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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

DECOMPOSIÇÃO DE GRAFOS (2K + 1)-REGULARES CONTENDO

GRAFOS DE CAYLEY 2K-REGULARES GERADORES ESPECIAIS EM

CAMINHOS DE COMPRIMENTO 2K + 1

Luiz Henrique Silva Ho�mann

Fevereiro/2020

Orientador: Fábio Happ Botler

Programa: Engenharia de Sistemas e Computação

Uma P`-decomposição de um grafoG é um conjunto de caminhos aresta-disjuntas

com ` arestas em G que cobre o conjunto de arestas de G. Favaron, Genest,

e Kouider (2010) conjecturaram que todo grafo (2k + 1)-regular que contém um

emparelhamento perfeito admite uma P2k+1-decomposição. Eles também veri�caram

essa conjectura para grafos 5-regulares sem ciclos de comprimento 4. Em 2015,

Botler, Mota, e Wakabayashi estenderam esse resultado para grafos 5-regulares

sem triângulos, e em 2017, Botler, Mota, Oshiro e Wakabayashi generalizaram esse

resultado para grafos (2k + 1)-regulares com cintura de tamanho pelo menos 2k.

Nessa dissertação, veri�camos essa conjectura para grafos (2k + 1)-regulares que

contêm a k-ésima potência de ciclo; e para grafos 5-regulares que contêm um grafo

de Cayley gerador 4-regular gerado por dois elementos comutativos.
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A P`-decomposition of a graph G is a set of edge-disjoint paths with ` edges in G

that cover the edge set of G. Favaron, Genest, and Kouider (2010) conjectured that

every simple (2k+1)-regular graph that contains a perfect matching admits a P2k+1-

decomposition. They also veri�ed this conjecture for 5-regular graphs without cycles

of length 4. In 2015, Botler, Mota, andWakabayashi extended this result to 5-regular

graphs without triangles, and in 2017, Botler, Mota, Oshiro and Wakabayashi

generalized this result to (2k + 1)-regular graphs with girth at least 2k. In this

dissertation, we verify this conjecture for (2k + 1)-regular graphs that contain the

k-th power of the cycle; and for 5-regular graphs that contain spanning 4-regular

Cayley graph generated by two commutative elements.
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Chapter 1

Introduction

All graphs in this dissertation are simple, i.e., have no loops nor multiple edges.

A decomposition of a graph G is a set D of edge-disjoint subgraphs of G that cover

its edge set. If every element of D is isomorphic to a �xed graph H, then we say

that D is an H-decomposition.

The literature related to H-decompositions is quite vast and contains results for

decompositions of 2k-regular graphs into trees with k edges. For instance, Ringel [18]

conjectured that the complete graph K2`+1 admits a T -decomposition for any tree

with ` edges. Moreover, Ringel's Conjecture holds for many classes of trees (see

[6, 11]). Häggkvist [13] generalized Ringel's Conjecture for regular graphs as follows.

Conjecture 1 (Graham-Häggkvist, 1989). Let T be a tree with ` edges. If G is a

2`-regular graph, then G admits a T -decomposition.

For more results on decompositions of regular graphs into trees see [7, 9, 14].

For the case T = P`, Kouider and Lonc [16] improved Häggkvist's result proving

that if G is a 2`-regular graph with girth g ≥ (` + 3)/2, then G admits a special

P`-decomposition called balanced P`-decomposition, that is a path decomposition D
where each vertex is the end vertex of exactly two paths of D. These authors also
stated the following strengthening of Conjecture 1 for paths.

Conjecture 2 (Kouider-Lonc, 1999). Let ` be a positive integer. if G is a 2`-regular

graph, then G admits a balanced P`-decomposition.

In this dissertation, we focus on the case in which H is the simple path with

2k + 1 edges, which we denote by P2k+1 (see Figure 2.1). Note that this notation is

not standard. In 1957, Kotzig [15] (see also [3]) proved the following theorem.

Theorem 1 (Kotzig, 1957). A 3-regular graph G admits a P3-decomposition if and

only if G contains a perfect matching.
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Proof. First, suppose that G admits a P3-decomposition D. Since a 3-regular graph

has 3n/2 edges, we have |D| = n/2. Note that every element of D has only one

internal edge. Let G′ be the graph consisting of the internal edges of every element

of D. Let P = a0a1a2a3 be a path of D. Since dP (a1) = dP (a2) = 2 and there are

n/2 paths in D, dG′(x) = 1 for every x ∈ V (G′). Thus, E(G′) is a perfect matching

of G.

Now, suppose that G has a perfect matchingM . Note that, G−M is a 2-regular

graph, and hence admits an Eulerian orientation, i.e., an orientation of the edges

of G −M in which for each vertex v, precisely half of the edges incident to v are

oriented towards v. For each e = xy ∈M let Pe = a0a1a2a3, where a0a1 and a2a3 are

edges leaving, respectively, a1 and a2. Since G−M admits an Eulerian orientation,

there are no two in-edges of the same vertex. Thus, a0 6= a3 and Pe is a path for

every e ∈M .

In 2010, Favaron, Genest, and Kouider [8] extended this result by proving that

every 5-regular graph that contains a perfect matching and no cycles of length

4 admits a P5-decomposition; and proposed the following conjecture to generalize

Kotzig's result. They also present a 5-regular graph that admits a P5-decomposition

and does not contain a perfect matching (see Figure 1.1). This motivated them to

pose the following conjecture.

Conjecture 3 (Favaron�Genest�Kouider, 2010). If G is a (2k + 1)-regular graph

that contains a perfect matching, then G admits a P2k+1-decomposition.

Figure 1.1: 5-regular graph that admits a P5-decomposition, but has no perfect
matching.

In 2015, Botler, Mota, and Wakabayashi [2] veri�ed Conjecture 3 for triangle-

free 5-regular graphs, and, more recently, Botler, Mota, Oshiro, and Wakabayashi [1]

generalized this result for (2k + 1)-regular graphs with girth at least 2k.
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It is clear that a 5-regular graph contains a perfect matching if and only if it

contains a spanning 4-regular graph. In fact, by using a theorem of Petersen [17],

one can prove that a (2k+ 1)-regular graph contains a perfect matching if and only

if it contains a spanning 2k′-regular graph for every k′ ≤ k.

Theorem 2 (Petersen, 1891). If G is a 2k-regular graph, then G admits a decom-

position into spanning 2-regular graphs.

In this dissertation, we explore Conjecture 3 for (2k + 1)-regular graphs that

contain special spanning 2k-regular graphs as follows. Throughout the text, Γ de-

notes a �nite group of order n; + denotes the group operation of Γ; and 0 denotes

the identity of Γ. As usual, for each x ∈ Γ, we denote by −x the element y ∈ Γ

such that x + y = 0, and the operation − denotes the default binary operation

− : (x, y) 7→ x+ (−y). Let S ⊆ Γ be a set not containing the identity of Γ, and such

that −x ∈ S for every x ∈ S (i.e., S is closed under taking inverses). The Cayley

graph X(Γ, S) is the graph H with V (H) = Γ, and E(H) =
{
{x, y} : y − x ∈ S

}
(see [10]). 1 In this dissertation, we consider the general case in which S is not a

set generating Γ, and hence X(Γ, S) is not necessarily connected. We say that H is

simply commutative if (i) x+y = y+x for every x, y ∈ S, and (ii) x+y 6= 0 for every

x, y ∈ S with y 6= −x. Since 0 /∈ S, condition (ii) guarantees that H is a simple

graph. It is not hard to check that, in such a graph, the neighborhood of a vertex

v ∈ Γ is N(v) = S + v = {x+ v : x ∈ S}. Although the de�nition of Cayley graphs

can be extended to multigraphs and directed graphs, in this dissertation we consider

only non-directed simple graphs in order to tackle Conjecture 3. The reader may

regard the graphs studied here as simple graphs that contain underlying graphs of

directed Cayley graphs.

In this dissertation, we present two results regarding Conjecture 3. We verify it

for (2k + 1)-regular graphs that contain the k-th power of a cycle (see Chapter 2);

and for 5-regular graphs that contain spanning simply commutative 4-regular Cayley

graphs (see Chapter 3).

We believe that, due to the underlying group structure, the techniques developed

here can be extended for dealing with (2k + 1)-regular graphs that contain more

general spanning Cayley graphs, and also (2k+1)-regular graphs that contain special

spanning Schreier Graphs, which can give us signi�cant insight with respect to the

general case of Conjecture 3 (see Chapter 4).

1 Although this de�nition is well-known, there is another de�nition which give us a colored
directed graph as Cayley Graph, let X be a group and S a generating set of X, the Cayley Graph
Γ = Γ(X,S) is constructed as follows: (i) X = V (Γ); (ii) each generator s of S is assigned a color
cs; (iii) for any x ∈ X and s ∈ S, the vertices corresponding to the elements x and xs are joined by
a directed edge of color cs. Thus, the edge set E(Γ) consists of pairs of the form (x, xs) in which
s ∈ S provides the color (see [4]).

3



Chapter 2

Regular graphs that contain

spanning powers of cycles

Given positive integers k and n, the k-th power of the cycle on n vertices,

which we denote by Ck
n, is the graph on the vertex set {0, . . . , n − 1} and such

that, for every vertex v, we have x ∈ N(v) if and only if x = v + r (mod n),

where r ∈ {−k, . . . ,−1} ∪ {1, . . . , k}. Given a perfect matching M of a graph

G we say that a P`-decomposition D of a graph G is M -centered if for every

P = a0a1 . . . aiai+1 . . . a`−1a` ∈ D, we have aiai+1 ∈ M for i = (` − 1)/2. The

next results are examples of M -centered decomposition.

Proposition 1. If G is a 5-regular graph that contains a spanning copy K of K4,4,

and M = G− E(K), then G admits a M-centered P5-decomposition.

Proof. Let G, K, and M be as in the statement. Let (R,L) be the bipartition of

K, where R = {r1, r2, r3, r4} and L = {l1, l2, l3, l4} be the partition classes of K.

Since K is a complete bipartite graph, if xy ∈ M , then either x, y ∈ R or x, y ∈ L.
Thus, we may suppose, without loss of generality, that M = {r1r2, r3r4, l1l2, l3l4}.
Therefore, D = {l1r1l3l4r2l2, l3r3l1l2r4l4, r1l2r3r4l1r2, r3l4r1r2l3r4} is anM -centered

decomposition of G as desired (see Figure 2.1).

r3

r2

r4

r1

l3

l2

l4

l1

Figure 2.1: P5-decomposition of a 5-regular graph that contains a spanning copy of
a K4,4.
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Proposition 2. Let n, k ∈ N with k < n/2. If G is a simple (2k + 1)-regular graph

on n vertices that contains a copy C of Ck
n, and M = G−E(C), then G admits an

M-centered P2k+1-decomposition.

