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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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UM ESTUDO DE ALGORITMOS BASEADOS EM PASSEIOS ALEATÓRIOS
PARA A GERAÇÃO EFICIENTE DE ÁRVORES GERADORAS UNIFORMES

Igor de Oliveira Nunes

Julho/2020

Orientadores: Daniel Ratton Figueiredo
Giulio Iacobelli

Programa: Engenharia de Sistemas e Computação

Árvore geradora uniforme é a medida de probabilidade uniforme no conjunto
de árvores de geradoras de um grafo. Exploradas desde o consagrado trabalho de
Kirchhoff na década de 1840, essas árvores aleatórias estão entre os objetos aleatórios
mais antigos e mais amplamente estudados na teoria dos grafos e estão relacionados
a diversos temas importantes em probabilidade discreta, além de encontrarem
aplicação em muitas áreas. Não é de surpreender que a tarefa de gerar eficientemente
árvores geradoras uniformes tenha recebido muita atenção. No entanto, nas
últimas décadas, as estratégias mais promissoras para o problema mudaram
significativamente. Esse avanço ocorreu com os algoritmos de Aldous-Broder e
Wilson, que constroem árvores utilizando passeios aleatórios. Neste trabalho,
estudamos o comportamento transiente destes dois algoritmos. Introduzimos a
noção de branches, que são caminhos adicionadas às árvores em determinados tempos
de parada. Essa interpretação é usada para mostrar uma equivalência transiente
entre os dois algoritmos em grafos completos. A equivalência leva a uma abordagem
híbrida que gera árvores geradoras uniformes de grafos completos mais rapidamente
do que cada um dos dois algoritmos. Propomos uma metodologia para explorar essa
abordagem híbrida em um cenário mais geral, mostrando a viabilidade em alguns
exemplos. Por fim, mostramos como a metodologia pode ser adaptada para gerar
árvores aleatórias com probabilidade proporcional ao número de uma dada subárvore
fornecida como parâmetro.
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The uniform spanning tree is the uniform probability measure on the set of
spanning trees of a graph. Explored since Kirchhoff’s notorious work the 1840’s,
spanning trees are among of the oldest and most extensively studied random objects
in graph theory. They find application in many fields and are related to many
interesting problems in discrete mathematics. Not surprisingly, the task of efficiently
generating uniform spanning trees has received much attention since Kirchhoff’s
work. A breakthrough came with Aldous-Broder and Wilson’s algorithms, which
can efficiently generate spanning trees of any graph based on random walks. In
this work, we study the transient behavior of both algorithms. We introduce the
notion of branches, which are paths generated by the two algorithms on particular
stopping times. This interpretation is used to show a transient equivalence between
the two algorithms on complete graphs. This equivalence yields a hybrid approach
to generate uniform spanning trees of complete graphs faster than either of the two
algorithms. We also propose a framework to explore this hybrid approach on a more
general setting, showing its feasibility in various examples. Lastly, we show how the
framework can be adapted to generate random trees with probability proportional
to the number of a given sub-tree provided as input.
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Chapter 1

Introduction

Graphs are one of the most fundamental tools of mathematical abstraction and can
be used to model pairwise relationships between objects. A graph G consists of an
ordered pair (V,E) where V is a set of vertices, usually identified with labels, and E
a set of edges. In this work, we will mostly consider graphs that are labelled, simple,
connected and undirected, i.e., the elements e ∈ E are unordered pairs of vertices
and there is at least one path (sequence of edges) between every pair of vertices.

In graph theory, one important concept is that of spanning trees. A spanning tree
TG = (VT , ET ) of an undirected graph G = (V,E) is a connected acyclic subgraph
of G, such that VT = V . Figure 1.1 illustrates a simple graph G and all its spanning
trees.

1 2

3

4

G

1 2

3

4

1 2

3

4

1 2

3

4

Figure 1.1: An example of a simple, connected and undirected graph and all its
spanning trees.

Numerous applications of practical significance are based on spanning trees.
Many classical algorithms for finding paths between vertices build spanning trees
as an intermediate step [1, 2]. Several protocols used in the Internet and other
telecommunication networks are also based on spanning trees [3–5]. Optimization
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over spanning trees also gives way to an extensive range of applications, from ap-
proaches to the Travelling Salesman problem [6] to image segmentation problems in
computer vision [7].

In general, a graph has an exponential number of distinct spanning trees (see
Section 2.1.1). In the field of probability theory, an ordinary question arises: how
does a “typical” spanning tree look like? The investigation of this question brought
forth one of the most extensively explored probabilistic objects in graph theory:
uniform spanning trees (USTs) [8]. The uniform spanning tree of a simple connected
graph G = (V,E), denoted by UST(G), is the uniform probability measure on the
set of all spanning trees of G, denoted by TG. The study of this object dates back
to Kirchhoff’s theorem [9], which provides the size of the set TG in terms of the
eigenvalues of the Laplacian matrix of G (detailed in Section 2.1).

From that time on, it has been shown that the model has surprising connections
to a rich set of subjects in discrete probability, statistical mechanics and theoretical
computer science. Amongst other topics, some examples are: random walks, perco-
lation, gaussian fields, dimers and sandpile models [10–16]. Uniform spanning trees
are also used in generating expander graphs, which have a large number of applica-
tions [17]. Furthermore, USTs have played a crucial role in breaking long-standing
limits in approximation algorithms for the Travelling Salesman Problem, in both
symmetric and asymmetric versions [18, 19].

Uniform spanning trees are also related to an amusing application: Maze con-
struction. Mazes, which are also called labyrinths, have many uses, from video games
and tourist attractions to psychology experiments and robotics [20–22]. In his book
Mazes for Programmers [23], Jamis Buck presents numerous algorithms that can be
used to generate mazes. Among those, algorithms for generating uniform spanning
trees are used to create mazes with uniform probability in the 2D grid as illustrated
in Figure 1.2.

Figure 1.2: Illustration of a maze on the 15 × 15 2D grid randomly selected with
uniform probability (Buck 2015).

Taking into consideration this wide assortment of applications, it is not surpris-
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ing that the quest for designing fast algorithms for generating uniform spanning
trees has received significant attention over time. As a consequence of Kirchhoff’s
work, the first endeavors to algorithmically generate uniform spanning trees were the
determinant-based approaches. The first algorithms produced a uniform spanning
tree in running time O(mn3) where n = |V | and m = |E| [24, 25]. In a sequence
of works, Colbourn et al. made improvements to the determinant-based strategy,
culminating in an algorithm with the same complexity of a n × n square matrix
multiplication [26–28].

It was only over a century after Kirchhoff’s work, around 1990, that David Al-
dous and Andrei Broder independently discovered a formidable connection between
uniform spanning trees and random walks [29, 30]. They showed that the set of
edges that a random walk uses to reach each vertex for the first time has the uni-
form law over all the spanning trees of the graph. This result is discussed in detail
in Section 3.1. Although their findings were published independently, both authors
acknowledge Persi Diaconis for previous discussions on the topic.

The now called Aldous-Broder algorithm, immediate consequence of the above-
mentioned theorem, emerged as a much more promising approach to the problem
of generating uniform spanning trees in terms of running time complexity. The
algorithm is capable of generating a uniform spanning tree of any graph in time
proportional to the cover time of the graph, which is significantly smaller than
previous running time for most graphs [31]. Regardless of this, the task of improving
the field did not settle down. Quite the opposite, the idea gave way to a new
paradigm, the so called random walk-based approaches, with many new papers
providing successively more efficient approaches [32–35].

The first result that revealed the possibility of using random walks to generate
USTs faster than the cover time is due to David Wilson [32]. Wilson’s algorithm
is based on a distinct random process: loop-erased random walks (see Section 3.2).
The approach generates USTs with expected time proportional to the graph’s hitting
time, which is never larger than a graph’s cover time. Together, Aldous-Broder and
Wilson’s algorithms are considered two major pillars of current research on the topic,
since most of the latest developed theory and applications are based on them.

1.1 Contributions

While both Aldous-Broder and Wilson’s algorithms are based on random walks
their behavior is fundamentally different. The main theme addressed in this thesis
is the analysis of the transient behavior of both algorithms with the purpose of
generating uniform spanning trees more efficiently. The main result of this work is
a positive result on combining the two algorithms. In fact, considering a complete
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graph and an adequate sequence of stopping times, we show that the two algorithms
are equivalent in their transient behavior. More formally:

Theorem 4.3.1 (Aldous-Broder and Wilson transient equivalence). Let Aldous-
Broder and Wilson algorithms have the same initialization for the initial vertex r
and let the input graph G be a complete graph. Then, there exist two sequences of
stopping times (σ̂i)i≥0 (for Wilson) and (σin

i )i≥0 (for Aldous-Broder) such that, for
every i ≥ 0

TWσ̂i
d
= TABσin

i
.

where TWσ̂i and TAB
σin
i

are the trees constructed by Wilson and Aldous-Broder by
time σ̂i and σin

i , respectively. This result leads to a hybrid algorithm that starts
with Aldoud-Broder and then switches to Wilson to finish the spanning tree of a
complete graph. We show analytically and through simulations that this approach
is more efficient than running either of the two algorithms separately (by a constant
factor when considering Wilson).

The next contribution is a two-phase framework to explore such hybrid approach
in a more general setting. The first phase generates a sub-tree of G according to
a distribution which satisfies an “convenient” condition (properly defined in Chap-
ter 5). The second phase finishes by generating a uniform random spanning tree
given the initial sub-tree. We show that Wilson’s algorithm does the job for second
phase, captured by the following theorem:

Lemma 5.0.2 (Second stage). Let G = (V,E) be a connected graph and ζ be a
sub-tree (not spanning) of G. Wilson’s algorithm with initial condition ζ returns a
spanning tree of G which is uniformly distributed on the set {τ ∈ TG : τ ⊇ ζ}.

Wilson with an initial condition is a natural concept defined properly in Sec-
tion 3.2. While generating a sub-tree ζ that satisfies the condition for the first
phase is not trivial, we provide several examples where this is feasible and efficient.
For example, when considering any vertex-transitive graph G, a random edge of G
satisfies the condition for the first phase.

The running time complexity of the two-phase framework strongly depends on
the size of the initial sub-tree. However, the running time complexity of the second
phase will be in the same order as Wilson’s algorithm on G. Thus, an open challenge
for the proposed framework is generating random sub-trees with non-negligible size
for the first phase.

Of side interest, the framework can be adapted to generate random spanning
trees of the complete graph with probability proportional to the number of any
sub-tree provided as input (see Section 5.1). For example, consider as sub-tree ζ a
star graph with k nodes, then we can generate a spanning tree T of the complete
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graph with probability that is proportional to the number of sub-trees of T that
are isomorphic to ζ. This finds application in the area of generating random graphs
(trees) that have a law for pre-defined subgraphs (sub-trees) [36–38].

