
TESSELLATIONS ON GRAPHS: THEORY, ALGORITHMS, AND
COMPLEXITY

Alexandre Santiago de Abreu

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia de Sistemas e
Computação, COPPE, da Universidade Federal
do Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Doutor em
Engenharia de Sistemas e Computação.

Orientadores: Franklin de Lima Marquezino
Celina Miraglia Herrera de
Figueiredo

Rio de Janeiro
Março de 2020



TESSELLATIONS ON GRAPHS: THEORY, ALGORITHMS, AND
COMPLEXITY

Alexandre Santiago de Abreu

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO
LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Orientadores: Franklin de Lima Marquezino
Celina Miraglia Herrera de Figueiredo

Aprovada por: Prof. Franklin de Lima Marquezino
Prof. Celina Miraglia Herrera de Figueiredo
Prof. Luidi Gelabert Simonetti
Prof. Luis Antonio Brasil Kowada
Prof. Renato Portugal
Prof. Daniel Fabio Domingues Posner

RIO DE JANEIRO, RJ – BRASIL
MARÇO DE 2020



Abreu, Alexandre Santiago de
Tessellations on Graphs: Theory, Algorithms, and

Complexity/Alexandre Santiago de Abreu. – Rio de
Janeiro: UFRJ/COPPE, 2020.

IX, 87 p.: il.; 29, 7cm.
Orientadores: Franklin de Lima Marquezino

Celina Miraglia Herrera de Figueiredo
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2020.
Referências Bibliográficas: p. 20 – 24.
1. Tessellations on Graphs. 2. Quantum Walk.

3. Complexity. 4. Algorithms. I. Marquezino,
Franklin de Lima et al. II. Universidade Federal do Rio
de Janeiro, COPPE, Programa de Engenharia de Sistemas
e Computação. III. Título.

iii



Glória in excélsis Deo.

iv



Agradecimentos

Agradeço ao Senhor Deus por cada passo que foi dado até este momento, e por
cada coisa que foi concretizada em minha vida.

Agradeço aos meus pais por todo esforço feito desde minha infância para que eu
pudesse ter uma formação que me possibilitasse concluir meus objetivos em vida.

Agradeço aos meus orientadores, Franklin e Celina. Franklin me orienta desde
2012 e se tornou um grande amigo, e Celina sempre esteve disposta a me ajudar e
direcionar mesmo quando ainda não me orientava, se tornou uma amiga também.
Muito obrigado aos dois.

Agradeço a Sthefany, minha namorada, que ainda como amiga sempre esteve
presente para me fortalecer e me inspirar.

Agradeço aos demais autores dos trabalhos presentes nesta tese pela grande
equipe formada, por toda a dedicação, e pela grande amizade construída.

Agradeço ao Alexsander e ao Luis Felipe por toda a ajuda ao longo desses anos
todos nos quais trabalhamos juntos.

Agradeço aos demais amigos do Laboratório de Algoritmos e Combinatória.
Agradeço aos funcionários da secretaria da pós graduação e também aos demais

funcionários que participaram da minha vida acadêmica de alguma forma.

v



Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

TESSELAÇÕES DE GRAFOS: TEORIA, ALGORITMOS, E COMPLEXIDADE

Alexandre Santiago de Abreu

Março/2020

Orientadores: Franklin de Lima Marquezino
Celina Miraglia Herrera de Figueiredo

Programa: Engenharia de Sistemas e Computação

Devido ao avanço tecnológico recente, a computação quântica tem ganhado
notoriedade. Neste paradigma, o conceito de passeio quântico é fundamental
para o desenvolvimento de algoritmos para computadores quânticos. Dentre os
modelos de passeios quânticos existentes, destaca-se o modelo escalonado, proposto
por Portugal et al., que inclui o modelo de Szegedy como um caso particular,
além de parte do modelo com moeda. O modelo escalonado utiliza o conceito de
tesselações em grafos para gerar os operadores quânticos de evolução que regem os
movimentos do caminhante sobre o grafo. Tesselações em grafos possuem ainda
um interessante valor para teoria de grafos visto que o parâmetro tessellation cover
number T (G) se relaciona com diversos outros parâmetros presentes na literatura
tais como chromatic number, chromatic index, total chromatic number, independent
set number, e clique number. Além disso, os problemas que se relacionam com T (G),
tais como t-tessellability, good tesellable recognition, e total good

tessellable recognition têm relações profundas com problemas clássicos em
teoria dos grafos que envolvem coloração de grafos. Neste trabalho apresentamos
resultados em teoria de grafos para os problemas relacionados com tesselações em
grafos citados acima, tais como complexidade computacional destes problemas para
várias classes de grafos, limites inferior e superior para T (G), e o valor de T (G) para
diversas classes de grafos. Além disso, apresentamos um modelo de passeio quântico
baseado em total tessellation cover, sendo este pioneiro no uso de vértices e arestas
como localidades possíveis para o caminhante, simultaneamente.
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Due to recent technological advances, quantum computing has gained notoriety.
In this paradigm, the concept of quantum walk is fundamental for the development
of algorithms for quantum computers. Among the existing quantum walk models,
the staggered model, proposed by Portugal et al. stands out, since it includes
the Szegedy model as a particular case, and part of the coined model. The
staggered model uses the concept of tessellations on graphs to generate the quantum
evolution operators that perform the walker’s movements on the graph. Tessellations
on graphs also have an interesting value for graph theory, since the parameter
tessellation cover number T (G) is related to several other parameters present in
the literature such as chromatic number, chromatic index, total chromatic number,
independent set number, and clique number. In addition, problems related to
T (G), such as t-tessellability, good tesellable recognition, and total

good tessellable recognition have deep relations with classic problems in
graph theory involving graph coloring. In this work we present results in graph
theory for the problems related to tessellations on graphs mentioned above, such as
computational complexity, lower and upper bounds for T (G), and the value of T (G)

for several graph classes. Furthermore, we present a quantum walk model based on
total tessellation cover, being pioneer in the use of vertices and edges as possible
locations for the walker, simultaneously.
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Chapter 1

Introduction

The concept of random walks is the mathematical modeling of a particle, i.e.,
a walker, walking over a graph through successive random steps. This concept has
been important in the development of algorithms to solve problems in computation,
physics, psychology [42], and biology [20]. In random walks we have a stochastic
matrix operator that is applied in each step of the walker, and acts over the state
that represents the walker position over the graph. We can see this operator as a
coin, i.e., its action is like a coin toss whose result indicates the direction of the next
step of the walker.

Nowadays, quantum computation has gained notoriety. Feymanm [30] was pi-
oneer in showing that quantum systems could be used to perform computational
tasks more efficiently than the usual computational paradigm. Indeed, before the
existence of the first quantum hardware, quantum algorithms more efficient than
their classical counterparts were developed. Grover [33] algorithm can find a desired
element in a list with N elements in O(

√
N) steps, while its classical counterpart

would need O(N) steps to find the same element. Shor [56] algorithm can be used
to solve the prime number factoring problem in polynomial time, while in classical
computation, this problem is still considered hard to be solved.

In quantum computation there is the concept of quantum walks [13], which
is similar to the concept of random walks, however, the first one must obey the
quantum mechanics postulates, which define how the physical system must be,
the evolution of the quantum system, the composition of quantum states, and the
measurement of a quantum state to obtain the output of the quantum algorithms.
This concept is also important in the development of quantum algorithms [12, 15–
19, 23, 29, 35, 39, 43, 53], and in the development of tools to simulate quantum
systems and algorithms [4, 26, 36, 40].

There are some important quantum walk models. The first one is the coined
model that is similar to the previous description of random walks. In this model,
the quantum operator is composed by the coin operator, which acts like a coin,
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and the space operator, that will “shift” the walker according to the result of the
coined operator. We also have the Szegedy model [57], which performs a quantum
walk without a coin operator, and differently of other quantum walk models, this
one uses the edges of the graph as locations to the walker. In the middle of last
decade, a more general quantum walk model, known as staggered model [47–49], was
proposed by Portugal et al., generalizing the Szegedy one as a particular case.

The staggered model is defined by an evolution operator that is described by
a product of local unitary matrices obtained from a graph tessellation cover. A
tessellation is defined as a partition of the vertices of a graph into vertex disjoint
cliques. A tessellation cover is defined as a set of tessellations whose union of them
covers the edge set of the graph. The staggered model requires that each edge
of the graph is covered at least once, since an uncovered edge would play no role
in the quantum walk. To understand the possibilities of the staggered model, it
is important to introduce the t-tessellability problem, which aims to decide
whether a given graph can be covered by t tessellations. This problem is interesting
since it is related to important problems in the literature, such as k-colorability.
Moreover, several graph classes have the tessellation cover number T (G), which is
the size of a smallest tessellation cover of a graph G, well related with important
parameters in graph theory, such as maximum degree ∆(G), chromatic number
χ(G), chromatic index χ′(G), total chromatic number χT (G), and independent set
number α(G).

1.1 Related works

The problem of tessellations on graphs was firstly studied independently by
Duchet [27] in 1979 as equivalence covering. Later, in 1986 Alon [14] proved
that the equivalence number, denoted by eq(G) is lower bounded by log2(

|V (G)|
d

),
where |V (G)| is the number of vertices of graph G and d is the maximum degree of
the complement graph of G, denoted by Gc. Following, in 1995 Blokhuis et al. [21]
showed that deciding that eq(G) ≤ k, for an integer k is NP-complete for split
graphs. At the beginning of the last decade, in 2010, Esperet et al. [28] improved
the current best bounds to the equivalence number of a line graph.

With the appearance of staggered model, this theme came across again as tes-
sellation on graphs, where eq(G) and T (G) are actually the same parameter. In this
context, I brought in my Master thesis [3] the first results of last decade with respect
of graph theory, in 2017. In that work it was established that T (G) ≤ χ(K(G)),
where K(G) is the clique graph of graph G, I proved that for w-wheel graphs
T (G) = dw

2
e, and for windmill graphs T (G) = χ(K(G)). I also revisited an im-

portant quantum algorithm for element distinctness proposed by Ambainis [15] and
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I presented it in staggered model. The complexity of T (G) was considered by Posner
et al. [50], who showed that k-tessellability is NP-complete for line graphs of
triangle-free graphs.

1.1.1 Contributions

Recently, Abreu et al. [9] improved the upper bound established in [3] by showing
that T (G) ≤ min{χ′(G), χ(K(G))}. Furthermore, we showed the value for T (G) for
several graph classes, and showed hardness results for the t-tessellability prob-
lem for several graph classes. These results are presented in Chapter 2, Section 2.1,
and they can be seen in more details in Appendix A. Abreu et al. [6] introduced
the problems of k-star size and good tessellable graph recognition, and
related them with the t-tessellability problem by presenting graph classes with
certain behaviors. The problem definitions and the results are presented in Chap-
ter 2, Section 2.2, and they can be seen in more details in Appendix B. Abreu et
al. [8] related T (G) with total chromatic number, denoted by χT (G). We presented
a contrast between hardness results for the problems of k-edge-colorability, k-
total-colorability, t-tessellability, and a new problem introduced in that
work, called by t-total-colorability. Moreover, we presented the total stag-
gered quantum walk model. The problem definitions and the results are presented in
Chapter 2, Section 2.3, and they can be seen in more details in Appendix C. Chap-
ter 3 discusses works in progress corresponding to Appendices D and E presented
at conferences [2, 7].
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Chapter 2

Tessellations on graphs: Related
problems and applications

Along this chapter we introduce the main results corresponding to three full
papers, each one in one section. Section 2.1 introduces the results of the paper
attached in Appendix A, which contains the first results about tessellations on graphs
after the staggered quantum walk model was proposed by Portugal et al. [49] in
2015. Section 2.2 introduces the results of the paper attached in Appendix B, which
contains new problems related to tessellations on graphs. Section 2.3 introduces
the results of the paper attached in Appendix C, which contains a new problem
related to tessellations on graphs, and a new quantum walk model based on this
new problem and the related parameter.

2.1 The graph tessellation cover number: chromatic

bounds, efficient algorithms and hardness

An extended abstract containing the following results was presented in LATIN
2018, The 13th Latin American Theoretical Informatics Symposium [5], and then,
the full paper was published in Theoretical Computer Science C, “Natural Comput-
ing”, TCS-C [9], in 2020, which is attached in Appendix A.

We start with two main definitions.

Definition 2.1 [9] A tessellation T is a partition of the vertices of a graph into
cliques, called tiles. An edge belongs to the tessellation T if and only if its endpoints
belong to the same clique in T . The set of edges belonging to T is denoted by E(T ).

Definition 2.2 [9] Given a graph G with edge set E(G), a tessellation cover of
size t of G is a set of t tessellations T1, ..., Tt, whose union ∪ti=1 E(Ti) = E(G). A
graph G is called t-tessellable if there is a tessellation cover of size at most t. The
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t-tessellability problem aims to decide whether a graph G is t-tessellable. The
tessellation cover number T (G) is the size of a smallest tessellation cover of G.

We improve the previous upper bound for T (G) presented in [1, 3] by showing
that T (G) is at most the minimum between the chromatic index χ′(G) of the graph
and the chromatic number of its clique graph χ(K(G)).

Theorem 2.3 [9] If G is a graph, then T (G) ≤ min{χ′(G), χ(K(G))}.

We conclude that if G is a triangle-free graph, then T (G) = χ′(G) = χ(K(G)) =

χ(L(G)) since an edge-coloring induces a tessellation cover, where L(G) is the line
graph of G. Moreover, t-tessellability is polynomial-time solvable for bipartite
graphs and for {triangle, proper major}-free graphs, and there are also polynomial-
time algorithms to obtain a minimum tessellation cover for these graph classes [31,
58]. In contrast, from [34], we conclude that t-tessellability of triangle-free
graphs for t ≥ 3 is NP-complete. Particularly, t-tessellability for t ≥ 3 is NP-
complete even for unichord-free graphs with girth at least 15, for ∆ ≥ 3 [38], which
are triangle-free.

We are able to present graph classes for which (i) T (G) = χ′(G) with χ(K(G))

arbitrarily large [3], (ii) T (G) = χ(K(G)) with χ′(G) arbitrarily large, in Theo-
rem 2.4 (example depicted in Figure 2.1), and (iii) T (G) = 3 with both upper
bounds arbitrarily large, in Theorem 2.5 (example depicted in Figure 2.2).

Theorem 2.4 [9] Let Gp be a star-octahedral graph. Then:

1. T (Gp) = ∆(Gp) = χ′(Gp) = χ(K(Gp)) = 2p, for p ∈ {2, 3}, and;

2. T (Gp) = ∆(Gp) = χ′(Gp) = 2p and χ(K(Gp)) = 2p−1 + 1, for p ≥ 4.

Theorem 2.5 [9] Let E3,p be a (3, p)-extended wheel graph. Then, T (E3,p) = 3 for
p ≥ 2.

The t-tessellability problem aims to decide whether there is a tessella-
tion cover of the graph with t tessellations. We found that t-tessellability is
polynomial-time solvable for bipartite, {triangle, proper major}-free, threshold, and
diamond-free K-perfect graphs, and it is NP-complete for triangle-free for t ≥ 3,
unichord-free for t ≥ 3, planar for t = 3, biplanar for t ≥ 3, chordal (2, 1)-graphs
for t ≥ 4, (1, 2)-graphs for t ≥ 4, and diamond-free with diameter at most five for
t = 3. We improved the complexity of 2-tessellability problem to linear time.

A graph G is called extremal if T (G) = min{χ′(G), χ(K(G))}. Next, we define
a property of the cliques on a tessellation called exposed maximal clique.

5



(a) (b)

Figure 2.1: (a) The star-octahedral graph G4, i.e., the coalescence between the
octahedral graph O4 and the star graph S8. (b) The clique graph K(G4). Notice
that T (G4) = χ′(G4) = 8, while χ(K(G4)) = 9.

2

34

5 6

0 1

Figure 2.2: An example of the (3, 2)-extended wheel graph. Notice that
the tessellations applied in this graph are T1 = {{0, 3, 6}, {1, 2}, {4, 5}}, T2 =
{{1, 4, 6}, {2, 3}, {5, 0}}, and T3 = {{2, 5, 6}, {3, 4}, {0, 1}}.

