromete a manter sigilo das técnicas e documentos apresentados

durante o estudo.

Benefícios e liberdade de desistência

Os benefícios gerados pelo estudo estão relacionados com a melhoria das

atividades de verificação de segurança e desempenho. Dessa forma, podendo

melhorar a qualidade dos sistemas de software produzidos no Brasil. Além disso, o

estudo permite revisar o processo de desenvolvimento utilizado pela organização

podendo fornecer subsídios para seu aprimoramento e melhor compreensão.

Eu entendo que sou livre para realizar perguntas a qualquer momento ou

solicitar que qualquer informação relacionada a minha pessoa não seja incluída no

estudo.

205

Eu entendo que o estudo não tem a finalidade de avaliação pessoal do

participante. Assim, entendo que minha participação não afetará, de forma alguma,

minha posição dentro da organização e que não serei julgado por minhas respostas.

Dessa forma, declaro que estou de acordo com os termos anteriores e que

participo de livre e espontânea vontade com o único intuito de contribuir para o avanço

e desenvolvimento de tecnologias para o desenvolvimento de software.

Nome Completo em letra de forma:

__

Assinatura __

Data _____/_____/__________

206

Appendix I I3: Case study – Organization

characterization

Caracterização da organização

ID Organização _____

1. Tipo de indústria/domínio em que os sistemas desenvolvidos são utilizados
A. Bancário

B. Educação

C. Telecomunicações

D. Bens de consumo

E. Viagens

F. Outro ______________________________

2. Natureza da organização

A. Pública

B. Privada

C. Outro ______________________________

3. Número de colaboradores ________

4. Número de colaboradores de TI ________

5. A organização possui algum tipo de certificação (CMMI, ISO, MPS.Br)?

A. Sim. Qual(is)? __________________________________

B. Não

6. Informação de contexto relevante

Espaço libre para descrição de informações de contexto que possam ser
importantes

207

Appendix J I4: Case study – Project

characterization

Caracterização do projeto, equipe, processo de desenvolvimento e ambiente

ID Projeto _____

Informações gerais do projeto

1. Descrição resumida do projeto

2. Domínio do projeto
A. Bancário
B. Educação
C. Telecomunicação
D. Bens de consumo
E. Outro ____________________________

Informações gerais do ambiente

3. Tamanho da equipe _________

4. Tipo de aplicação
A. Web
B. Mobile
C. Desktop
D. Embedded
E. Outro ____________________________

5. Linguagens de programação utilizadas
Sugestões: Java, Javascript, Python, Html, Ruby

6. Ferramentas e frameworks utilizados
Sugestões: IDE, bug tracking, ferramentas de testes, frameworks de

persistência

7. Qual a principal prática ágil utilizada?
Sugestões: Scrum, XP, Hubrid, Scrumban

208

Outras práticas utilizadas

A. Scrum
B. XP
C. Scrumban
D. Code and tests
E. Continuous integration
F. Daily deployment
G. Daily meeting
H. Pair programming
I. TDD
J. Root cause analysis
K. Stories
L. Outras:

__

Informações sobre processo de desenvolvimento

8. Descrição da fase de requisitos
Sugestões:

- Descrição de como os requisitos são identificados: entrevistas com
clientes, brainstorm, normas.

- Descrição de como os requisitos são representados: especificação formal,
histórias

- Ferramentas utilizadas para apoiar a fase de requisitos: editores de texto,
ferramentas específicas para requitios, DotProject, OpenReq.

9. Descrição da fase de projeto
Sugestões:

- Descrição de como o projeto do sistema é representado: diagramas da
UML, DTR.

- Ferramentas utilizadas para apoiar a fase de projetos: StarUML,
AstahUML, Enterprise architect.

209

10. Descrição da fase de implementação
Sugestões:

- Descrição do ciclo de vida de uma tarefa, iniciando de como ela é
distribuída aos programadores até o momento em que é considerada como
concluída.

11. Descrição da fase de V&V
Sugestões:

- Quem é o principal responsável pelas atividades de V&V?

- Quando as atividades de V&V são iniciadas?

- Quem executa as atividades de verificação? Apenas testadores?
Desenvolvedores também executam?

- Equipe faz uso de TDD?

12. Descrição da fase de entrega
Sugestões:

Descrever o processo que vai do empacotamento do sistema até a
disponibilização para os usuários finais

210

Appendix K I5: Case study – Participant

characterization

Caracterização dos participantes da equipe de desenvolvimento

ID Participante _____

ID Projeto _____

1. Nível de formação
A. Tecnólogo
B. Graduação
C. Especialização
D. Mestrado
E. Doutorado
F. Outro ____________________

2. Experiência com desenvolvimento de software __________________________

3. Experiência com Atividades de Testes ________________________

4. Experiência com Atividades de Testes de Segurança ou Desempenho

5. Número de projetos de desenvolvimento de software que participou ____________

6. Função dentro da equipe de desenvolvimento atual

Sugestões: programador, analista, tester, PO

211

Appendix L I6: Case study – Verification

practices identification

Identificação das práticas de verificação de segurança e desempenho

ID Projeto _____

1. Quais as práticas são utilizadas para realizar verificação de segurança e
desempenho?
A. Prática _________________________
B. Responsável _________________________
C. Técnica _________________________
D. Artefato alvo _________________________
E. Ferramentas _________________________
F. Quando _________________________
G. Descrição

Sugestões:

Quais as práticas são utilizadas para realizar verificação de segurança e
desempenho?