1.2 Outline

The remainder of this work is organized as follows. Chapter 2 presents a summary of
the classical results, considered the starting point for the study of uniform spanning
trees. Topics are not directly related to random walks, since the connection was
only discovered several years later. Chapter 3 introduces the random walk-based
approaches and some related work. These approaches represent the main techni-
cal background of this work. Chapter 4, introduces a dynamic interpretation for
both Aldous-Broder and Wilson’s algorithms and then shows how this description
reveals a transient equivalence between them for complete graphs. To conclude the
chapter, in Section 4.3.1 we present a hybrid algorithm, which takes advantage of
this equivalence to generate USTs of complete graphs more efficiently. In Chapter 5
we investigate the possibility of using this idea to generate trees in a more general
setting. We describe a general framework and provide some examples of its usage.
Section 5.1 shows that the framework can also be used to generate spanning trees
of the complete graph with probability proportional to the number of a sub-tree
given as input. Finally, Chapter 6 concludes the thesis with a summary of the main
results and possible future work.
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Chapter 2

Background

In this chapter we present some classical results concerning uniform spanning trees
(USTs). We start presenting Kirchhoff’s theorem in Section 2.1. The result is com-
monly regarded as the starting point of the area. We also introduce Cayley’s formula
as a special consequence of Kirchhoff’s theorem. In Section 2.2 we describe Prüfer
sequences, a method for enumerating labeled trees which also yields an interest-
ing algorithm to generate them uniformly. Finally, in Section 2.3 we introduce the
Galton-Watson branching process, show how it is related to USTs and discuss how
this relationship can be used to efficiently generate uniform random trees conditioned
on the number of vertices, observed in the critical state.

2.1 Kirchhoff’s Theorem

The study of uniform spanning trees dates back toKirchhoff’s matrix tree theorem [9]
(or simply Kirchhoff’s theorem), which describes how to determine the size of the
set TG of all spanning trees of a graph G. The number is obtained in terms of the
eigenvalues of the Laplacian matrix L(G) of the graph, defined as:

L(G) = D(G)− A(G) (2.1)

where D(G) and A(G) are the degree and adjacency matrices of G respectively.

Theorem 2.1.1 (Kirchhoff’s matrix tree theorem). Let G be a connected graph with
n labeled vertices and let λ1, . . . , λn−1 be the non-zero eigenvalues of its Laplacian
matrix L(G). The number |TG| of spanning trees of G is equal to 1

n
λ1λ2 . . . λn−1.

Equivalently, |TG| is equal to any cofactor of L(G).

Consider, for example, the graph below:
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1 2

3 4

G

Figure 2.1: An example of a connected graph G, with n = 4 labeled vertices.

To obtain the number of spanning trees of G, first we construct its Laplacian matrix:

D(G) =


2 0 0 0

0 3 0 0

0 0 3 0

0 0 0 2

 A(G) =


0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0



L(G) = D(G)− A(G) =


2 −1 −1 0

−1 3 −1 −1

−1 −1 3 −1

0 −1 −1 2


Then, we need to obtain a cofactor of L. By deleting the first row and column, for
example, we have:

L1,1(G) =

 3 −1 −1

−1 3 −1

−1 −1 2


The (1, 1)-cofactor of L(G) is the determinant of L1,1(G), which is equal to 8. Thus,
from Theorem 2.1.1 we know that the number of spanning trees of G is 8. Figure 2.2
lists all eight spanning trees of G to illustrate this result:

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Figure 2.2: Representation of all eight spanning trees of G.
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2.1.1 Cayley’s Formula

Named after Arthur Cayley, the result known as Cayley’s Formula [39] states that
the number of distinct labeled trees on n vertices is exactly nn−2, for every positive
integer n. Although many proofs of the result are known [40], the formula can be
derived from a special case of Kirchhoff’s theorem, since each labeled tree with n

vertices is a spanning tree of Kn, the complete graph on n vertices. The Laplacian
matrix of a complete graph is:

L(Kn) =


n− 1 −1 . . . −1

−1 n− 1 . . . −1
...

... . . . ...
−1 −1 . . . n− 1


︸ ︷︷ ︸

n

From Kirchhoff’s theorem, we know that the number of spanning trees of Kn is equal
to any cofactor of L(Kn). If we delete the first row and column, we have:

L1,1(Kn) =


n− 1 −1 . . . −1

−1 n− 1 . . . −1
...

... . . . ...
−1 −1 . . . n− 1


︸ ︷︷ ︸

n−1

Note that L1,1(Kn) has the same pattern of L(Kn) (n − 1 in the diagonal and −1

everywhere else), but has n − 1 rows and columns. To obtain the determinant of
L1,1(Kn) we can construct matrix A by subtracting the bottom row from each of
the other rows:

A =



n

0
−n

n −n

0 . . . ...
n −n

−1 −1 . . . −1 n− 1


︸ ︷︷ ︸

n−1

8



If we add each of the first n− 2 columns to the last column we get:

A′ =



n

0
0

n 0

0 . . . ...
n 0

−1 −1 . . . −1 1


︸ ︷︷ ︸

n−1

Since the operation of adding rows and columns to other rows and columns preserves
the determinant, we obtain:

det(L1,1(Kn)) = det(A) = det(A′) = nn−2

where the last equality follows as A′ is lower triangular, then its determinant is the
product of its diagonal values. Remember that det(L1,1(Kn)) is the (1, 1)-cofactor
of L(Kn), and from Kirchhoff’s theorem it is equal to the number |TKn| of spanning
trees of Kn, demonstrating Cayley’s Formula.

2.2 Prüfer Sequences

With the purpose of proving Cayley’s formula, Heinz Prüfer [41] created a method
for enumerating every labeled tree on n vertices. Prüfer proved a one-to-one cor-
respondence between sequences of n − 2 numbers and trees on n labeled vertices.
The so called Prüfer sequence (or Prüfer code) of a labeled tree with n vertices
is a unique sequence S of length n − 2 on the labels {1, . . . , n}, with repetitions
allowed. Moreover, for any given sequence S on {1, . . . , n} of size n− 2, there exists
only one labeled tree on n vertices whose Prüfer sequence is S. Figure 2.3 shows
all 16 labeled trees with four vertices and their corresponding Prüfer sequences.
Equivalently, these are all the spanning trees of K4, the complete graph with four
vertices.
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1 2

3 4

K4

1 2

3 4

{1,1}

1 2

3 4

{1,2}

1 2

3 4

{1,3}

1 2

3 4

{1,4}

1 2

3 4

{2,1}

1 2

3 4

{2,2}

1 2

3 4

{2,3}

1 2

3 4

{2,4}

1 2

3 4

{3,1}

1 2

3 4

{3,2}

1 2

3 4

{3,3}

1 2

3 4

{3,4}

1 2

3 4

{4,1}

1 2

3 4

{4,2}

1 2

3 4

{4,3}

1 2

3 4

{4,4}

Figure 2.3: Representation of all the spanning trees of the complete graph with four
vertices and their corresponding Prüfer sequences.

An immediate consequence of this bijection, is that the number of trees on n

labeled vertices is exactly the same as the number of possible sequences of length
n− 2 on n numbers. While it would seem hard to count by looking at the trees, it
is rather simple to determine that there are exactly nn−2 possible sequences, once
again, proving Cayley’s formula.

2.2.1 Algorithms

Another important aspect of Prüfer’s result is that it yields a simple algorithm to
obtain the sequences from the trees and vice-versa. The following procedure receives
a tree as input and returns the corresponding Prüfer sequence. We denote by `(T )

the set of vertices in T that have degree 1, namely the leaves of T (the degree d(v)

of a vertex v is simply the number of edges that are incident to it).
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tree-to-sequence(T = (V ,E))

• Set S ← {}

• While |V | > 2:

– Remove from T the vertex v ∈ `(T ) with the smallest label and append
its neighbor’s label at the last position of S;

• Return S

In Figure 2.4, we give an example of input tree T , and illustrate the steps to
obtain its corresponding sequence following the above algorithm. The represented
steps are:

1) Vertex 1 has the smallest label among the leaves, so we remove it and add its
parent’s label 3 to S;

2) in the remaining tree, vertex 3 has the smallest label, then we remove it and
add 2 to S;

3) finally, we add 2 again to the sequence, since it is the label of the parent of
vertex 4, the current smallest leaf.

1 2

3 4

5

T

1 2

3 4

5

S = {3}

1)

1 2

3 4

5

S = {3, 2}

2)

1 2

3 4

5

S = {3, 2, 2}

3)

Figure 2.4: An illustation of the steps to obtain a Prüfer sequence from a tree.

The inverse process, i.e., constructing a tree from a sequence is also simple. First,
note that the degree of a vertex in the tree is always the number of appearances
of its label in the sequence plus one. Again, let us denote by d(v) the degree of
vertex v. Considering this, the algorithm to construct the tree given a sequence is

11



described below. Note that we treat the degrees as variables in the algorithm in
order to simplify its description.

sequence-to-tree(S)

• Set V ← |S|+ 2 vertices, numbered {1, . . . , |S|+ 2}, E ← ∅

• For each s ∈ S:

– For each v ∈ V :

∗ if d(v) = 1: Set E ← E∪{v, s}, d(v)← d(v)−1 and d(s)← d(s)−1

• Set E ← E ∪ {i, j}, where i and j are the only two vertices that remain with
degree 1.

• Return T = (V,E)

Both algorithms, tree-to-sequence and sequence-to-tree, can be implemented very
efficiently in terms of running time complexity, as they are asymptotically bounded
by the label sorting procedure. Using efficient integer sorting strategies, such imple-
mentations run in O(n) time [42, 43].

Another important outcome of Prüfer sequences, particularly related to the sub-
ject of this work, is that the idea can be easily used to efficiently generate uniform
spanning trees of complete graphs. It is obvious that, in order to generate one of
the nn−2 sequences uniformly, one can simply sample n − 2 labels from {1, . . . , n}
uniformly with replacement and insert them in sequence. If we run sequence-to-tree
on that sequence, from Prüfer’s bijection the resulting tree will also be uniformly
chosen among the trees on n vertices.

2.3 Galton-Watson branching process

The Galton-Watson branching process is a simple approach initially designed to
model the evolution of a population [44] and it is considered one of the fundamental
processes in probability theory. Although earlier studied by Bienaymé [45], the
model is usually attributed to Galton and Watson [46] due to their anthropological
study “On the probability of the extinction of families". Despite its simplicity, the
branching process has proved to be remarkably useful, finding applications in a
myraid of unrelated areas. The model can be described by the following recursive
steps:

12



1. Starting from a root vertex r, create k children vertices, where k is distributed
over non-negative integers according to some distribution ξ;

2. Recursively repeat for each child.

The only parameter of the model is the distribution ξ of the number of children
of each vertex, called the offspring distribution. The constructed tree is commonly
referred to as a Galton-Watson tree. Consider the example on Figure 2.5. Let us
denote by ci the number of vertices on the i-th generation, which corresponds to level
i in the tree rooted at r. We start from the root vertex on the left in generation 0.
Generations 1 and 2 have three vertices each, so c1 = c2 = 3. The third generation
has 2 vertices (c3 = 2) and all the subsequent generations have no vertices. Clearly,
to obtain a finite tree like in the example, the offspring distribution must have non-
zero value for P(ξ = 0). In fact, one of the main results of branching processes is
that when E(ξ) ≤ 1, the tree is always finite and when E(ξ) > 1, there is a non-zero
probability that the tree grows indefinitely [47].

