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Abstract

In this paper, we address the problem of humanitarian aids distribution across refugee camps in war-ridden
areas from a network design perspective. We show that the problem can be modeled as a variant of multi-
period hub location problem with a particular demand pattern resulted by the user’s behavior. The problem
has been motivated by a case study of Lebanese experience in Syrian war refugee accommodation. We elabo-
rate on the complexity and real-life constraints and, propose a compact formulation of a mathematical model
of the problem. We then show that modeling the problem using a Benders paradigm drives O(n3) variables
of the original compact model unnecessary in addition to the constraints that are being projected out in a
typical Benders decomposition. Additionally, we identify several classes of valid inequalities together with
efficient separation procedures leading to a cut-and-Benders approach. Our extensive computational exper-
iments on the case study with real data as well as randomly generated instances proves the performance of
proposed solution methods.

Keywords: Hub-and-spoke network design, distribution, humanitarian aids, refugees, mateheuristics.

1. Introduction

The emergency situations including wars and natural disasters introduce fragility for civilians and occur-
rence of urgent requirements. Loosely speaking, in cases of natural disasters, today’s technology is to a high
extent able to foresee some phenomena and the approximate duration they may last long. However, when
it comes to a war situation, an anticipation and prediction of duration it may last becomes very difficult.
In reality, all of a sudden, many stakeholder (with political and financial interests) may get involved and a
very dynamic atmosphere maybe developed, making it very difficult (if not impossible) to foresee the devel-
opment even over a very short period of the time. Therefore, any predictive/preventive plan becomes less
realistic.

Generally speaking, in case of natural disasters, normally the impacted geographical region is relatively
restricted and as a consequence, a reconstruction can be started almost immediately, or at least relatively
very quickly in the aftermath of the event and people will be able to return to their residential areas after-
wards; while, in the war condition, everything is normally of a different nature. In wars, damages usually
are propagated and distributed very quickly across a relatively very wider area. The longer the war lasts,
the less becomes the likelihood of any quick return of the refugees back to their homes (those fled out of
the region1). This is mainly due to the deteriorated economic conditions hindering the reconstruction until

∗Corresponding author, r.n.monemi@gmail.com
1Here, unless said otherwise, by the word ’refugee’ we refer to those people who had to leave their homes and seek residing elsewhere

due to the war condition, independent of being recognized/registered by the UNHCR or not.
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a stability is re-established in that political and economic ecosystem. Until then, the UNHCR-recognized
refugees are entitled to some supports including humanitarian aids to overcome their essential needs.

A most recent case of this situation is already happening in Syria where a multitude of players have
got involved and the situation developed since the unrest in the aftermath of the so called Arab Spring has
turned into a full-fledged chaotic and asymmetric war spread over a wide region from the south approaching
the capital of Iraq, from the east to the boarder villages in Lebanon and up until the Jordanian boarders.
According to the UNHCR2, Syrian war has caused 6.6 million internally displaced persons, 13.1 million peo-
ple in need inside Syria and 2.98 million people in hard-to-reach and besieged areas. Table 1 reports the
statistics reported by the UNHCR3. It must be noted that this only concerns the registered refugees and not
all-inclusive.

Location Name Source Data date Population
Turkey Government of Turkey, UNHCR 18 Oct 2018 63.7% 3,587,930
Lebanon UNHCR 30 Sep 2018 16.9% 952,562
Jordan UNHCR 24 Oct 2018 11.9% 672,578
Iraq UNHCR 30 Sep 2018 4.4% 250,184
Egypt UNHCR 30 Sep 2018 2.3% 131,504
Other (North Africa) UNHCR 15 Mar 2018 0.6% 33,545

Table 1: Total Persons of Concern by Country of Asylum.

One observes that Lebanon, together with Turkey account for more than 80% of refugees when it comes
to the registered refugees. According to the sources within the Lebanon, in 2017, this number reached 1.5
million, which stands for a government estimation accounting for both UNHCR-registered displaced Syrians
and non-registered ones.

Lebanese Republic is a country of 6.082 million population with almost half of its borders faced to the
Mediterranean Sea and neighbor with two countries Figure 1a. Neither being located in the most peaceful
neighborhood in the world nor its political conditions are the most stable one around the globe. The main
mode of transport is road for domestic transportation and due to the geographical topology and environ-
mental barriers and conditions, the country does not run any known railway system. Although the country’s
dimensions are quite limited to an area of 10,452 km2, the hilly nature of territory causes long travel time
between pairs of theoretically close locations and therefore imposing accessibility issue for distribution needs
in many cases. Figure 1b depicts elevation plan across this territory.

Since the start of war in Syria, the population of Lebanon has increased by a factor of 25.6% by Syrians,
0.5% by the Palestinian refugees from Syrian and 0.6% by the Lebanese returnees from Syria. In Lebanon,
according to the UNHCR, life is a daily struggle for more than a million Syrian refugees, who have little or
no financial resources. Around 70% live below the poverty line. There are no formal refugee camps and,
as a result, Syrians are scattered throughout more than 2,100 urban and rural communities and locations,
often sharing small basic lodgings with other refugee families in overcrowded conditions4.

Lebanese authority have divided Lebanon into 26 districts at the centroid of the circles depicted in Fig-
ure 2a. The circles diameters are proportional to the population of refugees residing in those regions.
Historically, for the almost half a million Palestinians living in camps in Lebanon, there has been a number
of Distribution Centers (DC) serving those camps across the country. In Figure 2b, the centroid represent

2http://www.unhcr.org/syria-emergency.html
3https://data2.unhcr.org/en/situations/syria
4http://www.unhcr.org/syria-emergency.html
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(a) Lebanon and its neighborhood. (b) Map of elevation.

Figure 1: Geographical condition of Lebanon.

# days # percentage of show-up
1 100%
2 50% and 50%
3 38%, 24% and 38%
4 31%, 21%, 14% and 34%
5 23%, 18%, 18%, 20% and 21%

Table 2: The user’s behavior for different planning horizon lengths.

locations of camps and the diameters are proportional to the population accommodated in those regions.
The red circles represent the DCs and the main one is in the region of Beirut (annotated in the figure). In
the case of Syrian refugees, as in Figure 2a, there are no dedicated DCs.

On the other hand, human factors or user’s behavior is another complicating factor, too. The delivery
packages of humanitarian aids for a given district usually takes place within a certain interval of time say a
week (five working days). A few loaded trucks leave the Main Warehouse (MW) to the districts on a daily
basis. While the number of people to be served –during the planning horizon– in each zone is known in ad-
vance (due to the known historical data, with a good precision), the number of people showing up to collect
their packages depends on the day of distribution. Empirical studies shows that if a 3-day distribution plan
is considered, the first and last days are the days with highest percentage (around 38%) of people showing
up while the second day attracts the minimum percentage (around 24%) of refugees showing up to collect
their packages (see Figure 3). The demand pattern for various planning horizon length is depicted in Table 2.

In general, there is a Main Warehouse (MW), which acquires the nutrition and other essential require-
ments, needed for developing packages in the form of baskets of given amount of calories, to be sent to the
consumers. The preparation of packages are to be done in MWs. Once the packages are formed, depending
on the distribution plan, they are loaded on a fleet of trucks and LGVs and are sent to the selected regional
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(a) Spatial distribution of Syrian refugees across the Lebanese territory.

(b) Spatial distribution of Palestinian refugees camps in Lebanon.

Figure 2: Spatial distribution of Syrian and Palestinian refugees and the Distribution Centers (DCs).
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Figure 3: User behavior in collecting the packages of humanitarian aids from the allocated DCs.

DCs. The regional DCs are represented by hub nodes in the model. The next morning, trucks start from the
regional DCs and from there, they are deployed to selected points of delivery (the delivery points, other way
of saying the refugees camps, are the nodes which are represented by the "spoke nodes" in the model). The
delivery points (spoke nodes) are to be visited in a sequential order. every unloaded truck will be discharged
from the rest of the operation/itinerary and will leave the fleet immediately. At the end of the day, there
must not be any truck left fully or partially loaded. It must be noted that among the locations to be served
(the centroid) there are locations with access issues for the trucks; therefore such points are served directly
from the DCs using chartered services through a third-party service provider. These points are represented
by "isolated nodes" in the model. Once a node received its services (in one, two or three days, depending on
the planning), it will no more be considered as a potential spoke(or spur) node until the end of the current
planning horizon.

Given the above representation, the problem and the targeted operation fits in with the framework of
multi-period Hub-and-Spoke network structures. The objective is to identify the location of a subset of hub
nodes (DCs) in each period of the horizon and establish a network with a multi-level structure. The demand
of every node at each period is a percentage of the whole demand during the entire planning horizon and
depends on the number of antecedent visits to the same node during the same planning horizon. The flows
are unidirectional, only from the Main Warehouse (MW) to the final destinations. The fleet of transporters
is assumed to be homogeneous.

1.1. Literature review

The hub-and-spoke structures have their roots in the seminal work of Hakimi (1964) –which has then
been generalized by Goldman (1969)– for finding the optimal location of a single switching center proven
to be on the vertex median of the graph.

The earlier models assume that every origin-destination (O-D) path includes no more than two hub nodes
(O’Kelly (1986a,b) and O’Kelly (1987)). In addition to the single or multiple allocation schemes and simpler
capacity settings, over the time, further realistic features were integrated into the initial models aiming at
achieving a better approximation of real-life practice. At the same time, introducing more realistic features
(including multi-modal services) resulted in many more additional variables and constraints and much more
complex models, which motivated wider researches including the algorithmic aspects of problems.