Proof. Let G, C, and M be as in the statement, and let V (C) = {0, . . . , n − 1}
as above. Since C is a 2k-regular graph, M is a perfect matching of G. Given

i ∈ V (C), let Qi be the path v0v1 . . . vk in which v0 = i; and, for j = 1, . . . , k, we

have vj = vj−1 + j if j is odd; and vj = vj−1 − j if j is even. Note that for every

j = 1, . . . , k, the path Qi contains an edge xy such that |x− y| = j. Also, we have

V (Qi) =
{
i + r (mod n) : r ∈ {−bk/2c,−bk/2c + 1, . . . , dk/2e}

}
. It is not hard to

check that the set Q =
{
Qi : i ∈ V (C)

}
is a Pk-decomposition of C.

Given an edge e = ij ∈ M , let Pe = Qi ∪ {ij} ∪ Qj. Since Qi and Qj have,

respectively, i and j as end vertices, and E(Qi) ∩ E(Qj) = ∅, the graph Pe is a

trail of length 2k+ 1. Thus, since Q is a Pk-decomposition of C, and M is a perfect

matching of G, the set D = {Pe : e ∈M} is a decomposition of G into trails of length

2k+ 1. We claim that, in fact, D is a P2k+1-decomposition of G. For that, we prove

that if ij ∈M , then V (Qi)∩V (Qj) = ∅. Indeed, note that for every e = ij ∈M , we

have |i− j| > k, otherwise we have ij ∈ E(C). Now, suppose that there is a vertex

v in V (Qi) ∩ V (Qj). Then, there are r1, r2 with −bk/2c ≤ r1, r2 ≤ dk/2e, and such

that i + r1 = v = j + r2. Suppose, without loss of generality, that i > j. Then, we

have r2 − r1 = i− j > k, but r2 − r1 ≤ dk/2e+ bk/2c = k, a contradiction.

Note that, from the proof of Proposition 2 we also obtain a construction for the

Hamilton path decomposition of complete graphs of even order.

Corollary 1. The complete graph K2k+2 admits a P2k+1-decomposition.

A slight variation of the proof of Proposition 2 also provides the following result.

Corollary 2. Let G be an `-regular graph, ` odd, and let M be a perfect matching

of G. If each component of G \M is a k-th power of a cycle, then G admits an

M-centered P`-decomposition.

Let G1 and G2 be disjoint graphs with perfect matchings M1 and M2, re-

spectively. Let a1b1, . . . , akbk ∈ M1 and x1y1, . . . , xkyk ∈ M2 be distinct edges,

and let G be the graph obtained from the disjoint union G1 ∪ G2 by remov-

ing a1b1, . . . , akbk, x1y1, . . . , xkyk and adding the edges a1x1, b1y1, . . . , akxk, bkyk.

We say that G is a collage of G1 and G2 over edges of M1 and M2, and

denote by MG the perfect matching
(
M1 ∪ M2 ∪ {a1x1, b1y1, . . . , akxk, bkyk}

)
\

{a1b1, . . . , akbk, x1y1, . . . , xkyk}. When M1 and M2 are clear from the context, we

say simply that G is a collage of G1 and G2. Note that G is `-regular if and only if

G1 and G2 are `-regular.

5



Let G be an `-regular graph, where ` is an odd positive integer, and let M be

a perfect matching of G. We say that G is M-constructable if either G admits an

M -centered P`-decomposition, or G is the collage of an M1-constructable graph and

an M2-constructable graph over edges of M1 and M2 and M = MG. The next result

is a useful tool in the proof of Theorem 3.

Lemma 1. Every M-constructable `-regular graph admits an M-centered P`-

decomposition.

Proof. Suppose, for a contradiction, that the statement does not hold, and let

G be a counterexample with a minimum number of vertices. By the de�nition

of M -constructable, G is the collage of an M1-constructable graph G1 and an

M2-constructable graph G2 over edges of M1 and M2. By the minimality of

G, the graph Gi admits an Mi-centered P`-decomposition Di, for i = 1, 2. Let

ai, bi, xi, yi, for i = 1, . . . , k be such that G is the graph obtained from G1 ∪ G2

by removing a1b1, . . . , akbk, x1y1, . . . , xkyk and adding a1x1, b1y1, . . . , akxk, bkyk as

above. For i = 1, . . . , k, let Pi ∈ D1 and Qi ∈ D2 be the paths contain-

ing the edges aibi and xiyi, respectively. By the de�nition of M1- and M2-

centered P`-decomposition, for i = 1, . . . , k, we may write Pi = Pi,1aibiPi,2 and

Qi = Qi,1xiyiQi,2, where Pi,1, Pi,2, Qi,1 and Qi,2 are paths of length (`− 1)/2. Since

G1 and G2 are disjoint, V (Pi,j) ∩ V (Qi,j) = ∅ for i = 1, . . . , k and j = 1, 2.

Let Ri,1 = Pi,1 ∪ {aixi} ∪ Qi,1 and Ri,2 = Pi,2 ∪ {biyi} ∪ Qi,2, and note that

D =
(
D1 \ {P1, . . . , Pk}

)
∪
(
D2 \ {Q1, . . . , Qk}

)
∪ {Ri,j : i = 1, . . . , k and j = 1, 2} is

an MG-centered P`-decomposition of G, a contradiction.

Corollary 3. If G is a 5-regular graph that contains a K4,4-factorization K and

M = G− E(K), then G admits an M-centered P5-decomposition.

6



Chapter 3

5-regular graphs that contain

spanning Cayley graphs

In this chapter, we explore 5-regular graphs that contain spanning simply com-

mutative 4-regular Cayley graphs. In [2], Botler et al. showed that every triangle-

free 5-regular graph G that has a perfect matching admits a P5-decomposition. For

that, they applied the following strategy: i) to �nd an initial decomposition of G

into paths and trails; and ii) to perform some exchange of edges on the elements

of D preserving a special invariant, while minimizing the number of trails that are

not paths. The proof of our main theorem follows this framework, but consists of

three steps. First, from the structure of Cayley graphs, we �nd an initial decompo-

sition into trails, not necessarily paths (see Proposition 3). Then, we show how to

exchange edges to obtain a decomposition in which the bad elements (the trails that

are not paths) are distributed in circular fashion (see Lemma 5). Finally, we show

how to deal with these �cycles of bad elements� (see Theorem 3).

3.1 Preliminary remarks

In this section, we present four special types of trails used throughout this text,

and the following useful lemma.

Lemma 2. Let k ∈ N. If G is a (2k + 1)-regular graph, and D is a decomposition

of G into trails of length 2k+ 1, then each vertex of G is the end vertex of precisely

one element of D.

Proof. Let k, G and D be as in the statement. Let n = |V (G)|. Given an element

T ∈ D, we denote by o(T ) the number of its vertices with odd degree in T , and

given a vertex v ∈ V (G), we denote by D(v) the number of trails in D having v

as end vertex. Clearly,
∑

T∈D o(T ) =
∑

v∈V (G)D(v). Since T is a trail, we have

o(T ) ≤ 2, for every T in D. Also, since every element of D has 2k+1 edges, we have

7



|D| = 1
2k+1
|E(G)| = 1

2k+1
1
2
(2k + 1)n = 1

2
n. Thus, we have

∑
T∈D o(T ) ≤ 2|D| = n.

Now, since v ∈ V (G) has odd degree, v must have odd degree in at least one

element of D, and hence D(v) ≥ 1. Thus, we have
∑

v∈V (G)D(v) ≥ n, and hence∑
v∈V (G) =

∑
T∈D o(T ) = n. This implies that D(v) = 1 for every v ∈ V (G), as

desired.

Recall that Γ is a �nite group of order n with operation +. Given two ele-

ments g, r of Γ, we say that {g, r} is a simple commutative generator (SCG) if (i)

0 /∈ {g, r, 2g, 2r}; (ii) g /∈ {r,−r}; and (iii) g + r = r + g. Let S = {g,−g, r,−r},
and consider the Cayley graph C = X(Γ, S). By construction, C is a simply com-

mutative Cayley graph (see Chapter 1). Conditions (i) and (ii) guarantee that C is

a simple graph, while condition (iii) introduces the main restriction explored in this

dissertation. In this case, we say that C is the graph generated by {g, r}, and that

{g, r} is the generator of C. Given an SCG {g, r}, we say that a simple 5-regular

graph G with vertex set Γ is a {g, r}-graph if G contains a spanning Cayley graph

C generated by {g, r}. We say that G is a simply commutative generated graph or,

for short, SCG-graph if G is a {g, r}-graph for some SCG {g, r}. In this chapter, we

verify Conjecture 3 for SCG-graphs.

A 2-factor in a graph G is a spanning 2-regular subgraph of G. Let {g, r} be an
SCG. If C is the graph generated by {g, r}, and x ∈ {g, r}, then we denote by Fx

the 2-factor of C with edge set E(Fx) = {v+x : v ∈ Γ}. If G is a {g, r}-graph, then
we denote byMg,r the perfect matching G\E(Fg∪Fr), and the triple {Mg,r, Fg, Fr}
is called the base factorization of G. Although G is a simple graph, for ease of

notation, we refer to an edge uv ∈ Fx, with x ∈ {g, r}, as a green (resp. red)

out-edge of u and in-edge of v if v = u + x and x = g (resp. x = r). In the �gures

throughout the text, the edges in Fg, Fr, Mg,r are illustrated, respectively, in green,

red, and double black pattern, while edges without speci�c a�liation are illustrated

in gray. Moreover, if such an edge has a speci�c direction (i.e., in-edge or out-edge),

it is illustrated accordingly. Note that each vertex u has precisely one edge of each

type (green in-edge, green out-edge, red in-edge, red out-edge), and is incident to

precisely one edge of Mg,r. Note that the group structure overcomes Theorem 2 by

giving a decomposition of C into 2-factors in terms of the elements g and r. The

next de�nition presents the main elements of the decompositions in our proofs.