Figure 2.5: Example of tree constructed by a Galton-Watson branching process.

2.3.1 The uniform spanning tree as a Galton-Watson tree

Amongst the extensive range of applications, the model generates particularly in-
triguing trees when the offspring distribution has expected value 1 (E(ξ) = 1) [48].
Such trees are denominated critical Galton-Watson trees. The following proposi-
tion shows that a specific critical Galton-Watson tree also has a very interesting
connection to uniform spanning trees.

Proposition 2.3.1. Consider the following process:

• Construct a Galton-Watson tree with Poisson(1) offspring distribution. Let N
(random variable) be the total number of vertices on the obtained tree;

• Assign the vertices unique random labels chosen from {1, . . . , N}.

The obtained labeled tree is a uniform spanning tree of the complete graph on N

vertices.

13



Proof. Consider the Galton-Watson tree T and let Xi be the random variable de-
noting the number of children of the i-th vertex. We start describing the probability
of the branching process generating a particular structure (unlabeled tree) τ , con-
ditioned on having exactly n vertices, identified by X1 = ξ1, . . . , Xn = ξn. First,
note that this probability is entirely determined by the numbers of offspring of each
vertex:

P
(
T = τ

∣∣ |T | = n
)

= P

(
X1 = ξ1, . . . , Xn = ξn

∣∣∣∣∣
n∑
i=1

Xi = n− 1

)
(2.2)

Notice that we condition on
∑n

i=1Xi = n− 1 because the first vertex is not counted
as offspring of another vertex. Since the variables are independent and Poisson(1)
distributed, we have:

P
(
T = τ

∣∣ |T | = n
)

=

∏n
i=1 P (Xi = ξi)

P (
∑n

i=1Xi = n− 1)
=

∏n
i=1

e−1

ξi!

e−nnn−1

(n− 1)!

=
(n− 1)!

nn−1
∏n

i=1 ξi!
(2.3)

Note that this probability still depends on the structure of the tree, given that it
is a function of the ξi factors. However, we still need to assign the labels to each
vertex. Even though we have n! possible permutations of the labels, not all of them
represent unique trees since we consider unordered lebeled trees. Unordered means
that the following trees are all considered identical, since ξi is preserved across the
trees for all i:

1

2

3

4

5

6

1

2

3

5

4

6

1

2

3

4

5

6

1

2

3

5

4

6

Figure 2.6: Example of permutations of labels that correspond to identical trees,
since the number of offspring of every node is preserved across the identical trees.

while the following two are different:

14



1

2

3

4

5

6

1

3

2

4

5

6

Figure 2.7: Example of permutation of labels that correspond to distinct trees, since
ξ3 is one and two in each of the trees.

Note that changing the order of the vertices of the same generation and making
the corresponding adjustments in the following generations results in identical trees.
The root vertex can receive one of the n labels. There are (n − 1)! different ways
to assign labels to the other vertices, of which

∏n
i=1 ξi! correspond to the same

unordered labeled tree. Then, the number L(τ) of labelings that result in distinct
trees is:

L(τ) =
(n− 1)!

n
∏n

i=1 ξi!
(2.4)

Finally, the probability of obtaining a particular labeled tree is
L(τ)−1P

(
T = τ

∣∣ |T | = n
)

= 1/nn−2.

2.3.2 Simulating size-constrained Galton-Watson trees

Even though the aforementioned result is very interesting from a theoretical per-
spective, it does not provide a clear method for sampling uniform spanning trees
with n vertices efficiently, since the size of the obtained tree N is a random variable.
As a matter of fact, one can use rejection sampling [43, 48] discarding the generated
trees until obtaining the desired size, but then the running time complexity would
intuitively not be linear.

Fortunately, a solution to the problem was proposed by Devroye [48] by providing
the multionomial method, which splits the task into generating a multinomial ran-
dom vector, applying a certain permutation and then constructing the tree based on
the result. The method is not only restricted to sampling uniform spanning trees. It
is capable of generating any size-conditioned Galton-Watson tree and, particularly
when E(ξ2) < ∞, the method is O(n). Since in the process described in Proposi-
tion 2.3.1 we have ξ ∼ Poisson(1), thus E(ξ2) = 2, the multinomial method is able
to create uniform spanning trees in linear time.

To begin, notice that the branching process generates a particular structure given
by its offspring sequence {ξ1, . . . , ξn}. In order to obtain the specific tree from the
sequence, a traversing order must be established. For example, we can traverse the
tree in BFS (breadth first search) order. In the example of Figure 2.8 we illustrate
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the mapping of the offspring sequence {3, 2, 0, 1, 0, 0, 2, 0, 0} to a tree. The vertex
label indicates the order in which they are inserted in the tree. Although such order
is arbitrary between vertices of the same generation, it must be kept so that the
sequence maps to a unique tree. Given this traversal ordering, the steps are:

1) The first number of the sequence is 3, indicating that ξ1 = 3. Then, the next
three vertices (2, 3 and 4) are added to the tree as children of the first vertex;

2) The next three numbers in the sequence (ξ2 = 2, ξ3 = 0 and ξ4 = 1) indicate
respectively the offspring of vertices 2, 3 and 4;

3) The following numbers (0, 0 and 2) are, in respective order, the offspring of
the least recently added vertices: 5, 6 and 7; Since all the following numbers
are zeros, no more vertices need to be inserted and the process finishes.

1 3

2

4

{3,2, 0, 1, 0, 0, 2, 0, 0}

1)

1 3

2

4

5

6

7

{3,2,0,1, 0, 0, 2, 0, 0}

2)

1 3

2

4

5

6

7

8

9

{3, 2, 0, 1,0,0,2, 0, 0}

3)

Figure 2.8: Galton-Watson tree constructed from offspring sequence in BFS order.

It is easy to see that the described procedure is linear on the number of vertices.
Since we have an efficient method for constructing Galton-Watson trees from off-
spring sequences, as long as we can sample valid sequences uniformly in linear time,
it would give way to a linear algorithm to sample uniform spanning trees.

Observe that all the valid sequences must have n elements that sum n − 1,
since they indicate the offspring of each vertex and the root vertex is not a child of
any other vertex. On top of that, from Equation 2.3 we see that the sequences are
distributed as multinomial random variables with n−1 trials, each assuming one out
of n possible values with equal probability 1/n. Notice, however, that the problem
of generating valid sequences here is not as trivial as it is with Prüfer sequences.
In particular, while each valid sequence corresponds to a single tree if we establish
a traversing order, not all sequences correspond to valid trees. As an example,
sequences that start with zeros and sequences that end with non-zeros clearly do
not correspond to any tree in the BFS order mentioned above.
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The key idea of the multinomial method is exactly how to solve this problem.
Devroye noted that for any sequence there is only one circular shift that corresponds
to a valid tree for a given traversing order. The result is based on the standard rota-
tion argument for partial sums, commonly referred as the Dvoretzky-Motzkin cycle
lemma [49, 50]. The observation implies the following strategy for the simulation of
size-constrained Galton-Watson trees:

1. Generate a sequence S = {ξ1, . . . , ξn} with multinomial distribution (n − 1

trials, n events of equal probability 1/n.);

2. Rotate S until it corresponds to a valid tree for a predefined traversing order;

3. Construct the tree according to the single valid order.

This procedure constitutes the multinomial method, which can be implemented in
linear running time complexity, and results in a uniform spanning tree of the com-
plete graph on n vertices.
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Chapter 3

Approaches based on random walks
and related work

A random walk is a stochastic process that models the movement of a particle
(walker) in discrete space. The subject represents one of the most popular and
important areas in probability theory, particularly in the field of Markov processes,
with extensive theoretical developments and a wide range of applications [51, 52].
We denote by (Xt)t≥0 the sequence of random states representing the position of
the walker at discrete time instant t. A basic example is the random walk on Z,
the integer line. The particle starts on state X0 = 0 and at any subsequent time
t the particle moves to position Xt−1 − 1 or Xt−1 + 1 with equal probability. The
exploration of this one-dimensional simple model can be traced back to the study
of the “gambler’s ruin problem" by Fermat and Pascal [53].

Besides the integer line, random walks can also take place in a variety of more
complex spaces. The most commonly studied structures are graphs [54]. A random
walk in a graph G = (V,E) is simply a Markov chain process in which the states
(Xt)t≥0 represent the vertices, X0 can be deterministic or random depending on
the model, and each following state Xt is uniformly chosen between the adjacent
vertices of Xt−1. The definition can be extended for graphs with weights on the
edges (w : E → (0,∞)), in which case the next state is chosen with probability
proportional the weight of the edge incident on to the current state.

The remaining of this chapter is dedicated to introducing Aldous-Broder and
Wilson’s algorithms, which demonstrate the fascinating relationship between ran-
dom walks and uniform spanning trees (USTs). These algorithms are considered
two fundamental pillars of the recent research on the UST topic, and are also the
essential basis of this work.
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3.1 Aldous-Broder algorithm

As pointed out in Section 2.1, uniform spanning trees have been studied at least since
1840’s. As a consequence of Kirchhoff’s work, the first endeavors to algorithmically
generate uniform spanning trees were the determinant-based approaches. The first
algorithms produced a uniform spanning tree in running time O(mn3) where n = |V |
and m = |E| [24, 25]. It was only in the late 1980s that algorithms based on random
walks emerged as a much more promising approach. Such algorithms began with
the following notable result due to Aldous [29] and Broder [30]:

Theorem 3.1.1 (Aldous-Broder). Consider a simple random walk (Xt)t>0 on
G = (V,E) starting from an arbitrary vertex r ∈ V . Let EX be the set of edges⋃
t≥0
{
{Xt, Xt+1} such that Xt+1 6= Xk, for all k ≤ t

}
. Then T = (V,EX) is a ran-

dom spanning tree of G with law UST(G).

In order to generate a spanning tree T the random walk can stop at the cover
time of G (the first time when the walker has visited all the vertices), as the tree
will be completed exactly when the last node is visited. This improved the running
time of generating a UST(G) to the cover time of G which has an expected value
of O(n log n) for most graphs and O(mn) for the worst graphs [31]. The algorithm
derived from Theorem 3.1.1 is commonly referred as the Alodous-Broder algorithm,
and is precisely described below:

Aldous-Broder(G = (V ,E))

0) Set EX ← ∅ and X0 ← r, with r ∈ V chosen arbitrarily;

• While |EX | 6= |V | − 1:

– Run a simple random walk (Xt)t>0 on G, starting at X0 and for each edge
e = {Xt, Xt+1} such that Xt+1 6= Xk for all k ≤ t, set EX ← EX ∪ {e};

• Return T = (V,EX).