While in the earlier contributions, branch-and-cut and enumeration-base methods (see Aykin (1994),
Ernst and Krishnamoorthy (1996), Klincewicz (1996), Abdinnour-Helm and Venkataramanan (1998), Ernst
and Krishnamoorthy (1999), Ebery et al. (2000), Ernst and Krishnamoorthy (1998b), Mayer and Wagner
(2002), Marín (2005a), Sasaki et al. (1999), Sasaki and Fukushima (2003), Labbé et al. (2005), Klincewicz
(2002), Campbell et al. (2003), Campbell et al. (2005b) and Yaman and Carello (2005)), Lagrangian-based
methods (see Pirkul and Schilling (1998), Elhedhli and Hu (2005), Aykin (1994) and Marín (2005b)), or
dual ascent techniques (see Klincewicz (1996), Mayer and Wagner (2002), Cánovas et al. (2007), Contreras
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et al. (2011d) and Wagner (2007) were the dominant approaches, as the complexity of models has aug-
mented, Benders decomposition paradigm became a very popular technique given their historical success in
problems with network design substructures. Perhaps, Camargo et al. (2008) was the first Benders method
proposed for an Uncapacitated Multiple Allocation Hub Location Problem. The proposed formulation in this
work is referred by other very efficient works afterwards (Gelareh and Nickel (2011), Rodriguez-Martin and
Salazar-Gonzalez (2008) and Contreras et al. (2011a)).

1.1.1. Multi-period hub location problem

Very few multi-period hub location models have been proposed in the literature. In this subject, Camp-
bell (1990) proposed a continuous approximation model for a general freight carrier serving a fixed region
with an increasing density of demand. Also, Gelareh (2008); Gelareh et al. (2015a) proposed a HLP model
within which the transport service provider starts with an initial configuration of the hub-level structure at
the first period of the time and then the network evolves in the course of a considered planning horizon.
Another study is Contreras et al. (2011b), in which a dynamic uncapacitated hub location problem is studied.

Recently, Monemi et al. (2017) proposed a hub location problem in a co-opetitive setting.

Kara and Taner (2011).

1.1.2. Demand structures in hub location problems

In what concerns the demand structure, Miranda Junior et al. (2011) studies demand uncertainty and
congestion with applications tailored for air transport. Also in this context, general demand uncertainty is
studied in Alumur et al. (2012) and Contreras et al. (2011c). Later, Merakli and Yaman (2017) and Merakli
and Yaman (2016)) were working on introducing robust solution algorithms in presence of various types
of demand uncertainty. O’Kelly et al. (2015) analyzes the quality of service in presences of price sensitive
demands and proposes relevant models for this variation of the HLP. The literature is unaware of any con-
tribution dealing with a deterministically structured demand patterns or a demand structure resulted by
human factors.

O’Kelly and Bryan (1998) dealt with the flow-dependent costs while congestion cost was considered by
de Camargo and Miranda (2012); De Camargo et al. (2011); de Camargo et al. (2009a). Rodríguez-Martín
et al. (2014) proposed a model for the hub location and routing problem; while Correia et al. (2014) dealt
with multi-product and capacity and Sasaki et al. (2014) with a competitive hub location based on Stackel-
berg games.

1.1.3. Humanitarian subjects in Hub Location Problems

While literature of humanitarian logistics has a rich body, we can only cite a few somehow more relevant
ones to our work. In fact, most of contributions concern technical aspects of urban or civil applications
that are less relevant to the problems we described here. Yet in the following, we highlight the most recent
development in this topic which, are still to some extent relevant.

In humanitarian logistics context, Dufour et al. (2018) analyzes the potential cost benefits of adding a
regional distribution center in Kampala, Uganda, to the existing network of the UNHRD in order to better
respond to humanitarian crises in East Africa. They carry out a simulation, network optimization and statis-
tical analyses to assess the costs of prepositioning high-demand non-food items in Kampala and to propose
a robust stocking solution.

Tofighi et al. (2016) proposed a two-echelon humanitarian logistics network design problem involving
multiple central warehouses and local distribution centers and developed a novel two-stage scenario-based
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possibilistic-stochastic programming approach. What they proposed is a trade-off between the egalitar-
ian and utilitarian objectives. Vahdani et al. (2018) proposed a two-stage multi-objective location-routing-
inventory model for humanitarian logistics network design under uncertainty taking into account time factor
and robustness of the final solutions under uncertainty. An et al. (2015) studied the hub and spoke network
design problem while focusing on the reliability of the service in the network. To this, the authors considered
the concept of backup hubs in the phase of planning the network. Zhalechian et al. (2018) proposed a risk
analysis study and worked on the hub-and-spoke network design under operational and disruption risks.
Later in 2019, Mohammadi et al. (2019) studied the Reliable single-allocation hub location problem while
considering disruptions and proposed a bi-objective model for this problem.

Özdamar and Ertem (2015) reviewed the literature on response and recovery planning phases of disas-
ter management and focused on the classification and computational perspectives of humanitarian logistics
models highlighting potential research direction. Boonmee et al. (2017) examines the four main problems
highlighted in the literature review: deterministic facility location problems, dynamic facility location prob-
lems, stochastic facility location problems, and robust facility location problems. For each problem, facility
location type, data modeling type, disaster type, decisions, objectives, constraints, and solution methods are
evaluated and real-world applications and case studies are presented and at the end the research gaps are
being identified.

Elçi and Noyan (2018) proposed a novel risk-averse stochastic pre-disaster relief network design prob-
lem. In Elçi et al. (2018) they considered a trade-off between the actual cost and the cost of reliability and
proposed a tight MIP formulation.

Charles et al. (2016) proposed a tooled methodology to support humanitarian decision makers in the
design of their supply chains. Based on the concept of aggregate scenarios to reliably forecast demand using
past disaster data and future trends, some scenarios are generated and demand for relief items based on
these scenarios is then fed to a MIP model in order to improve current supply networks.

1.2. Contribution and scope

The prime focus of this paper is to propose a network structure for distribution of humanitarian aids
in the case of Syrian refugees in Lebanon. The objective of this work is mainly improving the quality of
services provided by the UNHCR, by assuring the frequency of service and receiving the demands in time.
Besides, another motivation and objective of this wirk is to propose an exhaustive planning of distributing
the demand in the network while optimising the use of the capacity of available resources and also im-
proving the benefits of service providers, in terms of reducing the cost of service provision and the use of
navigation fleet (mainly by optimising the use of the capacity of transporters in every trip). This work has
been inspired by a thorough investigation of the matter and a close collaboration with the relevant decision
makers of the sector. From the theoretical and modeling point of view, this model generalized the previous
models of Hub Location Problem by introducing a Multi-Period Hub Location Problem with Serial Demands
(MPHLPSD) wherein the demand volume at the n-th visit is proportional to the n-th term of a sequence of
number representing human behavior. We propose the first compact mixed integer programming formula-
tion for this problem and show that if Benders decomposition is seen from the perspective of a modeling
tool, O(n3) variables can be dropped from the formulation, in addition to the constraints being projected
out in Benders fashion. Several classes of effective valid inequalities and efficient separation routines are
proposed in order to turn the solution approach into a very efficient cut-and-Benders method reporting a
significantly accelerated convergence. For the case at hand, we report the optimal location of DCs to be used
in Lebanon. An extensive computational experiments on randomly generated instances of various sizes,
confirms computational efficiency of the proposed solution framework and viability of technique.

This paper is organized as follows: The problem is formally described in Section 2 and a mathematical
model together with several classes of valid inequalities is proposed in Section 3. Section 4 describes and
elaborates on the design of our solution approach and the associated components. Section 5 reports some
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computational experiments and gives insights into the effectiveness of the proposed approach. In Section 6,
we summarize, draw conclusions and provide suggestions for further research directions.

2. Problem Description

A Main Warehouse acquires the nutrition and composes packages to be distributed, among refugees at
the demand points. Every demand point is served q times (at most 3 times, in practice) during a distribution
horizon of length T (normally a week, i.e., 5 days) where q < T . For every demand node that is actually
representing a refugee’s camp in the network, the sum of demands collected by the associated refugees over
the distribution days is an exogenous part of the problem and equivalent to the total demand of that node.
Refugees show up at the collection points following a known pattern as a sequence {lp}p∈i,...,m wherein∑m

1 lp = 1, i.e., lp×100 percent of the refugees settled in this point (the current visiting camp) are showing
up at the p−th visit to this point during the planning horizon. Each day, a subset of all demand nodes are
chosen to be visited and served by the distributors. These nodes are then partitioned into groups/clusters
of ordered nodes, according to the order by which they are going to be served. One node per cluster is
designated as a DC. Due to some known reasons including geographical barriers and/or security issues,
certain locations in a cluster cannot be served on the route. These nodes are referred to as isolated nodes.
A convoy of trucks transporting the packages travel overnight from the MW towards a DC node in every
cluster, which has the operational capacity of accommodating and assuring the security of the convoy of
trucks. We assume that the fleet is a homogenous one as all transporters have comparable specifications.
The journey starts the day after, where the DC node is served first and then all the other nodes according to
the order and at the end the tour terminates when the last node on the route is served. At every DC node
at which an isolated one is allocated, a shuttle service load the demand of isolated node (sufficient supply
according to the p-th visit’s demand of that node) and departs from the DC. Each time a demand point is
served (its planned daily demand is delivered), the fully unloaded trucks, if any, are discharged and will
leave the convoy. A total length of travel from a DC visiting all nodes sitting on the route, up until the last
one must not exceed a pre-defined number of nodes as the convoy wishes to finish the task before the end
of day (roughly speaking, the sunset time). A demand node (representing a camp) might have already been
visited q times on the days before the current day, while in such a situation, it will no more be visited on the
current day or afterwards. If not, it may be visited on the current day of the horizon, or if there is not a visit
planned for it on the current day, it will have a visit (or more, if needed) on the forthcoming days before the
end of the planning horizon, to ensure the exactitude of receiving q visits before the end of the horizon. It
is to clarify that on a certain day, a demand node may have a visit or not, while it definitely have q visits on
different q days during the distribution horizon to cover the total demand of it.