Definition 2.6 [9] A maximal clique K of a graph G is said to be exposed by a
tessellation cover C if E(K) 6⊆ E(T ) for all T ∈ C, that is, the edges of K are not
covered by any single tessellation of C.

Lemma 2.7 [9] A graph G admits a minimum tessellation cover with no exposed
maximal cliques if and only if T (G) = χ(K(G)).

Now, we consider diamond-free graphs whose clique-graphs are diamond-free,
and any two maximal cliques intersect in at most one vertex.

Theorem 2.8 [9] If G is a diamond-free graph with χ(K(G)) = ω(K(G)), then
T (G) = χ(K(G)).

A graph is K-perfect if its clique graph is perfect [22]. Since a diamond-free
K-perfect graph G satisfies the premises of Theorem 2.8, we conclude that T (G) =

χ(K(G)).
Threshold graphs can be constructed from an empty graph by adding either an

isolated vertex or a universal vertex. If a threshold graph G is connected, then G
has a universal vertex, and by construction, its clique graph is a complete graph.

Theorem 2.9 [9] If G is a connected threshold graph, then T (G) = χ(K(G)).

6



Figure 2.3: The 3-tessellable graph-gadget of Lemma 2.10. Each tessellation is
depicted separately. The external vertices are a, b, c, e, j, l, n, o, and the internal
vertices are the remaining ones.

Now, we focus on presenting NP-completeness of the t-tessellability prob-
lem of planar graphs with maximum degree ∆(G) ≤ 6 for t = 3 in Theorem 2.11,
biplanar graphs for t ≥ 3 in Theorem 2.12, chordal (2, 1)-graphs for t ≥ 4 in The-
orem 2.13, (1, 2)-graphs for t ≥ 4 in Theorem 2.14, and diamond-free graphs with
diameter at most five for t ≥ 3 in Theorem 2.15.

Lemma 2.10 [9] Any tessellation cover of size 3 of the graph-gadget depicted in
Figure 2.3 contains a tessellation that covers the middle and the external triangles.

Using the gadget depicted in Figure 2.3 we can provide a polynomial transfor-
mation from the NP-complete 3-colorability of planar graphs with maximum
degree four [31] to 3-tessellability of planar graphs with maximum degree six.
Then the next theorem follows.

Theorem 2.11 [9] 3-tessellability of planar graphs with ∆(G) ≤ 6 is NP-
complete.

The next theorem shows that t-tessellability, with any fixed t ≥ 3, of bipla-
nar graphs is NP-complete. Curiously, the polynomiality of ∆-edge colorabil-

ity for planar graphs with ∆(G) ≥ 8 suggests that t-tessellability for planar
graphs might be polynomial-time solvable for large enough t, in contrast with t-

tessellability of biplanar graphs.

Theorem 2.12 [9] t-tessellability of biplanar graphs for t ≥ 3 is NP-complete.

We are able to show a polynomial transformation from the NP-complete 3-

colorability [31] to 4-tessellability of chordal (2, 1)-graphs. This hardness
proof can be generalized for any fixed t ≥ 4. Then, we have the following theorems.

Theorem 2.13 [9] The t-tessellability of chordal (2, 1)-graphs is NP-
complete, for any fixed t ≥ 4.

Theorem 2.14 [9] The t-tessellability of (1, 2)-graphs is NP-complete, for
any fixed t ≥ 4.
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Considering the NAE 3-SAT problem, we can provide a polynomial transfor-
mation from this NP-complete problem [31] to 3-tessellability of diamond-free
graphs with diameter at most five.

Theorem 2.15 [9] 3-tessellability of diamond-free graphs with diameter at
most five is NP-complete.

To close this section, we show that we can solve the 2-tessellability problem
in linear time by improving the previous Peterson’s algorithm [44], whose idea is to
group true twin vertices of a same clique of a line graph G. These true twin vertices
represent multiedges in the bipartite multigraph H, where G = L(H). Then, the
algorithm removes all those true twin vertices in each group but one. The last step
of the algorithm is to verify if a graph is a line graph of a bipartite graph by using
the Roussopoulos’ linear-time algorithm [52]. Our improvement consists in showing
a faster way to remove true twin vertices belonging to a clique of a graph using its
modular decomposition.

Theorem 2.16 [9] 2-tessellability can be solved in linear time.

Tables 2.1 and 2.2 summarize the results of the paper [9] in Appendix A.

Table 2.1: Extremal graph classes and tight upper bounds.
Graph class T (G) ≤ min{χ′(G), χ(K(G))}
Bipartite T (G) = χ′(G) = ∆(G)

Triangle-free T (G) = χ′(G)
Unichord-free with girth ≥ 15 T (G) = χ′(G) = ∆(G)

Wdp,q T (Wdp,q) = χ(K(Wdp,q)) = q
Gp, p ∈ {2, 3} T (Gp) = χ′(Gp) = χ(K(Gp)) = 2p
Gp, any p T (Gp) = χ′(Gp) = 2p
E3,p T (G) = 3

Diamond-free K-perfect T (G) = χ(K(G)) = ω(K(G))
Threshold T (G) = χ(K(G)) = |S|+ 1

8



Table 2.2: The complexity of the t-TESSELLABILITY problem for graph classes
t Graph class Complexity

t = 2 Generic Linear

t = 3
Planar, ∆(G) ≤ 6 NP-complete

Diamond-free, diameter = 5 NP-complete

t ≥ 3

Threshold Polynomial
Bipartite Polynomial

{triangle, proper major}-free Polynomial
Diamond-free K-perfect Polynomial

Unichord-free with girth ≥ 15 NP-complete
Triangle-free NP-complete
Biplanar NP-complete

t ≥ 4
Chordal (2, 1)-graphs NP-complete

(1, 2)-graphs NP-complete

2.2 The Tessellation Cover Number of Good Tes-

sellable Graphs

The full paper [6] was submitted to Theoretical Computer Science IITG-Silver
Jubilee, and it is under review. The content of this work is available in ArXiv, and
it is attached in Appendix B.

In this work we define the star number of a graph G, denoted by is(G), which is
the number of edges of a maximum induced star of G. Notice that T (G) ≥ is(G),
since the number of edges of a maximum induced star of G is a lower bound on
T (G). We say that a graph G is good tessellable if T (G) = is(G). In this context,
we introduce the good tessellable recognition problem (gtr), which aims
to decide whether a graph G is good tessellable. We also introduce the k-star size

problem, which aims to decide whether is(G) ≥ k, for an integer k. We analyze the
combined behavior of the computational complexity of the problems below.

k-star size

Instance: Graph G

and integer k.

Question: is(G) ≥ k?

t-tessellability

Instance: Graph G

and integer t.

Question: T (G) ≤ t?

gtr

Instance: Graph G.

Question: T (G) = is(G)?

As byproduct, we obtain graph classes that obey the corresponding computa-
tional behaviors described in Table 2.3.

Notice that all graph classes studied in [9] and presented in Sec. 2.1 obey be-
havior (a), since for those classes is(G) is fixed and equal to t. Posner et al. [50]
studied graphs that obey behavior (b), since for those graphs is(G) = 2 and 3-

tessellability is NP-complete.
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Table 2.3: Computational complexities of k-star size, t-tessellability, and
gtr problems and examples of corresponding graph classes.

.

Behavior
Problem

k-star size t-tessellability gtr

(a) P NP-complete NP-complete
(b) P NP-complete P
(c) NP-complete P NP-complete
(d) NP-complete P P
(e) NP-complete NP-complete P

Graph classes that obey behaviors (c) and (d) are provided by Construction 2
below. This result comes from Theorem 2.17 that shows that gtr is NP-complete
for graphs of Construction 2 (I), which have a known tessellation cover number.

Construction 1 [6] Let i be a non-negative integer and G a graph. The [i, G]-
graph is obtained as follows. Add i vertices to graph G, and then add a universal
vertex.

Construction 2 [6] Let the Mycielski graph be denoted by Mj for j ≥ 2. Let i
be a non-negative integer and G a graph with V (G) = {v1, . . . , vn}. We construct
a graph H = H1 ∪ H2 as follows. Add i disjoint copies G1, . . . , Gi of G to H1,
such that V (Gj) = {vj1, . . . , vjn} for 1 ≤ j ≤ i, where vjk represents the same vertex
vk of G for 1 ≤ k ≤ n. Add to H1 all possible edges between pairs of vertices
that represent the same vertex of G. Add a vertex u to H1 adjacent to all vjk for
1 ≤ j ≤ i and 1 ≤ k ≤ n. Now, we consider two possibilities: either (I) H2 is
[|V (G)| − 3,M c

3 ]-graph of Construction 1 (example depicted in Figure 2.4) or (II)
H2 is [|V (G)| − 3,M c

4 ]-graph of Construction 1. Denote the universal vertex of H2

by u′.

H1

u

G       v {x} 

u'

(a) (b)

x

H2

Figure 2.4: (a) An edge-coloring of G ∨ {x}. (b) Example of a graph H1 ∪ H2 of
Construction 2 (I) obtained from graph G.
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Theorem 2.17 [6] k-star size and gtr are NP-complete for graphs of Construc-
tion 2 (I).

Now we focus in showing that t-tessellability remains NP-complete even if
the gap between T (G) and is(G) is large. This result leads us to provide a graph
class that obeys behavior (e), depicted in Construction 4. By using universal graphs
G = [u ∪ G′], we show that is(G) is a tight lower bound for the tessellation cover
number.

Lemma 2.18 [6] If G is a t-tessellable graph, then

max
v∈V (G)

{is(G[v ∪NG(v)])} ≤ max
v∈V (G)

{χ(Gc[NG(v)])} ≤ t.

Let u /∈ V (G) be a vertex. If G ∨ {u} is a t-tessellable graph, then

is(G ∨ {u}) = α(G) ≤ χ(Gc) ≤ t.

From Lemma 2.18 and from the fact that we can use χ(Gc) tessellations to cover
a partition P of the vertices of G, we have that

χ(Gc) ≤ T (G ∨ {u}) ≤ χ(Gc) + ∆(G) + 1, (2.1)

which allows us to conclude that there is no universal graph such that the gap
between T (G ∨ {u}) and χ(Gc) is larger than ∆(G) + 1. In particular, if χ(Gc) ≥
2∆(G) + 1, then by Theorem 2.19 below T (G ∨ {u}) = χ(Gc).

Theorem 2.19 [6] A graph G∨{u} with θ(G) ≥ 2∆(G)+1 has T (G∨{u}) = θ(G).

The gap between T (G) and is(G) can be arbitrarily large for certain graphs,
for instance, a subclass of universal graphs described next. We also show that k-
star size and t-tessellability are NP-complete for graphs of Construction 4,
for which gtr is in P , obeying behavior (e).

Construction 3 [6] Let G = (V,E) be a graph. Obtain S2(G) by subdividing
each edge of G two times, so that each edge vw ∈ E(G) becomes a path v, x1, x2, w,
where x1 and x2 are new vertices. Let L(S2(G)) be the line graph of S2(G). Add a
universal vertex u to L(S2(G)), that is, consider the graph L(S2(G)) ∨ {u}.

First, we show that there is a connection between T (H) of a graph H of Con-
struction 3 on G with the size of a maximum stable set of G.

Theorem 2.20 [6] If G = (V,E) is a graph with |E(G)| ≥ 4 and H = (L(S2(G))∨
{u}) is obtained from Construction 3 on G, then T (H) = |V (G)|+ |E(G)| −α(G).
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By Theorem 2.20 and the fact that deciding whether α(G) ≥ k is NP-
complete [31], we have the following result for the graphs of Construction 3.

Construction 4 [6] Let H1 be the graph obtained from Construction 2 (I) on a
given graph G1 and a non-negative integer i. Let H2 be the graph obtained from
Construction 3 on the graph G2 ∨K3|V (G1)| of a given graph G2. Let u and u′ be the
two universal vertices of the two connected components of H1. Add is(H2) degree-1
vertices to H1 adjacent to u and is(H2) degree-1 vertices adjacent to u′. Consider
H1 ∪H2.

Theorem 2.21 [6] k-star size and t-tessellability are NP-complete for
graphs of Construction 4, for which gtr is in P.

In Table 2.3 we have omitted triples. The behavior (P ,P ,P) is obeyed
by Threshold graphs and bipartite graphs [5, 9] since gtr problem al-
ways has answer yes and the other two problems are solved in polyno-
mial time. The behavior (P ,P ,NP-complete) is unreachable since if both
k-star size and t-tessellability are in P , so is gtr. The behavior
(NP-complete,NP-complete,NP-complete) is obeyed by the union of graphs G1

and G2 so that G1 is in a graph class that obey behavior (a) and G2 is in a graph
class that obey behavior (c).

2.3 Total tessellation cover and quantum walk

The full paper [8] was submitted to the 46th International Workshop on Graph-
Theoretic Concepts in Computer Science, Lecture Notes in Computer Science. It is
available in ArXiv, and it is attached in Appendix C.

We start this section by presenting total tessellation cover and total tessellation
cover number definitions.

Definition 2.22 [8] Let G = (V,E) be a graph and Σ a non-empty label set. A
total tessellation cover comprises a proper vertex coloring and a tessellation cover
of G both with labels in Σ such that, for any vertex v ∈ V , there is no edge e ∈ E
incident to v so that e belongs to a tessellation with label equal to the color of v.

Definition 2.23 [8] The total tessellation cover number Tt(G) of a graph G is the
minimum size of the set of labels Σ for which G has a total tessellation cover. The
k-total tessellability problem aims to decide whether a given graph G has
Tt(G) ≤ k.

12



We establish bounds on Tt(G), which is the smallest number of tessellations
required in a total tessellation cover of G, in special, we highlight Tt(G) ≥ ω(G),
where ω(G) is the size of a maximum clique of G, and Tt(G) ≥ is(G) + 1.

Since a total coloring of a graph G induces a total tessellation cover,

Tt(G) ≤ χt(G), (2.2)

and in particular, we have that Tt(G) = χt(G) for triangle-free graphs. Hence,
(∆ + 1)-total tessellability is hard even when restricted to regular bipartite
graphs [41]. By definition,

max{χ(G), T (G)} ≤ Tt(G) ≤ χ(G) + T (G), (2.3)

and it implies that Tt(G) ≥ ω(G).
Using these bounds, we define the good total tessellable graphs with either

Tt(G) = ω(G) or Tt(G) = is(G) + 1. The k-total tessellability problem
aims to decide whether a given graph G has Tt(G) ≤ k. We show that k-total

tessellability is in P for good total tessellable graphs. We establish the NP-
completeness of the following problems when restricted to the following classes:
(is(G) + 1)-total tessellability for graphs with ω(G) = 2; ω(G)-total tes-

sellability for graphs G with is(G)+1 = 3; k-total tessellability for graphs
G with max{ω(G), is(G) + 1} far from k; and 4-total tessellability for graphs
G with ω(G) = is(G) + 1 = 4. As a consequence, we establish hardness results for
bipartite graphs, line graphs of triangle-free graphs, universal graphs, planar graphs,
and (2, 1)-chordal graphs.

Lemma 2.24 [8] If χ(G) ≥ 3T (G), then Tt(G) = χ(G).

From the lemma above, we can improve the upper bound of Eq. (2.3) as follows

Tt(G) ≤ max {χ(G), T (G) + d2χ(G)/3e} . (2.4)

This equation shows that χ(G) ≥ 3T (G) implies Tt(G) = χ(G), or χ(G) ≤ 3T (G)

implies T (G) ≤ Tt(G) ≤ 3T (G). If we consider χ(G) = 3, Eq. (2.4) implies that
T (G) ≤ Tt(G) ≤ T (G) + 2.

Lemma 2.25 [8] Tt(G)≥ max
v∈V (G)

{χ(Gc[N(v)])}+1≥ max
v∈V (G)

{ω(Gc[N(v)])}+1= is(G)+

1.