A. Prática: inspeção de pares para segurança
B. Responsável: committer
C. Técnica: Experiência do inspetor
D. Artefato alvo: Código fonte
E. Ferramentas: nenhuma
F. Quando: a cada sprint
G. Descrição: Nós revisamos o código fonte procurando por falhas de segurança

que conhecemos previamente a partir de projetos anteriores

Quais as práticas são utilizadas para realizar verificação de segurança e
desempenho?

A. Prática: Teste de unidade
B. Responsável: Product owner
C. Técnica: Técnica OWASP
D. Artefato alvo: Código fonte
E. Ferramentas: JUnit
F. Quando: antes de entregas que consideramos importantes ou críticas
G. Descrição: construímos casos de testes com a técnica OWASP e executamos

esses casos de testes antes de releases que consideramos importantes ou
críticas. O sistema só é disponibilizado ao usuário depois que os casos de
testes passam sem nenhuma falha.

212

Appendix M I7: Case study – Identification of

decision-making factors

Identificação dos fatores de decisão

ID Projeto _____

Informações gerais

1. Quando é decidido que determinada prática de verificação deve ser utilizada?
Por exemplo, quando foi decidido que testes de unidade deveriam ser

utilizados?

Sugestões: imposto pela organização, no início de cada projeto, gerente de
projetos decide, decidimos a cada sprint

2. Com que frequência as práticas de verificação são reconsideradas?
Por exemplo, decidir que uma prática não deve mais ser utilizada ou incluir

uma nova prática

Sugestões: a cada sprint, cada entrega, diante do número de defeitos
encontrados, feedback de usuários

3. Que fatores influenciam na decisão de utilizar determinada técnica?
Sugestões: criticidade do sistema, tempo de entrega, orçamento,

experiência da equipe, conhecimento da técnica pelo gerente de projetos

4. Quem é o responsável pela tomada de decisões em relação à escolha das práticas
de verificação?

Sugestões: product owner, gerente, gerente de teste

Informações sobre prática {prática_específica}

5. Quais os fatores influenciaram especificamente na escolha dessa prática?
Sugestões: porque essa prática foi escolhida ou porque foi escolhido essa

ferramenta para execução da prática.

Informações complementares

6. Observações sobre os fatores de decisão?

213

214

Appendix N I8: Case study – Participant opinion

Identificação da opinião dos participantes sobre as atividades de

verificação de segurança e desempenho

ID Participante _____

ID Projeto _____

1. Se existissem duas ou três práticas que você pudesse mudar para melhorar a
segurança ou desempenho dos sistemas produzidos, qual você mudaria? Por
quê?

Sugestões:

- Incluiria/removeria alguma prática

- Mudar o momento em que alguma prática é executada

- Alterar a ferramenta utilizada

2. Qual a sua opinião sobre a segurança e desempenho dos projetos que você
participou?

Sugestões:

- Você acha que a segurança do sistema desenvolvido é apropriada?

- Você acha que o desempenho (ex.: tempo de resposta, consumo de
memória) do sistema desenvolvido é adequado?

3. Na sua opinião, quais fatores deveriam ser considerados para tomar decisões
relacionadas às práticas de verificação utilizadas no projeto? Por quê?

Sugestões: por exemplo, alguma coisa que você entende que o gerente
deve considerar para adotar ou remover alguma prática de verificação do processo
de desenvolvimento.

- Orçamento do projeto

- Prazo para entrega

- Criticidade do sistema

- Falta de treinamento da equipe

215

Appendix O RR01 – Suitable environment

protocol

Rapid Reviews Protocol:
Software Security and Performance Awareness

Introduction

Authors

Victor Vidigal Ribeiro – vidigal@cos.ufrj.br
Guilherme Horta Travassos – ght@cos.ufrj.br
Daniela Soares Cruzes – daniela.s.cruzes@sintef.no

Context

During the analysis of a case study research related to security and performance verification,

we could make observations that led us to build some conjectures14 about this subject. One of

them regards the awareness of security and performance verification importance. Based on

our observations, we could hypostatize that

“Awareness of the importance of software system Security and

Performance contributes to verification.”

Therefore, this Rapid Review (RR) aims to verify the existence of published studies supporting

our conjecture or studies proposing solutions to support system software security and

performance awareness.

Research Questions

 RQ1: What are the benefits of awareness of the importance of software security and
performance?

 RQ2: What are the problems caused by the lack of awareness of the importance of software
security and performance?

 RQ3: What are the challenges to improving awareness of the importance of software security
and performance?

 RQ4: What are the strategies to support awareness improvement of the importance of
security and performance?

Search Strategy

The Scopus15 search engine and the following search string support this RR:

14 https://www.merriam-webster.com/dictionary/conjectures

15 https://www.scopus.com

216

TITLE-ABS-KEY (("security verification" OR

"performance verification" OR "security testing" OR

"performance testing") AND (awareness OR

recognition OR understanding OR comprehension OR

importance OR relevance) AND ("software") AND (

"benefit*" OR "problem*" OR "challenge*" OR

"strateg*" OR "empirical stud*" OR "experimental

stud*" OR "experiment*" OR "case stud*" OR

"survey*"))

Selection procedure

The following selection procedure is performed by one researcher:

Run the search string;
Apply the inclusion criteria based on the paper Title;
Apply the inclusion criteria based on the paper Abstract;
Apply the inclusion criteria based on the paper Full Text;

Inclusion criteria

The paper must be in the context of software engineering; and

The paper must be in the context of software system performance or security;

and

The paper must provide data to answer at least one of the RR research questions.

