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Grafos são estruturas matemáticas que codificam relações entre pares de ob-

jetos, que são normalmente identificados por rótulos. Entretanto, grafos podem

representar relacionamentos entre qualquer tipo de objetos e um problema funda-

mental é determinar se dois grafos são estruturalmente equivalentes. Este problema

clássico da teoria dos grafos, chamado isomorfismo de grafos, pode ser atacado com

algoritmos de rotulação canônica, que rotulam os vértices de um grafo se base-

ando completamente na estrutura do grafo e independente da rotulação inicial dos

vértices. Uma pergunta mais recente é sobre como alinhar os vértices de dois grafos

estruturalmente similares, um problema conhecido como emparelhamento de grafos.

Esta dissertação aborda esse problema com algoritmos de rotulação canônica. Em

particular, propõe uma nova abordagem baseada apenas em distâncias, que resolve

o problema de emparelhamento de grafos sob algumas condições enquanto sempre

resolve o problema de isomorfismo em grafos. Duas variações são consideradas e

ambas são implementadas e avaliadas em modelos de grafos aleatórios e redes reais,

sob um modelo simples de remoção de arestas. Os algoritmos clássicos de rotulação

canônica também são avaliados e comparados com a abordagem proposta baseada

em distâncias, que tende a ser superior no alinhamento de grafos semelhantes.
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Graphs are mathematical structures that encode pairwise relationships between

objects, which are usually identified with labels. However, graphs can represent

relationships between any kind of objects and a fundamental problem is to determine

if two graphs are equivalent from a structural point of view. This classic problem

from graph theory, called graph isomorphism, can be tackled by canonical labeling

algorithms, that label the graph nodes completely based on the graph structure

and independent of the nodes’ original labels. A more recent question is on how to

align the nodes of two graphs that have a similar structure, a problem known as

graph matching. This dissertation approaches this problem with canonical labeling

algorithms. In particular, it proposes a novel approach based solely on distances,

that solve the graph matching problem under some conditions while always solving

graph isomorphism. Two variations are considered and both are implemented and

evaluated on random graph models and real networks, under a simple edge removal

model. Classic canonical labeling algorithms are also evaluated and compared to

the proposed distance-based approach, which tends to be superior in aligning two

similar graphs.
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Chapter 1

Introduction

Graphs are mathematical structures used to model relations between objects and

can be applied to different problems, like the travel salesman problem. Graphs are

composed of nodes and edges that encode the relationships between the correspond-

ing pair of objects. The nodes are usually labeled uniquely, which allows for their

identification. However, the meaning of a node and its respective label is arbitrary,

allowing graphs to be applied to any context. For example, in the social network

induced by friendship on Facebook, where nodes represent people and edges rep-

resent a friendship. Also, in the protein-protein network, that represents proteins,

as nodes, and the interaction between them, as edges. Example of both graphs

described are shown in Figure 1.1.

Figure 1.1: Example of two graphs representing different purposes.

An interesting question is if two graphs where nodes have different labels are

equivalent from a structural point of view. Looking at the graphs shown in Figure

1.1, although they represent different objects, it is easy to see that their structure is

identical. In particular, if labels are removed from both graphs, we have two unla-

belled identical graphs. In fact, determining if two graphs are structurally identical

is known as the graph isomorphism problem, a classic and well-studied problem in

graph theory and computer science. While determining the isomorphism of graphs

in Figure 1.1 is trivial, this problem is not known to be solvable in polynomial time

in arbitrary graphs, and it is also not known to be NP-complete [3].

One approach to tackle the graph isomorphism problem is to label the graph

nodes in a way that is completely based on the graph structure, independent of the

1



node’s original labels. This is known as canonical labeling [4–8]. For special classes

of graphs, canonical labeling algorithms can often solve the isomorphism problem

efficiently [4, 9].

1.1 Graph Isomorphism Applications

Graphs are used by different areas to encode various kinds of relational information.

For example, social network relationships encode relationships between people, bio-

logical networks encode different relationships between organisms, where it is pos-

sible to represent a metabolic network where the nodes represent genes and edges

represent the interactions between them [10], revolutionizing the way of analyzing

and studying biology. This broad interest in graphs has lead to the emergence of

network science, an academic discipline with a focus on studying real networks, in-

cluding their structure. The graph isomorphism problem appears in many of these

different contexts, given the importance of determining if two graphs are structurally

identical.

A variation of the isomorphism problem is to determine if a given graph is iso-

morphic to a subgraph of a larger graph. For example, determining if a clique with k

nodes is a subgraph of a larger graph. This technique is often used to solve different

problems, like pattern discovery in databases and bioinformatics [11].

Another application of isomorphism is related to privacy and data disclosure.

Data privacy concerns are constantly increasing, especially after the European Union

issued the data protection law, GDPR, in 2016. Graph and subgraph isomorphism

are commonly used on privacy attacks that disclose personal information, like the

relationship between people. For example, consider a network where the relation-

ships are private and represent sensitive information, like email exchange (node are

people and edges represent if they exchanged emails). This information should only

be known by the people who are, in fact, exchanging the emails, and not by anyone

else. However, attackers want to disclose this information.

Social network platforms sometimes release their network to allow for empirical

studies. However, to protect their users’ privacy, the graph is first anonymized, i.e.,

the personally identifiable information (PII) of every node is removed. A famous

case occurred in 2009 with the Netflix Prize [12], where the company created an

online competition to develop a recommendation system that improved over the one

currently being used by Netflix and, so, they released an anonymized graph of users

and movies. Although the network was anonymized before being released, the net-

work structure is often enough to build a privacy attack and identify some (or all) of

the nodes, hence identifying the relationship between them, which is usually sensi-

tive and private information. One common privacy attack on anonymized networks

2



is based on graph isomorphism: suppose the attackers belong to the network and,

hence, know the subgraph induced by the nodes they control. They can now run

a subgraph isomorphism algorithm to find this subgraph on the anonymized graph

and then start identifying other nodes using prior information, e.g, nodes connected

to the attackers, the node with the highest degree, and so on [13–15].

Besides anonymizing the network, it is common for the network’s holders to

remove some edges and nodes from it before releasing it, making attacks harder.

This problem can not be solved with isomorphism anymore since the subgraph

known by the attackers might be different. However, it is still possible to solve this

problem using graph matching techniques to search for the known subgraph and

disclose other relationships as well.

1.1.1 Motivation

A limitation of graph isomorphism is that it determines if two graphs have the

exact same structure. If a single edge is missing in a copy of a very large graph,

then isomorphism fails. In real-world, graphs rarely have a perfect structure and,

when collecting data to generate a graph, it is common to miss some edges, creating

a graph that is not an exact copy of a previously collected copy, but that is very

similar. So, how to determine if two graphs are similar?

The graph isomorphism problem belongs to a larger class of problem known as

graph matching or network alignment [16, 17]. Graph matching is the problem of

finding the best similarity between two graphs by matching the nodes of the two

graphs as to minimize the number of edges not appearing on both graphs. Note

that when this number is zero the two graphs are isomorphic.

Applications of graph matching problem are similar to the ones of the isomor-

phism problem since in many scenarios the problem becomes finding the best match

between two different graphs. Once again, take social networks for example. The

structure of two different social networks among the same set of people can be simi-

lar, since users that communicate through WhatsApp are likely to also communicate

through Facebook, for example. However, it is very unlikely that these two networks

are isomorphic.

The existing algorithms for graph matching simultaneously explore the structure

of both graphs to align the nodes. For example, aligning the nodes that have the

largest degrees off both graphs [18]. However, a different and not much-explored

approach is to generate a canonical labeling for each graph independently in a way

that the canonical labelings of structurally similar graphs are similar. However,

the current existing canonical labeling algorithms do not consider this constraint

as their main focus is solving the graph isomorphism problem. Current canonical

3



labeling algorithms are all very dependent on the graph structure and not robust

to edge removal. Removing edges from a graph yields a very different canonical

labeling if compared to the canonical labeling of the original graph. For example,

the canonical labeling of a graph G1 and the canonical labeling of a graph G2

generated after removing a single edge from G1 can be very different from each other.

However, graphs have structural features that are robust to small perturbations

on its structure (like edge removal) that could be used to drive canonical labeling

algorithms. One such feature in many real networks is node distance.

Social networks or collaboration networks, for example, often have many different

paths with the same length, in such a way that the shortest path between nodes will

not change if some edges are removed from the graph. In other words, if one edge is

removed and the shortest path between two arbitrary nodes used this edge, there is

likely another path with the same distance that does not require the edge that was

removed. This opens a new path to explore canonical labeling techniques that are

based on distances, which is the central theme of this dissertation. The idea is to

use distances between nodes to differentiate them and then relabel them based on

that.

1.1.2 Contributions

This dissertation presents four different canonical labeling algorithms, two based on

degree and two based on distances. The degree based are independent implemen-

tations of a classic algorithm and a variation developed within this research. Since

degrees are not very robust to edge removal, the main focus of this work is on dis-

tance based canonical labeling algorithms with applications to the graph matching

problem.

This work main contributions are:

• A variation of one state of the art degree based canonical labeling algorithm.

• Two novel distance based canonical labeling algorithms. To the best of our

knowledge, these are the first canonical labeling algorithms fully based on node

distances.

• Proof of correctness of the proposed algorithm when applied to the isomor-

phism problem.

• Proof of correctness for the graph matching problem under a given necessary

condition.

• Implementation and evaluation of the algorithms on real and synthetic net-

works.
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• Empirical comparison between these algorithms and four other algorithms, two

based on degrees developed by this research and two state of the art canonical

labeling algorithms, indicating the superiority of the proposed distance based

approaches.

1.2 Organization

Chapter 2 covers the concepts that are used throughout this dissertation and some

related work, including a brief overview of canonical labeling and graph matching

problems. Chapter 3 presents two implementations, a classic canonical labeling al-

gorithm and a proposed variation based on degrees. Chapter 4 details the distance

based canonical labeling algorithm and presents the theoretical proofs. Chapter 5

presents the results of six different canonical labeling algorithms on different graphs

and different scenarios of edge removal when considering the graph matching prob-

lem. Chapter 6 presents the conclusion and some future work.
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Chapter 2

Basic Concepts and Related Work

2.1 Important Definitions

The following notation and definitions will be used throughout this work. Let G =

(V,E) denote a graph with node set V and edge set E, assumed to be undirected.

Let n = |V | and m = |E| denote the number of nodes and edges of G, respectively.

Moreover, let Nu = {v|(u, v) ∈ E} denote the neighbors of u ∈ V , and let du = |Nu|
denote the degree of u. Let d(u, v) denote the distance as in the length of the

shortest path between nodes u, v ∈ V . Since G is undirected, d(u, v) = d(v, u).

Let τG : V → [1, n] denote a bijective function between the nodes of G and the

respective range of natural numbers. Note that τG depends on G and is called the

canonical labeling of G. Thus, τG(u) is the canonical labeling of node u in G. Let

Gτ = (Vτ , Eτ ) denote the graph permutated by the canonical labeling τG, with node

set Vτ = {τG(u)|u ∈ V } and edge set Eτ = {(τG(u), τG(v))|(u, v) ∈ E}.
To summarize it all, Table 2.1 presents the notations and definitions given.

Notation Definition

G = (V,E) Graph with node set V and edge set E

n Number of nodes of G

m Number of edges of G

Nu Neighbors of u ∈ V
du Degree of u

d(u, v) Distance between nodes u, v ∈ V
τG Canonical labeling of G

τG(u) Canonical labeling of u

Gτ = (Vτ , Eτ ) G permutated by τG

Table 2.1: Notations and definitions
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2.1.1 Partitions

The following definitions give the most important concepts regarding partitions used

in this work.

Definition 2.1.1. A partition π of a set S is a set of disjoint non-empty subsets of

S whose union is S.

Definition 2.1.2. An ordered partition is a sequence of subsets [S1, S2, . . . , Sr] such

that the subsets form a partition of S but the order of the subsets in the sequence

is relevant. Moreover, each subset Si is considered to be a sequence such that Si =

[Si1, Si2, . . . , Siki ] and this order is relevant.

To better illustrate, let S = [1, 2, 3, 4, 5, 6]. A possible ordered partition is π1 =

[[1, 2], [5, 4, 6], [3]], such that S1 = [1, 2], S2 = [5, 4, 6] and S3 = [3]. Note that π2 =

[[1, 2], [3], [5, 4, 6]] and π3 = [[2, 1], [3, 4, 5], [6]] are two different ordered partitions.

The elements of a partition are usually called cells. A singleton cell is a cell

with cardinality one, such as S3 in the above example, and a discrete partition is a

partition with only singleton cells, such as S = [[2], [1], [5], [3], [6], [4]]. For a set S

with n elements, there are 2n−1n! different ordered partitions, since there are 2n−1

possible ways of splitting the cells and n! possible permutations of the elements.

Definition 2.1.3. Let π1 and π2 be ordered partitions of S. π1 is finer than π2 if:

• Vi ⊆ Wk,∀ Vi ∈ π1,Wk ∈ π2

• For two cells Vi, Vj ∈ π1 with i ≤ j, and two cells Wk,Wl ∈ π2 such that

Vi ⊆ Wk, Vj ⊆ Wl, then k ≤ l

Definition 2.1.4. If π1 is finer than π2, then π2 is coarser than π1.

To exemplify the two definitions given above, consider πi = [[1, 2], [3, 4], [5, 6]]

and πj = [[1, 2, 3, 4], [5, 6]]. In this scenario, πi is finer than πj: πi has three cells,

Vi1 = [1, 2], Vi2 = [3, 4] and Vi3 = [3, 6] and πj has two cells, Vj1 = [1, 2, 3, 4] and

Vj2 = [5, 6]. All cells from πi are contained in πj (Vi1 ⊆ Vj1 , Vi2 ⊆ Vj1 and Vi3 ⊆ Vj2)

and the order of the cells is respected (Vi1 ⊆ Vj1 and Vi3 ⊆ Vj2 , for example).

Therefore, πj is also coarser than πi.

The partitions used in this dissertation are always over the set of nodes V of a

graph, and thus the notation for representing the cells is Vi.

2.1.2 Equitable Partitions

Equitable partitions are partitions where the cells conform to a specific set of rules

or conditions. These rules can differ for each type of algorithm, but the main idea
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is always the same. To better illustrate the concept of an equitable partition, we

explore the definition presented on McKay’s canonical labeling algorithm [6], which

is reviewed in much more detail later on in this chapter.

Definition 2.1.5. Let π = [V1, V2, . . . , Vr] denote an ordered partition of V in a

graph G. Let dG(v, Vi) denote a function that returns the number of nodes in Vi that

are adjacent in G to v, in particular, dG(v, Vi) = |Vi ∩Nv|. An ordered partition is

equitable if:

• ∀ Vi, Vj ∈ V, ∀ u, v ∈ Vi, dG(u, Vj) = dG(v, Vj)

In other words, a partition is equitable if, for any two cells (not necessarily

distinct) from a partition, all nodes from one cell have the exact same number of

neighbors on the other cell.