Since Tt(G) ≥ is(G) + 1 ≥ k + 1, every graph G such that Tt(G) = T (G) = k is
K1,k-free. Furthermore, in the total tessellation cover there is no tile of size k. If we
consider k = 3 the total tessellation cover of G induces a total coloring of G.
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We established bounds for the total tessellation cover number for some graph
classes. For bipartite graphs, T (G) = ∆(G) and Tt(G) > T (G). For triangle-
free graphs, Tt(G) = T (G) if χ′(G) = χt(G) = ∆ + 1. Thus deciding whether
Tt(G) = T (G) = ∆(G) + 1 is NP-complete from the proof that (∆ + 1)-total

colorability is NP-complete for triangle-free snarks [55], which are graphs with
χ′(G) = ∆ + 1. If a graph G has Tt(G) = T (G) = k, we conclude that G has no
induced subgraph K1,k because Tt(G) ≥ is(G) + 1 ≥ k + 1, and there is no tile of
size k in any tessellation of a total tessellation cover. If Tt(G) = T (G) = 3, then
G is K1,3-free and there is no clique of size three in any tessellation. Therefore, the
total tessellation cover of G induces a total coloring of G, and the only graphs for
which Tt(G) = T (G) = 3 are the odd cycles with n vertices such that n ≡ 0(mod )3.

We now define the concept of good total tessellable graphs.

Definition 2.26 [8] A graph G is good total tessellable if either Tt(G) = ω(G) or
Tt(G) = is(G) + 1. We say that G is Type I (resp. Type II ) if Tt(G) = ω(G) (resp.
Tt(G) = is(G) + 1).

Using the Lovász number [32], which is a real number such that ω(Gc) ≤ ϑ(G) ≤
χ(Gc), we are able to show that k-total tessellability is in P if we know
beforehand that the graph is either good total tessellable Type I or Type II, since
the integer nearest to ϑ(G) can be determined in polynomial time.

The following theorems show that k-total tessellability is NP-complete
for the following cases: line graph of triangle-free graphs with k = ω(G) ≥ 9 and
is(G) + 1 = 3; universal graphs with k very far apart from both is(G) + 1 and
ω(G); planar graphs with k = 4 = ω(G) = is(G) + 1; and (2, 1)-chordal graphs with
k = is(G) + 1 = ω(G) + 3.

Theorem 2.27 [8] k-total tessellability is NP-complete for line graphs L(G)

of 3-colorable k-regular triangle-free graphs G for any k ≥ 9.

Theorem 2.28 [8] k-total tessellability is NP-complete for universal
graphs.

Theorem 2.29 [8] 4-total tessellability is NP-complete for planar graphs.

Theorem 2.30 [8] k-total tessellability is NP-complete for chordal graphs.

Table 2.4 summarizes the results of paper [8] of Appendix C by making a con-
trast between the computational complexities of decision problems related to the
parameters χ′(G), χt(G), T (G), and Tt(G).
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χ′(G) T (G) χ′(G) χt(G) χ′(G) Tt(G)

[2|V (G)|, Gc] P NP-c G ∪K∆(G)+1, ∆ even P NP-c [2|V (G)|, Gc] P NP-c
Line of Bipar-
tite

NP-c P G ∪K∆(G)+1, ∆ odd NP-c P Line of Bipartite,
ω(G) ≥ 6

NP-c P

T (G) Xt(G) T (G) Tt(G) χt(G) Tt(G)

Bipartite P NP-c Bipartite P NP-c G ∪K∆(G)+1, ∆ odd P NP-c
[2|V (G)|, Gc] NP-c P G ∪K3∆(G) NP-c P Open NP-c P

Table 2.4: Computational complexities of parameters χ′(G), χt(G), T (G), and Tt(G).

To close this chapter, we present the total staggered quantum walk model, which
is the first quantum walk model to use both vertices and edges as locations to the
walker. A quantum walk models the walk of a particle, called by walker, over a graph,
and the walker is represented by a unitary vector. Let G = (V,E) be a simple graph
so that |V (G)| = n and |E(G)| = m. Let Hn+m be a (n + m)-dimensional Hilbert
space, whose computational basis is the set {|v〉, v ∈ V (G)} ∪ {|vw〉, vw ∈ E(G)}.
We represent the state vector of the walker by |v〉 if the walker is located on a vertex,
or |vw〉, if the walker is located on an edge vw. Then, we define a generic state by

|ψ〉 =
∑

v∈V (G)

av |v〉+
∑

vw∈E(G)

bvw |vw〉 , (2.5)

where the coefficients av and bvw are complex numbers that obey the normalization
constraint ∑

v∈V (G)

|av|2 +
∑

vw∈E(G)

|bvw|2 = 1. (2.6)

A quantum walk model on graphs must provide a recipe to build local unitary
operators based on the graph structure. We can represent such operators as unitary
matrices, i.e., UU † = U †U = I, where U represents a matrix, U † is the transpose
conjugated matrix of U , and I is the identity matrix. Moreover, such operators
must be reversible, i.e., U |ψ0〉 = |ψ1〉, and U †|ψ1〉 = |ψ0〉. In our proposal, the
evolution operator that drives the quantum walk is obtained from a total tessellation
cover, which provides a tessellation cover {T1, ..., Tk} and a compatible proper vertex
coloring.

Figure 2.5 depicts an example of a total tessellation cover. Note that the colors
of the vertices in 2-tiles are different from the tile color. On the other hand, there
are 1-tiles that contain a vertex with the tile color.
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Figure 2.5: (Left) A total tessellation cover of a claw graph G. (Right) The evolution
operator of a total staggered quantum walk on G with λ = π/2.

We can write the operator generically as

U =




sin2 λ√
3

cosλ 0 0 b sinλ c sinλ c sinλ

0 0 0 1 0 0 0

d 0 0 0 a√
3
+ c sinλ a√

3
− b sinλ a√

3
+ c sinλ

sin2 λ√
3

0 cosλ 0 c sinλ c sinλ −b sinλ

− a√
3

sinλ 0 0 −b sinλ −c sinλ −c sinλ

a− a√
3

0 0 0 sin2 λ√
3
− c cosλ sin2 λ√

3
− b cosλ sin2 λ√

3
− c cosλ

− a√
3

0 sinλ 0 −c cosλ −c cosλ −b cosλ




(2.7)

where a = cosλ sinλ, b = −2−cosλ
3

, c = 1−cosλ
3

, d = cos2 λ + sin2 λ√
3
, and 0 ≤ λ ≤ 2π.

Each tessellation Tj is associated with a Hermitian matrix Hj. Since Hj is local, the
action of Hj on the state of a walker that is located on a vertex v drives the walker
to the neighborhood of v and to the edges incident to v.

The dynamic of this quantum walk driven by Hj must obey the following locality
rules, as described in [8]:

1. If the walker is located on a vertex v that belongs to a 1-tile of Tj, there are
two cases: (i) If the color of the vertex is equal to the color of tessellation Tj,
the walker hops to v and to the edges incident to v; and (ii) if the color of the
vertex is different from the color of tessellation Tj, the walker stays put.

2. If the walker is located on a vertex v that belongs to a tile of Tj of size at least
2, the walker hops to the vertices in such a tile.

3. If the walker is located on an edge that belongs to tessellation Tj, the walker
stays put.

4. If the walker is located on an edge that does not belong to tessellation Tj,
there are two cases: (i) If there is an incident vertex v whose color is equal to
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the color of tessellation Tj, the walker hops to v and to the edges incident to
v; and (ii) otherwise, the walker stays put.

G

a

b

d e f

c

H

a b c d e f

ab ac bc bd be ce cf de ef

A

Figure 2.6: Total tessellation cover of a graph G and the associated tessellation cover
of A = Tot(G).

It is possible to simulate a total staggered quantum walk on a graph G with a
staggered quantum walk on its total graph Tot(G), defined below.

Definition 2.31 The total graph Tot(G) of G has V (Tot(G)) = V (G) ∪ E(G)

and E(Tot(G)) = E(G) ∪ {u uw | u ∈ V (G), uw ∈ E(G)} ∪ {uv vw | uv ∈
E(G) and vw ∈ E(G)}.

Let A = Tot(G), A[E(G)] = Y and A[V (G)] = X. Subgraph Y is isomorphic
to the line graph L(G) of G, and X is isomorphic to the original G. We define the
clique Kv = {v} ∪ {vw | vw ∈ E(G)} of A.

We first consider a total tessellation cover of a graph G, and we define an asso-
ciated tessellation cover of A as follows. Assign the labels of the edges of G to the
respective edges ofX and assign the color of each vertex v of G to the edges of A[Kv].
By this way, we relate the total tessellation cover of G to the tessellation cover of
A, as well as their respective evolution operators generated from these tessellation
covers. To simulate the total staggered quantum walk on G with the staggered
quantum walk on A, we consider the vertices of G as the corresponding vertices
of X in A, and the edges of G as the corresponding vertices of Y in A. Fig. 2.6
depicts a total tessellation cover of a graph G and the associated tessellation cover
of A = Tot(G).
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Chapter 3

Conclusion

The staggered model proposal [49] in 2015 gave to the studies about the tes-
sellation cover number a great motivation due to the applicability of this con-
cept in the generation of quantum operators to perform quantum walks using that
model. Since the less quantum operators needed to be implemented, the less com-
plex is the quantum implementation, the knowledge about how many tessellations
are needed to cover a graph is important in quantum walk context, and the re-
sults obtained in the present thesis can help the studies in quantum computa-
tion [10, 11, 24, 25, 37, 45, 46, 54]. We summarize the results, discuss current
work, and propose open questions.

In Section 2.1 we investigate the tessellation cover number for graph classes whose
T (G) reaches one of the upper bounds. Those graphs are called by extremal graphs
and they are fundamental for the development of quantum walks in the staggered
model, since those results lead us to a better understanding about the complexity of
the unitary operators necessary to express the evolution of staggered quantum walks.
Besides the extremal graph classes presented, we also improve the known algorithm
to recognize line graphs of bipartite multigraphs [51], for 2-tessellable graphs [48],
and graphs G such that K(G) is bipartite [44], to linear-time.

Naturally, an interesting question arises: Does every graph have a minimum tes-
sellation cover such that every tessellation contains a maximal clique? Although the
intuition says that in most cases the answer is true, using a minimization model pro-
posed by Abreu et al. [2] for the optimization version of t-tessellability problem,
we found a surprising example of a graph, which is depicted in Figure 3.1, with all
minimum tessellation covers requiring a tessellation without maximal cliques. This
minimization model was presented in Congresso Nacional de Matemática Aplicada e
Computacional, in 2018 (attached in Appendix D), and we are currently working on
improvements for this model [2], while we study the different quantum walk dynam-
ics over a same graph G resulting from the use of two different minimum tessellation
covers for G.
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Figure 3.1: 3-tessellable graph. Rightmost tessellation does not contain a maximal
clique.

In Section 2.2 we proposed a tight lower bound for T (G), which implicitly ap-
peared in the previous hardness proofs of [9]. It is important to analyze the gap
between T (G) and is(G), since in the quantum walk context, it is advantageous to
implement physically as few operators as possible in order to reduce the complexity
of the quantum system. We presented graph classes for which T (G) = is(G). These
graphs are called by good tessellable graphs, and it is related with a new problem
proposed, the good tessellable graphs recognition (gtr), and we analyzed
the computational complexity behaviors for several graph classes with respect of the
problems: t-tessellability, GTR, and k-star size. From this work, an inter-
esting research topic is the extension of the concept of good tessellable graphs to
perfect tessellable graphs, the graphs G for which T (H) = is(H) for any induced
subgraph H of G.

In Section 2.3 we have defined the total tessellation cover on a graph G. From
this concept we propose the total staggered quantum walk model, which is the first
quantum walk model to use both vertices and edges as possible locations for the
walker. An open problem is to search for graphs with at least 3 vertices satisfying
Tt(G) = 3T (G) and Tt(G) > χ(G). Furthermore, it is interesting to define graph
classes with Tt(G) = T (G) = k for k ≥ 4, since for k = 3 the only such graphs are
the odd cycles Cn with n ≡ 0 mod 3. Another open problem is to find a threshold
for Tt(G) for which all planar graphs are Type II.

In Appendix E, we show results presented in the 8th Latin-American Workshop
on Cliques in Graphs, whose proceedings were published at Matemática Contem-
porânea [7]. In that work we analyzed the t-tessellability problem in graphs
with few induced P4. We proved that adding true-twin vertices in a graph G results
in a graph G′ such as T (G) = T (G′) for any graph G. Moreover, we presented a
polynomial time algorithm for t-tessellability of quasi-threshold graphs. Fur-
thermore, the concept of t-tessellability completion on G was introduced,
and it aims to decide whether there is a tessellation cover T of G with t tessellations
given by a partial tessellation cover T ′ of G, such that T ′ is part of T .
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Abstract

A tessellation of a graph is a partition of its vertices into vertex disjoint
cliques. A tessellation cover of a graph is a set of tessellations that covers
all of its edges, and the tessellation cover number, denoted by T (G), is the
size of a smallest tessellation cover. The t-tessellability problem aims
to decide whether a graph G has T (G) ≤ t and is NP-complete for t ≥ 3.
Since the number of edges of a maximum induced star of G, denoted by
is(G), is a lower bound on T (G), we define good tessellable graphs as the
graphs G such that T (G) = is(G). The good tessellable recognition
(gtr) problem aims to decide whether G is a good tessellable graph. We
show that gtr is NP-complete not only if T (G) is known or is(G) is fixed,
but also when the gap between T (G) and is(G) is large. As a byprod-
uct, we obtain graph classes that obey the corresponding computational
complexity behaviors.

1 Introduction
It is known that there is a strong connection between the areas of graph theory
and quantum computing. For instance, algebraic graph theory provides many
tools to analyze the time-evolution of the continuous-time quantum walk, be-
cause its evolution operator is directly defined in terms of the graph’s adjacency
matrix. Recently, a new discrete-time quantum walk model has been defined
by using the concept of graph tessellation cover [10]. Each tessellation in the
cover is associated with a unitary operator and the full evolution operator is the
matrix product of those operators. For practical applications, it is interesting
to characterize graph classes that admit small-sized covers. Accordingly, we
establish a new lower bound on tessellation cover that is described next.
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Throughout this paper we only consider undirected and simple graphs. A
tessellation of a graph G is a partition of its vertices into vertex disjoint cliques.
A tessellation cover of G is a set of tessellations that covers all of its edges.
The tessellation cover number of G, denoted by T (G), is the size of a smallest
tessellation cover of G. If G admits a tessellation cover of size t, then G is
t-tessellable. The t-tessellability problem aims to decide whether G is t-
tessellable. We disregard cliques of size one in a tessellation since they play no
role in our proofs. The star number, denoted by is(G), is the number of edges of
a maximum induced star of G. Notice that T (G) ≥ is(G), since any two edges
of an induced star cannot be covered by a same tessellation. We say that G
is good tessellable if T (G) = is(G), and the good tessellable recognition
(gtr) problem aims to decide whether a graph is good tessellable.

The known results about the tessellation cover number up to now were re-
lated to upper bounds on T(G) and the complexities of the t-tessellability
problem [2, 1, 11]. Abreu et al. [2] verified that T (G) ≤ min{χ′(G), χ(K(G))},
and they proved that t-tessellability is in P for quasi-threshold, diamond-
free K-perfect graphs, and bipartite graphs. On the other hand, they showed
that the problem is NP-complete for triangle-free graphs, unichord-free graphs,
planar graphs with ∆ ≤ 6, (2, 1)-chordal graphs, (1, 2)-graphs, and diamond-
free graphs with diameter at most five. Surprisingly, all the hardness results
presented by Abreu et al. [2] for t-tessellability aim to decide whether
t = is(G), i.e., if the instance graph is good tessellable. Therefore, all their
NP-complete proofs for t-tessellability also hold for gtr. The only pre-
vious NP-completeness result for t-tessellability for non good tessellable
graphs was presented by Posner et al. [11] for line graphs of triangle-free graphs
(where t = 3 and is(G) = 2).