We seek at every period, locating an optimal number of DCs and identify the demand nodes to be vis-
ited, while avoiding them being visited more than q = 3 times in a period, the clusters to be formed, the
sequences of demand point being served by every DC (on the route or directly using a chattel service) and
the optimal number of transporters, such that the total cost of operations accounting for the fixed set up
cost for DCs and the total transportation and fixed vehicles costs is being minimized.

In the remainder of this paper, we will use DC and hub node, demand point and spoke node interchange-
ably.

3. Mathematical Model

The problem as described in the previous section resembles a hub-and-spoke structure and gives rise
to a new variant of this problem, which to the best of our knowledge, has not been studied previously. In
this section, we present a MIP formulation for this problem and will refer to it as Multiperiod Hub Location
Problem with Serial Demand (MPHLPSD). The parameters are listed in Table 3.
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ctij: the unit transportation cost associated with the arc (i, j) at period t,
wj: the demand at node j,
b: the penalty cost coefficient applied to the arc connecting an isolated node,
Fti : the fixed cost of using location i as a DC in period t,
N 0: N ∪ {0} = {1, . . . ,N} ∪ {0} represents the set of nodes acting as DCs; 0 being the Main Warehouse,
Vt

0i: the fixed cost of deploying a truck from the MW to the DC located at i,
T : T = {1, . . . , T } represents the planning horizon, where |T | = T is the length,
P: P = {1, . . . ,q} represents the set of call numbers to every node, where |P | = q is the visit frequency,
DC : DC ⊆ N represents the set of potential DC nodes,
Nmin/Nmax: represent the min/max number of nodes (spoke nodes) allocated to every DC in a given period,
Vcap: the typical capacity of vehicles in a convoy,
lp: the fraction of demand to be delivered during the p-th visit.

Table 3: Model parameters.

3.1. Decision variables:

Decision variables required to model this problem are listed below:
rijt is 1, if arc (i, j) is an arc belonging to one of the service routes at period t, 0 otherwise.
ztij is 1, if route i is allocated to hub j in period t, self-allocation represents a DC at i. It means that ztii is 1,
if i is a DC node at period t, and 0 otherwise.
yt
ii is 1, if i is an isolated node at period t, and 0 otherwise.

yt
ij is 1, if j is an isolated node in period t allocated to a DC i, and 0 otherwise.

ζ
p
it is 1, if p-th visit to i takes place at period t, and 0 otherwise.

xtjkl represents the fraction of flow from the MW to j traversing arc (k, l) in period t.
And finally vtkl represents the number of transporters deployed on the arc (k, l) in period t.

We also introduce G(V ,A ∪ A ′), S ⊂ V , δ+(S) = {a = (i, j)|i ∈ S, j ∈ V/ S}, δ−(S) = {a = (j, i)|i ∈ S, j ∈
V/ S} and γ(S) = {a = (i, j)|i, j ∈ S, j , i}.

3.2. A mixed integer linear programming model

We propose the following MIP for the MPHLPSD:

(MPHLPSD)

min
∑

t

∑

j

∑

k<j,l

wjc
t
klx

t
jkl +

∑

t

∑

k,MW:MW=0

Vt
0kv

t
0k

+
∑

t

∑

i,j,i

bctijy
t
ij +

∑

t

∑

i:i,MW

Ftiz
t
ii (1)

s. t.

Nmin
6

∑

j

ztji 6 Nmax, ∀i, t, (2)

∑

j,i

rtij =
∑

j

ztij, ∀i, t, (3)

∑

j,i

rtji =
∑

j

ztij, ∀i, t, (4)

rtji + rtij 6 2 − ztik − ztjl, ∀i, j, k, l, t, k : j , i, k , l, (5)
∑

t

(
∑

j,i

ztij + ztii + yt
ii) = q, ∀i, t, (6)
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rtij + rtji 6 1, ∀i, j, t : j , i, (7)
∑

t

ζpit = 1, ∀p, i, (8)

ζ1
i1 = z1

ii +
∑

j,i

z1
ij + y1

ii, ∀i, j : j , i, (9)

ζ
p
it 6 ztii +

∑

j,i

ztij + yt
ii, ∀i, j,p, t : j , i, t > 2, (10)

t∑

t′=1

ζ
p+1
it′ 6 ζ

p
it, ∀i, t,p : p > 1, (11)

ztij 6 ztjj, ∀i, j : j , i, t, (12)
∑

j,i

yt
ji = yt

ii, ∀i, t, (13)

rt0i = ztii, ∀i, t, (14)

yt
ii 6

∑

p

ζ
p
it, ∀i, t, (15)

yt
ij 6 ztii, ∀i, j, t : j , i, (16)
∑

j,i

yt
ij 6 1, ∀i, t, (17)

∑

p

(

ζpit + ζpit+1 + ζpit+2

)

6 2, ∀i, t ∈ {1,N− 2},p, (18)

∑

k<i,0

wjx
t
j0k = wj

∑

p

lpζ
p
jt, ∀t, j :,MW, (19)

∑

k,j

wjx
t
jkj = wj

∑

p

lpζ
p
jt, ∀t, j ,MW, (20)

∑

l,0

wjx
t
jkl =

∑

l,k,k,0

wjx
t
jlk, ∀t, j : j ,MW, k < {j}, (21)

xtj0l 6 rt0l, ∀j, l, t, (22)

xtjkl 6 rtkl + yt
kl, ∀t, j, k : k , j, l , k, (23)

xtjkl 6
∑

j

ztkj, ∀t, j, k : k , j, l , k, (24)

∑

k

wjxj0kt 6 Vcapvt0k, ∀k, t, (25)

xtjkl ∈ (0, 1)|N
0|3|T |, rtij, z

t
ij ∈ {0, 1}|E||T |, ζpit ∈ {0, 1}pN|T |, vtkl ∈ N

N|T |. (26)

The objective function (1) accounts for the total transportation cost as well as the cost of deploying
transporter on legs of call, fixed setup cost for the DCs and the penalty cost of having isolated nodes.

The number of nodes along every route is bounded between a minimum and a maximum number to
avoid too many stops as per constraint (2). Exactly one arc arrives to/leaves a node that belongs to a route.
This is expressed by the constraints (3)-(4). A route arc can only be established between two spoke nodes
allocated to the same hub nodes in the same period as guaranteed in constraints (5). Constraints (6) ensure
that q times during the distribution horizon every node is being served —either directly or indirectly. Two
arcs (i, j) and (j, i) cannot be established simultaneously between two nodes i and j. This is guaranteed in
constraints (7). Every node has a first, second, . . . , p-th time that it has been visited as per constraints (8). A
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visit to a node at the first period corresponds to the first visit as stated in constraints (9). For every p-th visit
to a node in a given period, the node must appear in that period, as stated in constraints (10). Constraints
(11) ensure that the p + 1-th visits cannot take place before the p-th one. Constraints (12) ensure that
every route node must be allocated to a hub node. Every isolated node must be connected to the rest of the
network via an arc that arrives to it from one route node (hub or non-hub) from among all of them. This
is ensured by constraints (13). At every period, there is an arc from the MW to every hub node as stated in
constraints (14). Constraints (15) ensure that an isolated node of a given period will not be opened unless
the number of visits to that node is incremented. Constraints (16) ensure that the tail node of an arc from
a route node towards an isolated node must be a DC. A DC node cannot serve more than one isolated node
as per constraints (17). Constraints (18) ensure that no point is visited q = 3 times in a row (q consecutive
periods). The volume of flow originated from the MW and destined to every demand node corresponds to
the demand pattern in the p-th visit. Constraints (19)- (21) are the flow conservation constraints. At every
period, there is an arc encompassed from MW to every designated hub nodes as stated in constraints (22).
Constraints (23) ensure that flow from the MW to the DCs traverse existing arcs. Constraint (24) ensure that
if k is not MW, flow does not enter any arc (k, l) unless k is a ring node (unless k belongs to the same ring
that l belongs to it). The number of trucks leaving from the MW is sufficient to accommodate the volume
being shipped. This is guaranteed by constraints (25).

3.3. Illustrative Example

In Figure 5, the evolution of network over a period of one week is depicted. The planning horizon is one
week and every node is served exactly 3 times. It must be noted that this is an artificial example assuming
all nodes can be DCs or isolated nodes. In this figure, arrows represents the suggested routs. Dashed
arrows represent routs to serve iusolated nodes by a direct shuttle and dotted nodes shows where a truch is
unloaded and from that node, it discharged from the service and directly returned to the attributed DC. The
rout does not end there, since there are other trucks in the fleet that continues their itinerary to finish their
assignments.