For example, consider the graph shown in the upper left of Figure 2.3. A pos-

sible partition is π = [[1, 3, 7, 9, 8, 6, 4, 2, 5]], i.e., all nodes in a single cell. Since

V1 = [1, 3, 7, 9, 8, 6, 4, 2, 5], containing all nodes from G, this partition would only be

equitable if G was a regular graph. Since this is not the case (for example: node 1

has degree 2 (hence dG(1, V1) = 2) and node 5 has degree 4 (hence dG(5, V1) = 4)),

π is not an equitable partition. A possible equitable ordered partition for this graph

is π′ = [[1, 3, 7, 9], [2, 4, 6, 8], [5]].

Every possible partition π can be turned into an equitable partition π′. Later

on in this chapter there is an explanation of an algorithm that takes a partition π

and returns an equitable partition π′ that is finer than π.

2.2 Graph Isomorphism Problem

Definition 2.2.1. An isomorphism between two graphs G = (V,E) and G′ =

(V ′, E ′) is a bijection between the vertex sets of G and G′ f : V −→ V ′ such that

(u, v) ∈ E if and only if (f(u), f(v)) ∈ E ′ [19, 20]. Note that f is a transformation

of the node set that preserves all edges.

An example of two isomorphic graphs and its bijection is shown in Figure 2.1.
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Figure 2.1: Example of an isomorphism between two graphs.

Finding an isomorphism between two graphs G and G′ is a fundamental problem

in theoretical computer science, and no polynomial time algorithm exists for the

general case. However, there are trivial necessary conditions for the existence of an

isomorphism. For example, it is necessary that |V | = |V ′|, |E| = |E ′| and, moreover,

the ordered degree sequence must be the same on both graphs. The ordered degree

sequence is an ordered numerical sequence containing the value of the degree of all

nodes. If this sequence is not the same on two graphs, they are not isomorphic since

there is at least one node from one graph that is not correctly represented on the

other graph. All the presented conditions are necessary, but not sufficient.

2.2.1 Automorphism

Automorphism is a problem derived from isomorphism. Consider the following def-

initions for the main concepts behind this problem.

Definition 2.2.2. An automorphism is an isomorphic mapping from a graph to

itself [21].

An example of an automorphism is presented in Figure 2.2, where it is possible

to see that nodes 2 and 3 can change their positions (creating a new graph) while

preserving the edge set.

Figure 2.2: Example of an automorphism.
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2.3 Graph Canonization and Canonical Labeling

Graph canonization is the problem of finding a canonical form to write G. A canoni-

cal form or canonical labeling of G is a labeled graph Gτ that is isomorphic to G and

represents the entire isomorphism class of G. In other words, canonical labeling is

a way of labeling the nodes such that isomorphic graphs are identical, i.e., have the

same edge set. Canonical labeling algorithms can solve the isomorphism problem

since it suffices to generate a canonical labeling for each of two graphs G1 and G2

and then check if the new labeled graphs Gτ1 and Gτ2 are the same, i.e., have the

same edge set (which can be done in O(n2), for a graph with n nodes).

Another common definition for a canonical labeling function is to provide a way

of sorting the nodes of a graph G. For instance, Gτ is a n sized permutation, chosen

by some criteria that depend on the structure of G from all possible n! permutations.

In Figure 2.3, the two graphs in the upper row are clearly (visually speaking)

isomorphic, though they are not identical since their edge set is different (for ex-

ample, edge (1,2) in the left graph is not in the right graph). The canonization of

the graphs in the upper row of Figure 2.3 are shown in the lower row of Figure 2.3,

which are identical (have the same edge set).

Figure 2.3: Canonical labeling example with two graphs that are 3x3 grids.

2.3.1 McKay’s Algorithm

There are many algorithms to generate a canonical labeling for a graph, and one

of the most famous was designed by McKay, first described in 1980 [6]. Besides
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describing this algorithm, the next subsections will also describe other solutions to

the problem.

McKay’s algorithm generates a canonical labeling for a graph G. The main

strand of this algorithm is to determine an ordering for the nodes based on the node’s

degree and neighbors. This algorithm influenced many subsequent approaches, in-

cluding the one proposed in this work, so a detailed explanation is given below.

McKay’s algorithm receives a graph G as input and generates an initial single-

cell partition V , with all n nodes of G. Suppose G is the graph shown in the

upper left Figure 2.3, so n = 9 and V = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Then, the initial

partition is π = [[1, 2, 3, 4, 5, 6, 7, 8, 9]], where nodes are taken in order. The purpose

of the algorithm is to work on π until it reaches an ordered discrete partition π′

with n singleton cells (this procedure will soon be explained). This ordered discrete

partition is then a candidate for the canonical labeling of the graph, τG. In particular,

each cell in π′, or τG, represents a new label for a node in G, according to its position

in the ordered discrete partition. Following the example, the resulting canonical

labeling is τG = [[1], [3], [7], [9], [8], [6], [4], [2], [5]], such that node 1 is relabeled to

1, node 2 is relabeled to 8, node 3 is relabelled to 2 and so on. Thus, each node

v is relabelled according to its index in the canonical labeling generated by the

algorithm.

Refinement Procedure

A refinement procedure, which was first described by McKay in 1976 [5], is a func-

tion that receives an ordered partition and transforms it on an equitable ordered

partition. This is done by breaking cells that do not have all nodes with the same

degree towards another cell, and such nodes become new cells. For a cell Vk and

a cell W , it will split Vk into new cells (X1, X2, . . . , Xs) such that for any pair of

nodes x ∈ Xi and y ∈ Xj, dG(x,W ) < d(y,W ) if and only if i < j. This procedure

of generating new cells from an existing cell is called shattering. If s = 1, then all

nodes from Vk have the same number of neighbors in cell W and there is no need to

split Vk at this point.

The refinement procedure presented in [5] is next described. It receives a par-

tition π, that is transformed into an equitable partition. The procedure verifies all

ordered pairs of cells as described above and splits the cells accordingly, creating

new cells and modifying the partition. It will use α as an assistant set, initialized

with all cells in π, used to select the pair of cells. The algorithm will take a cell W

from α, a cell Vk from π and check if Vk is shattered by W . If this is not the case,

the algorithm moves to the next cell from π. If Vk is the last cell from π, it moves

W to the next cell in α and continues from the first cell in π, V1. However, if a

shattering occurs, then π needs to be updated, removing Vk and adding the ordered
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split cells generated by Vk in its place. Moreover, all new cells generated are added

to the end of α, as they now belong to the current partition and will be needed to

check if they can shatter any cell from π. The process of appending the new cells

to α has just one more detail: if Vk is in α in a position after W that has not been

considered yet (remembering that the algorithm works in the cells in α in order, so

this means that Vk is a position greater than the one currently being considered)

this cell is removed from α, since it is no longer a cell in π.

Algorithm 1 Refinement Procedure

Input: ordered partition π, graph G

Output: equitable ordered partition π′

π′ ← π

α← π

M ← |α|
m← 1

while π′ is not discrete and m ≤M do

W ← alpha[m]

m← m+ 1

k ← 1

r ← |π′|
while k ≤ r do

Vk ← π′[k]

Split Vk in (X1, X2, . . . , Xs) such that for any x ∈ Xi and y ∈ Xj,

dG(x,W ) < dG(y,W ) if and only if i < j

if s 6= 1 then

t← min{j| |Xj| ≥ |Xl|,∀l ∈ [1, s]}
for i← 1, i ≤ s, i+ + do

if i = t then

if alpha[j] = Vk for some j(m ≤ j ≤M) then

alpha[j]← Xt

else

α.Append([Xi])

else

α.Append([Xi])

M ←M + s− 1

Update π′ by replacing Vk for X1, X2, . . . , Xs in that order

k ← k + 1

This procedure is executed for all pairs of cells (one from α, another from π), up-
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dating the partition with the new cells that are shattered. Once the algorithm checks

all pairs of cells, the resulting partition is equitable and is returned. Algorithm 1

shows the pseudo-code of the refinement procedure.

Search Tree

To find the canonical labeling for a graph, McKay’s algorithm builds a search tree

where each node is an equitable ordered partition. The root of this tree is the

result of the refinement procedure for the initial partition (the one with a sin-

gle cell containing all nodes). The algorithm will start the exploration on the

root node and will run a depth-first search on the tree to reveal other nodes.

Each node representing a partition π will have children nodes, unless π is a dis-

crete ordered partition. The children of a node are ordered partitions formed

by removing each element e from the first non-trivial cell of π of the smallest

size and placing e in a new cell. If the smallest non-trivial size cell in π has

size t, the node representing π will have t children in the tree. For example,

consider π as [[1, 2, 3], [4, 5, 6, 7], [8, 9, 10]]. Then, the first non-trivial cell of the

smallest size is W = [1, 2, 3]. The children of π are [[1], [2, 3], [4, 5, 6, 7], [8, 9, 10]],

[[2], [1, 3], [4, 5, 6, 7], [8, 9, 10]] and [[3], [1, 2], [4, 5, 6, 7], [8, 9, 10]]. Each child partition

becomes the input to the refinement procedure generating the corresponding equi-

table partition as the node on the search tree. A part of the search tree for this

graph is presented in Figure 2.4.

Figure 2.4: Part of the search tree for the 3x3 grid graph.

Every time a discrete partition is found (leaf node), a binary representation for

this canonical labeling is generated. The discrete partition π represents a graph Gπ
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isomorphic to G and the binary representation of Gπ is a binary number generated

by the superior triangle of the adjacency matrix of Gπ. Since the algorithm must

return a single canonical labeling, the idea is to choose amongst all the possible

binary representations, such as returning the largest binary representation, since it

can be easily compared with other representations. The algorithm keeps track of all

different binary representations found.

Note that two different discrete partitions and their corresponding canonical la-

belings can have the same binary representation. This means that both canonical

labelings represent a graph with the same adjacency matrix and, hence, are iden-

tical, which means the graph has automorphisms. Thus, it does not matter which

canonical labeling is returned by the algorithm in this case.

Pruning

There are many reasons for the search tree to grow and become very large. For

example, if the input graph G has a large number of automorphisms since the num-

ber of leaves in the search tree is at least the number of automorphisms. However,

although the canonical labeling will be different between different automorphisms,

the graphs they represent are exactly the same and, hence, so are the corresponding

binary representations. Since the search tree is explored using a depth-first proce-

dure, the algorithm can prune the tree based on the automorphisms that it finds,

avoiding the generation of unnecessary paths that lead to leaves representing the

same graph (same binary representation). The pruning method only removes sec-

tions of the tree that would generate a canonical labeling that has already been seen

or that are smaller than the best canonical labeling found so far (for example, if

the algorithm wants to return the canonical labeling associated with the largest bi-

nary representation and that path will only generate canonical labelings with binary

representations smaller than the largest one yet found).

When exploring a new leaf t, the algorithm generates the binary representation

of the corresponding canonical labeling. If this binary representation is identical to

any of the binary representations already found, then the search tree is pruned. In

this case, there is a leaf p already discovered with this same binary representation.

Let a be the node in the tree that is the deepest common ancestor of p and t, and

let b be the child of a that is ancestor of p and c be the child of a that is ancestor

of t, as shown in Figure 2.5. Node p has a discrete partition πp associated to it,

and node t has a discrete partition πt. Since πp and πt represent the same graph,

there is a permutation γ between p and t. The permutation γ that sends p to t also

sends b to c. In other words, the subtree of the search tree rooted at b is isomorphic

to the subtree rooted at c, thus, the leaf nodes, or discrete partitions, that have

c as an ancestor are the same as the leaf nodes that have b as an ancestor (under

14



permutation γ). Since this search tree is created depth-first, the tree rooted at b is

examined before the tree rooted at c and once this permutation between b and c is

found, there is no more reason to continue examining the subtree rooted at c, so the

algorithm prunes node c and all its children and continues the search from node a.

Figure 2.5: Pruning example.

Another way to prune the search tree is based on the magnitude of the pre-

fix of the binary representation, called prefix-based pruning. Before exploring a

node of the tree that is not a leaf, the algorithm generates the prefix of its bi-

nary representation using the partition associated with the node. To illustrate

how this prefix is generated, consider the graph in Figure 2.6 and a partition

π = [[1], [2], [3], [4], [5, 6, 7], [8, 9]].

Figure 2.6: 3x3 grid graph example.

Since the partition π has singleton cells, the algorithm already knows the label

of some of the nodes as determined by the canonical labeling represented in this

partition, and also on all children nodes (since all of them have the same singleton
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cells in the same order). Therefore, the binary representation of the prefix can be

generated using the singleton cells and construct the initial bits of the adjacency

matrix. To better illustrate, consider the graph in Figure 2.7, that represents the

partial canonical labeling graph represented by the partition π given above. Note

that the algorithm already knows that nodes 1 and 2 are neighbors, nodes 1 and 3 are

not and that nodes 1 and 4 are neighbors. So, the prefix of the binary representation

associated with this partition is 101. All leaf nodes that are descendants of this node

in the search tree will also have this prefix in their respective binary representations,

based on the way the prefix is generated and the fact that the cells do not change

their order on the partition.

Figure 2.7: Partial canonical labeling graph based on a not discrete partition.

Recall that the algorithm returns the canonical labeling associated with the

largest binary representation. Thus, if the algorithm finds a node with a binary

representation that has a prefix that is smaller than the largest binary representation

yet found (considering only the first bits of this representation, making it the same

size as the prefix), this node does not need to be explored anymore and it can be

pruned from the search tree. All future children of this node will share the same

prefix of its binary representation, so they will all have a smaller representation than

the largest one and, hence, do not need to be considered.

Besides these two pruning techniques, there are other more complex and effective

procedures, decreasing the number of nodes on the search tree and, hence, improving

the efficiency of the algorithm. Chapters 3 and 4 cover our degree and distance based

canonical labeling algorithms, where other pruning techniques have been developed.

Complexity

Although the graph isomorphism problem is clearly in NP (since an explicit iso-

morphism serves as a certificate that two graphs are isomorphic and this can be
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done in polynomial time [22]), it is still not known if this problem is either solvable

in polynomial time or NP-Complete. Thus, the described algorithm to generate a

canonical labeling and find if two graphs are isomorphic has exponential running

time on some inputs (worst-case scenario) [23], but in general, it performs well (for

example, graphs of bounded degree can be computed in polynomial time [4]). Hence,

the algorithm’s complexity will depend on the graphs’ classes.