The paper must be written in the English language.

Extraction procedure

The extraction procedure is performed by one researcher, using the form presented in section

0

Extraction form

<paper_id>
<paper_reference>

Description <A brief description of the study objectives>

Study type

Benefits

Problems

Challenges

Strategies

Synthesis Procedure

In this RR, the extraction form provides a synthesized way to represent extracted data. Thus,

we do not perform any synthesis procedure.

However, the synthesis is usually performed through a narrative summary or a Thematic

Analysis when the number of selected papers is not high Erro! Fonte de referência não

encontrada..

References

C. Tricco et al. A scoping review of rapid review methods. BMC Medicine, 2015.

B. Cartaxo et al. Evidence briefings: Towards a medium to transfer knowledge from

217

systematic reviews to practitioners. ESEM, 2016.

218

Appendix P RR02 – Cross-functional team

protocol

Rapid Reviews Protocol:
Software Security and Performance

Multidisciplinary Team

Introduction

Authors

Victor Vidigal Ribeiro – vidigal@cos.ufrj.br
Guilherme Horta Travassos – ght@cos.ufrj.br
Daniela Soares Cruzes – daniela.s.cruzes@sintef.no

Context

During the analysis of a case study research related to security and performance verification,

we could make observations that led us to build some conjectures16 about this subject. One of

them regards the security and performance verification environment. Based on our

observations, we could hypostatize that

“Software security and performance verification need a multidisciplinary

team.”

Therefore, this Rapid Review (RR) aims to verify the existence of published studies supporting

our conjecture or studies proposing solutions to improve the disciplinary of the security and

performance verification team.

Research Questions

 RQ1: What are the benefits of a multidisciplinary team acting in the verification of security
and performance?

 RQ2: What problems do cause the lack of multidisciplinary team acting in the verification of
security and performance?

 RQ3: What are the challenges to have a multidisciplinary team acting in the verification of
security and performance?

 RQ4: What are the strategies to have a multidisciplinary team working on verification of
security and performance?

Search Strategy

16 https://www.merriam-webster.com/dictionary/conjectures

219

The Scopus17 search engine and the following search string support this RR:

TITLE-ABS-KEY (("security verification" OR

"performance verification" OR "security testing" OR

"performance testing") AND (team* OR staff* OR

"Working Group") AND ("software") AND ("benefit"

OR "problem" OR "challenge" OR "strategy" OR

"empirical study" OR "experimental study" OR "formal

experiment" OR "experiment" OR "case study" OR

survey))

Selection procedure

The following selection procedure is performed by one researcher:

Run the search string;
Apply the inclusion criteria based on the paper Title;
Apply the inclusion criteria based on the paper Abstract;
Apply the inclusion criteria based on the paper Full Text;

Inclusion criteria

The paper must be in the context of software engineering; and

The paper must be in the context of performance and/or security verification;

and

The paper must report a study related to the verification team; and

The paper must report a primary study; and

The paper must report an evidence-based study grounded in empirical methods

(e.g., interviews, surveys, case studies, formal experiment, among others); and

The paper must provide data to answer at least one of the RR research questions.

The paper must be written in the English language.

Extraction procedure

The extraction procedure is performed by one researcher, using the form presented in section

0

Extraction form

<paper_id>:<paper_reference>

Description <A brief description of the study objectives>

Study type <Identify the type of study reported by paper (e.g., survey, formal
experiment)>

Benefits - <beneft_1>
- <benefit_2>
- ...

Problems - <problem_1>
- <problem_2>
- …

Challenges - <challenge_1>

17 https://www.scopus.com

220

- <challenge_2>
- …

Strategies - <strategy_1>
- <strategy_2>
- …

Synthesis Procedure

In this RR, the extraction form provides a synthesized way to represent extracted data. Thus,

we do not perform any synthesis procedure.

However, the synthesis is usually performed through a narrative summary or a Thematic

Analysis when the number of selected papers is not high Erro! Fonte de referência não

encontrada..

References

C. Tricco et al. A scoping review of rapid review methods. BMC Medicine, 2015.

B. Cartaxo et al. Evidence briefings: Towards a medium to transfer knowledge from

systematic reviews to practitioners. ESEM, 2016.

221

Appendix Q RR03 – Suitable requirements

protocol

Rapid Reviews Protocol:
Software Security and Performance Requirements

Introduction

Authors

Victor Vidigal Ribeiro – vidigal@cos.ufrj.br
Guilherme Horta Travassos – ght@cos.ufrj.br
Daniela Soares Cruzes – daniela.s.cruzes@sintef.no

Context

During the analysis of a case study research related to security and performance verification,

we could make observations that led us to build some conjectures18 about this subject. One of

them regards the security and performance verification requirements. Based on our

observations, we could hypostatize that “Greater precision on the requirements

definition contributes to verification.” Therefore, this Rapid Review (RR) aims to

verify the existence of published studies supporting our conjecture or studies proposing

solutions to support the definition of security and performance requirements.

Research Questions

 RQ1: What are the benefits of a requirements precise definition for the verification of security
and performance?

 RQ2: What are the problems of an imprecise definition requirement for verification of security
and performance?

 RQ3: What are the challenges on the precise definition of the requirements for the verification
of security and performance?

 RQ4: What are the strategies to support a precise definition of the verification of security and
performance requirements?