3.4. Valid Inequalities

We introduce r(δ(S)+) =
∑

i∈S,j∈V/ S rij, r(A(S)) =
∑

(i,j)∈A(S) rij, where A(S) = {a = (i, j) ∈ A : i, j ∈
S} and r(P) =

∑
(i,j)∈P rij where P = {(i0, i1), (i1, i2), . . . , (ik−1, ik)}.

Proposition 1. Let V be the set of nodes in the network. The following inequalities are valid for (MPHLPSD):

rt(A(S)) 6 |S|, S ⊂ V (27)

Proposition 2. If i ∈ S ⊂ V and i is a non-isolated demand node served by a DC in V/ S at period t, there is
at least one arc going out of (entering into) S:

a) rt(δ+(S)) >
∑

j∈V/ S

ztij, ∀i ∈ S ⊂ V , t, (28)

b) rt(δ−(S)) >
∑

j∈V/ S

ztij, ∀i ∈ S ⊂ V , t. (29)

Proof. a) For a given S ⊂ V and any i ∈ S, in the absence of any arc (i, j) with the tail in S and the head
in the complementary set, any path from i to the DC serving i entirely lies within S. Thus, there exists no j
outside S, which serves i for any choice of j ∈ V/ S. On the contrary, if i is served by a DC in V/ S there is a
unique path cutting S (at least once) towards the DC serving i.
b) Analogous to the proof of a).

See Monemi and Gelareh (2017) and Martín et al. (2014) for similar valid inequalities.
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Figure 4: An illustration of network structure over the period of week. Every node is visited p = 3 times. The nodes on
the left side of images correspond to the ones that were not served in the given period. The nodes 2 and 7, which were
DCs in the first day, do not appear on the network of Tuesday and on Wednesday, they become normal demand points
being served by the node 9 as DC to which they are allocated. While on Monday and Thursday, the node 6 is an isolated
node (perhaps) it becomes a DC node on Tuesday.
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Proposition 3. In period t, if i ∈ S ⊂ V and i ′ ∈ V/ S be two demand nodes where i is served by a DC in V/ S
and i ′ served a DC in S, we have:

rt(δ+(S)) >
∑

j∈V/ S

ztij +
∑

j′∈ S

zti′j′ , ∀i ∈ S ⊂ V , i ′ ∈ V/ S, t, (30)

rt(δ−(S)) >
∑

j∈V/ S

ztij +
∑

j′∈ S

zti′j′ , ∀i ∈ S ⊂ V , i ′ ∈ V/ S, t. (31)

Proof. Similar to 2. See Monemi and Gelareh (2017) and Martín et al. (2014) for similar case in different
problems.

Proposition 4. If (i− j) or (j, i) is an arc in period t and j is served by DC k then i must be also be served by k:

rtij + rtji + ztjk 6 1 + ztik ∀i, j, k : j , i, t. (32)

Proposition 5. For all S ⊆ V , t,

rt(A(S)) −
∑

i∈S

ztii 6 |S|− ⌈
|S|

Nmax
⌉ (33)

is a valid inequality.

Proof. Given that rt(E(S)) = rt(A(S)), c.f. Proposition 2 in Martín et al. (2014).

The so-called chain barrier constraints or path inequalities (see Fischetti et al. (1998a)) inequalities are
valid inequalities for MPHLPSD.

Proposition 6. For each t, S ⊆ V , {i, i ′} ⊆ I and a path P := {(i, i1), (i1, i2), . . . , (ik, i ′)} from i to i ′, the
inequality:

rt(P) +
∑

j∈S

ztij +
∑

j<S

zti′j 6 |P|+ 1 (34)

is valid for MPHLPSD polytope. Constraints (5) are special case of (34) when P := {[i, i ′]}.

Proposition 7. If for a given arc in a given period t, its tail is in S and its head is in V /S (or vice versa), either
the tail is allocated to a hub node in V/ S or the head is allocated to a hub node in S. For all (i, i ′) ∈ A and
S ⊆ V where i ∈ S, i ′ ∈ V/ S,

rtij + rtji 6
∑

j∈V/ S

ztij +
∑

j′∈S

zti′j′ (35)

is a valid inequality.

Corollary 1. Constraints (7) are special cases of constraints (27) where |S| = 1

Carroll et al. (2013); Carroll and McGarraghy (2013) defines the ghost ring as follows. We establish the
support graph of a fractional solution and identify cycles that are longer than the ring bound, if any. We call
these infeasible rings ghosts. In such cases, at least two edges must be removed from every such ring.

∑

e∈γ(Gr)

re 6 |Gr| − max{⌈|Gr|/N
max⌉, 2}, ∀ Ghost ring Gr. (36)
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Proposition 8. The following inequalities are valid for P(MPHLPSD):

∑

a∈δ♦(S)

rta >

(∑
i∈S

∑
j,i z

t
ij +

∑
a∈δ♦(S) r

t
a

Nmax
−
∑

i∈S

ztii

)

(37)

for all S ⊂ V . This delivers a lower bound on the number of edges encompassed from a set S ⊂ V , where
♦ ∈ {+,−}.

Proof. See the proof in Martín et al. (2014).

Proposition 9. The following 2-matching constraints for are valid for P(MPHLPSD) in every period t:

∑

a∈γ(H)

rta +
∑

a∈T

rta 6
∑

i∈H

∑

j,i

ztij + ⌊
|T |

2
⌋ (38)

for all H ⊂ V and all T ⊂ δ♦(H) satisfying,
i) |{i, j} ∩H| = 1, ∀{i, j} ∈ T ,
ii) |{i, j}∩ {k, l}| = ∅, {i, j} , {k, l} ∈ T , and
iii) |T | > 3 and odd.

where H ⊂ V is a handle and T ⊂ δ♦(H) are called teeth, where ♦ ∈ {+,−}.

Proof. In every feasible solution of this problem we have,

2rt(γ(H)) + rt(δ+(H)) + rt(δ−(H)) =
∑

i∈H

(rt(δ+(i)) + rt(δ−(i)))

and from constraints (3) and (4) one obtains:
∑

k∈H

∑

l,k

(rtkl + rtlk) 6 2
∑

k∈H

(
∑

j

ztkj).

Hence,

2
∑

k∈H

(
∑

j

ztkj) > 2rt(γ(H)) + rt(δ+(H)) + rt(δ−(H))

= 2rt(γ(H)) + rt(δ+(H/ T ) + rt(δ+(T )) + rt(δ−(H/ T )) + r(δ−(T ))). (39)

Given that rt(δ+(T ) ∪ δ−(T )) 6 |T | deduced from the bound constraints rta 6 1 and (7), we add this set
of constraints to (39) and we obtain:

2
∑

k∈H

(
∑

j

ztkj) + |T | > 2rt(γ(H)) + rt(δ+(H/ T ) + rt(δ−(H/ T )) + 2rt(δ+(T )) + 2rt(δ−(T )))

> 2rt(γ(H)) + 2rt(δ+(T )) + 2rt(δ−(T )). (40)

Again, given that |T | is an odd number, by multiplying both sides by 1
2 , we conclude,

rt(γ(H)) + rt(δ+(T ) + rt(δ−(T ))) 6
∑

k∈H

(
∑

j

ztkj) +
|T |− 1

2
(41)

and the proof is complete.
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Proposition 10. The following comb inequalities are valid for P(MPHLPSD): in every period t

∑

a∈γ(H)

rta +

t∑

j=1

∑

a∈γ(Tj)

rta 6
∑

i∈H

∑

j

ztij +

t∑

j=1

|Tj|−
3t+ 1

2
, (42)

for all H ⊂ V and all Ti ⊂ V , ∀i ∈ {1, . . . , t} satisfying,
i) H, T1, T2, . . . , Tt ⊆ V ,
ii) Tj \H , ∅, ∀j ∈ {1, . . . , t},
ii) Tj ∩H , ∅, ∀j ∈ {1, . . . , t},
ii) Ti ∩ Tj = ∅, ∀j ∈ {1, . . . , t}, and
iii) t > 3 and odd.

Proof. For S ⊂ P, in every feasible solution we have,

rt(γ(H)) =
∑

i∈H

(
∑

j

ztij) −
rt(δ+(S)) + rt(δ−(S))

2
, (43)

and for every Tj ⊂ P , j ∈ {1, . . . , t} we have,

rt(γ(Tj)) =
∑

i∈Tj

(
∑

j

ztij) −
rt(δ+(Tj)) + rt(δ−(Tj))

2
. (44)

Furthermore, from (43) and (44), one yields:

rt(γ(H)) +
∑

i

rt(γ(Ti)) =
∑

i∈H

(
∑

j

ztij) +
∑

j

∑

i∈Tj

(
∑

j

ztij)−

1
2



(rt(δ+(H)) + rt(δ−(H))) +
∑

j

(rt(δ+(Tj)) + rt(δ−(Tj)))



 . (45)

Let δ+i (H) ∪ δ−i (H) denote the cut set associated with arcs having one end-point in H ∩ Ti and another
end-point outside H. We know that rt(δ+(H)) + rt(δ−(H)) >

∑
i(r

t(δ+i (H)) + rt(δ−i (H))).
It can be easily shown that (rt(δ+i (H)) + rt(δ−i (H))) + (rt(δ+(Ti)) + rt(δ−(Ti))) > 3. We also know that

rt(δ+(H))+ rt(δ−(H)) and rt(δ+(Ti))+ rt(δ−(Ti)) are even numbers and therefore rt(δ+(H))+ rt(δ−(H))+∑
i(r

t(δ+(Ti)) + rt(δ−(Ti))) > 3t+ 1. By substituting in (45) the proof is complete.