De�nition 1. We say that a trail T in a {g, r}-graph is of type A, B, C, or D if T

can be written as a0a1a2a3a4a5 as follows.

type A: a0, a1, a2, a3, a4 are distinct vertices and a2 = a5 and the following hold:

a2a3 ∈Mg,r, a2a1, a3a4 ∈ Fg, a5 = a4a5, and a1a0 ∈ Fg∪Fr∪Mg,r, i.e., a1a0

is an out-edge of a1, or a1a0 ∈Mg,r (see Figure 3.1a). In this case, we say

that a3 is the primary connection vertex of T , a2 is the secondary connection
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vertex of T ; a1 is the auxiliary vertex of T ; and a4 is the tricky vertex of

T . We denote these vertices, respectively, by cv1(T ), cv2(T ), aux(T ), and

tr(T );

type B: a0, a1, a2, a3, a4, a5 are distinct vertices and the following hold: a2a3 ∈ Mg,r

a2a1, a3a4 ∈ Fg, a1a0, a4a5 ∈ Fg ∪ Fr ∪Mg,r (see Figure 3.1b);

type C: a0, a1, a2, a3, a4, a5 are distinct vertices and the following hold: a2a1, a4a3 ∈
Fg, a3a2, a4a5 ∈ Fr, a1a0 ∈ Fg ∪ Fr ∪Mg,r, and, moreover, we have a2a4 ∈
E(G) and a2a4 ∈Mg,r (see Figure 3.1c);

type D: a0, a1, a2, a3, a4, a5 are distinct vertices and the following hold: a1a0, a4a5 ∈
Fr, a1a2, a3a4 ∈Mg,r, and a3a2 ∈ Fg (see Figure 3.1d).

a0

a1

a2 = a5
a3

a4
a4

a5

(a) Type A.

a0

a1

a2 a3

a4

a5

(b) Type B.

a0

a1

a2 a4

a3 a5

(c) Type C.

a0

a1 a4

a3a2

a5

(d) Type D.

Figure 3.1: The main types of trails.

We remark that elements of type A are not paths, while elements of type B,

C, and D are paths. Moreover, the connection vertices of an element T are always

incident to an edge ofMg,r in T , and hence, no vertex of a {g, r}-graph is a connection
vertex of two edge-disjoint elements of type A in a graph.

Given a trail (not necessarily a path) T = a0a1a2a3a4a5 in a decomposition D
of a {g, r}-graph G, we say that the edge a1a0 (resp. a4a5) is a hanging edge at a1
(resp. a4) if a1a0 ∈Mg,r∪Fg∪Fr (resp. a4a5 ∈Mg,r∪Fg∪Fr), i.e., the hanging edges

of T are the end edges of T that are in Mg,r or that are in-edges of its end vertices.

By De�nition 1, all end edges of elements of type A, B, C, or D are hanging edges.

Note that if T is an element of type A where a5 = a2, then a1a0, a2a3 and a4a2 are

hanging edges of T at, respectively, a1, a3, and a4. Given a trail decomposition D
of a graph G and a vertex u ∈ V (G), we denote by hangD(u) the number of edges

of G that are hanging edges at u.

3.2 Complete decompositions

The proof of the main theorem of this dissertation relies on the following de�ni-

tion, which consist of a set of properties that hold for decompositions of the given
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graph, and that are invariant due to a series of operations performed throughout

the proof.

De�nition 2. A decomposition D of a {g, r}-graph G into trails of length 5 is

complete if the following hold.

(a) hangD(u) > 0 for every vertex u that is a connection vertex of an element of D;

(b) Every element in D is of type A, B, C or D;

(c) If T can be written as a0a1a2a3a4a5 and a0a1 ∈Mg,r, then a0 = a1 + g + r.

The �rst step of our proof is given by the next proposition, which presents an

initial decomposition for the graphs studied.

Proposition 3. If G is an SCG-graph, then G admits a complete decomposition.

Proof. Let {Fg, Fr,Mg,r} be the base factorization of G. For each e = xy ∈ Mg,r,

let Pe = a0a1a2a3a4a5, where a1a0, a4a5 ∈ Fr, a2a1, a3a4 ∈ Fg, a2 = x, and a3 = y.

We claim that D = {Pe : e ∈Mg,r} is complete. Clearly, Pe is an element of type A

or B, for every e ∈Mg,r, and hence D satis�es De�nition 2(b). Moreover, note that

a0a1 (resp. a4a5) is a hanging edge at a1 (resp. a4). Thus, given z ∈ V (G), let e′ =

xy ∈Mg,r be such that x = z − g, then Pe′ contains a hanging edge at z, and hence

there is a hanging edge at every vertex of G. This proves De�nition 2(a). Finally, if

P ∈ D can be written as a0a1a2a3a4a5 where a0a1 ∈ Mg,r, then P must be of type

A, and we have a1a2, a3a4 ∈ Fg, a2a3, a4a5 ∈ Fr and a0 = a3 = a2 + r = a1 + g + r,

and hence D satis�es De�nition 2(c).

The next lemma is used often in our proof and presents a consequence of the

exchange of hanging edges at primary connection vertices.

Lemma 3. If T = a0a1a2a3a4a5 is an element of type A in a decomposition of a

{g, r}-graph G into trails of length 5, where a5 = a2 and a2a3 ∈Mg,r, and u ∈ V (G)

is such that a3u is a hanging edge at a3 = cv1(T ), then T ′ = a0a1a2a4a3u is of type

C.

Proof. Let T , u, and T ′ be as in the statement. Since a3a4 is a green out-edge of a3
and a2a3 is an edge of Mg,r incident to a3, we conclude that a3u is a red out-edge

of a3, and hence u = a3 + r. Now, since G is simple, we have u /∈ {a2, a3, a4}; if
u = a1, then we have a3 + r = u = a1 = a3 + g + r + g, which implies 2g = 0, a

contradiction to the de�nition of SCG. Finally, by Lemma 2 we have u 6= a0. Thus,

T ′ is a path. Since a3u ∈ Fr, T ′ is of type C.
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a0 a1

a2

a3

a4

u

a0 a1

a2

a3

a4

u

Figure 3.2: Exchange of edges between elements of type A and a hanging edge in
the proof of Lemma 3.

The following lemma is also used often in our proof and shows how two elements

of type A may be connected.

Lemma 4. If T1 and T2 are two edge-disjoint elements of type A in a {g, r}-graph
G such that tr(T2) = cv1(T1), then aux(T2) = cv2(T1).

Proof. Let T1 = a0a1a2a3a4a5 and T2 = b0b1b2b3b4b5, where a5 = a2 and b5 = b2

and a2a3, b2b3 ∈ Mg,r. If cv1(T1) = tr(T2), then a3 = b4. Since b1 = b4 + r + g and

a2 = a3+g+r. Thus aux(T2) = b1 = b4+r+g = a3+r+g = a3+g+r = a2 = cv2(T1),

as desired (see Figure 3.3).

g

2g

2g + r

g + r 0

Figure 3.3: Identities given by Lemma 4 when b3 = 0.

We say that an element T of type A in a complete decomposition D is free

if tr(T ) 6= cvi(T
′) for every T ′ ∈ D and i ∈ {1, 2}. An A-chain is a sequence

T0, T1, . . . , Ts−1 of elements of type A such that for each j ∈ {0, . . . , s − 1}, we
have tr(Tj) = cvi(Tj−1), for some i ∈ {1, 2} (subtraction on the indices are taken

modulo s). Note that A-chains do not consider the auxiliary vertex when allowing

two elements to be consecutive. Thus, elements, say T1 and T2, of type A that are

not consecutive in an A-chain, or that are in di�erent A-chains, may still share a

vertex u for which cvi(T1) = u = aux(T2).

Given a decomposition D of a graph G into trails of length 5, denote by τ(D) the

number of elements that are not paths. By exchanging edges between the elements of

a decomposition given by Proposition 3, we can show that a complete decomposition

that minimizes τ(D) has no free element, and hence its elements of type A are

partitioned into A-chains.

Lemma 5. Every {g, r}-graph for which 2g+ 2r 6= 0 admits a complete decomposi-

tion in which the elements of type A are partitioned into A-chains.
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Proof. Let G be a {g, r}-graph for which 2g+2r 6= 0 and putM = Mg,r. By Propo-

sition 3, G admits a complete decomposition. Let D be a complete decomposition of

G that minimizes τ(D). In what follows, we prove that D contains no free element

of type A.

For that, in each step, we exchange edges between some elements of D and obtain

a complete decomposition D′ into trails of length �ve such that τ(D′) < τ(D),

which is a contradiction to the minimality of D. To check that D′ is a complete

decomposition, we observe the three following items: (i) The only vertex that has a

hanging edge of D but does not have a hanging edge of D′ is the tricky vertex of a

free element of type A, which by the de�nition of free element, is not a connection

vertex of any element of D′, and hence De�nition 2(a) holds for D′; (ii) every element

of D′ that is not an element of D, i.e., the elements involved in the exchange of edges,

is of type A, B, C, or D, and hence 2(b) holds for D′; (iii) every edge uv ∈ M in

the elements considered that can be viewed as an end edge in D′ (some elements

may be expressed by more than two trails) either can be viewed as end edges in D
or is obtained from an element of type A and satis�es u = v + g + r, and hence

De�nition 2(c) holds for D′.

Claim 1. No element of type B or C has a hanging edge at the primary connection

vertex of a free element of type A.

Proof. Let T1 ∈ D be a free element of type A, and let T2 ∈ D be an element of

type B or C that contains a hanging edge at cv1(T1). Let T1 = a0a1a2a3a4a5, where

a5 = a2 and a2a3 ∈ M , and T2 = b0b1b2b3b4b5. We divide the proof depending on

whether T2 is of type B or C.

T2 is of type B. Suppose, for a contradiction, that b4 = cv1(T1) = a3. Put

T ′1 = a0a1a2a4a3b5, T ′2 = b0b1b2b3b4a2 (see Figure 3.4), and let D′ =
(
D \ {T1, T2}

)
∪

{T ′1, T ′2}. Note that D′ is a decomposition of G into trails of length 5. By Lemma 3,

T ′1 is an element of Type C. In what follows, we prove that T ′2 is a path. For that,

we prove that a2 /∈ {b0, b1, b2, b3, b4}. Indeed, since G has no loops or multiple edges,

a2 /∈ {b3, b4}. SinceM is a matching, a2 6= b2. If a2 = b1, then b2 = b1−g = a2−g =

a3 + g+ r− g = b5, and hence T2 is of type A, a contradiction. Finally, by Lemma 2

a2 6= b0. Thus, T ′2 is a path. Moreover, T ′2 is an element of type B.