As a remark, if the input graph has weighted edges, the algorithm using the
weighted walker returns a tree with probability proportional to

∏
e∈T w(e). The

weighted trees generated according to this law are called weighted uniform spanning
trees. Another interesting recent result due to Hu et al. is the reverse Aldous-Broder
algorithm [55] . They showed that not only the set of first-entrance edges have the
the law of a uniform spanning tree, but that this is also true for a tree constructed
using the last-exit edges.

Since this result by Aldous and Broder, much research has been devoted to
investigating the possibility of improving the complexity for generating uniform
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spanning trees using random walks. Wilson [32] was the first to demonstrate the
possibility of generating uniform spanning trees faster than the cover time.

3.2 Wilson’s algorithm

In order to build a spanning tree, the random walk clearly needs to visit every vertex
of the graph at least once. For this reason, it might seem unlikely that a random
walk-based algorithm would generate a uniform spanning tree faster than the cover
time of the graph. However, Wilson [32] proposed an algorithm based on loop-
erased random walks to generate a UST(G) with a lower expected running time.
As suggested by the name, a loop-erased random walk is defined as a trajectory of
a random walk in which any loop is erased as soon as it is formed [56]. The fact
that the path between a pair of vertices in a uniform spanning tree has the law of
a loop-erased random walk was already known for some time [11, 57], but Wilson’s
algorithm described below was the first method to exploit this fact.

Wilson(G = (V ,E), To)

0) VX ← V (To) and EX ← E(To);
If To = ∅ then VX ← {r} with r ∈ V chosen arbitrarily;

• While VX 6= V :

– Choose v ∈ V \ VX uniformly at random

– Start a random walk on v and stop when it first visits a node in VX

– Let pv be the path taken by the walker once loops have been erased

– Let VX = VX ∪ V (pv) and EX = EX ∪ E(pv)

• Return T = (VX , EX).

Note that To is an initial tree of G but for now assumed to be empty, To = ∅ (it
will be used in Section 4.3.1). Wilson showed that the expected running time of
this algorithm is proportional to the mean hitting time of G. The hitting time huv
is the expected number of steps a random walk takes to reach vertex v starting
from vertex u and the mean hitting time of a graph G is the average hitting time
considering all pairs of vertices. The mean hitting time of a graph is always less
than the mean cover time (although its worst-case asymptotics is still O(mn) [58]).
Moreover, the mean hitting time can be significantly smaller for some graphs. On
complete graphs for example, the mean cover time is Θ(n log n) whereas the mean
hitting time is Θ(n) (see Section 4.3.1 for a more detailed discussion). On the other
hand, a well-known result reffered to as Matthews bound [59], showed that for any
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graph, the cover time is never bigger than Hn−1 times the mean hitting time (Hn is
the n-th harmonic number which is Θ(log n)).

As with Aldous-Broder, Wilson’s algorithm can also be applied to weighted
graphs, in which case it returns weighted uniform spanning trees. On top of that, it
also finds particular applications such as the generation of random arborescences and
random spanning forests. Avena et al. [60] surveys some recent results on a certain
parametric measure over random forests which can be sampled using a simple mod-
ification of Wilson’s algorithm. The study includes some interesting applications as
a powerful tool for analysing networks.

While both Aldous-Broder and Wilson algorithms are based on random walks,
their behavior is fundamentally different in general. Consider the last few vertices
to be added to the spanning tree. In Aldous-Broder the random walk may wander a
long time before covering these vertices, while in Wilson they will be rather quickly
added to the tree. In sharp contrast, when considering the first few vertices to
be added to the spanning tree, Aldous-Broder will quickly cover them but Wilson
may wonder a long time until it reaches its initial anchor node. Intuitively, Aldous-
Broder is more efficient in the beginning, to generate the first vertices of the tree,
and Wilson is more efficient in the end, to finish the random tree. Can this intuition
be formally explored to combine the two approaches into a more efficient algorithm?
This is the main theme addressed in the following chapters.

3.3 Recent Advancements

Wilson’s algorithm opened the doors to algorithms that can generate USTs more
efficiently than the cover time of a random walk. Since then, a sequence of improved
algorithms have emerged in the literature. Kelner and Mądry [33] proposed a method
for generating approximately uniform spanning trees by trying to skip unnecessary
steps, i.e., steps over already-covered regions of the graph (referred as shortcutting
strategy). The method returns a tree τ with probability p(τ), where (1− δ)/|TG| ≤
p(τ) ≤ (1 + δ)/|TG| for some δ > 0, in Õ(m

√
n log 1/δ) time (Õ refers to the soft-O

notation, which is simply big-O ignoring logarithmic factors [61]). Later on, the
strategy was proved to work for generating uniform (not approximately) spanning
trees too [62], resulting in a procedure with Õ(m

√
n) expected running time.

Based on this last result, and exploring the effective resistance metric [63] and
its relation to random walks, Mądry et al. [34] proposed an approach that improved
the performance to Õ(m4/3) (better on sufficiently sparse graphs). Finally, based
on the just mentioned results and in a number of new facts about electrical flows,
Schild [35] introduced another shortcutting strategy which resulted in a method that
generates uniform spanning trees with running time almost-linear on the number of
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edges (O(m1+o(1))). It is worth mentioning that the effective resistance metric was
also the basis for a very recent and promising new algorithm by Durfee et al. [64],
which eschews from both determinant and random walk-based approaches and uses
Gaussian elimination to generate USTs with high probability in O(n5/3m1/3).
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Chapter 4

Aldous-Broder and Wilson transient
equivalence on complete graphs and
Hybrid Algorithm

In this chapter we provide an interpretation for the transient behavior of the Aldous-
Broder and Wilson’s algorithms that is instrumental in establishing one of our main
results. A balls and urns model is defined and used to generate random spanning
trees. Then, we show that this process is equivalent to the Aldous-Broder algorithm
when running on the complete graph, including in its transient behavior. We use
this model to show a transient equivalence between Aldous-Broder and Wilson on
complete graphs. The key idea is to view both algorithms as constructing branches
that are added to the tree being generated. This result leads to the Hybrid algorithm,
which combines the other two approaches to generate uniform spanning trees more
efficiently than running either algorithm separately.

4.1 Aldous-Broder branch distribution

Consider the description of Aldous-Broder(G = V,E) given is Section 3.1. Let
Vt denote the set of vertices of G visited by the random walk up to time t, i.e.,
Vt =

⋃t
k=0

{
Xk

}
, and η the cover time of G. Consider the following double sequence

of stopping times: σout
0 ≡ 1, and for i > 0,

σin
i := inf{t > σout

i−1 : Xt ∈ Vt−1} ∧ η ,

σout
i := inf{t > σin

i : Xt /∈ Vt−1} ∧ η .

Note that, since G is finite and connected, η is finite almost surely, and thus the
stopping times above are all well-defined. Based on the stopping times above, we
define the branches of the random walk (Xt)t≥0 as follows: for every i ≥ 1, the i-th
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branch is the (self-avoiding) path with vertices {X(σout
i−1−1), . . . , X(σin

i −1)}. Note that,
we refer to a branch as the path graph with vertices X(σout

i−1−1), . . . , X(σin
i −1) and edges

{Xj−1, Xj}, for j = σout
i−1, . . . , σ

in
i −1. Figure 4.1 illustrates the definition through an

example of the evolution of the Aldous-broder algorithm, during the construction of
the first two branches in a 5×5 grid graph. The position of the walker is represented
by the red circle and the colored vertices are the already covered ones (each color
indicates a different branch). Bold edges represent the set of first-entrance edges,
which are included in the tree according to Theorem 3.1.1.
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(f) t = σin2

Figure 4.1: Illustration of the branch construction process by the Aldous-Broder
algorithm.

The represented events are:

(a) the random walk starts at time t = 0 in an arbitrary vertex (16). By definition,
this vertex belongs to the first branch, since σout

0 ≡ 1;

(b) while the walker visits new vertices, the corresponding path (vertices and
edges) are added to the first branch;

(c) the first time the walker visits any already-covered vertex, the construction of
the first branch is completed. This corresponds to the stopping time t = σin

1 ;

(d) after t = σin
1 the walker may wander a random number of steps (possibly zero)

over already-covered vertices. The next time a vertex is visited for the first
time (σout

1 ), another branch starts;
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(e) as the random walk continues, while the following vertices are reached for the
first time, they are added to the current branch, along with the corresponding
edges;

(f) when a repeated vertex is visited, the current branch is finished. The process
goes on until every vertex is visited and added to a branch.

We denote by TAB
σin
i

the random sub-tree of G (not necessarily spanning) con-
structed by the Aldous-Broder algorithm when considering the first-entrance edges
up to time σin

i , i.e.,
⋃
t<σin

i
{{Xt, Xt+1} : Xt+1 6= Xk ∀k ≤ t}, which corresponds to

the edges in the first i branches. For example, the sub-trees highlighted in Fig-
ures 4.1c and 4.1f are, respectively, TAB

σin
1

and TAB
σin
2
. Clearly, by Aldous-Broder theo-

rem, Tη is a uniform spanning tree of G. In Figure 4.1 we show an example of the
branches constructed by the Aldous-Broder algorithm in a uniform spanning tree of
the complete graph with a hundred vertices.
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Figure 4.2: An example of a uniform spanning tree of a complete graph with a hun-
dred vertices, generated by the Aldous-Broder algorithm. Each vertex is numbered
according to its branch number.
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4.1.1 Urn Model

Consider an urn U = {b1, . . . , bn} containing n uncolored (unlabelled) balls, and let
{c1, . . . , cn} be a set of n distinct colors. Consider the following color-assignment
process:

0) Set A← ∅ and i← 1;

1) Draw a ball b uniformly at random from the urn U :

– if b ∈ U \A (the ball is uncolored), paint it with color ci, return it to the
urn and set A← A ∪ {b};

– if b ∈ A (ball is already colored), return it to the urn, set i ← i + 1 and
paint a uniformly chosen ball from U \ A with color ci;

2) If A 6= U , repeat item 1), otherwise stop.

Note that, the color-assignment process stops after n calls to 1), since one ball
is colored at each call. Let |Ci|, for i ≤ n, be the random variable denoting the
number of balls painted with color ci at the end of the process. The next lemma is
straightforward.

Lemma 4.1.1. For every h ∈ {1, . . . , n}, PU(|C1| = h) = h(n−1)!
nh(n−h)! . More-

over, for every i > 1, k ∈ {1, . . . , n − 1}, and h ∈ {1, . . . , n − k},
PU
(
|Ci| = h

∣∣∣ ∑i−1
j=1 |Cj| = k

)
= (k+h)(n−k−1)!

nh(n−k−h)!