Proposition 11. Monemi and Gelareh (2017) proposed the so-called moving sub-path inequalities are valid
for P(MPHLPSD). Let r∗ be an integer partial solution and a violated inequality of (36) in the form of
P = (v1, v2, . . . , vm, v1) : m > R exist. We can identify some minimal subsets of variables (corresponding to a
sequence of edges) in such a path for which the ring bound capacity is violated. The following valid inequalities
are violated by such a solution:

∑

e={i,i+1}: i∈{i1,...,i1+R}

rte 6 Nmax, ∀t, i1 ∈ {v1, v2, . . . , v1 +Nmax, . . . , vm} : i1 +Nmax
6 m− 1 (46)

where i is selected as a rolling sequence basis.

Proof. See Monemi and Gelareh (2017).
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4. Solution Method

The proposed solution methods can be categorized as a Benders decomposition method. In fact, as it will
be shown in this section, a Benders reformulation can help getting rid of O(|N||T ||P|) variables ζ

p
it as it will

implicitly take care of their role and logical implications without any need to have them explicitly present in
the model and increase computational complexity. In other words, it will be shown that a Benders reformu-
lation in addition to projecting the model onto the space of integer variable can actually help us to get rid
of many integer variables that were otherwise inevitable in a compact formulation.

Benders decomposition (Benders, 1962, 2005) is a primal decomposition method, proven to be a very
efficient paradigm in dealing with large-scale MIP models arising in problems within an underlying loca-
tion/network structures. Benders decomposition is based on projecting the model on the space of compli-
cating variables and exploits the primal/dual relationship with a sub-problem to generate cuts to separate
solutions of the master problem and tighten the outer approximation, until optimality is proven as a result
of lower and upper bounds converging towards the same value.

If a solution to the master problem represents direction of an improving ray in the subproblem dual, then
one can generate feasibility cuts to avoid such solutions from the master problem otherwise, the primal-dual
relationship can be exploited to generate optimality cuts and improve the outer approximation, iteratively.
Clearly, the first class of cuts are no-good cuts to prevent infeasible solutions of master problem while the
second class tend to push the bound(s) and accelerate convergence. As such, some authors have proposed
to replace the actual master problem with an auxiliary/alternative ones making sure that no solution of
the master problem can point to a ray direction in the subproblem dual. An example of this can be seen
in Gelareh and Nickel (2011), which replaces the master problem with a different model in Maculan et al.
(2003) delivering only feasible solutions. This has proven to be very efficient, depending on the way Ben-
ders is being implemented —traditional or branch-and-cut style. Other work such as those in Codato and
Fischetti (2006) and Fischetti et al. (2009) proposed other eliminatory approaches based on minimal infea-
sible subsystem to cut off bad solutions.

Tightening Benders standard cuts in Benders has been considered since 80’s where the first efforts were
focused on finding non-dominated Benders cuts from among alternative ones resulted by multiple optimality
in the subproblem dual. After the pioneering work of Magnanti and Wong (1981) in dealing with degenerate
subproblems by sharpening the cuts using relative interior points, Papadakos (2008) showed that the same
can be done but with less difficulties —no need for the points to in the relative interior of master problem
polytope. Furthermore, Papadakos (2008) proposed an iterative algorithm to update this point. Other gen-
eral techniques have been proposed such as using heuristic solutions to accelerate convergence (see Sherali
and Fraticelli (2002), McDaniel and Devine (1977) and Sherali and Fraticelli (2002) for instance).

Earlier work on Benders decomposition for variants of hub location problems include Camargo et al.
(2008); de Camargo et al. (2009b) for models with emphasis on economies of scale, Gelareh and Nickel
(2011), Gelareh et al. (2015b) for single and multiple period hub location problems and Contreras et al.
(2011a) for a classical model of the uncapacitated hub location problem. In the recent years, other success-
ful applications have been reported in the literature.

Some very recent work in literature dealing with Benders technique for variants of hub location problems
include Mokhtar et al. (2018) for a 2-allocation p-hub median problem, Rostami et al. (2018) for a single
allocation problem under breakdown reliability and Real et al. (2018) for a Gateway Location Problem.

Rahmaniani et al. (2017) presented a sophisticated analytical literature review of the method and ad-
dressed most of the important features.

Our proposed framework is a branch-cut-Benders approach. The fractional solutions of master problem
and those that result in infeasible network structures are cut using efficiently separated valid inequalities
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at appropriate stages along the branch-and-cur process. We only deliver integer-feasible solutions (feasible
network structures with respect to the whole problem) of MP to the Benders subproblem and we do this
by efficiently separating the appropriate valid inequalities –from a portfolio of identified ones– to cut the
infeasible solution of master problem. In addition, we use an inexpensive heuristic algorithm to generate
feasible solutions that warm-start our solution algorithm with an optimality cut corresponding to an integer
feasible solution of the heuristic.

4.1. Heuristic solution

Poojari and Beasley (2009) proposed to use meta-heuristics to find feasible solutions, generate Benders
and add to the MP before Benders process being started hoping that this warm-start would accelerate the
convergence of algorithm. Our extensive computational experiments on a wide range of problems revealed
that this strategy is particularly efficient when the original compact formulation is very tight, otherwise,
even by supplying the optimal solution one may not see a significant gain in the additional overhead of run-
ning this heuristic. Another interesting finding is that, in network design problems with less dense or even
sparse flow matrices, this only generates overhead (again this conclusion is limited to the benchmark of our
extensive computational experiments). Therefore, it is always wiser to find a trade-off between the quality
of solution we expect from the heuristic and the time spent on it. Our extensive computational experiments
on a variety of models let us conclude that this heuristic procedure should remain very inexpensive.

The proposed minimalist local search is the following: Given constraints (18), we serve all nodes in
periods 1 and 2, then skip the third period and again repeat this pattern until every node is visited q times.
Then in every period, the non-MW nodes with demand volume in the upper N

Nmin are chosen to be the
DCs. The remaining nodes are allocated to the DCs based on the distance (ties are broken in favor of having
balanced clusters with respect to the volume of demand) creating routes with Nmin nodes along them. The
remaining N − ⌊ N

Nmin ⌋ × Nmin nodes are added one by one to every DC’s cluster. The routes are then
constructed by connecting nodes of every cluster.

The efficiency in computing the objective function allows us to do certain number (practically, we fixed
it to 10000) of iterations for improving the initial solutions. There neighborhood are defined as in the fol-
lowing: (1) reordering the nodes within every route; (2) moving a whole route of a given DC to the periods
where no distribution takes place, (3) let any other node in the cluster be the DC and turn the DC to a
normal route node, and (4) if there are more than q period within which distribution takes place, a node
can move from one period to another period and in any route there. We start the local search with the
neighborhood (1) and upon encountering 2N non-improving solutions we move to the next one with the
order defined by the number associated to every neighborhood. One may think of it as a naive version of
a Variable Neighborhood Search (VNS) (see Hansen et al. (2008) for a general review of the method and
Freitas and Penna (2019), Herrán et al. (2019) and Chagas et al. (2019) for instances of recent successful
application) even though it not intended to be a full-fledged and mature heuristic or a stand-alone solution
methods producing high-quality solutions.

4.2. Initial relaxation

We have chosen the constraints (2), (3), (4), (6), (7), (12), (13), (14), (15), (16), (17) and (18) to
constitute the initial relation (or the master problem (MP)). Constraints (5) are excluded and be separated
upon need, because in spite the large cardinality of this set of constraints which is O(N4T) and deteriorates
the performance of solvers very significantly, only a very tiny fraction of them may be active in an optimal
(or any feasible) solution of the problem.

ζ
p
it, ∀p, i, t can be totally eliminated from the MP as these variables and all related constraints are no

longer required and their presence would be only imposing additional computational burden (branching,
reduction, etc.) on the shoulders of the MIP solver solving MP. In fact, once the set of DCs and demand
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nodes are determined for every period t, the d-th days at which every node is visited becomes known (a
posteiori) and this information can be observed by the subproblem through the solution provided by MP.
Subproblem can then determine the volume of demand to be supplied to every demand point given the
percentage corresponding to the p-th visit to the node.

Let the indicator ∆(p, t, i) be equal to 1, should the time period t correspond to the p-th visit to node i,
0 otherwise. Hence, instead of carrying ζ

p
jt from master to the subproblem, we may deduct this information

from the resulting network structure of MP. Using this definition, although we can introduce the following
capacity constraints and deal with the truck convoy capacity in the subproblem, our extensive computational
experiments suggest to keep the fleet sizing part remains in the MP:

Vcapvt0k >

⌈

∑

k

∑

p

(ztik + yt
ki)wi∆(p, t, i)lp

⌉

∀i, t. (47)

In the following, we first present some separation algorithms for the Benders cuts and the aforemen-
tioned valid inequalities.