In what follows, we prove that D′ is a complete decomposition. Note that

hangD′(v) ≥ hangD(v) for every v ∈ V (G) \ {a4}. Since a4 is not a connection

vertex of D′, and hangD(v) > 0 for every connection vertex v of D, hangD′(v) > 0

for every connection vertex v of D′. Thus De�nition 2(a) holds for D′. Also, since
T ′1 is of type C and T ′2 is of type B, De�nition 2(b) holds for D′. Moreover, note

that a2a3 ∈M is an end edge of T ′2. Since T1 is of type A, we have a2 = a3 + g + r.

Thus, De�nition 2(c) holds for D′. Therefore, D′ is a complete decomposition such
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that τ(D′) = τ(D)− 1 < τ(D), a contradiction to the minimality of D.

a0 a1

a2

a3

a4

b0 b1

b2 b3

b4

b5

a0 a1

a2

a3

a4

b0 b1

b2 b3

b4

b5

Figure 3.4: Exchange of edges between elements of type A and B in the proof of
Claim 1.

T2 is of type C. We may assume b3b2 ∈ Fr. In this case we have b4b3 ∈ Fg.

Since T2 contains a hanging edge at cv1(T1), we have a3 = cv1(T1) ∈ {b1, b4}. If

b4 = a3, then there are two green out-edges at a3, namely a3a4, b4a3, a contradiction.

Thus, we may assume that a3 = b1. Put T ′1 = a0a1a2a4a3b0, T ′2 = a2b1b2b4b3b5 (see

Figure 3.5), and let D′ =
(
D \ {T1, T2}

)
∪{T ′1, T ′2}. Note that D′ is a decomposition

of G into trails of length 5. By Lemma 3, T ′1 is an element of Type C. In what

follows we prove that T ′2 is a path. For that, we prove that a2 /∈ {b0, b1, b2, b3, b4}.
Indeed, since G is simple, a2 /∈ {b1, b2}. If a2 = b4, then a2a1 and b4b3 are two green

out-edges at a2, a contradiction. By Lemma 2, a2 6= b5. Finally, a3 + g+ r = a2 and

b1 = b3 +r+g, if a2 = b3, then we have a3 +g+r = a2 = b3 = b1−g−r = a3−g−r,
which implies 2g + 2r = 0, a contradiction. Thus T ′2 is a path. Moreover, T ′2 is an

element of type C.

Now, we prove that D′ is a complete decomposition. Analogously to the case

above hangD′(v) ≥ hangD(v) for every v ∈ V (G)\{a4}. Since a4 is not a connection
vertex of D′, and hangD(v) > 0 for every connection vertex v of D, hangD′(v) > 0

for every connection vertex v of D′. Thus De�nition 2(a) holds for D′. Also, since
T ′1 and T

′
2 are both elements of type C, De�nition 2(b) holds. Moreover, note that

a2a3 is an end edge of T ′2, and, by de�nition of element of type A, De�nition 2(c)

holds. Thus, D′ is a complete decomposition such that τ(D′) = τ(D)− 1 < τ(D), a

contradiction to the minimality of D.

a0 a1

a2

a3

a4

b5 b4

b3 b2

b1

b0

a0 a1

a2

a3

a4

b5 b4

b3 b2

b1

b0

Figure 3.5: Exchange of edges between elements of type A and C in the proof of
Claim 1.
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Claim 2. Let T1 and T2 be two elements of type A in D. If T1 is free and T2 contains
a hanging edge on cv1(T1), then no element of type A, B, or C in D\{T1, T2} contains
a hanging edge at cv2(T2).

Proof. Let T1 = a0a1a2a3a4a5 and T2 = b0b1b2b3b4b5 be two elements of D, where
a5 = a2 and b5 = b2 and a2a3, b2b3 ∈ M . First, we prove that cv1(T1) = tr(T2) and

cv2(T1) = aux(T2). Suppose, for contradiction, that cv1(T1) 6= tr(T2). Therefore,

b1 = cv1(T1) = a3. Now, put T ′1 = a0a1a2a4a3b0, T ′2 = a2b1b2b3b4b2 (see Figure 3.6)

and let D′ =
(
D \ {T1, T2}

)
∪ {T ′1, T ′2}. Note that D′ is a decomposition of G into

trails of length 5. By Lemma 3, T ′1 is an element of type C. We claim that T ′2 is an

element of type A. For that we prove that a2 /∈ {b1, b2, b3, b4}. Again, since G is a

simple graph, we have a2 /∈ {b1, b2}. Since every vertex is incident to one edge of

M , we have a2 6= b3, and if a2 = b4, then we have a3 + g + r = a2 = b4 = a3 − g− r,
which implies 2g + 2r = 0, a contradiction. Now, we prove that D′ is a complete

decomposition. Analogously to the cases above, we have hangD′(v) ≥ hangD(v) ≥ 0

for every v ∈ V (G) \ {a4}. Therefore, De�nition 2(a) holds for D′. Moreover,

a3b0 /∈ M and if a0a1 ∈ M , then, by De�nition 2(a), we have a0 = a1 + g + r,

and hence De�nition 2(c) holds for D′. Thus, D′ is a complete decomposition such

that τ(D′) = τ(D)− 1 < τ(D), a contradiction to the minimality of D. Finally, by
Lemma 4, we have cv2(T1) = aux(T2).

a0 a1

a2
a3 = b1

a4

b0 b2 b3

b4

a0 a1

a2
a3 = b1

a4

b0 b2 b3

b4

Figure 3.6: Exchange of edges between two elements of type A in the proof of Claim
2.

Now, let T3 ∈ D \ {T1, T2} be an element of type A, B, or C, and suppose, for

a contradiction, that T3 contains a hanging edge at cv2(T2). Since cv1(T1) = tr(T2)

and cv2(T1) = aux(T2), we have a3 = b4, a5 = a2 = b1 and b5 = b2. In what follows,

we divide the proof according to the type of T3.

T3 is of type A. Let T3 = c0c1c2c3c4c5, where c2 = c5 and c2c3 ∈ M . Since each

vertex is incident to precisely one edge of M we have c3 6= b2 = cv2(T2). Therefore

we have cv2(T2) ∈ {c1, c4}. Suppose that cv2(T2) = c4. Thus, we have b5 = b2 = c4.

Put T ′1 = a0a1a2a4a3b5, T ′2 = b0b1b4b3b2c2, T ′3 = b1c4c3c2c1c0 (see Figure 3.7), and

let D′ =
(
D \ {T1, T2, T3}

)
∪ {T ′1, T ′2, T ′3}. Note that D′ is a decomposition of G into

trails of length 5. In what follows, we prove that T ′1, T
′
2 and T ′3 are all paths. By

Lemma 3, T ′1 is an element of type C. Since G is simple, we have c2 /∈ {b1, b2, b3, b4}
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and b1 /∈ {c2, c3, c4}. By Lemma 2, b2 6= a0, c2 6= b0, b1 6= c0. Therefore, T ′2 is an

element of type D. If b1 = c1, then b2b1 and c2c1 are two green in-edges at c1, a

contradiction. Therefore, T ′3 is an element of type B.

We claim that D′ is a complete decomposition. Analogously to the cases above,

we have hangD′(v) ≥ hangD(v) ≥ 0 for every v ∈ V (G) \ {a4}. Therefore, De�ni-

tion 2(a) holds for D′. Also, since T ′1, T ′2 and T ′3 are of type C, D and B, respectively,

De�nition 2(b) holds for D′. Moreover, none of the edges in E(T1) ∪E(T2) ∪E(T3)

that may be in M and is not an end edge of T1, T2, or T3, namely a0a1 and c0c1,

became an end edge of T ′1, T
′
2, or T

′
3. Thus De�nition 2(c) holds for D′. Thus, D′ is

a complete decomposition such that τ(D′) = τ(D) − 1 < τ(D), a contradiction to

the minimality of D.

a0
a1

a3 = b4

a4

b0 = c1

b1 = a2

b2 = c4
b3c0

c2 c3

a0
a1

a3 = b4

a4

b0 = c1

b1 = a2

b2 = c4
b3c0

c2 c3

Figure 3.7: Exchange of edges between three elements of type A in the proof of
Claim 2.

Thus, we may assume cv2(T2) = c1. This implies that b5 = b2 = c1, and hence

we have b3 = b5− r− g = c1− g− r = c4. Put T ′1 = a0a1a2a4a3b2, T ′2 = b0b1b4b3b2c0,

T ′3 = b1c1c2c3c4c2 (see Figure 3.8) and D′ =
(
D \ {T1, T2, T3}

)
∪ {T ′1, T ′2, T ′3}. Note

that D′ is a decomposition of G into trails of length 5. Again, by Lemma 3, T ′1 is an

element of type C. We claim that T ′2, T
′
3 are, respectively, of type D and A. Since

G is simple, c0 /∈ {b1, b2, b3, b4} and b1 /∈ {c1, c2, c4}. By Lemma 2 we have c0 6= b0.

Therefore, T ′2 is of type D. Finally, if b1 = c3, then a2a1 and c3c4 are two green out-

edges at c3, a contradiction. Therefore, T ′3 is an element of type A. Analogously to

the case above, D′ is a complete decomposition such that τ(D′) = τ(D)− 2 < τ(D),

a contradiction to the minimality of D.

a0
a1

a3 = b4

a4

b0
b1 = a2

b3 = c4c0
c1 = b2

c2 c3

a0
a1

a3 = b4

a4

b0
b1 = a2

b3 = c4c0
c1 = b2

c2 c3

Figure 3.8: Exchange of edges between three elements of type A in the proof of
Claim 2.
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T3 is of type B. Let T3 = c0c1c2c3c4c5 be an element of type B. Since T3 contains

a hanging edge on cv2(T2) = b2, we have b2 ∈ {c1, c4}. By symmetry we may

assume b2 = c1. Thus, put T ′1 = a0a1a2a4a3b2, T ′2 = b0b1b4b3b2c0, T ′3 = b1c1c2c3c4c5

(see Figure 3.9) and let D′ =
(
D \ {T1, T2, T3}

)
∪ {T ′1, T ′2, T ′3}. Note that D′ is a

decomposition of G into trails of length 5. Again, by Lemma 3, T ′1 is an element

of type C. We prove that T ′2 and T ′3 are all paths. Since G is simple, we have

c0 /∈ {b1, b2, b3, b4} and b1 /∈ {c1, c2}. By Lemma 2, we have c0 6= b0 and b1 6= c5.