Search Strategy

The Scopus19 search engine and the following search string support this RR:

TITLE-ABS-KEY (("security verification" OR

"performance verification" OR "security testing" OR

"performance testing") AND (requirement*) AND (

18 https://www.merriam-webster.com/dictionary/conjectures

19 https://www.scopus.com

mailto:vidigal@cos.ufrj.br
mailto:ght@cos.ufrj.br
mailto:daniela.s.cruzes@sintef.no

222

"software") AND ("benefit*" OR "problem*" OR

"challenge*" OR "strateg*" OR "empirical stud*" OR

"experimental stud*" OR "experiment*" OR "case

stud*" OR "survey*"))

Selection procedure

The following selection procedure is performed by one researcher:

Run the search string;
Apply the inclusion criteria based on the paper Title;
Apply the inclusion criteria based on the paper Abstract;
Apply the inclusion criteria based on the paper Full Text;

Inclusion criteria

The paper must be in the context of software engineering; and

The paper must be in the context of performance or security verification; and

The paper must report a security or performance verification requirement

related study; and

The paper must report a primary study; and

The paper must report an evidence-based study grounded in empirical methods

(e.g., interviews, surveys, case studies, formal experiment, among others); and

The paper must provide data to answer at least one of the RR research questions.

The paper must be written in the English language.

Extraction procedure

The extraction procedure is performed by one researcher, using the form presented in section

0

Extraction form

<paper_id>
<paper_reference>

Description <A brief description of the study objectives>

Study type

Benefits

Problems

Challenges

Strategies

Synthesis Procedure

In this RR, the extraction form provides a synthesized way to represent extracted data. Thus,

we do not perform any synthesis procedure. However, the synthesis is usually performed

through a narrative summary or a Thematic Analysis when the number of selected papers is

not high Erro! Fonte de referência não encontrada..

References

C. Tricco et al. A scoping review of rapid review methods. BMC Medicine, 2015.

B. Cartaxo et al. Evidence briefings: Towards a medium to transfer knowledge from

systematic reviews to practitioners. ESEM, 2016.

223

Appendix R RR04 – Support tools protocol

Rapid Reviews Protocol:
Software Security and Performance suitable

support tools

Introduction

Authors

Victor Vidigal Ribeiro – vidigal@cos.ufrj.br

Guilherme Horta Travassos – ght@cos.ufrj.br

Daniela Soares Cruzes – daniela.s.cruzes@sintef.no
Context

During the analysis of a case study research related to security and performance verification,

we could make observations that led us to build some conjectures20 about this subject. One of

them regards the security and performance verification support tools. Based on our

observations, we could hypostatize that

“A suitable support tool contributes to the verification of security and

performance.”

Therefore, this Rapid Review (RR) aims to verify the existence of published studies supporting

our conjecture or studies proposing solutions to improve the security and performance

verification support tools.

Research Questions

 RQ1: What are the benefits of a suitable support tool for the verification of security and
performance?

 RQ2: What problems do cause an unsuitable support tool for the verification of security and
performance?

 RQ3: What are the challenges to create a suitable support tool for the verification of security
and performance?

 RQ4: What are the strategies to create a suitable support tool for the verification of security
and performance?

Search Strategy

The Scopus21 search engine and the following search string support this RR:

20 https://www.merriam-webster.com/dictionary/conjectures

21 https://www.scopus.com

mailto:vidigal@cos.ufrj.br
mailto:ght@cos.ufrj.br
mailto:daniela.s.cruzes@sintef.no

224

TITLE-ABS-KEY (("security verification" OR

"performance verification" OR "security testing" OR

"performance testing") AND ("support tool") AND (

"software") AND ("benefit" OR "problem" OR

"challenge" OR "strategy" OR "empirical study" OR

"experimental study" OR "formal experiment" OR

"experiment" OR "case study" OR survey))

Selection procedure

The following selection procedure is performed by one researcher:

Run the search string;

Apply the inclusion criteria based on the paper Title;

Apply the inclusion criteria based on the paper Abstract;

Apply the inclusion criteria based on the paper Full Text;

Inclusion criteria

The paper must be in the context of software engineering; and

The paper must be in the context of performance and/or security verification;

and

The paper must report verification support tool-related study; and

The paper must report a primary study; and

The paper must report an evidence-based study grounded in empirical methods

(e.g., interviews, surveys, case studies, formal experiment, among others); and

The paper must provide data to answer at least one of the RR research questions.

The paper must be written in the English language.

Extraction procedure

The extraction procedure is performed by one researcher, using the form presented in section

0

Extraction form

<paper_id>:<paper_reference>

Description <A brief description of the study objectives>

Study type <Identify the type of study reported by paper (e.g., survey, formal
experiment)>

Benefits <Set of benefits brought by a suitable support tool of security and
performance verification>
- <beneft_1>
- <benefit_2>
- ...

Problems <Set of problems brought by an unsuitable security and
performance verification support tool>
- <problem_1>
- <problem_2>
- …

Challenges <Set of challenges in providing a suitable support tool to security
and performance verification>

225

- <challenge_1>
- <challenge_2>
- …

Strategies <Set of strategies that can be used to provide a suitable support tool
for security and performance verification>
-

Synthesis Procedure

In this RR, the extraction form provides a synthesized way to represent extracted data. Thus,

we do not perform any synthesis procedure.

However, the synthesis is usually performed through a narrative summary or a Thematic

Analysis when the number of selected papers is not high Erro! Fonte de referência não

encontrada..