Let C = (|C1|, . . . , |Cn|) denote the random sequence obtained as a result of
the color-assignment urn process (note that |Ci| = 0 if color ci is not used). The
following algorithm generates a labelled tree with n+1 vertices based on the outcome
of the color-assignment process for a urn with n balls. We shall use the following
notation: Given a path graph p, let V (p) and E(p) denote its vertex and edge set,
respectively, and `p a leaf of p (vertex of degree 1).
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Urn-Tree(C)

0) Set V ← {1, 2, . . . , n+ 1}, and let r ∈ V be chosen arbitrarily;
Set VT ← {r}, ET ← ∅;
Set V ← V \ {r};

• For i ∈ {1, 2, . . . , n}:

– Let R be a uniform random subset of V with size |Ci|;

– Let p be a path graph of size |Ci| with the vertices of R placed in a
random permutation;

– Choose a leaf u = `p uniformly at random;

– Choose a uniform random vertex v ∈ VT ;

– Let VT ← VT ∪ V (p) and ET ← ET ∪ E(p) ∪ {(v, u)};

– Let V ← V \R;

• Return T = (VT , ET ).

Note the input to the algorithm is the sequence |Ci|, i = 1, . . . , n and the output
is a random labelled tree with n + 1 vertices. The tree is constructed by starting
with an arbitrary vertex. Then for every iteration, a path of size |Ci| is randomly
constructed using the vertices not yet in the tree. This path is then attached to
exiting tree by choosing a random leaf of the path and a random vertex in the tree
(both uniformly). The process finishes when all colors have been considered.

To illustrate, consider the following urn obtained after the color-assignment pro-
cess, where c1 = , c2 = , c3 = and c4 = :

Figure 4.3: Example of urn with n = 10 balls obtained after the color-assignment
process.

Figure 4.4 shows an example of tree that can be obtained from the Urn-Tree
algorithm, with the above urn given as input.
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Figure 4.4: Example of tree that can be obtained from the Urn-Tree algorithm after
the color-assignment illustrated in Figure 4.3

Note that, if N := max{i ≤ n : |Ci| 6= 0} denotes the number of used colors
in the color-assignment process, then |Cj| = 0 for j > N . This means that the
Urn-Tree algorithm can stop after N steps, since the tree has been fully constructed
at this step.

Consider the Aldous-Broder algorithm on a complete graph with n vertices and
the Urn-Tree on an urn with n − 1 balls. While both algorithms build random
trees with n vertices, they correspond to significantly different random processes.
An important difference is their running time. While the expected running time
of Aldous-Broder is Θ(n log n) for a complete graph with n vertices, the Urn-Tree
algorithm has a worst case running time of Θ(n) for an urn with n−1 balls. Note that
the color assignment procedure requires time Θ(n). The random subset selection
and the random permutation in the Urn-Tree algorithm can be implemented using
the Knuth Shuffle procedure (which has a running time in the order of the subset
size) [65]. Since random subsets and permutations are generated until the whole set
of nodes is covered, this procedure also requires time Θ(n).

Remarkably, the following theorem establishes not only that the Urn-tree algo-
rithm generates a uniform spanning tree of the complete graph, but also that the
Urn-tree is equivalent to the transient behavior of the Aldous-Broder algorithm in
the stopping time that induce branches.

Let TUi denote the random tree generated by Urn-tree algorithm up to the at-
tachment of the i-th path graph. Note that the number of vertices in TUi , henceforth
denoted by |TUi |, is equal to 1 +

∑i
j=1 |Cj|.

Theorem 4.1.2 (Urn-Tree and Aldous-Broder transient equivalence). The random
sub-tree TAB

σin
i

generated by Aldous-Broder algorithm on a complete graph of n vertices
and TUi on an urn U with (n−1) balls, when initialized with the same vertex r, have
the same distribution in the sense that TUi

d
= TAB

σin
i

, for all i = 1, . . . , n− 1
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Proof. Let Θi be the random variable denoting the number of edges in the i-th
branch of a random walk X on a complete graph with n vertices, as previously
defined. We begin observing that Θ1

d
= |C1|, i.e., if PX denote the probability

measure defined on the space of trajectories of (Xt)t>0, we have

PX(Θ1 = h) = PU(|C1| = h) , for every h ∈ {1, . . . , n− 1} .

The above follows because the random walk in Aldous-Broder can be interpreted as
painting vertices as it traverses through the graph until it hits a vertex has already
been painted. This process is identical to the urn process since the graph is complete.

Moreover, for i > 1 and k ∈ {1, . . . , n− 2},

PX
(

Θi = h
∣∣∣ |Tσin

i−1
| = k

)
= PU

(
|Ci| = h

∣∣∣ 1 +
i−1∑
j=1

|Cj| = k

)
,

for every h ∈ {1, . . . , n − 1 − k}. The intuition here is similar to the case i = 1.
However, the random walk starts its journey on a graph with k vertices already
painted. It paints new vertices until it hits a vertex already painted. Again this
random procedure is identical to the urn process since the graph is complete.

Recall that in the Urn-Tree algorithm the path graph of size |C1| is connected to
an initial vertex r chosen arbitrarily, while each path graph of size |Ci|, with i > 1,
is connected to a uniformly chosen vertex in TUi−1. To finish the proof it is enough to
show that this is also the case for the branches in Aldous-Broder. The first branch is
clearly connected to a single vertex r also chosen arbitrarily, since X0 = r. Consider
now the subsequent branches. Given that the i-th branch is connected to X(σout

i−1−1),
we must show that the distribution of X(σout

i−1−1) is uniform over the vertices of TAB
σin
i−1

.
Note that at time σin

i−1, the (i− 1)-th branch has just ended and by symmetry Xσin
i−1

is uniformly distributed over TAB
σin
i−1

. At time t = σin
i−1 + 1, either the i-th branch

starts, i.e., σout
i−1 = t, which happens with probability (n− |TAB

σin
i−1
|)/n, or the random

walk moves to a vertex TAB
σin
i−1

with probability |TAB
σin
i−1
|/n, thus uniformly. This in

particular implies that for every k ≥ 1, the distribution of Xσout
i−1−1 conditioned on

σout
i−1 = σin

i−1 + k, is uniform on TAB
σin
i−1

. Thus, X(σout
i−1−1) is uniform over the vertices of

TAB
σin
i−1

and TUi
d
= TAB

σin
i
.

Corollary 4.1.3. The random tree TUn−1 produced by Urn-Tree algorithm on an urn
with n− 1 balls is a uniform spanning tree of the complete graph with n vertices.

Proof. From Theorem 4.1.2, when G is a complete graph, TUi
d
= TAB

σin
i
, for every i ≤

n− 1. Then by Theorem 3.1.1 and observing that σin
n−1 = η, the result follows.

While the Urn-tree algorithm is a linear time algorithm for generating USTs
for the complete graph, it is clearly not the first. A simple procedure proposed by
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Aldous generates a UST for the complete graph using n uniform choices on 1, . . . , n

and a random shuffle, thus also requiring time Θ(n) (see Algorithm 2 in [29]) How-
ever, the notion of branches in the Urn-tree algorithm and its transient equivalence
with Aldous-Broder will be important in establishing an important connection with
Wilson’s algorithm (in the next section).

4.2 Wilson’s branch distribution

Recall that Wilson’s algorithm constructs loop-erased paths with vertices not yet in
the tree. This suggests a very natural definition for the tree branches. Specifically,
let σ̂0 ≡ 0 and TWσ̂0 the single initial vertex r, and recursively define σ̂i := inf

{
t >

σ̂i−1 : Xt ∈ TWσ̂i−1

}
, where TWσ̂i−1

denotes the tree build by the Wilson algorithm
up to time σ̂i−1. The i-th branch p̂i corresponds to the loop erasure path of the
walk (X i

0, . . . , Xσ̂i), where X i
0 is a uniform vertex in V \ V (TWσ̂i−1

). As before, p̂i is a
path graph where V (p̂i) and E(p̂i) denote its vertex and edge sets, respectively and
its size will be denoted by |p̂i| = |V (p̂i)| − 1. Moreover, TWσ̂i−1

is the random tree
corresponding to the first (i− 1) branches generated by the Wilson’s algorithm.

While Wilson’s algorithm produces uniform spanning trees for any labelled
graph, it is challenging to analyse the distribution of its branches in the general
case. Thus, the complete graph is first considered, and the analysis of the branch
distribution unveils a strong relationship between Aldous-Broder and Wilson which
shall be discussed in Section 4.3.

The first important property of the branch distribution on complete graphs is
that the labels of the vertices in any branch are simply a random permutation of a
random subset of the labels. This is due to the fact that every vertex is structurally
identical and also connected to every other vertex. So, the probability that a vertex
appears in a specific branch, and in a specific order, does not depend on the vertex
itself. This implies that the distribution of the branches is entirely defined by their
sizes.

However, explicitly computing the branch size distribution in Wilson algorithm
is not trivial in general due to its loop erasing mechanism. Specifically, if p̂i(t)
denotes the i-th branch at time t before completion, i.e., with t < σ̂i, the size of
p̂i(t) may in the next step:

1) Increase by one and stop: if Xt+1 ∈ V (TWσ̂i−1
), equivalently σ̂i = t+ 1;

2) Increase by one and continue: if Xt+1 /∈ V (TWσ̂i−1
) and Xt+1 /∈ V (p̂i(t));

3) Decrease to ` ∈ {1, . . . , |p̂i(t)|} and continue: if |p̂i(t)| ≥ 2, andXt+1 ∈ V (p̂i(t))

and is in the `-th position of the current loop erased random walk.
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On a complete graph with n vertices, for i > 1 and every k ∈ {i, . . . , n − 1}
we have that P

(
σ̂i = t + 1 | |TWσ̂i−1

| = k
)

= k
n−1 . Moreover, if we define ∆p̂i(t) :=

|p̂i(t+ 1)| − |p̂i(t)|, then for every h ∈ {1, . . . , n− k − 1}:

P
(
∆p̂i(t) = 1

∣∣|p̂i(t)| = h, |TWσ̂i−1
| = k

)
=
n− k − h
n− 1

,

P
(
∆p̂i(t) = −`

∣∣|p̂i(t)| = h, |TWσ̂i−1
| = k

)
=

1

n− 1
, ∀` ∈ {1, . . . , h− 1} .

The case of the first branch size corresponds to setting k = 1. In light of the
above, to study the branch size distribution in Wilson’s algorithm it suffices to
analyse the absorbing Markov chain illustrated in Figure 4.5 where the state of the
Markov chain corresponds to p̂i(t), namely the size of the i-th branch.

1 2 3 4 · · · n− k

stop

n−k−1
n−1

n−k−2
n−1

n−k−3
n−1

n−k−4
n−1

1
n−1

Figure 4.5: Absorbing Markov chain representing the Wilson’s algorithm construc-
tion of a branch p̂i in the a complete graph with n vertices, given that |TWσ̂i−1

| = k.
The numbered states represent the branch size h and stop is an absorbing state in-
dicating the end of the branch construction. The process always starts from h = 1.
The blue, black and red arrows correspond to the events 1), 2) and 3), respectively.