2.3.2 Nauty and Traces

Nauty and Traces [7] are classic programs for generating canonical labelings. They

are both widely used, written in C [24] and considered very efficient implementations.

This work uses nauty to generate canonical labelings, as it will be shown in Chapter

5. Both programs are derived from McKay’s canonical labeling original algorithm,

described in Section 2.3.1 and received many improvements over the years [5, 25].

Traces is actually very similar to nauty and its innovative approach outperforms

other programs and implementations on difficult graph classes [7].

2.3.3 Bliss

Bliss in an open-source tool for computing canonical labelings of graphs, and its

algorithms and data structures were published in 2007 [8]. Its implementation in

Python, which allows fast prototyping of algorithms for isomorphism rejection, for

instance, is used in this dissertation, as discussed in Chapter 5. Bliss is built espe-

cially for fast handling of large and sparse graphs, running a backtracking algorithm

based on individualization, refinement, efficient data structures and subroutines,

and pruning heuristics.

The idea of the algorithm is similar to nauty and the main contribution of Bliss

is a design that can accommodate large graphs and facilitate fast indexing on the

search tree. In many cases, Bliss can avoid a linear time overhead when processing

a node in the search tree by additional bookkeeping and by accessing only essential

parts of the ordered partition and the graph. It also improves the heuristics used to

prune the tree, facilitating early pruning by means of an incremental leaf certificate

[8].

2.4 Refinement Strategies

There are several strategies to verify graph isomorphisms and many use refinement

strategies, that are briefly covered in this section. However, to the best of our

knowledge, such strategies have the goal of improving the efficiency of the algorithm

either by reducing the complexity, decreasing the number of nodes in the search
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tree, making the refinement stronger to split more cells, etc. Refinement strategies

have not been proposed with the goal of identifying structure similarities in two or

more graphs, beyond isomorphism.

2.4.1 Degree Sequence

This is one of the most successful and well-known techniques used in most practical

graph isomorphism algorithms [23, 26, 27] and terminates in polynomial time for

almost all graphs [9]. The idea and examples are discussed below.

Given a graph G = (V,E) with n nodes, the idea is to give each node v ∈ V a

label l(v), such that each node gets a unique label. The first step is to label each

node with its degree. The algorithm is iterative, generating a sequence of labels for

every node. In the next iteration, the new label l′(v) of node v is defined by the

labels of its neighbors:

l′(v) = {l(v), {l(u)|(u, v) ∈ E}} ∀v ∈ V

The Weisfeiler-Lehman [28] algorithm uses this procedure to check if two graphs

G and G′, with n nodes and m edges, are isomorphic. The idea is to process both

graphs simultaneously until the node label sets of G and G′ differ, which means the

graphs are not isomorphic. Moreover, if the number of iterations reaches n, then

the graphs are either isomorphic or the algorithm was not able to determine that

they are not isomorphic. The complexity of the Weisfeiler-Lehman algorithm with

h iterations is O(hm) and, in the worst-case scenario, O(mn).

Although this algorithm works in polynomial time and the isomorphism problem

is known for not having a polynomial-time algorithm, it, unfortunately, does not

work for all graphs. There is a quite obvious class where this algorithm fails: regular

graphs, where all nodes have the exact same degree. Other graphs that cannot be

distinguished by this algorithm are covered by Cai et al. [29].

2.4.2 Distance Sequence

For random graphs, the degree refinement presented above is not a good strategy

to distinguish the nodes, as many nodes have the same (randomly applied) degree.

Thus, another attribute is often used, the distance sequence [30]. For a node v,

let di(v) denote the number of nodes at distance i from v. The distance sequence

of node v is the sequence of di(v) for i = 0, 1, 2, . . . , n. The refinement (iterative

procedure) itself is the same as presented for degree sequence.
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2.5 Graph Matching Problem

There are two completely different graph matching problems in network science, so

the first step is defining them both.

In graph theory, a matching M in a graph G = (V,E) is a set of pairwise non-

adjacent edges. This definition is applied to several problems and one of the most

famous is finding the maximum matching of a graph, which is a matching that

contains the largest possible number of edges. In an unweighted bipartite graph,

the problem is solved in O(
√
V E) time [31].

The problem we are interested in, however, is the problem of finding a structural

similarity between two graphs. The idea is to determine a correspondence between

the node set of the two graphs such that the edge sets are preserved as much as

possible. This problem generalized graph isomorphism as it does not require the

graph to be isomorphic to find a correspondence. Just as clarification, this is the

problem this dissertation will be referring to as graph matching.

There are many algorithms to solve the graph matching problem but none are

based on canonical labeling and all receive as input the two graphs that must be

matched. An approach that is more similar to canonical labeling is known as Rec-

onciling Graphs and will be discussed in the following. The main idea to reconcile

the graphs is to define a signature for each node for both graphs being compared

and then the signatures between the graphs are compared.

This section will also discuss how graph matching is being used on other appli-

cations, like creating privacy attacks on social networks.

2.5.1 Reconciling Graphs

The idea of reconciling graphs is to change the edge set of one graph such that it

becomes isomorphic to another. In particular, the problem considers two unlabeled

graphs GA = (VA, EA) and GB = (VB, EB), where |VA| = |VB| = n and only d � n

(also, d � ma and d � mb) edges are changed (added or deleted) in EA to make

GA isomorphic to GB. That is, there are two different but similar graphs, with a

small number of edges d that are different.

One recent approach [18] for random graph reconciliation, specifically for Erdõs-

Rényi random graphs [32], finds a signature scheme for the vertices where each node’s

signature is invariant under relabeling and with high probability every vertex in a

graph has a unique signature. This approach is different from the canonical labeling

approach for one main reason: two or more nodes can have the same signature

(depending on the graph), while with canonical labeling each node has a unique

label. However, the idea is the same: if two graphs have different signature sets (the

edge set of the relabelled graph is different) they are not isomorphic. For random
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graph reconciliation, the signature scheme has an additional property that makes

the signatures robust to changes to a small number of edges in the two graphs.

The first step of the algorithm is ordering the vertices by degree so that d(v1) ≥
d(v2) · · · ≥ d(vn). For the h nodes with the largest degree (h is a parameter), their

signature becomes their degree ordering (the node with the largest degree is labeled

1, the node with the second largest degree is labeled 2 and so on). For the remaining

n − h nodes, each node u receives a signature sig(u) that is an h-bit string where

the ith bit of the string denotes whether or not node u is adjacent to vi, the node

with the ith larger degree.

Consider the following definition for a class of graphs.

Definition 2.5.1. A graph is (h, a, b)-separated if, after sorting the nodes by their

degrees (d(v1) ≥ d(v2) ≥ · · · ≥ d(vn)):

• d(vi)− d(vi+1) ≥ a,∀i ∈ [1, h− 1]

• For all i, j ∈ {h+ 1, n} and i 6= j, the Hamming distance between sig(vi) and

sig(vj), |sig(vi)− sig(vj)| is at least b. The signature sig(vi) is a binary data

string and the Hamming distance is a way of comparing two binary strings

with the same size by counting the number of bits positions in which the two

bits are different.

The article shows that for an appropriate set of parameters, a random graph

is (h, d + 1, 2d + 1)-separated with high probability. Let G denote an Erdõs-Rényi

random graph generated and GA and GB denote graphs obtained by making at most
d
2

edge changes to G. Let w1, . . . , wn be the nodes of G. If a node va ∈ GA and a

node vb ∈ GB correspond to the same node wi ∈ G, then they conform. Then, if it

is possible to label GA and GB in a way that every node from GA that is labeled the

same in GB conform, there is a labeled graph reconciliation problem with at most

d edges differences.

By definition, since G is (h, d + 1, 2d + 1)-separated and GA and GB differ by

at most d edges, the h largest degree nodes in GA conform to those of GB, in the

same degree order. For the other n− h nodes, they use the set of sets reconciliation

solution to reconcile the signatures and, then, reconcile the graphs.

2.5.2 De-anonymization of Social Networks

With the growing discussion about data privacy, social networks are continuously

studying ways to protect their users’ personally identifiable information. Typically,

whenever a network is made available for empirical studies, for example, it first is

protected by anonymization. But is that enough?
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Recent works demonstrate that anonymizing the network might not be sufficient

to protect the users’ privacy. Some of these works discuss how the availability of

node and link data from another network, that is correlated with the anonymized

network available, can be used to re-identify the anonymized nodes with graph

matching techniques [33–35]. The idea is that the attackers might have an auxiliary

labeled network, in which user identities are known (taken from a public source, for

example), that is correlated to the anonymized network released, i.e., there are a

number of users on both networks and their behavior is similar on them. With the

two networks, then it is possible to apply graph matching algorithms to find the

best match between them and re-identify some, or all, nodes from the anonymized

network.

One more theoretical work aims to answer the question of whether de-

anonymization is impossible in an inherently anonymous and sufficiently sparse

network, with unlimited computational power and access to an auxiliary labeled

network [34]. Here, there are no worries about the computational complexity of the

process, just about the feasibility and limits for de-anonymization regardless of the

algorithm employed.

The idea is to introduce an Erdõs-Rényi random graph G(n, p) with an extra

parameter s, that controls the correlation between the two networks over the same

node set. For a fixed realization of G(n, p), two graphs G1 = (V,E1) and G2 =

(V,E2) are generated. Each edge e ∈ E is in the edge set of E1 and E2 with

probability s, which makes G1 and G2 also Erdõs-Rényi random graphs, but with

correlated edge sets. Now, the goal is to determine if, with only the anonymized

version of G1 and G2 at disposal, is possible to find the correct mapping between the

nodes of the two graphs. The graph matching problem is then defined as follows:

let π denote a permutation on the node set V , which has n! ways. The identity

permutation, denoted by π0, is the correct mapping between the node set of G1 and

G2. Now, it is only left to define an error function ∆π over the set of all permutations,

which succeeds if it is uniquely minimized by π0:

∆π =
∑
e∈E1

I(π(e) /∈ E2) +
∑
e∈E2

I(π(e) /∈ E1)

With this error function, they prove that if the sampling probability s is beyond

some threshold, as the number of nodes n grows large, the identity permutation

π0 indeed minimizes the error function, which is great theoretical results for large

networks.

On the other hand, a more practical work by Narayanan and Shmatikov [33]

developed a de-anonymization algorithm based purely on the network topology that

uses the structural similarity between the anonymized network and an auxiliary
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network. To demonstrate its effectiveness on real networks, they show that a third of

the users who had accounts on both Twitter and Flickr, two popular social networks,

can be re-identified in the anonymous Twitter graph with only a 12% error rate,

even though the overlap between the edge sets is less than 15%.

In their work, a social network S consists of a directed graph G = (V,E). Let

S = (V,E) denote the anonymized released network and Saux = (Vaux, Eaux) the

auxiliary network, that the attackers had access to and whose membership partially

overlaps with S. For this attack to work, the attackers also need to have detailed

information about a very small number of nodes of S, which are called seed nodes.

These nodes need to be present on both networks.

Since the aim of the algorithm is node re-identification, they define ground truth

to be a mapping µG between the nodes Vaux and V . Node re-identification then

simply refers to finding a mapping µ that succeeds on a node vaux ∈ Vaux if and only

if µ(vaux) = µG(vaux). To measure the success of the attack, they assign a weight

to each affected node in proportion to its node centrality in the network and take

the fraction of the sum of weights correctly identified over the sum of all weights,

capturing the effectiveness on the active nodes of the graph (which is the focus of

the attack).

The first step of the algorithm is to identify the seed nodes on the target network,

mapping them to each other. Then, a self-reinforcing propagation stage process takes

place, in which the initial mapping is extended to new nodes using only the topology

of the network, feeding the new mapping back to the algorithm. In summary, each

iteration of the propagation algorithm starts with the accumulated list of mapped

pairs between V and Vaux, then pick an arbitrary unmapped node u ∈ V and

computes a score for each unmapped node v ∈ Vaux, equal to the number of neighbors

of u that have been mapped to neighbors of v. If the strength of the match is above

a defined threshold, the mapping between u and v is added to the list and the

next iteration starts. The result at the end is a large mapping µ between the two

networks, which potentially re-identifies all mapped nodes.

2.5.3 Graph-Based Watermarking

Watermarks are added to software to define its owner and prove its authenticity,

where the idea is to insert some data W (the watermark) into a program P so

that in the resulting program it is not easy to detect and remove the watermark.

Moreover, graph-based watermarking [36–38] is a technique where the data being

inserted is a small graph, so graph algorithms can be applied on the software to

recover the watermark and prove its authenticity, for example.

However, attacks are constantly made on these software, trying to prove that
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the owner is not who the person claims to be. The attackers do not know where the

watermark graph W is since it is a small hidden graph in the software, but they will

run several pattern algorithms on it trying to discover it. They take a subgraph X

assuming to be W , and slightly modify it, like removing a small number of edges

(they do not want to modify the graph a lot because if they did not correctly found

W they might impact the performance of the software). Since the graph has now

been modified, it is not possible to find the watermark created and graph matching

techniques on similar graphs (where one was generated after slightly modifying the

other) can be used to retrieve the original watermark graph.
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Chapter 3

Degree Based Canonical Labeling

McKay’s algorithm detailed in the previous chapter generates a canonical labeling

for any input graph G that represents the entire isomorphism class of G, using only

the neighborhoods of the nodes. More specifically, neighbors that a given node has

in a given cell. This ensures that two isomorphic graphs will be the same graph

after their respective canonization. But what if the graphs are not isomorphic?

Consider two graphs that are isomorphic except for a small number of edges

(i.e., copy the graph and remove a small number of edges from it). Can McKay’s

algorithm tell that the graphs are similar? Are the resulting canonical labeling for

the two graphs similar? Are the edge sets produced by both these canonical labelings

similar?

As will be shown in Chapter 5, the answer to these questions, in general, is no.

The resulting canonical labeling for similar graphs usually have very different edge

sets. This happens because the only structural information used by McKay is the

neighborhoods and, hence, nodes degrees, which is sensitive to edge removal. To

illustrate this issue, consider the graphs shown in Figure 3.1. The graph in Figure

3.1b is identical to the graph in Figure 3.1a unless for the edge (5, 6).

(a) A simple 3x3 grid. (b) 3x3 grid with a missing edge.

Figure 3.1: Two identical graphs unless for a single edge.

The canonical labeling of both graphs as given by McKay’s algorithm is shown

below in Figure 3.2. There are 4 edges that are on both canonized graphs, only

a 34% overlap between the two edge sets. This low percentage may lead to the
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conclusion that the two graphs are structurally quite different, while in this case

they are very similar.

Figure 3.2: Canonical labeling of the graphs in Figure 3.1.

