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Devido ao avanco tecnolégico recente, a computacao quantica tem ganhado
notoriedade. Neste paradigma, o conceito de passeio quantico é fundamental
para o desenvolvimento de algoritmos para computadores quanticos. Dentre os
modelos de passeios quanticos existentes, destaca-se o modelo escalonado, proposto
por Portugal et al., que inclui o modelo de Szegedy como um caso particular,
além de parte do modelo com moeda. O modelo escalonado utiliza o conceito de
tesselagoes em grafos para gerar os operadores quanticos de evolugao que regem os
movimentos do caminhante sobre o grafo. Tesselagoes em grafos possuem ainda
um interessante valor para teoria de grafos visto que o parametro tessellation cover
number T(G) se relaciona com diversos outros parametros presentes na literatura
tais como chromatic number, chromatic index, total chromatic number, independent
set number, e clique number. Além disso, os problemas que se relacionam com T(G),
tais como t-TESSELLABILITY, GOOD TESELLABLE RECOGNITION, € TOTAL GOOD
TESSELLABLE RECOGNITION tém relagoes profundas com problemas classicos em
teoria dos grafos que envolvem coloragao de grafos. Neste trabalho apresentamos
resultados em teoria de grafos para os problemas relacionados com tesselagoes em
grafos citados acima, tais como complexidade computacional destes problemas para
varias classes de grafos, limites inferior e superior para T'(G), e o valor de T'(G) para
diversas classes de grafos. Além disso, apresentamos um modelo de passeio quéantico
baseado em total tessellation cover, sendo este pioneiro no uso de vértices e arestas

como localidades possiveis para o caminhante, simultaneamente.
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Due to recent technological advances, quantum computing has gained notoriety.
In this paradigm, the concept of quantum walk is fundamental for the development
of algorithms for quantum computers. Among the existing quantum walk models,
the staggered model, proposed by Portugal et al. stands out, since it includes
the Szegedy model as a particular case, and part of the coined model. The
staggered model uses the concept of tessellations on graphs to generate the quantum
evolution operators that perform the walker’s movements on the graph. Tessellations
on graphs also have an interesting value for graph theory, since the parameter
tessellation cover number T(G) is related to several other parameters present in
the literature such as chromatic number, chromatic index, total chromatic number,
idependent set number, and clique number. In addition, problems related to
T(G), such as t-TESSELLABILITY, GOOD TESELLABLE RECOGNITION, and TOTAL
GOOD TESSELLABLE RECOGNITION have deep relations with classic problems in
graph theory involving graph coloring. In this work we present results in graph
theory for the problems related to tessellations on graphs mentioned above, such as
computational complexity, lower and upper bounds for T'(G), and the value of T'(G)
for several graph classes. Furthermore, we present a quantum walk model based on
total tessellation cover, being pioneer in the use of vertices and edges as possible

locations for the walker, simultaneously.
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Chapter 1
Introduction

The concept of random walks is the mathematical modeling of a particle, i.e.,
a walker, walking over a graph through successive random steps. This concept has
been important in the development of algorithms to solve problems in computation,
physics, psychology [42], and biology [20]. In random walks we have a stochastic
matrix operator that is applied in each step of the walker, and acts over the state
that represents the walker position over the graph. We can see this operator as a
coin, i.e., its action is like a coin toss whose result indicates the direction of the next
step of the walker.

Nowadays, quantum computation has gained notoriety. Feymanm [30] was pi-
oneer in showing that quantum systems could be used to perform computational
tasks more efficiently than the usual computational paradigm. Indeed, before the
existence of the first quantum hardware, quantum algorithms more efficient than
their classical counterparts were developed. Grover [33] algorithm can find a desired
element in a list with N elements in O(v/N) steps, while its classical counterpart
would need O(N) steps to find the same element. Shor [56] algorithm can be used
to solve the prime number factoring problem in polynomial time, while in classical
computation, this problem is still considered hard to be solved.

In quantum computation there is the concept of quantum walks [13], which
is similar to the concept of random walks, however, the first one must obey the
quantum mechanics postulates, which define how the physical system must be,
the evolution of the quantum system, the composition of quantum states, and the
measurement of a quantum state to obtain the output of the quantum algorithms.
This concept is also important in the development of quantum algorithms [12, [T5-
19, 23], 29, 35, B39, 43, 53], and in the development of tools to simulate quantum
systems and algorithms [4], 26] [36, [40].

There are some important quantum walk models. The first one is the coined
model that is similar to the previous description of random walks. In this model,

the quantum operator is composed by the coin operator, which acts like a coin,



and the space operator, that will “shift” the walker according to the result of the
coined operator. We also have the Szegedy model [57|, which performs a quantum
walk without a coin operator, and differently of other quantum walk models, this
one uses the edges of the graph as locations to the walker. In the middle of last
decade, a more general quantum walk model, known as staggered model [47-49), was
proposed by Portugal et al., generalizing the Szegedy one as a particular case.

The staggered model is defined by an evolution operator that is described by
a product of local unitary matrices obtained from a graph tessellation cover. A
tessellation is defined as a partition of the vertices of a graph into vertex disjoint
cliques. A tessellation cover is defined as a set of tessellations whose union of them
covers the edge set of the graph. The staggered model requires that each edge
of the graph is covered at least once, since an uncovered edge would play no role
in the quantum walk. To understand the possibilities of the staggered model, it
is important to introduce the t-TESSELLABILITY problem, which aims to decide
whether a given graph can be covered by t tessellations. This problem is interesting
since it is related to important problems in the literature, such as k-COLORABILITY.
Moreover, several graph classes have the tessellation cover number T(G), which is
the size of a smallest tessellation cover of a graph G, well related with important
parameters in graph theory, such as maximum degree A(G), chromatic number
X(G), chromatic index x/(G), total chromatic number y7(G), and independent set

number o(G).

1.1 Related works

The problem of tessellations on graphs was firstly studied independently by
Duchet [27] in 1979 as EQUIVALENCE COVERING. Later, in 1986 Alon [14] proved
that the equivalence number, denoted by eq(G) is lower bounded by logQ(@),
where |V (G)| is the number of vertices of graph G and d is the maximum degree of
the complement graph of G, denoted by G°. Following, in 1995 Blokhuis et al. [21]
showed that deciding that eq(G) < k, for an integer k is N'P-complete for split
graphs. At the beginning of the last decade, in 2010, Esperet et al. [28] improved
the current best bounds to the equivalence number of a line graph.

With the appearance of staggered model, this theme came across again as tes-
sellation on graphs, where eq(G) and T'(G) are actually the same parameter. In this
context, I brought in my Master thesis 3] the first results of last decade with respect
of graph theory, in 2017. In that work it was established that T(G) < x(K(G)),
where K (G) is the clique graph of graph G, I proved that for w-wheel graphs
T(G) = [5], and for windmill graphs T(G) = x(K(G)). I also revisited an im-
portant quantum algorithm for element distinctness proposed by Ambainis [15] and



I presented it in staggered model. The complexity of T'(G) was considered by Posner
et al. [50], who showed that k-TESSELLABILITY is N'P-complete for line graphs of

triangle-free graphs.

1.1.1 Contributions

Recently, Abreu et al. [9] improved the upper bound established in [3] by showing
that 7(G) < min{x/'(G), x(K(G))}. Furthermore, we showed the value for T'(G) for
several graph classes, and showed hardness results for the t-TESSELLABILITY prob-
lem for several graph classes. These results are presented in Chapter [2] Section [2.1]
and they can be seen in more details in Appendix [A] Abreu et al. [6] introduced
the problems of k-STAR SIZE and GOOD TESSELLABLE GRAPH RECOGNITION, and
related them with the {-TESSELLABILITY problem by presenting graph classes with
certain behaviors. The problem definitions and the results are presented in Chap-
ter [2, Section 2.2 and they can be seen in more details in Appendix [B] Abreu et
al. [§] related T'(G) with total chromatic number, denoted by x7(G). We presented
a contrast between hardness results for the problems of k-EDGE-COLORABILITY, k-
TOTAL-COLORABILITY, {-TESSELLABILITY, and a new problem introduced in that
work, called by t-TOTAL-COLORABILITY. Moreover, we presented the total stag-
gered quantum walk model. The problem definitions and the results are presented in
Chapter [2| Section 2.3 and they can be seen in more details in Appendix [C] Chap-
ter [3] discusses works in progress corresponding to Appendices D] and [E] presented

at conferences [2 [7].



Chapter 2

Tessellations on graphs: Related

problems and applications

Along this chapter we introduce the main results corresponding to three full
papers, each one in one section. Section introduces the results of the paper
attached in Appendix[A] which contains the first results about tessellations on graphs
after the staggered quantum walk model was proposed by Portugal et al. [49] in
2015. Section introduces the results of the paper attached in Appendix [B], which
contains new problems related to tessellations on graphs. Section introduces
the results of the paper attached in Appendix [C] which contains a new problem
related to tessellations on graphs, and a new quantum walk model based on this

new problem and the related parameter.

2.1 The graph tessellation cover number: chromatic

bounds, efficient algorithms and hardness

An extended abstract containing the following results was presented in LATIN
2018, The 13th Latin American Theoretical Informatics Symposium [5], and then,
the full paper was published in Theoretical Computer Science C, “Natural Comput-
ing”, TCS-C [9], in 2020, which is attached in Appendix [A]

We start with two main definitions.

Definition 2.1 [J/ A tessellation T is a partition of the vertices of a graph into
cliques, called tiles. An edge belongs to the tessellation 7T if and only if its endpoints
belong to the same clique in 7. The set of edges belonging to T is denoted by E(T).

Definition 2.2 [J/ Given a graph G with edge set E(G), a tessellation cover of
size t of G is a set of t tessellations 7Ti, ..., T;, whose union U!_, £(T;) = E(G). A

graph G is called t-tessellable if there is a tessellation cover of size at most t. The
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t-TESSELLABILITY PROBLEM aims to decide whether a graph G is t-tessellable. The

tessellation cover number T(G) is the size of a smallest tessellation cover of G.

We improve the previous upper bound for T'(G) presented in [II, 3] by showing
that T'(G) is at most the minimum between the chromatic index x’(G) of the graph
and the chromatic number of its clique graph y(K(G)).

Theorem 2.3 [9] If G is a graph, then T'(G) < min{x'(G), x(K(G))}.

We conclude that if G is a triangle-free graph, then T(G) = x'(G) = x(K(G)) =
X(L(G)) since an edge-coloring induces a tessellation cover, where L(G) is the line
graph of G. Moreover, t-TESSELLABILITY is polynomial-time solvable for bipartite
graphs and for {triangle, proper major}-free graphs, and there are also polynomial-
time algorithms to obtain a minimum tessellation cover for these graph classes [31],
58]. In contrast, from [34], we conclude that ¢-TESSELLABILITY of triangle-free
graphs for ¢t > 3 is N'P-complete. Particularly, t-TESSELLABILITY for ¢ > 3 is N'P-
complete even for unichord-free graphs with girth at least 15, for A > 3 [38], which
are triangle-free.

We are able to present graph classes for which (i) T(G) = x/(G) with x(K(QG))
arbitrarily large [3], (ii) 7(G) = x(K(G)) with x/(G) arbitrarily large, in Theo-
rem (example depicted in Figure 2.1)), and (iii) 7(G) = 3 with both upper
bounds arbitrarily large, in Theorem [2.5] (example depicted in Figure [2.2).

Theorem 2.4 [9] Let G, be a star-octahedral graph. Then:
1. T(G,) = A(G,) = X (Gp) = xX(K(Gp)) = 2p, for p € {2,3}, and;

2. T(G,) = A(Gp) = X' (Gp) = 2p and x(K(G,)) =2""1 +1, forp > 4.

Theorem 2.5 [J] Let Es, be a (3, p)-extended wheel graph. Then, T(Es,) =3 for
p=2.

The t-TESSELLABILITY problem aims to decide whether there is a tessella-
tion cover of the graph with ¢ tessellations. We found that ¢t-TESSELLABILITY is
polynomial-time solvable for bipartite, {triangle, proper major}-free, threshold, and
diamond-free K-perfect graphs, and it is AP-complete for triangle-free for ¢ > 3,
unichord-free for ¢t > 3, planar for t = 3, biplanar for ¢ > 3, chordal (2, 1)-graphs
for t > 4, (1,2)-graphs for t > 4, and diamond-free with diameter at most five for
t = 3. We improved the complexity of 2-TESSELLABILITY problem to linear time.

A graph G is called extremal if T(G) = min{x'(G), x(K(G))}. Next, we define

a property of the cliques on a tessellation called exposed maximal clique.



Figure 2.1: (a) The star-octahedral graph Gy, i.e., the coalescence between the
octahedral graph O, and the star graph Ss. (b) The clique graph K(Gy). Notice
that T(G4) = X'(G4) = 8, while x(K(G4)) = 9.

RN\ ) =

Figure 2.2: An example of the (3,2)-extended wheel graph. Notice that
the tessellations applied in this graph are 737 = {{0,3,6},{1,2},{4,5}},T2 =
{{1,4,6},{2,3},{5,0}}, and T3 = {{2,5,6},{3,4},{0,1}}.

Definition 2.6 [/ A maximal clique K of a graph G is said to be exposed by a
tessellation cover C if E(K) € E(T) for all T € C, that is, the edges of K are not

covered by any single tessellation of C.

Lemma 2.7 [9] A graph G admits a minimum tessellation cover with no exposed
mazximal cliques if and only if T(G) = x(K(Q)).

Now, we consider diamond-free graphs whose clique-graphs are diamond-free,

and any two maximal cliques intersect in at most one vertex.

Theorem 2.8 [9] If G is a diamond-free graph with x(K(G)) = w(K(G)), then
T(G) = x(K(G)).

A graph is K-perfect if its clique graph is perfect [22]. Since a diamond-free
K-perfect graph G satisfies the premises of Theorem 2.8 we conclude that T'(G) =
K (G).

Threshold graphs can be constructed from an empty graph by adding either an
isolated vertex or a universal vertex. If a threshold graph G is connected, then G

has a universal vertex, and by construction, its clique graph is a complete graph.
Theorem 2.9 [9] If G is a connected threshold graph, then T(G) = x(K(G)).

6
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Figure 2.3: The 3-tessellable graph-gadget of Lemma [2.10, Each tessellation is
depicted separately. The external vertices are a, b, ¢, e, j, [, n, o, and the internal
vertices are the remaining ones.

Now, we focus on presenting N P-completeness of the ¢-TESSELLABILITY prob-
lem of planar graphs with maximum degree A(G) < 6 for ¢ = 3 in Theorem [2.11]
biplanar graphs for ¢ > 3 in Theorem chordal (2,1)-graphs for ¢ > 4 in The-
orem m (1,2)-graphs for ¢ > 4 in Theorem , and diamond-free graphs with
diameter at most five for ¢ > 3 in Theorem [2.15]

Lemma 2.10 [9] Any tessellation cover of size 3 of the graph-gadget depicted in

Figure contains a tessellation that covers the middle and the external triangles.

Using the gadget depicted in Figure 2.3] we can provide a polynomial transfor-
mation from the N'P-complete 3-COLORABILITY of planar graphs with maximum
degree four [31] to 3-TESSELLABILITY of planar graphs with maximum degree six.

Then the next theorem follows.

Theorem 2.11 [9/ 3-TESSELLABILITY of planar graphs with A(G) < 6 is N'P-

complete.

The next theorem shows that t-TESSELLABILITY, with any fixed ¢ > 3, of bipla-
nar graphs is N'P-complete. Curiously, the polynomiality of A-EDGE COLORABIL-
ITY for planar graphs with A(G) > 8 suggests that ¢-TESSELLABILITY for planar
graphs might be polynomial-time solvable for large enough ¢, in contrast with ¢-

TESSELLABILITY of biplanar graphs.
Theorem 2.12 [J/t-TESSELLABILITY of biplanar graphs fort > 3 is N'P-complete.

We are able to show a polynomial transformation from the NP-complete 3-
COLORABILITY [31] to 4-TESSELLABILITY of chordal (2, 1)-graphs. This hardness

proof can be generalized for any fixed ¢ > 4. Then, we have the following theorems.

Theorem 2.13 [J] The t-TESSELLABILITY of chordal (2,1)-graphs is NP-
complete, for any fixed t > 4.

Theorem 2.14 [/ The t-TESSELLABILITY of (1,2)-graphs is N'P-complete, for
any fixed t > 4.



Considering the NAE 3-SAT problem, we can provide a polynomial transfor-
mation from this A'P-complete problem [31] to 3-TESSELLABILITY of diamond-free

graphs with diameter at most five.

Theorem 2.15 [9] 3-TESSELLABILITY of diamond-free graphs with diameter at
most five is N'P-complete.

To close this section, we show that we can solve the 2-TESSELLABILITY problem
in linear time by improving the previous Peterson’s algorithm [44], whose idea is to
group true twin vertices of a same clique of a line graph GG. These true twin vertices
represent multiedges in the bipartite multigraph H, where G = L(H). Then, the
algorithm removes all those true twin vertices in each group but one. The last step
of the algorithm is to verify if a graph is a line graph of a bipartite graph by using
the Roussopoulos’ linear-time algorithm [52]. Our improvement consists in showing
a faster way to remove true twin vertices belonging to a clique of a graph using its

modular decomposition.
Theorem 2.16 [J/ 2-TESSELLABILITY can be solved in linear time.

Tables and summarize the results of the paper [9] in Appendix [A]

Table 2.1: Extremal graph classes and tight upper bounds.

Graph class T(G) < min{X'(G), x(K(G))}
Bipartite T(G) = X'"(G) = A(G)
Triangle-free T(G) = X'(G)
Unichord-free with girth > 15 T(G) = X'(G) = A(G)
Wy, T(Wdpq) = x(K(Wdpq)) = q
Cype (2.3} T(Gy) = x'(Gy) = X (K(Gy)) = 20
G)p, any p T(Gp) = X'(Gp) =2p
E3,p T G) — 3
Diamond-free K-perfect T(G) = x(K(GQ)) =w(K(G))
Threshold T(G)=x(K(G))=|S|+1




Table 2.2: The complexity of the t-TESSELLABILITY problem for graph classes

t Graph class Complexity
t=2 Generic Linear

i _ 3 Planar, A(G) <6 NP-complete
Diamond-free, diameter = 5 N P-complete

Threshold Polynomial

Bipartite Polynomial

{triangle, proper major }-free Polynomial

t>3 Diamond-free K-perfect Polynomial
Unichord-free with girth > 15  ANP-complete
Triangle-free NP-complete
Biplanar NP-complete
i> 4 Chordal (2, 1)-graphs NP-complete
= (1,2)-graphs NP-complete

2.2 The Tessellation Cover Number of Good Tes-
sellable Graphs

The full paper [6] was submitted to Theoretical Computer Science IITG-Silver
Jubilee, and it is under review. The content of this work is available in ArXiv, and
it is attached in Appendix [B]

In this work we define the star number of a graph G, denoted by is(G), which is
the number of edges of a maximum induced star of GG. Notice that T'(G) > is(G),
since the number of edges of a maximum induced star of G is a lower bound on
T(G). We say that a graph G is good tessellable if T(G) = is(G). In this context,
we introduce the GOOD TESSELLABLE RECOGNITION problem (GTR), which aims
to decide whether a graph GG is good tessellable. We also introduce the k-STAR SIZE
problem, which aims to decide whether is(G) > k, for an integer k. We analyze the

combined behavior of the computational complexity of the problems below.

k-STAR SIZE t-TESSELLABILITY GTR

Instance: Graph G Instance: Graph G Instance: Graph G.

and integer k. and integer t.
Question: is(G) > k?  Question: T(G) < t7 Question: T(G) = is(G)?

As byproduct, we obtain graph classes that obey the corresponding computa-
tional behaviors described in Table 2.3l

Notice that all graph classes studied in [9] and presented in Sec. obey be-
havior (a), since for those classes is(G) is fixed and equal to t. Posner et al. [50]
studied graphs that obey behavior (b), since for those graphs is(G) = 2 and 3-
TESSELLABILITY is N P-complete.



Table 2.3: Computational complexities of k-STAR SIZE, t-TESSELLABILITY, and
GTR problems and examples of corresponding graph classes.

Problem
) k-STAR SIZE | t-TESSELLABILITY GTR
Behavior
(a) P NP-complete NP-complete
(b) P NP-complete P
(c) NP-complete P NP-complete
(d) N'P-complete P P
(e) N'P-complete NP-complete P

Graph classes that obey behaviors (¢) and (d) are provided by Construction
below. This result comes from Theorem that shows that GTR is N'P-complete

for graphs of Construction [2| (I), which have a known tessellation cover number.

Construction 1 [6/ Let i be a non-negative integer and G' a graph. The [i, G]-
graph is obtained as follows. Add ¢ vertices to graph G, and then add a universal

vertex.

Construction 2 [6] Let the Mycielski graph be denoted by M, for j > 2. Let i
be a non-negative integer and G a graph with V(G) = {vy,...,v,}. We construct
a graph H = H; U H, as follows. Add ¢ disjoint copies Gy,...,G; of G to Hy,
such that V(Gy) = {v],...,v]} for 1 < j < i, where v} represents the same vertex
v of G for 1 < k < n. Add to H; all possible edges between pairs of vertices
that represent the same vertex of G. Add a vertex u to H; adjacent to all vi for
1 <j<iand 1l < k < n. Now, we consider two possibilities: either (I) H is
[|[V(G)| — 3, M§]-graph of Construction |1 (example depicted in Figure or (II)
H, is [|V(G)| — 3, M§]-graph of Construction [I] Denote the universal vertex of H,
by u’.

Hi1 H2

Gv {x}

(b)

(@) u

Figure 2.4: (a) An edge-coloring of G V {z}. (b) Example of a graph H; U Hy of
Construction 2| (I) obtained from graph G.
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Theorem 2.17 [6] k-STAR SIZE and GTR are N'P-complete for graphs of Construc-

tion|[q (1).

Now we focus in showing that t-TESSELLABILITY remains AN P-complete even if
the gap between T(G) and is(G) is large. This result leads us to provide a graph
class that obeys behavior (e), depicted in Construction . By using universal graphs
G = [uUG’], we show that is(G) is a tight lower bound for the tessellation cover

number.

Lemma 2.18 [0] If G is a t-tessellable graph, then

Jax {is(GluU No(v)])} < max {X(G[Ne(v)])} <t

Let u ¢ V(Q) be a vertex. If GV {u} is a t-tessellable graph, then
is(GVA{u}) = a(G) < x(G°) < t.

From Lemma and from the fact that we can use x(G°) tessellations to cover

a partition P of the vertices of (G, we have that
X(G°) <T(GV{u}) <x(G)+ AG) + 1, (2.1)

which allows us to conclude that there is no universal graph such that the gap
between T'(G V {u}) and x(G°) is larger than A(G) + 1. In particular, if x(G¢) >
2A(G) + 1, then by Theorem below T(G V {u}) = x(G°).