References

C. Tricco et al. A scoping review of rapid review methods. BMC Medicine, 2015.

B. Cartaxo et al. Evidence briefings: Towards a medium to transfer knowledge from

systematic reviews to practitioners. ESEM, 2016.

226

Appendix S RR05 – Suitable environment

protocol

Rapid Reviews Protocol:
Software Security and Performance Environment

Introduction

Authors

Victor Vidigal Ribeiro – vidigal@cos.ufrj.br
Guilherme Horta Travassos – ght@cos.ufrj.br
Daniela Soares Cruzes – daniela.s.cruzes@sintef.no

Context

During the analysis of a case study research related to security and performance verification,

we could make observations that led us to build some conjectures22 about this subject. One of

them regards the security and performance verification environment. Based on our

observations, we could hypostatize that

“A suitable environment contributes to the verification of security and

performance.”

Therefore, this Rapid Review (RR) aims to verify the existence of published studies supporting

our conjecture or studies proposing solutions to improve the security and performance

verification environments.

Research Questions

 RQ1: What are the benefits of a suitable environment for the verification of security and
performance?

 RQ2: What problems do cause an unsuitable environment for the verification of security and
performance?

 RQ3: What are the challenges to create a suitable environment for the verification of security
and performance?

 RQ4: What are the strategies to create a suitable environment for the verification of security
and performance?

Search Strategy

The Scopus23 search engine and the following search string support this RR:

22 https://www.merriam-webster.com/dictionary/conjectures

23 https://www.scopus.com

mailto:vidigal@cos.ufrj.br
mailto:ght@cos.ufrj.br
mailto:daniela.s.cruzes@sintef.no

227

TITLE-ABS-KEY (("security verification" OR

"performance verification" OR "security testing" OR

"performance testing") AND (environment) AND (

"software") AND ("benefit" OR "problem" OR

"challenge" OR "strategy" OR "empirical study" OR

"experimental study" OR "formal experiment" OR

"experiment" OR "case study" OR survey))

Selection procedure

The following selection procedure is performed by one researcher:

Run the search string;
Apply the inclusion criteria based on the paper Title;
Apply the inclusion criteria based on the paper Abstract;
Apply the inclusion criteria based on the paper Full Text;

Inclusion criteria

The paper must be in the context of software engineering; and

The paper must be in the context of performance and/or security verification;

and

The paper must report a verification environment related study; and

The paper must report a primary study; and

The paper must report an evidence-based study grounded in empirical methods

(e.g., interviews, surveys, case studies, formal experiment, among others); and

The paper must provide data to answer at least one of the RR research questions.

The paper must be written in the English language.

Extraction procedure

The extraction procedure is performed by one researcher, using the form presented in section

0

Extraction form

<paper_id>:<paper_reference>

Description <A brief description of the study objectives>

Study type <Identify the type of study reported by paper (e.g., survey, formal
experiment)>

Benefits <Set of benefits brought by a suitable environment of security and
performance verification>
- <beneft_1>
- <benefit_2>
- ...

Problems <Set of problems brought by an unsuitable security and
performance verification environment>
- <problem_1>
- <problem_2>
- …

Challenges <Set of challenges in providing a suitable environment to security
and performance verification>

228

- <challenge_1>
- <challenge_2>
- …

Strategies <Set of strategies that can be used to provide a suitable
environment for security and performance verification>
-

Synthesis Procedure

In this RR, the extraction form provides a synthesized way to represent extracted data. Thus,

we do not perform any synthesis procedure.

However, the synthesis is usually performed through a narrative summary or a Thematic

Analysis when the number of selected papers is not high Erro! Fonte de referência não

encontrada..

References

C. Tricco et al. A scoping review of rapid review methods. BMC Medicine, 2015.

B. Cartaxo et al. Evidence briefings: Towards a medium to transfer knowledge from

systematic reviews to practitioners. ESEM, 2016.

229

Appendix T RR06 – Suitable methodology

protocol

Rapid Reviews Protocol:
Software Security and Performance Verification

Methodology

Introduction

Authors

Victor Vidigal Ribeiro – vidigal@cos.ufrj.br
Guilherme Horta Travassos – ght@cos.ufrj.br
Daniela Soares Cruzes – daniela.s.cruzes@sintef.no

Context

During the analysis of a case study research related to security and performance verification,

we could make observations that led us to build some conjectures24 about this subject. One of

them regards the security and performance verification methodology. Based on our

observations, we could hypostatize that

“A suitable methodology contributes to the verification of security and

performance.”

Therefore, this Rapid Review (RR) aims to verify the existence of published studies supporting

our conjecture or studies proposing solutions to improve the security and performance

verification methodology.

Research Questions

 RQ1: What are the benefits of a suitable methodology for the verification of security and
performance?

 RQ2: What problems do cause an unsuitable methodology for the verification of security and
performance?

 RQ3: What are the challenges to create a suitable methodology for the verification of security
and performance?

 RQ4: What are the strategies to create a suitable methodology for the verification of security
and performance?