To understand the problem, consider the first partition from both graphs:

[[1, 3, 7, 9], [2, 4, 6, 8], [5]] for graph in Figure 3.1a and [[1, 3, 6, 7, 9], [2, 4, 5, 8]] for

graph in Figure 3.1b, where every node in each cell has the same degree. Those

partitions are the result of the first interaction of the refinement procedure and they

are already quite different from one another. Since one edge being removed reduces

the degree of two nodes by one, their initial cells can change and introduce ambi-

guities. For example, the graph in Figure 3.1a has only one node degree 4, node

5. After the edge removal, its degree is 3 and it now shares a cell with three other

nodes.

The problem is that the shattering procedure does not consider the graphs to

be similar, so it splits the cells using the exact degree of the nodes. This can have

drastic consequences in the search tree since the result of the first shattering will be

different as well as all further nodes of the search tree.

3.1 Degree Similarity

The first idea to tackle the problem of identifying two similar graphs using canonical

labelings is to change the shattering procedure. Instead of breaking cells by sepa-

rating nodes with different degrees towards another cell, nodes with similar degrees

could be grouped together. We called this approach degree similarity.

Definition 3.1.1. Let δd be a positive integer named degree similarity. Two nodes

u and v are said to have similar degrees if |du − dv| ≤ δd.

The refinement function is basically the same as the one described in Chapter

2, with the only difference being in the shattering procedure, which splits the cells

to make the partition equitable. Consider the following definition for equitable

partition in the degree similarity approach.
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Definition 3.1.2. A partition π is equitable in the degree similarity approach if:

∀ Vi, Vj ∈ π

∀ u, v ∈ Vi

|dG(u, Vj)− dG(v, Vj)| ≤ δd

To better explain this idea, consider the graph in Figure 3.3 and δd = 1. The

initial partition is [[1, 2, 3, 4, 5, 6]], with all nodes inside a single cell. The nodes

degrees are d1 = 2, d2 = 3, d3 = 5, d4 = 2, d5 = 2 and d6 = 2, and the first

shattering will group nodes 1, 2, 4, 5, 6, since their degrees are classified as similar,

and leave node 3 alone, generating the partition [[1, 2, 4, 5, 6], [3]]. The exploration

of the search tree follows the same way as before.

Figure 3.3: Example graph for the degree similarity procedure.

Now, lets remove the edge (2, 3) from the graph in Figure 3.3, generating the

graph in Figure 3.4. The nodes degrees are now d1 = 2, d2 = 2, d3 = 4, d4 = 2,

d5 = 2 and d6 = 2, but the partition after the first shattering is [[1, 2, 4, 5, 6], [3]],

identical to the previous graph.
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Figure 3.4: Example graph for the degree similarity procedure with one missing
edge.

If we run the algorithm until the end, both executions (in each graph) will find the

same canonical labeling represented by the discrete partition [[2], [1], [4], [5], [6], [3]].

Thus, this procedure correctly identified the similarity in the two graphs since their

edge set after canonization is identical except for the missing edge. The main idea

of this approach is for the shattering procedure to yield identical cells even when

the two graphs are similar.

However, this approach also has drawbacks. First, the parameter δd must be

defined and the larger the value, the larger is the search tree, since it becomes

more difficult to split cells, and thus more nodes in the search tree will have more

children. A larger search tree means a longer execution time of the algorithm. Even

a δd = 1 can already make the search tree much larger. Consider the graph in

Figure 3.1a, where the degrees are 2, 3 and 4. The algorithm is unable to split the

initial partition since δd = 1, leaving no choice but to generate all possible children

from this initial partition. This also happens in other search tree nodes for this

graph, making the search tree huge. The second drawback is that this idea works

only for some graphs and some edge removals. Depending on what is removed, the

shattering for both graphs can become completely different. Consider the graph in

Figure 3.5 with 10 nodes, eight with degree 1, one with degree 4 and one node with

degree 6. The first shattering will create three cells: one for the node with degree

6, one for the node with degree 4 and one with all the eight nodes that have only

one neighbor [1, 2, 3, 4, 6, 7, 8, 9], [5], [10]]. If any edge from node 10 is removed, for

instance, (1, 10), there will be 7 nodes with degree 1, one node with degree 0, one

node with degree 5, and one node with degree 4. So, assuming δd = 1, the result

of the first shattering is [[1, 2, 3, 4, 6, 7, 8, 9], [5, 10]]. The algorithm grouped nodes

5 and 10 on the graph with the missing edge, which does not occur in the original

graph. This kind of error in the initial partition, that also happens on other posterior
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partitions, will lead to different search trees even when the graphs are structurally

similar, and, hence, finding different canonical labeling.

Figure 3.5: Example where the degree similarity procedure can fail.

To reduce the size of the search tree and reduce the running time, another pa-

rameter is now introduced. The idea is that nodes with a larger degree are more

likely to lose an edge if compared to low degree nodes. This observation is true if

edges are removed independently at random. Thus, larger degree nodes are more

affected by edge removal, hence, having their degree changed to a smaller value.

With this in mind, a new parameter p, 0 ≤ p ≤ 1, is introduced and used only on

the first shatter, when there is only one cell with all nodes. The algorithm considers

the ordered degree sequence of the graph (ascending). Let d′ denote the degree at

the position p ∗ n in the ordered sequence. Now, for the first shatter, the algorithm

only groups nodes with different degrees, using the δd, if their degrees are larger

than d′. Nodes with a degree smaller than d′ are only grouped if they have the same

degree. If p = 0, then all degrees are grouped based on similarity. If p = 1 then

no node is grouped based on similarity. Note that small values of p will generate

a larger search tree (since splitting cells becomes harder). At the same time, in-

creasing p will make the algorithm more similar to McKay’s algorithm, where nodes

are grouped only if they have the same degree. This parameter is helpful when the

edges removed from the graph are the ones with the largest degrees and low degree

nodes are not affected. In this case, low degree nodes will be on the same cells on

the first partition on both graphs.

For example, consider the graph in Figure 3.3, with δd = 1 and p = 0.9. The

ordered degree sequence is [2, 2, 2, 2, 3, 5]. As mentioned before, the result of the first

shatter when p = 0 will group the nodes with degrees 2 and 3 and leave the node

with degree 5 alone. With p = 0.9, we have d′ = 3 and, so, it does not group nodes

with degrees 2 and 3, creating a partition with three cells. However, if p = 0.2, we
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then have d′ = 2 and, once again, nodes with degrees 2 and 3 are grouped together.

This approach is really useful for larger graphs.

3.2 Implementation

As part of this work, a version of McKay’s algorithm, based on the description in

1980 [6], was implemented from scratch as well as the modified degree similarity

approach (in Python 3). These two algorithms are part of the same implementa-

tion, except for the refinement procedure, which can either have a shatter based on

identical degrees or degree similarity, δd. We have also added other parameters and

functionalities to this implementation, which are covered in this section.

3.2.1 Pruning

The pruning procedure implemented for the degree based canonical labeling algo-

rithms is based on its description in Chapter 2, where the search tree is pruned

based on automorphisms and the binary representation’s prefix.

The implementation maintains one canonical labeling for each different binary

representation found and also keeps track of the largest binary representation, so

it can compare with the prefix of the binary representation of nodes that are not

discrete, in the middle of the search tree.

Our implementation has an improvement in the generation of the binary repre-

sentation’s prefix since it uses more than just the singleton cells from a partition to

generate the prefix. To illustrate how this is done, consider the graph in Figure 3.6a

and partition π = [[1], [2], [3], [4], [5, 6], [7, 8], [9]]. What the algorithm knows about

this partition is that: node 1 will be mapped to 1, node 2 will be mapped to 2, node

3 will be mapped to 3, node 4 will be mapped to 4, node 5 will be mapped to 5 or

6, node 6 will be mapped to 5 or 6, node 7 will be mapped to 7 or 8, node 8 will be

mapped to 7 or 8 and node 9 will be mapped to 9. So, the canonical labeling graph

looks like the graph in Figure 3.6b.
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(a) A simple 3x3 grid.
(b) Canonical labeling graph for a not dis-
crete partition.

Figure 3.6: Example of prefix based pruning on a non discrete partition.

If the prefix was generated based only on singleton cells, it would only generate

the first 4 bits of the adjacency matrix (0101) since node 5 does not belong to

a singleton and, hence, its position in the adjacency matrix is not well defined.

However, for this example, there are only two positions for node 5 and none of them

is adjacent to node 1. Therefore, we can include one more bit in the prefix and

write the 5th bit of the string as 0. The same happens for nodes 6, 7 and 8 since

independent of their position in the given partition they are not neighbors of node

1. Thus, it is possible to generate the complete first line of the adjacency matrix

as 010100000. The algorithm that generates the prefix then goes on and tries to

generate the second line of the adjacency matrix: node 2 is connected to nodes 1

and 3, but it is not clear if it is connected to nodes 5 or 6, as this depends on

their final position. Therefore, the first four bits of the second line of the adjacency

matrix can be written and included in the prefix, which is 1010 (the prefix only

receives 10, the last two bits, since it is a representation of the superior triangle of

the adjacency matrix). Finally, the binary representation’s prefix of this partition is

the concatenation of the lines that could be defined, and in particular, 1010000010.

Note that this is much longer than the prefix that uses only singleton cells which is

101. The more bits the prefix has, the easier it is to prune the tree.

3.2.2 Other Parameters

We introduce a cell ordering parameter that determines whether the cells within a

partition are ordered ascending or descending by degree. Suppose there are two cells

c and d that are being examined by the refinement procedure and there are nodes

from c with different number of neighbors in d, such that shattering will happen.
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The cell c is split in two or more cells c1, c2, . . . , cs. McKay’s algorithm orders

the new cells ascending by the number of neighbors the nodes have in the cell that

shattered it, and adds them to where the cell c was in the partition. So if s = 3 and

each node from c1 has 2 neighbors in d, each node from c2 has 3 neighbors in d and

each node from c3 has 1 neighbor in d, then the order would be c3, c1, c2.

Our algorithm allows the user to choose if cells are ordered ascending or descend-

ing within the partition. This is interesting when considering similar graphs and the

fact that the nodes with the larger degrees will not change position in the ordered

degree sequence even after some edges were removed from the graph. In fact, we

evaluate this property in Chapter 5, where all our implementations are executed

with descending order while nauty is executed as-is.
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Chapter 4

Distance Based Canonical

Labeling

Two fundamental structural information of graphs are node degrees and distances.

Recall that distances are also preserved in the corresponding node pairs of isomor-

phic graphs. Thus, this information can be leveraged in solving the problem of

identifying the structural similarity of two graphs. It is already clear that degrees

and the adjacency matrix change when edges are removed or added. But what about

distances and the distance matrix? Consider a real graph, as a social network for

instance. There are usually lots of different paths connecting two nodes with the

same length. Take Facebook, for example: two friends are likely to have multiple

friends in common. Take two people from a social network that are not connected,

but are at distance two (which means they have at least one mutual friend). If the

edge connecting one of those nodes to the mutual friend is removed, it is likely that

the two people have another friend in common and continue having distance two.

This kind of redundancy can be helpful when removing edges from a graph. Also,

the well-known principle of six degrees of separation which states that all people

are within six social connections from each other [39], is another powerful evidence

when considering redundancy of distances on real networks.

However, when a single edge is removed, at least one distance from the distance

matrix will change: the one that represents the nodes adjacent to the removed edge

and, hence, at distance one. But, on real networks, chances are that this distance

will become two since the nodes probably are part of some triangle. Moreover, since

real networks are likely to have path redundancy, all shortest paths that used this

specific edge will likely be substituted by another path that has the same length

as before, namely another shortest path. This redundancy will be exploited when

using distances in the algorithm soon to be presented. Moreover, to consider the

fact that distances 1 will likely change to 2, they will be considered equivalent from

the algorithm’s perspective.
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The algorithm proposed in this dissertation is based on McKay’s canonical label-

ing algorithm [6], covered in detail in the last two chapters. Its purpose is to solve

both the isomorphism problem and the graph matching problem. The idea is for

the canonical labeling algorithm to tackle the graph matching problem while also

solving the isomorphism problem. The search tree process is identical to McKay’s

algorithm, the difference is on the refinement procedure (it doesn’t use degrees),

the pruning method and the way of encoding a graph into a string. Remember that

McKay encodes a graph using the binary representation of the superior triangle of its

adjacency matrix, and uses this information to decide which graph to return. This

does not work well in the graph matching problem since two graphs with different,

but similar, adjacency matrices may have different representations, while their rep-

resentation should be similar (or identical) to have a similar canonical labeling and,

thus, determine whether or not the graphs are similar.

4.1 Distance Refinement Procedures

This work defines two different refinement procedures using only distance informa-

tion. Both methods receive a partition π and return a coarsest partition π′, which is

finer than π and is also an equitable partition. Although the previously given defi-

nition of equitable partition requires that every node in a cell has the same number

of neighbors on every other cell, for all cells, the definition of equitable partition is

slightly different for each distance refinement procedure presented. It is important

to point out, however, that both procedures are based on McKay’s degree refinement

procedure [6] and the main difference is the shattering of the cells since it does not

use degree or neighborhood information.

4.1.1 Distance

The idea of this procedure is to shatter cells based on the minimum path length

between a node and a cell. The minimum path length between a node u and a cell

C is the smallest path length between u and the nodes in C.

Definition 4.1.1. A partition π is equitable in the distance procedure if:

dist(u, cj) = dist(v, cj),∀u, v ∈ ci,∀ci, cj ∈ π

In other words, if for every pair of cells ci and cj from π, every node w from ci

has at least one node from cj with distance d and all other distances to the other

nodes from cj are larger or equal to d. Once again, distances with values 1 and

2 are considered the same value (distances 2 are overwritten and have value 1).
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Also, this procedure does not use the distance between a node and itself, which

is 0, to calculate the distance between a node and its own cell. In particular,

dist(v, ci) = minv∈ci\u dist(u, v). The reason is that for any partition π, the shatter

would have to ignore all pair of cells (ci, ci), 1 ≤ i ≤ |π|, since all nodes from ci

would have distance 0 to the cell ci and there would be nothing to split. This should

be avoided to accelerate the splitting process and, hence, the algorithm.

However, the initial partition, the one with a single cell containing all nodes,

must be treated differently since the minimum distance between all nodes and the

cell will be 1 (considering there are no isolated nodes in the graph). Thus, for

the first split only, the eccentricity 1 of each node is used as their distance feature.

All nodes with the same eccentricity are placed in the same cell. Once again, the

cells are ordered based on this value and a parameter decides if they are ordered

ascending or descending.