Theorem 2.19 [6/ A graph GV{u} with 6(G) > 2A(G)+1 has T(GV{u}) = 0(G).

The gap between T'(G) and is(G) can be arbitrarily large for certain graphs,
for instance, a subclass of universal graphs described next. We also show that k-
STAR SIZE and ¢-TESSELLABILITY are NP-complete for graphs of Construction [4]
for which GTR is in P, obeying behavior (e).

Construction 3 [0/ Let G = (V, E) be a graph. Obtain S3(G) by subdividing
each edge of G two times, so that each edge vw € E(G) becomes a path v, x, z9, w,
where 27 and x are new vertices. Let L(S2(G)) be the line graph of Sy(G). Add a
universal vertex u to L(55(G)), that is, consider the graph L(53(G)) V {u}.

First, we show that there is a connection between T'(H) of a graph H of Con-

struction 3l on G with the size of a maximum stable set of G.

Theorem 2.20 [6] If G = (V, E) is a graph with |E(G)| > 4 and H = (L(S2(G)) V
{u}) is obtained from Construction[d on G, then T(H) = |V(G)|+ |E(G)| — a(G).

11



By Theorem and the fact that deciding whether a(G) > k is NP-
complete [31], we have the following result for the graphs of Construction .

Construction 4 [6] Let Hy be the graph obtained from Construction [§ (I) on a
given graph Gy and a non-negative integer 1. Let Hy be the graph obtained from
C’onstmction@ on the graph Ga V Ky of a given graph Gy. Let u and u' be the
two universal vertices of the two connected components of Hy. Add is(Hs) degree-1

vertices to Hy adjacent to u and is(Hy) degree-1 vertices adjacent to u'. Consider
H, U H,.

Theorem 2.21 [0 k-STAR SIZE and t-TESSELLABILITY are NP-complete for
graphs of Construction[{}, for which GTR is in P.

In Table we have omitted triples. The behavior (P,P,P) is obeyed
by Threshold graphs and bipartite graphs [B, [O] since GTR problem al-
ways has answer YES and the other two problems are solved in polyno-
mial time. The behavior (P,P,NP-complete) is unreachable since if both
k-STAR SIZE and t¢-TESSELLABILITY are in P, so is GTR. The behavior
(NP-complete, N'P-complete, N'P-complete) is obeyed by the union of graphs Gy
and G5 so that (7 is in a graph class that obey behavior (a) and G5 is in a graph
class that obey behavior (c).

2.3 Total tessellation cover and quantum walk

The full paper [8] was submitted to the 46th International Workshop on Graph-
Theoretic Concepts in Computer Science, Lecture Notes in Computer Science. It is
available in ArXiv, and it is attached in Appendix [C|

We start this section by presenting total tessellation cover and total tessellation

cover number definitions.

Definition 2.22 [§/ Let G = (V, E) be a graph and ¥ a non-empty label set. A

total tessellation cover comprises a proper vertex coloring and a tessellation cover
of G both with labels in ¥ such that, for any vertex v € V, there is no edge ¢ € FE

incident to v so that e belongs to a tessellation with label equal to the color of v.

Definition 2.23 [§/ The total tessellation cover number T;(G) of a graph G is the
minimum size of the set of labels X for which G has a total tessellation cover. The

k-TOTAL TESSELLABILITY problem aims to decide whether a given graph G has
Ti(G) < k.

12



We establish bounds on 73(G), which is the smallest number of tessellations
required in a total tessellation cover of G, in special, we highlight T;(G) > w(G),
where w(@) is the size of a maximum clique of G, and T;(G) > is(G) + 1.

Since a total coloring of a graph G induces a total tessellation cover,

T(G) < x(G), (2.2)

and in particular, we have that T3(G) = x;(G) for triangle-free graphs. Hence,
(A 4 1)-TOTAL TESSELLABILITY is hard even when restricted to regular bipartite
graphs [41]. By definition,

max{x(G), T(G)} < TG) < x(G) +T(Q), (2.3)

and it implies that T3(G) > w(G).

Using these bounds, we define the good total tessellable graphs with either
Ti(G) = w(G) or Ty(G) = is(G) + 1. The k-TOTAL TESSELLABILITY problem
aims to decide whether a given graph G has T;(G) < k. We show that k-TOTAL
TESSELLABILITY is in P for good total tessellable graphs. We establish the N'P-
completeness of the following problems when restricted to the following classes:
(is(G) + 1)-TOTAL TESSELLABILITY for graphs with w(G) = 2; w(G)-TOTAL TES-
SELLABILITY for graphs G with is(G)+1 = 3; k-TOTAL TESSELLABILITY for graphs
G with max{w(G),is(G) + 1} far from k; and 4-TOTAL TESSELLABILITY for graphs
G with w(G) =is(G) + 1 = 4. As a consequence, we establish hardness results for
bipartite graphs, line graphs of triangle-free graphs, universal graphs, planar graphs,
and (2, 1)-chordal graphs.

Lemma 2.24 [§] If x(G) > 3T(G), then T,(G) = x(G).

From the lemma above, we can improve the upper bound of Eq. (2.3) as follows
T,(G) < max {x(G), T(G) + [2x(G)/3]} - (2.4)

This equation shows that x(G) > 3T(G) implies T;(G) = x(G), or x(G) < 3T(G)
implies T(G) < Ti(G) < 3T(G). If we consider x(G) = 3, Eq. implies that
T(G) <T(G) <T(G)+2.

Lemma 2.25 [§] T,(G) ng/az}é){x(Gc[N(v)])}—i-l ng%/si()é){w(Gc[N(v)])}—l—l:z's(G)—l—
1.

Since Ti(G) > is(G) +1 > k + 1, every graph G such that T,(G) = T(G) = k is
K p-free. Furthermore, in the total tessellation cover there is no tile of size k. If we

consider k£ = 3 the total tessellation cover of G induces a total coloring of G.

13



We established bounds for the total tessellation cover number for some graph
classes. For bipartite graphs, T(G) = A(G) and T:(G) > T(G). For triangle-
free graphs, T;(G) = T(G) if X'(G) = x:(G) = A + 1. Thus deciding whether
T(G) = T(G) = A(G) + 1 is N'P-complete from the proof that (A + 1)-TOTAL
COLORABILITY is N'P-complete for triangle-free snarks [55], which are graphs with
X'(G) = A+ 1. If a graph G has T;(G) = T(G) = k, we conclude that G has no
induced subgraph K j because T;(G) > is(G) +1 > k + 1, and there is no tile of
size k in any tessellation of a total tessellation cover. If T;(G) = T(G) = 3, then
G is K s-free and there is no clique of size three in any tessellation. Therefore, the
total tessellation cover of GG induces a total coloring of G, and the only graphs for
which T;(G) = T(G) = 3 are the odd cycles with n vertices such that n = Qmod )3.

We now define the concept of good total tessellable graphs.

Definition 2.26 [§/ A graph G is good total tessellable if either T;(G) = w(G) or
T:(G) = is(G) + 1. We say that G is Type I (resp. Type II) if T;(G) = w(G) (resp.
T (G) =is(G) + 1).

Using the Lovdsz number [32], which is a real number such that w(G¢) < 9(G) <
X(G), we are able to show that k-TOTAL TESSELLABILITY is in P if we know
beforehand that the graph is either good total tessellable Type I or Type II, since
the integer nearest to J(G) can be determined in polynomial time.

The following theorems show that k-TOTAL TESSELLABILITY is N P-complete
for the following cases: line graph of triangle-free graphs with k¥ = w(G) > 9 and
is(G) + 1 = 3; universal graphs with k very far apart from both is(G) + 1 and
w(@); planar graphs with k = 4 = w(G) = is(G) + 1; and (2, 1)-chordal graphs with
k=is(G)+1=w(G)+3.

Theorem 2.27 [§/ k-TOTAL TESSELLABILITY is N'P-complete for line graphs L(G)
of 3-colorable k-reqular triangle-free graphs G for any k > 9.

Theorem 2.28 [§/ k-TOTAL TESSELLABILITY is NP-complete for universal
graphs.

Theorem 2.29 [§/ 4-TOTAL TESSELLABILITY is N'P-complete for planar graphs.

Theorem 2.30 [§/ k-TOTAL TESSELLABILITY is N'P-complete for chordal graphs.

Table summarizes the results of paper [8] of Appendix [C] by making a con-
trast between the computational complexities of decision problems related to the
parameters X'(G), x:(G), T(G), and T3(G).

14



X'(G) | T(G) X'(G) | x¢(G) X'(G) | Ty (G)
2|V(@)], G°] P NP-c GUKa(gy+1, A even | P NP-c 2|V(@)], G°] P NP-c
Line of Bipar- | NP-c | P GUKAG)+1, Aodd | NP-c | P Line of Bipartite, | NP-c | P
tite w(G) > 6

T(G) | X.(G) HEREE X(G) | T(G)
Bipartite P NP-c Bipartite P NP-c GUKaGy41, Aodd | P NP-c
[2‘V(G)|7GC] NP-c P GUK3A(G) NP-c | P Open NP-c P

Table 2.4: Computational complexities of parameters x'(G), x:(G), T(G), and T;(G).

To close this chapter, we present the total staggered quantum walk model, which
is the first quantum walk model to use both vertices and edges as locations to the
walker. A quantum walk models the walk of a particle, called by walker, over a graph,
and the walker is represented by a unitary vector. Let G = (V, E') be a simple graph
so that |[V(G)| = n and |E(G)| = m. Let H"™™ be a (n + m)-dimensional Hilbert
space, whose computational basis is the set {|v),v € V(G)} U {|ow),vw € E(G)}.
We represent the state vector of the walker by |v) if the walker is located on a vertex,

or |vw), if the walker is located on an edge vw. Then, we define a generic state by

[Wy=> afo)+ Y bulow), (2.5)

veV(Q) vweE(G)

where the coefficients a, and b,,, are complex numbers that obey the normalization

dodalr+ D bl =1 (2.6)

veV(G) vweE(G)

constraint

A quantum walk model on graphs must provide a recipe to build local unitary
operators based on the graph structure. We can represent such operators as unitary
matrices, i.e., UUT = UTU = I, where U represents a matrix, U' is the transpose
conjugated matrix of U, and [ is the identity matrix. Moreover, such operators
must be reversible, i.e., Ulyy) = [¢1), and Uf|hy) = Jihg). In our proposal, the
evolution operator that drives the quantum walk is obtained from a total tessellation
cover, which provides a tessellation cover {7, ..., Ty} and a compatible proper vertex
coloring.

Figure depicts an example of a total tessellation cover. Note that the colors
of the vertices in 2-tiles are different from the tile color. On the other hand, there

are 1-tiles that contain a vertex with the tile color.
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Figure 2.5: (Left) A total tessellation cover of a claw graph G.

r 1
X0
0 0
1
% 0

U=|2% 0
0 1
0 0
0 0

00 -3 5 3 ]
01 0 0 O

1 2 1
oo Lo
00 5 3§ -3
00 0O 0 O

1 1 1
00 7% 5 &
10 0 0 0 |

(Right) The evolution

operator of a total staggered quantum walk on G with A = 7/2.

We can write the operator generically as

Si\n/%’\ cosA 0 0 bsin A\
0 0 0 1 0
ci 0 0 0 5+ csin A
U= Sl\n/g)‘ 0 cosA 0 csin A
-2 sinA 0 0 —bsin A
\/i sin? \ )\
a—m 0 0 0 =% —ccos
\% 0 sinA 0 —CCOS \
where a = cos A sin )\7 b= —2—COS>\’ c = 1—cos A\

3 3

csin A
0
\/ig — bsin A
csin A
—csin A
SPA ) cos A\

V3
—CCcos A

, d = cos? \ +

csin A
0
\% + csin A
—bsin A

—csin A

sin? \
V3
—bcos A

— cCcos A

sin? \

\/g,andog)\g%r.

Each tessellation 7; is associated with a Hermitian matrix H;. Since H; is local, the

action of H; on the state of a walker that is located on a vertex v drives the walker

to the neighborhood of v and to the edges incident to v.

The dynamic of this quantum walk driven by H; must obey the following locality

rules, as described in [§]:

1. If the walker is located on a vertex v that belongs to a 1-tile of 7, there are

two cases: (i) If the color of the vertex is equal to the color of tessellation 7j,

the walker hops to v and to the edges incident to v; and (4i) if the color of the

vertex is different from the color of tessellation 7;, the walker stays put.

2, the walker hops to the vertices in such a tile.

stays put.

. If the walker is located on a vertex v that belongs to a tile of 7; of size at least

. If the walker is located on an edge that belongs to tessellation 7, the walker

. If the walker is located on an edge that does not belong to tessellation 7;

there are two cases: (i) If there is an incident vertex v whose color is equal to
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the color of tessellation 7;, the walker hops to v and to the edges incident to

v; and (7) otherwise, the walker stays put.

G A
ab ac bc bd be ce cf de ef
b C ‘v XX
AN NROSIK
d e f a b c d e f

Figure 2.6: Total tessellation cover of a graph GG and the associated tessellation cover
of A = Tot(G).
It is possible to simulate a total staggered quantum walk on a graph G with a

staggered quantum walk on its total graph Tot(G), defined below.

Definition 2.31 The total graph Tot(G) of G has V(Tot(G)) = V(G) U E(G)
and E(Tot(G)) = E(G)U{u vw | v € V(G), vw € E(G)} U {w vw | wv €
E(G) and vw € E(G)}.

Let A = Tot(G), A[E(G)] = Y and A[V(G)] = X. Subgraph Y is isomorphic
to the line graph L(G) of G, and X is isomorphic to the original G. We define the
clique K, = {v} U {vw | vw € E(G)} of A.

We first consider a total tessellation cover of a graph G, and we define an asso-
ciated tessellation cover of A as follows. Assign the labels of the edges of G to the
respective edges of X and assign the color of each vertex v of G to the edges of A[K,].
By this way, we relate the total tessellation cover of G to the tessellation cover of
A, as well as their respective evolution operators generated from these tessellation
covers. To simulate the total staggered quantum walk on G with the staggered
quantum walk on A, we consider the vertices of G as the corresponding vertices
of X in A, and the edges of G as the corresponding vertices of Y in A. Fig. 2.6
depicts a total tessellation cover of a graph GG and the associated tessellation cover
of A = Tot(G).
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Chapter 3
Conclusion

The staggered model proposal [49] in 2015 gave to the studies about the tes-
sellation cover number a great motivation due to the applicability of this con-
cept in the generation of quantum operators to perform quantum walks using that
model. Since the less quantum operators needed to be implemented, the less com-
plex is the quantum implementation, the knowledge about how many tessellations
are needed to cover a graph is important in quantum walk context, and the re-
sults obtained in the present thesis can help the studies in quantum computa-
tion [10, 1T, 24, 25, 37, [45], 46, 54]. We summarize the results, discuss current
work, and propose open questions.

In Section[2.T]we investigate the tessellation cover number for graph classes whose
T'(G) reaches one of the upper bounds. Those graphs are called by extremal graphs
and they are fundamental for the development of quantum walks in the staggered
model, since those results lead us to a better understanding about the complexity of
the unitary operators necessary to express the evolution of staggered quantum walks.
Besides the extremal graph classes presented, we also improve the known algorithm
to recognize line graphs of bipartite multigraphs [51], for 2-tessellable graphs [48],
and graphs G such that K(G) is bipartite [44], to linear-time.

Naturally, an interesting question arises: Does every graph have a minimum tes-
sellation cover such that every tessellation contains a maximal clique? Although the
intuition says that in most cases the answer is true, using a minimization model pro-
posed by Abreu et al. [2] for the optimization version of ¢-TESSELLABILITY problem,
we found a surprising example of a graph, which is depicted in Figure [3.1] with all
minimum tessellation covers requiring a tessellation without maximal cliques. This
minimization model was presented in Congresso Nacional de Matemdtica Aplicada e
Computacional, in 2018 (attached in Appendix @, and we are currently working on
improvements for this model [2], while we study the different quantum walk dynam-
ics over a same graph G resulting from the use of two different minimum tessellation

covers for (.
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7 Iy

Figure 3.1: 3-tessellable graph. Rightmost tessellation does not contain a maximal
clique.

In Section we proposed a tight lower bound for T'(G), which implicitly ap-
peared in the previous hardness proofs of [9]. It is important to analyze the gap
between T(G) and is(G), since in the quantum walk context, it is advantageous to
implement physically as few operators as possible in order to reduce the complexity
of the quantum system. We presented graph classes for which T'(G) = is(G). These
graphs are called by good tessellable graphs, and it is related with a new problem
proposed, the GOOD TESSELLABLE GRAPHS RECOGNITION (GTR), and we analyzed
the computational complexity behaviors for several graph classes with respect of the
problems: ¢-TESSELLABILITY, GTR, and k-STAR SIZE. From this work, an inter-
esting research topic is the extension of the concept of good tessellable graphs to
perfect tessellable graphs, the graphs G for which T(H) = is(H) for any induced
subgraph H of G.

In Section we have defined the total tessellation cover on a graph G. From
this concept we propose the total staggered quantum walk model, which is the first
quantum walk model to use both vertices and edges as possible locations for the
walker. An open problem is to search for graphs with at least 3 vertices satisfying
Ti(G) = 3T(G) and T;(G) > x(G). Furthermore, it is interesting to define graph
classes with T;(G) = T(G) = k for k > 4, since for k = 3 the only such graphs are
the odd cycles C,, with n = 0 mod 3. Another open problem is to find a threshold
for T;(G) for which all planar graphs are Type II.

In Appendix [E] we show results presented in the 8th Latin-American Workshop
on Cliques in Graphs, whose proceedings were published at Matemdtica Contem-
pordnea [7]. In that work we analyzed the ¢-TESSELLABILITY problem in graphs
with few induced P;. We proved that adding true-twin vertices in a graph G results
in a graph G’ such as T(G) = T(G’) for any graph G. Moreover, we presented a
polynomial time algorithm for t-TESSELLABILITY of quasi-threshold graphs. Fur-
thermore, the concept of t-TESSELLABILITY COMPLETION on G was introduced,
and it aims to decide whether there is a tessellation cover T of GG with ¢ tessellations

given by a partial tessellation cover T of GG, such that T’ is part of T.
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1. Introduction

Random walks play an important role in Computer Science mainly in the area of algorithms and it is expected that quan-
tum walks, which are the quantum counterpart of random walks, will play at least a similar role in Quantum Computation.
In fact, the interest in quantum walks has grown considerably in the last decades, especially because they can be used to
build quantum algorithms that outperform their classical counterparts [2].

Recently, the staggered quantum walk model [3] was proposed. This model is defined by an evolution operator, which is
described by a product of local unitary matrices obtained from a graph tessellation cover. A tessellation is a partition of the
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- <L -
Fig. 1. The spreading of a walker subject to locality across a 2-tessellable graph. At each step, the walker may be observed at filled vertices that represent

non-zero amplitudes, meaning that a measurement of the position can reveal the walker at one of those vertices. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

vertices of a graph into vertex disjoint cliques, and a tessellation cover is a set of tessellations so that the union covers the
edge set of the graph. To cover the entire edge set is important because an edge that would not be in the tessellation cover
would play no role in the quantum walk dynamics. In order to fully understand the possibilities of the staggered model, it is
fundamental to introduce the t-TESSELLABILITY problem. This problem aims to decide whether a given graph can be covered
by t tessellations.

The simplest evolution operators are the product of few local unitary matrices and, to obtain a non-trivial quantum
walk, at least two matrices (corresponding to 2-tessellable graphs) are required [3]. There is a recipe to build a local unitary
matrix based on a tessellation. Each clique in a tessellation is associated with a unit vector, and the set of those unit
vectors spans a subspace of the model’s Hilbert space. A subspace has an associated orthogonal projection IT, which is
used to define the local unitary operator (2I1 — I) associated with the tessellation. Each clique of the partition establishes
a neighborhood around which the walker can move under the action of the local unitary matrix. The evolution operator
of the quantum walk is the product of the unitary operators associated with the tessellations of a tessellation cover. Fig. 1
depicts an example of how a quantum walker could spread across the vertices of a graph, given a particular tessellation
cover, where the filled vertices represent that the probability of finding the walker is non-zero. Note that after each step
the walker spreads across the cliques in the corresponding tessellation.

The study of tessellations in the context of Quantum Computing was proposed by Portugal et al. [3] with the goal
of obtaining the dynamics of quantum walks. Portugal analyzed the 2-tessellable case in [4], showing that a graph is
2-tessellable if and only if its clique graph is bipartite, and examples for the t-tessellable case are available in [5]. The
present paper is the first systematic attempt to study the graph tessellation cover as a branch of Graph Theory. Our aim is
the study of graph classes whose tessellation cover number is close or equal to chromatic upper bounds, efficient algorithms,
and hardness.

In Section 2, we establish a chromatic upper bound as the minimum between the chromatic index of the graph and
the chromatic number of its clique graph, and we present infinite families of star-octahedral graphs and windmill graphs,
showing that this bound is tight. We also present the infinite family of extended wheel graphs whose tessellation cover
number is far from the chromatic upper bound. We describe the tessellation cover number for the classes of bipartite
graphs and {triangle, proper major}-free graphs, and we prove that t-TESSELLABILITY for these classes is polynomial-time
solvable, while is A"P-complete for triangle-free graphs, when t > 3. In Section 3, we present extremal graph classes, ie.,
classes whose tessellation cover numbers reach the chromatic upper bound. Such classes are useful to establish hardness
results in Section 4. We obtain proofs of A/P-completeness for t-TESSELLABILITY problem of planar graphs for t = 3, biplanar
graphs for t > 3, chordal (2, 1)-graphs for t > 4, (1, 2)-graphs for t > 4, and diamond-free graphs with diameter at most
five for t = 3. Moreover, we describe a linear-time algorithm for 2-TESSELLABILITY by improving the algorithm proposed by
Peterson [6] for line graph of bipartite multigraph recognition. In Section 5, we summarize in Table 1 the extremal graph
classes analyzed in Section 2.2 and in Section 3, whereas in Table 2 the complexity of the t-TESSELLABILITY problem for
the graph classes analyzed in Section 4. Moreover, we leave open questions and discuss future work, such as whether
every minimum tessellation cover contains tessellations with at least one maximum clique, and whether two minimum
tessellation covers in a same graph have different quantum walk dynamics.

2. Preliminaries on the tessellation cover number

In this section, we present the main definitions of this paper, we introduce the chromatic upper bound, and we show
that this bound is tight by presenting infinite families of graphs whose tessellation cover numbers achieve this chromatic
upper bound. On the other hand, we present an infinite family of graphs whose tessellation cover number is far from the
chromatic upper bound.

2.1. Definitions and upper bounds

A clique is a subset of vertices of a graph such that its induced subgraph is complete, and a d-clique is a clique of size
d. The size of a maximum clique of a graph G is denoted by @(G). The clique graph K(G) is the intersection graph of the
maximal cliques of G. A partition of the vertices of a graph into cliques is a collection of vertex disjoint cliques, where the union
of these cliques is the vertex set. Clique graphs play a central role in tessellation covers. See [7] for an extensive survey on
clique graphs and [8] for omitted graph theory terminologies.