Therefore, T ′2 is an element of type D. Since c4 = c3 + g and b1 = c1 + g, if c4 = b1,

then c3 = c1, a contradiction. If b1 = c3, then a2a1 and c3c4 are two green out-edges

of b1, a contradiction, and if b1 = c4, then c1b1 and c3c4 are two green in-edges of b1,

again a contradiction. Therefore, T ′3 is an element of type B. Analogously to the

case above, D′ is a complete decomposition such that τ(D′) = τ(D) − 2 < τ(D), a

contradiction to the minimality of D.

a0
a1

a3 = b4

a4

b0
b1 = a2

b3c0
c1 = b2

c2
c3 c4 c5

a0
a1

a3 = b4

a4

b0
b1 = a2

b3c0
c1 = b2

c2
c3 c4 c5

Figure 3.9: Exchange of edges between two elements of type A and another element
of type B in the proof of Claim 2.

T3 is of type C. Let T3 = c0c1c2c3c4c5 be an element of type C, where c3c2 ∈ Fr.

This implies that c4c3 ∈ Fg. Since T3 contains a hanging edge on cv2(T2) = b2,

we have b2 ∈ {c1, c4}. If b2 = c4, then c4c3 and b2b1 are two green out-edges

of b2, a contradiction. Thus, we may assume b2 = c1. Put T ′1 = a0a1a2a4a3b2,

T ′2 = b0b1b4b3b2c0, T ′3 = b1c1c2c3c4c5 (see Figure 3.10) and let D′ =
(
D\{T1, T2, T3}

)
∪

{T ′1, T ′2, T ′3}. Note that D′ is a decomposition of G into trails of length 5. Again, by

Lemma 3, T ′1 is an element of type C. We prove that T ′2 and T
′
3 are all paths. Since

G is simple, c0 /∈ {b1, b2, b3, b4} and b1 /∈ {c1, c2}. By Lemma 2, we have c0 6= b0

and b1 6= c5. Therefore, T ′2 is an element of type D. Analogously to the case above,

if b1 = c3, then b2b1 and c4c3 are two green in-edges of b1, a contradiction, and if

b1 = c4, then a2a1 and c4c3 are two green out-edges of b1, again a contradiction.

Therefore, T ′3 is an element of type C. Once more, analogously to the cases above,

D′ is a complete decomposition such that τ(D′) = τ(D)− 2 < τ(D), a contradiction

to the minimality of D.
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Figure 3.10: Exchange of edges between two elements of type A and another element
of type C in the proof of Claim 2.

Claim 3. There is no free element of type A.

Proof. Suppose, for a contradiction, that D contains a free element, say T1, of type

A. By De�nition 2(a), there is a hanging edge e2 on cv1(T1). Let T2 be the element

of D that contains e2. By Claim 1, T2 is not of type B or C, and since M is a

matching, T2 is not of type D. Thus, T2 is of type A. By De�nition 2(a), there

is a hanging edge e3 on cv2(T2). Let T3 be the element of D that contains e3. By

Claim 2, T3 is of type D, which implies that there are two edges of M incident to

cv2(T2), a contradiction.

Now, consider the auxiliary directed graph DD in which V (DD) = D and

(T1, T2) ∈ A(DD) if and only if tr(T2) = cvi(T1) for some i ∈ {1, 2} (we ignore

possible multiple edges). It is clear that the elements of type A in D are partitioned

into A-chains if and only if DD consists of vertex-disjoint directed cycles and isolated

vertices. Note that if a vertex u is a (primary or secondary) connection vertex of

an element T ∈ D, then T is an element of type A and u is incident to an edge

in M ∩ E(T ). Therefore, every vertex of G is a connection vertex of at most one

element of D, and hence, by Claim 3, every vertex of DD has in-degree precisely 1.

Note also that given two elements T1 and T2 we have tr(T1) 6= tr(T2), otherwise

there would be a vertex with two green in edges. This implies that every vertex of

DD has out-degree at most 2. Now, if T1 and T2 are two elements of type A in D
such that cv1(T1) = tr(T2) = u, by Lemma 4, we have aux(T2) = cv2(T1), which

means that E(T1)∪E(T2) contains the �ve edges in E(G) incident to u, and hence,

no other element of D contains edges incident to u. This implies that every vertex

of DD has out-degree at most 1, and hence DD consists of vertex-disjoint directed

cycles and isolated vertices as desired.
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3.3 Admissible decompositions

In this section, we present a new decomposition invariant, which we call admis-

sible decompositions, and conclude our proof. For that, we introduce an important

object, the exceptional pair. Let G be a {g, r}-graph, and let D be a decomposition

of G into trails of length 5. We say that a pair (T1, T2) of elements of D is an excep-

tional pair if T1 and T2 are elements of type A and C, respectively, and can be written

as T1 = a0a1a2a3a4a5 and T2 = b0b1b2b3b4b5 such that a2a3 ∈Mg,r, a2 = a5 = b3, and

a2a1, a3a4, b2b1, b4b3 ∈ Fg, a4a5, b3b2, b4b5 ∈ Fr, a1a0, b1b0 ∈Mg,r∪Fg∪Fr (see Figure

3.11). Note that since G is a simple graph, we have b4 6= a3. Also, if 2g + 2r 6= 0,

then we have b1 6= a3. This yields the following remark.

Remark 1. If G is a {g, r}-graph for which 2g+2r 6= 0 and (T1, T2) is an exceptional

pair, then T2 does not contain a hanging edge at cv(T1).

a0 a1

a2 a3

a4

b0
b1

b2
b4

b5

Figure 3.11: An exceptional pair.

An open chain is a sequence T0, T1, . . . , Ts−1 such that the following hold. (i) T0
is a free element of type A; (ii) Tj is an element of type A and tr(Tj) = cvi(Tj−1),

j ∈ {0, . . . , s − 2} and some i ∈ {1, 2}; and (iii) Ts−1 is an element of type C such

that (Ts−2, Ts−1) is an exceptional pair. The next step of our proof requires the

following variation of De�nition 2.

De�nition 3. We say that a decomposition D of a {g, r}-graph G into trails of

length 5 is admissible if the following hold.

(a) There is a hanging edge at every connection vertex, except possibly for at most

one secondary connection vertex cv2(T
′), and, in this case, there is an open

chain S = T0, . . . , Ts−2, Ts−1 in D, such that Ts−2 = T ′;

(b) Every element in D is either a path or an element of type A;

(c) If T ∈ D can be written as a0a1a2a3a4a5 and a0a1 ∈M , then a0 = a1 + g + r;

(d) The elements of type A in D are partitioned into A-chains and at most one open

chain.
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It is not hard to check that the decomposition given by Lemma 5 is an admissible

decomposition. Therefore, every {g, r}-graph such that 2g + 2r 6= 0 admits an

admissible decomposition. By performing some more exchanging of edges between

the elements of same A-chain of an admissible decomposition, we can show that an

admissible decomposition that minimizes its number of elements of type A is in fact

a P5-decomposition.

Theorem 3. Every {g, r}-graph for which 2g + 2r 6= 0 admits a P5-decomposition.

Proof. Let g and r be as in the statement, let G be a {g, r}-graph for which 2g+2r 6=
0, and put M = Mg,r. By Lemma 5, G admits an admissible decomposition. Let D
be an admissible decomposition of G that minimizes τ(D). In what follows, we prove

that τ(D) = 0. Suppose, for a contradiction, that τ(D) > 0. We divide that A-chains

into three types, according to the connections between its elements. Given i ∈ {1, 2},
we say that an A-chain S = T0, T1, . . . , Ts−1 is of type i if tr(Tj) = cvi(Tj−1) for every

j ∈ {0, . . . , s− 1}; and we say that S is a mixed A-chain if S is not of type 1 or 2.

Analogously to the proof of Lemma 5, in each step, we exchange edges between

some elements of D and obtain an admissible decomposition D′ into trails of length

�ve such that τ(D′) < τ(D), which is a contradiction to the minimality of D. To

check that D′ is an admissible decomposition, we observe the four following items:

(i) The only vertex that has a hanging edge of D but does not have a hanging edge

of D′ is the secondary connection vertex of an element T1 of type A, and in this case

there is an element T2 of type C such that (T1, T2) is an exceptional pair, and hence

De�nition 3(a) holds for D′; (ii) every element of D′ that is not an element of D, i.e.,
the elements involved in the exchange of edges, is a path or an element of type A,

and hence 3(b) holds for D′; (iii) every edge uv ∈M in the elements considered that

can be viewed as an end edge in D′ (some elements may be expressed by more than

two trails) either can be viewed as end edges in D or is obtained from an element

of type A and satis�es u = v + g + r, and hence De�nition 3(c) holds for D′; (iv)
either an open chain is reduced by one element, an A-chain is converted into an

open chain, or all the elements of an A-chain are replaced by paths of length 5.

Claim 4. Every A-chain in D is mixed.

Proof. Suppose, for a contradiction, that there is an A-chain S = T0, T1, . . . , Ts−1

of type 1 or 2. Let Tj = a0,ja1,ja2,ja3,ja4,ja5,j, where a5,j = a2,j, a2,ja3,j ∈ M ,

a1,ja0,j, a3,ja4,j ∈ Fg, a4,ja2,j ∈ Fr and a2,ja1,j ∈ M ∪ Fg ∪ Fr. For i ∈ {1, 2, 3, 4, 5},
the edge ai−1,jai,j is called the i-th edge of Tj. In what follows, we divide the proof

according to the type of S.

S is of type 1. Since S is of type 1, for each j = 0, . . . , s − 1, we have a3,j =

cv1(Tj) = tr(Tj+1) = a4,j+1, and hence, by Lemma 4, we have a2,j = cv2(Tj) =
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aux(Tj+1) = a1,j+1. Now, for each j = 0, . . . , s−1, let T ′j = a2,j+1a3,ja4,ja1,ja2,ja0,j+1

(see Figure 3.12). Note that T ′j = Tj − a1,ja0,j + a1,j+a0,j+1− a2,ja3,j + a2,j−1a3,j−1−
a4,ja2,j + a4,j+1a2,j+1. More speci�cally, we have a2,j+1a3,j = a4,j+1a5,j+1 is the 5-th

edge of Tj+1; a3,ja4,j is the 4-th edge of Tj; a4,ja1,j = a2,j−1a3,j−1 is the 3rd edge of

Tj−1; a1,ja2,j is the 2nd edge of Tj; a2,ja0,j+1 = a1,j+1a0,j+1 is the 1st edge of Tj+1.

Clearly, T ′j is a trail of length 5. Moreover, since, for each i ∈ {1, 2, 3, 4, 5}, the
element T ′j contains the i-th edge of an element of S, and, if j 6= j′, the elements T ′j
and T ′j′ contain the i-th edge of di�erent elements of S, the set D′ =

(
D \ {Tj : j =

0, . . . , s− 1}
)
∪{T ′j : j = 0, . . . , s− 1} is a decomposition of G into trails of length 5.