Specifically, the probability P(|p̂i(σ̂i)| = h
∣∣|TWσ̂i−1

| = k) that the i-th branch has
size h, given that the number of vertices in the previously constructed branches is
k, corresponds to the probability of making a transition to the stop state from state
h (i.e., probability of absorption from state h).

Consider the ergodic Markov chain in Figure 4.6 obtained by lumping together
the stop state and the h = 1 state. The probability of absorption from state h in
the original chain (starting from state h = 1) corresponds to the probability that,
in the ergodic chain (starting from h = 1), the blue edge incident to state h is
the first blue edge traversed. This latter probability in the ergodic chain matches
exactly its stationary distribution. Intuitively, since the ergodic chain regenerates
every time a blue edge is traversed, the probability that a specific blue edge is the
first one traversed corresponds to the long term relative frequency of times that it is
traversed when compared to the other blue edges. This relative frequency, in turn,
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is proportional to the long term relative frequency of times that the chain visits
state h. Since the probability of crossing a blue edge given that the chain is in a
specific state does not depend on the state (the transition probability associated
to every blue edge is the same), the proportionality constant is the same for every
state. Thus, the long term relative frequency of times that the blue edge incident
to state h is traversed is the same as the stationary distribution of h in the ergodic
chain.

1 2 3 4 · · · n− k

n−k−1
n−1

n−k−2
n−1

n−k−3
n−1

n−k−4
n−1

1
n−1

Figure 4.6: Ergodic Markov chain obtained by lumping together state stop and state
1 in the absorbing chain in Figure 4.5.

The above procedure establishes a clear strategy to determine the branch size
distribution of Wilson on complete graphs, which consists in determining the sta-
tionary distribution of the Markov chains illustrated in Figure 4.6. Note that the
Markov chain that must be analyzed depends only on n and the number of vertices
already in the tree, namely k. Nevertheless, explicitly solving the balance equations
and finding a closed-form solution for the stationary distribution is often not trivial.

However, verifying that a candidate distribution is a stationary distribution for a
Markov chain is rather easy. Interestingly, the next lemma shows that the distribu-
tions in Lemma 4.1.1 are the stationary distribution for the corresponding Markov
chain.

Lemma 4.2.1. For every k ∈ {1, . . . , n− 1} the stationary distribution of the cor-
responding Markov chain depicted in Figure 4.6 is:

π(h) =
(k + h)(n− k − 1)!

nh(n− k − h)!
for h ∈ {1, . . . , n− k} .
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Proof. Every state h with h 6= 1, has one incoming black arrow from the state h− 1

and one red arrow from each state h+ `. Therefore, we have:

π(h) = π(h− 1)
n− k − (h− 1)

n− 1
+

n−k∑
`=h+1

π(`)
1

n− 1
.

The state h = 1, in contrast, has n − k incoming blue arrows and n − k − 1 red
arrows. Then:

π(h) =
n−k∑
`=2

π(`)
k + 1

n− 1
+ π(1)

k

n− 1

The result follows since π(h) from the lemma statement is the solution of the pre-
sented balance equations.

4.3 Aldous-Broder and Wilson transient equiva-

lence

Remarkably, Lemma 4.2.1 showed that the stationary distribution of the Markov
chains that represent the branch sizes in Wilson are identical to the conditional
branch size distribution of Aldous-Broder when considering a complete graph. Thus,
the following interesting result follows immediately:

Theorem 4.3.1 (Aldous-Broder and Wilson transient equivalence). Let Aldous-
Broder and Wilson algorithms have the same initialization for the initial vertex r
and let the input graph G be a complete graph. Then, there exist two sequences of
stopping times (σ̂i)i≥0 (for Wilson) and (σin

i )i≥0 (for Aldous-Broder) such that, for
every i ≥ 0

TWσ̂i
d
= TABσin

i
.

Proof. From Lemma 4.2.1 and Theorem 4.1.2.

Note that the step-by-step construction of the UST on complete graphs by
Aldous-Broder and Wilson are fundamentally distinct. However, Theorem 4.3.1
shows that if these two processes are observed at specific stopping times, the “tran-
sient” (partial) trees built by both algorithms are identically distributed. Interest-
ingly, these stopping times correspond to the time a branch is constructed in either
algorithm. Moreover, this equivalence regards also the labels of the vertices and not
only the (partial) tree structure. Of course, it requires the algorithms to have the
same initialization, in the sense that vertex r must the chosen identically by both
algorithms.
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4.3.1 Hybrid Algorithm

Theorem 4.3.1 shows that Aldous-Broder to Wilson are statistically equivalent on
the appropriate stopping times. This suggests that a UST can be constructed by one
algorithm until a certain stopping time and then finished by the other algorithm.
This gives rise to a hybrid algorithm that can switch between Aldous-Broder and
Wilson (and back) at the corresponding stopping times.

In particular, consider the following hybrid algorithm that starts with Aldous-
Broder and constructs i branches and then switches to Wilson to finish the job:

Hybrid(G = (V ,E), i)

0) Set EX ← ∅ and X0 ← r, with r ∈ V chosen arbitrarily;

• Until t = σin
i :

– Run a simple random walk (Xt)t>0 on G, starting at X0 and for each edge
e = {Xt, Xt+1} such that Xt+1 6= Xk for all k ≤ t, set EX ← EX ∪ {e};

• Set VX ← {X0, . . . , Xσin
i
};

• Return Wilson(G, To = (VX , EX));

Note that Wilson receives as parameter the partial tree constructed by Aldous-
Broder and start execution given this partial tree (see algorithm in Section 3.2).
The next proposition states that the Hybrid algorithm returns a uniform spanning
tree of the complete graph G.

Proposition 4.3.2. Let TAB
σin
i

be a random tree of the complete graph G, constructed
by the first i branches of Aldous-Broder algorithm. Wilson algorithm with initial
condition TAB

σin
i

returns a UST(G).

The proposed hybrid algorithm is particularly interesting in terms of running
time complexity. Clearly, the cover time is dominated by the last steps of the
random walk in Aldous-Broder while the hitting time is highest in the first steps
of the random walk in Wilson. In fact, the most time consuming steps of the two
algorithms are very similar: at the end, the random walk in Aldous-Broder must
find the last remaining vertex to be added to the tree, and at the beginning, the
random walk in Wilson must find the single anchor node. On a complete graph with
n vertices, it is easy to conclude that both these times are geometrically distributed,
with success probability 1/(n − 1). Thus, the proposed hybrid algorithm has the
potential do reduce the running time necessary to generate a UST.

The following lemma, due to Wilson [32], characterizes the time complexity of
Wilson’s algorithm in terms of the number steps taken by the random walk:
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Lemma 4.3.3 (Wilson [32]). Let ω(G) be the mean hitting time of G. The expected
number of steps taken by the random walk in Wilson(G, To = ∅) is 2ω(G).

On a complete graph, the mean hitting time is n. Thus, the random walk takes
on average 2n steps to return a spanning tree when running Wilson. For Aldous-
Broder on a complete graph, it is well known that the expected number of random
walk steps required to return a spanning tree is nHn, where Hn denotes the n-th
harmonic number (this comes from the equivalence between the cover time of a
random walk on a complete graph and the coupon collector’s problem).

The following proposition establishes the advantages of the hybrid algorithm.
Indeed, it avoids the long phases of both algorithms and exploits their good phases,
creating a synergy to efficiently generate a UST. In fact, the hybrid algorithm is
more efficient than either of the algorithms alone.

Proposition 4.3.4. The expected number of random walk steps made by
Hybrid(G, 1) is n+ Θ(

√
n).

Proof. The expected number of steps made by Hybrid(G, 1) is the sum of the av-
erage number of steps it takes for Aldous-Broder(G) to construct the first branch
and the average number of steps Wilson(G, To) takes to complete the tree.

Consider an urn with n labelled balls and the process of drawing balls one at
a time uniformly at random with replacement. Note that the time required for
Aldous-Broder to construct the first branch is identical to the time required to draw
the first repeated ball. It is known that this has expected time

√
πn/2 + Θ(1/

√
n)

(it is a variation of the birthday problem. See for example Section 1.2.11.3 in [66]).
From Lemma 4.3.3, the expected number of steps it takes for Wilson to build

a uniform spanning tree of a complete graph G is 2n. Moreover, on average, n
of those steps are made to construct the first branch (Geo(1/n)). Therefore, n
additional steps on average are required to finish the tree after the construction of
the first branch of Aldous-Broder. Hence, the expected number of random walk
steps required by Hybrid(G, 1) to build a UST(G) is n+ Θ(

√
n).

In order to provide more insight into the running time of these algorithms, con-
sider the average number of steps taken by the random walk to include at least k
edges in the spanning tree. Figure 4.7 shows a simulation result directly comparing
the three algorithms on a complete graph with n = 1000 vertices (results shown are
the average over one thousand tree generations for each algorithm). As expected,
Aldous-Broder is efficient in the beginning (when almost every step brings a new
edge to the tree) but requires a long time in the end, to finish the tree. In contrast,
Wilson is linear on n but it requires a long time include its first edges on the tree
(exactly 1000 steps, on average). The hybrid algorithm starts efficiently (following
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along Aldous-Broder and remains efficient (switching to Wilson). Note that the
Hybrid is approximately two times faster than Wilson, taking roughly 1000 steps to
build the tree.

Figure 4.7: Average running time measured in number of random walk steps to
generate a UST. Each curve shows the average number of random walk steps required
by each algorithm to include at least k edges in the tree being constructed (n = 1000,
average over 1000 independent tree generations).

While the proposed hybrid algorithm first runs Aldous-Broder and then switches
to Wilson, it is perfectly possible to have a reverse hybrid algorithm, where Wilson
runs and constructs a few branches and then Aldous-Broder finishes the job. In
this case, a uniform random node within the built tree would have to be chosen to
start the random walk after switching to Aldous-Broder at an appropriate stopping
time. In fact, it is also possible to go back and forth between the algorithms,
always switching at the appropriate stopping time. However, from the perspective
of running time, the proposed hybrid is the most efficient.
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Chapter 5

Towards a two-stage general
framework for generating uniform
spanning trees

The previous chapter presented a two-stage approach to construct uniform spanning
trees for complete graphs: (i) build i branches of the spanning tree using Aldous-
Broder ; (ii) switch to Wilson to finish the tree. The strategy not only maintains
the uniformity across the spanning trees, but also takes less time to generate the
tree. Can this Hybrid algorithm be used to construct uniform spanning trees for
any graph?

While Hybrid clearly constructs spanning trees of general graphs (and it is ex-
pected to be more efficient than either Aldous-Broder or Wilson), there is no guar-
antee such trees will be uniformly distributed. Unfortunately, the random sub-trees
generated by the first branch of Aldous-Broder and Wilson’s algorithm are not iden-
tically distributed on a general graph. In particular, Theorem 4.3.1 does not hold
for arbitrary graphs as the following simple example shows.