For example, consider the graph in Figure 4.1. The algorithm starts with the

initial partition π = [[1, 2, 3, 4, 5, 6, 7]] and proceeds to split the cell using the eccen-

tricity of each node. Since nodes 3 and 5 have eccentricity 2, nodes 2, 4 and 6 have

eccentricity 3 and nodes 1 and 7 have eccentricity 4, it splits this cell in three new

cells, c1 = [3, 5], c2 = [2, 4, 6] and c3 = [1, 7], considering the algorithm is ordering

the cells ascending. The next steps are all using the minimum distance between a

node and a cell until the partition becomes equitable. It starts by taking the pair

of cells (c1, c1), and calculates the minimum distance between each node from c1

to the nodes in c1. Since those distances are the same, nothing is split. Then it

considers the pair of cells (c1, c2), following the same procedure. This continues until

an equitable partition is reached. In this example, the partition [[3, 5], [2, 4, 6], [1, 7]]

is equitable and, thus, is returned by this refinement algorithm.

Figure 4.1: Graph with 7 nodes to exemplify distance based refinement.

4.1.2 Distance Vector

The previous refinement procedure used just the minimum distance between a node

and a cell to shatter the cell. More information could be used to improve the

1The eccentricity of a node is the maximum distance between this node and every other node
in the graph
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shattering and in particular, all distances between a node and the nodes of a cell

could be used.

This procedure to shatter cells is called distance vector. When analyzing a pair of

cells (ci, cj), a distance vector for each node of ci is constructed where each element

is the distance to a node in cj and the vector is ordered. Once again, distances with

values 1 and 2 are identical (distances 2 are overwritten with value 1) and distances

0 are added to the vector here.

For example, consider the graph in Figure 4.1. The algorithm starts with the

initial partition π = [[1, 2, 3, 4, 5, 6, 7]] and proceeds to split this cell based on dis-

tance vectors, i.e., nodes with identical ordered distance vector stays on the same

cell. First, all distance vectors are generated. For node 1: it has distance 0 to

itself, distance 1 to node 2, distance 2 to nodes 3 and 5, distance 3 to nodes 4

and 6 and distance 4 to node 7, so its ordered distance vector towards this cell is

[0, 1, 1, 1, 3, 3, 4]. The same procedure is done for all other nodes in the cell. The

resulting ordered distance vector for each node is shown in Table 4.1. The next step

of the algorithm is to split nodes according to their ordered distance vectors. An or-

dering between the ordered distance vectors must also be established and the values

of the ordered vectors are used to establish the comparison. In particular, consider

two ordered distance vectors v1 and v2 of identical length k. We say v1 is smaller

than v2 if 3 i, 1 ≤ i ≤ k such that v1[i] < v2[i]. Therefore, nodes 3 and 5 have the

same vector, which is also the smallest vector, thus a new cell [3, 5] is created and

is the first in the new partition, that is given by π′ = [[3, 5], [2, 4, 6], [7], [1]] after the

first iteration of the refinement procedure.

Node Distance vector between node and cell

1 [0, 1, 1, 1, 3, 3, 4]

2 [0, 1, 1, 1, 1, 1, 3]

3 [0, 1, 1, 1, 1, 1, 1]

4 [0, 1, 1, 1, 1, 1, 3]

5 [0, 1, 1, 1, 1, 1, 1]

6 [0, 1, 1, 1, 1, 1, 3]

7 [0, 1, 1, 1, 1, 3, 4]

Table 4.1: Distance vectors example.

The distance vector refinement is finer than the distance refinement since it

splits cells more rigorously and, hence, generates more cells, which makes it faster.

However, it can end up breaking cells that should not be separated when trying

to match two similar graphs. Thus, distance refinement may have an advantage in

terms of generating a better canonical labeling. In fact, Chapter 5 shows the results
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for a series of different graphs comparing these two approaches.

4.2 Canonical Labeling Representation

As in McKay’s algorithm, the proposed distance based algorithm uses the graph’s

representation to determine the discrete partition, or canonical labeling, for a graph.

The pruning procedure also uses this information to determine any possible pruning

of the search tree. However, since the algorithm is based on distances, it makes sense

to consider a representation that also uses distances. First, let’s recall the binary

representation used by McKay’s algorithm, which will also be used in this algorithm

to look for automorphisms.

4.2.1 Binary Representation

The binary representation of a canonical labeling is a string of 0’s and 1’s that

uniquely represents a graph. It is simply the superior triangle of the adjacency

matrix of the graph given by the canonical labeling, but without the main diagonal

(since there are no self-loops in the graphs there is no need to consider the main

diagonal which is always 0).

However, this representation is not interesting when working on similar but not

identical graphs, since their representation will be different even when they differ by

a single edge, and depending on the edge, their representation can be really differ-

ent. Recall that the algorithm chooses the largest binary representation between all

possibilities, so if the edge removed represents one of the most significant bits of the

representation, the representation of the graph without an edge will be way smaller

than the representation of the original graph. This will probably make the algo-

rithm choose different representations for each graph, which will end up generating

different canonical labelings for each graph and not identifying them as similar.

4.2.2 Distance Representation

The distance representation of a canonical labeling is a string containing natural

numbers. It is composed of the superior triangle of the distance matrix of the graph

that represents the canonical labeling but without the main diagonal. However,

whenever there is a distance 2 in the matrix, the distance representation is given

by the number 1 in that position. The goal is to leverage the same observation

described earlier in this chapter, which assumes a real network has redundancy and,

thus, when an edge is removed, the nodes adjacent to it will have distance 2 in the

modified graph.
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Although every graph has a unique distance matrix, since we are overwriting

distances 2 with 1, it is possible that two different graphs (i.e., different edge sets)

have the same distance representation. Thus, if two different canonical labelings

have the same distance representation, then their respective binary representations

are generated. If they are the same, then the canonical labelings represent the

same graph (since each graph has a unique binary representation and vice versa).

Likewise, if the binary representations are different, the graphs are different.

As with McKay’s algorithm, the distance based algorithm will also return the

canonical labeling associated with the largest distance representation of the search

tree. However, since the largest distance representation may appear in different

canonical labelings, they are all returned by the algorithm.

4.3 Pruning

The pruning procedure in the distance based canonical labeling is the same as the

one in the degree based canonical labeling: it uses automorphisms to prune the

tree and, for every non-terminal node, it generates a prefix for the distance rep-

resentation of the partition associated to the node and compares with the largest

distance representation yet found. The algorithm needs to keep track of all binary

representations, the largest distance representation and the binary representations

associated with this distance representation.

The algorithm runs without any pruning until the first terminal node is found,

using its distance representation as the largest and recording its binary representa-

tion. From this point forward, whenever a node t of the search tree (terminal or

not) is analyzed, there is a possibility that the search tree is pruned. Following we

discuss all possible scenarios.

4.3.1 t is not a terminal node

If t is not a terminal node, then the corresponding partition is not discrete. The

first step is generating the prefix of the binary representation associated with this

partition. If the graph has automorphisms and, by trying to generate the prefix it

ends up with the whole binary representation, the algorithm checks if this binary

representation is identical to one already seen. If it is, then t is pruned from the

search tree. If not, then the algorithm generates the prefix of the distance represen-

tation and it compares with the prefix of the largest distance representation seen

so far (both prefixes need to have the same length). If the current node’s prefix

is smaller than the largest one, t is pruned from the search tree. Otherwise, the

algorithm continues to search from node t.
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4.3.2 t is a terminal node

If t is a terminal node, then the corresponding partition is discrete and the algorithm

can generate the full binary and distance representations.

If the binary representation generated is identical to any of the binary repre-

sentations generated so far, then the algorithm prunes the search tree based on

automorphism just as in the case of degrees: it finds the deepest common ancestor

a between t and the other terminal node u that has the same binary representation,

and it removes the tree rooted at the child of a that is also ancestor of t.

If the binary representation of t is new, the algorithm saves it and proceeds

to compare its distance representation dr with the largest distance representation

seen so far, dτ ′ , where τ ′ is the corresponding canonical labeling. If dr > dτ ′ , then

the largest distance representation becomes the representation of t. If dr < dτ ′ ,

then nothing happens. If dr = dτ ′ , then the two different graphs (since the binary

representations are different) have the same distance representation and the next

step depends on the problem being attacked. If the problem is isomorphism, then

the algorithm just chooses the canonical labeling corresponding to the largest binary

representation to be one corresponding to the largest distance representation node

yet found. If the problem is graph matching, then all canonical labelings with the

same largest distance representation are returned by the algorithm. Since the binary

representation of two very similar graphs can be very different, the idea is to avoid

using this information to decide the canonical labeling that will be returned in this

case. At the end of the algorithm, if the largest distance representation has more

than one canonical labeling associated with it (each one having a different binary

representation), all such canonical labelings are returned.

These multiple canonical labelings can then be used to identify a good corre-

spondence between the node set of two similar graphs. In particular, consider two

graphs G1 and G2, all canonical labelings generated for G1 and all canonical labelings

generated for G2, which can be used to find the best correspondence.

4.4 Application to Graph Matching

Unlike the binary representation, different graphs (in terms of their edge set) can

have the same distance representation since such representation does not encode the

exact distance matrix, but a modification where distances two are overwritten with

one. Since the idea of the distance based canonical labeling algorithms is to return

the canonical labeling associated with the largest distance representation found in

the search tree, it can return multiple canonical labelings representing different

graphs that all have the same largest distance representation.
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Note that if the focus is on the isomorphism problem, then just the canonical

labeling with the largest binary representation among all canonical labelings associ-

ated with the largest distance representation needs to be returned by the algorithm.

This single canonical labeling represents a single graph and is the exact same for

the whole isomorphism class of the graph given as input.

However, if the objective is to tackle the graph matching problem, all canonical

labelings associated with the largest distance representation should be returned for

each graph. Recall that in this case the two graphs are not isomorphic, which means

they have different edge sets and thus the edge sets of the graphs permutated by the

resulting canonical labelings will also be different. The multiple canonical labelings

of the two graphs can then be used to find the best match between the edge sets of

the two graphs. The idea is to choose the pair of canonical labelings, one for each

input graph, which minimizes the differences in their edge set. The error function

e(τ1, τ2) compares two canonical labelings τ1 and τ2 of the graphs G1 and G2 and is

given by:

e(τ1, τ2) =
(
∑

e∈Eτ1
I(e /∈ Eτ2)) + (

∑
e∈Eτ2

I(e /∈ Eτ1))
|Eτ1|+ |Eτ2 |

In other words, e(τ1, τ2) is the number of edges that are in one graph permutated

by the canonical labeling but not in the other. In particular, consider two graphs

G1 and G2, and let LτG1
and LτG2

denote the lists containing the canonical labelings

of G1 and G2, respectively. The error e(τ1, τ2) is calculated for all pairs of canonical

labelings formed by one canonical labeling from LτG1
and one from LτG2

. The pair

that minimizes e(τ1, τ2) is then returned as the canonical labelings for the graphs

G1 and G2. In particular, τ ∗1 , τ
∗
2 = argminτ1∈LτG1

,τ2∈LτG2

e(τ1, τ2), where τ ∗1 and τ ∗2

are used to determine the corresponding nodes in G1 and G2.

4.5 Theoretical Results

Two theoretical results concerning algorithm correctness for the distance based

canonical labeling are provided, using both distances and distance vectors to shatter

the cells and partitions. First, the algorithm produces a canonical isomorph func-

tion Gτ to an input graph G, which represents the whole isomorphism class of G.

Second, the algorithm can recover the entire edge set of two different graphs if the

distance matrices of the two graphs are the same, except values that are 1 in one

matrix and 2 in the other.

Definition 4.5.1. Let DG1 and DG2 denote the distance matrices for G1 and G2,

respectively. Then the distance canonical labeling algorithms will always be able to
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recover the entire edge set G1 and G2 (except the missing edges) if their distance

matrices respect the following condition:

(DG1(i, j) = DG2(i, j)) ∨ (DG1(i, j) = 1 ∧DG2(i, j) = 2)

∀i, j ∈ V

We call this the distance condition.

Although this condition was defined assuming the two graphs G1 and G2 were

not previously anonymized (and the original labels of the nodes are the same on

both graphs), it is still true if the graphs are anonymized. The only difference is

that now the process does not know where two nodes from G1 are on G2 and, hence,

does not know the distance between these nodes on G2 and how to compare them.

However, it still possible to check the condition: if G2 has a permutation γ on its

nodes, creating a graph Gγ
2 , such that the distance condition is satisfied, we can say

that G1 and G2 satisfies the distance condition and the distance algorithms will be

able to recover the entire edge set G1 and G2 (except the missing edges). With that,

the distance algorithms work the same way whether or not the graphs are previously

anonymized, since they are based on the graphs’ structures and do not make use of

the nodes’ original labels.

The theoretical results will be presented following the proof arguments of

McKay’s algorithm correctness [6, 22].

4.5.1 The Isomorphism Problem

The first step is proving the correctness of the algorithm for the isomorphism problem

following the same arguments as the degree based algorithm (not our implementation

of degree similarity). In other words, we present a theoretical proof that the proposed

distance based canonical labeling algorithms produce a canonical isomorph function

Gτ to an input graph G, which represents the whole isomorphism class of G.

Lemma 4.5.1. The equitable partition π′ returned by the refinement algorithm on

any partition π and a graph G is finer than π.

Proof. Each iteration of the refinement algorithm tries to shatter some cell Vi, pro-

ducing a new ordered partition whose length is greater than the length of π. Since a

partition has a length at most n, the number of iterations in the refinement algorithm

is bounded and it is certain to terminate.

The algorithm only stops when an equitable ordered partition is obtained (and

every discrete partition is equitable). At each iteration the current partition is finer

than the one from the previous iteration and, hence, is finer than the input partition

π, so the equitable partition π′ produced is also finer than the input partition π.
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Lemma 4.5.2. Let G and H be two graphs and γ a permutation of the nodes of G

such that Gγ = H. Then T (H) = (T (G))γ, where T is the search tree induced by the

distance based algorithms. In particular, every node vH in T (H) has an equivalent

node vγG on T (G), and vice-versa.

Proof. The refinement algorithm respects the action of the permutation function γ,

i.e., if π′G is the refinement of πG and (πG)γ = πH , then the refinement of πH , namely

π′H , is equal to (π′G)γ. For example, consider the first partition, the one with a single

cell containing all n nodes from G. Using distances, the first step is to split the

nodes based on their eccentricity and order the cells based on each cell’s eccentricity

value. The resulting partitions πG and πH from both graphs will have the same

number of cells and each cell Vi from πG, with 1 ≤ i ≤ |πG|, will have the same

number of nodes from the respective cell Wi from πH . The difference will be on the

nodes’ labels on each cell respecting the permutation function, so (π′G)γ = π′H .

This argument given for the shattering based on eccentricity is also valid for

using distances or distance vectors.

Once an equitable partition π′ is obtained, the next step is to generate its chil-

dren, to continue the execution of the algorithm. In particular, the first nontriv-

ial cell from π′ will be taken apart. If the first nontrivial cell of πG is Vi, then

the first nontrivial cell of πH will be Wi, which is V γ
i . So the same cell i, on

both partitions, will be the one chosen to generate the children in the search tree.