Search Strategy

24 https://www.merriam-webster.com/dictionary/conjectures

mailto:vidigal@cos.ufrj.br
mailto:ght@cos.ufrj.br
mailto:daniela.s.cruzes@sintef.no

230

The Scopus25 search engine and the following search string support this RR:

TITLE-ABS-KEY (("security verification" OR

"performance verification" OR "security testing" OR

"performance testing") AND ("methodolog*") AND (

"software") AND ("benefit" OR "problem" OR

"challenge" OR "strategy" OR "empirical study" OR

"experimental study" OR "formal experiment" OR

"experiment" OR "case study" OR survey))

Selection procedure

The following selection procedure is performed by one researcher:

Run the search string;
Apply the inclusion criteria based on the paper Title;
Apply the inclusion criteria based on the paper Abstract;
Apply the inclusion criteria based on the paper Full Text;

Inclusion criteria

The paper must be in the context of software engineering; and

The paper must be in the context of performance and/or security verification;

and

The paper must report findings regarding a verification methodology; and

The paper must report a primary study; and

The paper must report an evidence-based study grounded in empirical methods

(e.g., interviews, surveys, case studies, formal experiment, among others); and

The paper must provide data to answer at least one of the RR research questions.

The paper must be writing in the English language.

Extraction procedure

The extraction procedure is performed by one researcher, using the form presented in section

0

Extraction form

<paper_id>:<paper_reference>

Description <A brief description of the study objectives>

Study type <Identify the type of study reported by paper (e.g., survey, formal
experiment)>

Benefits <Set of benefits brought by a suitable methodology of security and
performance verification>
- <beneft_1>
- <benefit_2>
- ...

Problems <Set of problems brought by an unsuitable security and

25 https://www.scopus.com

231

performance verification methodology>
- <problem_1>
- <problem_2>
- …

Challenges <Set of challenges in providing a suitable methodology to security
and performance verification>
- <challenge_1>
- <challenge_2>
- …

Strategies <Set of strategies that can be used to provide a suitable
methodology for security and performance verification>
-

Synthesis Procedure

In this RR, the extraction form provides a synthesized way to represent extracted data. Thus,

we do not perform any synthesis procedure.

However, the synthesis is usually performed through a narrative summary or a Thematic

Analysis when the number of selected papers is not high Erro! Fonte de referência não

encontrada..

References

C. Tricco et al. A scoping review of rapid review methods. BMC Medicine, 2015.

B. Cartaxo et al. Evidence briefings: Towards a medium to transfer knowledge from

systematic reviews to practitioners. ESEM, 2016.

232

Appendix U RR07 – Verification planning

protocol

Rapid Reviews Protocol:
Software Security and Performance Verification

Planning

Introduction

Authors

Victor Vidigal Ribeiro – vidigal@cos.ufrj.br
Guilherme Horta Travassos – ght@cos.ufrj.br
Daniela Soares Cruzes – daniela.s.cruzes@sintef.no

Context

During the analysis of a case study research related to security and performance verification,

we could make observations that led us to build some conjectures26 about this subject. One of

them regards the security and performance verification Planning. Based on our observations,

we could hypostatize that

“A suitable planning contributes to the verification of security and

performance.”

Therefore, this Rapid Review (RR) aims to verify the existence of published studies supporting

our conjecture or studies proposing solutions to improve the security and performance

verification planning.

Research Questions

 RQ1: What are the benefits of proper planning for the verification of security and
performance?

 RQ2: What problems do cause unsuitable planning for the verification of security and
performance?

 RQ3: What are the challenges to create proper planning for the verification of security and
performance?

 RQ4: What are the strategies to create proper planning for the verification of security and
performance?

Search Strategy

26 https://www.merriam-webster.com/dictionary/conjectures

mailto:vidigal@cos.ufrj.br
mailto:ght@cos.ufrj.br
mailto:daniela.s.cruzes@sintef.no

233

The Scopus27 search engine and the following search string support this RR:

TITLE-ABS-KEY (("security verification" OR

"performance verification" OR "security testing" OR

"performance testing") AND (planning OR plan) AND (

"software") AND ("benefit" OR "problem" OR

"challenge" OR "strategy" OR "empirical study" OR

"experimental study" OR "formal experiment" OR

"experiment" OR "case study" OR survey))

Selection procedure

The following selection procedure is performed by one researcher:

Run the search string;
Apply the inclusion criteria based on the paper Title;
Apply the inclusion criteria based on the paper Abstract;
Apply the inclusion criteria based on the paper Full Text;

Inclusion criteria

The paper must be in the context of software engineering; and

The paper must be in the context of performance and/or security verification;

and

The paper must report findings regarding verification planning; and

The paper must report a primary study; and

The paper must report an evidence-based study grounded in empirical methods

(e.g., interviews, surveys, case studies, formal experiment, among others); and

The paper must provide data to answer at least one of the RR research questions.

The paper must be writing in the English language.

Extraction procedure

The extraction procedure is performed by one researcher, using the form presented in section

0

Extraction form

<paper_id>:<paper_reference>

Description <A brief description of the study objectives>

Study type <Identify the type of study reported by paper (e.g., survey, formal
experiment)>

Benefits <Set of benefits brought by a suitable planning of security and
performance verification>
- <beneft_1>
- <benefit_2>
- ...

Problems <Set of problems brought by an unsuitable security and

27 https://www.scopus.com

234

performance verification planning>
- <problem_1>
- <problem_2>
- …

Challenges <Set of challenges in providing a suitable planning to security and
performance verification>
- <challenge_1>
- <challenge_2>
- …

Strategies <Set of strategies that can be used to provide suitable planning for
security and performance verification>
-

Synthesis Procedure

In this RR, the extraction form provides a synthesized way to represent extracted data. Thus,

we do not perform any synthesis procedure.