Let G0 be the graph depicted below:

1 2

G0

3

4

Let TAB
σin
1

be the random sub-tree generated by the first branch of Aldous-Broder
algorithm on G0, starting from a uniformly chosen vertex, and TWσ̂1 the random
sub-tree generated by the first branch of Wilson’s algorithm on G0, then

P

(
TAB
σin
1

=
1 2

3

)
= 1

12 while P

(
TWσ̂1 =

1 2
3

)
= 1

9
.
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Note that if we generate the first branch using Wilson, i.e., TWσ̂1 , and then run
Wilson(G, TWσ̂1 ) the final tree will be an uniform spanning tree of G, as expected.
However, if we generate the first branch of Aldous-Broder, i.e., TAB

σin
1
, and then run

Wilson(G, TABσ1 ), the final spanning tree is not necessarily uniform when an arbi-
trary graph is considered, as the above example shows. However, can this idea of
a two-stage procedure be saved? In what follows, this question is addressed and a
promising answer is provided.

Given a connected graph G, let SG denote the set of all possible sub-trees (not
necessarily spanning) of G. We shall denote by ζ an element of SG, while τ shall
denote an element of TG, i.e., a spanning tree of G. With a slight abuse of notation,
we shall write ζ ⊆ τ to denote that ζ is a sub-tree of τ . Given a sub-tree ζ ∈ SG,
we denote by TG(ζ) = {τ ∈ TG : τ ⊇ ζ}, the set of all spanning trees of G which
contain the sub-tree ζ, and by |TG(ζ)| its cardinality.

Let Y be a random variable taking values in SG, whose distribution satisfies the
following condition: for all τ, τ ′ ∈ TG∑

ζ∈SG
TG(ζ)3τ

1

|TG(ζ)|
P(Y = ζ) =

∑
ζ∈SG
TG(ζ)3τ ′

1

|TG(ζ)|
P(Y = ζ) , (5.1)

Intuitively, the above condition says that Y cannot differentiate between τ and τ ′

when generating sub-trees. The condition is subtle because different sub-trees ζ will
induce different sets of spanning trees TG(ζ) that have different sizes. Note that it is
not sufficient for every tree to contain Y with the same probability. The condition
also imposes a restriction on the sizes |TG(ζ)| of the induced tree sets. Thus, Y must
not introduce bias with respect to τ on the weighted average across all sub-trees of
τ .

Consider the following two-stage procedure to generate a uniform spanning tree
of an arbitrary graph G:

Proposition 5.0.1. The following two-stage (ts) procedure returns a uniform span-
ning tree of a connected graph G.

1. Draw a random variable Y taking values in SG whose distribution satisfies
Equation (5.1);

2. Draw a spanning tree of G from the set TG(Y ) uniformly.

Proof. Let T denote the random spanning tree of G returned by the two-stage
procedure (note that the two-stage procedure always return an element of TG). Let
Pts(T = τ) denote the probability that the two-stage procedure returns τ ∈ TG. To
show that T is uniformly distributed on TG, it suffices to show that Pts(T = τ) =
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Pts(T = τ ′), for every τ, τ ′ ∈ TG. Given τ ∈ TG, it holds that

Pts(T = τ) = Pts

T = τ,
⋃
ζ∈SG
TG(ζ)3τ

{Y = ζ}


=

∑
ζ∈SG
TG(ζ)3τ

P2.(T = τ |Y = ζ)P1.(Y = ζ) =
∑
ζ∈SG
TG(ζ)3τ

1

|TG(ζ)|
P1.(Y = ζ) ,

and the claim follows form Equation (5.1).

While Proposition 5.0.1 provides a two-stage procedure to generate uniform span-
ning tree of any graph G, it is not clear whether this procedure can give rise to an
efficient algorithm. In particular, both the first and second stages must be imple-
mented efficiently. Some promising answers are described in what follows.

Second-Stage: Interestingly, Wilson is an efficient algorithm that can be used
to implement the second stage in Proposition 5.0.1. In particular, given a connected
graph G, and ζ ∈ SG a sub-tree (not spanning) of G, Wilson(G, ζ) returns a
spanning tree of G in the set {τ ∈ TG : τ ⊇ ζ} uniformly. This is formally stated in
the next lemma.

Lemma 5.0.2 (Second stage). Let G = (V,E) be a connected graph and ζ be a
sub-tree (not spanning) of G. Wilson’s algorithm with initial condition ζ returns a
spanning tree of G which is uniformly distributed on the set {τ ∈ TG : τ ⊇ ζ}.

Proof. The proof is based on the following two steps:

a) We collapse the sub-tree ζ into a single vertex, denoted by r, ignoring its
internal edges while keeping all the edges connecting vertices in V (ζ) with
vertices in V \ V (ζ). Note that this procedure gives rise to a new graph G′

which may have multiple edges incident on r. In particular, there exists a set
of (external) vertices V̂ ⊂ V \ V (ζ) such that the number of edges between
v ∈ V̂ and r is the same as the number of neighbors that v has in V (ζ),
denoted by d′v. Thus, v ∈ V̂ has d′v multiple edges incident on r in G′.

From the perspective of a simple random walk, the multiple edges incident to
a vertex v ∈ V̂ could be treated as a single weighted edge, with weight equal
to d′v; this weighted graph is denoted by G′∗. Note that all other edges have
weight 1.

b) We use a variation of Wilson’s algorithm for weighted graph that generates
a spanning tree of the weighted graph with probability proportional to the
product of the edge weights in the corresponding tree [32].
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Note that every tree in the set {τ ∈ TG : τ ⊃ ζ} corresponds to one and only
one spanning tree of G′, and vice versa (assuming each of the multiple edges can be
identified individually). Thus, it is sufficient to show that Wilson on G′, with initial
condition r, returns a spanning tree in TG′ uniformly.

The set of spanning trees of G′ can be partitioned accordingly to which of the
vertices in V̂ are connected to r, ignoring which specific edge among the multiple
edges are in the spanning tree. Specifically, for τ ∈ TG′ , if we denote by Nr(τ) the
set of neighbors of r in τ , we have that

TG′ =
⋃
I⊆V̂

{τ ∈ TG′ : Nr(τ) = I}︸ ︷︷ ︸
:=SI

Note that {SI : I ⊆ V̂ } (the set of spanning trees of G′ in which r is connected
to the vertex I) is a partition of TG′ , and thus for any spanning tree τ ∈ TG′ there
exists a unique I ⊆ V̂ such that τ ∈ SI ; specifically τ ∈ SNr(τ). Hence, if T denotes
the random spanning tree generated by Wilson’s algorithm on G′, we have that
P(T = τ) = P

(
T = τ |SNr(τ)

)
P
(
SNr(τ)

)
, for any τ ∈ TG′ .

Now let us observe that P
(
SNr(τ)

)
corresponds to the probability that Wilson’s

algorithm on the weighted graph G′∗ (no more multiple edges) returns a specific
spanning tree in TG′∗ . By point b), the probability that Wilson’s algorithm on the
weighted graph G′∗ returns τ̃ ∈ TG′∗ is equal to C

∏
v∈Nr(τ̃)

d′v, where C is a normal-
izing constant; in fact, the edges {r, v} of the tree, with v ∈ Nr(τ̃) have weights
d′v, whereas all other edges have unitary weights. As far as P

(
T = τ |SNr(τ)

)
is con-

cerned, since the random walk is simple, for any v ∈ Nr(τ), the walker chooses one
(and only one) of the possible multiple edges incident on r uniformly, and indepen-
dently across the different v ∈ Nr(τ). Thus, P

(
T = τ |SNr(τ)

)
= 1/

(∏
v∈Nr(τ)

d′v

)
.

Hence, for any τ ∈ TG′ the probability P(T = τ) does not depend on τ , and thus is
uniform on TG′ .

First-Stage: The main concern with the first stage is constructing and sam-
pling a random variable whose distribution satisfies Equation (5.1). Below we list
some examples.

Example 1 (Wilson’s branches): Let G be an arbitrary connected graph
G and let TWσ̂i be the random sub-tree of G generated by the first i branches of
Wilson’s algorithm. Then TWσ̂i satisfies Equation (5.1). To see the latter, note that
if we run the two-stage procedure, when the first stage consists in drawing TWσ̂i
and the second stage in running Wilson’s algorithm with initial condition TWσ̂i , the
resulting algorithm is equivalent to Wilson’s (classical) algorithm on G starting from
a single vertex, whose final outcome is indeed uniform on TG. Thus, if we denote
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by T the random tree generated by the two-stage procedure when the first stage
is Wilson’s first i branches and the second is Wilson’s algorithm with the obtained
initial condition, we have that for every τ, τ ′ ∈ TG, it holds that Pts(T = τ) =

Pts(T = τ ′). Moreover

Pts(T = τ) =
∑
ζ∈SG
TG(ζ)3τ

P2.(T = τ |TWσ̂i = ζ)P(TWσ̂i = ζ) =
∑
ζ∈SG
TG(ζ)3τ

1

|TG(ζ)|
P(TWσ̂i = ζ) ,

and thus, TWσ̂i satisfies Equation (5.1).

Example 2 (Aldous-Broder branches on complete graphs): Let G be a
complete graph an let TAB

σin
i

be the random sub-tree of G generated by the first i
branches of Aldous-Broder algorithm. Then TAB

σin
i

satisfies Equation (5.1), for every
i. The latter follows directly from Example 1, together with Theorem 4.3.1.

It is worthwhile mentioning that a similar result will not hold in general graphs.
Specifically, if TAB

σin
i

denotes the random sub-tree generated by the first i branches of
Aldous-Broder algorithm on an arbitrary graph G, the distribution of TAB

σin
i

will not,
in general, satisfy Equation (5.1). For example, the sub-tree generated by the first
branch of Aldous-Broder algorithm on G0, given at the beginning of this section,
(starting from a uniform vertex), does not satisfy Equation (5.1).

Example 3 (Uniform edge in edge-transitive graphs): Let G = (V,E) be
an edge-transitive graph, an let Y be a random variable uniformly distributed on E.
Then Y satisfies Equation (5.1). As a matter of fact, for every e ∈ E, we have that
P(Y = e) = 1/|E| and moreover, since the graph G is edge transitive, for every two
spanning trees τ, τ ′ ∈ TG it holds that

∑
e∈E
TG(e)3τ

1

|TG(e)|
=

∑
e∈E

TG(e)3τ ′

1

|TG(e)|
=

n− 1

|TG(eo)|
,

where eo is an arbitrary edge of E. The result follows since every spanning tree has
(n−1) edges, and thus appears in exactly (n−1) terms in the sum. Moreover, since
the graph is edge transitive, the number of spanning trees traversing an specific edge
e ∈ E is the as any other another edge e′ ∈ E due to the automorphism between e
and e′.