We recently discovered that the concept of tessellation cover of graphs has
been independently studied in the literature for a same problem, named as
equivalence covering by Duchet [4] in 1979. Since the tessellation cover
number T (G) and the equivalence covering number eq(G) are the same param-
eter, we highlight the common results, as follows: χ′(G) is an upper bound for
T (G) [2] and for eq(G) [3]; if G is triangle-free, then T (G) = χ′(G) [2] and
eq(G) = χ′(G) [5]; if G is triangle-free, then 3-tessellability of line graphs
L(G) is NP-complete [11] and to decide whether eq(G) ≤ 3 for the same class is
NP-complete as well [5]; if G is (2, 1)-chordal, then t-tessellability is NP-
complete for t ≥ 4 [2], whereas equivalence covering is NP-complete for
(1, 1)-graphs [3].

Contributions
We propose the gtr problem, which aims to decide whether a graph is good
tessellable. We analyze the combined behavior of the computational complexity
of the problems t-tessellability, gtr, and k-star size. Clearly, these three
problems belong to NP.
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k-star size

Instance: Graph G
and integer k.

Question: is(G) ≥ k?

t-tessellability

Instance: Graph G
and integer t.

Question: T (G) ≤ t?

gtr

Instance: Graph G.

Question: T (G) = is(G)?

In order to highlight our results, we define graph classes using triples that
specify the computational complexities of k-star size, t-tessellability, and
gtr, summarized in Table 1.

Table 1: Computational complexities of k-star size, t-tessellability, and
gtr problems and examples of corresponding graph classes.`````````̀Behavior

Problem
k-star size t-tessellability gtr Examples

(a) P NP-complete NP-complete [2, 1]
(b) P NP-complete P [11]

Sec. 3
(c) NP-complete P NP-complete Sec. 2
(d) NP-complete P P Sec. 2
(e) NP-complete NP-complete P Sec. 3

All graph classes for which Abreu et al. [2] presented hardness proofs for
t-tessellability obey behavior (a), since for those classes is(G) is fixed and
equal to t. The graphs studied by Posner et al. [11] obey behavior (b), since for
those graphs is(G) = 2 and 3-tessellability is NP-complete. In Section 3,
we present additional examples that obey behavior (b) with T (G) arbitrarily
larger than a non fixed is(G). Graphs of Construction 2.2 (I) in Section 2 are
examples that obey behavior (c), since T (G) is known but k-star size is NP-
complete for k = T (G), which implies that gtr is NP-complete. Graphs of
Construction 2.2 (II) in Section 2 are examples that obey behavior (d), because
k-star size is NP-complete for k = T (G) − 1, T (G) is known, and T (G) >
is(G), which implies gtr is in P. Graphs of Construction 3.2 in Section 3
are examples that obey behavior (e), since it is known that T (G) > is(G),
which implies gtr is in P, and we construct graphs so that k-star size and
t-tessellability are NP-complete.

Notice that there are omitted triples in Table 1. Threshold graphs and bipar-
tite graphs are examples of graph classes that obey the behavior (P,P,P) [2].
There are no graphs that obey the behavior (P,P,NP-complete), since if both
k-star size and t-tessellability are in P, so is gtr. Graph classes obtained
by the union of graphs G1 and G2 so that G1 is in a graph class that obey
behavior (a) and G2 is in a graph class that obey behavior (c) are examples
satisfying the behavior (NP-complete,NP-complete,NP-complete).

Notation and graph theory terminologies
Given a graph G = (V,E), the neighborhood N(v) (or NG(v)) of a vertex v ∈ V
of G is given by N(v) = {u | uv ∈ E(G)}. ∆(G) is the size of a maximum
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neighborhood of a vertex of G. We say that a vertex u of G is universal if
|N(u)| = |V (G)| − 1. A graph is universal if it has a universal vertex. A clique
of G is a subset of V with all possible edges between its vertices. An independent
set of G is a subset of V with no edge between any of its vertices. A matching
of G is a subset of edges of E without a common endpoint. A k-coloring of G
is a partition of V into k independent sets. A k-clique cover of G is a partition
of V into k cliques. A k-edge coloring of G is a partition of E into k matchings.

The parameters α(G), ω(G), and µ(G) are the size of a maximum inde-
pendent set, the size of the maximum clique, and the size of the maximum
matching of a graph G, respectively. The chromatic number χ(G) (chromatic
index χ′(G)) is the minimum k for which G admits a k-coloring (k-edge color-
ing), and the clique cover number θ(G) is the minimum k for which G admits a
k-clique cover. Note that θ(G) = χ(Gc) and α(G) = ω(Gc), where Gc denotes
the complement of G for which V (Gc) = V (G) and E(Gc) = {xy|x ∈ V (G), y ∈
V (G), x 6= y} \ E(G). The k-colorability (k-edge colorability) aims to
decide whether a graph G has χ(G) ≤ k (χ′(G) ≤ k). The k-independent set
problem aims to decide whether a graph G has α(G) ≥ k.

The line graph L(G) of a graph G is the graph such that each edge of
E(G) is a vertex of V (L(G)), and two vertices of V (L(G)) are adjacent if their
corresponding edges in G have a common endpoint. The clique graph K(G) of a
graph G is the graph such that each maximal clique of G is a vertex of V (K(G)),
and two vertices of V (K(G)) are adjacent if their corresponding maximal cliques
in G have a common vertex. Sk(G) is the graph obtained from G by subdividing
k times each edge e = xy ∈ E(G), i.e., each edge e = xy is replaced by a path
(x, v1, v2, . . . , vk, y).

The union G ∪ H of two graphs G and H has V (G ∪ H) = V (G) ∪ V (H)
and E(G ∪ H) = E(G) ∪ E(H). The join G ∨ H of two graphs G and H has
V (G ∨ H) = V (G) ∪ V (H) and E(G ∨ H) = E(G) ∪ E(H) ∪ {vw | v ∈ V (G)
and w ∈ V (H)}. An induced subgraph H = (VH , EH) of a graph G = (VG, EG)
has VH ⊆ VG and EH = {vw | v ∈ V (H), w ∈ V (H), and vw ∈ E(G)}. G[S] is
the induced subgraph of G by the set of vertices S ⊆ V (G).

2 Graphs with known T (G)

We prove in this section that gtr is NP-complete for graphs of Construc-
tion 2.2 (I), which have a known tessellation cover number. Using this result,
we provide a graph class that obeys the behavior (c) and another graph class
that obeys behavior (d). Note that if the tessellation cover number of G is upper
bounded by a constant, then we obtain is(G) in polynomial time using a brute
force algorithm.

The Mycielski graphMj for j ≥ 2 has chromatic number j, maximum clique
size 2, and is defined as follows. M2 = K2 and for j > 2, Mj is obtained from
Mj−1 with vertices v1, . . . , v|V (Mj−1)| by adding vertices u1, . . . , u|V (Mj−1)| and
one more vertex w. Each vertex ui is adjacent to all vertices ofNMj−1

(vi) ∪ {w}.
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Construction 2.1. Let i be a non-negative integer and G a graph. The (i, G)-
graph is obtained as follows. Add i vertices to graph G, and then add a universal
vertex.

Construction 2.2. Let i be a non-negative integer and G a graph with V (G) =
{v1, . . . , vn}. We construct a graphH = H1∪H2 as follows. Add i disjoint copies
G1, . . . , Gi of G to H1, such that V (Gj) = {vj1, . . . , vjn} for 1 ≤ j ≤ i, where vjk
represents the same vertex vk of G for 1 ≤ k ≤ n. Add to H1 all possible edges
between pairs of vertices that represent the same vertex of G. Add a vertex u
to H1 adjacent to all vjk for 1 ≤ j ≤ i and 1 ≤ k ≤ n. Now, we consider two
possibilities: either (I) H2 is (|V (G)| − 3,M c

3 )-graph of Construction 2.1 or (II)
H2 is (|V (G)| − 3,M c

4 )-graph of Construction 2.1. Denote the universal vertex
of H2 by u′.

Figure 1 provides an example of a graph of Construction 2.2 (I). In (a) we
have an edge coloring of the graph G ∨ {x} with |V (G)| colors. In (b) we have
the graph H = H1 ∪H2 and a tessellation cover of H with |V (G)| tessellations.

H1

u

G       v {x} 

u'

(a) (b)

x

H2

Figure 1: (a) An edge-coloring of G ∨ {x}. (b) Example of a graph H1 ∪H2 of
Construction 2.2 (I) obtained from graph G.

We now verify that the graphs of Construction 2.2 (I) obey the behavior (c)
by showing that T (H) is a known fraction of the number of vertices of H and by
deciding whether is(H) ≥ k is NP-complete for k = T (H). This also implies
that the graphs of Construction 2.2 (II) obey the behavior (d), since we have
increased T (H) by one unit when we have replaced M c

3 by M c
4 in H2. In this

case T (H) > is(H) and gtr is in P with answer always no, whereas to decide
whether is(H) ≥ k remains NP-complete for k = T (H)− 1.

Theorem 2.1. k-star size and gtr are NP-complete for graphs of Construc-
tion 2.2 (I).

Proof. Let G be a graph without a universal vertex and an instance of the q-
colorability problem, a well-known NP-complete problem [6]. Consider the
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graph H = H1 ∪H2 of Construction 2.2 (I) on G with i = q.
We need 3 tessellations to cover the edges ofM c

3∨{u′}, and another |V (G)|−3
tessellations to cover the remaining edges of the pendant vertices, thus, by
construction, T (H2) = |V (G)|. Moreover, since α(M c

3 ) = 2, then is(H2) =
|V (G)| − 1.

We define a tessellation cover of H1 with |V (G)| tessellations as follows.
Consider an optimum edge-coloring of the graph G ∨ {x}. Since G has no
universal vertex, x is the unique universal vertex and we know that χ′(G∨{x}) =
∆(G∨ {x}) = |V (G)| [8]. Now, when we remove x and the edges incident to it,
this edge-coloring is a tessellation cover of G with |V (G)| tessellations, where for
each vertex there is a distinct unused tessellation. We now use this tessellation
cover to each copy of G in H1. Next, we entirely cover each clique between
vertices that represent the same vertex of G and the edges incident to u with
the available tessellation for this clique. Therefore, T (H1) ≤ |V (G)|.

We have T (H) = max{T (H1), T (H2)} = |V (G)| = |V (H)|−1
q and is(H) =

max{is(H1), is(H2)}. Since is(H2) = |V (G)| − 1, H is good tessellable if and
only if is(H1) = |V (G)|. Poljak [9] proved that a graph G admits a q-coloring if
and only if α(H1 \ {u}) = |V (G)|. Since is(H) = α(H1 \ {u}), deciding whether
H is good tessellable is equivalent to deciding whether G is q-colorable.

3 Universal graphs
The local behavior of tessellation covers given by Lemma 3.1 below motivates
us to study universal graphs in this section, since the induced subgraph G[{v}∪
N(v)] is a universal graph. We prove that t-tessellability remains NP-
complete even if the gap between T (G) and is(G) is large. Using this proof, we
provide a graph class that obeys behavior (e).

Given a t-tessellable graph G and a vertex v ∈ V (G), we consider the relation
between χ(Gc[NG(v)]) and the cliques of those t tessellations that share a vertex
v. Note that these cliques cover all edges incident to v in any tessellation cover
of G. Moreover, the vertices of the neighborhood of v in a same tessellation are a
clique in G and, therefore, they are an independent set in Gc. The independent
sets in Gc given by these cliques of NG(v) may share some vertices, and we
can choose whichever color class they belong in such coloring of Gc[NG(v)].
Therefore, for any vertex v of G, χ(Gc[NG(v)]) ≤ t. Since is(G[v ∪NG(v)]) =
ω(Gc[NG(v)]), is(G[v ∪ NG(v)]) = ω(Gc[NG(v)]) ≤ χ(Gc[NG(v)]) ≤ t, and we
have the following result.

Lemma 3.1. If G is a t-tessellable graph, then

max
v∈V (G)

{is(G[v ∪NG(v)])} ≤ max
v∈V (G)

{χ(Gc[NG(v)])} ≤ t.

Let u /∈ V (G) be a vertex. If G ∨ {u} is a t-tessellable graph, then

is(G ∨ {u}) = α(G) ≤ χ(Gc) ≤ t.
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We start this subsection by showing that

χ(Gc) ≤ T (G ∨ {u}) ≤ χ(Gc) + ∆(G) + 1. (1)

The lower bound is given by Lemma 3.1. The upper bound holds because
we can use χ(Gc) tessellations to cover a partition P of the vertices of G in
cliques p1, p2, . . . , pi by assigning a different tessellation for each pj for 1 ≤ j ≤
i. Moreover, the edges between u and the vertices of pj maintain the same
tessellation of pj . The remaining edges between vertices of p1, p2, . . . , pi are
covered by cliques of size two with the non used ∆(G)+1 tessellations following
an edge coloring of such edges. Thus, there is no universal graph such that the
gap between T (G ∨ {u}) and χ(Gc) is larger than ∆(G) + 1. In particular, if
χ(Gc) ≥ 2∆(G) + 1, then by Theorem 3.1 below T (G ∨ {u}) = χ(Gc).

Theorem 3.1. A graph G∨{u} with θ(G) ≥ 2∆(G)+1 has T (G∨{u}) = θ(G).

Proof. Note that θ(G) = χ(Gc). Consider a graph G ∨ {u}. By Lemma 3.1,
T (G ∨ {u}) ≥ χ(Gc). Now we prove that T (G ∨ {u}) ≤ χ(Gc). Since χ(Gc) ≥
2∆(G) + 1, there is a tessellation cover of G ∨ {u} with χ(Gc) tessellations as
follows. Use the χ(Gc)-coloring of Gc as a guide to define a partial tessellation
of the edges of G with χ(Gc) tessellations in so that each color class of Gc

induces a clique of G entirely covered by the tessellation related to this color
class. Moreover, we extend the tessellations so that the edges uw are covered
by the corresponding tessellation of the color class of w. Now, the remaining
edges in G ∨ {u} are the ones between vertices of G that are not in a same
color class in the coloring of Gc. The maximum number of tessellations incident
to the endpoints of an edge xy is 2∆(G) because 2 tessellations come from
the edges ux and uy, and 2∆(G) − 2 come from the edges of G incident to x
and y. Therefore, T (G ∨ {u}) ≤ χ(Gc) because it is possible to greedily assign
tessellations of cliques of size two to these edges.

Corollary 3.1. A graph G ∨ {u} with is(G ∨ {u}) = α(G ∨ {u}) ≥ 2∆(G) + 1
has T (G ∨ {u}) = χ(Gc). Moreover, if H is a (2∆(G) + 1, G)-graph of Con-
struction 2.1 on G with 2∆(G) + 1 pendant vertices to u, then T (H) = θ(G) =
χ(Gc) + 2∆(G) + 1.

Proof. Note that if α(G∨{u}) ≥ 2∆(G)+1, then χ(Gc) ≥ ω(Gc) = α(G∨{u}) ≥
2∆(G) + 1 and, by Theorem 3.1, T (G∨ {u}) = χ(Gc). Consider now the graph
H. Since each pendant vertex added to u in H does not modify ∆(G), and
it increases is(H) by one unit, is(H) ≥ 2∆(G) + 1. Moreover, each of those
pendant vertices is a universal vertex in Gc, increasing χ(Gc) by one unit. Thus,
T (H) = χ(Hc) = χ(Gc) + 2∆(G) + 1.

Good tessellable universal graphs
A universal graph G ∨ {u} is good tessellable if T (G ∨ {u}) = is(G ∨ {u}). In
this case, by Lemma 3.1, T (G ∨ {u}) = χ(Gc) = is(G ∨ {u}). Therefore, if

7



a b c d e f g h i j k 

u

u

u

uu

a

b

c

de

f

g

h

ij

k

c T1

T2 T3 T4

v

a b c d e f g h i j k

u

a b c d e f g h i j k

u

a b c d e f g h i j k

u

a b c d e f g h i j k

u

G                                                G   {u}

Figure 2: A Tessellation cover of M c
j ∨ {u} with 4 tessellations and possible

4-colorings of M4 guided by this tessellation cover.

G ∨ {u} has T (G ∨ {u}) > χ(Gc), then it is not a good tessellable graph. By
Corollary 3.1, if α(G∨{u}) ≥ 2∆(G)+1, then T (G∨{u}) = χ(Gc), and G∨{u}
is good tessellable when χ(Gc) = ω(Gc) = is(G ∨ {u}).