Definition 1. A tessellation 7T is a partition of the vertices of a graph into cliques. An edge belongs to the tessellation 7 if
and only if its endpoints belong to the same clique in 7. The set of edges belonging to 7 is denoted by £(T).
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Definition 2. Given a graph G with edge set E(G), a tessellation cover of size t of G is a set of t tessellations Ty, ..., 7T},
whose union Uf.:] E(T;) = E(G). A graph G is called t-tessellable if there is a tessellation cover of size at most t. The
t-TESSELLABILITY PROBLEM aims to decide whether a graph G is t-tessellable. The tessellation cover number T(G) is the size of
a smallest tessellation cover of G.

A coloring (resp. an edge-coloring) of a graph is a labeling of the vertices (resp. edges) with colors such that no two
adjacent vertices (resp. adjacent edges) have the same color. A k-colorable (resp. k-edge-colorable) graph is the one which
admits a coloring (resp. an edge-coloring) with at most k colors. The chromatic number x (G) (resp. chromatic index x'(G)) of
a graph G is the smallest number of colors needed to color the vertices (resp. edges) of G.

Note that an edge-coloring of a graph G induces a tessellation cover of G. Each color class induces a partition of the
vertex set into disjoint cliques of size two (vertices incident to edges of that color) and cliques of size one (vertices not
incident to edges of that color), which forms a tessellation. Moreover, a coloring of K(G) induces a tessellation cover of G.
As presented in [5], two vertices of the same color in K(G) correspond to disjoint maximal cliques of G and every edge of
G is in at least one maximal clique. So, each color in K(G) defines a tessellation in G by possibly adding cliques of size one
(vertices that do not belong to the maximal cliques of G related to vertices of K(G) with that color), such that the union
of these tessellations is the edge set of G. Hence, we have the chromatic upper bound, denoted by cub(G), as the minimum
between x'(G) and ¥ (K(G)).

Theorem 1. If G is a graph, then T(G) < cub(G) = min{x'(G), x (K(G))}.

Portugal [4] characterized the 2-tessellable graphs as those whose clique graphs are bipartite graphs. Note that if K(G)
is bipartite, then x (K(G)) =2, while x'(G) may be arbitrarily large due to the fact that this parameter is related to the
maximum degree A(G). In order to characterize t-tessellable graphs, for t > 3, we find graph classes such that T(G) = 3,
with x'(G) and x (K(G)) arbitrarily large, and graph classes whose tessellation cover number reaches the chromatic upper
bound of Theorem 1, i.e., T(G) = x'(G) but x (K(G)) arbitrarily large; and T(G) = x (K(G)) but x'(G) arbitrarily large, some
of those examples were described in [5], and further developed in Section 2.2.

An interesting case occurs for a triangle-free graph. Note that any of its tessellations can only be formed by cliques
of size two or one. Hence, we have that if G is a triangle-free graph, then T(G) = ¥'(G) = x(K(G)) = x(L(G)),
where L(G) is the line graph of G. Therefore, t-TESSELLABILITY is polynomial-time solvable for bipartite graphs and for
{triangle, proper major}-free graphs, and there are also polynomial-time algorithms to obtain a minimum tessellation cover
for these graph classes [9,10]. On the other hand, it is known that A-EDGE COLORABILITY of triangle-free graphs for A > 3
is N'P-complete [11]. Therefore, t-TESSELLABILITY of triangle-free graphs for t > 3 is also N"P-complete. Similarly, we know
that A-EDGE COLORABILITY of regular unichord-free graphs with girth at least 15 for A > 3 is N'P-complete [12]. As this
graph class is triangle-free, we conclude that the same hardness proof holds for t-TESSELLABILITY for t > 3.

2.2. Three infinite families

We present three infinite families of graphs G that illustrate some interesting situations: (i) T(G) = x'(G) with x (K(G))
arbitrarily large; (ii) T(G) = x (K(G)) with x’(G) arbitrarily large; and (iii) T(G) = 3 with both upper bounds arbitrarily
large. Note that the first two situations are illustrated by families of graphs whose tessellation cover numbers achieve the
chromatic upper bound.

A coalescence [13] of disjoint graphs G1 and G is obtained by identifying a vertex of G; with another vertex of Gs.
The first family of star-octahedral graphs G, is the coalescence of the graphs Sy, and O, — where Sy, is the star graph
with 2p leaves and O, is the p dimensional octahedral graph defined by the (2p — 2)-regular graph with 2p vertices — by
identifying a leaf of Sz, into any vertex of 0. Fig. 2 depicts the star-octahedral graph Gj.

Next, we establish that the tessellation cover number of star-octahedral graph G, is equal to its chromatic index.

Theorem 2. Let G, be a star-octahedral graph. Then:

L. T(Gp) = A(Gp) = x'(Gp) = x(K(Gp)) =2p, for p € {2, 3}, and;
2. T(Gp) = A(Gp) = x'(Gp) =2p and x (K(Gp)) = 2P~ 41, for p > 4.

Proof. We know that the clique graph of the octahedral graph O, is the octahedral graph O,p,—1 [14]. Moreover, as the
star-octahedral graph has only one vertex with maximum degree, we know that x'(G,) =2p. The tessellation cover number
of Syp is equal to 2p, hence T(Gp) = 2p. The proof is divided into two cases:

1. Consider p = 2. We know that K(03) = 0, and K(S4) = K4, which are induced subgraphs of K(G>). Since G has
a vertex v € V(S4) identified with a vertex of 03, it follows that K(G2) has a vertex u € V(K(S4)) that is a neighbor of
two vertices of K(03). Hence, the largest maximal clique of K(G2) has size 4, and x (K(G2)) =2p = 4. Moreover, A(G2) =
A(S4) = x'(G2) = 2p = 4. Then, from Theorem 1, it follows that T(G3) = x'(G2) = x (K(G2)) = 2p. The proof is analogous
for p =3.
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Fig. 2. (a) The star-octahedral graph Gy, i.e,, the coalescence between the octahedral graph 04 and the star graph Sg. (b) The clique graph K(G4). Notice
that T(G4) = x'(G4) =8, while x(K(G4))=9.

Fig. 3. The windmill graph Wds 5, composed by 5 copies of the complete graph Ks. Notice that this graph has T(Ws35) = x (K(Wds 5)) =5, since its clique
graph K(Wds s) is the complete graph Ks.

2. Notice that each vertex of 0, belongs to 2P—1 maximal cliques. Since Gp has a vertex v € V(Sp) identified with a
vertex of Op, it follows that v belongs to 2P—1 4 1 maximal cliques. Hence, X (K(Gp)) = w(K(Gp)) = 2P=1 4 1. One can
obtain a (2P~! + 1)-coloring of K(Gp) as displayed in Fig. 2(b). Hence, x (K(Gp)) =2P~1 + 1.

As A(Gp) = A(S2p) =2p, then x'(Gp) = 2p. From Theorem 1, it follows that T(G,) < min{x'(Cp). x (K(Gp))} =
Xx'(Gp)=2p, since 2p < 2P~ 141 for p > 4. As T(S2p) = x'(S2p) =2p = T(Gp), we conclude that T(Gp) = x'(Gp) = 2p. O

The second family of windmill graphs Wd,, 4 is obtained by identifying q copies of the complete graph Kp at a universal
vertex. Note that T(Wdj q) = x(K(Wd, 4)) =q for p>2 and x'(Wdp4) = (p — 1)q [5]. Fig. 3 depicts an example of the
windmill graph Wd3 5, that is composed by 5 copies of the complete graph K3. Clearly, its clique graph K(Wds5) is a
complete graph Ks, then yx(K(Wds 5)) =5, which is equal to the tessellation cover number of Wd3 5. On the other hand
%' (Wds 5) = 10.

The third family of (k, p)-extended wheel graphs Ej p, for k = 3 and p > 2, is defined by adding to the wheel graph
Wy, (defined by a cycle Cpp, V(Cip) ={0,1,2,...,kp — 1}, after adding a universal vertex with label kp.) the following
edges: {ki,kj}, {ki +1.kj+ 1}...., {ki+k —1,kj +k — 1}, for 0 <i < j < p. When focusing on the case k = 3, we show
that T(E3 ) =3, x'(G)=3p, and X (K(E3,p)) =3p + 3. The class E£3 p comprises 3-tessellable graphs with arbitrarily large
chromatic index, whose clique graphs have arbitrarily large chromatic numbers. It shows that the tessellation cover number
does not necessarily depend neither on x’(G) nor on X(K(G)).

Lemma 1. The maximal cliques of E3_ are 3-cliques or (p + 1)-cliques. The number of maximal cliques is 3p 4 3. The maximal cliques
are the 3-cliques of the spanning wheel W), plus three new (p + 1)-cliques. All maximal cliques share the vertex with label 3p, which
is the universal vertex.

Proof. Each of the 3p vertex sets {0, 1,3p},{1,2,3p},...,{13p—2,3p—1,3p},{3p—1,0,3p} is a maximal clique K3 because
it induces a triangle of the spanning wheel graph and the vertex set {i : 0 <i < 3p} contains no maximal clique of size 3 in
E3p.

JIlJ\Iow consider the three sets of vertices {0, 3,6,....3p — 3,3p}, {1,4,7,....3p — 2.3p}, and {2.5,8,...,3p — 1,3p}, each
of them with cardinality p + 1. We claim that each one is a maximal clique Kp. Consider the set {0,3.6,...,3p —3,3p}
(analogous for the other ones). All vertices in this set are adjacent because every pair of vertices is either {3i,3j} for some
0<i.j=<por {3i3p} for some 0 <i < p. In the first case, these edges were added to W3, to define E3p, and in the
second case the edges belong to the spanning wheel graph. If a new vertex is added, it must have the form 3i+ 1 or 3i +2
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S\ /=

Fig. 4. An example of the (3,2)-extended wheel graph. Notice that the tessellations applied in this graph are 77 = {{0.3.6},{1,2}.{4,5}}. T2 =
{{1,4.6},{2,3}.{5.0}}, and 73 = {{2.5.6}. {3, 4}. {0, 1}}, as described in the proof of Theorem 3.

for some 0 <i < p and it will not be adjacent to all vertices of set {0,3,6.....,3p — 3, 3p}. Hence, there are three maximal
cliques of size p 41 in E3p. Then, the total number of maximal cliques is 3p + 3 and all of them share the vertex with
label 3p. O

Theorem 3. Let E3 ;, be a (3, p)-extended wheel graph. Then, T(E3 ) =3 for p = 2.

Proof. Let us show that E3 j, is 3-tessellable by describing explicitly three tessellations that cover the edges of E3 p. The
tessellations are the following ones:

s 3P = 2,3p},{2,3),15, 6}, ..., (3p —4,3p — 3}, {3p — 1, 0}};
,---5317 - 1,317];{3;4}, {6~ 7}5 reey {310 - 3!310 _2]! {05 1}}

T1=1{{0,3,6
T =1{{1.4.7
T5=1{{2.5,8
Let us show that 77 is a well defined tessellation (analogous for the other ones) by checking each item of the following list:
(1) Each vertex set in 77 must induce a clique, (2) the vertex sets in 7; must be pairwise disjoint, and (3) the union of the
vertex sets in 7y must be the vertex set of E3 . Item (1) holds by Lemma 1, since the set {0,3,6,..,.3p-3,3p} is a clique, and
the remaining sets define edges of the spanning wheel. Item (2) holds since the set {0,3,6,...,3p — 3,3p} is comprised of
vertices that are multiple of 3 while the remaining sets are disjoint and contain no multiple of 3. Item (3) holds since the
union of the sets in 77 is the vertex set. Since no edge belongs to more than one tessellation and each tessellation covers
p(p+3)/2 edges, the union E(77) UE(T2) U E(T3) covers 3p(p + 3)/2 edges, which is the number of edges of E3 p. It is

not possible to cover the edges of E3, with less than three tessellations because if T(E3 ) =2 then x (K(E3p)) =2 [3].
However, the chromatic number of the clique graph of E5 j, is 3p + 3. Then, T(Eg_p) =3forp=2. O

Fig. 4 depicts the (3, 2)-extended wheel graph E3 .

It is straightforward to extend those results and to prove that T(Ey ) <k, x'(G) = kp, and X(K(Ek:p)) =k(p+1).
Therefore, we are able to provide examples of classes of k-tessellable graphs with arbitrarily large chromatic index, whose
clique graphs have arbitrarily large chromatic number for any k > 3.

3. Extremal graph classes

In this section, we show extremal graph classes, by presenting constructions that force the tessellation cover number of
some graphs to be equal to the chromatic upper bound. An extremal graph is a graph whose tessellation cover number is
equal to the chromatic upper bound of Theorem 1. We are particularly interested in constructing graphs with tessellation
cover number corresponding or close to the chromatic upper bound. Note that the family of star-octahedral, windmill,
triangle-free, bipartite, {triangle, proper major}-free, and unichord-free graphs with girth at least 15, analyzed in Section 2,
are examples of extremal graph classes. For the sake of convenience, we may omit one-vertex cliques inside tessellations in
our proofs.

Construction 1. Let H be obtained from a graph G by adding a star with x'(G) leaves and identifying one of these leaves
with a minimum degree vertex of G. See Fig. 5.

The tessellation cover number of H, obtained from Construction 1 on a non-regular graph G, is equal to x'(G), i.e.,
T(H) = x/'(H) = x'(G). For regular graphs, if x'(G) = A(G) + 1, then T(H) = x'(H) = x'(G). Otherwise, T(H) = x'(H) =
x'(G) + 1. Construction 1 also implies that every non-regular graph G is a subgraph of a graph H with T(H) = x/(H) =
x'(G).

Additionally, Construction 2 in diamond-free graphs G forces the tessellation cover number of the obtained graph H to
be equal to the chromatic number of the clique graph x (K(G)). First, we define a property of the cliques on a tessellation
called exposed maximal clique. Such a property helps us with particular cases of diamond-free graphs.
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G

o D

Fig. 5. Example of Construction 1. T(G) =3, and T(H) = x'(H) = x'(G) = 4.

Fig. 6. Example of a 3-tessellable graph G whose clique graph is the Mycielskian of a Cs, with x (K(G)) = 4 but T(G) = 3. Each tessellation is depicted
separately,

Definition 3. A maximal clique K of a graph G is said to be exposed by a tessellation cover C if E(K) Z £(T) for all T €C,
that is, the edges of K are not covered by any single tessellation of C.

Lemma 2. A graph G admits a minimum tessellation cover with no exposed maximal cliques if and only if T(G) = yx (K(G)).

Proof. Given a minimum tessellation cover C = {71,..., T¢} of G, if there are no exposed maximal cliques in G, then C
induces a coloring of K(G). In fact, suppose that C, is a maximal clique of G associated with vertex v € V(K(G)). If C is
covered by tessellation 7; then v receives color ¢; (if Cy is covered by more than one tessellation, we have more than one
choice for coloring v). Using the definitions of tessellation and tessellation cover, we conclude that this method produces
a coloring of K(G) with colors ¢y, ..., ¢, which implies that x(K(G)) is at most t. And Theorem 1 implies the equality
¥ (K(G) =t=T(G).

Conversely, the proof of Theorem 1 describes a minimum tessellation cover of size t with no exposed maximal clique
when ¥ (K(G)=T(G)=t. O

In the remaining part of this section we consider diamond-free graphs, which have the following properties [6]: (1) their
clique-graphs are diamond-free, and (2) any two maximal cliques intersect in at most one vertex.

Theorem 4. If G is a diamond-free graph with x (K(G)) = w(K(G)), then T(G) = x (K(G)).

Proof. let d = x(K(G)) = w(K(G)). Hence, there is a complete graph Ky, where V(Ky) = {v1,...,vq} in K(G). Let
Cvy, .., Cy; be the maximal cliques in G, such that each C,,; is associated with vertex v; in K(G).

Since G is diamond-free, the cliques Cy,,...,Cy, compose an induced subgraph H and these cliques share exactly one
vertex in G, that is universal in H, because any two maximal cliques of a diamond-free graph intersect in at most one vertex
and each edge belongs to exactly one maximal clique. Since x (K(G)) =d, this coloring induces a tessellation cover with d
tessellations in H, that is optimal for H, then T(G) > x (K(G)). By Theorem 1 T(G) < x(K(G)), then T(G) = ¥ (K(G)). O

A graph is K-perfect if its clique graph is perfect [15]. Since a diamond-free K-perfect graph G satisfies the premises
of Theorem 4, we have T(G) = x(K(G)). Note that the size of the clique graph of a diamond-free graph is polynomially
bounded by the size of the original graph [6]. Moreover, there is a polynomial-time algorithm to obtain an optimal coloring
of K(G) with @w(K(G)) colors [16] and, by Theorem 1, a coloring of K(G) with t colors yields that G is t-tessellable. Thus,
both the tessellation cover number and a minimum tessellation cover of diamond-free K-perfect graphs are obtained in
polynomial time.

Interestingly, there are diamond-free graphs whose clique graphs have chromatic number greater than the tessellation
cover number. Fig. 6 illustrates an example of a 3-tessellable diamond-free graph whose clique graph has chromatic num-
ber 4 (the clique graph K(G) is the Gritzsch graph, i.e. Mycielskian of a 5-cycle graph). Note that any minimum tessellation
cover of this graph necessarily has an exposed maximal clique. Moreover, this graph shows that the upper bound of Theo-
rem 5 is tight.

Lemma 3. Let G be a 3-tessellable diamond-free graph. If C1 and Cy are two maximal cliques of G with a common vertex, then C1 and
C, cannot be both exposed by a minimum tessellation cover.
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Fig. 7. Example of Construction 2. T(G) =3 and x(K(G))=4, but T(H)=4 and x(K(H))=4.

Proof. For the sake of the contradiction, assume that v € V(Cy;NCy), and that C; and Cy are both exposed maximal cliques.
Since G is diamond-free, the vertex v is the only vertex in the intersection between cliques C; and Cy. Let C be a minimum
tessellation cover with size at most 3. Let us focus on cliques of size at least two in tessellations that cover edges of Cy.
In a tessellation, no clique of size at least two covers all edges from v to its neighbors because Cq is an exposed maximal
clique. Then, v belongs to at least two cliques of size at least two in different tessellations, where each one covers a proper
subset of the edges of Cy. The same is true for C», that is, v belongs to at least two cliques of size at least two in different
tessellations, where each one covers a proper subset of the edges of C,. This means that at least four cliques of size at least
two intersect on v and all of them must belong to different tessellations. This contradiction shows that C1 and C» cannot
be both exposed by a minimum tessellation cover, if G is a diamond-free graph. O

Theorem 5. If G is a diamond-free graph with T(G) =3, then 3 < x (K (G)) < 4.

Proof. By Theorem 1, we have that 3 < ¥ (K(G)). Given a minimum tessellation cover C = {71, 72,73} of G, Lemma 3
implies that the set of vertices in K(G) that are associated with the exposed maximal cliques in G is a stable set in K(G).
K(G) can be colored with four colors in the following way: the vertices in K(G) that correspond to exposed cliques have
color c4; the vertices in K(G) that correspond to a maximal clique fully contained in 7; have color ¢;. This coloring shows
that x (K(G)) =4. O

Now we present a construction which forces the tessellation cover number of a graph H, obtained from Construction 2
on a diamond-free graph G, to be T(H) = x(K(H)) = x(K(G)). If G has T(G) < x(K(G)), then there is no vertex of G that
belongs to x (K(G)) maximal cliques. The graph H obtained from G by Construction 2 satisfies y (K(H)) = x (K(G)) and
contains a vertex that belongs to x (K(G)) maximal cliques, which implies T(H) = x (K(G)).

Construction 2. Let H be obtained from a graph G by iteratively adding pendant vertices to a vertex of G until it belongs
to x (K(G)) maximal cliques. See Fig. 7.

Construction 2 implies that every diamond-free graph G is a subgraph of a graph H with T(H) = x(K(H)) = x (K(G)).
Note that this construction is not restricted to diamond-free graphs and it can also be applied several times to vertices that
only belong to one maximal clique. The hardness proofs of Theorems 8 and 9 rely on this result.

We finish this section showing that threshold graphs are extremal graphs by proving that the tessellation cover numbers
of these graphs achieve the chromatic upper bound. The class of threshold graphs is hereditary and self-complementary [17].
We can describe a threshold graph as G = (C U S, E), where C represents a maximum clique of G, S represents an inde-
pendent set of G with nested neighborhood, and E represents the edge set of G. Threshold graphs can be constructed from
an empty graph by repeatedly adding either an isolated vertex or a universal vertex. Considering a connected threshold
graph G = (CU S, E), in the clique graph K(G), C is represented by vertex v, and each maximal clique containing ver-
tices v; € 5,1 € {1,...,|S]} is represented by a vertex Vs,. Since there exists a universal vertex u € V(G), there are no disjoint
maximal cliques in G, and the clique graph K(G) is a complete graph with |S|+1 vertices. Moreover, note that its chromatic
index x/(G) can be arbitrarily large.

Theorem 6. [f G = (C U S, E) is a connected threshold graph, then T(G) = x (K(G)).

Proof. Since G does not have disjoint maximal cliques and its clique graph is the complete graph with size |S|+ 1, then
x(K(G)) =S|+ 1. Hence, by Theorem 1, T(G) < |S| 4+ 1. By the fact of C is a maximal clique in G, there is no vertex ve S
such that v is neighbor of all vertices in C, otherwise there would exist a maximal clique C’, greater than C, containing the
clique C and the vertex v. The vertices of S in a threshold graph G must have a nested neighborhood [18]. Hence, there is
at least one vertex w € V(C) such that w is not neighbor of any vertex in S. Since G has a universal vertex u, then G has
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Fig. 8. The 3-tessellable graph-gadget of Lemma 5. Each tessellation is depicted separately. The external vertices are a, b, ¢, e, j, I, n, o, and the internal
vertices are the remaining ones.

an induced star subgraph with |S|+ 1 leaves centered in u, all vertices of S and w € V(C) as its leaves. Therefore, such an
induced star requires at least S|+ 1 tessellations, i.e., T(G) > [S]| + 1.
We conclude that T(G)=|S|+ 1=X(K(G)). O

Since to construct and to color the complete clique graph K(G) can be done in polynomial-time for a threshold graph G,
we conclude that f-TESSELLABILITY is polynomial-time solvable.

4. Computational complexity

Now, we focus on the computational complexity of t-TESSELLABILITY by firstly proving that the problem is in A7P. In
Section 4.1, we use extremal graph classes obtained in the previous section to show A P-completeness of planar graphs
with maximum degree A(G) <6 for t = 3, biplanar graphs for t > 3, chordal (2, 1)-graphs for t > 4, (1, 2)-graphs for t > 4,
and diamond-free graphs with diameter at most five for t > 3. In Section 4.2, we efficiently solve 2-TESSELLABILITY in linear
time.

Lemma 4. t-TESSELLABILITY is in N'P.