The algorithm generates all possible children from the equitable partition since it

takes each node from the chosen cell and creates a new cell with this node, main-

taining the remainder of the partition. Figure 4.2 shows two equitable partitions

π1 = [[1, 3, 5, 7], [2, 4, 6, 8], [5]] and π2 = [[A,B,C,D], [E,F,G,H], [I]], with π2 being

a permutation of π1. The chosen cell to be taken apart is the same on both parti-

tions: the first one. The children from π1 and π2 are the same under the permutation

function between π1 and π2.

Figure 4.2: Example of children of two isomorphic equitable partitions.
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Theorem 4.5.3. Gτ is a canonical isomorph function

Proof. In the search tree, the ordered partition π associated with a node is strictly

finer than the ordered partition associated with its parent. Hence, the search tree

T (G) is finite and the number of leaves (that represent the discrete partitions) is also

finite, and the algorithm terminates. The output Gτ , by definition, is an isomorph

of the input graph G.

By Lemma 4.5.2 every leaf node p with discrete partition π in T (G) has a cor-

respondent in T (H), a leaf node pγ with discrete partition πγ. So, the set of iso-

morphic graphs produced by the leaf nodes of T (G) is the same set of isomorphic

graphs produced by the leaf nodes of T (H). Each discrete partition is associated

with its distance representation and its binary representation. The sets of distance

representations are the same for both graphs G and H and the algorithm chooses

the largest distance representation from these sets. In case there is more than one

discrete partition with the largest distance representation, the algorithm chooses

the one with the largest binary representation (same binary representations means

that the graphs are the same, namely an automorphism). Therefore, the algorithm

chooses the same discrete partition in T (G) and T (H), meaning that the edge set

of Gτ will be the same edge set of Hτ .

Even when there is pruning on the search trees, the theorem still applies since

the idea is that Gτ is the largest distance representation (if there is a tie between the

nodes, then the largest binary representation is used) and the pruning only removes

nodes from the tree that have a smaller distance representation from the largest one

found yet (so nodes with smaller representations would never be chosen) or if there

are automorphisms in the graph (but, in this case, the specific canonical labeling

returned does not matter since the graphs are identical).

4.5.2 The Graph Matching Problem

Here, the two graphs G1 and G2 are not isomorphic and G2 is a copy of G1 after

randomly removing some edges. Also, recall that the distance condition defined

requires that the distance matrices of G1 and G2 are the same except for some

distances that are 1 in G1 and 2 in G2.

Lemma 4.5.4. If two graphs G1 and G2 respect the distance condition, then the

edge set of the canonical labeling of G2 will be the same edge set of the canonical

labeling of G1 except the missing edges (removed from G1 to generate G2).

Proof. The theoretical proof is pretty much the same given for the isomorphism

problem. Lemma 4.5.1 is still valid since it only states about the refinement proce-

dure returning a finer partition then the one received. Lemma 4.5.2 is also valid as
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is, since the partitions will be shattered the same way on both graphs and, by the

same proof, the search tree for both graphs will be isomorphic.

The only detail that needs a little more attention is in Theorem 4.5.3. Now,

instead of Gτ being the canonical isomorph function and, hence, representing the

whole isomorphism class of G, Gτ represents the isomorphism class of all graphs

isomorphic to G under the distance condition. The proof is the same given above,

with a small difference: when there are two terminal nodes with the same distance

representation and different binary representations, hence, representing different

graphs, the algorithm does not choose one node to continue, but it maintains both

representations. At the end of the execution, if the largest distance representation

found happens to have more than one canonical labeling associated with it, all

canonical labelings are returned. What is important here is saying that the same

thing will happen on both graphs, based on the same proof given on Theorem 4.5.3.

Since both graphs will output the same set of canonical labelings, all canonical

labelings returned for one graph are compared to all canonical labelings returned

for the other graph using the error function e(τ1, τ2) (see section 4.4), returning the

pair of canonical labelings that minimizes it. Since e(τ1, τ2) is basically a sum of the

edges that are on one graph but not the other, the pair that minimizes it will be the

one where only the edges removed from G1 are missing in the canonical labeling of

G2.

If the graphs are similar but don’t satisfy the distance condition, the algorithm

might still be able to correctly match the two graphs, but there is no theoretical

proof behind it defined yet. Chapter 5 shows the results on many different graphs,

where this is observed sometimes.

4.6 Implementation

All distance based algorithms were designed and implemented using Python 3 and

most of the methods and all parameters found in the degree based algorithms are

also available in this implementation. The core of the four algorithms (our McKay

implementation, degree similarity, distance and distance vector) is the same, with

parameters stating the course of action in each variation.

There is an extra parameter that is used to determine which problem the al-

gorithm is trying to solve, isomorphism or graph matching. This parameter leads

to an important difference, both at the refinement algorithm and the generation of

the distance representation. When the algorithm is trying to solve isomorphism, it

does not consider distances 1 and 2 to be the same. Thus, the isomorphism problem
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often runs much faster than the graph matching problem, for two reasons. The

refinement is more powerful (it can break more cells); the pruning method is more

powerful (it is easier to happen since in this case all different graphs have differ-

ent distance matrices and, hence, different distance representations). Whenever the

algorithm is working on a partition and it can generate a partial (or the whole)

distance representation, it can compare with the largest representation found so far.

The graph matching problem prunes less since different graphs can have the same

modified distance matrix and, whenever a new canonical labeling is found, if it has

the same partial (or whole) distance representation as the largest one yet found and

a different binary representation from the ones found, nothing can be done.
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Chapter 5

Evaluation

This chapter presents an evaluation of six different canonical labeling algorithms con-

sidering both real networks and random graphs models. The goal is to understand

and characterize the performance of the algorithm in the task of graph matching.

Therefore, the evaluation is performed by running the canonical labeling algorithm

in two different but similar graphs G1 and G2 and comparing the graph structure of

the resultant canonical forms Cτ (G1) and Cτ (G2).

5.1 Methodology

Six different canonical labeling algorithms are considered: the nauty package [24],

pybliss (an official implementation of Bliss in Python), a customized implementation

of McKay’s algorithm as described in the original 1980 paper [6], degree similarity,

distance and distance vector. All graphs used for evaluation ran on all the six

algorithms.

This evaluation takes two graphs G1 and G2, where G2 is a copy of G1 after

removing a small number of edges. The first step is generating the set of graphs

that will pass through the canonical labeling algorithms. For each graph G1 and a

given amount of edges to be removed, G2 is constructed by removing such edges from

G1 uniformly at random. Since G2 is a random graph, this procedure is repeated 100

times, generating 100 graphs like G2 for each original graph G1. When considering

a random graph model, i.e., graphs generated from a mathematical random graph

model, then a hundred different G1 for each parameter configuration are considered.

Also, since two canonical labeling algorithms depend on the distance matrix, this

matrix is generated for all graphs generated. The four algorithms developed for this

work were executed ordering the cell and partitions in descending order.

Figure 5.1 exhibits the evaluation and the generation of G2 for the six algorithms

tested. The degree based algorithms return a single canonical labeling for each

graph, so both Lτ1 and Lτ2 only contain one element. Meanwhile, the distance
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based algorithms might return multiple canonical labelings, so the next step in this

case is choosing one element from Lτ1 and one element from Lτ2 , that minimizes the

error function presented on the last chapter, on section 4.4.

Figure 5.1: Evaluation of the graph matching problem.

5.2 Metrics

Different metrics are used to compare the resultant canonical labelings from the two

input graphs G1 and G2, as well as other metrics to characterize the behavior of the

algorithms.

5.2.1 Evaluation Metrics

Perfect Match

The perfect match metric is defined by the function p(G1, G2), that takes two graphs

G1 and G2 as input and returns either true (1) or false (0) as follows:

p(G1, G2) =

1, if E2
τ ⊆ E1

τ

0, otherwise
(5.1)

In other words, if the metric is true (1), then all edges from Cτ (G2) are also edges

in Cτ (G1) and the only difference between the two sets are the edges from Cτ (G1)

that are not present in Cτ (G2), that were removed from G1 when generating G2.

When p(G1, G2) = 1 the algorithm was able to identify that the graphs are similar

and found the perfect graph matching between G1 and G2. Note that whenever the

canonical labeling algorithm receives two isomorphic graphs, this metric will be true

for the algorithms: distance, distance vector, our implementation of McKay, nauty

and pybliss. Furthermore, if the graphs are not isomorphic but are similar and

respect the distance condition, as defined in Chapter 4, the algorithms based on
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distance will always be true. However, even when this is not the case, the algorithm

might still be able to find a perfect match between the graphs.

Since each configuration considers 100 graphs, this metric is represented by the

number of times it returned true divided by the total number of graphs.

Different Edges Mean

The different edges mean metric is defined by a function de(G1, G2) that takes two

graphs G1 and G2 as input and returns a number between 0 and 1, defined as:

de(G1, G2) =

∑
e∈E1

τ
I(e /∈ E2

τ ) +
∑

e∈E2
τ
I(e /∈ E1

τ )

|E1
τ |+ |E2

τ |
, de(G1, G2) ∈ [0, 1] (5.2)

In other words, this metric counts the number of edges that appear on one of

the graphs but not on the other, and normalizes by the total number of edges (the

sum of the edge sets of Cτ (G1) and Cτ (G2)).

The algorithm calculates the percentage of different edges for each graph pair

and takes the average and standard deviation across these pairs.

There are two variations regarding this metric: one is the average for all exe-

cutions and one is the average for the executions where the distance condition is

not respected. This variation is generated only for the distance based canonical

labeling algorithms and measures their performance when they are not guaranteed

to succeed.

Another important detail is that even when there is a perfect match between

two graphs, this metric won’t be 0 since, in this case, the number of different edges

between the two graphs is equal to the number of edges removed from G1. This is

the smallest possible value for the numerator and greater than zero.

Different Nodes Mean

The different nodes mean metric, dn(G1, G2) is similar to the different edges mean,

with the difference that it considers nodes, not edges. It is defined as follows:

dn(G1, G2) =

∑n
i=1 I(τG1(i) 6= τG2(i))

n
, dn(G1, G2) ∈ [0, 1] (5.3)

In other words, this metric counts the number of nodes labeled differently in

the two graphs. For example, consider two canonical labelings [[1], [2], [3], [4]] and

[[1], [2], [4], [3]]. In this case, there are 2 nodes mapped the same and 2 nodes mapped

differently, so this metric would be 0.5. If this metric is 0, then there is a perfect

match between the two graphs. However, if this metric is greater than 0, a perfect
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match is still possible since this metric does not consider automorphisms (the edge

set can be the same and the node labeling can be different).

As with the different edges mean, for all the configurations the algorithm calcu-

lates the percentage of different nodes and takes the average and standard deviation

across all pairs of a given configuration. This is the value of the metric.

Also, there are two variations regarding this metric: one is for all executions and

one is for the executions where the distance condition is not respected.

5.2.2 Robustness Metrics

Besides the evaluation metrics, metrics to characterize the graphs before and after

some edges are removed have also been developed. The idea is to use these metrics

to understand the robustness of the degree and distance algorithms to edge removal

in different scenarios. These metrics help understand some of the results observed

by the evaluation metrics.

Highest Degree Nodes

The idea of this metric is to understand the results of the degree based canonical

labeling algorithms. Since the algorithms that use degree for the refinement proce-

dure produce partitions that are, in a way, ordered by degrees, it is important to

understand how the degrees change after some edges are removed from the initial

graph. The goal is to determine the fraction of the nodes that will end up on the

same position on the resultant equitable initial partition (that breaks the initial cell

with all nodes based on their degrees) of the two graphs. This is indicative that these

nodes might end up being correctly mapped into the same node on both canonical

labelings.

The idea is to analyze the nodes with larger degrees since they are the more

distinct ones. Usually, there are a lot of nodes with small degrees and a few nodes

that have higher distinct degrees. Also, after some edges are removed, the nodes

with the higher distinct degrees likely remain the same and this is exactly what this

metric measures.

Definition 5.2.1. Let V1 denote the set of nodes in G1 and V2 the set of nodes

in G2, with |V1| = |V2| = n. The function Θ(V ) returns a set of nodes ordered

descending by their degrees. The highest degree nodes metric H is given as:

H =
1

n
max{i|(Θ(V1)i = Θ(V2)i)∧(d(Θ(V1)i)) 6= d(Θ(V1)i+1))∧d((Θ(V2)i)) 6= d(Θ(V2)i+1))}

(5.4)
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The first step is ordering the nodes descending by degree for the two graphs.

After that, the metric counts how many nodes have distinct degrees on its graphs

and are on the same position on both lists, stopping after one of the conditions fails.

Then, it is divided by the number of nodes to normalize the result.

For example, consider the Table 5.1 that shows two lists of ordered nodes and

their degrees. There are 6 nodes and the highest degree nodes metric will be 0.5

since it will count the first three nodes and stop on the fourth node because they

are different on the two lists.

O(V1) d(O(V1)) O(V2) d(O(V2))

A 12 A 10

B 10 B 9

C 8 C 8

D 7 E 7

E 7 D 6

F 5 F 5

Table 5.1: Highest degree nodes metric example.

Intuitively, graphs with a high value in this metric will have a better performance

on the degree based canonical labeling algorithms.

Eccentricity

Here, the idea is to understand if eccentricity is robust to edge removal, i.e., if the

nodes eccentricity are maintained after some edges of a graph are removed. This is

important for the distance algorithm, where the initial partition break is based on

eccentricity and this defines the course of the algorithm.

Definition 5.2.2. Let V1 denote the set of nodes in G1, V2 the set of nodes in G2,

with |V1| = |V2| = n, and Ecc(V ) denote the list containing the eccentricity value

for the nodes. The eccentricity robustness metric Ecc(G1, G2) is defined as:

Ecc(G1, G2) =

∑n
i=1 I(Ecc(V1)i = Ecc(V2)i)

n
(5.5)

In other words, it counts the number of nodes that have the same eccentricity

on the two graphs and, to normalize, divides by the number of nodes.

Distances

The distance robustness metric is based on the same concept as the eccentricity

metric: understand how the distances are maintained after some edges of a graph

are removed.
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Definition 5.2.3. Let DG represent the distance matrix of the graph G. The dis-

tance robustness metric D(G1, G2) is defined as:

D(G1, G2) =

∑n
i=1

∑n
j=i+1 I(DG1(i, j) = DG2(i, j))

n(n−1)
2

(5.6)

In other words, it counts the number of node pairs that have the same distance

on the two graphs and, to normalize, divides by the number of node pairs.