The computational complexity of gtr of a subclass of universal graphs de-
pends on the restrictions used to define the subclass. On the one hand, perfect
graphs G with α(G) ≥ 2∆(G) + 1 can be recognized in polynomial time [7], and
the addition of a universal vertex results in a good tessellable universal graph.
On the other hand, planar graphs G with ∆(G) ≤ 4 and α(G) ≥ 2∆(G) + 1 = 9
for which to decide whether χ(G) = ω(G) = 3 is NP-complete [6].

Graphs with arbitrary gap between T (G) and is(G)

We start by showing that the gap between T (G) and is(G) can be arbitrarily
large for graphs G composed by the join of the complement of Mycielski graphs
with a vertex u.

Since the Mycielski graph Mj is triangle-free [12], the graph M c
j has no

independent set of size three and is(M c
j ∨ {u}) = 2. Moreover, χ(Mj) = j [12],

and by Lemma 3.1, T (M c
j ∨ {u}) ≥ χ((M c

j )c) ≥ j. Fig. 2 depicts an example of
the Mycielski graph M4 and the relation between its 4-coloring and a minimal
tessellation cover of M c

4 ∨ {u}. Therefore, there is a graph H = M c
j ∨ {u} with

is(H) = 2 and T (H) ≥ j for j ≥ 3.
Now, we describe a subclass of universal graphs for which the gap be-

tween T (G) and is(G) is very large. We also show that k-star size and t-
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tessellability are NP-complete for graphs of Construction 3.2, for which
gtr is in P.

Construction 3.1. Let G = (V,E) be a graph. Obtain S2(G) by subdivid-
ing each edge of G two times, so that each edge vw ∈ E(G) becomes a path
v, x1, x2, w, where x1 and x2 are new vertices. Let L(S2(G)) be the line graph
of S2(G). Add a universal vertex u to L(S2(G)), that is, consider the graph
L(S2(G)) ∨ {u}.

First, we show that there is a connection between T (H) of a graph H of
Construction 3.1 on G with the size of a maximum stable set of G.

Theorem 3.2. If G = (V,E) is a graph with |E(G)| ≥ 4 and H = (L(S2(G))∨
{u}) is obtained from Construction 3.1 on G, then T (H) = |V (G)|+ |E(G)| −
α(G).

Proof. We claim that T (H) = χ((H \ {u})c). By Lemma 3.1, T (H) ≥ χ((H \
{u})c). Now, we show that T (H) ≤ χ((H\{u})c). Consider a partial tessellation
cover of H \ {u} with χ((H \ {u})c) tessellations induced by a coloring of (H \
{u})c, so that cliques of H \ {u} are assigned to tessellations associated to
different colors of (H \ {u})c. Since H \ {u} = L(S2(G)) is the line graph of
a S2(G) graph, every vertex of (H \ {u})c has a maximum clique of size two
and another maximum clique incident to it with an arbitrary size. Consider
now a maximum clique Ka of size at least three which is not completely covered
yet. The partial tessellation cover cannot have two cliques completely inside
Ka (otherwise their merge would result in a coloring of the complement graph
with less than its chromatic number). Therefore, the edges of Ka are partially
covered at this moment with one clique, and the remaining cliques covering
the vertices of Ka are the maximal cliques of size two that are incident to the
vertices of Ka. Thus, if the partial tessellation cover of Ka has only maximal
cliques of size two given by edges incident to Ka, then each edge e of Ka has at
most two already used tessellations on cliques incident to their endpoints (the
ones given to these maximal cliques of size two).

Poljak [9] proved that χ(L(S2(G))c) = |V (G)| + |E(G)| − α(G). Since
|E(G)| ≥ 4 and α(G) ≤ |V (G)|, |V (G)| + |E(G)| − α(G) ≥ 4 and there is
at least one available tessellation for each edge of Ka. We claim that these
available tessellations for each edge are enough to extend this partial tessella-
tion cover to all edges of Ka. First, pick an arbitrary tessellation for each edge.
Since the endpoint vertices of any collection of edges of Ka on a same available
tessellation do not have these tessellations incident to their endpoints, we cover
the clique induced by these vertices with this tessellation.

Otherwise, Ka has a clique Kb in the partial tessellation cover and all the
other vertices of Ka must be covered by maximal cliques of size two with edges
outside Ka. So, modify this partial tessellation cover assigning the tessellation
of Kb into all edges of Ka and remove the vertices of Ka from cliques of size
two on this partial tessellation cover, i.e., now they are cliques of size one and
Ka is entirely covered by the tessellation of Kb.

9
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Figure 3: A tessellation cover ofH = L(S2(G))∨{u} with |V (G)|+|E(G)|−α(G)
tessellations.

The remaining uncovered edges of H \ {u} in this partial tessellation cover
are maximal cliques of size two. Now, if an edge is uncovered and it is incident
to a maximal clique of size two or more, then we need this clique to be entirely
covered by a single tessellation. Therefore, the maximum number of already
used tessellations incident to the endpoints of a remaining edge is three. Since
there are |V (G)|+ |E(G)| − α(G) ≥ 4 tessellations, there is always an available
tessellation for these edges. Finally, the edges incident to u are covered by
the tessellations which covered the cliques of H \ {u}. Then, T (H) ≤ χ((H \
{u})c).

Figure 3 depicts the proof of Theorem 3.2. In (a), we have graph G. In (b),
we have a clique cover of L(S2(G)). In (c), we modify the clique cover so that
the clique with label 7 is covered by a new tessellation and at the same time we
remove the vertices of the cliques of size two incident to the clique with label
7. Now the cliques with labels 6 and 8 have only one vertex each. Finally, in
(d) we extend the partial tessellation cover of L(S2(G)) to include the edges
incident to u.

Since deciding whether α(G) ≥ k is NP-complete [6], by Theorem 3.2 we
have the following result for the graphs of Construction 3.1.

Corollary 3.2. t-tessellability is NP-complete for universal graphs.

Proof. Let G be an instance graph of k-independent set with |E(G)| ≥ 4.
We know that deciding whether α(G) ≥ k is NP-complete [6]. Consider the
graph H of Construction 3.1 on G with H = L(S2(G))∨ {u}. By Theorem 3.2,
T (H) = |E(G)| + |V (G)| − α(G). Therefore, deciding whether α(G) ≥ k is
equivalent to decide whether T (H) ≤ t = |E(G)|+ |V (G)| − k.
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Next, we show that there are graphs of Construction 3.1 for which the gap
between T (G) and is(G) is very large, whereas t-tessellability remains NP-
complete.

Theorem 3.3. Let G be a graph and H = L(S2(G′)) ∨ {u} be obtained from
Construction 3.1 on G′, where G′ is obtained from G by adding x universal ver-
tices, with x polynomially bounded by the size of G. To decide whether T (H) = k
with k ≥ is(H) + c, for c = (O|V (G)|d) and constant d, is NP-complete.

Proof. Consider a graph G and L(S2(G)) ∨ {u} as described in Corollary 3.2.
Note that is(L(S2(G)) ∨ {u}) = α(L(S2(G))) = µ(S2(G)). We claim that
µ(S2(G)) = |E(G)|+µ(G). There are three edges in S2(G) between two adjacent
vertices of G. In a maximum matching of S2(G), we need to select at least one
of them, otherwise, we could include the middle edge to a maximum matching,
which is a contradiction. Moreover, if there is only one edge and it is not a
middle edge, then we obtain another maximum matching by replacing this edge
by the middle edge. Clearly, we cannot choose three edges and in case we choose
two edges, different from the middle edge. The case of two edges forces that
both of them are incident to vertices of S2(G) associated to vertices of V (G).
Therefore, the maximum number of such selection of two edges in S2(G) is equal
to the size of a maximum matching of G. For each edge in a maximum matching
µ(G) of G we have two edges in the maximum matching in S2(G) and, for each
other edge of G, we have one edge in the maximum matching of S2(G). Thus,
µ(S2(G)) = 2µ(G) + |E(G)| − µ(G) = |E(G)|+ µ(G).

By Theorem 3.2, T (H) = |E(G)|+ |V (G)|−α(G). The addition of universal
vertices to G does not modify α(G). The addition of each universal vertex
may add one unit to µ(G) until it reaches |V (G)|. Then, we add one unit
to µ(G) for each addition of two universal vertices. In that case, we start to
increase the difference between T (H) = |E(G)| + |V (G)| − α(G) and is(H) =
|E(G)| + µ(G), since for each two universal vertices we add to G, we increase
T (H) by two units and is(H) by one unit. Therefore, we can arbitrarily enlarge
the gap between T (G) and is(G). And, as long as the addition of these universal
vertices are polynomially bounded by the size of G, it holds the same polynomial
transformation of Corollary 3.2 from k-independent set of G′ (obtained from
G by the addition of universal vertices) to t-tessellability of L(S2(G′)) ∨
{u}.

Finally, we show that the graphs from Construction 3.2 below obey behav-
ior (e).

Construction 3.2. Let H1 be the graph obtained from Construction 2.2 (I) on
a given graph G1 and a non-negative integer i. Let H2 be the graph obtained
from Construction 3.1 on the graph G2 ∨ K3|V (G1)| of a given graph G2. Let
u and u′ be the two universal vertices of the two connected components of H1.
Add is(H2) degree-1 vertices to H1 adjacent to u and is(H2) degree-1 vertices
adjacent to u′. Consider H1 ∪H2.

11



Theorem 3.4. k-star size and t-tessellability are NP-complete for graphs
of Construction 3.2, for which gtr is in P.

Proof. Let G1 be an instance graph with no universal vertex of the well-known
NP-complete problem q-colorability [6]. Let G2 be an instance graph of the
well-known NP-complete problem p-independent set with E(G2) ≥ 4 [6].
Consider a graph H = H1 ∪H2 obtained from Construction 3.2 on G1 and G2

with i = q.
Since H2 is obtained from Construction 3.1 on G2 ∨ K3|V (G1)|, by The-

orem 3.3, T (H2) − is(H2) > |V (G1)|. By Theorem 2.1, 1 ≤ is(H1) ≤
T (H1) = |V (G1)|. The parameter is(H2) can be obtained in polynomial
time by applying a maximum matching algorithm [6] (see Theorem 3.3). And
the addition of the degree-1 vertices to H1 of Construction 3.2 implies that
1 + is(H2) ≤ is(H1) ≤ T (H1) = |V (G1)|+ is(H2).

Therefore, H = H1 ∪H2 is a graph that obeys is(H2) ≤ is(H1) ≤ T (H1) ≤
T (H2) with T (H) = T (H2) and is(H) = is(H1). The proof holds because
gtr is in P with answer always no and both k-star size on graphs H1 of
Construction 2.2 (I) (see Theorem 2.1) and t-tessellability on graphs H2 of
Construction 3.1 (see Theorem 3.3) are NP-complete.

4 Concluding remarks
The concept of tessellation cover of graphs appeared in a thesis by Duchet [4],
and subsequently in [3, 5], as equivalence covering. The known results
about tessellation cover number of a graph up to now were related to upper
bounds of the values of T (G), and the complexities of the t-tessellability
problem [2]. In this work we focus on a different approach by analyzing the
tessellation cover number T (G) with respect to is(G), one of its lower bounds,
which implicitly appeared in the previous hardness proofs of [2].

The motivation to define the tessellation cover number comes from the anal-
ysis of the dynamics of quantum walks on a graph G in the context of quantum
computation [10]. Since it is advantageous to implement physically as few op-
erators as possible in order to reduce the complexity of the quantum system, it
is important to analyze the gap between T (G) and is(G).

We have proposed the good tessellable recognition problem (gtr),
which aims to decide whether a graph G satisfies T (G) = is(G), and we have
analyzed the combined behavior of the computational complexities of the prob-
lems k-star size, t-tessellability, and gtr. We have defined graph classes
corresponding to triples which specify the computational complexities of these
problems, summarized in Table 1. We have defined graph classes in Construc-
tion 2.2 (I) and Construction 2.2 (II) that obey behaviors (NP-complete, P,
NP-complete) and (NP-complete, P, P), respectively. Graphs that obey be-
havior (NP-complete, NP-complete, P) are obtained using Construction 3.2.
We also note that there are omitted triples in Table 1, which are either empty
or easy to provide examples, as described in Section 1.
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We are interested in the following two research topics: (i) The concept of
good tessellable graphs can be extended to perfect tessellable graphs, the graphs
G for which T (H) = is(H) for any induced subgraph H of G. A natural
open task is to establish the characterization by forbidden induced subgraphs
and a polynomial-time recognition algorithm for perfect tessellable graphs. We
conjecture that this class is exactly the {gem, W4, odd cycles}-free graphs;
(ii) We have already established relations between T (G) with other well-known
graph parameters such as the chromatic number and the maximum size of a
stable set. We are currently investigating further relations such as those between
T (G) with the chromatic index and the total chromatic number.
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Total tessellation cover and quantum walk ?
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Abstract. We propose the total staggered quantum walk model and the
total tessellation cover of a graph. This model uses the concept of total
tessellation cover to describe the motion of the walker who is allowed to
hop both to vertices and edges of the graph, in contrast with previous
models in which the walker hops either to vertices or edges. We establish
bounds on Tt(G), which is the smallest number of tessellations required
in a total tessellation cover of G. We highlight two of these lower bounds
Tt(G) ≥ ω(G) and Tt(G) ≥ is(G) + 1, where ω(G) is the size of a
maximum clique and is(G) is the number of edges of a maximum induced
star subgraph. Using these bounds, we define the good total tessellable
graphs with either Tt(G) = ω(G) or Tt(G) = is(G) + 1. The k-total
tessellability problem aims to decide whether a given graph G has
Tt(G) ≤ k. We show that k-total tessellability is in P for good total
tessellable graphs. We establish the NP-completeness of the following
problems when restricted to the following classes: (is(G) + 1)-total
tessellability for graphs with ω(G) = 2; ω(G)-total tessellability
for graphs G with is(G) + 1 = 3; k-total tessellability for graphs
G with max{ω(G), is(G) + 1} far from k; and 4-total tessellability
for graphs G with ω(G) = is(G) + 1 = 4. As a consequence, we establish
hardness results for bipartite graphs, line graphs of triangle-free graphs,
universal graphs, planar graphs, and (2, 1)-chordal graphs.

Keywords: Graph tessellation, Quantum walk, Graph coloring, Com-
putational complexity.

1 Introduction

A tessellation of a graph G = (V,E) is a partition of V into vertex disjoint cliques
called tiles. A k-tessellation cover of G is a set of k tessellations that covers E.
The tessellation cover number T (G) of a graph G is the size of a minimum tes-
sellation cover. The k-tessellability problem aims to decide whether a given
graph G has T (G) ≤ k. The concept of tessellations on graphs was introduced
in [1]. See [2] for basic definitions and notations in graph theory.

? This work was partially supported by the Brazilian agencies CAPES, CNPq and
FAPERJ.
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2 A. Abreu et al.

Definition 1 Let G = (V,E) be a graph and Σ a non-empty label set. A total
tessellation cover comprises a proper vertex coloring and a tessellation cover of
G both with labels in Σ such that, for any vertex v ∈ V , there is no edge e ∈ E
incident to v so that e belongs to a tessellation with label equal to the color of v.

An alternative way to characterize a tessellation is by describing the edges
that belong to the tessellation. A k-tessellation cover ofG = (V,E) is a function h
that assigns to each edge of E a nonempty subset in P(Σ), where Σ = {1, . . . , k},
such that the set of edges having the same label corresponds to a tessellation,
i.e., induces a partition of V into cliques. A k-total tessellation cover of a graph
G simultaneously assigns labels in Σ to V as a proper vertex coloring f and
labels in P(Σ) \ ∅ to E as a tessellation cover with function h, such that each
uv ∈ E satisfies f(u) 6∈ h(uv) and f(v) 6∈ h(uv).

Definition 2 The total tessellation cover number Tt(G) of a graph G is the
minimum size of the set of labels Σ for which G has a total tessellation cover.
The k-total tessellability problem aims to decide whether a given graph G
has Tt(G) ≤ k.