Proof. Let G be an instance for t-TESSELLABILITY. If t > A(G) + 1, then by Theorem 1 and the well-known Vizing's theorem
on A-EDGE COLORABILITY, the answer is always YES. When t < A(G), consider a certificate for t-TESSELLABILITY, which consists
of at most t tessellations that cover the edge set E(G). Note that each of these tessellations has at most |E(G)| edges. One
can easily verify in polynomial time if the at most |E(G)| edges in each of the at most t < A(G) tessellations form disjoint
cliques in G and if the at most |E(G)|A(G) edges in these tessellations cover E(G). O

4.1. N'P-completeness

We remarked in Section 2.1 that the 3-TESSELLABILITY problem is A/P-complete for the triangle-free graphs. This result
comes from the result presented by Koreas [11], who proved that A-EDGE COLORABILITY problem of triangle-free graphs with
maximum degree three is A/P-complete. Since A-EDGE COLORABILITY of unichord-free graphs with girth at least 15 (which
are triangle-free) for A >3 is A"P-complete [12], t-TESSELLABILITY for t > 3 is also N"P-complete for this graph class.

In this section, we present the A/P-completeness of the t-TESSELLABILITY problem of planar graphs with maximum degree
A(G) <6 for t =3 in Theorem 7, biplanar graphs for t > 3 in Theorem 8, chordal (2, 1)-graphs for t > 4 in Theorem 9,
(1, 2)-graphs for t > 4 in Theorem 10, and diamond-free graphs with diameter at most five for t > 3 in Theorem 11.

A graph is planar if it can be embedded in the plane such that no two edges cross each other. We show a polynomial
transformation from the NP-complete 3-COLORABILITY of planar graphs with maximum degree four [9] to 3-TESSELLABILITY
of planar graphs with maximum degree six.

Lemma 5. Any tessellation cover of size 3 of the graph-gadget depicted in Fig. 8 contains a tessellation that covers the middle and the
external triangles.

Proof. Consider any tessellation cover of size 3 for the graph-gadget of Fig. 8. For the sake of the contradiction, assume that
the triangle {a, b, d} is exposed, needing to be covered by 3 tessellations, one tessellation for each one of its edges. However,
the remaining neighborhood of vertex d does not induce a clique, needing at least other 2 tessellations to be covered, a
contradiction with the fact that the graph-gadget is 3-tessellable.

Now, without loss of generality, assume that the triangle {a, b, d} is covered by tessellation 1. If we cover the trian-
gle {d, g.h} with tessellation 2, we will need more two tessellations to cover the edges {d, f} and {d, i}, a contradiction.
Therefore, we need to cover the triangle {d, f, g} with tessellation 3 and the triangle {d, i, h} with tessellation 2.
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Fig. 9. Example of Construction 3.

Now, the middle triangle {g,h, k} needs to be covered by tessellation 1, otherwise, we need the edge {g,h} in tes-
sellation 1 and as the set of vertices {g,k,m} does not induce a clique, there will be two edges to be covered in the
neighborhood of g with only one remaining tessellation, a contradiction. Next, we need to cover the triangles {f, g, m} and
{h,i,m} with tessellations 2 and 3, respectively.

Finally, to obtain a 3-tessellation of this graph, the other external triangles {c. f, j}, {e.i,l}, and {m,n, 0} must be covered
by tessellation 1. O

Construction 3. Let graph H be obtained from a graph G by local replacements of each vertex u of G for a graph-gadget of
Fig. 8 denoted by u-gadget. Each edge uv of G represents the intersection of the u-gadget with the v-gadget by identifying
two external vertices of external triangles of those graph-gadgets. See Fig. 9.

Theorem 7. 3-TESSELLABILITY of planar graphs with A(G) < 6 is N"P-complete.

Proof. Let G be an instance graph of 3-COLORABILITY of planar graphs with A(G) <4 and H be obtained by Construction 3
on G. Notice that applying Construction 3 on a planar graph with A(G) < 4 results on a planar graph with A(H) <6.

Suppose that G is 3-colorable. Then, H is 3-tessellable because the middle and the external triangles of a v-gadget can
be covered by the tessellation related to the color of v and the remaining triangles of the v-gadget can be covered by the
other two tessellations.

Suppose that H is 3-tessellable. Then, G is 3-colorable because the color of v in G can be related to the tessellation that
covers the middle triangle of the v-gadget. This assignment is a 3-coloring because by Lemma 5 all external triangles of the
v-gadget belong to the same tessellation of the middle triangle. The external triangles of the v-gadget are connected to the
external triangles of the graph-gadgets of the neighborhood of v. Then, the tessellations of the latter external triangles must
differ from the external triangles of the v-gadget. This implies that the neighborhood of vertex v receives different colors
from the color of v. O

The next construction allows us to show a hardness proof of t-TESSELLABILITY, with any fixed t > 3 of biplanar graphs.
A graph G = (V, E) is biplanar if we can partition the edge set E into at most two sets E; and Ej such that Gy =(V, Eq)
and G, = (V, E;) are planar graphs. Biplanar graphs are known as graphs of thickness < 2. The polynomiality of A-EDGE
COLORABILITY for planar graphs with A(G) > 8 suggests that t-TESSELLABILITY for planar graphs might be polynomial-time
solvable for large enough t. On the other hand, by Theorem 8, we know that t-TESSELLABILITY of biplanar graphs remains
NP-complete, even for a large value of t.

Construction4. Let t be an integer and H be a graph obtained from a graph G as follows. Initially H is equal to G. Add a star
S with t leaves. Add three paths P!, P?, and P? with 2|V (G)| + 1 vertices each one. Identify the first vertex in each one of
these paths with three different leaves of S;. Let V(Pl) ={P1.1. P12+ -, P12IV(G)|+1 ] V(Pz) ={p21.D22.. ., D221V(G)+1}
and V(P?) = {p3,1. P32, ... P3.21v(G)+1}- For each edge of type (P;2j+1. Pi2j+2) (for 1<i<3and 0 <j<|V(G)|—1) add
t —1 vertices adjacent to both endpoints of the edge and, for each of these t — 1 vertices, add t — 1 pendant vertices adjacent
to it. Add a stable set U = {uy,uy..... Uy} and relate each one of these vertices with V(G) = {vy,va,..., V). For
each vertex U, € U add the edges: (Ug, p1,2k), (Uk, P1,2k+1) (Uks P2,2k) (Uks P2,2k+1)s (Ukes P3,2k)s and (Uk, P32k+1). For each
vertex Ui € U add the edge (uy. vk). For each vertex uy, add the vertices wy n, (for 1 <m <t — 3) adjacent to both uj and
Vi, and add t — 1 pendant vertices for each of these wy, (for 1 <m <t — 3) vertices. See Fig. 10.

Theorem 8. t-TESSELLABILITY of biplanar graphs for t > 3 is N"P-complete.

Proof. Let G be an instance graph for 3-COLORABILITY of planar graphs with A(G) < 4, B be the graph obtained from
Construction 3 on G, and H be the graph obtained from Construction 4 on B. We claim that H is t-tessellable (for t > 3) if
and only if B is 3-tessellable. Therefore, the N“P-completeness follows immediately from Theorem 7.
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Fig. 10. Example of Construction 4, for t = 4. The graph H is biplanar since we can partition its edges into two planar graphs as follows. The edges of G,
Se. P1, P2 P3| the triangles connected to these paths, and the pendant vertices incident to these vertices define a planar graph and the remaining edges
(incident to vertices u; and wy,,) define other planar graph. Colors a, b, ¢ highlight three tessellations.

Consider the case when H is t-tessellable. Let a, b, and ¢ be three tessellations used to cover the edges of S; which have
one of their endpoints identified with P!, P2, and P3, respectively. The t — 1 triangles incident to the edges (P12j-1:P1.2j)
for 1 < j < |V(G)|, are not exposed since there are t — 1 pendant vertices incident to a vertex in each of the triangles,
which force them to be covered by t — 1 tessellations. Therefore, for j = 1, the tessellation a cannot cover the corre-
sponding t — 1 triangles which implies that edge (p;2, p13) must be covered by tessellation a, which in turn implies that
all edges (p1.2j, P1,2j41), for 1 = j < |V(G)|, must be covered by tessellation a. The same holds with tessellation b and
edges (P22, P2,2j+1), and tessellation ¢ and edges (p32j. p3.2j+1) (for 1 < j < |V(G)|). Moreover, as the vertices p12j-1
(1 <j<|V(G)|]) are in t — 1 tessellations because the triangles incident to the edges (p1.2j-1, P1.25), the triangles with ver-
tices Uk, P1.2k, P1.2k+1 need to be not exposed and use the tessellation a. The same holds for tessellation b and the triangles
with the vertices Uy, P2 2k, P2,2k+1, and for tessellation ¢ and the triangles with the vertices Uy, P3 ak, P3,2k+1-

Now, as the t —3 vertices Wy, are not exposed (because they have t — 1 pendant vertices incident to them), the triangles
they are part with vertices of U and vertices of B need to be covered by a single tessellation. There are t — 3 such wy
vertices incident to each vertex of B and they are part of t — 3 tessellations different from a, b, and c. Therefore, all vertices
of B are part of these t — 3 tessellations and it remains only three tessellations (@, b, and c) to cover the edges of the
original graph B, i.e., if H is t-tessellable, then B is 3-tessellable.

Conversely, if B is 3-tessellable, we can cover the edges of the triangles in vertices wy ,, with t — 3 tessellations not
used in B. Now, we can cover the edges of triangles uy. p1 2k, P1,2k+1 With one of the three remaining tessellations a, b or
c. Without loss of generality, let it be the tessellation a, the triangles uy, p2 ok, P2.2k+1 be covered by tessellation b and the
triangles iy, p3 i, P3.2k+1 be covered by tessellation c. Now we can cover the t — 1 triangles which uses the edges of type
(P2.2j-1,P2.25) (1 =j =|V(G)|) with the t — 1 tessellations different from the one used to cover the edges (P22, P22j1+1)-
The remaining edges of pendant vertices are trivially covered by the non-used tessellations. Therefore, if B is 3-tessellable,
then H is t-tessellable. O

A graph is (k, ) if its vertex set can be partitioned into at most k stable sets and at most £ cliques. Next, we show a poly-
nomial transformation from the A/P-complete 3-COLORABILITY [9] to 4-TESSELLABILITY of chordal (2, 1)-graphs, and then we
generalize this proof for any fixed t > 4. This proof is based on a result of Bodlaender et al. [19] for 3-L(0, 1)-COLORABILITY
of split graphs.

Construction 5. Let H be a graph obtained from a non-bipartite graph G as follows. Initially V(H) = V(G) U E(G) and
E(H) =#. Add edges to H so that the E(G) vertices induce a clique. For each e = vw € E(G), add to H edges ve and we.
For each vertex v € V(H) N V(G), add three pendant vertices adjacent to v. Add a vertex u adjacent to all E(G) vertices.
Add three pendant vertices adjacent to u. Denote all pendant vertices by V5. See Fig. 11.

Theorem 9. The t-TESSELLABILITY of chordal (2, 1)-graphs is N"P-complete, for any fixed t = 4.
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Fig. 11. Example of Construction 5.

Proof. Firstly, we show that the 4-TESSELLABILITY is ANP-complete for chordal (2, 1)-graphs, and then, we extend to the
cases when t > 4, for any fixed t.

Let G be a non-bipartite instance graph of 3-COLORABILITY. We show that G is 3-colorable if and only if H, obtained by
Construction 5 on G, is 4-tessellable.

Let f be a 3-coloring of G. Consider the following tessellation cover: for any vertex v € V(G), cover the maximal clique
it belongs with vertices of E(G) in H with tessellation f(v), and use tessellation 4 to cover the maximal clique of vertices
of E(G) with vertex u. Now, cover the three pendant vertices of each vertex of V(G) and u with their 3 non incident
tessellations. Note that all edges of H were covered and two maximal cliques between vertices of V(G) and E(G) in H can
only share a vertex in E(G). However, if the maximal cliques of these vertices share a vertex in E(G), it means these two
vertices are adjacent in G and, therefore, their maximal cliques are covered by different tessellations.

Conversely, consider a tessellation cover of H with 4 tessellations. We need the maximal clique given by u and the
vertices of E(G) not be exposed. Additionally, the tessellation used to cover it cannot cover any other maximal clique
between vertices of V(G) and E(G). Therefore, there are only three remaining tessellations to cover them.

Each vertex of V(G) in H has 4 maximum cliques incident to them sharing only one vertex. Thus, all maximal cliques
incident to them must not be exposed. Note that if two vertices v and w of G are adjacent, then their related maximal
cliques between vertices of V(G) and E(G) share a vertex vw. Therefore, the colors of f(v) and f(w), which are related to
the tessellations that cover these maximal cliques, are different.

This proof holds for t-TESSELLABILITY, with t > 5, of chordal (2, 1)-graphs. The idea is to use the same proof considering
(t — 1)-coLORABILITY of G instead of 3-COLORABILITY, and adding the necessary number of pendant vertices to H to force all
its maximal cliques not to be exposed.

Note that the vertices of H can be partitioned into one clique and two stable sets: The vertices in H related with E(G)
and vertex u define a clique, the vertices in H related with V(G) define a stable set, and the pendant vertices define another
stable set. Moreover, clearly H is chordal as the induced graph by the vertices related with E(G) and V (G) is a split graph (a
subclass of chordal graph), and the addition of pedant vertices does not create any cycles in the graph, i.e., H is chordal. O

Construction 6. Let H' be a graph obtained from the graphs G and H of Construction 5 by transforming the stable set S of
H corresponding to V(G) into a clique, removing one pendant vertex of each vertex of S, and adding a vertex u’ adjacent
to all vertices of S with three new pendant vertices adjacent to it. See Fig. 12.

Theorem 10. The t-TESSELLABILITY of (1, 2)-graphs is N"P-complete, for any fixed t > 4.

Proof. Firstly, we show that the 4-TESSELLABILITY is A/P-complete for (1,2)-graphs, and then, we extend to the cases when
t > 4, for any fixed t.

Consider the graph H’, obtained from Construction 6 on graph H of Theorem 9 for 4-TESSELLABILITY. Clearly, H' is a
(1, 2)-graph. We will show that H is 4-tessellable if and only if H' is 4-tessellable.

In the 4-tessellation cover given by the proof of Theorem 9, an edge of a pendant vertex of each of V(G)'s vertices is
covered by tessellation 4 (the same tessellation of the maximal clique of u and the vertices of E(G)). Define 3 tessellations
of H' using the first three tessellations of H. Now, we cover the edges in the maximal clique of V(G)’s vertices and u’ with
tessellation 4 and the three remaining edges of the pendant vertices incident to u’ with tessellations 1, 2, and 3.

Consider a tessellation cover of H' with 4 tessellations. First, the maximal clique of vertices of V(G) and u’ must be
covered by the same tessellation of the maximal clique of vertices of E(G) and u. For the sake of the contradiction, assume
these two maximal cliques are covered by different tessellations. Therefore, now there are only two available tessellations to
cover maximal cliques between vertices of V(G) and E(G) in H'. However, these maximal cliques are related to a coloring
of vertices of G and if we could obtain a tessellation cover of them using only two colors, then G would be a bipartite
graph (which we exclude from the 3-COLORABILITY instance graphs), a contradiction.
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Fig. 12. Example of Construction 6.

Now we obtain a tessellation cover of H with the same number of tessellations as follows. We remove the edges of the
maximal clique of V(G) and u’ (which are all covered by the tessellation 4). Then, we remove the vertex u’ and its pendant
vertices. Moreover, we add a pendant vertex to each vertex of V(G) with the tessellation 4 covering their edges.

This proof holds for t-TESSELLABILITY with t > 5 of (1,2)-graphs considering the t-TESSELLABILITY of chordal (2, 1)-graphs
with t > 5 presented in Theorem 9. Moreover, the A"P-completeness of (t — 1)-COLORABILITY for non-(t — 2)-colorable graphs,
for t > 5, holds by the following facts: (1) an edge coloring of a graph I' is equivalent to a vertex coloring of its line graph
L(T); (2) the k-EDGE-COLORABILITY problem is NP-complete for any fixed k = A(T') = 3 [20], and; (3) the line graph of a
graph T is non-(A(T") — 1)-colorable because a vertex of degree A(T") of I' implies a clique of size A(I') in L(I"). O

Next, we show a polynomial transformation from the A“P-complete problem NAE 3-SAT [9] to 3-TESSELLABILITY of
diamond-free graphs with diameter at most five. The NAE 3-SAT problem consists in finding, in a given set U of literals
and a set C of clauses all of size three, if we can assign true/false values to each literal in U satisfying all clauses in C, with
the restriction that in each clause at least one literal must have true value and at least one literal must have false value.
Hereinafter, we do not consider clauses with two repeated variable, i.e., if there is a clause (vi, vy, v2), we create a new
instance I’ with a new variable x and exchange the previous clause for two clauses (x, v, v2) and (X, vq, v2), such that I is
satisfiable if and only if I’ is satisfiable.

This proof is given in two phases: given an instance [ of NAE 3-SAT we construct a graph B for which we show that
there is a 3-coloring of B if and only if I is satisfiable; subsequently, we show that there is a construction of a diamond-free
graph G with diameter at most five for which G is 3-tessellable if and only if K(G) is 3-colorable and K(G) is isomorphic
to B.

Construction 7. Let B be a graph obtained from an instance of NAE 3-SAT as follows. For each variable v of I, include a P,
with vertices v and Vv in B. Moreover, add a vertex u adjacent to all Py’s vertices. And, for each clause {a v b v ¢} of I, add
a triangle with vertices Tqy. Tp, T in B and three edges aTg, bTp, and cT,. See Fig. 13.

Lemma 6. Let B be obtained from Construction 7 on a NAE 3-SAT instance 1. Then B is 3-colorable if and only if I is satisfiable.

Proof. If B is 3-colorable, then there are no three vertices connected to a clause’s triangle with the same color. Moreover,
without loss of generality, the color 1 given to the vertex u in a 3-coloring cannot be used in any vertex of a P,. Besides,
each one of the literal vertices v and V of a Py receives either the color 2 or 3. Assume without loss of generality that a
literal is true if its color is 2, and false otherwise. Therefore, the above assignment of values to literals gives a satisfiable
solution to the instance.

Conversely, if I is satisfiable, then one may assign color 2 to each literal vertex which is true and color 3 to its negation.
Moreover, vertex U receives color 1. Since there are no three literal vertices with the same color adjacent to the clause
triangles, one may assign colors to the vertices of the triangles in a 3-coloring where one vertex of the triangle adjacent
to a vertex with color 2 receives color 3, and one vertex adjacent to a vertex with color 3 receives color 2. The remaining
vertex receives color 1. O

Next, we construct a graph G whose clique graph K(G) is isomorphic to graph B obtained from Construction 7.

Construction 8. Let G be obtained from the graph B (of Construction 7), which is isomorphic to the clique graph K(G) of G,
as follows. For each clause’s triangle in B, add a star with three leaves in G, where each of those leaves represents a literal
of this clause. Next, all Py’s triangles in B are represented in G by a clique C of size the number of Py’s. Each vertex of this



A. Abreu et al. / Theoretical Computer Science 801 (2020) 175-191 187

v, W) (X, 9) (X 5, W) (&, v, W)

Fig. 13. Example of Construction 7,

Fig. 14. Example of Construction 8, where K(G) is isomorphic to graph B (Construction 7).

clique C represents a variable of I (of Construction 7). For each vertex v of C include the edges of two other cliques (one
for each literal of the variable v) composed by the leaves of the stars which represent the literals v and v and the vertex v
of C, as depicted in Fig. 14.

Lemma 7. Let B be obtained by Construction 7 on a NAE 3-SAT instance [ and G be obtained by Construction 8 on B, such that B is
isomorphic to K(G). Then G is 3-tessellable if and only if K(G) is 3-colorable.

Proof. If G is 3-tessellable, then we need one tessellation to cover the clique composed by the vertices related with the
variables, whose size is the number of variables. Therefore, the other two tessellations are used by at most two maximal
cliques of each variable, which represent their literals. Moreover, the star of three leaves of each clause also needs to be
covered by 3 tessellations. Note that these maximal cliques represent vertices in K(G) and the tessellations represent their
colors. Therefore, K(G) is 3-colorable.

If K(G) is 3-colorable, by Theorem 1 G is 3-tessellable. O

Clearly, the graph G obtained from Construction 8 is diamond-free with diameter at most five. Therefore, by Lemmas 6
and 7, the next theorem follows.

Theorem 11. 3-TESSELLABILITY of diamond-free graphs with diameter at most five is N"P-complete.
4.2. 2-TESSELLABILITY

Portugal [4] showed that a graph G is 2-tessellable if and only if K(G) is a bipartite graph. Moreover, Peterson [6] showed
that K(G) is bipartite if and only if G is the line graph of a bipartite multigraph. Hence, determine if G is 2-tessellable is
equivalent to verifying if G is the line graph of a bipartite multigraph.

Protti and Szwarcfiter [21] showed an O(n?m) time algorithm to decide if the clique graph of a given graph is bipartite.
Moreover, Peterson [6] showed an O (n?) time algorithm to decide if G is the line graph of a bipartite multigraph.

A vertex u is true twin of a vertex v of a graph G if u and v have the same closed neighborhood in G. The key idea of
Peterson’s algorithm is to group true twin vertices of a same clique of a line graph G. These true twin vertices represent
multiedges in the bipartite multigraph H, where G = L(H). Then, it removes all those true twin vertices in each group but
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one, and the resulting graph is a line graph of a bipartite simple graph if and only if K(G) is a bipartite graph. To verify if
a graph is a line graph of a bipartite graph, the Roussopoulos’ linear-time algorithm is used [22].

We improve Peterson's algorithm [6], by showing a faster way to remove true twin vertices belonging to a clique of a
graph using its modular decomposition. Throughout this section, we use notations of modules of a graph given in [23]. In a
graph G, a subset S of V(G) is a emphmodule if all elements of S have the same set of neighbors among vertices that are
in V(G)\S. We say that S is a strong module if for every module S, SNS =@, or SCS’, or S’ C S holds. A strong module
S € V(G) is a maximal strong module if the only strong module properly containing S is V(G).

Let F be the family of bipartite multigraphs obtained by adding multiple edges to C4, Sy or P4. In order to make a
modular decomposition of a graph G, we only consider graphs G which are not line graphs of a graph in /. If G is a line
graph of a graph in J, we can consider this case separately, and easily achieve linear time. Note that there are bipartite
multigraphs with a same line graph. Therefore, we only consider the ones which maximize the number of multiple edges.
Moreover, we only consider connected graphs, since the tessellation cover number of a disconnected graph is the maximum
among the parameter on its connected components.

Lemma 8. Let H be a bipartite multigraph not in F and L(H) be its line graph. Two edges e1 and ep with same endpoints in H
represent vertices in a same maximal strong module of L(H).