To understand robustness of distances to edge removal we analyze the number of

distances that have changed based on the amount it has increased (distances always

stay the same or increase after removing edges from a graph). This metric is called k

units distance increase and it represents the fraction of distances that have increased

by more than k units, defined as follows:

Dk(G1, G2) =

∑n
i=1

∑n
j=i+1 I(DG1(i, j)−DG2(i, j) > k)(

n
2

) (5.7)

In other words, the number of distances that remain the same are not considered

in this metric, the number of distances that have changed (no matter by how much)

are considered in the k = 0 unit, the distances that increased more than 1 are

considered in the k = 1 unit and so on. Since some edges are removed, D0(G1, G2)

will always be greater than 0, accounting for at least the distances directly affected

by the edges removed.

5.3 Results on Random Graph Models

This section presents the evaluation of the six canonical labeling algorithms on

random graph models. In particular, the Watts-Strogatz [2] and the Erdős–Rényi

[32] models are considered. The first is the small networks model and has many

short cycles while the latter generates local tree-like structures, thus generating

very different graphs.

5.3.1 Watts-Strogatz

The Watts-Strogatz model is a random graph generation model that generates

graphs with small-world properties, like short distances, high clustering coefficient,

and concentrated degrees. The model has 3 parameters: n is the number of nodes

in the graph, k determines the initial degree, and p controls the randomness of the

graph. The procedure starts generating a lattice graph with n nodes organized in

a circle and adds edges to neighbors at distances k or less in the circle (thus, each

node has initial degree 2k). After that, each edge is repositioned with probability

p. The new edge points are chosen uniformly between all nodes. The Figure 5.2
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shows how the model works when increasing p. The first graph, on the left, with

p = 0, is a lattice 2k-regular graph. The last graph, on the right, with p = 1, shows

a completely random graph, where all edges have been repositioned uniformly at

random.

Figure 5.2: The Watts-Strogatz model with increasing p (extracted from [2]).

For the evaluation, the graphs generated have p = 0.01, k = 8 and n =

{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500}. For each value of n, a hun-

dred graphs were generated. The amount of edges removed for this study was

e = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15}, |e| = 11. For each one of the 1100 graphs gener-

ated, there were 11 other graphs generated randomly removing edges accordingly

to the values of e. In total, there were 12100 graph pairs passing through the six

algorithms. The degree similarity algorithm was parameterized with δd = 1 and

p = 0.1.

Evaluation Metrics

Figure 5.3 shows the perfect match metric for all algorithms varying the number of

edges removed from Watts-Strogatz networks with 1500 nodes. It shows that the

perfect match ratio decreases monotonically with the number of edges removed for

the two distance based algorithms and is always zero for all degree based algorithms.

Moreover, with a single edge removal, the perfect match ratio is around 0.70 and

0.65 for the distance and distance vector algorithms, respectively. However, this ratio

drops to around 0.10 for both algorithms when 5 edges are removed. Interestingly,

all degree based algorithms failed in generating a single perfect match while in 70%

of the cases where a single edge was removed the distance algorithm generated a

perfect match. Note that the perfect match of the distance algorithms is very close

to the distance condition being satisfied, shown by a specific curve in the plot, which

represents the fraction of graph pairs that satisfy the distance condition presented

in Definition 4.5.1. Recall that this fraction is a perfect match lower limit for the

distance based algorithms, as stated in Chapter 4 by Theorem 4.5.4. For both

distance algorithms, the performance observed is above this lower limit.
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The behavior is similar when fixing the number of edges removed in 3 and varying

the number of nodes, shown in Figure 5.4. The results do not indicate a clear trend

as the number of nodes increases.

Figure 5.3: Perfect matches for WS networks with 1500 nodes.

Figure 5.4: Perfect matches for WS networks when 3 edges are removed.

The different edges mean metric is shown in Figures 5.5, 5.6, 5.7 and 5.8 for

different scenarios, where the first two ones show the results when fixing the number
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of nodes in 1500 and varying the number of edges removed, while the latter ones

show the results when fixing the number of removed edges in 5 and varying the

number of nodes. Figure 5.5 shows the results for this metric for all algorithms

being evaluated, each represented by a different curve, in all executions, just like

Figure 5.7 does, while Figures 5.6 and 5.8 only show the results for the distance

based algorithms for the executions where the distance condition between the two

graphs was not satisfied.

Figure 5.5 shows that the different edges mean ratio increases monotonically

with the number of edges removed for all algorithms. Moreover, it exhibits that the

fraction of different edges is at least 0.1 smaller for the distance based algorithms

in comparison to nauty and Bliss, and at least 0.5 smaller in comparison to the

degree similarity and our implementation of McKay’s algorithm. Moreover, with a

single edge removal, the different edges mean ratio is around 0.05 for the distance

based algorithms, 0.25 for Bliss, 0.37 for nauty and 0.75 for our implementation of

McKay’s and degree similarity, which shows that the fraction of different edges for

the distance algorithms are five times smaller in comparison to the best performance

shown by a degree algorithm.

Figure 5.7 shows that the different edges mean metric tends to converge as the

number of nodes increases. It also exhibits that the metric is at least twice as smaller

for the distance based algorithms in comparison to all four degree based algorithms.

Similar results can be observed for the different nodes mean metric, shown in

Figures 5.9, 5.10, 5.11 and 5.12.

Figure 5.5: Different edges mean for WS networks with 1500 nodes.
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Figure 5.6: Distance condition not satisfied: different edges mean for WS networks
with 1500 nodes.

Figure 5.7: Different edges mean for WS networks when 5 edges are removed.
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Figure 5.8: Distance condition not satisfied: different edges mean for WS networks
when 5 edges are removed.

Figure 5.9: Different nodes mean for WS networks with 1500 nodes.
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Figure 5.10: Distance condition not satisfied: different nodes mean for WS networks
with 1500 nodes.

Figure 5.11: Different nodes mean for WS networks when 5 edges are removed.
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Figure 5.12: Distance condition not satisfied: different nodes mean for WS networks
when 5 edges are removed.

Robustness Metrics

Table 5.2 shows the highest degree nodes metric for Watts-Strogatz networks with

1000 nodes. Note that the values are really small, all less than 0.05% of the nodes.

This is one of the reasons why the degree based algorithms do not have a good

performance.

Edges Removed Mean Standard Deviation

1 0.0004 0.0005

2 0.0004 0.0005

3 0.0003 0.0005

4 0.0003 0.0005

5 0.0003 0.0005

6 0.0004 0.0005

7 0.0004 0.0005

8 0.0004 0.0005

9 0.0003 0.0005

10 0.0003 0.0005

15 0.0003 0.0005

Table 5.2: Highest degree nodes values for Watts-Strogatz networks with 1000 nodes.

Figure 5.13 shows the eccentricity robustness metric as the number of edges
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removed increases, where the curves represent the different network sizes. Note that

the eccentricity metric has a similar trend on different network sizes as the edges

being removed increase. In general, the results are positive for the distance based

canonical labeling algorithm since the value of eccentricity robustness is small, below

4% when up to 4 edges are removed.

Figure 5.13: Eccentricity changed for WS networks.

Figure 5.14 shows the k units distance increase for each number of edges removed

for a network with 500 nodes. The distances increase up to 19 units but G2 is still

connected. Another interesting observation is that more than 95% of the distance

values are maintained even after 15 edges are removed. This positive result is one

of the reasons the distance algorithms show good performance on this network. The

results are similar to other network sizes of the WS model.
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Figure 5.14: k units distance change for Watts-Strogatz networks with 500 nodes.

For all tested Watts-Strogatz networks, the two distance based canonical labeling

algorithms outperform, in all metrics, all other algorithms.

5.3.2 G(n, p)

The Erdős–Rényi model [32], or G(n, p) model, is the most traditional model for

generating random graphs. It has two parameters: n is the number of nodes in the

graph and p is the probability that an edge exists between a node pair. If p = 0,

then there are no edges in the graph and all nodes are isolated. If p = 1, the graph

is a complete graph. Thus, the larger p, the denser the graph, which means the

average path length will be shorter, there will be a high clustering and the expected

mean degree will be larger (since it is np).

This evaluation considers sparse graphs, with a small p, to generate graphs

without much redundancy. For the tests, the parameters are n = 100 and

p = 5
n

= 0.05. A hundred graphs with these parameters were generated and

e = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] edges were removed from each one, generating a new

graph. In total, there are a thousand networks passing through each canonical la-

beling algorithm. The degree similarity algorithm had the parameters set to δd = 1

and p = 0.5.

Evaluation Metrics

The perfect match metric is presented in Figure 5.15. Note that until 3 edges are

removed, the distance algorithm outperforms all other algorithms, outperforming
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even the distance condition being satisfied, which is always zero. However, the

perfect match ratio decreases monotonically and at a very fast pace, becoming zero

for all algorithms after four or more edges are removed. The results also show that

the only other algorithm capable of finding a perfect match is the degree similarity,

while all other algorithms, including the distance vector, can not find any perfect

match regardless of how many edges are removed. Even with a single edge removal,

the best result found is 0.175%, four times smaller in comparison to the best result

found for the WS network with 1500 nodes.

Figure 5.15: Perfect matches for G(n = 100, p = 0.05) network.

Figures 5.16 and 5.17 show the results for the different edges mean metric. Note

in Figure 5.16 that, for the different scenarios of edges removed, all the algorithms

have similar behaviors as the number of edges removed increases and the distance

algorithm performs better than all degree based and the distance vector algorithms.

However, the ratio for the distance algorithm is never larger than 10% compared

to at least one degree based algorithms. Interestingly, note in Figure 5.17 that

even when the distance condition is not satisfied, on average, 50% of the edges are

matched correctly when a single edge is removed.

A similar behavior is shown on the different nodes mean metric, presented in the

Figures 5.18 and 5.19.
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Figure 5.16: Different edges mean for G(n = 100, p = 0.05) network.

Figure 5.17: Distance condition not satisfied: different edges mean for G(n =
100, p = 0.05) network.
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Figure 5.18: Different nodes mean for G(n = 100, p = 0.05) network.

Figure 5.19: Distance condition not satisfied: different nodes mean for G(n =
100, p = 0.05) network.

While the best results come from the distance algorithm, after just four edges are

removed from the graph, all algorithms start having difficulty understanding that

the two input graphs are similar.

62



Robustness Metrics

Table 5.3 shows the highest degree nodes metric for the G(n = 100, p = 0.05) graphs

generated. Note that the results are really small, which was expected. This model

has an expected degree for each node and, independently of the node, they are all

the same and equal to np = 5. Thus, the model generates networks with nodes

that have similar degrees of approximately 5 and, hence, it is unlikely that nodes

will have distinctive large degrees. This is one of the reasons why degree based

algorithms do not show good performance.

Edges Removed Mean Standard Deviation

1 0.009 0.008

2 0.010 0.009

3 0.010 0.010

4 0.011 0.010

5 0.010 0.009

6 0.009 0.009

7 0.010 0.010

8 0.010 0.010

9 0.010 0.009

10 0.011 0.011

Table 5.3: Highest degree nodes values for G(n = 100, p = 0.05) network.

Figure 5.20 shows the eccentricity metric for each number of edges removed. As

the number of removed edges increases, the eccentricity tends to also increase. Note

that when a single edge is removed, this metric is approximately 0.02 and when

ten edges are removed, this metric goes to approximately 0.12, six times larger.

Interestingly, the result is similar to the one presented for the WS model with 100

nodes.
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Figure 5.20: Eccentricity changed for G(n = 100, p = 0.05) network.

Figure 5.21 shows the k units distance increase for each number of edges re-

moved. The distances increase up to 6 units and some become infinite (G2 becomes

disconnected). Interestingly, even in a sparse random graph, there is some redun-

dancy on the distances: when removing a single edge, less than 1% of node pairs

have their distances increased and, even when 10 edges are removed, only 6% of

node pairs have their distances changed. This is one of the reasons why the distance

algorithms outperform the others, as shown in the evaluation metrics.

Figure 5.21: k units distance change for G(n = 100, p = 0.05) network.
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5.4 Results on Real Networks

While the previous section considered synthetic graphs, the six canonical labeling

algorithms are now evaluated on the following real networks: the famous Zachary’s

Karate Club network [1], a given subgraph from Facebook consisting of circles (which

is referenced as Facebook 686) and a collaboration network among professors from

PESC1. Table 5.4 presents the main characteristics of each network and the following

sections give more details about them, alongside their evaluation results.

Karate Club Facebook 686 PESC Collaboration

Number of Nodes 34 168 35

Number of Edges 78 1656 68

Average Degree 4.588 19.714 3.886

Maximum Degree 17 77 10

Minimum Degree 1 1 1

Average Distance 2.270 2.396 2.889

Maximum Distance 5 6 7

Minimum Distance 1 1 1

Table 5.4: Characteristics of the real networks evaluated.

5.4.1 Zachary’s Karate Club [1]

Zachary’s Karate Club is a social network of a university karate club that became

famous in 2002 after it was used by Michelle Girvan and Mark Newman in their

well-cited paper for community detection [40]. The network is an undirected graph

representing 34 karate club members and 78 relationships between pairs of members

who interacted outside the club. The data set is publicly available online.

The numbers of edges removed for this tests are e = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

and, for each value of e, a hundred networks were generated, taking the initial

graph and randomly removing some edges. In total, there are 1000 graph generated

after removing edges, plus the original graph. The degree similarity algorithm had

parameters set to δd = 1 and p = 0.3.

Evaluation Metrics

The perfect match metric is presented in Figure 5.22. Note that the perfect match

ratio decreases monotonically with the number of edges removed for all algorithms,

dropping to zero when 6 edges are removed. This happens because the graph has

1PESC is the System Engineering and Computer Science graduate program offered by the
Federal University of Rio de Janeiro.
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a small number of edges and, after removing approximately 10% of the edges, the

algorithms tend to fail. Moreover, the distance algorithms perform better than

the degree algorithms, while the distance vector algorithm overlaps its results with

the distance condition being satisfied and the distance algorithm outperforms the

condition. Note that with a single edge removal, the perfect match ratio is twice

as large for the distance algorithm in comparison to the distance condition being

satisfied and four times larger for the distance algorithm in comparison to the degree

similarity, that has the best performance between the degree based algorithms. The

bliss and nauty algorithms had the same result for all edge removed values and

overlapped on the plot, while after 3 or more edges are removed all algorithms,

except the distance one, overlap at zero.

Figure 5.22: Perfect matches for Karate’s network.

Figures 5.23 and 5.24 show the results for the different edges mean metric, for

all the executions and for the executions where the distance condition was not satis-

fied, respectively. Figure 5.23 exhibits our implementation of the McKay canonical

labeling algorithm usually outperforming the other five algorithms until 5 edges are

removed, when the distance vector algorithm stars outperforming all others. Note

that when removing 10 edges, all algorithms result in a similar different edges metric,

around 60%.
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Figure 5.23: Different edges mean for Karate’s network.