Interestingly, choosing an uniform edge for a graph that is not edge-transitive will
not necessarily make the requirements, as the next simple example shows. Consider
the following graph G and its spanning trees τ1, . . . , τ8:
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1 2

3 4

G

1 2

3 4

τ1
1 2

3 4

τ2
1 2

3 4

τ3
1 2

3 4

τ4

1 2

3 4

τ5
1 2

3 4

τ6
1 2

3 4

τ7
1 2

3 4

τ8

The cardinality of TG(e) for e ∈ {(1, 2), (1, 3), (2, 4), (3, 4)} is five since each
of these edges appear in exactly five spanning trees. However, the cardinality of
TG((2, 3))) is four as edge (2, 3) appears in exactly four spanning trees. Thus, choos-
ing an edge uniformly at random and then choosing a spanning tree uniformly at
random given the chosen edge will generate a bias towards spanning that have the
edge (2, 3). In fact, the probability of choosing τi is 12/100 when i ∈ {1, 2, 5, 8} and
13/100 when i ∈ {3, 4, 6, 7}.

Example 4 (Aldous-Broder first branch on a cycle): Let G be a cycle
graph on n vertices, henceforth denoted by Cn and (Xt)t≥0 be a simple random walk
on Cn. Let σin

1 := inf{t ≥ 0 : Xt ∈ ∪t−1k=0{Xk}} and denote by TAB
σin
1

the sub-tree
generated by the first-entrance edges up to time σin

1 . The random variable TAB
σin
1

satisfies Equation (5.1). To see the latter, let us first observe that if ζ ∈ SCn is a
sub-tree of Cn, and E(ζ) denotes the set of edges of ζ, it holds that

P
(
TABσin

1
= ζ
)

=
1

n
2−|E(ζ)| .

Moreover, given ζ ∈ SCn , the set of spanning tree of Cn containing ζ satisfies
|TCn(ζ)| = n − |E(ζ)|. Using that all spanning trees of Cn are isomorphic to each
other, for every τ, τ ′ ∈ TCn , we obtain that

∑
ζ∈SCn
TCn (ζ)3τ

1

n− |E(ζ)|
1

n
2−|E(ζ)| =

∑
ζ∈SCn
TCn (ζ)3τ ′

1

n− |E(ζ)|
1

n
2−|E(ζ)| .

Example 5 (Sub-tree generated by a simple random walk on a cycle):
Let G be a cycle graph on n vertices, henceforth denoted by Cn. Given k ≥ 0, let
us consider the random sub-tree TXk induced by a simple random walk (Xt)t≥0 on
Cn up to time k, starting from a uniformly chosen vertex of Cn, i.e., TXk is the tree
with vertex set ∪kt=0{Xt} and edge set ∪kt=1{Xt−1, Xt}. Then, if η denotes the cover
time of Cn, for every k ≥ 1 the random variable TX(k∧η)−1 satisfies Equation (5.1). To
see the latter, let ζ ∈ SCn be a sub-tree of Cn, and denote by E(ζ) the set of edges
of ζ. Note that, P

(
TX(k∧η)−1 = ζ

)
= 0, if k < |E(ζ)|, whereas P

(
TX(k∧η)−1 = ζ

)
is a
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function only of n, k and |E(ζ)|, if k ≥ E(ζ) (i.e., given n and k sub-trees having
the same number of edges will have the same probability). Moreover, given ζ ∈ SCn ,
the set of spanning tree of Cn containing ζ satisfies |TCn(ζ)| = n − |E(ζ)|. Using
that all spanning trees of Cn are isomorphic to each other, for every τ, τ ′ ∈ TCn , we
obtain that, for any fixed k,

∑
ζ∈SCn
TCn (ζ)3τ

1

n− |E(ζ)|
P
(
TX(k∧η)−1 = ζ

)
=

∑
ζ∈SCn
TCn (ζ)3τ ′

1

n− |E(ζ)|
P
(
TX(k∧η)−1 = ζ

)
.

Examples 4 and 5 consider a cycle graph G with n vertices. Uniform spanning
trees of G can be very efficiently generated by simply removing from G an edge
chosen uniformly at random. Thus, while the two-stage procedure in these two
examples does not lead to an efficient algorithm, the goal here is to provide a random
variable based on random walks that satisfies Equation (5.1) along with an efficient
sampling procedure for this variable. This could shed light on crafting such random
variable for a broader class of graphs.

5.1 Random trees linearly biased by a given struc-

ture

In this section we discuss another noteworthy application of Lemma 5.0.2, which is
stated in the following Theorem.

Theorem 5.1.1. Given G = (V,E) a complete graph with n vertices, and any
ζ ∈ SG. A spanning tree τ ∈ TG can be generated with probability that is proportional
to the number of sub-trees of τ that are isomorphic to ζ in O(n) time.

Proof. Consider T , the random variable (random tree) denoting the output of
Wilson(G, ζ), where G is a complete graph on n vertices and ζ is any sub-tree
of G (not necessarily spanning). Now consider T ∗, the random tree obtained by
uniformly shuffling the labels of T . Clearly, since G is complete, T ∗ also assumes a
spanning tree in TG.

Consider the probability Pζ (T ∗ = τ) that T ∗ is a specific spanning tree τ ∈ TG.
The probability of generating τ is the sum of probabilities of all the sequences of
events that can result in it. Since we shuffle the labels in the end, each sub-tree ζ∗

of τ that is isomorphic to ζ corresponds to one such event, then:

Pζ(T ∗ = τ) =
∑
ζ∗∈SG:

ζ∗⊆ τ ∧ ζ∗' ζ

P
(
Wilson(G, ζ∗) = τ

)
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where ζ∗ ' ζ indicates that there exists an isomorphism between ζ and ζ∗, and
{Wilson(G, ζ∗) = τ} represents the event that Wilson’s algorithm with initial
condition ζ∗ returns τ .

From Lemma 5.0.2, we know that P (Wilson(G, ζ∗) = τ) = 1/|TG(ζ∗)|. More-
over, the fact that G is complete tells us that |TG(ζ ′)| = |TG(ζ ′′)| for all ζ ′ ' ζ ′′.
Then, the probability of generating a specific tree τ is proportional to the cardinality
of the sum, which is exactly the number of sub-trees of τ that are isomorphic to ζ.
Finally, note that the procedure consists of running Wilson on a complete graph,
which takes O(n) time (as discussed in Section 4.3.1) and performing a random shuf-
fle of the labels, which also takes O(n) running time [65]. Then, the total running
time complexity of the procedure is O(n)

The distribution of the number of sub-trees, such as leaves or vertices of degree
k, in uniform spanning trees have been extensively studied by combinatorialists [67].
The above procedure can be used to efficiently sample spanning trees of the complete
graph with probability biased by given sub-trees. For example, consider running the
procedure with the initial sub-tree ζ being a star graph with k nodes. The result-
ing process generates spanning trees with probability proportional to the number
of vertices of degree k. If ζ is a path of length l, the procedure generates trees
proportionally to the number of paths of length l contained in it. The generation of
random trees constrained by given structures finds application in a variety of areas,
from decision making algorithms to real-life network optimization problems [36–38].
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Chapter 6

Conclusion

This work considered the problem of efficiently sampling from the uniform probabil-
ity measure the set of spanning trees of a graph TG. The problem has been studied
for many decades and, even so, it continues to draw attention, and it is constantly
present in the main publishing venues in theoretical computer science. Our focus
was on the random walk based approaches, considered the most-promising strategy
for generating uniform spanning trees efficiently. The random walk approach is built
upon the celebrated Aldous-Broder and Wilson’s algorithms.

We started by investigating the transient dynamics of the two algorithms (which
is considerably different in general) by looking at the partial trees at special se-
quences of stopping times. Such times decompose the trees in branches that we
introduced and defined for both Aldous-Broder and Wilson. For the Aldous-Broder
algorithm, we showed how a simple, but rather interesting, balls and urns model
can be used to illustrate the construction of branches on a complete graph. Mak-
ing use of this interpretation and of the branch definition for Wilson’s algorithm,
we proved that the sub-trees built by both algorithms with corresponding number
of branches are identical in distribution for complete graphs. Since Aldous-Broder
constructs branches faster in the beginning and slower in the end, and Wilson does
exactly the opposite, we used their equivalence to propose an hybrid algorithm that
switches from Aldous-Broder to Wilson and is more efficient than either of the two
algorithms (by a constant factor when considering Wilson).

This result motivated an investigation of the possibility of applying the idea on
a more general setting, beyond complete graphs. We showed that the equivalence of
Aldous-Broder and Wilson’s branch distribution does not hold on any graph, and
so, whereas the hybrid algorithm does produce spanning trees of general graphs,
the uniformity is lost. In spite of that, we proposed a two-stage framework for the
general problem and showed that the trees generated by the procedure are uniform.
The first stage consists of sampling a random variable Y from SG, the set of all
sub-trees of G, according to a special distribution. The second stage consists of
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drawing uniformly a spanning tree from the set TG(Y ) of spanning trees of G that
contain Y .

We showed that Wilson’s algorithm can be used in the second phase. This
is a consequence of Lemma 5.0.2, which shows the interesting fact that Wilson’s
algorithm can be used to generate trees that are uniform, conditioned on containing
any sub-tree given as input. However, this framework requires finding a process
to generate Y . It is noteworthy that the Hybrid algorithm turns out to be one
particular use case of the framework in which Aldous-Broder algorithm is used to
efficiently sample the random variable Y satisfying its requirements. On top of
that, we provided a few other examples that illustrate the usage of the two-stage
procedure.

Lastly, we discussed another application of Lemma 5.0.2. We introduced a simple
modification to the framework in order to sample random trees on n vertices with the
following distribution. Given any sub-tree ζ and a complete graph G, we showed
how to sample a tree τ with probability proportional to the number of sub-trees
contained in τ that are isomorphic to ζ, in time linear on the number of vertices of
G.

6.1 Future work

The main topic for future work regards finding other settings where the framework
can be applied to generate uniform spanning trees efficiently. Since Wilson’s algo-
rithm not only meets the requirements for the second-stage, but is also quite efficient
for the task, the main question to be considered is how to tackle the first-stage. Some
ideas for investigation are:

• are there other classes of graphs (beyond the complete graph and the cycle
graph) where the Aldous-Broder branches can be used in the first-stage?

• are there other stopping time sequences that make the transient structure of
Aldous-Broder satisfy the first stage?

• is there a different random walk based strategy (or any strategy) for sampling
sub-trees efficiently that satisfies the first-stage?

Another interesting idea that arises from Lemma 5.0.2 is:

• Consider a graph G and let G′ be a connected sub-graph of G. Let τ denote
a spanning tree of G and consider its intersection with G′, namely τ ′. Note
that τ ′ is a spanning forest of G′. Clearly, the uniform measure over random
spanning trees of G induces a distribution over spanning forests of G′. Can we
describe this distribution? Is it possible to sample from it efficiently?
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The answer to this intriguing question could give way to a variation of the proposed
two-stage framework where first τ ′ is generated and then τ is generated conditioned
on τ ′. The second phase might be accomplished by a variation of Wilson’s algorithm.
If the first phase is resolved, the framework could give lead to an efficient algorithm
to generate USTs for arbitrary graphs.
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