Motivation. The quantum computation paradigm has gained popularity due
to the recent advances in the physical implementation and in the development of
quantum algorithms. There is an important concept, known as quantum walk,
which is the mathematical modeling of a walk of a particle on a graph. This
concept provides a powerful tool in the development of quantum algorithms [3].
Indeed, in the last decades the interest in quantum walks has grown considerably
since quantum algorithms that outperform their classical counterparts employ
quantum walks [4, 5]. In 2016, Portugal et al. proposed the staggered quantum
walk model [1], which is more general than the previous quantum walk models [6]
by containing the Szegedy model [7] and part of the flip-flop coined model [3].
The staggered quantum walk employs the concept of graph tessellation cover to
obtain local unitary matrices such that their product results in the evolution
operator for the quantum walk. There is a recipe to obtain a local unitary ma-
trix from a tessellation. The staggered model requires at least two tessellations
(corresponding to 2-tessellable graphs). In a tessellation, each clique establishes
a neighborhood around which the walker can move under the action of the asso-
ciated local unitary matrix. To define the evolution operator, one has to check
whether the set of tessellations contains the whole edge set of the graph, since
an uncovered edge would play no role in a quantum walk [1].

Related works. Abreu et al. [8, 9] proved that χ′(G) and χ(K(G)) are up-
per bounds for T (G), where K(G) is the clique graph of G. They also proved
the hardness of k-tessellability for planar graphs, (2, 1)-chordal graphs, and
(1, 2)-graphs and showed that 2-tessellability is solved in linear time. Since
T (G) = χ′(G) for triangle-free graphs, k-tessellability is hard for this graph
class [10]. Posner et al. [11] showed that k-tessellalbility is NP-complete for
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line graphs of triangle-free graphs. Abreu et al. [12] proved that is(G) is a lower
bound for T (G), where is(G) is the number of edges in a maximum induced
star of a graph G. They prove the hardness of k-tessellability for universal
graphs and the hardness of good tessellable recognition, which aims to
decide whether G is good tessellable, i.e., T (G) = is(G). The concept of mini-
mum tessellation cover was independently proposed as equivalence dimension in
Duchet [13], and the relation between the two concepts was described in [12].

Contributions. This work is presented in the following sections. Section 2
contains a study on the bounds of the value of Tt(G). Such bounds describe not
only the number of operators required for a total staggered quantum walk model,
but they also provide tools to analyse the computational complexity of k-total
tessellability, which is done in Section 3. Since Tt(G) = χt(G) for triangle-
free graphs, the problem is hard even when restricted to bipartite graphs [14]. We
show that k-total tessellability is in P for good total tessellable graphs,
and as a by product k-tessellability is in P for good tessellable graphs.
On the other hand, we show hardness results for the k-total tessellability
problem for line graphs of triangle-free graphs, universal graphs, planar graphs,
and (2, 1)-chordal graphs. As a consequence, the good total tessellability
recognition problem is NP-complete. Note that there are few results about
the hardness of total colorability. Section 4 describes the total staggered
quantum walk model, which drives a walker to hop both to vertices and edges.
It also contains a description of the simulation of the total staggered quantum
walk on a graph G in terms of a staggered quantum walk on the total graph
of G. In Section 5, Table 1 presents the behavior analysis of the computational
complexity related to the following parameters: χ′(G), χt(G), T (G), and Tt(G).

2 Bounds on Tt(G)

Since a total coloring of a graph G induces a total tessellation cover,

Tt(G) ≤ χt(G). (1)

Particularly, for triangle-free graphs Tt(G) = χt(G) because the set of edges in
each tessellation of any total tessellation cover is a matching. Hence,
(∆+1)-total tessellability is hard even when restricted to regular bipartite
graphs [14]. Furthermore, by definition,

max{χ(G), T (G)} ≤ Tt(G) ≤ χ(G) + T (G). (2)

Note that the lower bound of Eq. (2) implies that Tt(G) ≥ ω(G).

Lemma 1. If χ(G) ≥ 3T (G), then Tt(G) = χ(G).

Proof. Let f be a proper vertex coloring and C = {T1, T2, . . . , TT (G)} be a T (G)-
tessellation cover for G. We define C′ a tessellation cover for G with 3T (G) labels
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such that C′ is compatible with f as follows. Each tessellation T ′i , 1 ≤ i ≤ 3T (G),
of C′ is associated with a color i. Since χ(G) ≥ 3T (G) there are enough colors.

The edges of tessellations T ′3j−2, T ′3j−1, and T ′3j are given by the edges of the
tessellation Tj , 1 ≤ j ≤ T (G), such that T ′3j−2 (resp. T ′3j−1, T ′3j) consists of the
edges of Tj that do not have an endpoint with color 3j − 2 (resp. 3j − 1, 3j). ut

Using an argument similar to the one in the proof of Lemma 1, we can rewrite
the upper bound of Eq. (2) as follows

Tt(G) ≤ max {χ(G), T (G) + d2χ(G)/3e} . (3)

Eq.(3) says that χ(G) ≥ 3T (G) implies Tt(G) = χ(G), or χ(G) ≤ 3T (G) im-
plies T (G) ≤ Tt(G) ≤ 3T (G). In case χ(G) = 3, Eq. (3) implies that T (G) ≤
Tt(G) ≤ T (G) + 2. An example of a graph G for which Tt(G) = 3T (G) − 1 and
Tt(G) > χ(G) has V (G) = {v1, v2, v3, v4} ∪ {u1, u2, u3, u4} ∪ {w1, w2, w3, w4},
where {v1, v2, v3, v4} and {u1, u2, u3, u4} are maximal cliques and {vi, ui, wi}
are triangles for 1 ≤ i ≤ 4. In this case Tt(G) = 5, χ(G) = 4 and T (G) = 2.
Note that Tt(G) = χ(G) + T (G) requires that χ(G) ≤ 2, i.e., G is bipar-
tite, which implies Tt(G) = χt(G) and Tt(G) may assume only two values:
Tt(G) = χ(G) + T (G) = ∆(G) + 2 or Tt(G) = χ(G) + T (G)− 1 = ∆(G) + 1.

Lemma 2. Tt(G)≥ max
v∈V (G)

{χ(Gc[N(v)])}+1≥ max
v∈V (G)

{ω(Gc[N(v)])}+1= is(G)+1.

Proof. Consider a total tessellation cover of a graph G, a vertex v of G, and
Gc[N(v)], which is the complement graph of the graph induced by the neighbor-
hood of v. In any tessellation, the endpoints of the edges that are incident to v
and belong to the tessellation induce a clique, hence the vertices of this clique are
a stable set in Gc[N(v)]. Therefore, the tessellations with edges incident to a ver-
tex v induce a vertex coloring of Gc[N(v)], and the number of these tessellations
is at least χ(Gc[N(v)]). Moreover, these tessellations have labels that are differ-
ent from the color of vertex v. Therefore, Tt(G) ≥ χ(Gc[N(v)]) + 1. Note that
is(G[N [v]]) = α(G[N(v)]) = ω(Gc[N(v)]) and is(G) = max

v∈V (G)
is(G[N [v]]). ut

Graphs with Tt(G) = T (G) = k have no induced subgraph K1,k because
Tt(G) ≥ is(G) + 1 ≥ k+ 1. Moreover, there is no tile of size k in any tessellation
of a total tessellation cover. If Tt(G) = T (G) = 3, then G is K1,3-free and there is
no clique of size three in any tessellation. Therefore, the total tessellation cover of
G induces a total coloring of G, and the only graphs for which Tt(G) = T (G) = 3
are the odd cycles with n vertices such that n ≡ 0 mod 3. For bipartite graphs,
T (G) = ∆(G) and Tt(G) > T (G). For triangle-free graphs, Tt(G) = T (G) if
χ′(G) = χt(G) = ∆ + 1. It follows that deciding whether Tt(G) = T (G) =
∆(G) + 1 is NP-complete from the proof that (∆+ 1)-total colorability is
NP-complete for triangle-free snarks [15], which are graphs with χ′(G) = ∆+1.

3 Good Total Tessellable Graphs

Since the concept of good tessellable graphs introduced in [12] has provided keen
insights into the hardness of finding minimum-sized tessellation covers, we define
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the concept of good total tessellable graphs in order to further explore hardness
results related to total tessellation covers. In the quantum computation context,
we are interested in graph classes which use as few color labels as possible because
the number of operators is as low as possible. In this case, Tt(G) must be close
to the lower bounds.

Definition 3 A graph G is good total tessellable if either Tt(G) = ω(G) or
Tt(G) = is(G) + 1. We say that G is Type I (resp. Type II ) if Tt(G) = ω(G)
(resp. Tt(G) = is(G) + 1).

Now we show that k-total tessellability is in P if we know beforehand
that the graph is either good total tessellable Type I or Type II.

The Lovász number ϑ(G) is a real number such that ω(Gc) ≤ ϑ(G) ≤
χ(Gc) [16]. We denote ψ(G) the integer nearest to ϑ(G). The value of ψ(G)
can be be determined in polynomial time [16].

For Type I graphs, Tt(G) = ω(G). Since Eq. (2) implies that ω(G) ≤ χ(G) ≤
Tt(G), we have ω(G) = χ(G) = Tt(G) = ψ(Gc).

For Type II graphs, Tt(G) = is(G)+1. For any vertex v ∈ V (G), ω(Gc[N(v)]) ≤
ψ(G[N(v)]) ≤ χ(Gc[N(v)]), and by Lemma 2, Tt(G) ≥ ψ(G[N(v)]) + 1. Since
Tt(G) = is(G) + 1, by Lemma 2 there is a vertex u ∈ V (G) such that Tt(G) =
ω(Gc[N(u)])+1. In this case, ω(Gc[N(u)])+1 = χ(Gc[N(u)])+1, and we deter-
mine ω(Gc[N(u)]) using ψ(Gc[N(u)]). Therefore, Tt(G)= max

v∈V (G)
{ψ(G[N(v)])}+1.

The same method used to determine Tt(G) for Type II graphs can be ap-
plied for good tessellable graphs in order to determine T (G), where T (G) =
max
v∈V (G)

{ψ(G[N(v)])}.

Hardness results. As presented in Section 2, (∆+ 1)-total tessellability
isNP-complete for bipartite graphs, which have is(G)+1 = ∆+1 and ω(G) = 2.
Now, we show that k-total tessellability is NP-complete for the following
cases: line graph of triangle-free graphs with k = ω(G) ≥ 9 and is(G) + 1 = 3;
universal graphs with k very far apart from both is(G) + 1 and ω(G); planar
graphs with k = 4 = ω(G) = is(G) + 1; and (2, 1)-chordal graphs with k =
is(G) + 1 = ω(G) + 3.

Line graph of triangle-free graphs. Machado et al. [17] proved that k-edge
colorability is NP-complete for 3-colorable k-regular triangle-free graphs if
k ≥ 3. The key idea of the proof of Theorem 1 is to verify that Tt(L(G)) = χ′(G)
when k ≥ 9. The edges incident to any vertex v of graph G correspond to a clique
of L(G), whose size is the degree of v. If two vertices of G are non-adjacent, then
the corresponding cliques in L(G) share no vertices. Hence, we cover the edges of
the cliques of L(G) incident to the vertices of each of the three color class of the
3-coloring of G with a tessellation related to the color class because these cliques
share no vertices. Therefore, since T (L(G)) = 3 and χ(L(G)) ≥ 9 ≥ 3T (G), by
Lemma 1, Tt(L(G)) = χ(L(G)) = χ′(G). Note that in this case k = ω(L(G))
and is(L(G)) + 1 = 3.
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Theorem 1. k-total tessellability is NP-complete for line graphs L(G)
of 3-colorable k-regular triangle-free graphs G for any k ≥ 9.

Universal graphs. Abreu et al. [12] reduced q-colorability to k-tessellabi
lity for universal graphs. We present a similar argument to establish the NP-
completeness of k-total tessellability for universal graphs. Let G be an
instance of q-colorability. The key idea of the proof of Theorem 2 is to add
to Gc a universal vertex u and 2|V (G)| pendant vertices adjacent to u, which
defines the graph [2|V (G)|, Gc] of Gc. Now, the total tessellation cover number of
the constructed graph is given by 2|V (G)|+χ(G)+1, using labels 1, . . . , χ(G) to
cover the edges incident to u that belong to the subgraph induced by V (Gc∪{u}),
labels χ(G) + 1, . . . , χ(G) + 2|V (G)| to cover the edges incident to the pendant
vertices and labels χ(G) + 1, . . . , χ(G) + |V (G)| are enough to cover the edges
of Gc; assign to u the color 2|V (G)| + χ(G) + 1, to the pendant vertices color
1, and to the remaining vertices colors χ(G) + |V (G)| + 1, . . . , χ(G) + 2|V (G)|.
The minimality follows from Lemma 2. Therefore, Tt([2|V (G)|, Gc]) = 2|V (G)|+
χ(G) + 1.

Note that is(C5 ∨ {u}) = 2, Tt(C5 ∨ {u}) = 4, and any minimum total
tessellation cover of C5 ∨ {u} has at least three labels assigned to the edges
incident to u and a fourth label assigned to u. Thus, Tt([2|V (G)|, Gc ∪ C5]) =
Tt([2|V (G)|, Gc]) + 3; is([2|V (G)|, Gc ∪ C5]) = is([2|V (G)|, Gc]) + 2; and
ω([2|V (G)|, Gc ∪ C5]) = ω([2|V (G)|, Gc]). Therefore, each addition of a C5 in-
creases the gap between the total tessellation cover number and both the sizes
of a maximum induced star and a maximum clique. As long as the number of
the C5’s is polynomially bounded by the size of G, k-total tessellability is
NP-complete even if k is far apart from is(G) and ω(G).

Theorem 2. k-total tessellability is NP-complete for universal graphs.

Planar graphs. We show that 4-total tessellability is NP-complete when
restricted to planar graphs G with is(G) + 1 = ω(G) = 4. We present a poly-
nomial transformation from 3-colorability when restricted to planar graphs
with maximum degree four [18] to 4-total tessellability for planar graphs.
Let G be an instance of such coloring problem. G′ = G ∨ {u} has a 4-coloring
if and only if the planar graph G has a 3-coloring. We define three gadgets as
depicted in Fig. 1. The edges of the external triangles of the Duplicator Gadget
are tiles of size three in a same tessellation. The edges of the external triangles of
the NotEqual Gadget are tiles of size three in different tessellations. The Shifter
Gadget forces triangles T1 and T4 to be tiles on a tessellation a, and triangles
T2 and T3 to be tiles on a tessellation b different from a.

Each vertex v of G′ is associated with a Duplicator Gadget such that the
number of external triangles of the Duplicator Gadget of v is equal to dG′(v).
If two vertices of G′ are adjacent, we connect one external triangle of each
Duplicator Gadget with a NotEqual Gadget. Thus, in a 4-total tessellation cover
of the obtained graph H, the labels of the external triangles of the Duplicator
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>

Duplicator Gadget NotEqual Gadget Shifter Gadget

T1

T2

T3

T4

Fig. 1. Duplicator Gadget, NotEqual Gadget, and Shifter Gadget.

Gadget associated with a vertex v are equal to the color of v in a 4-coloring
of G′. Now, we transform H into a planar graph H ′ by replacing each crossing
triangles of H by a Shifter Gadget. Therefore, the planar graph H ′ has a 4-
total tessellation cover if and only if G has a 3-coloring. Note that in this case
k = ω(G) = 4 = is(G) + 1.

Theorem 3. 4-total tessellability is NP-complete for planar graphs.