Proof. By hypothesis, we consider H a bipartite multigraph. Therefore, we do not consider the cases H has an induced
cycle of odd size, including triangles and other complete graphs. For the sake of the contradiction, assume there are such
two edges e and e; of H and that its related vertices in L(H) are in different maximal strong modules M1 and M>. Since
the vertices associated to ey and e are adjacent in L(H), there are all edges between vertices of M1 and My in L(H).

(Case 1) Assume there is a vertex outside Mq and Mj. Therefore, without loss of generality, there is a vertex e3 ¢
(M1 U M3>) such that e3 € N(wq) for all wi € My and e3 ¢ N(w>) for all wy € M, otherwise, M1 U M> would be a maximal
strong module, a contradiction with the fact that My and M, were maximal. However, e; and e, are multiedges with
same endpoints of H, i.e., there cannot be another edge e3 in H which shares an endpoint with 1 but does not share one
endpoint with e, as eq and e; have the same endpoint vertices, a contradiction.

(Case 2) Assume there is no vertex outside My and M>, and neither M; nor M» induces cliques in L(H). Note that all
vertices in My and My are adjacent to ¢; and e, respectively. Let wi and w) be two non-adjacent vertices of My and w
and W’2 be two non-adjacent vertices of M3. Therefore, wq and W’1 are edges in H that share vertices of e; in H, as both
of them are non-adjacent vertices which are adjacent to e; in L(H). Note that w, and W; must be adjacent to wq, W’],
and eq, i.e.,, they must have the same endpoints as e; and e; in H. However, Wy and W’2 cannot be incident to the same
endpoints in H since they are not adjacent in L(H), a contradiction.

(Case 3) Assume there is no vertex outside My and M,, and My or M, induces cliques in L(H). If My and M, induces
cliques in L(H), then L(H) is a complete graph and H is a multigraph of a P, (which is a star multigraph), a contradiction
with the fact that H is not a graph in F. Otherwise, without loss of generality, let My induces a clique in L(H). Note that
the vertices of My represent multiedges with same endpoints in H, since H is a bipartite multigraph that maximizes the
number of multiple edges. Moreover, all vertices of M5 are adjacent to e (and to e3). Therefore, the vertices of My in L(H)
represent edges in H incident to one of the endpoints of e; and e; (and two of those edges in different endpoints do not
share other same endpoint, or H would not be a bipartite graph). However, this is a contradiction as H is a multigraph of a
P4 which is a graph in F. O

Lemma 9. Let H be a bipartite multigraph not in F and L(H) be its line graph. Any maximal strong module in a modular decomposition
of L(H) with size less than |V (L(H))| induces a clique in L(H).

Proof. By hypothesis, we consider H a bipartite multigraph. Therefore, we do not consider the cases H has an induced cycle
of odd size, including triangles and other complete graphs. For the sake of the contradiction, assume there is such strong
module My, of L(H), which is not a clique. Note that |M| > 2, and since M} does not induce a clique, then there are two
vertices wj and w;{ in Mj, that are not adjacent. Therefore, as w}, and WL are not adjacent in L(H), then w} and ch have
different endpoint in H.

(Case 1) All vertices of My in L(H) share both endpoints in H with edges wj or er' As L(H) is connected, there is a
vertex i outside My that shares one endpoint with wy and other endpoint with w},. Moreover, there could be another vertex
Jj outside M that shares one endpoint with wy and other endpoint with w), different from the endpoints of i. However, all
other vertices outside My must share the same endpoints of i or j, otherwise there would be an edge % in H which shares
an endpoint with i (or j) and did not share an endpoint with wy and w,, a contradiction. Therefore, H is a multigraph of
a C4 or a P4, which are in F, a contradiction.

(Case 2) There is a vertex of M, in L(H) whose endpoints do not coincide with edge wj nor with edge w;(.

(Case 2.a) There is a vertex X of M that shares one endpoint with wj and the other with W;{ in H. As L(H) is a
connected graph, there is a vertex i outside of M} adjacent to all vertices in Mj. Note that i must share both endpoints
with x in H. Assume there is a vertex j such that no vertex in My, is adjacent to j in L(H), therefore as L(H) is connected,
there is a vertex [ adjacent to all vertices of My, that is adjacent to a vertex I', where I" is adjacent to no vertex in M.
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Table 1

Extremal graph classes and tight upper bounds.
Graph class T(G) = min{x"(G), ¥ (K(G))} Reference
Bipartite T(G) = x'(G) = A(G) Sec. 2.1
Triangle-free T(G) = x'(G) Sec. 2.1
Unichord-free with girth > 15 T(G)=x"(G)= A(G) Sec. 2.1
Wd, T(Wdp q) = x (K(Wdpq)) =q Sec. 2.2, [5]
Gp,p 12,3} T(Gp)=x"(Gp) = x(K(Gp)) =2p Theorem 2
Gp, any p T(Gp)=x'(Gp)=2p Theorem 2
Esp T(G)=3 Theorem 3
Diamond-free K-perfect T(G) = x (K(G)) = w(K(G)) Theorem 4
Threshold T(G) = x(K(G) =|S|+1 Theorem 6

However, this is a contradiction, because | shares both endpoints with i, while I’ shares one endpoint with [, but I’ does not
share any endpoint with neither wy nor w,. Therefore, all vertices outside M are adjacent to all vertices in My, and H is
a P4 multigraph in F.

(Case 2.b) Each vertex y of M shares precisely one endpoint either with wy or with WL in H. Note that with a similar
reasoning of (Case 2.a) all vertices outside My must be adjacent to all vertices of My, and H is a P4 multigraph in F.

(Case 2.c) There is a vertex z of M}, that shares no endpoint with neither wj nor with w;( in H. As L(H) is connected,
there is a vertex i adjacent to all vertices in My, however, i has only two endpoints and it must share at least one endpoint
with all edges of z, wy and wj}, in H, which have distinct endpoints, a contradiction. O

Theorem 12. 2-TESSELLABILITY can be solved in linear time.

Proof. First, we use McConnell and Spinrad’s linear-time algorithm to obtain a modular decomposition of G. By Lem-
mas 8 and 9, we know that the strong modules in any modular decomposition of a line graph of a bipartite multigraph
H ¢ F induce cliques. Moreover, the vertices of these cliques in L(H) are related to edges of H with same endpoints.

Then, we check if each of at most O(|V(G)|) strong modules induces cliques in G, which can be done in O(|V(G)| +
|E(G)|). Otherwise, we know that G is not a line graph of a bipartite multigraph. Next, we remove all true twins vertices in
each strong modules but one, obtaining the graph G’. This step is related to remove all multiedges of H which share same
endpoints. Therefore, the graph G is a line graph of a bipartite multigraph H if the resulting graph G’ is a line graph of a
simple bipartite graph H'.

Finally, we use Roussopoulos’ linear-time algorithm to determine if G’ is a line graph, and if so, obtain its root graph H’
whose line graph is isomorphic to G’. Note that verifying if H is a bipartite graph can be done in linear time by using a
breadth-first search (because the size of the root graph of G’ is asymptotically bounded by the size of G'). O

5. Concluding remarks and discussion

We investigate the tessellation cover number for extremal graph classes, which are fundamental for the development of
quantum walks in the staggered model. These results help to understand the complexity of the unitary operators necessary
to express the evolution of staggered quantum walks. We establish tight upper bounds for the tessellation cover number of a
graph G related to the chromatic parameters x'(G) and y (K(G)), and we determine graph classes which reach these upper
bounds. This study provides tools to distinguish several classes for which the t-TESSELLABILITY problem is efficiently tractable
(bipartite graphs, {triangle, proper major}-free graphs, diamond-free K-perfect graphs, and threshold graphs) from others
where the problem is A"P-complete for t > 3 (planar graphs, triangle-free graphs, chordal (2, 1)-graphs, (1, 2)-graphs, and
diamond-free graphs with diameter at most five). We also establish the t-TESSELLABILITY N P-completeness for biplanar
graphs. Moreover, we improve to linear-time the known algorithm to recognize line graphs of bipartite multigraphs [21],
and consequently, for 2-tessellable graphs [4], and graphs G such that K(G) is bipartite [6]. Table 1 and Table 2 summarize
the extremal graph classes and the complexity of the t-TESSELLABILITY problem, respectively, for the graph classes studied in
this paper.

We establish an interesting complexity dichotomy between A-EDGE COLORABILITY and t-TESSELLABILITY: A-EDGE COLORABIL-
1Ty of planar graphs with A(G) > 8 is in P [24], while t-TESSELLABILITY for ¢t > 3 is AP-complete, (Theorem 7 replacing
each of the four non external triangles that share two vertices of external triangles by K4's) and; A-EDGE COLORABILITY of
line graph of bipartite graphs for A = 3 is A"P-complete [25], while t-TESSELLABILITY is in P (Theorem 12). We have not
managed yet to establish the same dichotomy between k-COLORABILITY OF CLIQUE GRAPH and t-TESSELLABILITY.

Regarding (k, £)-graph classes, since any (k, £)-graph is a (k+ 1, £)-graph and a (k, £ + 1)-graph, the A"P-completeness of
t-TESSELLABILITY for (1,2)-graphs and (2, 1)-graphs imply that the problem is A"P-complete for (k, £)-graphs with k + ¢ >3
and min{k, £} > 1 for t > 4. We are currently working on the complexity of t-TESSELLABILITY for split graphs that are a super
class of threshold graphs of Theorem 6, (k, 0)-graphs with k > 3, and (0, £)-graphs with £ > 2.

A question that naturally arises is whether every graph has a minimum tessellation cover such that every tessellation
contains a maximal clique. Although we believe in most cases the answer is true, we have computationally found a surpris-
ing example of a graph, which is depicted in Fig. 15, with all minimum tessellation covers requiring a tessellation without
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Table 2
The complexity of the t-TESSELLABILITY problem for graph classes.
t Graph class Complexity Reference
t=2 Generic Linear Theorem 12
t=3 Planar, A(G) <6 N P-complete Theorem 7
Diamond-free, diameter =5 N'P-complete Theorem 11
t=3 Threshold Polynomial Sec. 3
Bipartite Polynomial Sec. 2.1
{triangle, proper major}-free Polynomial Sec. 2.1
Diamond-free K-perfect Polynomial Sec. 3
Unichord-free with girth = 15 NP-complete Sec. 2.1
Triangle-free N'P-complete Sec. 2.1
Biplanar NP-complete Theorem 8
t=4 Chordal (2, 1)-graphs N'P-complete Theorem 9
(1, 2)-graphs NP-complete Theorem 10

Y \7 Do

Fig. 15. 3-tessellable graph. Rightmost tessellation does not contain a maximal clique.

maximal cliques. We are currently trying to establish an infinite family of graphs for which this property does not hold and
to establish other graph classes where it holds. The computational verification was performed through a reduction from
[-TESSELLABILITY problem to SET-COVERING problem (the description of SET-COVERING is available at [9]), where the finite set
is the edge set of the input graph, and the family of subsets consists of the edge subsets corresponding to all possible
tessellations of the input graph. Another interesting issue is that two minimum tessellation covers may present different
quantum walk dynamics. Therefore, we intend to study the different tessellation covers using the same number of tes-
sellations, which may result in simpler quantum walks and more efficient quantum algorithms. More recently, a general
partition-based framework for quantum walks has been proposed [26].
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Abstract

A tessellation of a graph is a partition of its vertices into vertex disjoint
cliques. A tessellation cover of a graph is a set of tessellations that covers
all of its edges, and the tessellation cover number, denoted by T'(G), is the
size of a smallest tessellation cover. The t-TESSELLABILITY problem aims
to decide whether a graph G has T'(G) < t and is N"P-complete for ¢ > 3.
Since the number of edges of a maximum induced star of GG, denoted by
1s(G), is a lower bound on T'(G), we define good tessellable graphs as the
graphs G such that T(G) = is(G). The GOOD TESSELLABLE RECOGNITION
(cTR) problem aims to decide whether G is a good tessellable graph. We
show that GTR is N"P-complete not only if T'(G) is known or is(G) is fixed,
but also when the gap between T'(G) and is(G) is large. As a byprod-
uct, we obtain graph classes that obey the corresponding computational
complexity behaviors.

1 Introduction
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It is known that there is a strong connection between the areas of graph theory
and quantum computing. For instance, algebraic graph theory provides many
tools to analyze the time-evolution of the continuous-time quantum walk, be-
cause its evolution operator is directly defined in terms of the graph’s adjacency
matrix. Recently, a new discrete-time quantum walk model has been defined
by using the concept of graph tessellation cover [10]. Each tessellation in the
cover is associated with a unitary operator and the full evolution operator is the
matrix product of those operators. For practical applications, it is interesting
to characterize graph classes that admit small-sized covers. Accordingly, we
establish a new lower bound on tessellation cover that is described next.
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Throughout this paper we only consider undirected and simple graphs. A
tessellation of a graph G is a partition of its vertices into vertex disjoint cliques.
A tessellation cover of G is a set of tessellations that covers all of its edges.
The tessellation cover number of G, denoted by T(G), is the size of a smallest
tessellation cover of G. If G admits a tessellation cover of size t, then G is
t-tessellable. The t-TESSELLABILITY problem aims to decide whether G is t-
tessellable. We disregard cliques of size one in a tessellation since they play no
role in our proofs. The star number, denoted by is(G), is the number of edges of
a maximum induced star of G. Notice that T(G) > is(G), since any two edges
of an induced star cannot be covered by a same tessellation. We say that G
is good tessellable if T(G) = is(G), and the GOOD TESSELLABLE RECOGNITION
(GTR) problem aims to decide whether a graph is good tessellable.

The known results about the tessellation cover number up to now were re-
lated to upper bounds on T(G) and the complexities of the ¢-TESSELLABILITY
problem [2, 1, 11]. Abreu et al. [2] verified that T(G) < min{x'(G), x(K(G))},
and they proved that ¢-TESSELLABILITY is in P for quasi-threshold, diamond-
free K-perfect graphs, and bipartite graphs. On the other hand, they showed
that the problem is N"P-complete for triangle-free graphs, unichord-free graphs,
planar graphs with A < 6, (2,1)-chordal graphs, (1,2)-graphs, and diamond-
free graphs with diameter at most five. Surprisingly, all the hardness results
presented by Abreu et al. [2] for ¢-TESSELLABILITY aim to decide whether
t = is(@), i.e., if the instance graph is good tessellable. Therefore, all their
N'P-complete proofs for ¢-TESSELLABILITY also hold for GTR. The only pre-
vious N'P-completeness result for ¢-TESSELLABILITY for non good tessellable
graphs was presented by Posner et al. [11] for line graphs of triangle-free graphs
(where t = 3 and is(G) = 2).

We recently discovered that the concept of tessellation cover of graphs has
been independently studied in the literature for a same problem, named as
EQUIVALENCE COVERING by Duchet [4] in 1979. Since the tessellation cover
number T(G) and the equivalence covering number eq(G) are the same param-
eter, we highlight the common results, as follows: x/(G) is an upper bound for
T(G) [2] and for eq(G) [3]; if G is triangle-free, then T(G) = X'(G) [2] and
eq(G) = X'(G) [5]; if G is triangle-free, then 3-TESSELLABILITY of line graphs
L(G) is N'P-complete [11] and to decide whether eq(G) < 3 for the same class is
NP-complete as well [5]; if G is (2,1)-chordal, then ¢-TESSELLABILITY is N 'P-
complete for ¢t > 4 |2], whereas EQUIVALENCE COVERING is N'P-complete for
(1,1)-graphs [3].

Contributions

We propose the GTR problem, which aims to decide whether a graph is good
tessellable. We analyze the combined behavior of the computational complexity
of the problems ¢-TESSELLABILITY, GTR, and k-STAR SIZE. Clearly, these three
problems belong to N'P.



k-STAR SIZE t{-TESSELLABILITY GTR

Instance: Graph G Instance: Graph G Instance: Graph G.
and integer k. and integer t.

Question: is(G) > k? Question: T(G) <¢? Question: T(G) = is(G)?

In order to highlight our results, we define graph classes using triples that
specify the computational complexities of k-STAR SIZE, t-TESSELLABILITY, and
GTR, summarized in Table 1.

Table 1: Computational complexities of k-STAR SIZE, t-TESSELLABILITY, and
GTR problems and examples of corresponding graph classes.

Problem
R k-STAR SIZE t-TESSELLABILITY GTR Examples
Behavior

(a) P NP-complete NP-complete | [2, 1]

(b) P NP-complete P 11]
Sec. 3

(c) NP-complete P NP-complete | Sec. 2

(d) N'P-complete P P Sec. 2

(e) N'P-complete NP-complete P Sec. 3

All graph classes for which Abreu et al. [2] presented hardness proofs for
t-TESSELLABILITY obey behavior (a), since for those classes is(G) is fixed and
equal to ¢. The graphs studied by Posner et al. [11] obey behavior (b), since for
those graphs is(G) = 2 and 3-TESSELLABILITY is A'P-complete. In Section 3,
we present additional examples that obey behavior (b) with T(G) arbitrarily
larger than a non fixed is(G). Graphs of Construction 2.2 (I) in Section 2 are
examples that obey behavior (c), since T(G) is known but k-STAR SIZE is NP-
complete for k = T(G), which implies that GTR is N'P-complete. Graphs of
Construction 2.2 (II) in Section 2 are examples that obey behavior (d), because
k-STAR SIZE is N'P-complete for &k = T(G) — 1, T(G) is known, and T(G) >
is(G), which implies GTR is in P. Graphs of Construction 3.2 in Section 3
are examples that obey behavior (e), since it is known that T(G) > is(G),
which implies GTR is in P, and we construct graphs so that k-STAR SIZE and
t-TESSELLABILITY are A P-complete.

Notice that there are omitted triples in Table 1. Threshold graphs and bipar-
tite graphs are examples of graph classes that obey the behavior (P, P, P) [2].
There are no graphs that obey the behavior (P, P, N'P-complete), since if both
k-STAR SIZE and t-TESSELLABILITY are in P, so is GTR. Graph classes obtained
by the union of graphs G; and G5 so that G; is in a graph class that obey
behavior (a) and G is in a graph class that obey behavior (¢) are examples
satisfying the behavior (A P-complete, N'P-complete, N'P-complete).

Notation and graph theory terminologies

Given a graph G = (V, E), the neighborhood N (v) (or Ng(v)) of a vertex v € V
of G is given by N(v) = {u | uv € E(G)}. A(G) is the size of a maximum



neighborhood of a vertex of G. We say that a vertex w of G is universal if
|IN(u)| = |[V(G)| — 1. A graph is universal if it has a universal vertex. A clique
of G is a subset of V' with all possible edges between its vertices. An independent
set of G is a subset of V' with no edge between any of its vertices. A matching
of G is a subset of edges of F without a common endpoint. A k-coloring of G
is a partition of V into k independent sets. A k-cligue cover of G is a partition
of V into k cliques. A k-edge coloring of G is a partition of E into k matchings.

The parameters a(G), w(G), and p(G) are the size of a maximum inde-
pendent set, the size of the maximum clique, and the size of the maximum
matching of a graph G, respectively. The chromatic number x(G) (chromatic
indezx x'(G)) is the minimum k for which G admits a k-coloring (k-edge color-
ing), and the cliqgue cover number 6(G) is the minimum k for which G admits a
k-clique cover. Note that 6(G) = x(G¢) and a(G) = w(G*), where G¢ denotes
the complement of G for which V(G¢) = V(G) and E(G°) = {zylz € V(G),y €
V(G),z # y} \ E(G). The k-COLORABILITY (k-EDGE COLORABILITY) aims to
decide whether a graph G has x(G) < k (x'(G) < k). The k-INDEPENDENT SET
problem aims to decide whether a graph G has o(G) > k.

The line graph L(G) of a graph G is the graph such that each edge of
E(G) is a vertex of V(L(G)), and two vertices of V(L(G)) are adjacent if their
corresponding edges in G have a common endpoint. The clique graph K(G) of a
graph G is the graph such that each maximal clique of G is a vertex of V(K (G)),
and two vertices of V(K (G)) are adjacent if their corresponding maximal cliques
in G have a common vertex. Si(G) is the graph obtained from G by subdividing
k times each edge e = xy € E(G), i.e., each edge e = xy is replaced by a path
(z,v1,v2, ...,V Y).

The union G U H of two graphs G and H has V(GU H) = V(G) UV (H)
and E(GU H) = E(G)U E(H). The join GV H of two graphs G and H has
V(GVH)=V(G)UV(H) and E(GV H) = E(G)UE(H)U{vw | v € V(G)
and w € V(H)}. An induced subgraph H = (Vi, Ey) of a graph G = (Vg, Eg)
has Vg C Vg and Ey = {vw | v € V(H),w € V(H), and vw € E(G)}. G[5] is
the induced subgraph of G by the set of vertices S C V(G).

2 Graphs with known T'(G)

We prove in this section that GTR is N'P-complete for graphs of Construc-
tion 2.2 (I), which have a known tessellation cover number. Using this result,
we provide a graph class that obeys the behavior (c) and another graph class
that obeys behavior (d). Note that if the tessellation cover number of G is upper
bounded by a constant, then we obtain is(G) in polynomial time using a brute
force algorithm.

The Mycielski graph M; for 7 > 2 has chromatic number j, maximum clique
size 2, and is defined as follows. My = K5 and for j > 2, M, is obtained from
M;_1 with vertices v1,...,vv(a;_,) by adding vertices u1, ..., ujy(a;_,) and
one more vertex w. Each vertex u; is adjacent to all vertices of N, _, (v;) U {w}.



Construction 2.1. Let ¢ be a non-negative integer and G a graph. The (i, G)-
graph is obtained as follows. Add 7 vertices to graph G, and then add a universal
vertex.

Construction 2.2. Let ¢ be a non-negative integer and G a graph with V(G) =
{v1,...,v,}. We construct a graph H = H,;UH; as follows. Add ¢ disjoint copies
G1,...,G; of G to Hy, such that V(G;) = {v],...,vl} for 1 < j <, where v],
represents the same vertex vi of G for 1 < k < n. Add to H; all possible edges
between pairs of vertices that represent the same vertex of G. Add a vertex u
to Hy adjacent to all Ui for 1 <j<iand1l <k <n. Now, we consider two
possibilities: either (I) Hs is (JV(G)| — 3, M$)-graph of Construction 2.1 or (II)
H, is (JV(GQ)| — 3, M§)-graph of Construction 2.1. Denote the universal vertex
of Hy by u'.

Figure 1 provides an example of a graph of Construction 2.2 (I). In (a) we
have an edge coloring of the graph G V {z} with |[V(G)| colors. In (b) we have
the graph H = H; U Hy and a tessellation cover of H with |V (G)| tessellations.

Hi H2
Gv{x}

LY

(a) u (b)

Figure 1: (a) An edge-coloring of GV {z}. (b) Example of a graph H; U Hs of
Construction 2.2 (I) obtained from graph G.