We may regard D′ as the decomposition obtained by reversing the direction of two

components of Fg, namely, the green edges in S, and applying the same strategy

used in Proposition 3.

In order to prove that T ′j is a path, we show that a2,j+1, a0,j+1 /∈
{a3,j, a4,j, a1,j, a2,j}. Note that, since, for each j ∈ {0, . . . , s − 1}, Tj is a path,

we have ai,j 6= ai′,j for every i 6= i′. Since G is a simple graph, we have

a2,j+1 /∈ {a3,j, a4,j, a2,j} and a0,j+1 /∈ {a3,j, a4,j, a1,j, a2,j}; and if a2,j+1 = a1,j, then

a4,j+1a2,j+1 and a4,j−1,a2,j−1 are two distinct red in-edges of a1,j, a contradiction.

a2,j+1

a3,j

a4,j

a1,j

a2,j

a0,j+1

Figure 3.12: Exchange of edges between the elements an A-chain of type 1 with �ve
elements in the proof of Claim 4.

We claim that D′ is an admissible decomposition. Indeed, the only vertices of

the elements of S that can be connection vertices of elements in D′ are the vertices
a0,j, for j = 0, . . . , s−1. But a hanging edge at a vertex a0,j is in Tj′ ∈ D if and only

if a0,j = a3,j′ for some j′ 6= j, and, in this case a3,j′ is not a connection vertex in D′

because all edges incident to it are in elements of {T ′j : j = 0, . . . , s− 1}. Therefore,
De�nition 3(a) holds for D′. Moreover, since T ′j is a path, for j = 0, . . . , s − 1,

De�nition 3(b) holds for D′. Also, every edge of M in an element of S is the

middle edge of an element T ′j , for some j ∈ {0, . . . , s− 1}, and hence De�nition 3(c)

holds for D′. Finally, D and D′ have the same number of open chain, and hence

De�nition 3(d) holds for D′. Therefore, D′ is an admissible decomposition of G such

20



that τ(D′) = τ(D)− s, a contradiction to the minimality of D.

S is of type 2. Since S is of type 2, for each j = 0, . . . , s−1, we have a2,j = cv2(Tj) =

tr(Tj+1) = a4,j+1. Now, for each j = 0, . . . , s − 1, let T ′j = a0,ja1,ja2,ja3,ja4,ja4,j−1

(see Figure 3.13). Clearly, T ′j is a trail of length 5. Note that T ′j = Tj − a4,ja2,j +

a4,j−1a2,j−1, i.e., T ′j is the element obtained from Tj by exchanging its 5-th edge by

the 5-th edge of Tj−1. Thus, the set D′ =
(
D \ {Tj : j = 0, . . . , s − 1}

)
∪ {T ′j : j =

0, . . . , s − 1} is a decomposition of G into trails of length 5. We may regard D′

as the decomposition obtained by reversing the direction of one component of Fr

and applying the same strategy used in Proposition 3. In order to prove that T ′j is

a path, we show that a4,j−1 /∈ {a0,j, a1,j, a2,j, a3,j, a4,j}. Note that, since, for each

j ∈ {0, . . . , s−1}, Tj is a path, we have ai,j 6= ai′,j for every i 6= i′. Since G is a simple

graph, we have a4,j−1 /∈ {a2,j, a3,j, a4,j}; also, by Lemma 2, we have a4,j−1 6= a0,j;

and if a4,j−1 = a1,j, then a2,ja1,j and a3,j−1a4,j−1 are two distinct green in-edges of

a4,j−1, a contradiction.

a0,ja1,j

a2,j
a4,j

a4,j−1

a3,j

Figure 3.13: Exchange of edges between the elements an A-chain of type 2 with �ve
elements in the proof of Claim 4.

We claim that D′ is an admissible decomposition. Indeed, the only vertices that

have hanging edges in D and may not have hanging edges in D′ are the vertices a3,j
and a4,j = a2,j−1, for j = 0, . . . , s−1, but these vertices are connection vertices of the

elements in S, and hence can't be connection vertices of elements in D′. Therefore,
De�nition 3(a) holds for D′. Moreover, since T ′j is a path, for j = 0, . . . , s − 1,

De�nition 3(b) holds for D′. Also, every edge of M in an element of S is either the

middle edge or an end edge of an element T ′j , for some j ∈ {0, . . . , s− 1}, and hence

De�nition 3(c) holds for D′. Finally, D and D′ have the same number of open chain,

and hence De�nition 3(d) holds for D′. Therefore, D′ is an admissible decomposition

of G such that τ(D′) = τ(D)− s, a contradiction to the minimality of D.

Claim 5. Every A-chain contains at least four elements

Proof. Let S be an A-chain in D with at most three elements. First, note that if S

contains two elements, then G contains a parallel edge, a contradiction. Therefore,
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we may assume that S contains three elements T1, T2 and T3. By Claim 4, we may

assume tr(T1) = cv2(T3), tr(T2) = cv1(T1) and tr(T3) = cvi(T2), for i ∈ {1, 2}. In

what follows, we divide the proof depending on whether i = 1 or i = 2.

Let T1 = a0a1a2a3a4a5, T2 = b0b1b2b3b4b5 and T3 = c0c1c2c3c4c5 be the elements

of S where a4 = tr(T1) = cv2(T3) = c2, b4 = tr(T2) = cv1(T1) = a3 and c4 = tr(T3) =

cvi(T2).

Case i = 1. In this case, c4 = tr(T3) = cv1(T2) = b3. Since b3 = c4, we have

b2 = c1 and c0 = a1. Put T ′1 = a0a1a2a3a4c1, T ′2 = b0b1b2b4b3c2, T ′3 = c0c1c4c3c2a2

and D′ =
(
D\{T1, T2, T3}

)
∪{T ′1, T ′2, T ′3}. Note that D′ is a decomposition of G into

trails of length 5. We claim that T ′1, T
′
2 and T ′3 are all paths. By Lemma 3, T ′2 is

a path. Since G is simple, c1 /∈ {a2, a3, a4} and a2 /∈ {c1, c2, c3, c4}. By Lemma 2,

we have c1 6= a0 and a2 6= c0. Therefore, T ′3 is of type a path. Finally, if c1 = a1,

then c2c1 and a2a1 are two green out-edges at a1, a contradiction. Therefore, T ′1 is

a path.

To check that D′ is an admissible decomposition �rst note that hangD′(cvi(Tj)) ≥
hangD(cvi(Tj)) for every trail Tj ∈ D′. Thus, de�nition 3(a) holds for D. As

seen above, the new elements are all paths. Thus, de�nition 3(b) holds. Since

D is admissible and the new elements are paths, the elements of type A are still

partitioned into A-chains. Thus, 3(d) holds for D′. Also, since T1 is an element of

type A, we have a2 = a3 + g + r, and hence De�nition 3(c) holds for D′. Therefore,
D′ is an admissible decomposition of G such that τ(D′) = τ(D)− 3, a contradiction

to the minimality of D.

a0
a1

a3 = b4

a4

b0
b1 = a2

b3 = c4c0
c1 = b2

c2 c3

a0
a1

a3 = b4

a4

b0
b1 = a2

b3 = c4c0
c1 = b2

c2 c3

Figure 3.14: Exchange performed in the proof of Claim 5 in the case tr(T3) = cv1(T2).

Case i = 2. In this case, c4 = tr(T3) = cv2(T2) = b2. Put T ′1 = a0a1a2a4a3b5,

T ′2 = b0b1b4b3b2c2, T ′3 = c0c1c2c3c4b1 and let D′ =
(
D \ {T1, T2, T3}

)
∪ {T ′1, T ′2, T ′3}.

Note that D′ is a decomposition of G into trails of length 5. In what follows, we prove

that T ′1, T
′
2 and T

′
3 are all paths. By Lemma 3, T ′1 is a path. Since G is simple, we

have c2 /∈ {b1, b2, b3, b4} and b1 /∈ {c2, c3, c4}. By Lemma 2, b2 6= a0, c2 6= b0, b1 6= c0.

Therefore, T ′2 is a path. If b1 = c1, then b2b1 and c2c1 are two green in-edges at c1,

a contradiction. Therefore, T ′3 is also a path.

To check that D′ is an admissible decomposition �rst note that hangD′(cvi(Tj)) ≥
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hangD(cvi(Tj)) for every trail Tj ∈ D′. Thus, de�nition 3(a) holds for D. As

seen above, the new elements are all paths. Thus, de�nition 3(b) holds. Since

D is admissible and the new elements are paths, the elements of type A are still

partitioned into A-chains. Thus, 3(d) holds for D′. Also, since T1 and T3 are

elements of type A, we have a2 = a3 + g+ r, and hence De�nition 3(c) holds for D′.
Therefore, D′ is an admissible decomposition of G such that τ(D′) = τ(D) − 3, a

contradiction to the minimality of D.

a0
a1

a3 = b4

a4

b0 = c1

b1 = a2

b2 = c4
b3c0

c2 c3

a0
a1

a3 = b4

a4

b0 = c1

b1 = a2

b2 = c4
b3c0

c2 c3

Figure 3.15: Exchange performed in the proof of Claim 5 in the case tr(T3) = cv2(T2)

Claim 6. D contains an open chain.

Proof. Suppose, for a contradiction, that there is no open chain in D. Since τ(D) >

0, D contains an A-chain S = T0, T1, . . . , Ts−1. By Claim 4, S is a mixed A-chain.

Then we can �nd three consecutive elements in S, say Tj, Tj+1, Tj+2, such that

cv2(Tj) = tr(Tj+1) and cv(Tj+1) = tr(Tj+2). Since S is cyclic, i.e., tr(T0) = cvi(Ts−1),

for some i ∈ {1, 2}, we may suppose, without loss of generality, that j = 0. By

Claim 5, there is an element T3 ∈ D such that tr(T3) = cvi(T2), for some i ∈ {1, 2}.
In what follows, the proof is divided according to i. Let T0 = a0a1a2a3a4a5, T1 =

b0b1b2b3b4b5, T2 = c0c1c2c3c4c5, and T3 = d0d1d2d3d4d5, where a5 = a2, b5 = b2,

c5 = c2, d5 = d2, and a2a3, b2b3, c2c3, d2d3 ∈ M . By the choice of T0, T1, and T2,

we have b4 = tr(T1) = cv2(T0) = a2, c4 = tr(T2) = cv1(T1) = b3. The exchanges

of edges performed here are analogous to the exchanges performed on the proof of

Claim 2 of Lemma 5 for elements of type A.