However, the synthesis is usually performed through a narrative summary or a Thematic

Analysis when the number of selected papers is not high Erro! Fonte de referência não

encontrada..

References

C. Tricco et al. A scoping review of rapid review methods. BMC Medicine, 2015.

B. Cartaxo et al. Evidence briefings: Towards a medium to transfer knowledge from

systematic reviews to practitioners. ESEM, 2016.

235

Appendix V RR08 – Reuse protocol

Rapid Reviews Protocol:
Software Security and Performance Verification

Reuse

Introduction

Authors

Victor Vidigal Ribeiro – vidigal@cos.ufrj.br
Guilherme Horta Travassos – ght@cos.ufrj.br
Daniela Soares Cruzes – daniela.s.cruzes@sintef.no

Context

During the analysis of a case study research related to security and performance verification,

we could make observations that led us to build some conjectures28 about this subject. One of

them regards the security and performance verification reuse. Based on our observations, we

could hypostatize that

“The reuse of artifacts and knowledge contributes to the verification of

security and performance.”

Therefore, this Rapid Review (RR) aims to verify the existence of published studies supporting

our conjecture or studies proposing solutions to improve the security and performance

verification reuse.

Research Questions

 RQ1: What are the benefits of suitable reuse for the verification of security and performance?
 RQ2: What problems do cause unsuitable reuse for the verification of security and

performance?
 RQ3: What are the challenges to create suitable reuse for the verification of security and

performance?
 RQ4: What are the strategies to create suitable reuse for the verification of security and

performance?

Search Strategy

The Scopus29 search engine and the following search string support this RR:

TITLE-ABS-KEY (("security verification" OR

28 https://www.merriam-webster.com/dictionary/conjectures

29 https://www.scopus.com

mailto:vidigal@cos.ufrj.br
mailto:ght@cos.ufrj.br
mailto:daniela.s.cruzes@sintef.no

236

"performance verification" OR "security testing" OR

"performance testing") AND (reuse OR reusability

OR reusing) AND ("software") AND ("benefit" OR

"problem" OR "challenge" OR "strategy" OR

"empirical study" OR "experimental study" OR "formal

experiment" OR "experiment" OR "case study" OR

survey))

Selection procedure

The following selection procedure is performed by one researcher:

Run the search string;
Apply the inclusion criteria based on the paper Title;
Apply the inclusion criteria based on the paper Abstract;
Apply the inclusion criteria based on the paper Full Text;

Inclusion criteria

The paper must be in the context of software engineering; and

The paper must be in the context of performance and/or security verification;

and

The paper must report findings regarding verification reuse practices; and

The paper must report a primary study; and

The paper must report an evidence-based study grounded in empirical methods

(e.g., interviews, surveys, case studies, formal experiment, among others); and

The paper must provide data to answer at least one of the RR research questions.

The paper must be writing in the English language.

Extraction procedure

The extraction procedure is performed by one researcher, using the form presented in section

0

Extraction form

<paper_id>:<paper_reference>

Description <A brief description of the study objectives>

Study type <Identify the type of study reported by paper (e.g., survey, formal
experiment)>

Benefits <Set of benefits brought by a suitable reuse of security and
performance verification>
- <beneft_1>
- <benefit_2>
- ...

Problems <Set of problems brought by a reuse security and performance
verification reuse>
- <problem_1>
- <problem_2>
- …

Challenges <Set of challenges in providing a suitable reuse to security and
performance verification>

237

- <challenge_1>
- <challenge_2>
- …

Strategies <Set of strategies that can be used to provide suitable reuse for
security and performance verification>
-

Synthesis Procedure

In this RR, the extraction form provides a synthesized way to represent extracted data. Thus,

we do not perform any synthesis procedure.

However, the synthesis is usually performed through a narrative summary or a Thematic

Analysis when the number of selected papers is not high Erro! Fonte de referência não

encontrada..

References

C. Tricco et al. A scoping review of rapid review methods. BMC Medicine, 2015.

B. Cartaxo et al. Evidence briefings: Towards a medium to transfer knowledge from

systematic reviews to practitioners. ESEM, 2016.

238

Appendix W Survey plan

Identification

 Title: Assessing moderator factors of software security and performance verification in

the Brazilian software Industry

 Theme: security and performance verification

 Technical area: Software engineering - Software verification – security and performance

verification

 Authors:

o Victor Vidigal Ribeiro (COPPE/UFRJ)

o Daniela Soares Cruzes (SINTEF)

o Guilherme Horta Travassos (COPPE/UFRJ)

 Date plan: 2019 May

Introduction

After a case study research, it was possible to identify a set of eight moderator

factors influencing the verification of software security and performance and actions to

promote these moderators. In sequence, these moderator factors and actions were

confirmed by a set of literature reviews.

This study intends to evaluate the pertinence30 of pre-identified moderator factors

and the actions used to promote these moderators according to software practitioners’

perception. Additionally, it pretends to identify new moderator factors and actions that

can be applied to promote moderator factors.

Characterization

 Type: Descriptive [Linåker, Johan; Sulaman, Sardar Muhammad; Maiani de Mello,

Rafael; Höst 2015]

 Domain: Software developers professionals

 Language: Portuguese and English

 Execution expectancy: 2019 June and July

Definition of the experimental study

Global Objective

Assess moderator factors influencing the verification of security and performance

as well as actions that can be employed to promote such moderator factors.