We now verify that the graphs of Construction 2.2 (I) obey the behavior (c)
by showing that T'(H) is a known fraction of the number of vertices of H and by
deciding whether is(H) > k is N'P-complete for k = T'(H). This also implies
that the graphs of Construction 2.2 (II) obey the behavior (d), since we have
increased T'(H) by one unit when we have replaced M§ by M§ in Hs. In this
case T(H) > is(H) and GTR is in P with answer always no, whereas to decide
whether is(H) > k remains N'P-complete for k = T(H) — 1.

Theorem 2.1. k-STAR SIZE and GTR are N'P-complete for graphs of Construc-
tion 2.2 (I).

Proof. Let G be a graph without a universal vertex and an instance of the ¢-
COLORABILITY problem, a well-known NP-complete problem [6]. Consider the



graph H = H; U Hy of Construction 2.2 (I) on G with i = q.

We need 3 tessellations to cover the edges of M$V{u'}, and another |V(G)|—3
tessellations to cover the remaining edges of the pendant vertices, thus, by
construction, T(Hy) = |V(G)|. Moreover, since a(M$) = 2, then is(Hy) =
V(G) - 1.

We define a tessellation cover of Hy with |[V(G)| tessellations as follows.
Consider an optimum edge-coloring of the graph G V {z}. Since G has no
universal vertex, x is the unique universal vertex and we know that x'(GV{z}) =
A(GV{z}) =|V(G)| [8]. Now, when we remove z and the edges incident to it,
this edge-coloring is a tessellation cover of G with |V (G)| tessellations, where for
each vertex there is a distinct unused tessellation. We now use this tessellation
cover to each copy of G in H;. Next, we entirely cover each clique between
vertices that represent the same vertex of G and the edges incident to u with
the available tessellation for this clique. Therefore, T'(Hy) < |V(G)|.

We have T(H) = max{T(H,), T(Hy)} = [V(G)| = PUDEL and is(H) =
max{is(Hy),is(Hz2)}. Since is(Hz) = |V(G)| — 1, H is good tessellable if and
only if is(Hy) = |V (G)|. Poljak [9] proved that a graph G admits a g-coloring if
and only if a(Hy \ {u}) = |V(G)|. Since is(H) = a(Hy \ {u}), deciding whether
H is good tessellable is equivalent to deciding whether G is g-colorable. O

3 Universal graphs

The local behavior of tessellation covers given by Lemma 3.1 below motivates
us to study universal graphs in this section, since the induced subgraph G[{v}U
N(v)] is a universal graph. We prove that t-TESSELLABILITY remains N P-
complete even if the gap between T'(G) and is(G) is large. Using this proof, we
provide a graph class that obeys behavior (e).

Given a t-tessellable graph G and a vertex v € V(G), we consider the relation
between x(G°[N¢(v)]) and the cliques of those ¢ tessellations that share a vertex
v. Note that these cliques cover all edges incident to v in any tessellation cover
of G. Moreover, the vertices of the neighborhood of v in a same tessellation are a
clique in G and, therefore, they are an independent set in G¢. The independent
sets in G¢ given by these cliques of Ng(v) may share some vertices, and we
can choose whichever color class they belong in such coloring of G¢[N¢g(v)].
Therefore, for any vertex v of G, x(G°[Ng(v)]) < t. Since is(G[v U Ng(v)]) =
w(G“[Na(v)]), is(Glo U Na(v)]) = w(G°[Na(v)]) < x(G°[Na(v)]) < t, and we
have the following result.

Lemma 3.1. If G is a t-tessellable graph, then

max is(Glo U NG()])} < max (\(G“IN6()))} <.

Let u ¢ V(G) be a vertex. If GV {u} is a t-tessellable graph, then

is(GV{u}) = a(G) < x(G°) <t



We start this subsection by showing that
X(G) <T(GV{u}) <x(G°) + A(G) + 1. (1)

The lower bound is given by Lemma 3.1. The upper bound holds because
we can use x(G¢) tessellations to cover a partition P of the vertices of G in
cliques p1,p2,...,p; by assigning a different tessellation for each p; for 1 < j <
i. Moreover, the edges between u and the vertices of p; maintain the same
tessellation of p;. The remaining edges between vertices of pi,ps,...,p; are
covered by cliques of size two with the non used A(G)+1 tessellations following
an edge coloring of such edges. Thus, there is no universal graph such that the
gap between T(G V {u}) and x(G°) is larger than A(G) + 1. In particular, if
x(G%) > 2A(G) + 1, then by Theorem 3.1 below T'(G V {u}) = x(G°).

Theorem 3.1. A graph GV {u} with (G) > 2A(G)+1 has T(GV{u}) = 6(G).

Proof. Note that 8(G) = x(G¢). Consider a graph G V {u}. By Lemma 3.1,
T(G Vv {u}) > x(G°). Now we prove that T(G V {u}) < x(G°). Since x(G°) >
2A(G) + 1, there is a tessellation cover of G V {u} with x(G¢) tessellations as
follows. Use the x(G¢)-coloring of G as a guide to define a partial tessellation
of the edges of G with x(G°) tessellations in so that each color class of G¢
induces a clique of G entirely covered by the tessellation related to this color
class. Moreover, we extend the tessellations so that the edges uw are covered
by the corresponding tessellation of the color class of w. Now, the remaining
edges in G V {u} are the ones between vertices of G that are not in a same
color class in the coloring of G°. The maximum number of tessellations incident
to the endpoints of an edge xy is 2A(G) because 2 tessellations come from
the edges uz and uy, and 2A(G) — 2 come from the edges of G incident to x
and y. Therefore, T(G V {u}) < x(G¢) because it is possible to greedily assign
tessellations of cliques of size two to these edges.

O

Corollary 3.1. A graph GV {u} with is(GV {u}) = a(G V {u}) > 2A(G) + 1
has T(G V {u}) = x(G°). Moreover, if H is a (2A(G) + 1,G)-graph of Con-
struction 2.1 on G with 2A(G) + 1 pendant vertices to u, then T(H) = 6(G) =
X(G°) 4+ 2A(G) + 1.

Proof. Note that if o(GV{u}) > 2A(G)+1, then x(G°) > w(G°) = a(GV{u}) >
2A(G) 41 and, by Theorem 3.1, T(G V {u}) = x(G¢). Consider now the graph
H. Since each pendant vertex added to u in H does not modify A(G), and
it increases is(H) by one unit, is(H) > 2A(G) + 1. Moreover, each of those
pendant vertices is a universal vertex in G¢, increasing x(G¢) by one unit. Thus,
T(H)=x(H®) = x(G°) +2A(G) + 1. O

Good tessellable universal graphs

A universal graph GV {u} is good tessellable if T(G V {u}) = is(G V {u}). In
this case, by Lemma 3.1, T(G V {u}) = x(G°) = is(G V {u}). Therefore, if



Figure 2: A Tessellation cover of M V {u} with 4 tessellations and possible
4-colorings of M, guided by this tessellation cover.

GV {u} has T(G V {u}) > x(G°), then it is not a good tessellable graph. By
Corollary 3.1, if «(GV{u}) > 2A(G)+1, then T(GV{u}) = x(G°), and GV{u}
is good tessellable when x(G¢) = w(G°) = is(G V {u}).

The computational complexity of GTR of a subclass of universal graphs de-
pends on the restrictions used to define the subclass. On the one hand, perfect
graphs G with a(G) > 2A(G) + 1 can be recognized in polynomial time [7], and
the addition of a universal vertex results in a good tessellable universal graph.
On the other hand, planar graphs G with A(G) < 4 and a(G) > 2A(G)+1=9
for which to decide whether x(G) = w(G) = 3 is N'P-complete [6].

Graphs with arbitrary gap between 7'(G) and is(G)

We start by showing that the gap between T'(G) and is(G) can be arbitrarily
large for graphs G composed by the join of the complement of Mycielski graphs
with a vertex u.

Since the Mycielski graph M is triangle-free [12], the graph M has no
independent set of size three and is(M V {u}) = 2. Moreover, x(M;) = j [12],
and by Lemma 3.1, T(M$ V {u}) > x((M;)¢) > j. Fig. 2 depicts an example of
the Mycielski graph M, and the relation between its 4-coloring and a minimal
tessellation cover of M{ V {u}. Therefore, there is a graph H = M{ V {u} with
is(H) =2 and T(H) > j for j > 3.

Now, we describe a subclass of universal graphs for which the gap be-
tween T(G) and is(G) is very large. We also show that k-STAR SIZE and ¢-



TESSELLABILITY are NP-complete for graphs of Construction 3.2, for which
GTR is in P.

Construction 3.1. Let G = (V, E) be a graph. Obtain S2(G) by subdivid-
ing each edge of G two times, so that each edge vw € E(G) becomes a path
v, X1, T2, w, where 1 and z5 are new vertices. Let L(S2(G)) be the line graph
of S2(G). Add a universal vertex u to L(S2(G)), that is, consider the graph
L(S2(G)) vV {u}.

First, we show that there is a connection between T(H) of a graph H of
Construction 3.1 on GG with the size of a maximum stable set of G.

Theorem 3.2. If G = (V, E) is a graph with |E(G)| > 4 and H = (L(S2(G)) V
{u}) is obtained from Construction 3.1 on G, then T(H) = |V (G)| + |E(G)| —
a(G).

Proof. We claim that T'(H) = x((H \ {uv})¢). By Lemma 3.1, T(H) > x((H \
{u})?). Now, we show that T(H) < x((H\{u})¢). Consider a partial tessellation
cover of H \ {u} with x((H \ {u})¢) tessellations induced by a coloring of (H \
{u})¢, so that cliques of H \ {u} are assigned to tessellations associated to
different colors of (H \ {u})¢. Since H \ {u} = L(S2(G)) is the line graph of
a S2(G) graph, every vertex of (H \ {u})¢ has a maximum clique of size two
and another maximum clique incident to it with an arbitrary size. Consider
now a maximum clique K, of size at least three which is not completely covered
yet. The partial tessellation cover cannot have two cliques completely inside
K, (otherwise their merge would result in a coloring of the complement graph
with less than its chromatic number). Therefore, the edges of K, are partially
covered at this moment with one clique, and the remaining cliques covering
the vertices of K, are the maximal cliques of size two that are incident to the
vertices of K,. Thus, if the partial tessellation cover of K, has only maximal
cliques of size two given by edges incident to K,, then each edge e of K, has at
most two already used tessellations on cliques incident to their endpoints (the
ones given to these maximal cliques of size two).

Poljak [9] proved that x(L(S2(G))°) = |V(G)| + |E(G)| — a(G). Since
|E(G)| > 4 and a(G) < |[V(G)], |[V(G)| + |E(G)] — a(G) > 4 and there is
at least one available tessellation for each edge of K,. We claim that these
available tessellations for each edge are enough to extend this partial tessella-
tion cover to all edges of K,. First, pick an arbitrary tessellation for each edge.
Since the endpoint vertices of any collection of edges of K, on a same available
tessellation do not have these tessellations incident to their endpoints, we cover
the clique induced by these vertices with this tessellation.

Otherwise, K, has a clique K in the partial tessellation cover and all the
other vertices of K, must be covered by maximal cliques of size two with edges
outside K,. So, modify this partial tessellation cover assigning the tessellation
of K into all edges of K, and remove the vertices of K, from cliques of size
two on this partial tessellation cover, i.e., now they are cliques of size one and
K, is entirely covered by the tessellation of K.



G L(S2(G)) L(S2(G))

L(S2(G)) v {u}

Figure 3: A tessellation cover of H = L(S2(G))V{u} with |V(G)|+|E(G)|—a(G)

tessellations.

The remaining uncovered edges of H \ {u} in this partial tessellation cover
are maximal cliques of size two. Now, if an edge is uncovered and it is incident
to a maximal clique of size two or more, then we need this clique to be entirely
covered by a single tessellation. Therefore, the maximum number of already
used tessellations incident to the endpoints of a remaining edge is three. Since
there are |V(G)| + |E(G)| — a(G) > 4 tessellations, there is always an available
tessellation for these edges. Finally, the edges incident to u are covered by
the tessellations which covered the cliques of H \ {u}. Then, T(H) < x((H \

{u})%). O

Figure 3 depicts the proof of Theorem 3.2. In (a), we have graph G. In (b),
we have a clique cover of L(S2(G)). In (c), we modify the clique cover so that
the clique with label 7 is covered by a new tessellation and at the same time we
remove the vertices of the cliques of size two incident to the clique with label
7. Now the cliques with labels 6 and 8 have only one vertex each. Finally, in
(d) we extend the partial tessellation cover of L(S2(G)) to include the edges
incident to u.

Since deciding whether «(G) > k is N'P-complete [6], by Theorem 3.2 we
have the following result for the graphs of Construction 3.1.

Corollary 3.2. t-TESSELLABILITY is N'P-complete for universal graphs.

Proof. Let G be an instance graph of k-INDEPENDENT SET with |E(G)| > 4.
We know that deciding whether a(G) > k is N'P-complete [6]. Consider the
graph H of Construction 3.1 on G with H = L(S2(G)) V {u}. By Theorem 3.2,
T(H) = |E(G)| + |[V(G)| — a(G). Therefore, deciding whether «(G) > k is
equivalent to decide whether T(H) <t = |E(G)| + |V(G)| — k. O
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Next, we show that there are graphs of Construction 3.1 for which the gap
between T'(G) and is(G) is very large, whereas t-TESSELLABILITY remains N P-
complete.

Theorem 3.3. Let G be a graph and H = L(S2(G")) V {u} be obtained from
Construction 3.1 on G', where G' is obtained from G by adding x universal ver-
tices, with x polynomially bounded by the size of G. To decide whether T(H) =k
with k > is(H) + ¢, for ¢ = (O|V(G)|?) and constant d, is N'P-complete.

Proof. Consider a graph G and L(S2(G)) V {u} as described in Corollary 3.2.
Note that is(L(S2(GQ)) V {u}) = a(L(S2(G))) = u(S2(G)). We claim that
1(S2(G)) = |E(G)|4+u(G). There are three edges in S3(G) between two adjacent
vertices of G. In a maximum matching of S3(G), we need to select at least one
of them, otherwise, we could include the middle edge to a maximum matching,
which is a contradiction. Moreover, if there is only one edge and it is not a
middle edge, then we obtain another maximum matching by replacing this edge
by the middle edge. Clearly, we cannot choose three edges and in case we choose
two edges, different from the middle edge. The case of two edges forces that
both of them are incident to vertices of S3(G) associated to vertices of V(G).
Therefore, the maximum number of such selection of two edges in S2(G) is equal
to the size of a maximum matching of G. For each edge in a maximum matching
1(@G) of G we have two edges in the maximum matching in S3(G) and, for each
other edge of G, we have one edge in the maximum matching of So(G). Thus,
1(S2(@)) = 2u(G) + |E(G)| — u(G) = |E(G)| + pu(G).

By Theorem 3.2, T(H) = |E(G)|+|V(G)| — a(G). The addition of universal
vertices to G does not modify «(G). The addition of each universal vertex
may add one unit to p(G) until it reaches |V(G)|. Then, we add one unit
to u(@G) for each addition of two universal vertices. In that case, we start to
increase the difference between T(H) = |E(G)| + |V(G)| — a(G) and is(H) =
|E(G)| + p(G), since for each two universal vertices we add to G, we increase
T(H) by two units and is(H) by one unit. Therefore, we can arbitrarily enlarge
the gap between T'(G) and is(G). And, as long as the addition of these universal
vertices are polynomially bounded by the size of G, it holds the same polynomial
transformation of Corollary 3.2 from k-INDEPENDENT SET of G’ (obtained from
G by the addition of universal vertices) to ¢-TESSELLABILITY of L(S2(G")) V
{u}. O

Finally, we show that the graphs from Construction 3.2 below obey behav-
ior (e).

Construction 3.2. Let Hy be the graph obtained from Construction 2.2 (I) on
a given graph G1 and a non-negative integer i. Let Ho be the graph obtained
from Construction 3.1 on the graph Ga V Ksjv(q,) of a given graph Go. Let
u and u' be the two universal vertices of the two connected components of H.
Add is(Hz) degree-1 vertices to Hy adjacent to u and is(Hz) degree-1 vertices
adjacent to u'. Consider H; U Hs.

11



Theorem 3.4. k-STAR SIZE and t-TESSELLABILITY are N'P-complete for graphs
of Construction 3.2, for which GTR is in P.

Proof. Let G1 be an instance graph with no universal vertex of the well-known
NP-complete problem ¢g-COLORABILITY [6]. Let G be an instance graph of the
well-known N P-complete problem p-INDEPENDENT SET with E(G2) > 4 [6].
Consider a graph H = H; U Hs obtained from Construction 3.2 on G; and Go
with ¢ = q.

Since Hz is obtained from Construction 3.1 on G2 V K3y (g,)|, by The-
orem 3.3, T(Hy) — is(H2) > |V(G1)|- By Theorem 2.1, 1 < is(H;) <
T(Hy) = |V(G1)]. The parameter is(Hz) can be obtained in polynomial
time by applying a maximum matching algorithm [6] (see Theorem 3.3). And
the addition of the degree-1 vertices to H; of Construction 3.2 implies that
1+is(H) <is(Hy) < T(Hy) = |V(G1)| + is(H2).

Therefore, H = Hy U H, is a graph that obeys is(Hs) <is(Hy) < T(H;) <
T(H,) with T(H) = T(Hz) and is(H) = is(Hy). The proof holds because
GTR is in P with answer always no and both k-STAR SIZE on graphs H; of
Construction 2.2 (I) (see Theorem 2.1) and ¢-TESSELLABILITY on graphs Hy of
Construction 3.1 (see Theorem 3.3) are N'P-complete. O

4 Concluding remarks

The concept of tessellation cover of graphs appeared in a thesis by Duchet [4],
and subsequently in [3, 5], as EQUIVALENCE COVERING. The known results
about tessellation cover number of a graph up to now were related to upper
bounds of the values of T(G), and the complexities of the ¢-TESSELLABILITY
problem [2]. In this work we focus on a different approach by analyzing the
tessellation cover number T'(G) with respect to is(G), one of its lower bounds,
which implicitly appeared in the previous hardness proofs of [2].

The motivation to define the tessellation cover number comes from the anal-
ysis of the dynamics of quantum walks on a graph G in the context of quantum
computation [10]. Since it is advantageous to implement physically as few op-
erators as possible in order to reduce the complexity of the quantum system, it
is important to analyze the gap between T(G) and is(G).

We have proposed the GOOD TESSELLABLE RECOGNITION problem (GTR),
which aims to decide whether a graph G satisfies T(G) = is(G), and we have
analyzed the combined behavior of the computational complexities of the prob-
lems k-STAR SIZE, t-TESSELLABILITY, and GTR. We have defined graph classes
corresponding to triples which specify the computational complexities of these
problems, summarized in Table 1. We have defined graph classes in Construc-
tion 2.2 (I) and Construction 2.2 (II) that obey behaviors (N P-complete, P,
NP-complete) and (N P-complete, P, P), respectively. Graphs that obey be-
havior (N P-complete, N'P-complete, P) are obtained using Construction 3.2.
We also note that there are omitted triples in Table 1, which are either empty
or easy to provide examples, as described in Section 1.

12



We are interested in the following two research topics: (i) The concept of
good tessellable graphs can be extended to perfect tessellable graphs, the graphs
G for which T(H) = is(H) for any induced subgraph H of G. A natural
open task is to establish the characterization by forbidden induced subgraphs
and a polynomial-time recognition algorithm for perfect tessellable graphs. We
conjecture that this class is exactly the {gem, Wy, odd cycles}-free graphs;
(ii) We have already established relations between T'(G) with other well-known
graph parameters such as the chromatic number and the maximum size of a
stable set. We are currently investigating further relations such as those between
T'(G) with the chromatic index and the total chromatic number.
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Abstract. We propose the total staggered quantum walk model and the
total tessellation cover of a graph. This model uses the concept of total
tessellation cover to describe the motion of the walker who is allowed to
hop both to vertices and edges of the graph, in contrast with previous
models in which the walker hops either to vertices or edges. We establish
bounds on T3(G), which is the smallest number of tessellations required
in a total tessellation cover of G. We highlight two of these lower bounds
T:(G) > w(G@) and Ty(G) > is(G) + 1, where w(G) is the size of a
maximum clique and is(@) is the number of edges of a maximum induced
star subgraph. Using these bounds, we define the good total tessellable
graphs with either T3(G) = w(G) or T3(G) = is(G) + 1. The k-TOTAL
TESSELLABILITY problem aims to decide whether a given graph G has
T:(G) < k. We show that k-TOTAL TESSELLABILITY is in P for good total
tessellable graphs. We establish the A/P-completeness of the following
problems when restricted to the following classes: (is(G) + 1)-TOTAL
TESSELLABILITY for graphs with w(G) = 2; w(G)-TOTAL TESSELLABILITY
for graphs G with is(G) + 1 = 3; k-TOTAL TESSELLABILITY for graphs
G with max{w(G), is(G) + 1} far from k; and 4-TOTAL TESSELLABILITY
for graphs G with w(G) = is(G) +1 = 4. As a consequence, we establish
hardness results for bipartite graphs, line graphs of triangle-free graphs,
universal graphs, planar graphs, and (2, 1)-chordal graphs.

Keywords: Graph tessellation, Quantum walk, Graph coloring, Com-
putational complexity.

1 Introduction

A tessellation of a graph G = (V, E) is a partition of V into vertex disjoint cliques
called tiles. A k-tessellation cover of G is a set of k tessellations that covers E.
The tessellation cover number T(G) of a graph G is the size of a minimum tes-
sellation cover. The k-TESSELLABILITY problem aims to decide whether a given
graph G has T(G) < k. The concept of tessellations on graphs was introduced
in [1]. See [2] for basic definitions and notations in graph theory.

* This work was partially supported by the Brazilian agencies CAPES, CNPq and

FAPERJ.



2 A. Abreu et al.

Definition 1 Let G = (V, E) be a graph and X a non-empty label set. A total
tessellation cover comprises a proper vertex coloring and a tessellation cover of
G both with labels in X such that, for any vertex v € V, there is no edge e € F
incident to v so that e belongs to a tessellation with label equal to the color of v.

An alternative way to characterize a tessellation is by describing the edges
that belong to the tessellation. A k-tessellation cover of G = (V, E) is a function h
that assigns to each edge of E a nonempty subset in P(X), where ¥ = {1,..., k},
such that the set of edges having the same label corresponds to a tessellation,
i.e., induces a partition of V into cliques. A k-total tessellation cover of a graph
G simultaneously assigns labels in 3 to V' as a proper vertex coloring f and
labels in P(X) \ 0 to E as a tessellation cover with function h, such that each
wv € E satisfies f(u) € h(uv) and f(v) &€ h(uv).

Definition 2 The total tessellation cover number Ti(G) of a graph G is the
minimum size of the set of labels X for which G has a total tessellation cover.
The k-TOTAL TESSELLABILITY problem aims to decide whether a given graph G
has T3(G) < k.