Case tr(T3) = cv1(T2). In this case, we have d4 = c3 and, by Lemma 4, d2 = c1.

Put T ′1 = b0b1b2b4b3c2, T ′2 = c0c1c4c3c2d0, T ′3 = c1d1d2d3d4d2 (see Figure 3.16), and

let D′ =
(
D \ {T1, T2, T3}

)
∪ {T ′1, T ′2, T ′3}. Note that D′ is a decomposition of G

into trails of length 5. By Lemma 3, T ′1 is an element of type C. In what follows,

we prove that T ′2 is a path and T ′3 is an element of type A. Since G is simple, we

have d0 /∈ {c1, c2, c3, c4}, and c1 /∈ {d1, d2, d4}. By Lemma 2, d0 6= c0, and hence,

T ′2 is a path. If c1 = d3, then b2b3 and d2d3 are two edges of M incident to c1, a

contradiction. Therefore, T ′3 is an element of type A.
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b0
b1

b3 = c4

b4

c0
c1 = b2

c3 = d4d0
d1 = c2

d2 d3

b0
b1

b3 = c4

b4

c0
c1 = b2

c3 = d4d0
d1 = c2

d2 d3

Figure 3.16: Exchange performed in the proof of Claim 6 in the case tr(T3) = cv1(T2)
.

To check that D′ is an admissible decomposition �rst note that hangD′(v) ≥
hangD(v) for every v ∈ V (G) \ {a2}. Note also that b4b2 is a hanging edge at a2 in

D but not in D′. However, (T1, T
′
2) is an exceptional pair. Thus, since c3 is not a

connection vertex in D′, the element T ′3 is free. Therefore, S ′ = T ′3, . . . Ts−1T1T
′
2 is

an open chain, and hence De�nition 3(a) holds for D′. Since, T ′1 and T ′2 are paths

and T ′3 is an element of type A, De�nition 3(b) holds for D′. Since no edge of M

that is not a hanging edge in D is a hanging edge in D′, De�nition 3(c) holds for

D′. Finally, note that an element T of type A in D \ {T1, T2, T3} is either in an

A-chain of D di�erent from S, which implies that T is in an A-chain of D′, or is in
S, which implies that T is in S ′. Thus, De�nition 3(d) holds for D′. Therefore, D′

is an admissible decomposition of G such that τ(D′) = τ(D)− 2, a contradiction to

the minimality of D.
Case tr(T3) = cv2(T2). In this case, we have d4 = c2. Put T ′1 = b0b1b2b4b3c2, T ′2 =

c0c1c4c3c2d2, T ′3 = c1d4d3d2d1d0 (see Figure 3.17), and let D′ =
(
D \ {T1, T2, T3}

)
∪

{T ′1, T ′2, T ′3}. Note that D′ is a decomposition of G into trails of length 5. By

Lemma 3, T ′1 is an element of type C. In what follows, we prove that T ′2 and T ′3

are paths. Since G is simple, we have d2 /∈ {c1, c2, c3, c4}, and c1 /∈ {d2, d3, d4}. By
Lemma 2, d2 6= c0, and c1 6= d0. Therefore, T ′2 is a path. If c1 = d1, then d2d1 and

c2c1 are two green in edges of c1. Therefore, T ′3 is a path.

b0
b1

b3 = c4

b4

c0 = d1

c1 = b2

c2 = d4
c3d0

d2 d3

b0
b1

b3 = c4

b4

c0 = d1

c1 = b2

c2 = d4
c3d0

d2 d3

Figure 3.17: Exchange performed in the proof of Claim 6 in the case tr(T3) = cv2(T2)
.

To check that D′ is an admissible decomposition �rst note that hangD′(v) ≥
hangD(v) for every v ∈ V (G) \ {a2}. Note also that b4b2 is a hanging edge at a2 in
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D but not in D′. However, (T1, T
′
2) is an exceptional pair. Thus, since d2 and d3

are not connection vertices in D′, the element T4 (or T1, if s = 4) is free. Therefore,

S ′ = T4, . . . Ts−1T1T
′
2 is an open chain, and hence De�nition 3(a) holds for D′. Since,

T ′1, T
′
2 and T

′
3 are paths, De�nition 3(b) holds for D′. Since no edge of M that is not

a hanging edge in D is a hanging edge in D′, De�nition 3(c) holds for D′. Finally,
note that an element T of type A in D \ {T1, T2, T3} is either in an A-chain of D
di�erent from S, which implies that T is in an A-chain of D′, or is in S, which implies

that T is in S ′. Thus, De�nition 3(d) holds for D′. Therefore, D′ is an admissible

decomposition of G such that τ(D′) = τ(D)− 3, a contradiction to the minimality

of D.

Let S = T0, T1, . . . , Ts−1 be an open chain in D. Let Tj = a0,ja1,ja2,ja3,ja4,ja5,j,

for j ∈ {0, . . . , s− 1}, where a2,ja3,j ∈M and a5,j = a2,j for j ∈ {0, . . . , s− 2}.

Claim 7. T1 is an element of type A and tr(T1) = cv1(T0).

Proof. Suppose, for a contradiction, that T1 is not an element of type A or tr(T1) =

cv2(T0). We claim that T1 does not contain a hanging edge at cv1(T0). Indeed,

if T1 is not an element of type A, then, by the de�nition of open chain, T1 is an

element of type C, and hence, by Remark 1, T1 does not have a hanging edge

at cv1(T0); and if T1 is an element of type A for which tr(T1) = cv2(T0), then

we have a4,1 = tr(T1) = cv2(T0) = a2,0, and hence, if a1,1 = a3,0, then we have

a4,1 + r + g = a1,1 = a3,0 = a2,0 − r − g, which implies that 2g + 2r = 0, a

contradiction. Therefore, T1 does not contain a hanging edge at cv1(T0).

However, by De�nition 3(a), there is a hanging edge at cv1(T0). Thus, let T =

u0u1u2u3u4u5 be an element of D \ {T0, T1} that contains a hanging edge, say u1u0,

at cv1(T0). Note that all the edges incident to a2,0 are in E(T0) ∪ E(T1). Let T ′0 =

a0,0a1,0a2,0a4,0a3,0u0 and T ′ = a2,0u1u2u3u4u5 and put D′ =
(
D\{T0, T ′}

)
∪{T ′0, T ′}.

By Lemma 3, T ′0 is a path; and since all the edges incident to a2,0 are in E(T0)∪E(T1),

we have a2,0 /∈ {u1, u2, u3, u4, u5}, and hence if T is a path (resp. an element of type

A), then T ′ is a path (resp. an element of type A). Thus De�nition 3(b) holds for

D′.
To check that D′ is an admissible decomposition �rst note that hangD′(v) ≥

hangD(v) for every v ∈ V (G) \ {a4,0}. Thus, since T0 is a free element, a4,0 is not

a connection vertex in D, and hence a4,0 is not a connection vertex in D′. Note

also that T1 is either an element of type C or a free element of type A, and hence

S ′ = T1, . . . , Ts−1 is an open chain. Thus, De�nition 3(a) holds for D′. Also, since

T0 is an element of type A, we have a2,0 = a3,0 + g + r, and hence De�nition 3(c)

holds for D′. Finally, note that an element T of type A in D \ {T0} is either in an

A-chain of D di�erent from S, which implies that T is in an A-chain of D′, or is in
S, which implies that T is in S ′. Thus, De�nition 3(d) holds for D′. Therefore, D′
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is an admissible decomposition of G such that τ(D′) = τ(D)− 1, a contradiction to

the minimality of D.

By Claim 7, we have s ≥ 3, and hence, there is an element T2 in S. Note that,

by Lemma 4, since tr(T1) = cv1(T0), we have aux(T1) = cv2(T0). This implies that

a1,1a0,1 ∈ Fr because all the edges incident to a1,1 = cv2(T0) are in E(T0) ∪ E(T1).

Claim 8. T2 is of type A.

Proof. Suppose, for a contradiction, that T2 is not of type A, then T2 is an

element of type C and (T1, T2) is an exceptional pair. Thus, we can write

T2 = a0,2a1,2a2,2a3,2a4,2a5,2 such that a2,1 = a5,1 = a3,2, and a2,2a1,2, a4,2a3,2 ∈ Fg,

a3,2a2,2, a4,2a5,2 ∈ Fr, a1,2a0,2 ∈ Mg,r ∪ Fg ∪ Fr. We claim that a0,1 = a1,2. Indeed,

since a1,1a0,1 ∈ Fr, we have a0,1 = a1,1 + r = a2,1 + g + r, but by the de�nition

of type C, we have a1,2 = a2,2 + g = a3,2 + r + g. Thus, since a3,2 = a2,1, we ob-

tain a0,1 = a1,2. Now, put T ′0 = a0,0a1,0a2,0a4,0a3,0a2,1, T ′1 = a1,1a4,1a3,1a2,1a2,2a0,1,

and T ′2 = a0,2a1,2a1,1a3,2a4,2a5,2, and put D′ =
(
D \ {T0, T1, T2}

)
∪ {T ′0, T ′1, T ′2}. By

Lemma 3, T ′0 is a path; since G is a simple graph, a2,2 /∈ {a1,1, a4,1, a3,1, a2,1, a2,2, a0,1},
and hence T ′1 is a path; and since all edges incident to a1,1 are in E(T0)∪E(T1), we

have a1,1 /∈ V (T2), which implies that T ′2 is a path. Thus De�nition 3(b) holds for

D′.

a0,0
a1,0

a2,0 = a1,1 a3,0 = a4,1

a4,0

a0,1 = a1,2
a2,1 = a3,2

a3,1

a0,2 a2,2 a4,2 a5,2

a0,0
a1,0

a2,0 = a1,1 a3,0 = a4,1

a4,0

a0,1 = a1,2
a2,1 = a3,2

a3,1

a0,2 a2,2 a4,2 a5,2

Figure 3.18: Exchange of edges between two elements of type A and another element
of type E in the proof of Claim 8.

To check that D′ is an admissible decomposition �rst note that hangD′(v) ≥
hangD(v) for every v ∈ V (G) \ {a4,0, a1,1, a3,1}. Thus, since T0 is a free element, a4,0
is not a connection vertex in D, and hence a4,0 is not a connection vertex in D′;
and since the edges of M incident to a1,1 and a3,1 are in T ′1, a1,1 and a3,1 are not

connection vertices in D′. Note also that no element of S is in D′, and hence there

are no open chains in D′. Thus, De�nitions 3(a) and 3(d) hold for D′. Also, since T0
is an element of type A, we have a2,0 = a3,0+g+r, and hence De�nition 3(c) holds for

D′. Therefore, D′ is an admissible decomposition of G such that τ(D′) = τ(D)− 2,

a contradiction to the minimality of D.
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Now, by Claim 8, we have s ≥ 4. In what follows, we divide the proof depending

on whether tr(T2) = cv1(T1) or tr(T2) = cv2(T1). This proof is analogous to the

proof of Claim 6.