(2, 1)-chordal graphs. A graph G is (2, 1) if its vertex set can be parti-
tioned into two stable sets and one clique. Since 3-edge colorability is
NP-complete for 3-regular graphs [17], 3-vertex colorability for 4-regular
line graphs is also NP-complete. Let G be a 4-regular line graph. We con-
struct a graph H from G as follows. V (H) contains a clique {e0, . . . , e|E(G)|−1}
where each ei, 0 ≤ i ≤ |E(G)| − 1, is associated with a distinct edge of G.
V (H) contains an stable set {e′0, . . . , e′|E(G)|−1} such that each e′i is adjacent

to all ej with j 6= i and j 6= i + 1 mod |E(G)|. V (H) contains an stable
set {v0, . . . , v|V (G)|−1}, where each vi, 0 ≤ i ≤ |V (G)| − 1, is associated with
a distinct vertex of G. Each ej ∈ {e0, . . . , e|E(G)|−1} is adjacent to vertices
vr, vs ∈ {v0, . . . , v|V (G)|−1} such that ej = vrvs. V (H) contains an stable set
P comprising (|V (G)| + |E(G)|)(|E(G)| + 1) pendant vertices such that each
vertex of {v0, . . . , v|V (G)|−1} ∪ {e′0, . . . , e′|E(G)|−1} is adjacent to |E(G)|+ 1 pen-

dant vertices. By construction, H is (2, 1) and chordal.
We claim that Tt(H) = |E(G)| + 3 if and only if χ(G) = 3. Consider a 3-

coloring c of G. Obtain a k-total tessellation cover of H with k = |E(G)|+3 as fol-
lows. Assign colors in {1,. . . ,|E(G)|} to the vertices of the clique {e0,. . . ,e|E(G)|−1}.
Assign to vertex e′i, for 1 ≤ i ≤ |E(G)|, the same color of the vertex ei.
For 0 ≤ i ≤ |E(G)| − 1, the tile with vertices {e′i} ∪ {ej | j 6= i and j 6=
i + 1 mod |E(G)|} is in the tessellation with label i + 2 mod |E(G)|. Note
that if two vertices vi and vk of G are not adjacent, then the cliques {vi} ∪
{ej | vi is endpoint of ej in G} and {vk} ∪ {ej | vk is endpoint of ej in G} are
disjoint. Thus, the tile with vertices {vi} ∪ {ej | vi is endpoint of ej in G} is
in the tessellation with label c(vi) + |E(G)|. Finally, greedily assign colors and
labels to the remaining vertices and edges of H. Consider a total tessellation
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cover of H with k = |E(G)|+ 3 labels. Note that we require |E(G)| tessellations
to cover the edges between the vertices {e0, . . . , e|E(G)|−1} ∪ {e′0, . . . , e′|E(G)|−1}
in any total tessellation cover of H. Moreover, a tile in each of those |E(G)|
tessellations contains |E(G)| − 2 vertices of the clique {e0, . . . , e|E(G)|−1}. Since
each tile {vi} ∪ {ej | vi is endpoint of ej in G}, for 0 ≤ i ≤ |V (G)| − 1, con-
tains four vertices of the clique {e0, . . . , e|E(G)|−1}, there are only three tessella-
tion labels used by the tiles {vi} ∪ {ej | vi is endpoint of ej in G}, for 0 ≤ i ≤
|V (G)| − 1. Moreover, if two vertices vi and vk are adjacent in G, then the tiles
{vi}∪{ej | vi is endpoint of ej in G} and {vk}∪{ej | vk is endpoint of ej in G}
share a vertex ej = vivk in H and they are tiles belonging to different tessella-
tions. Hence, we obtain a 3-coloring c of G as follows. Assign the label of the tile
{vi} ∪ {ej | vi is endpoint of ej in G} to the color of vi in c.

Therefore, G has a 3-coloring if and only if H has a total tessellation cover
with |E(G)|+ 3 labels. Note that k = is(H) + 1 = ω(H) + 3 = |E(G)|+ 3.

Theorem 4. k-total tessellability is NP-complete for chordal graphs.

4 The total staggered quantum walk model

We now show how to simulate a total staggered quantum walk on a graph G with
a staggered quantum walk on its total graph Tot(G). The total graph Tot(G)
of G has V (Tot(G)) = V (G) ∪ E(G) and E(Tot(G)) = E(G) ∪ {u uw | u ∈
V (G), uw ∈ E(G)} ∪ {uv vw | uv ∈ E(G) and vw ∈ E(G)}. Let A = Tot(G),
A[E(G)] = Y and A[V (G)] = X. Subgraph Y is isomorphic to the line graph
L(G) of G, and X is isomorphic to the original G. We define the clique Kv =
{v} ∪ {vw | vw ∈ E(G)} of A.

Consider a total tessellation cover of a graph G. Define an associated tessel-
lation cover of A as follows. Assign the labels of the edges of G to the respective
edges of X and assign the color of each vertex v of G to the edges of A[Kv]. We
simulate the total staggered quantum walk on G with the staggered quantum
walk on A by considering the vertices of G as the corresponding vertices of X
in A, and the edges of G as the corresponding vertices of Y in A. Fig. 2 depicts
a total tessellation cover of a graph G and the associated tessellation cover of
A = Tot(G).

Consider the walker located on a vertex a of G. If we apply the operator
Hj associated with the color of a, the walker hops to the edges incident to a
(the edges ab and ac). If we apply an operator associated with the label of an
edge incident to a, the walker hops to the vertices in the tile of the tessellation
of the same label that contains a (the vertices b and c). The same happens by
considering the walker located on a vertex a in X. If we apply the operator Hj

associated with the labels of the edges of A[Ka], the walker hops to the vertices
ab and ac of Y , and if we apply the operator associated with the label of an
edge of X incident to a, the walker hops to the vertices b and c of X. Consider
the walker located on an edge ab of G. If we apply the operator associated with
the color of a (or b), the walker hops to a (or b) and to the edges incident to it.
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The same happens by considering the walker located on a vertex ab in Y . If we
apply the operator associated with the labels of the edges of A[Ka] (or A[Kb]),
the walker hops to vertices of Ka (or Kb). Otherwise, the walker stays put in
both G and A.

G

a

b

d e f

c

H

a b c d e f

ab ac bc bd be ce cf de ef

A

Fig. 2. Total tessellation cover of a graph G and the associated tessellation cover of A.

5 Concluding remarks

We have defined the total tessellation cover on a graph G and have used this
concept to define the total staggered quantum walk model. This work strengthens
the connection between quantum walk and graph coloring.

We have established examples of graphs for which Tt(G) reaches the bounds
of Section 2. We leave as an open problem to search for graphs with at least
3 vertices satisfying Tt(G) = 3T (G) and Tt(G) > χ(G). Moreover, it would be
interesting to define graph classes with Tt(G) = T (G) = k for k ≥ 4, since for
k = 3 the only such graphs are the odd cycles Cn with n ≡ 0 mod 3.

We have shown that 4-total tessellability is NP-complete for planar
graphs satisfying is(G) + 1 = ω(G) = 4. This is important since the hardness
of k-edge colorability and k-total colorability for planar graphs are
still open. On the other hand, we know that planar graphs with large maximum
degree have edge and total colorings as small as possible [19, 20]. We leave as
an open problem to find a threshold for Tt(G) for which all planar graphs are
Type II.

Table 1 summarizes the computational complexities of edge-colorability
cf. [17], total colorability cf. [21], tessellability cf. [8], and total tes-
sellability. These four problems are in P when restricted to complete graphs,
star graphs and trees, whereas for triangle-free graphs, the four problems are
NP-complete. We leave as an open problem to find a graph class for which
total colorability is NP-complete and total tessellability is in P.
We have not identified this class because all known NP-completeness proofs of
total colorability are restricted to graph classes with χt(G) = Tt(G).
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thesis, Univ. Paris 6 (1979).

14. C. J. McDiarmid, A. Sánchez-Arroyo, Total colouring regular bipartite graphs is
NP-hard, Discrete Math. 124 (1994) 155–162.

15. V. F. Santos, D. Sasaki, Total coloring of snarks is NP-complete, Matemática
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Appendix

Planar Graphs - Detailed proof of Theorem 3

The computational complexity of total coloring for planar graphs is an open
problem. On the other hand, we show in this section that 4-total tessella-
bility for planar graphs is NP-complete. Since in this proof we use a generic
graph G such that is(G) + 1 = ω(G) = 4, we also prove that deciding whether
a graph has both T (G) = is(G) + 1 and T (G) = ω(G) is NP-complete even if
restricted to planar graphs.

Lemma 3. Let G be the graph with V (G) = {a1, b1, c1, d1} ∪ {a2, b2, c2, d2} ∪
{a3, b3, c3, d3}, where {a1, b1, c1, d1} is a maximal clique and {a1, a2, a3}, {b1, b2, b3},
{c1, c2, c3}, and {d1, d2, d3} are triangles. Any total tessellation cover of G with
four labels has the following property: The edges of three triangles are tiles on a
same tessellation and the edges of the remaining triangle are a tile on a different
tessellation.

Proof. The proof follows after analyzing all possibilities of total tessellation cov-
ers with four labels. ut

a1

b2

c1 d1

a2

a3

b1

b3

c2

c3

d2

d3

Fig. 3. A 4-total tessellation cover of the graph of Lemma 3.

Fig. 3 shows an example of a total tessellation cover of graph G described
in Lemma 3. The edges of three triangles must have the same color (red) and
the fourth triangle must have a different color (blue). In the first gadget of the
Fig. 4, the two external triangles’ edges must receive the same label, since the
two internal triangles shares a vertex and they must receive different labels. In
the second gadget, since the internal triangles’ edges must receive the same label
the external triangle’ edges must receive different labels.

Lemma 4. Any total tessellation cover of the graph G of Fig. 6 with four labels
has the following property: The triangles T1 and T4 are tiles in a same tessel-
lation, and the triangles T2 and T3 are tiles in a same tessellation, which is
different from the tessellation that contains T1 and T4.

Proof. Since there are three maximal cliques incident to the vertices b (resp. c
and e), they are three tiles on different tessellations. Therefore, the three triangles
of the Hajos subgraph of G are tiles on different tessellations. The Equal Gadget
has its tiles incident to the vertices a and d on a same tessellation.



Total tessellation cover and quantum walk 13

Fig. 4. Equal Gadget: edges of its two external triangles are covered by 3-tiles of a same
tessellation in a 4-total tessellation cover. NotEqual Gadget: edges of its two external
triangle are covered by 3-tiles of different tessellations in a 4-total tessellation cover.

Fig. 5. Duplicator Gadget: it forces the five external triangles’ edges to have the same
label. Moreover, if the label of the triangle’ edges is a, then its vertices have the next
two consecutive labels a + 1 and a + 2 modulo 4 available to the vertices of four of
these five triangles in a 4-total tessellation cover.
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T3
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f
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(b)

Fig. 6. Shifter Gadget: it shifts two crossing tiles in different tessellations such that
the tiles get from one side to the other side without crossing edges and maintaining
their 3-tiles tessellations in a 4-total tessellation cover.



Total tessellation cover and quantum walk 15

Assume that the color of the vertex a is equal to the color of the vertex d.
Since the color of vertex a is the same of the color of vertex d and the tiles of
the Equal Gadget have a same tessellation different from the label of the color
of a and d, it implies that T1 is a tile on the same tessellation of the triangle
with vertices {b, d, e} and that T2 is a tile on the same tessellation of the triangle
with vertices {a, b, c}. Note that the colors of the vertices a (resp. d) and b are
different and that they are also different from the labels of T1 and T2. Therefore
the color of the vertices c and e must be the same labels of the tessellations of
T1 and T2. Now, the triangle {c, e, f} and the vertex f must receive two labels
different from the labels used by the triangles {a, b, c} and {b, d, e}. This implies
that the triangles T3 and T4 are tiles with the same labels of the triangles T1
and T2. Since T1 share a vertex with T3 and T2 share a vertex with T4, the
triangles T1 and T4 are tiles on a same tessellation and the triangles T2 and T4
are also tiles on a same tessellation different from the tessellation of T1 and T3.
Therefore, if there is a total tessellation cover of G with 4 labels, the proof of
the theorem holds. A total tessellation cover of G with 4 labels is depicted in
Fig. 6 (a). Note that we obtain total tessellation covers of G with all possible
combinations of two distinct labels of the four labels for T1 and T2 by replacing
the color classes of G by the desired labels.

Assume that the color of the vertex a is different from the color of the vertex
d. For the sake of contradiction assume we use only two labels to the colors of a,
d and the tiles of the triangles {a, b, c} and {b, d, e}. This implies that b receives a
third label different from these two, and that there is only one available label to
the color of the vertices c and e, a contradiction. We also cannot use four different
labels to the vertices a, d and the triangles {a, b, c} and {b, d, e} or there would
be no available label to the triangles of the Equal Gadget. Therefore, we have
three different labels used in the colors of the vertices a, d and the labels of
the tiles of the triangles {a, b, c} and {b, d, e}. This implies that the color of the
vertex b and the tiles of the Equal Gadget receive the same label. The color of
the vertices a, b, and the label of the tile of the triangle {a, b, c} are different
from the labels of T1. This implies that the color of c is equal to the label of the
tile of T1. The same holds for the vertex e and the label of the tile of T2. Now
the color of the vertex f and the label of the tile of the triangle {c, e, f} must
be different from the colors of c and e (i.e., the label of the tiles of T1 and T2).
This implies that the label of the tiles T3 and T4 are the same labels of the tiles
T1 and T2. Since T1 share a vertex with T3 and T2 share a vertex with T4, the
triangles T1 and T4 are tiles on a same tessellation and the triangles T2 and T4
are also tiles on a same tessellation different from the tessellation of T1 and T3.
Therefore, if there is a total tessellation cover of G with 4 labels, the proof of
the theorem holds. A total tessellation cover of G with 4 labels is depicted in
Fig. 6 (b). Note that we obtain total tessellation covers of G with all possible
combinations of two distinct labels of the four labels for T1 and T2 by replacing
the color classes of G by the desired labels. ut

Theorem 3 4-total tessellability is NP-complete for planar graphs.
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Proof. Let G be an instance of 3-colorability of planar graphs with degree
at most four [18]. Add a universal vertex u to G so that G∨{u} has a 4-coloring
if and only if G has a 3-coloring. We create a planar graph H from G ∨ {u}
as follows. We replace each vertex of G ∨ {u} by a Duplicator Gadget with the
degree of the vertex duplication in H. We replace each edge of G ∨ {u} by a
NotEqual Gadget connecting the related triangles of the Duplicator Gadgets
of the endpoints of the edge in H. The only crossing edges in H are from the
triangles of the universal vertex and the triangles of the other Duplicator Gadget
that have labels different from the one of the universal Gadget. We replace these
crossing tiles with the Shifter Gadget.

We claim that the resulting planar graph H has a 4-total tessellation cover
if and only if the graph G has a 3-coloring.

Consider a 4-total tessellation cover of H. If two vertices are adjacent in
G ∨ {u}, then the NotEqual Gadget forces the tiles of the external triangles
of the respective Duplicator Gadgets of these two adjacent vertices to be on
different tessellations. Therefore, we obtain a 4-coloring of G∨ {u} by assigning
the color of a vertex as the label of the tile of the external triangles of the
Duplicator Gadget related to that vertex.

Consider a 4-coloring f of G∨{u}. We obtain a 4-total tessellation cover of H
as follows. Assign each tile of the external triangles of the Duplicator Gadget to
the tessellation related to the color the vertex received in f . Label the remaining
vertices and edges as described in Figure 5 by rotating the color classes labels
to obtain the desired label.

Since we obtain the total tessellation cover of the Duplicator Gadget by
rotating the color classes, we have that the label of a external triangle and a
vertex of the degree two is related to consecutive colors. Therefore, if the label
of the tile of the external triangle is 1 (resp. 2, 3, and 4), then there are two
vertex of degree two in this external triangle with colors 2 and 3 (resp. 3 and 4, 4
and 1, 1 and 2). Now, for any two different tessellations of the tiles of the external
triangles, we select one vertex of degree two of each so that we do not use all
four labels in these two vertex and in the two tiles of the external triangles. By
Lemma 3, there is a total tessellation cover with four labels of the NotEqual
Gadget if we do not use all four labels on the two tiles of its external triangles
and the two vertices of the K4 of that external triangles.