Motivation. The quantum computation paradigm has gained popularity due
to the recent advances in the physical implementation and in the development of
quantum algorithms. There is an important concept, known as quantum walk,
which is the mathematical modeling of a walk of a particle on a graph. This
concept provides a powerful tool in the development of quantum algorithms [3].
Indeed, in the last decades the interest in quantum walks has grown considerably
since quantum algorithms that outperform their classical counterparts employ
quantum walks [4,5]. In 2016, Portugal et al. proposed the staggered quantum
walk model [1], which is more general than the previous quantum walk models [6]
by containing the Szegedy model [7] and part of the flip-flop coined model [3].
The staggered quantum walk employs the concept of graph tessellation cover to
obtain local unitary matrices such that their product results in the evolution
operator for the quantum walk. There is a recipe to obtain a local unitary ma-
trix from a tessellation. The staggered model requires at least two tessellations
(corresponding to 2-tessellable graphs). In a tessellation, each clique establishes
a neighborhood around which the walker can move under the action of the asso-
ciated local unitary matrix. To define the evolution operator, one has to check
whether the set of tessellations contains the whole edge set of the graph, since
an uncovered edge would play no role in a quantum walk [1].

Related works. Abreu et al. [8,9] proved that x'(G) and x(K(G)) are up-
per bounds for T(G), where K(G) is the clique graph of G. They also proved
the hardness of k-TESSELLABILITY for planar graphs, (2,1)-chordal graphs, and
(1,2)-graphs and showed that 2-TESSELLABILITY is solved in linear time. Since
T(G) = X'(G) for triangle-free graphs, k-TESSELLABILITY is hard for this graph
class [10]. Posner et al. [11] showed that k-TESSELLALBILITY is A/P-complete for
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line graphs of triangle-free graphs. Abreu et al. [12] proved that is(G) is a lower
bound for T(G), where is(G) is the number of edges in a maximum induced
star of a graph GG. They prove the hardness of k-TESSELLABILITY for universal
graphs and the hardness of GOOD TESSELLABLE RECOGNITION, which aims to
decide whether G is good tessellable, i.e., T(G) = is(G). The concept of mini-
mum tessellation cover was independently proposed as equivalence dimension in
Duchet [13], and the relation between the two concepts was described in [12].

Contributions. This work is presented in the following sections. Section 2
contains a study on the bounds of the value of T;(G). Such bounds describe not
only the number of operators required for a total staggered quantum walk model,
but they also provide tools to analyse the computational complexity of k-TOTAL
TESSELLABILITY, which is done in Section 3. Since T3(G) = x:(G) for triangle-
free graphs, the problem is hard even when restricted to bipartite graphs [14]. We
show that k-TOTAL TESSELLABILITY is in P for good total tessellable graphs,
and as a by product k-TESSELLABILITY is in P for good tessellable graphs.
On the other hand, we show hardness results for the k-TOTAL TESSELLABILITY
problem for line graphs of triangle-free graphs, universal graphs, planar graphs,
and (2, 1)-chordal graphs. As a consequence, the GOOD TOTAL TESSELLABILITY
RECOGNITION problem is N'P-complete. Note that there are few results about
the hardness of TOTAL COLORABILITY. Section 4 describes the total staggered
quantum walk model, which drives a walker to hop both to vertices and edges.
It also contains a description of the simulation of the total staggered quantum
walk on a graph G in terms of a staggered quantum walk on the total graph
of G. In Section 5, Table 1 presents the behavior analysis of the computational
complexity related to the following parameters: X' (G), x¢(G), T(G), and T;(G).

2 Bounds on T;(G)

Since a total coloring of a graph G induces a total tessellation cover,
Ty(G) < x¢(G). (1)

Particularly, for triangle-free graphs T;(G) = x+(G) because the set of edges in
each tessellation of any total tessellation cover is a matching. Hence,
(A+1)-TOTAL TESSELLABILITY is hard even when restricted to regular bipartite
graphs [14]. Furthermore, by definition,

max{x(G). T(G)} < T(G) < x(C) + T(C). )
Note that the lower bound of Eq. (2) implies that T;(G) > w(G).
Lemma 1. If x(G) > 3T(G), then T;(G) = x(G).

Proof. Let f be a proper vertex coloring and C = {71, 72, ..., Tr(c)} be a T'(G)-
tessellation cover for G. We define C’ a tessellation cover for G with 3T(G) labels



4 A. Abreu et al.

such that C’ is compatible with f as follows. Each tessellation 7,1 < i < 3T(G),
of C’ is associated with a color i. Since x(G) > 3T(G) there are enough colors.
The edges of tessellations T3;_,,73;_1, and T3; are given by the edges of the
tessellation T;,1 < j < T(G), such that T3; , (resp. 73;_;, T3;) consists of the
edges of 7; that do not have an endpoint with color 3j — 2 (resp. 35 —1,3;). O

Using an argument similar to the one in the proof of Lemma 1, we can rewrite
the upper bound of Eq. (2) as follows

T(G) < max {x(G), T(G) + [2x(G)/3]} . (3)

Eq.(3) says that x(G) > 3T(G) implies T:(G) = x(G), or x(G) < 3T(G) im-
plies T(G) < T3(G) < 3T(G). In case x(G) = 3, Eq. (3) implies that T(G) <
T:(G) < T(G) +2. An example of a graph G for which T;(G) = 3T(G) — 1 and
Ti(G) > x(G) has V(G) = {v1,v2,v3,v4} U {u1,uz,usg,us} U {wi, we, ws, ws},
where {v1,v2,v3,v4} and {uq,us,us,us} are maximal cliques and {v;, u;, w;}
are triangles for 1 < ¢ < 4. In this case T;(G) = 5, x(G) = 4 and T(G) = 2.
Note that T;(G) = x(G) 4+ T(G) requires that x(G) < 2, i.e., G is bipar-
tite, which implies T3(G) = x:(G) and T;(G) may assume only two values:
Ty(G) = x(G)+T(G) = A(G)+ 2 or T}(G) = x(G) + T(G) — 1 = A(G) + 1.

Lemma 2. T;(G) zvg/agé){x(Gc [N(v)])H1 Zvér‘l/a()é){w(Gc [N(v)]) H1l=1is(G)+L.

Proof. Consider a total tessellation cover of a graph G, a vertex v of G, and
G*¢[N(v)], which is the complement graph of the graph induced by the neighbor-
hood of v. In any tessellation, the endpoints of the edges that are incident to v
and belong to the tessellation induce a clique, hence the vertices of this clique are
a stable set in G°[N (v)]. Therefore, the tessellations with edges incident to a ver-
tex v induce a vertex coloring of G°[N (v)], and the number of these tessellations
is at least x(G°[N(v)]). Moreover, these tessellations have labels that are differ-
ent from the color of vertex v. Therefore, T3(G) > x(G°[N(v)]) + 1. Note that
is(GINT]) = a(GIN()) = w(GFIN(0)]) and is(G) = max is(GINL]). O
v

Graphs with T3(G) = T(G) = k have no induced subgraph Kj j because
Ti(G) > is(G)+1 > k+ 1. Moreover, there is no tile of size k in any tessellation
of a total tessellation cover. If T;(G) = T(G) = 3, then G is K3 g-free and there is
no clique of size three in any tessellation. Therefore, the total tessellation cover of
G induces a total coloring of G, and the only graphs for which T3(G) = T(G) = 3
are the odd cycles with n vertices such that n = 0 mod 3. For bipartite graphs,
T(G) = A(G) and Ti(G) > T(G). For triangle-free graphs, T;(G) = T(G) if
X' (G) = x:(G) = A+ 1. Tt follows that deciding whether T3(G) = T(G) =
A(G) +1 is N'P-complete from the proof that (A + 1)-TOTAL COLORABILITY is
NP-complete for triangle-free snarks [15], which are graphs with x'(G) = A+1.

3 Good Total Tessellable Graphs

Since the concept of good tessellable graphs introduced in [12] has provided keen
insights into the hardness of finding minimum-sized tessellation covers, we define
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the concept of good total tessellable graphs in order to further explore hardness
results related to total tessellation covers. In the quantum computation context,
we are interested in graph classes which use as few color labels as possible because
the number of operators is as low as possible. In this case, T;(G) must be close
to the lower bounds.

Definition 3 A graph G is good total tessellable if either T3(G) = w(G) or
T:(G) = is(G) + 1. We say that G is Type I (resp. Type II) if T;(G) = w(G)
(resp. T3 (G) = is(G) + 1).

Now we show that k-TOTAL TESSELLABILITY is in P if we know beforehand
that the graph is either good total tessellable Type I or Type II.

The Lovdsz number ¥(G) is a real number such that w(G¢) < ¥(G) <
x(G¢) [16]. We denote ¥(G) the integer nearest to ¥(G). The value of ¢¥(G)
can be be determined in polynomial time [16].

For Type I graphs, T1(G) = w(G). Since Eq. (2) implies that w(G) < x(G)
T:(G), we have w(G) = x(G) = T(G) = (G°).

For Type IT graphs, T3(G) = is(G)+1. For any vertex v € V(G), w(G°[N (v)]) <
PY(GIN(v)]) < x(G°[N(v)]), and by Lemma 2, T3:(G) > %(G[N(v)]) + 1. Since
Ty (G) = is(G) + 1, by Lemma 2 there is a vertex u € V(G) such that T}(G) =
w(G[N (uw)])+1. In this case, w(G°[N(u)]) +1 = x(G°[N(u)]) + 1, and we deter-
mine w(G°[N (u)]) using ¥ (G[N (u)]). Therefore, T;(G) = ér‘l/a()é){w(G[N(v)])}—H.

A

The same method used to determine T;(G) for Type II graphs can be ap-
plied for good tessellable graphs in order to determine T(G), where T(G) =

max {{(GN(v)])}.

veV(G)

Hardness results. As presented in Section 2, (A 4 1)-TOTAL TESSELLABILITY
is N'P-complete for bipartite graphs, which have is(G)+1 = A+1 and w(G) = 2.
Now, we show that k-TOTAL TESSELLABILITY is A/P-complete for the following
cases: line graph of triangle-free graphs with k¥ = w(G) > 9 and is(G) + 1 = 3;
universal graphs with k very far apart from both is(G) + 1 and w(G); planar
graphs with k = 4 = w(G) = is(G) + 1; and (2,1)-chordal graphs with k =
is(G) +1=w(G) + 3.

Line graph of triangle-free graphs. Machado et al. [17] proved that k-EDGE
COLORABILITY is N'P-complete for 3-colorable k-regular triangle-free graphs if
k > 3. The key idea of the proof of Theorem 1 is to verify that T;(L(G)) = x'(G)
when k > 9. The edges incident to any vertex v of graph G correspond to a clique
of L(G), whose size is the degree of v. If two vertices of G are non-adjacent, then
the corresponding cliques in L(G) share no vertices. Hence, we cover the edges of
the cliques of L(G) incident to the vertices of each of the three color class of the
3-coloring of G with a tessellation related to the color class because these cliques
share no vertices. Therefore, since T(L(G)) = 3 and x(L(G)) > 9 > 3T(G), by
Lemma 1, T(L(G)) = x(L(G)) = x'(G). Note that in this case k = w(L(G))
and is(L(G)) +1 = 3.



6 A. Abreu et al.

Theorem 1. k-TOTAL TESSELLABILITY is N'P-complete for line graphs L(QG)
of 3-colorable k-regular triangle-free graphs G for any k > 9.

Universal graphs. Abreu et al. [12] reduced ¢-COLORABILITY to k-TESSELLABI
LITY for universal graphs. We present a similar argument to establish the N'P-
completeness of k-TOTAL TESSELLABILITY for universal graphs. Let G be an
instance of ¢-COLORABILITY. The key idea of the proof of Theorem 2 is to add
to G° a universal vertex u and 2|V (G)| pendant vertices adjacent to u, which
defines the graph [2|V(G)|, G¢] of G°. Now, the total tessellation cover number of
the constructed graph is given by 2|V(G)|+ x(G) +1, using labels 1, ..., x(G) to
cover the edges incident to u that belong to the subgraph induced by V(G°U{u}),
labels x(G) 4+ 1,...,x(G) 4+ 2|V (G)| to cover the edges incident to the pendant
vertices and labels x(G) + 1,...,x(G) + |V(G)| are enough to cover the edges
of G¢; assign to u the color 2|V (G)| + x(G) + 1, to the pendant vertices color
1, and to the remaining vertices colors x(G) + |[V(G)| + 1,...,x(G) + 2|V (G)|.
The minimality follows from Lemma 2. Therefore, T;([2|V (G)|, G¢]) = 2|V (G)|+
x(G)+ 1.

Note that is(C5 V {u}) = 2, T:(C5 V {u}) = 4, and any minimum total
tessellation cover of Cs V {u} has at least three labels assigned to the edges
incident to u and a fourth label assigned to u. Thus, T3([2|V(G)|,G° U Cs]) =
T(RIV(G),G¥]) + 3 is(2V(G),G° U Cs)) = is(RIV(G)],G¥]) + 2 and
w(2IV(@)],G° U C5)) = w([2|]V(G)|, G°]). Therefore, each addition of a C5 in-
creases the gap between the total tessellation cover number and both the sizes
of a maximum induced star and a maximum clique. As long as the number of
the C5’s is polynomially bounded by the size of G, k-TOTAL TESSELLABILITY is
NP-complete even if k is far apart from is(G) and w(G).

Theorem 2. k-TOTAL TESSELLABILITY is N'P-complete for universal graphs.

Planar graphs. We show that 4-TOTAL TESSELLABILITY is A/P-complete when
restricted to planar graphs G with is(G) + 1 = w(G) = 4. We present a poly-
nomial transformation from 3-COLORABILITY when restricted to planar graphs
with maximum degree four [18] to 4-TOTAL TESSELLABILITY for planar graphs.
Let G be an instance of such coloring problem. G’ = G V {u} has a 4-coloring
if and only if the planar graph G has a 3-coloring. We define three gadgets as
depicted in Fig. 1. The edges of the external triangles of the Duplicator Gadget
are tiles of size three in a same tessellation. The edges of the external triangles of
the NotEqual Gadget are tiles of size three in different tessellations. The Shifter
Gadget forces triangles 77 and T4 to be tiles on a tessellation a, and triangles
Ty and T3 to be tiles on a tessellation b different from a.

Each vertex v of G’ is associated with a Duplicator Gadget such that the
number of external triangles of the Duplicator Gadget of v is equal to dgr(v).
If two vertices of G’ are adjacent, we connect one external triangle of each
Duplicator Gadget with a NotEqual Gadget. Thus, in a 4-total tessellation cover
of the obtained graph H, the labels of the external triangles of the Duplicator
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Duplicator Gadget NotEqual Gadget Shifter Gadget

Fig. 1. Duplicator Gadget, NotEqual Gadget, and Shifter Gadget.

Gadget associated with a vertex v are equal to the color of v in a 4-coloring
of G'. Now, we transform H into a planar graph H’ by replacing each crossing
triangles of H by a Shifter Gadget. Therefore, the planar graph H’ has a 4-
total tessellation cover if and only if G has a 3-coloring. Note that in this case
k=w(@) =4=1s5(G) + 1.

Theorem 3. 4-TOTAL TESSELLABILITY is N'P-complete for planar graphs.

(2,1)-chordal graphs. A graph G is (2,1) if its vertex set can be parti-
tioned into two stable sets and one clique. Since 3-EDGE COLORABILITY iS
NP-complete for 3-regular graphs [17], 3-VERTEX COLORABILITY for 4-regular
line graphs is also NP-complete. Let G be a 4-regular line graph. We con-
struct a graph H from G as follows. V/(H) contains a clique {eq, ..., egG)-1}
where each e;, 0 < i < |E(G)| — 1, is associated with a distinct edge of G.
V(H) contains an stable set {eg, ... €/p)_} such that each €] is adjacent
to all e; with j # ¢ and j # i+ 1 mod |E(G)|. V(H) contains an stable
set {vo,..., Vv (@)1}, Where each v;, 0 < i < [V(G)| — 1, is associated with
a distinct vertex of G. Each e; € {eq,...,e|gq)-1} is adjacent to vertices
U, Vs € {V0,. .., Vv (a) -1} such that e; = v.vs. V(H) contains an stable set
P comprising (|V(G)| + |E(G)|)(JE(G)| + 1) pendant vertices such that each
vertex of {vo,...,vjv(@)-1}U{ep, -, eTE(G)Pl} is adjacent to |E(G)|+ 1 pen-
dant vertices. By construction, H is (2,1) and chordal.

We claim that Ty(H) = |E(G)| + 3 if and only if x(G) = 3. Consider a 3-
coloring c of G. Obtain a k-total tessellation cover of H with k = |E(G)|+3 as fol-
lows. Assign colors in {1,... ,[E(G)|} to the vertices of the clique {eo,. . .,e|p(q)|-1}-
Assign to vertex e}, for 1 < i < |E(G)|, the same color of the vertex e;.
For 0 < ¢ < |E(G)| — 1, the tile with vertices {ej} U{e; | j # iand j #
i+ 1 mod |E(G)|} is in the tessellation with label ¢ + 2 mod |F(G)|. Note
that if two vertices v; and v of G are not adjacent, then the cliques {v;} U
{e; | v; is endpoint of e; in G} and {vx} U {e; | vy is endpoint of e;in G} are
disjoint. Thus, the tile with vertices {v;} U {e; | v; is endpoint of e; in G} is
in the tessellation with label c¢(v;) + |E(G)|. Finally, greedily assign colors and
labels to the remaining vertices and edges of H. Consider a total tessellation
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cover of H with k = |E(G)|+ 3 labels. Note that we require |E(G)| tessellations
to cover the edges between the vertices {eo, ..., e/m@) -1} U {ep, .- ’eTE(G)I—l}
in any total tessellation cover of H. Moreover, a tile in each of those |E(G)|
tessellations contains [E(G)| — 2 vertices of the clique {eo, ..., e g -1} Since
each tile {v;} U {e; | v; is endpoint of e; in G}, for 0 < i < |[V(G)| — 1, con-
tains four vertices of the clique {eq, ..., e E(gﬂ,l}7 there are only three tessella-
tion labels used by the tiles {v;} U {e; | v; is endpoint of e; in G}, for 0 < i <
|V (G)| — 1. Moreover, if two vertices v; and vy are adjacent in G, then the tiles
{vi}U{e; | v; is endpoint of e; in G} and {vy}U{e; | vx is endpoint of e; in G}
share a vertex e; = v;v;, in H and they are tiles belonging to different tessella-
tions. Hence, we obtain a 3-coloring ¢ of G as follows. Assign the label of the tile
{vi} U{e; | v; is endpoint of e; in G} to the color of v; in c.

Therefore, G has a 3-coloring if and only if H has a total tessellation cover
with |E(G)| + 3 labels. Note that k = is(H) + 1 =w(H) + 3 = |E(G)| + 3.

Theorem 4. k-TOTAL TESSELLABILITY is N'P-complete for chordal graphs.

4 The total staggered quantum walk model

We now show how to simulate a total staggered quantum walk on a graph G with
a staggered quantum walk on its total graph Tot(G). The total graph Tot(G)
of G has V(Tot(G)) = V(G) U E(G) and E(Tot(G)) = E(G) U{u uw | u €
V(G), uw € E(G)} U{uv vw | wv € E(G) and vw € E(G)}. Let A = Tot(G),
AE(@)] =Y and A[V(G)] = X. Subgraph Y is isomorphic to the line graph
L(G) of G, and X is isomorphic to the original G. We define the clique K, =
{v}U{vw | vw € E(G)} of A.

Consider a total tessellation cover of a graph G. Define an associated tessel-
lation cover of A as follows. Assign the labels of the edges of G to the respective
edges of X and assign the color of each vertex v of G to the edges of A[K,]. We
simulate the total staggered quantum walk on G with the staggered quantum
walk on A by considering the vertices of G as the corresponding vertices of X
in A, and the edges of G as the corresponding vertices of Y in A. Fig. 2 depicts
a total tessellation cover of a graph G and the associated tessellation cover of
A = Tot(G).

Consider the walker located on a vertex a of G. If we apply the operator
H; associated with the color of a, the walker hops to the edges incident to a
(the edges ab and ac). If we apply an operator associated with the label of an
edge incident to a, the walker hops to the vertices in the tile of the tessellation
of the same label that contains a (the vertices b and ¢). The same happens by
considering the walker located on a vertex a in X. If we apply the operator H;
associated with the labels of the edges of A[K,], the walker hops to the vertices
ab and ac of Y, and if we apply the operator associated with the label of an
edge of X incident to a, the walker hops to the vertices b and ¢ of X. Consider
the walker located on an edge ab of G. If we apply the operator associated with
the color of a (or b), the walker hops to a (or b) and to the edges incident to it.
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The same happens by considering the walker located on a vertex ab in Y. If we
apply the operator associated with the labels of the edges of A[K,] (or A[Kj}]),
the walker hops to vertices of K, (or Kj). Otherwise, the walker stays put in
both G and A.

G A
ab ac bc bd be ce cf de ef

4

d f

——L

\V/\ '/A

¢ d

Fig. 2. Total tessellation cover of a graph G and the associated tessellation cover of A.

5 Concluding remarks

We have defined the total tessellation cover on a graph G and have used this
concept to define the total staggered quantum walk model. This work strengthens
the connection between quantum walk and graph coloring.

We have established examples of graphs for which T;(G) reaches the bounds
of Section 2. We leave as an open problem to search for graphs with at least
3 vertices satisfying T3(G) = 3T(G) and T:(G) > x(G). Moreover, it would be
interesting to define graph classes with T;(G) = T(G) = k for k > 4, since for
k = 3 the only such graphs are the odd cycles C,, withn = 0 mod 3.

We have shown that 4-TOTAL TESSELLABILITY is A/P-complete for planar
graphs satisfying is(G) + 1 = w(G) = 4. This is important since the hardness
of k-EDGE COLORABILITY and k-TOTAL COLORABILITY for planar graphs are
still open. On the other hand, we know that planar graphs with large maximum
degree have edge and total colorings as small as possible [19,20]. We leave as
an open problem to find a threshold for T;(G) for which all planar graphs are
Type II.

Table 1 summarizes the computational complexities of EDGE-COLORABILITY
cf. [17], TOTAL COLORABILITY cf. [21], TESSELLABILITY cf. [8], and TOTAL TES-
SELLABILITY. These four problems are in P when restricted to complete graphs,
star graphs and trees, whereas for triangle-free graphs, the four problems are
NP-complete. We leave as an open problem to find a graph class for which
TOTAL COLORABILITY is A'P-complete and TOTAL TESSELLABILITY is in P.
We have not identified this class because all known N P-completeness proofs of
TOTAL COLORABILITY are restricted to graph classes with x:(G) = T;(G).
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Appendix

Planar Graphs - Detailed proof of Theorem 3

The computational complexity of TOTAL COLORING for planar graphs is an open
problem. On the other hand, we show in this section that 4-TOTAL TESSELLA-
BILITY for planar graphs is A/P-complete. Since in this proof we use a generic
graph G such that is(G) + 1 = w(G) = 4, we also prove that deciding whether
a graph has both T(G) = is(G) + 1 and T(G) = w(G) is N'P-complete even if
restricted to planar graphs.