Figure 5.24: Distance condition not satisfied: different edges mean for Karate’s
network.

Figures 5.25 and 5.26 present the results for the different nodes mean metric,

for all the executions and for the executions where the distance condition was not

satisfied, respectively. Note that the distance based algorithms outperform all other

algorithms. Interestingly, the distance based algorithms were superior in this node

metric for any number of removed edges, while it only starts being superior in
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the edge metric for more than 5 edges removed. This indicates that the distance

algorithms are correctly matching more nodes with small degrees in comparison to

our implementation of McKay, that is correctly matching fewer nodes, but with

larger degrees.

Figure 5.25: Different nodes mean for Karate’s network.

Figure 5.26: Distance condition not satisfied: different nodes mean for Karate’s
network.
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Robustness Metrics

Table 5.5 shows the mean and standard deviation for the highest degree nodes metric

for each number of edges removed from the graph. As shown, the mean is the same

for each pair of graphs compared since the standard deviation is 0. Also, increasing

the number of edges removed does not have an impact on the metric. The result is

always 14.7%, which represents 5 nodes of the graph. This metric provides a lower

limit to the different nodes mean metric for the degree based algorithms and it can

be verified in Figure 5.25 that these algorithms always correctly match at least 20%

of the nodes.

Edges Removed Mean Standard Deviation

1 0.147 0.0

2 0.147 0.0

3 0.147 0.0

4 0.147 0.0

5 0.147 0.0

6 0.147 0.0

7 0.147 0.0

8 0.147 0.0

9 0.147 0.0

10 0.147 0.0

Table 5.5: Highest degree nodes values for Karate’s network.

Figure 5.27 shows the eccentricity metric mean value for different number of

edges removed. It is clear that as the number of edges being removed from the

graph increases, the metric also increases monotonically, to the point that after

removing 10 edges, approximately 50% of the nodes had their eccentricity changed,

which is approximately ten times larger in comparison to the result of a single edge

removal. This is one of the reasons why the distance algorithm starts having worst

performance as the number of edges removed increases.
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Figure 5.27: Eccentricity changed for Karate’s network.

Figure 5.28 shows the k units distance increase for different number of edges

removed. The distances increase up to 5 and, even after 10 edges are removed,

approximately 85% of the distances remain the same. When removing just one edge,

the amount of distances remaining the same is more than 98%, which is positive for

the distance based canonical labeling algorithms.

Figure 5.28: k units distance change for Karate’s network.
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5.4.2 Facebook Social Circle

This real network is available on the SNAP datasets [41] and belongs to a dataset

that consists of circles from Facebook. The data is anonymized and was collected

from survey participants using the Facebook app. The dataset has ten different

networks and one of them was randomly chosen for this evaluation, named as Face-

book 686 on the dataset, that has 168 nodes and 1656 edges. This is an undirected

connected network, with a high average clustering coefficient and a great number of

triangles.

The number of edges removed vary between 1 and 20, with e = [1, 2, . . . , 19, 20]

and, for each value of e, a hundred networks were generated, taking the initial graph

and randomly removing the edges. In total, there are 2000 graphs generated after

removing some edges plus the original graph. The degree similarity algorithm had

parameters set to δd = 1 and p = 0.3.

Evaluation Metrics

Figure 5.29 shows the perfect match, where the distance algorithms outperform

all other algorithms, with the distance algorithm also outperforming the distance

condition being satisfied. With a single edge removal, the perfect match ratio for

the distance algorithm is around 0.75, twice as large than the distance condition

being satisfied and 0.2 larger than the second-best result, presented by the distance

vector algorithm. With three removed edges, only the distance based algorithms are

capable of finding a perfect match, where the distance vector perfectly matches the

graphs approximately 18% of the times and the distance algorithm approximately

42% of the times. Interestingly, the distance algorithm is able of finding a perfect

match even after 17 edges are removed, while there is no algorithm in the two random

graph models analyzed so far that was capable of finding a perfect match after 10

edges are removed.
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Figure 5.29: Perfect matches for Facebook’s 686 network.

Figures 5.30 and 5.31 show the results for the different edges mean metric, where

the distance algorithms perform better than all degree based algorithms. Our imple-

mentation of McKay’s algorithm has close performance to the distance algorithms

but is still always inferior to at least one of them. Nauty and degree similarity exhibit

very similar results and, for a single edge removal, are twice as large in comparison

to the distance based algorithms. As the number of edges removed increased, the

distance between the results for these algorithms decreases, with the distance algo-

rithms still performing better, but by a smaller factor. The Bliss algorithm is the

one with the worst performance, where with a single edge removal it is four times

larger in comparison to the distance algorithms and our implementation of McKay

and twice as large in comparison to nauty and degree similarity.

The same behavior can be observed on the different nodes mean metric, presented

in Figures 5.32 and 5.33.
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Figure 5.30: Different edges mean for Facebook’s 686 network.

Figure 5.31: Distance condition not satisfied: different edges mean for Facebook’s
686 network.
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Figure 5.32: Different nodes mean for Facebook’s 686 network.

Figure 5.33: Distance condition not satisfied: different nodes mean for Facebook’s
686 network.

Interestingly, the distance algorithm works better when finding a perfect match

but the distance vector algorithm works better when aligning the networks, i.e., it

aligns more edges correctly. This indicates that when the distance algorithm is not

able to find a perfect match, its performance in aligning the networks is worst in

comparison to the same scenario in the distance vector algorithm.
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Robustness Metrics

Table 5.6 shows the mean and standard deviation for the highest degree nodes met-

ric. The results for the different nodes mean show that all degree based algorithms

always correctly match at least 30% of the nodes, which is higher than the 6% lower

bound shown in the table.

Edges Removed Mean Standard Deviation

1 0.059 0.0

2 0.059 0.0

3 0.059 0.0

4 0.059 0.0

5 0.059 0.0

6 0.059 0.0

7 0.059 0.0

8 0.059 0.0

9 0.059 0.0

10 0.059 0.0

11 0.059 0.0

12 0.059 0.0

13 0.059 0.0

14 0.059 0.0

15 0.059 0.0

16 0.059 0.0

17 0.059 0.0

18 0.059 0.0

19 0.059 0.0

20 0.059 0.0

Table 5.6: Highest degree nodes values for Facebook’s 686 network.

Figure 5.34 shows the eccentricity metric for each number of edges removed.

Interestingly, the results are similar to the ones presented for the WS model.
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Figure 5.34: Eccentricity changed for Facebook’s 686 network.

Figure 5.35 shows the k units distance increase for each amount of edges removed.

The distances increase up to 3, with some distances becoming infinity. Note that

even after removing 20 edges, only 0.7% of node pairs have their distances changed,

and this number includes the pair of nodes directly affected by the edge removal (the

distance between the nodes adjacent to an edge that is removed always change to

a larger value). This behavior is positive for the distance based canonical labeling

algorithms developed and one of the reasons they have better performance than

all other algorithms. The results found for this network are smaller than the ones

found for Karate’s network, which is one of the reasons why it is easier to match

edges and nodes in this network and to remove more edges without jeopardizing the

performance.

Figure 5.35: k units distance change for Facebook’s 686 network.
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This real network has redundancy on its distances and the distance based canon-

ical labeling algorithms outperform all other algorithms on all metrics analyzed.

5.4.3 PESC’s Collaboration Network

This real network was generated by the authors of this dissertation using public data

from the DBLP website 2. The nodes of the graph are 40 professors from PESC and

the edges indicate collaboration between the professors, in this case, the publication

of at least one paper together.

In order to generate the network, the name variations of each professor in the

list was obtained from DBLP, since each person may have multiple ways of writing

his name (for example, it is possible to have a paper authored by ”Daniel Ratton

Figueiredo” and another one by ”Daniel R. Figueiredo”). The first step is normaliz-

ing the name of the 40 professors. Then, a crawler was developed to download and

parse each professor’s profile in DBLP and extract all the publications. The parser

analyzed each publication and checked if amongst the authors were other professors

from PESC, based on the name variations of all the 40 professors. If the parser finds

two authors from PESC on the same publication, it creates an edge between them

(if an edge already exists, nothing needs to happen).

At the time, there were 5 professors that did not haves publications with other

professors from PESC in DBLP, so the final network ended up with 35 nodes since

the idea was to create a connected graph.

The numbers of edges removed for this tests are e = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and,

for each value of e, a hundred networks were generated, taking the initial graph and

randomly removing edges. In total, there are 1000 graphs generated after edge

removal. The degree similarity algorithm had parameters set to δd = 1 and p = 0.3.

Evaluation Metrics

The perfect match is presented in Figure 5.36, showing a similar trend to the Karate

network, where the distance based algorithms are superior but their performance

deteriorates after 4 edges are removed. With a single edge removal, the best perfor-

mance is given by the distance algorithm, which is more than three times larger in

comparison to the distance condition being satisfied.

2The dblp computer science bibliography is the online reference for bibliographic information
on major computer science publications.
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Figure 5.36: Perfect matches for PESC’s collaboration network.

Figures 5.37 and 5.38 show the results for the different edges mean metric, where

it is possible to note that, for all number of edges removed tested, the distance algo-

rithms perform better than all degree based algorithms. In particular, the distance

vector algorithm has the best performance for all number of edges removed, while the

distance algorithm outperforms the distance vector algorithm in the perfect match

metric until 5 edges are removed, when both algorithms are unable to find a perfect

match. This indicates that when there is not a perfect match, the distance vector

aligns the two networks better than the distance algorithm, as shown in Figure 5.38.

Figures 5.39 and 5.40 show the results for the different nodes metric, that behaves

similarly to the edges metric.

Figure 5.37: Different edges mean for PESC’s collaboration network.
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Figure 5.38: Distance condition not satisfied: different edges mean for PESC’s col-
laboration network.

Figure 5.39: Different nodes mean for PESC’s collaboration network.
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Figure 5.40: Distance condition not satisfied: different nodes mean for PESC’s
collaboration network.

Robustness Metrics

Table 5.7 shows the mean and standard deviation. The results are very similar to

the ones from Facebook 686 network, sustaining the poor performance of degree

based algorithms.

Edges Removed Mean Standard Deviation

1 0.057 0.0

2 0.057 0.0

3 0.057 0.0

4 0.057 0.0

5 0.057 0.0

6 0.057 0.0

7 0.057 0.0

8 0.057 0.0

9 0.057 0.0

10 0.057 0.0

Table 5.7: Highest degree nodes values for PESC’s collaboration network.

Figure 5.41 shows the eccentricity metric for different number of edges removed.

The result is similar to the Karate network, with the exception that eccentricity

changes even faster in this network.
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Figure 5.41: Eccentricity changed for PESC’s collaboration network.

Figure 5.42 shows the k units distance increase for different number of edges

removed. It also behaves similarly to the Karate network as the number of removed

edges increase, with the difference that this network is more sensitive to edge re-

moval, hence, having more distances changed. For ten removed edges, more than

25% of the distances change, which is explained by the fact that the network is really

sparse and ten edges represent almost 15% of the total edges.

Figure 5.42: k units distance change for PESC’s collaboration network.
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Chapter 6

Conclusion and Future Work

This dissertation tackles the graph matching problem with canonical labeling algo-

rithms. In particular, it proposes a novel distance-based approach that can solve

the graph matching problem under some condition while always solving graph iso-

morphism. Two algorithms are implemented based on distances, called distance and

distance vector, that only differ in the refinement procedure. The first one splits the

nodes based on the minimum distance between a node and a cell, while the latter

splits the nodes based on the distances between a node and every node from a cell,

creating a vector filled with all these distances. While the distance algorithm uses

less information and is more likely to succeed, the distance vector algorithm is faster

since it can break more cells in each refinement.

A proof of the algorithms correctness for the isomorphism problem and the graph

matching problem under a certain condition are provided, where this condition states

that the algorithms will always match the nodes correctly from two graphs with the

same distance matrices except for some values that are 1 in one of them and 2 on

the other.

A variation of one state of the art degree based canonical labeling algorithm was

also proposed and implemented, called degree similarity. The idea is to understand

if it is possible to still use degrees to drive the canonical labeling algorithm and solve

the graph matching problem on similar graphs.

A simple edge removal model was created to generate similar, but not isomorphic

graphs. It has two parameters, a graph and a number of edges to remove, and

returns a new graph that is a copy of the input graph missing some edges, that were

removed uniformly at random. This pair of similar graphs is then passed through

each canonical labeling algorithm. An extensive evaluation on random graph models

and real networks under this simple edge removal model show that, in general, the

distance based algorithms are the only ones that can find a perfect match between

similar graphs. Results also show that the real networks evaluated do have path

redundancy and, hence, the distances are robust to a small number of edge removals,
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making the proposed algorithms outperform the others in all metrics investigated.

However, it is important to say that redundancy in distances is necessary for

the proposed algorithms and, when the number of removed edges increases, this

redundancy decreases and the performance of the algorithm in matching the graphs

decreases. This is one of the reasons why the algorithms tend to have good perfor-

mance when only a small number of edges are removed.

6.1 Future Work

As part of future work, the algorithms should be evaluated on more networks and

other models for creating similar graphs to strengthen the conclusions. It also would

be interesting to test the algorithms on larger networks, with more than 1500 nodes,

which is the maximum number of nodes evaluated in this work. However, since this

algorithm does not run in polynomial time, as the number of nodes increases so does

the time to run the algorithm. Thus, improving its running time is also a line for

future work.

Conditions for a Perfect Match

This work presented one structural condition where the distance algorithms always

solve the graph matching problem. However, the results indicate that this condition

is sufficient, but not necessary since the algorithm can still solve the graph matching

problem when the condition is not satisfied. It would be interesting to understand

these other scenarios where the algorithms work and provide theoretical proofs of

their correctness based on these conditions.

Refinements

This work presented two distance and two degree refinement procedures to drive the

canonical labeling algorithms. As seen, the distance based algorithms work better

than any degree based algorithm on most of the networks, especially on real networks

where redundancy is present. However, when the number of removed edges increases,

the performance of all algorithms decreases fast. Thus, it would be interesting to

design other refinement procedures that are more robust to edge removal and have

better performance when the number of edges removed from the original graph is

larger.

Evaluation on Other Similar Graphs

This work proposed the analysis of canonical labeling algorithms on two similar but

not isomorphic graphs, G1 and G2, with G2 being a subgraph of G1, created after
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randomly removing k edges from G1. It would also be interesting to study other

similar graphs, especially where G2 is not a subgraph of G1. To tackle this problem,

there is a need to create a new model to generate similar graphs, like receiving a

graph and randomly removing and adding a small number of edges to it, creating

a new graph. This is interesting mostly because it would expand the functionality

of the developed algorithms, making it possible to be used on other common graph

matching problems.
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