Separation of Benders cuts. The remaining constraints of (19)-(25) are handled in Benders Subproblem (SP).
The SP is presented in the following:

(SP-MPHLPSD)

min
∑

t

∑

j

∑

k!=l

wjc
t
klx

t
jkl

+
∑

t

∑

k,MW:MW=0

Ft0kv
t
0k (48)

s. t.

u1 :
∑

k<i,0

wjx
t
j0k =

∑

p

∑

k

lpwj∆(p, t, i), ∀t, j , 0, (49)

u2 :
∑

k,j

wjx
t
jkj =

∑

p

∑

k

lpwj∆(p, t, i), ∀t, j , 0, (50)

u3 :
∑

l,0

wjx
t
jkl −

∑

l,k,k,0

wjx
t
jlk = 0, ∀t, j , 0, k < {i, j}, (51)

u4 : xtj0l 6 rt0l, ∀j, t, (52)

u5 : xtjkl 6 rtkl + yt
kl, ∀t, j, k , j, l , k, (53)

u6 : xtjkl 6
∑

j

ztkj, ∀t, j, k , j, l , k, (54)

xtjklt ∈ (0, 1)|V|3|T |, v0kt ∈ N
|v||T |. (55)

Let η be the continuous variable providing an underestimation of the Subpoblem objective function, the
optimality Benders cut looks like the following:

η >
∑

t,j,0

u1
jt

∑

p

∑

k

lpwjz
p
jkt +

∑

t,j,0

u2
jt

∑

p

∑

k

lpwjz
p
jkt +

∑

t,j,0

u4
jtr0lt
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+
∑

t,j,k,j,k>0,l,k

(

u5
jklt(rklt + yklt) + u6

jklt(
∑

m

ztkm)

)

. (56)

and the feasibility cut follows:

0 >
∑

t,j,0

u1
jt

∑

p

∑

k

lpwjz
p
jkt +

∑

t,j,0

u2
jt

∑

p

∑

k

lpwjz
p
jkt +

∑

t,j,0

u4
jtr0lt

+
∑

t,j,k,j,k>0,l,k

(

u5
jklt(rklt + yklt) + u6

jklt(
∑

m

ztkm)

)

. (57)

However, as any infeasible network structure is separated using non-Benders cuts, we will not need to
separate any Benders feasibility cut.

On the other hand, as variables yt
ii do not appear in the aforementioned Benders cuts, and we would

like to capture as many variables as possible from among those of MP into different cuts, the following
substitution is proposed leading to cuts that also accommodate yii and yij:

For constraints (19)-(20) we have:

yt
jj +

∑

k

ztjk =
∑

p

ζ
p
jt ⇒

∑

k<i,0

wjxj0kt =
∑

p

∑

k

lpwj∆(p, t, i)(yt
jj +

∑

k

ztjk), ∀j, t, (58)

yt
jj +

∑

k

ztjk =
∑

p

ζ
p
jt ⇒

∑

k,j

wjxjkjt =
∑

p

∑

k

lpwj∆(p, t, i)(yt
jj +

∑

k

ztjk), ∀j, t, (59)

∑

k

(yt
kj + ztjk) =

∑

p

ζ
p
jt ⇒

∑

k<i,0

wjxj0kt =
∑

p

∑

k

lpwj∆(p, t, i)(
∑

k

(yt
kj + ztjk) +

∑

k

ztjk), ∀j, t, (60)

∑

k

(yt
kj + ztjk) =

∑

p

ζ
p
jt ⇒

∑

k,j

wjxjkjt =
∑

p

∑

k

lpwj∆(p, t, i)(
∑

k

(yt
kj + ztjk) +

∑

k

ztjk). ∀j, t. (61)

In this way, one can also accommodate variables yt
ii,y

t
ji, ∀i, j, t in the separated Benders cuts. From (58)

- (61) the following optimality cuts are deduced (feasibility cuts follow the same style):

η >
∑

t,j,0

u1
jt

∑

p

∑

k

lpwj(y
t
ii +

∑

k

ztik) +
∑

t,j,0

u2
jt

∑

p

∑

k

lpwj(y
t
ii +

∑

k

ztik)

+
∑

t,j,0

u4
jtr0lt +

∑

t,j,k,j,k>0,l,k

(

u5
jklt(rklt + yklt) + u6

jklt(
∑

m

ztkm)

)

(62)

η >
∑

t,j,0
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Our extensive computational experiments does suggest the use of both type of optimality cuts (56) and
(62)-(63).

Multi-Cut Benders decomposition. A closer look at the subproblem and the Benders cut (56) reveals that the
subproblem can be solved for every period independently and as a result one can generate up to |T | cut per
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subproblem. Let ηt > 0 and η =
∑

t η
t, where ηt > 0 underestimates the cost corresponding to the period

t, one can disaggregate the Benders cuts into:
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Multi-cut for the feasibility cut follows the same algebra.

4.3. Cutting plane

Separation of valid inequalities (27). The separation of this class of valid inequalities is reduced to solving a
Knapsack Problem (KP) with two additional constraints. The weights of items correspond to rtij. For every t
we solve:

max
∑

i

bi

s.t.
∑

i,j

rtijsij >
∑

i

bi + ǫ

sij 6 bi ∀i, j

sij 6 bj ∀i, j

bi, si,j ∈ {0, 1} (65)

Any feasible solution to this problem identifies a set St = {i : bi = 1, ∀i}, ∀t that is used to separate the
corresponding valid inequalities from (27) (see Gendreau et al. (1998) for a different method).

Separation of valid inequalities (28) and (29). At every period t, let s be a dummy node, Vt be the set of
nodes visited and G ′t(Vt ∪ {s},A ′t) a directed graph. Establish an arc from s to every j with capacity ztij,
if ztij > 0. Then, add an arc (i, j) with capacity rtij for rtij > 0. Now, in this period t, if we pump a flow
from s and destined to a node i, then i must receive a volume of flow equivalent to

∑
j z

t
ij. A set S ⊂ Vt

where i ∈ S, s < S defines a cut of δ+(S)(δ−(S)) if the cut capacity is less than
∑

j z
t
ij. S will deliver valid

inequalities of (28) ((29)). The complexity of separation relies on Edmonds-Karp max-flow.

Separation of valid inequalities (30) and (31). At every period t, let G ′′t(Vt,A ′′t) be defined as following:
Vt is the set of nodes visited and A ′′t is composed of arcs (i, l) for which rtil + zti′l > 0, arcs (i ′, l) for which
rti′l + ztil > 0 and all other arcs (k, l) where rtkl > 0. A set S ⊂ Vt defines a cut, if the max-flow is less
than

∑
j∈V/ S z

t
ij +

∑
j′∈ S z

t
i′j′ where i ∈ S, j ∈ Vt/ S. S, Vt/ S where i ∈ S, j ∈ Vt/ S delivers the valid

inequalities (30) and (31). One can either use Edmonds-Karp or Boykov and Kolmogorov (2001) max-flow
algorithms.

Separation of valid inequalities (33). In order to identify the violated inequalities of this type, it is suggested
in Martín et al. (2014) to look for a cut set S of the support graph G ′′′t(Vt,A ′′′t) or in Vt/ S. Therefore in
parallel with our search for the violated inequalities of (28) (29), (30) and (31), we also use the identified
cut-set, say S, to search for possible violation of (33). The complexity again depends on the max-flow
algorithm of Edmonds-Karp or Boykov and Kolmogorov (2001).

Separation of valid inequalities (34). Our extensive computational experiment reveals that the efforts in-
vested in the separation of inequalities for |P| > 2 do not pay off (similar conclusion has been drawn in
Labbé et al. (2004)). Therefore, we would prefer to stick to the existing constraints (5).
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Separation of valid inequalities (35). The separation of such constraints is similar the one in Martín et al.
(2014). In period t, let S = {i} ∪ {j ∈ Vt − {i ′} : ztij > ztij}, for a given arc (i, i ′). According to Martín et al.
(2014), if the inequality is not violated for this choice of S, it is neither violated for any other set S ′. The
complexity is O(N3).

Separation of valid inequalities (36). In period t, we establish a support graph Gt‡ = (Vt‡,At‡) where Vt‡ is
composed of all a ∈ At for which rt∗a > 0. We then enumerate all the cycles in such a graph using Tiernan’s
method (see Tiernan (1970)) and examine every cycle to identify the violated cuts. When enumerating all
the cycles, one may also examine the violation of the inequalities (46).

Separation of valid inequalities (37). In every period t, we can rewrite (37) as (Nmax − 1)
∑
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t
a +
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∑
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t
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These can now be separated in the same way as the SEC in the traveling salesman problem. We establish
a support graph Gt§ = (Vt§,At§) where Vt§ = Vt ∪ {s,d} where s and d are two dummy nodes and At§

is composed of the following edges: 1) all arcs a ∈ At with capacity Nmax − 1 for all rta > 0, 2) the arcs
(s, i), ∀i ∈ Vt with capacity Nmaxztii, and 3) the edges {i,d}, ∀i ∈ Vt with capacity

∑
j z

t
ij. A set St where

s ∈ St,d < S represents a set that can potentially give a violated valid inequality (37). The complexity of
this separation is equivalent to the complexity of an s-d min-cut algorithm called on Gt§.

Separation of valid inequalities (38). While Fischetti et al. (1998b) and other researchers proposed several
heuristic separation algorithms for such constraints, our initial computational experiments suggested using
the method of Padberg and Rao (1982) for separating such valid inequalities in every period t.

Separation of valid inequalities (42). while polynomial-time algorithms exists for separation of these in-
equalities (see Letchford and Lodi (2002)) our initial computational experiments trades polynomial-time
algorithm for the block decomposition technique. Therefore, we find combs using Concorde implementa-
tion (see (Applegate et al., 2007) and Cook’s).

Separation of valid inequalities (46). In every period t, at any integer node where an inequality of form (36)
is violated, every sub-path of length Nmax + 1 represents such a valid inequality and is violated by 1. This
separation can be done in O(n2).