Specific Objective 1

Analyze moderator factors of security and performance verification

30 “having a clear decisive relevance to the matter in hand”

https://www.merriam-webster.com/dictionary/pertinent

239

with the purpose of characterize

with respect to their pertinence regarding security and performance verification

from the point of view of software practitioners

in the context of software development organizations

Specific Objective 2

Analyze actions to promote the moderator factors of security and
performance verification

with the purpose of Characterize

with respect to their pertinence regarding the ability to promote the moderator
factors

from the point of view of software practitioners

in the context of software development organizations

General research questions

The following research questions were formulated to reach the study objectives:

 RQ 1 What is the pertinence of the identified moderator factors?

o What is the pertinence of the promoting actions identified to each moderator

factor?

 RQ 2 What are the moderator factors influencing the verification of security and

performance?

o RQ 2.1 What are the actions that could be done to promote the new and

identified moderator?

Subjects selection

 Target audience: software development practitioners

 Population: Brazilian software organizations

 Sampling technique: (see section) by convenience, using contacts from researchers

involved in the study, and executing the survey in practitioners’ conferences.

 Unit of observation: Software practitioner

 Unit of analysis: Software practitioner

 Search unit: (see next section).

Sampling strategy

Blog divulgation

 Publication a post

o Method: publication of a blog post

o http://www.tumblr.com

o http://medium.com

o www.memoriacache.com.br

o http://dev.to/

o https://www.codeproject.com

o https://slashdot.org

o https://quora.com/ and https://pt.quora.com/

Social networks

Using the search strings listed below:

English Portuguese

Software testing Teste de software

Software developer Desenvolvedor de software

http://dev.to/
https://www.codeproject.com/
https://slashdot.org/
https://quora.com/
https://pt.quora.com/

240

Software development Desenvolvimento de software

Software engineering Engenharia de software

Software engineer Engenheiro de software

Software security Segurança de software

Software performance Desempenho de software

Security testing Teste de segurança

Performance testing Teste de desempenho

 Linkedin (https://www.linkedin.com)

o Criterion: search for the groups of the first five pages

o Method: make a comment on the group page

 Facebook (https://www.facebook.com)

o Criterion: search for the groups with more than 100 users. Limit of 50 groups by

the search string

o Method: make a comment on the group page

 Twitter (https://twitter.com)

o Tweet with the following hashtag:

 English: #softwaretesting #softwaredeveloper #softwaredevelopment

#softwareengineer #softwareengineering #softwaresecurity

#softwareperformance #securitytesting #performancetesting

 Portuguese: #testedesoftware #desenvolvedordesoftware

#desenvolvimentodesoftware #engenheirodesoftware

#engenhariadesoftware #testedeseguranca #segurançadesoftware

#desempenhodesoftware #testededesempenho

 Reddit (https://www.reddit.com/)

o Criterion: search for subreddits using defined search strings (sort by ‘top’)

o Method: send message to the first 50 subreddits

Testing communities

 https://agiletesters.com.br/topic/271/f%C3%B3runs-comunidades-de-teste-de-software

 http://gtsw.blogspot.com/

 http://www.aprendendotestar.com.br/comunidades.html

 http://guts-rs.blogspot.com/

 https://qualidadebr.wordpress.com/tag/comunidade-testadores/

 https://www.ministryoftesting.com/

Questions-answers services

 Ask a question on https://sqa.stackexchange.com/

 Ask a question on https://softwareengineering.stackexchange.com/

 Ask a question on https://security.stackexchange.com/

E-mail groups

 https://groups.google.com/forum/#!forum/guts-rs-sucesu

 https://groups.google.com/forum/#!forum/teste-de-software-pe

Resources

 Software: Internet browser, LimeSurvey, Statistical analysis software, Microsoft excel

 Questionnaire: an instrument composed of a list of questions. It can be answered online

on the LimeSurvey platform or printed.

Survey questions

https://www.linkedin.com/
https://www.facebook.com/
https://twitter.com/
https://www.reddit.com/
https://agiletesters.com.br/topic/271/f%C3%B3runs-comunidades-de-teste-de-software
http://gtsw.blogspot.com/
http://www.aprendendotestar.com.br/comunidades.html
http://guts-rs.blogspot.com/
https://qualidadebr.wordpress.com/tag/comunidade-testadores/
https://www.ministryoftesting.com/
https://sqa.stackexchange.com/
https://softwareengineering.stackexchange.com/
https://security.stackexchange.com/
https://groups.google.com/forum/#!forum/guts-rs-sucesu
https://groups.google.com/forum/#!forum/teste-de-software-pe

241

242

243

244

245

Threat to validity

 Generalization of the results: depending on the number of Brazilian

organizations and managers answering the survey, the confidence level of the

results, from a statistical point of view, might be low, therefore being difficult to

generalize the results to the entire population. However, it is only possible to

reach this conclusion after the answers are received.

 Conclusion validity: it might be impossible to extend some of the research

questions to all professionals depending on the respondents’ functions or roles

in the organizations, as each role on the project might have a different

perception.

 Construct validity: to improve the construct validity of the study, both the plan

and the survey questionnaires will be reviewed by other researchers,

discussed, and corrected if necessary. Also, a supervised pilot will be executed

with at least one organization, to assure that the respondents have the same

understanding of the questions as the researchers.

References

M. Linåker, Johan; Sulaman, Sardar Muhammad; Maiani de Mello, Rafael; Höst,

“Guidelines for conducting surveys in software engineering v. 1.1,” no. May 2015.