We obtain a total tessellation cover with 4 labels of the Shifter Gadgets as
described in Lemma 4. Note that, as depicted in Fig. 6, the two consecutive Equal
Gadgets connected to the external triangles T1 (resp. T2, T3, and T4) allow us
to assign colors to the vertices of the Shifter Gadgets so that the vertices of the
last of their external triangles have the same colors of the vertices of the external
triangles of the Duplicator Gadgets that they are related. ut
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A tessellation is defined as a partition of the vertices of a graph into disjoint cliques.
A tessellation cover of a graph is a set of tessellations that covers all of its edges. The
tessellation cover number T (G) is the size of the smallest tessellation cover of G. The
t-tessellability problem consists in deciding whether T (G) ≤ t. This problem is moti-
vated by quantum walks, which is the mathematical modeling of a particle moving through
the vertices of a graph according to the postulates of quantum mechanics. In particular, in
the staggered quantum walk model one needs to find a tessellation cover of a graph before
defining the evolution operators for the quantum walker [2].

Abreu et al. proved that T (G) is upper bounded by the minimum between the chro-
matic index of G and the chromatic number of its clique graph K(G); presented extremal
graphs whose tessellation number achieves one of these upper bounds; used these results to
prove the NP-completeness for some restricted graph classes; and presented a linear-time
algorithm for the 2-tessellability problem [1]. In this work, we study the optimization
version of t-tessellability with a formulation for the minimization problem, and discuss
numerical results achieved with Gurobi API.

The formulation is as follows. Given a graph G = {V (G), E(G)}, this problem has the
following premises: (P1) a tessellation must cover the vertex set V (G); (P2) all cliques in
a tessellation must be vertex disjoint cliques; and (P3) the edge set E(G) must be covered
by the union of the tessellations of G. All variables used in this formulation are binaries:
Ti indicates whether tessellation i is used in the solution, V i,j

v indicates whether vertex v
is used by clique j in tessellation i, and Ei,j

m indicates whether edge m is used by clique
j in tessellation i. As this problem is a minimization problem, we must minimize the
objective function

∑|E(G)|
i=1 Ti. We need at most |E(G)| tessellations in a solution, and at

most |V (G)| cliques in a tessellation.
First, we enunciate the following restrictions: (R1)

∑|V (G)|
j=1 V i,j

v = 1 is needed to meet
premises (P1) and (P2), because this restriction allows vertex Vv to compose a unique
clique Cj in a tessellation Ti; (R2) V i,j

v + V i,j
u ≤ 1, ∀(v, u) /∈ E(G) is needed to avoid

that the model consider non-edges; (R3) Ei,j
m ≤ Ti, because an edge m can only be used

in the solution by a tessellation Ti in a clique Cj if Ti itself is in the solution; (R4)

1santiago@cos.ufrj.br
2franklin@cos.ufrj.br
3luidi@cos.ufrj.br
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∑|E(G)|
i Ei,j

m ≥ 1, is need to meet premise (P3). The next three restrictions guarantee that
an edge can only compose a solution in a tessellation Ti if both incident vertices of this
edge are in the same clique Cj in the tessellation Ti: (R5) Ei,j

m ≤ V i,j
v ; (R6) Ei,j

m ≤ V i,j
u ;

(R7) Ei,j
m ≥ V i,j

v + V i,j
u − 1, such that Ei,j

m = (v, u) ∈ E. Finally, to avoid symmetrical
answers we still need a last restriction: (R8) Ti−1 ≥ Ti.

Our model was implemented in C with Gurobi API 4, and tested with input graphs
already previously analyzed by Abreu et al. [1]. Every result obtained with our proposed
formulation was consistent with those obtained in [1] via analytical calculations or exhaus-
tive search.

A question that arises is whether every optimal tessellation cover must have tessellations
with at least one maximal clique. Abreu et al. [1] showed a graph, depicted in Fig. 1 that
uses in a optimal tessellation cover one tessellation that does not have a maximal clique.
Using the formulation proposed in this work we found the same tessellation cover found
by Abreu et al. and numerical simulations suggest that this tessellation cover is unique.

Figure 1: A non-trivial tessellation cover found by Gurobi using our proposed formulation.

The authors thank Abílio Lucena and Celina de Figueiredo for helpful discussions, and
FAPERJ, CNPq, CAPES for financial support.
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Abstract

A tessellation of a graph G = (V,E) is a set of disjoint cliques

that covers V (G). A tessellation cover of G is a set of tessellations

that covers E(G). The tessellation cover number of G, denoted

by T (G), is the minimum size of a smallest tessellation cover of

G. The t-tessellability of G aims to decide whether T (G) ≤
t. In this work, we present a polynomial time algorithm for t-

tessellability for quasi-threshold graphs. Next, we introduce the

t-tessellability completion of G, which aims to decide whether

there is a tessellation cover T of G with t tessellations given a par-

tial tessellation cover T ′ of G that must be part of T . Finally,

we compare the behavior of the computational complexity of t-

tessellability completion and k-edge precoloring in some

subclasses of graphs with few P4, such as complete bipartite graphs,

triangulated of complete graphs, and complete graphs.
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1 Introduction

Nowadays quantum computation receives a lot of attention from the sci-

entific community. An important concept in this computational paradigm

is the quantum walk. This concept is defined as a mathematical model

of a particle’s walk thought the edges of a graph. Recently, Portugal

et al. [11] proposed the Staggered Quantum Walk Model, that includes

Szegedy Model and an important part of Coined Model. The Staggered

Model uses the concept of tessellations on graphs to generate the evolu-

tion operators that rules the corresponding quantum walk. Given a graph

G = (V,E), a tessellation is a set of disjoint cliques of G that covers

V (G). A set of tessellations T = {C1, . . . , Cj} is a tessellation cover when

T covers E(G). The size of a smallest tessellation cover in a graph G is

denoted by T (G). The t-tessellability problem aims to decide whether

a graph G has T (G) ≤ t [1].

Let K(G) be the clique graph of G, i.e., the vertices of K(G) are re-

lated to maximal cliques of G and two vertices are adjacent if the re-

lated maximal cliques are non-disjoint in G. Abreu et al. [1] proved that

T (G) ≤ min{χ(K(G)), χ′(G)}, where χ(K(G)) and χ′(G) denote the chro-

matic number and chromatic index of graphs K(G) and G, respectively.

They also showed NP -completeness proofs of the t-tessellability prob-

lem for several graph classes. Moreover, they showed that this problem is

polynomial-time solvable for threshold graphs G = (C ∪ S,E). A thresh-

old graph G has K(G) that is a complete graph, and T (G) = χ(K(G)) =

|S|+ 1 (C is a largest maximum clique of G, S = V \ C is a stable set of

G).

Note that the computational complexity of t-tessellability is still

open for cographs, whereas it is polynomial time solvable for thresh-

old graphs [1]. In this work, we present the tessellation cover num-

ber for quasi-threshold graphs and the polynomial-time algorithm for t-

tessellability for this graph class, in Sec. 2. We also present the defi-

nition of t-tessellability completion relating it to k-edge precol-
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oring, in Sec. 3. Finally, in Sec. 4, we present the concluding remarks.

2 Tessellability for quasi-threshold graphs

Note that the tessellation cover number of a disconnected graph is given

by the maximum of the parameters of their connected components, i.e., if

G = G1 ∪G2, then T (G) = max{T (G1), T (G2)}.
A graph G is a cograph, quasi-threshold, threshold if G is {P4}-free,

{P4, C4}-free, and {P4, C4, 2K2}-free, respectively [3]. Let G be a graph

with a vertex u. The addition of a twin vertex v of u in G includes v in

G with the same neighborhood of u, and there is an edge uv in E(G) if

v is a true twin. Otherwise, v is a false twin. Let G′ be obtained from a

graph G by adding a true twin v of u ∈ V (G). The cliques containing u in

G will become cliques in G′ that also contain v. So, we can use the same

cliques of tessellations that cover the edges incident to u in G to cover the

edges incident to v in G′.

Lemma 1. If G is a graph with a vertex u and G′ is obtained from G by

the addition of a true twin vertex v of u, then T (G) = T (G′).

Quasi-threshold graphs can be recursively obtained by the following

operations from a K1: adding universal vertices, and; the union operation

of two quasi-threshold graphs [12].

Theorem 1. Let G be a quasi-threshold graph and G′ be a quasi-threshold

graph constructed by adding a universal vertex v to G. Hence, T (G′) =∑
i T (Ci), where Ci is a connected component of G.

Proof. The vertex v is universal, and we have two cases:

(I) Consider G connected. Therefore, G has a universal vertex u such

that v and u are true twin vertices in G′. So, by Lemma 1, T (G′) =∑
i T (Ci) = T (G).

(II) Consider G disconnected. Therefore each connected component Ci

of G is a subgraph that is a quasi-threshold graph with a universal vertex

ui. So we can consider that vertices v and ui are true twin vertices in

each connected component C ′i (that is related to each Ci before adding
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vertex v), thus the tessellation cover number in each connected component

C ′i remains equal to T (Ci). Since each connected component shares the

vertex v in G′, the cliques in each connected component share the vertex v.

Then, to cover the incident edges of v we cannot use the same tessellations

for each connected component, so T (G′) =
∑

i T (Ci).

Every quasi-threshold graph is also a cograph, which have a cotree, that

is a tree where the internal nodes represent operations of union or join,

and the nodes that are leaves represent the vertices of the cograph [3].

We can construct the cotree of quasi-threshold graphs in such a way that

every join operation occurs between a vertex and a quasi-threshold graph,

and the cotree be binary where, w.l.o.g., the left side is a cotree and the

right side is a leaf. Thereby, we are able to calculate the tessellation cover

number of graphs of this class using its cotree by climbing this tree until

the root. When the internal node of this cotree is a union operation, we

know the value is the maximum among the parameters of the connected

components. Otherwise, the internal node represents the join operation,

so we use the result provided in Theorem 1. Note that the number of

connected components in this situation is exactly the number of union

operations in sequence until the next join operation in this cotree plus

one. Therefore, we can calculate the tessellation cover number for quasi-

threshold graphs in polynomial time.

3 Tessellability completion

We now introduce the t-tessellability completion problem, which

has a graph G and a partial tessellation cover T ′ of G as instance and

aims to decide whether G has a tessellation cover T with t tessellations

such that the tessellations of T ′ are part of T . Note that in this work we

consider that the cliques of tessellations of T ′ in T may expand, including

new vertices. The k-edge precoloring problem has a graph G and a

partial edge coloring of G as instance and aims to decide whether G has

an edge coloring with k colors such that the colors used in the partial edge

coloring given by the instance are maintained.
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The Latin Square problem has a n× n matrix M as instance and a set

of elements of M with values in {1, ..., n} and aims to decide whether it

is possible to fill the remaining elements of M with values in {1, . . . , n}
in such way that there is no repeated value in any line or column of

M . Colbourn [4] proved that k-edge precoloring is NP-complete for

complete bipartite graphs Kx,y showing a polynomial transformation from

the Latin Square. The idea of the proof is that the lines of M will be

vertices of one stable set of the complete bipartite, the columns will be

vertices of the other stable set. Moreover, the set of given values of M is

related to the colors of the partial edge coloring of the complete bipartite

graph such as if Mi,j = α, then the edge ij of the complete bipartite graph

receives the color α. It is not hard to verify that this complete bipartite

graph has a n-edge coloring using that partial n-edge coloring if and only

if the matrix can be filled with values in {1, . . . , n} given a set of elements

of M already labeled. Figure 1(a) illustrates this construction.
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Figure 1: Latin Square and k-edge precoloring on complete bipar-

tite.

Bonomo et al. [2] proved that (n− 1)-edge precoloring of complete

split (resp. complete) graphs is NP-complete. The key idea of that proof

is that given an instance I of Latin Square with a n×n matrix M , it is

possible to create another instance I ′ with a 2n×2n matrix M ′ in such way

I has a YES answer if and only if I ′ also has a YES answer. The matrix

M ′ is obtained by adding two n×n elements in the top right and bottom

left ofM ′ with permutations of the values in {n+1, . . . , 2n} and by copying
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the values of M in the bottom right positions of M ′ (see Figure 1(b)).

Moreover, given an instance I ′ of Latin Square with even n′ we can

construct a complete bipartite graph as described before. Next, we include

all the missing edges of one clique (resp. two disjoint cliques) of size n′ such

that all these edges of the clique (resp. cliques) of even size n also appears

in the partial edge coloring using colors in {n′ + 1, . . . , 2n′ − 1}. Now, I ′

has a YES answer if and only if the (2n′−1)-edge precoloring of this

complete split graph of 2n′ vertices (resp. complete graph of 2n′ vertices)

also is YES. Therefore, (n− 1)-edge precoloring is NP-complete for

complete bipartite graphs (a superclass of cographs), complete graphs,

and complete split graphs.

In triangle-free graphs a tessellation cover behaves just like an edge

coloring [1], the same holds for t-tessellability completion and par-

tial k-edge coloring. Therefore, the computational complexity of k-

edge precoloring and k-tessellability completion for triangle-

free graphs are the same. Moreover, since k-edge precoloring of

Star graphs Sn is always YES for k ≥ ∆(Sn) = n and NO otherwise,

both k-edge precoloring and k-tessellability completion are in

P for star graphs Sn. Marx [7] proved that k-edge precoloring is

NP-complete for planar 3-regular bipartite graphs; bipartite outerpla-

nar graphs; and bipartite series-parallel graphs. Thus, t-tessellability

completion is also hard for these graph classes.

Consider t-tessellability completion for a complete graph G. If

there is an edge without any available tessellation, then we know that the

answer is NO. Otherwise, each edge has at least one available color and we

obtain a tessellation cover of G by selecting one color for each unlabeled

edge, and then covering all the endpoints of these unlabeled edges with

a same color as a single clique in the tessellation related to this color,

repeating this process for all colors.

The triangulated TR(G) of a graph G = (E, V ) is obtained by adding

to G, for each e = uv ∈ E, a vertex euv adjacent only to u and to v.

Note that the TR(Kn) of complete graphs Kn are split graphs. Let I
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be an instance of (n − 1)-edge precoloring of a complete graph Kn

with even n, which is NP-complete [2]. Now, consider an instance I ′ of

t-tessellability completion of the graph TR(Kn). Moreover, for each

edge uv in the partial edge coloring of I we relate the triangle euv, u, v to a

tessellation of the same label of the color of uv in the partial t-tessellation

cover of TR(Kn). Since TR(Kn) has an induced star of size n− 1, all the

triangles with e-vertices incident to any vertex of the original clique Kn in

TR(Kn) need to be entirely covered by some tessellation. Note that each

of these triangles of TR(Kn) are related to an edge of Kn. Therefore, I

has a YES answer if and only if I ′ also is YES.

Theorem 2. t-tessellability completion for Stars, Completes are

in P whereas it is NP-complete for Complete Bipartite and Triangulated

Complete.

Table 1: Computational Complexities Behaviors
Sn Kn Kx,y TR(Kn) threshold cograph

t-tessellation P P NP − c NP − c Open NP − c
completion

k-partial edge P NP-c NP-c NP-c NP-c NP-c

colorability [4] [4] [4] [4] [4] [4]

t-tessellability P P P P P Open

[1] [1] [1] [1] [1]

k- edge P P P P P Open

colorability [5] [5] [6] [5] [9]

4 Final Remarks

In this work, we show that the tessellation cover number of quasi-

threshold graphs is T (G) =
∑

i T (Ci), where Ci is a connected compo-

nent of G. Using these results we also prove that the t-tessellability

is polynomial-time solvable for quasi-threshold graphs.

There exist polynomial algorithms for k-edge coloring restricted to

complete graphs [5], complete bipartite graphs [6], complete split graphs [10],
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split indifference [8], and threshold graphs [9]. Similarly, in this work we

have established polynomial time solutions for t-tessellability com-

pletion restricted to star graphs and complete graphs. Moreover, we

showed the hardness of t-tessellability completion for complete bi-

partite graphs and triangulated complete graphs, a subclass of split graphs.

Table 1 summarizes these results.

All the proofs for t-tessellability NP-complete also hold in the case

of t-tessellability completion. Therefore, it is only interesting to

investigate graph classes for which t-tessellability is in P or its com-

putational complexity is open. We are close to establish a polynomial time

algorithm for t-tessellability completion restricted to line graphs of

bipartite graphs, complete split graphs, and split indifference graphs, all

graph classes for which we know t-tessellability has linear time solu-

tion [1].
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