4.4. Branch-and-cut algorithm

As mentioned earlier, our emphasis in our branch-and-bound is on a balance between a fast lower bound
improvements and quickly finding feasible solution. For that, we separate all possible violated cuts at the
root node. If no inequality from among the non-Benders ones has been found we then generate Benders cuts.

Due to the way we dealt with ζ
p
it variables as indicators, the method proposed in Papadakos (2008)

becomes less intuitive. We therefore, used an alternative method as follows: Once the subproblem is solved
to optimality, we move over the face of optimality and choose a solution that minimized the sum of dual
values corresponding to the equality constraint (i.e., u1 + u2). This has shown to be promising.

In a gap of less than 5%, we do not separate any cut for the fractional solutions. We also opted to branch
on z variables first even though one may argue that r seems more trivial candidates but our choice has been
confirmed by an extensive computational experiments.

4.5. Preprocessing

Some practice-driven rules can be used to fix some variables in the model one of which would be the
following: For every node i and j = argmaxcij, we can fix tij, rji, yij and yji to 0.
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5. Computational experiments

The BENMIP framework is written in C++ and can be compiled both in Windows (Microsoft C++ com-
piler) and in Linux (Ubuntu). For this project, we compile BENMIP using the VC++ (Visual Studio 2017)
compiler in Windows 10 and run on a personal computer with an Intel Core i7-6700K CPU, 4.0 GHz and
32 GB of RAM. CPLEX 12.8 is used as an MIP solver. The max-flow algorithms are solved using the Boost
library implementation of the Edmonds-Karp algorithm for directed graphs.

Except for the case study, other instances are generate randomly for a network of size 100 nodes using
the kind of aggregation proposed by Ernst and Krishnamoorthy (1996) to establish grids on the map and
introduce new virtual nodes as the centers of gravity of cells in the grid with a demand equal to that of all
the nodes within the grid cell. The demands are also generated randomly within the min/max range data
of the case study. The random generation has been done with the aim of avoiding any obvious structure in
the distance and demand matrices.

In both cases, the transportation cost accounts for the fuel consumption per 100 km for the design speed
of the a trucks. We also assumed that the fleet of transporters is homogeneous one and therefore the fuel
consumption pattern is the almost the same across the fleet and corresponds to 24 liters per 100 kilometers
for the type of trucks being deployed. The penalty for the supply to the isolated nodes is been set to 2 (we
will see in the case study section that we use the same factor over there as well).

Some CPLEX parameters are the following: IloCplex::MIPEmphasis has been set to CPX_MIPEM-
PHASIS_BALANCED. The custom termination criteria for CPLEX (UserAbort) is the following: we terminate
CPLEX if a maximum of 30 hours (108000 seconds) of CPU time is passed and an incumbent solution has
been identified. After an extensive preliminary computational experiments, we realized that for many in-
stances, the time limit is reached while more than 90% of the time (currently marked by ’OptimTol’) has
been spent on closing the last 0.5% gap (reducing the gap from 0.5% to zero to prove the optimality). We
therefore decided to modify the criteria by adding an optimality tolerance of 0.5%. The results reported
here use this combined termination criteria.

|T | is chosen from the set {3, 5, 7, 9} due to the intractability of problem. As long as Benders decompo-
sition is concerned, we only separate cuts upon finding an optimal integer proposal being found by CPLEX.
Other cuts are separated at root node and later on every 10 nodes (fractional or integer) and any integer
node. The tolerance ǫ = 10−4 was set as the threshold of violation of separated valid cuts. Our extensive
computational experiments confirmed that the approach itself is sufficiently efficient and that further efforts
to generate sharper cuts from the SP only add extra overheads without making any significant improve-
ments. Moreover, Nmin and Nmax are set to 3 and 5, respectively, as it is less realistic to visit more than 4
locations (other that the DC itself) per day and is less likely to deploy a fleet for only 1 or two nodes on a
route.

The demand pattern (user’s behavior) for different length of planning horizon is reported in Table 4.
Those rows for 6 and 7 days are obtained through simulation as we only had access to 1-5 days behavior
pattern in our case study. The interpretations follows: assuming 3 deliveries, 38% of the refugees collect
their demands on the first day, 24% collect on the second day and 38% on the last day. Our problem con-
siders a planning horizon of at least 5 days long and minimum three deliveries.

We deactivated several internal cut generation procedures of CPLEX. These include FlowCovers, Flow-
Paths, MIRCuts, FracCuts, LiftProjCuts, Cliques, Covers, FlowCovers, GUBCovers, FracCuts, MIRCuts, Disj-
Cuts, ZeroHalfCuts and MCFCuts. We turned off all the presolved phases to avoid premature convergence
in Benders.

In Table 5, we report our computational experiments. The first column represents the instance name in
the format ’N, T , q’, where N and T refer to the number of nodes and number of periods, and q represents
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# days # Fraction of demand per day
1 100%
2 50% and 50%
3 38%, 24% and 38%
4 31%, 21%, 14% and 34%
5 23%, 18%, 18%, 20% and 21%
6 21%, 14%, 13%, 14%, 18% and 20%
7 19%, 13%, 12%, 13%, 13%, 12% and 18%

Table 4: The demand patter for different planning horizon lengths (rounded to integer values).

the required number of visits, respectively. The column ’CPLEX’ represents the results of direct application
of CPLEX to solve the instance with a time limit of 30 hours. In the column ’TimeIP’, we report the elapsed
time for solving the problem at hand before CPLEX terminated. The column ’Nnodes’ represents the number
of processed nodes. The columns ’Gap’ and ’MIPStatus’ stand for the integrality gap and the CPLEX status,
respectively. The best known objective value (proven optimal when gap equals 0) is presented in the column
’bestObj’. In the column ’NUserCuts’, we report the number of user cuts added in the course of the branch,
Benders and cut approach.

As depicted in Table 5, using our branch, cut and Benders (BCB), we are able to solve to optimality,
instance with up to 45 nodes, 9 periods and 5 visits in a very reasonable amount of time. From 57 nodes
and 9 periods, up to 75 nodes and 9 periods, the optimal tolerance of 0.5% is met and for the remaining
instances, bCB process failed. At the same time, given the time limit of 108,000 seconds, CPLEX can only
solve 1 instance to optimality, six instances to a gap less than 1 percent within the time limit and all other
cases failed even to produce any feasible solution.

While number of separated user cuts, including Benders and non-Benders cuts –even for larger size
instance– remains reasonable for smaller size instances (smaller N× T ×q), this becomes excessively higher
for larger size instances. The number of processed nodes is reasonable and the number of separated cuts is
increasing as N× T increases. This makes the LP increasingly difficult to resolve.

We tried to let the algorithm continue even further beyond this time, but the additional time spent did
not pay off with any better solution quality. The numbers of separated valid inequalities and Benders cuts
are rather reasonable and increase as the size of the instance increases.

In general, we are able to solve relatively large size instances to less than 0.5% gap and in reasonable
time.

N, T , q CPLEX TimeMIP Nnodes Gap IPStatus bestObj NUserCuts

15, 5, 3 TL (6 1%) 7.994 180 0.00 Optimal 84080.337 451
15, 5, 5 TL (6 1%) 12.457 3600 0.00 Optimal 111658.915 1249

20, 5, 3 TL (6 1%) 10.673 4560 0.00 Optimal 37523.286 521
20, 7, 5 TL (6 1%) 19.997 100 0.00 Optimal 76397.008 61

25, 5, 3 TL (6 1%) 21.287 1950 0.00 Optimal 84241.285 198
25, 7, 5 TL (6 1%) 27.476 12000 0.00 Optimal 125209.490 1049
25, 9, 7 Failed 27.559 6300 0.00 Optimal 113419.935 8247

30, 5, 3 Failed 42.306 10350 0.00 Optimal 43762.929 78
30, 7, 5 Failed 42.766 21750 0.00 Optimal 162934.996 1687
30, 9, 5 Failed 52.454 14280 0.00 Optimal 228946.761 10834
30, 9, 7 Failed 51.198 23220 0.00 Optimal 189169.091 24173

35, 5, 3 Failed 66.435 3675 0.00 Optimal 244242.668 264
35, 7, 5 Failed 85.371 8750 0.00 Optimal 62413.852 2243
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N, T , q CPLEX TimeMIP Nnodes Gap IPStatus bestObj NUserCuts

35, 9, 5 Failed 127.431 34545 0.00 Optimal 260694.174 10386
35, 9, 7 Failed 158.242 16380 0.00 Optimal 197920.988 49094

40, 5, 3 Failed 114.198 17040 0.00 Optimal 199238.713 380
40, 7, 5 Failed 104.832 1400 0.00 Optimal 221238.622 2864
40, 9, 7 Failed 146.383 21840 0.00 Optimal 99243.650 9397
40, 11, 9 Failed 201.236 57240 0.00 Optimal 113640.182 48738

45, 5, 3 Failed 151.405 23490 0.00 Optimal 133406.385 157
45, 7, 5 Failed 274.801 11475 0.00 Optimal 141642.879 944
45, 9, 5 Failed 226.616 18270 0.00 Optimal 248718.573 2069
45, 9, 7 Failed 276.357 81405 0.22 OptimTol 324613.570 10625