Case tr(T2) = cv1(T1). By Lemma 4, we have a1,2 = aux(T2) = cv2(T1) = a2,1. Put

T ′0 = a0,0a1,0a2,0a4,0a3,0a2,1, T ′1 = a0,1a1,1a4,1a3,1a2,1a0,2, T ′2 = a1,1a1,2a2,2a3,2a4,2a2,2

(see Figure 3.19), let D′ =
(
D \ {T0, T1, T2}

)
∪ {T ′0, T ′1, T ′2}, and let S ′ =

T ′2, T3, . . . , Ts−1. Note that D′ is a decomposition of G into trails of length 5. By

Lemma 3, T ′0 is an element of type C. In what follows, we prove that T ′1 is a path and

T ′2 is an element of type A. Since G is simple, we have a0,2 /∈ {a1,1, a2,1, a3,1, a4,1},
and a1,1 /∈ {a1,2, a2,2, a4,2}. By Lemma 2, a0,2 6= a0,1, and hence, T ′1 is a path. If

a1,1 = a3,2, then a2,0a3,0 and a2,2a3,2 are two edges of M incident to a1,1, a contra-

diction. Therefore, T ′2 is an element of type A.

a0,0
a1,0

a3,0 = a4,1

a4,0

a0,1
a1,1 = a2,0

a3,1 = a4,2a0,2
a1,2 = a2,1

a2,2 a3,2

a0,0
a1,0

a3,0 = a4,1

a4,0

a0,1
a1,1 = a2,0

a3,1 = a4,2a0,2
a1,2 = a2,1

a2,2 a3,2

Figure 3.19: Exchange performed in the proof of Claim 6 in the case tr(T3) = cv1(T2)
.

To check that D′ is an admissible decomposition �rst note that hangD′(v) ≥
hangD(v) for every v ∈ V (G) \ {a4,0}, but since T0 is free, a4,0 is not a connection

vertex in D, and hence a4,0 is not a connection vertex in D′. Thus, since a3,1 is not a
connection vertex in D′, the element T ′2 is free. Therefore, S

′ is an open chain, and

hence De�nition 3(a) holds for D′. Since, T ′0 and T ′1 are paths and T ′2 is an element

of type A, De�nition 3(b) holds for D′. Since no edge of M that is not a hanging

edge in D is a hanging edge in D′, De�nition 3(c) holds for D′. Finally, note that an
element T of type A in D\{T0, T1, T2} is either in an A-chain of D di�erent from S,

which implies that T is in an A-chain of D′, or is in S, which implies that T is in S ′.

Thus, De�nition 3(d) holds for D′. Therefore, D′ is an admissible decomposition of

G such that τ(D′) = τ(D)− 2, a contradiction to the minimality of D.

Case tr(T3) = cv2(T2). Put T ′0 = a0,0a1,0a2,0a4,0a3,0a2,1, T ′1 = a0,1a1,1a4,1a3,1a2,1a2,2,

T ′2 = a0,2a1,2a2,2a3,2a4,2a1,1 (see Figure 3.20), let D′ =
(
D\{T0, T1, T2}

)
∪{T ′0, T ′1, T ′2},

and let S ′ = T3, . . . , Ts−1. Note that D′ is a decomposition of G into trails of

length 5. By Lemma 3, T ′1 is an element of type C. In what follows, we prove that

T ′1 and T ′2 are paths. Since G is simple, we have a2,2 /∈ {a1,1, a2,1, a3,1, a4,1}, and
a1,1 /∈ {a2,2, a3,2, a4,2}. By Lemma 2, a2,2 6= a0,1, and a1,1 6= a0,2. Therefore, T ′2
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is a path. If a1,1 = a1,2, then a2,2a1,2 and a2,1a1,1 are two green in edges of a1,1.

Therefore, T ′2 is a path.

a0,0
a1,0

a2,0 = a1,1 a3,0 = a4,1

a4,0

a2,1 a3,1a0,2
a1,2 = a0,1

a2,2 a3,2

a4,2

a0,0
a1,0

a2,0 = a1,1 a3,0 = a4,1

a4,0

a2,1 a3,1a0,2
a1,2 = a0,1

a2,2 a3,2

a4,2

Figure 3.20: Exchange performed in the proof of Claim 6 in the case tr(T3) = cv2(T2)
.

To check that D′ is an admissible decomposition �rst note that hangD′(v) ≥
hangD(v) for every v ∈ V (G) \ {a4,0}, but since T0 is free, a4,0 is not a connection

vertex in D, and hence a4,0 is not a connection vertex in D′. Thus, since a2,1 is not
a connection vertex in D′, the element T ′2 is free. Therefore, S ′ is either an open

chain or contains only one element of type C, and hence De�nition 3(a) holds for

D′. Since, T ′0, T
′
1 and T ′2 are paths, De�nition 3(b) holds for D′. Since no edge of

M that is not a hanging edge in D is a hanging edge in D′, De�nition 3(c) holds

for D′. Finally, note that an element T of type A in D \ {T0, T1, T2} is either in an

A-chain of D di�erent from S, which implies that T is in an A-chain of D′, or is in
S, which implies that T is in S ′. Thus, De�nition 3(d) holds for D′. Therefore, D′

is an admissible decomposition of G such that τ(D′) = τ(D)− 3, a contradiction to

the minimality of D. This concludes the proof.

Recall that a {g, r}-graph G is a 5-regular graph that contains the Cayley graph

X(Γ, S), where S = {g,−g, r,−r}. Thus, since S is closed under taking inverses, G

is also a {g,−r}-, {−g, r}-, {−g,−r}-graph, which yields the following corollary of

Theorem 3.

Corollary 4. Every {g, r}-graph for which 2g + 2r 6= 0 or 2g − 2r 6= 0 admits a

P5-decomposition.

Finally, to show that every {g, r}-graph admits a P5-decomposition, we consider

the case when 2g + 2r = 0 and 2g − 2r = 0. As a corollary of Proposition 1 and

Lemma 1 we obtain the following result.

Theorem 4. Every {g, r}-graph such that 2g + 2r = 0 and 2g − 2r = 0 admits an

Mg,r-centered decomposition.

Proof. Let G be a {g, r}-graph for which 2g+ 2r = 0 and 2g− 2r = 0 and put M =

Mg,r. Note that we also have 4g = 4r = 0. Let u be a vertex of G, and let H be the
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component of G\E(M) that contains u. In what follows, we prove that H is a copy

of K4,4. By the commutative property of SCG, if v ∈ V (H), we have v = u+ ig+jr,

where i, j ∈ N. Since 4g = 4r = 0, we may assume i, j ∈ {0, 1, 2, 3}. Moreover, since

2g − 2r = 0 (and hence 2g = 2r), we may assume j ∈ {0, 1}. Therefore, there are

eight vertices inH, namely, V (H) = {u, u+g, u+2g, u+3g, u+r, u+2g+r, u+3g+r}.
We claim that H is bipartite. Indeed, suppose that there is an odd cycle C in H.

Then, there is there is an element x ∈ V (C) such that x+ig+jr = x, where i, j ∈ N.
Note that i+ j can be obtained from the length of C by ignoring pairs of edges with

the same color and di�erent directions. Since C is odd, one between i and j is odd.

Suppose, without loss of generality, that i is odd, and hence j is even. Note that,

since 2g = 2r, we have jr = jg. Therefore, (i + j)g = ig + jr = 0. Let s ∈ {1, 3}
be such that i+ j = 4q + s for some q ∈ N. Then we have 0 = (i+ j)g = 4qg + sg,

which implies sg = 0. Thus, if s = 1, then g = 0; and if s = 3, then g = 4g−sg = 0,

a contradiction to the de�nition of SCG. Thus, since H is 4-regular, H is a copy

of K4,4. Now, since every component of G \ E(M) is isomorphic to K4,4, by using

induction on the number of components of G \ E(M), one can prove that G is

an M -constructable graph, and hence by Corollary 3, G admits an M -centered

decomposition as desired.

The main result of this dissertation is a straightforward consequence of Corol-

lary 4 and Theorem 4.

Theorem 5. Every {g, r}-graph admits a P5-decomposition.
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Chapter 4

Conclusion and future works

In this dissertation, we veri�ed Conjecture 3 for (i) (2k + 1)-regular graphs con-

taining a spanning 2k-regular power of cycle, and (ii) 5-regular graphs containing

a spanning 4-regular Cayley graph. We believe that the techniques developed here

can be extended for a more general class of graphs, such as Schreier Coset Graph.

We mention that Schreier coset graphs is a useful tool for deciding whether certain

groups are in�nite, and also proving theorems about groups generated by permuta-

tions. (See [5]).

Let G be a group and let H be a subgroup of G. For some s ∈ G, we de�ne the
right coset of H corresponding to s as the set Hs = {hs : h ∈ H}. Left coset can

be de�ned analogously. Let g1, . . . , gr be a sequence in G whose members generate

G, the Schreier Right Coset Graph (SRCG) is de�ned as follows. Its vertex set is

the set of right cosets of H in G, for each coset Hi and each generator gi there is an

edge from Hi to the right coset Higi. Note that a Cayley Graph is an SRCG where

H = {id} i.e., SRCG is a generalization of a Cayley �color� graph using cosets of

some speci�ed subgroup as vertices instead of group elements. In 1977, Gross [12]

showed that every connected regular graph of even degree is an SRCG. This implies

that, if we extend our result for 5-regular graphs that contain any SRCG, we verify

the conjecture for all 5-regular graphs containing a perfect matching.

Finally, we can also explore others graphs containing special spanning Cayley

graphs. For instance, a natural step is to examine 7-regular graphs containing a

spanning 6-regular Cayley graph or a spanning 4-regular Cayley graph. Also, note

that the de�nitions of simple commutative generator and {g, r}-graph are equivalent

to Cayley graphs under the restriction of the equation g + r = r + g for every pair

of generators. Therefore, we plan to explore Cayley graphs generated by others

equations, such as g+ r 6= r+ g, which would extend our result for 5-regular graphs

containing every spanning 4-regular Cayley graph.
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