50, 5, 3 Failed 201.975 4800 0.40 OptimTol 319585.176 569
50, 7, 5 Failed 247.583 34500 0.33 OptimTol 317347.706 775
50, 9, 5 Failed 460.927 48300 0.24 OptimTol 188794.955 11819
50, 9, 7 Failed 643.601 92700 0.28 OptimTol 161583.087 15033

55, 5, 3 Failed 437.192 32670 0.21 OptimTol 240662.953 682
55, 7, 5 Failed 528.991 70125 0.21 OptimTol 272452.559 2326
55, 9, 5 Failed 546.226 32725 0.19 OptimTol 209048.260 8273
55, 9, 7 Failed 1083.283 90090 0.23 OptimTol 290939.990 7160

60, 5, 3 Failed 642.872 43920 0.45 OptimTol 97707.369 189
60, 7, 5 Failed 791.262 39900 0.22 OptimTol 285251.915 3169
60, 9, 5 Failed 1088.335 40740 0.55 OptimTol 205488.432 11111
60, 9, 7 Failed 1689.299 26460 0.23 OptimTol 128652.405 40725

65, 5, 3 Failed 1185.403 62400 0.21 OptimTol 565340.164 552
65, 7, 5 Failed 1559.322 39650 0.44 OptimTol 226975.650 2030
65, 9, 5 Failed 2649.085 111930 0.17 OptimTol 180398.160 7695
65, 9, 7 Failed 2460.353 90090 0.20 OptimTol 124551.237 34168

70, 5, 3 Failed 1500.802 41370 0.31 OptimTol 291988.072 521
70, 7, 5 Failed 2024.516 3850 0.24 OptimTol 356038.449 1239
70, 9, 5 Failed 3229.132 79380 0.18 OptimTol 212206.747 11906
70, 9, 7 Failed 4981.246 115290 0.18 OptimTol 316362.074 50449

75, 5, 3 Failed 4710.788 29925 0.18 OptimTol 374935.459 186
75, 7, 5 Failed 4032.050 65250 0.15 OptimTol 209856.169 2870
75, 9, 5 Failed 6931.777 182700 0.18 OptimTol 545603.181 5818
75, 9, 7 Failed 8153.850 122175 0.17 OptimTol 219288.648 15106

80, 5, 3 Failed 5456.438 62640 4.64 Failed 382013.703 277
80, 7, 5 Failed 7715.971 116400 1.01 Failed 643062.686 2374
80, 9, 5 Failed 10511.407 100800 1.04 Failed 340879.407 8450
80, 9, 7 Failed 8042.656 25200 1.20 Failed 373209.248 1299

85, 5, 3 Failed 10046.642 99705 1.28 Failed 417598.357 205
85, 7, 5 Failed 9325.384 15300 23.47 Failed 751982.377 3078
85, 9, 5 Failed 17163.296 111860 1.62 Failed 373611.634 8838
85, 9, 7 Failed 12968.537 21420 1.27 Failed 560609.787 30600

90, 5, 3 Failed 20909.273 30510 1.12 Failed 250690.119 519
90, 7, 5 Failed 17782.017 202050 1.93 Failed 369989.614 179
90, 9, 5 Failed 17509.658 10080 6.71 Failed 651969.202 2819
90, 9, 7 Failed 36566.741 281880 1.61 Failed 226597.933 19589

95, 5, 3 Failed 24118.205 9405 2.80 Failed 407999.198 155
95, 7, 5 Failed 22318.252 2375 1.78 Failed 314163.261 2627
95, 9, 5 Failed 34497.094 93100 7.83 Failed 171951.665 129
95, 9, 7 Failed 42681.357 213750 4.68 Failed 891420.488 46152
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N, T , q CPLEX TimeMIP Nnodes Gap IPStatus bestObj NUserCuts

100, 5, 3 Failed 37314.855 13500 4.36 Failed 288486.917 474
100, 7, 5 Failed 59853.853 80500 1.52 Failed 211461.544 617
100, 9, 5 Failed 70290.977 319200 6.44 Failed 433505.924 4487
100, 9, 7 Failed 57030.752 317700 2.88 Failed 547141.994 47010

Table 5: Branch, Benders and Cut for the small to mid-size instances.

District Name LAT LON Population

1 Akkar 34.55495 36.19510 143,634
2 El Batroun 34.25484 35.65896 20,260
3 Bcharre 34.25043 36.01056 3,945
4 El Koura 34.33810 35.80584 23,097
5 El Minieh-Dennie 34.41000 35.96000 81,668
6 Tripoli 34.44536 35.82251 76,018
6 Zgharta 34.39630 35.89580 17,775
7 Rachaya 33.52851 35.89803 14,393
8 West Bekaa 33.42000 35.85000 91,054
10 Zahle 33.84756 35.90271 241,235
11 Baalbek 34.00965 36.21171 172,115
12 El Hermel 34.39620 36.38704 8,652
13 Beirut 33.89592 35.47843 37,271
14 Aley 33.80780 35.60502 86,069
15 Baabda 33.83392 35.54435 128,878
16 Chouf 33.89016 35.49363 73,270
17 El Meten 33.89190 35.56300 75,314
18 Jbeil 33.89937 35.49675 9,347
19 Kesrwane 34.01323 35.80083 23,641
20 Jezzine 33.54393 35.58439 4,379
21 Saida 33.56142 35.37661 62,557
22 Sour 33.27212 35.19640 39,573
23 Bent Jbeil 33.11894 35.43411 11,329
24 Hasbaya 33.39801 35.68202 8,020
25 Marjaayoun 33.24016 35.44718 10,371
26 El Nabatieh 33.38113 35.48260 36,136

Table 6: Distribution of refugees in 26 Lebanese districts.

5.1. Case study

The Lebanese case study is composed of 26 nodes as the centers of districts and one main warehouse
(MW) —27 nodes in total. The planning horizon is a week (five working days, T = 5) and every node is
served in three different days, i.e. q = 3. In Table 6, the first column represents name, followed by lat/lon
coordinates and the last column representing population size. In all figures, we use ’0’ (zero in the darker
box) to refer to MW and all others numbers follow the order in this table. The distance table is calculated
from the road transport distance (queried using Google API). As before, we assumed a homogeneous fleet
of trucks and therefore the fuel consumption is approximately the same for all the trucks and equivalent to
24 litter per 100 KM. We further assumed that penalty factor for not serving a node directly is equal to 2.0
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—twice more expensive per unit of volume per kilometer compared to the normal service.

The reported solution is an optimal solution of the case-study with 26 nodes.

The DCs and isolated node for every day are reported in Table 7 and Table 8:

Day DCs

Monday 6, 9, 10, 15,
Tuesday 5, 9, 10, 15, 16, 26,
Wednesday 9, 10,
Thursday 7, 16, 25,
Friday 7, 15, 16, and 26

Table 7: The DCs in the optimal solution of Lebanese case study.

Day Isolated nodes

Monday [3](10), [20,21] (15), [23](9),
Tuesday [1,12](5), [3](10), [2](16), [22,25](26),
Wednesday [23](9), [3](10),
Thursday [2,12](7), [22](25),
Friday [12](7), [20](15), [2](16), and [22](26)

Table 8: The isolated nodes in the optimal solution of Lebanese case study.

At least two and at most 6 DCs are planned for every day. The nodes 10 (Zahle), 15 (Baabda) and 16
(Chouf) are appearing as DCs in all q times. These nodes are among the top 10 nodes with respect to the
demand size. The node 10 (Zahle) is the node with highest demand while 16 (Chouf) and 15 (Baada) are
among the nodes with high demand —even though not the highest. One observes in Figure 5 that, geo-
graphically speaking, these nodes are located at the interior par of the convex hull of the selected nodes of
every service day. A combination of higher demand and median-like property encourage them to be the DCs
of the days.

As per Table 8, between 2 and 6 nodes are considered as isolated nodes in daily services. The nodes 2
(El Batroun), 3 (Bcharre), 12 (El Hermel) and 23 (Bent Jbeil) are among the nodes with lowest demands
(among the 10 lowest in the table) and are designated as isolated in all q times visit. Moreover, as can be
observed in Figure 5, geographically speaking, these nodes are located at the perimeter (say are the outliers)
of the selected nodes of every service day. lower volume of demand and the geographical position of nodes
is an important factor in designating them as isolated nodes in an optimal solution.

6. Summary and Conclusion

We proposed the first Multiperiod Hub Location Problem with Serial Demand (MPHLPSD) accommodating
user’s demand pattern, and formulated it as a MILP. We showed that the problem of distributing humanitar-
ian aids could be formulated as such a problem. We further showed that a Benders formulation of problem
can help getting rid of some unnecessary variables and benefit from logical relationships among variables.
Several classes of valid inequalities and efficient separation routines have been identified, which resulted in
an efficient branch-and-cut and Benders approach capable of solving relatively lager size instances, which
are far too challenging for general-purpose solvers. We also showed that while a general-purpose solver is
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(a) Monday. (b) Tuesday.

(c) Wednesday. (d) Thursday.

(e) Friday.

Figure 5: An optimal solution of network in our case study.
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often unable to even find a feasible solution for instances of this problem, such a solution can be generated
easily and be used to warm start our branch, cut and Benders method. On the real-life case study we re-
ported an optimal solution and it revealed some interesting observations.

Further research directions include polyhedral analysis. Specially, identifying new tightening valid in-
equalities could count as an objective. Also, improving the performance of separation routines is of impor-
tance. Moreover, the hybridization of metaheuristic and exact methods, which can deliver solutions with
known quality, deserves a great attention.
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