Lemma 3. Let G be the graph with V(G) = {a1,b1,c1,d1} U {ag,ba,ca,da} U
{as, b3, c3,ds}, where {a1,b1,c1,d1} is a mazimal clique and {a1,as,as}, {b1, b2, b3},
{c1,c,c3}, and {d1,d2,ds} are triangles. Any total tessellation cover of G with
four labels has the following property: The edges of three triangles are tiles on a
same tessellation and the edges of the remaining triangle are a tile on a different
tessellation.

Proof. The proof follows after analyzing all possibilities of total tessellation cov-

ers with four labels. O
a1 1 c1 d1
a2 b2 c2 d2
a3 b3 c3 ds

Fig. 3. A 4-total tessellation cover of the graph of Lemma 3.

Fig. 3 shows an example of a total tessellation cover of graph G described
in Lemma 3. The edges of three triangles must have the same color (red) and
the fourth triangle must have a different color (blue). In the first gadget of the
Fig. 4, the two external triangles’ edges must receive the same label, since the
two internal triangles shares a vertex and they must receive different labels. In
the second gadget, since the internal triangles’ edges must receive the same label
the external triangle’ edges must receive different labels.

Lemma 4. Any total tessellation cover of the graph G of Fig. 6 with four labels
has the following property: The triangles Ty and Ty are tiles in a same tessel-
lation, and the triangles Ty and T3 are tiles in a same tessellation, which is
different from the tessellation that contains T and Ty.

Proof. Since there are three maximal cliques incident to the vertices b (resp. ¢
and e), they are three tiles on different tessellations. Therefore, the three triangles
of the Hajos subgraph of G are tiles on different tessellations. The Equal Gadget
has its tiles incident to the vertices a and d on a same tessellation.
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Fig. 4. Equal Gadget: edges of its two external triangles are covered by 3-tiles of a same
tessellation in a 4-total tessellation cover. NotEqual Gadget: edges of its two external
triangle are covered by 3-tiles of different tessellations in a 4-total tessellation cover.

Fig. 5. Duplicator Gadget: it forces the five external triangles’ edges to have the same
label. Moreover, if the label of the triangle’ edges is a, then its vertices have the next
two consecutive labels a + 1 and a 4+ 2 modulo 4 available to the vertices of four of
these five triangles in a 4-total tessellation cover.
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(a)

(b)

Fig. 6. Shifter Gadget: it shifts two crossing tiles in different tessellations such that
the tiles get from one side to the other side without crossing edges and maintaining
their 3-tiles tessellations in a 4-total tessellation cover.
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Assume that the color of the vertex a is equal to the color of the vertex d.
Since the color of vertex a is the same of the color of vertex d and the tiles of
the Equal Gadget have a same tessellation different from the label of the color
of a and d, it implies that 77 is a tile on the same tessellation of the triangle
with vertices {b, d, e} and that T5 is a tile on the same tessellation of the triangle
with vertices {a,b, c}. Note that the colors of the vertices a (resp. d) and b are
different and that they are also different from the labels of T and T5. Therefore
the color of the vertices ¢ and e must be the same labels of the tessellations of
Ty and T5. Now, the triangle {c, e, f} and the vertex f must receive two labels
different from the labels used by the triangles {a, b, ¢} and {b,d, e}. This implies
that the triangles T3 and T, are tiles with the same labels of the triangles T}
and T5. Since T; share a vertex with T3 and T, share a vertex with Ty, the
triangles 77 and T, are tiles on a same tessellation and the triangles 75 and T
are also tiles on a same tessellation different from the tessellation of T; and T5.
Therefore, if there is a total tessellation cover of G with 4 labels, the proof of
the theorem holds. A total tessellation cover of G with 4 labels is depicted in
Fig. 6 (a). Note that we obtain total tessellation covers of G with all possible
combinations of two distinct labels of the four labels for 77 and T, by replacing
the color classes of G by the desired labels.

Assume that the color of the vertex a is different from the color of the vertex
d. For the sake of contradiction assume we use only two labels to the colors of a,
d and the tiles of the triangles {a, b, ¢} and {b, d, e}. This implies that b receives a
third label different from these two, and that there is only one available label to
the color of the vertices ¢ and e, a contradiction. We also cannot use four different
labels to the vertices a, d and the triangles {a, b, c} and {b,d, e} or there would
be no available label to the triangles of the Equal Gadget. Therefore, we have
three different labels used in the colors of the vertices a, d and the labels of
the tiles of the triangles {a, b, c} and {b,d, e}. This implies that the color of the
vertex b and the tiles of the Equal Gadget receive the same label. The color of
the vertices a, b, and the label of the tile of the triangle {a,b,c} are different
from the labels of T7. This implies that the color of ¢ is equal to the label of the
tile of T7. The same holds for the vertex e and the label of the tile of T5. Now
the color of the vertex f and the label of the tile of the triangle {c, e, f} must
be different from the colors of ¢ and e (i.e., the label of the tiles of 77 and T3).
This implies that the label of the tiles T3 and T4 are the same labels of the tiles
T1 and T5. Since T3 share a vertex with T3 and T, share a vertex with Ty, the
triangles 77 and T} are tiles on a same tessellation and the triangles T5 and Ty
are also tiles on a same tessellation different from the tessellation of 77 and T5.
Therefore, if there is a total tessellation cover of G with 4 labels, the proof of
the theorem holds. A total tessellation cover of G with 4 labels is depicted in
Fig. 6 (b). Note that we obtain total tessellation covers of G with all possible
combinations of two distinct labels of the four labels for T} and T by replacing
the color classes of G by the desired labels. a

Theorem 3 4-TOTAL TESSELLABILITY is N'P-complete for planar graphs.
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Proof. Let G be an instance of 3-COLORABILITY of planar graphs with degree
at most four [18]. Add a universal vertex u to G so that GV {u} has a 4-coloring
if and only if G has a 3-coloring. We create a planar graph H from G V {u}
as follows. We replace each vertex of G V {u} by a Duplicator Gadget with the
degree of the vertex duplication in H. We replace each edge of GV {u} by a
NotEqual Gadget connecting the related triangles of the Duplicator Gadgets
of the endpoints of the edge in H. The only crossing edges in H are from the
triangles of the universal vertex and the triangles of the other Duplicator Gadget
that have labels different from the one of the universal Gadget. We replace these
crossing tiles with the Shifter Gadget.

We claim that the resulting planar graph H has a 4-total tessellation cover
if and only if the graph G has a 3-coloring.

Consider a 4-total tessellation cover of H. If two vertices are adjacent in
G V {u}, then the NotEqual Gadget forces the tiles of the external triangles
of the respective Duplicator Gadgets of these two adjacent vertices to be on
different tessellations. Therefore, we obtain a 4-coloring of GV {u} by assigning
the color of a vertex as the label of the tile of the external triangles of the
Duplicator Gadget related to that vertex.

Consider a 4-coloring f of GV {u}. We obtain a 4-total tessellation cover of H
as follows. Assign each tile of the external triangles of the Duplicator Gadget to
the tessellation related to the color the vertex received in f. Label the remaining
vertices and edges as described in Figure 5 by rotating the color classes labels
to obtain the desired label.

Since we obtain the total tessellation cover of the Duplicator Gadget by
rotating the color classes, we have that the label of a external triangle and a
vertex of the degree two is related to consecutive colors. Therefore, if the label
of the tile of the external triangle is 1 (resp. 2, 3, and 4), then there are two
vertex of degree two in this external triangle with colors 2 and 3 (resp. 3 and 4, 4
and 1, 1 and 2). Now, for any two different tessellations of the tiles of the external
triangles, we select one vertex of degree two of each so that we do not use all
four labels in these two vertex and in the two tiles of the external triangles. By
Lemma 3, there is a total tessellation cover with four labels of the NotEqual
Gadget if we do not use all four labels on the two tiles of its external triangles
and the two vertices of the K, of that external triangles.

We obtain a total tessellation cover with 4 labels of the Shifter Gadgets as
described in Lemma 4. Note that, as depicted in Fig. 6, the two consecutive Equal
Gadgets connected to the external triangles Th (resp. Ts, T3, and Tj) allow us
to assign colors to the vertices of the Shifter Gadgets so that the vertices of the
last of their external triangles have the same colors of the vertices of the external
triangles of the Duplicator Gadgets that they are related. ad
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A tessellation is defined as a partition of the vertices of a graph into disjoint cliques.
A tessellation cover of a graph is a set of tessellations that covers all of its edges. The
tessellation cover number T'(G) is the size of the smallest tessellation cover of G. The
{-TESSELLABILITY problem consists in deciding whether 7'(G)) < ¢. This problem is moti-
vated by quantum walks, which is the mathematical modeling of a particle moving through
the vertices of a graph according to the postulates of quantum mechanics. In particular, in
the staggered quantum walk model one needs to find a tessellation cover of a graph before
defining the evolution operators for the quantum walker [2].

Abreu et al. proved that T'(G) is upper bounded by the minimum between the chro-
matic index of G and the chromatic number of its clique graph K (G); presented extremal
graphs whose tessellation number achieves one of these upper bounds; used these results to
prove the A'P-completeness for some restricted graph classes; and presented a linear-time
algorithm for the 2-TESSELLABILITY problem [1]. In this work, we study the optimization
version of {-TESSELLABILITY with a formulation for the minimization problem, and discuss
numerical results achieved with Gurobi API.

The formulation is as follows. Given a graph G = {V(G), E(G)}, this problem has the
following premises: (P1) a tessellation must cover the vertex set V(G); (P2) all cliques in
a tessellation must be vertex disjoint cliques; and (P3) the edge set E(G) must be covered
by the union of the tessellations of . All variables used in this formulation are binaries:
T; indicates whether tessellation 7 is used in the solution, V,” indicates whether vertex v
is used by clique j in tessellation ¢, and E%) indicates whether edge m is used by clique
j in tessellation 4. As this problem is a minimization problem, we must minimize the
objective function ZLJi(lG” T;. We need at most |E(G)| tessellations in a solution, and at
most |V(G)| cliques in a tessellation.

First, we enunciate the following restrictions: (R1) E‘j‘;(lG)l V7 =1 is needed to meet
premises (P1) and (P2), because this restriction allows vertex V,, to compose a unique
clique C; in a tessellation T;; (R2) Vy7 + VY < 1,V(v,u) ¢ E(G) is needed to avoid
that the model consider non-edges; (R3) Eb < T;, because an edge m can only be used
in the solution by a tessellation T in a clique C; if T; itself is in the solution; (R4)
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ZLE(G” EX > 1, is need to meet premise (P3). The next three restrictions guarantee that
an edge can only compose a solution in a tessellation T; if both incident vertices of this
edge are in the same clique Cj in the tessellation T;: (R5) Ep! < Vi7; (R6) Enl < Vi,
(R7) El > Vil + V"9 — 1, such that B} = (v,u) € E. Finally, to avoid symmetrical
answers we still need a last restriction: (R8) T;—1 > T;.

Our model was implemented in C with Gurobi API 4, and tested with input graphs
already previously analyzed by Abreu et al. [1]. Every result obtained with our proposed
formulation was consistent with those obtained in [1]| via analytical calculations or exhaus-
tive search.

A question that arises is whether every optimal tessellation cover must have tessellations
with at least one maximal clique. Abreu et al. [1] showed a graph, depicted in Fig. 1 that
uses in a optimal tessellation cover one tessellation that does not have a maximal clique.
Using the formulation proposed in this work we found the same tessellation cover found
by Abreu et al. and numerical simulations suggest that this tessellation cover is unique.

Figure 1: A non-trivial tessellation cover found by Gurobi using our proposed formulation.

The authors thank Abilio Lucena and Celina de Figueiredo for helpful discussions, and
FAPERJ, CNPq, CAPES for financial support.
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Abstract

A tessellation of a graph G = (V, E) is a set of disjoint cliques
that covers V(G). A tessellation cover of G is a set of tessellations
that covers F(G). The tessellation cover number of G, denoted
by T(G), is the minimum size of a smallest tessellation cover of
G. The t-TESSELLABILITY of G aims to decide whether T'(G) <
t. In this work, we present a polynomial time algorithm for ¢-
TESSELLABILITY for quasi-threshold graphs. Next, we introduce the
t-TESSELLABILITY COMPLETION of GG, which aims to decide whether
there is a tessellation cover T of GG with t tessellations given a par-
tial tessellation cover T’ of G that must be part of 7. Finally,
we compare the behavior of the computational complexity of t-
TESSELLABILITY COMPLETION and k-EDGE PRECOLORING in some
subclasses of graphs with few P, such as complete bipartite graphs,
triangulated of complete graphs, and complete graphs.
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1 Introduction

Nowadays quantum computation receives a lot of attention from the sci-
entific community. An important concept in this computational paradigm
is the quantum walk. This concept is defined as a mathematical model
of a particle’s walk thought the edges of a graph. Recently, Portugal
et al. [11] proposed the Staggered Quantum Walk Model, that includes
Szegedy Model and an important part of Coined Model. The Staggered
Model uses the concept of tessellations on graphs to generate the evolu-
tion operators that rules the corresponding quantum walk. Given a graph
G = (V,F), a tessellation is a set of disjoint cliques of G that covers
V(G). A set of tessellations T = {C,...,C;} is a tessellation cover when
T covers E(G). The size of a smallest tessellation cover in a graph G is
denoted by T'(G). The t-TESSELLABILITY problem aims to decide whether
a graph G has T'(G) <t [1].

Let K(G) be the clique graph of G, i.e., the vertices of K(G) are re-
lated to maximal cliques of G and two vertices are adjacent if the re-
lated maximal cliques are non-disjoint in G. Abreu et al. [1] proved that
T(G) < min{x(K(G)), X' (G)}, where x(K(G)) and x'(G) denote the chro-
matic number and chromatic index of graphs K(G) and G, respectively.
They also showed N P-completeness proofs of the t-TESSELLABILITY prob-
lem for several graph classes. Moreover, they showed that this problem is
polynomial-time solvable for threshold graphs G = (C' U S, F). A thresh-
old graph G has K(G) that is a complete graph, and T(G) = x(K(G)) =
S| 4+ 1 (C is a largest maximum clique of G, S =V \ C is a stable set of
G).

Note that the computational complexity of ¢-TESSELLABILITY is still
open for cographs, whereas it is polynomial time solvable for thresh-
old graphs [1]. In this work, we present the tessellation cover num-
ber for quasi-threshold graphs and the polynomial-time algorithm for ¢-
TESSELLABILITY for this graph class, in Sec. 2. We also present the defi-
nition of t-TESSELLABILITY COMPLETION relating it to k-EDGE PRECOL-
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ORING, in Sec. 3. Finally, in Sec. 4, we present the concluding remarks.

2 Tessellability for quasi-threshold graphs

Note that the tessellation cover number of a disconnected graph is given
by the maximum of the parameters of their connected components, i.e., if
G = G1 UGy, then T(G) = max{T(G1),T(G2)}.

A graph G is a cograph, quasi-threshold, threshold if G is {Py}-free,
{Py, Cy}-free, and {Py, Cy, 2K }-free, respectively [3]. Let G be a graph
with a vertex u. The addition of a twin vertex v of u in GG includes v in
G with the same neighborhood of u, and there is an edge uv in E(G) if
v is a true twin. Otherwise, v is a false twin. Let G’ be obtained from a
graph G by adding a true twin v of u € V(G). The cliques containing u in
G will become cliques in G’ that also contain v. So, we can use the same
cliques of tessellations that cover the edges incident to u in G to cover the

edges incident to v in G'.

Lemma 1. If G is a graph with a vertex v and G’ is obtained from G by
the addition of a true twin vertex v of u, then T(G) = T(G’).

Quasi-threshold graphs can be recursively obtained by the following
operations from a K7i: adding universal vertices, and; the union operation

of two quasi-threshold graphs [12].

Theorem 1. Let G be a quasi-threshold graph and G’ be a quasi-threshold
graph constructed by adding a universal vertexr v to G. Hence, T(G') =

>, T(Cy), where C; is a connected component of G.
Proof. The vertex v is universal, and we have two cases:

(1) Consider G connected. Therefore, G has a universal vertex u such
that v and u are true twin vertices in G’. So, by Lemma 1, T(G") =
> T(Ci) =T(G).

(1I) Consider G disconnected. Therefore each connected component C;
of GG is a subgraph that is a quasi-threshold graph with a universal vertex
u;. So we can consider that vertices v and w; are true twin vertices in

each connected component C] (that is related to each C; before adding
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vertex v), thus the tessellation cover number in each connected component
C! remains equal to T(C;). Since each connected component shares the
vertex v in G’, the cliques in each connected component share the vertex v.

Then, to cover the incident edges of v we cannot use the same tessellations
for each connected component, so T'(G') = >, T(C;). O

Every quasi-threshold graph is also a cograph, which have a cotree, that
is a tree where the internal nodes represent operations of union or join,
and the nodes that are leaves represent the vertices of the cograph [3].
We can construct the cotree of quasi-threshold graphs in such a way that
every join operation occurs between a vertex and a quasi-threshold graph,
and the cotree be binary where, w.l.o.g., the left side is a cotree and the
right side is a leaf. Thereby, we are able to calculate the tessellation cover
number of graphs of this class using its cotree by climbing this tree until
the root. When the internal node of this cotree is a union operation, we
know the value is the maximum among the parameters of the connected
components. Otherwise, the internal node represents the join operation,
so we use the result provided in Theorem 1. Note that the number of
connected components in this situation is exactly the number of union
operations in sequence until the next join operation in this cotree plus
one. Therefore, we can calculate the tessellation cover number for quasi-

threshold graphs in polynomial time.

3 Tessellability completion

We now introduce the t-TESSELLABILITY COMPLETION problem, which
has a graph G and a partial tessellation cover 7’ of G as instance and
aims to decide whether GG has a tessellation cover 7 with ¢ tessellations
such that the tessellations of 77 are part of 7. Note that in this work we
consider that the cliques of tessellations of 77 in 7 may expand, including
new vertices. The k-EDGE PRECOLORING problem has a graph G and a
partial edge coloring of G as instance and aims to decide whether GG has
an edge coloring with £ colors such that the colors used in the partial edge

coloring given by the instance are maintained.
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The Latin Square problem has a n X n matrix M as instance and a set
of elements of M with values in {1,...,n} and aims to decide whether it
is possible to fill the remaining elements of M with values in {1,...,n}
in such way that there is no repeated value in any line or column of
M. Colbourn [4] proved that k-EDGE PRECOLORING is N'P-complete for
complete bipartite graphs K, , showing a polynomial transformation from
the LATIN SQUARE. The idea of the proof is that the lines of M will be
vertices of one stable set of the complete bipartite, the columns will be
vertices of the other stable set. Moreover, the set of given values of M is
related to the colors of the partial edge coloring of the complete bipartite
graph such as if M; ; = «a, then the edge ij of the complete bipartite graph
receives the color «.. It is not hard to verify that this complete bipartite
graph has a n-edge coloring using that partial n-edge coloring if and only
if the matrix can be filled with values in {1,...,n} given a set of elements

of M already labeled. Figure 1(a) illustrates this construction.
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Figure 1: LATIN SQUARE and K-EDGE PRECOLORING on complete bipar-
tite.

Bonomo et al. [2] proved that (n — 1)-EDGE PRECOLORING of complete
split (resp. complete) graphs is N'P-complete. The key idea of that proof
is that given an instance I of LATIN SQUARE with a n x n matrix M, it is
possible to create another instance I’ with a 2n x 2n matrix M’ in such way
I has a YES answer if and only if I’ also has a YES answer. The matrix
M’ is obtained by adding two n x n elements in the top right and bottom
left of M’ with permutations of the values in {n+1,...,2n} and by copying
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the values of M in the bottom right positions of M’ (see Figure 1(b)).
Moreover, given an instance I’ of LATIN SQUARE with even n’ we can
construct a complete bipartite graph as described before. Next, we include
all the missing edges of one clique (resp. two disjoint cliques) of size n’ such
that all these edges of the clique (resp. cliques) of even size n also appears
in the partial edge coloring using colors in {n’ +1,...,2n’ — 1}. Now, I’
has a YES answer if and only if the (2n’ — 1)-EDGE PRECOLORING of this
complete split graph of 2n’ vertices (resp. complete graph of 2n’ vertices)
also is YES. Therefore, (n — 1)-EDGE PRECOLORING is N'P-complete for
complete bipartite graphs (a superclass of cographs), complete graphs,
and complete split graphs.

In triangle-free graphs a tessellation cover behaves just like an edge
coloring [1], the same holds for ¢-TESSELLABILITY COMPLETION and PAR-
TIAL k-EDGE COLORING. Therefore, the computational complexity of k-
EDGE PRECOLORING and k-TESSELLABILITY COMPLETION for triangle-
free graphs are the same. Moreover, since k-EDGE PRECOLORING of
Star graphs S, is always YES for £ > A(S,,) = n and NO otherwise,
both k-EDGE PRECOLORING and k-TESSELLABILITY COMPLETION are in
P for star graphs S,. Marx [7] proved that k-EDGE PRECOLORING is
NP-complete for planar 3-regular bipartite graphs; bipartite outerpla-
nar graphs; and bipartite series-parallel graphs. Thus, {-TESSELLABILITY
COMPLETION is also hard for these graph classes.

Consider t-TESSELLABILITY COMPLETION for a complete graph G. If
there is an edge without any available tessellation, then we know that the
answer is NO. Otherwise, each edge has at least one available color and we
obtain a tessellation cover of G by selecting one color for each unlabeled
edge, and then covering all the endpoints of these unlabeled edges with
a same color as a single clique in the tessellation related to this color,
repeating this process for all colors.

The triangulated TR(G) of a graph G = (F,V) is obtained by adding
to G, for each e = uv € E, a vertex ey, adjacent only to u and to v.
Note that the TR(K,) of complete graphs K, are split graphs. Let [
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be an instance of (n — 1)-EDGE PRECOLORING of a complete graph K,
with even n, which is N'P-complete [2]. Now, consider an instance I’ of
t-TESSELLABILITY COMPLETION of the graph T'R(K,). Moreover, for each
edge uv in the partial edge coloring of I we relate the triangle e,,,, u, v to a
tessellation of the same label of the color of uv in the partial ¢-tessellation
cover of TR(K,). Since TR(K,,) has an induced star of size n — 1, all the
triangles with e-vertices incident to any vertex of the original clique K, in
TR(K,) need to be entirely covered by some tessellation. Note that each
of these triangles of TR(K,) are related to an edge of K,. Therefore, I
has a YES answer if and only if I’ also is YES.

Theorem 2. t-TESSELLABILITY COMPLETION for Stars, Completes are
in P whereas it is N'P-complete for Complete Bipartite and Triangulated

Complete.
Table 1: Computational Complexities Behaviors
S, K, Ky TR(K,) | threshold | cograph
t-TESSELLATION | P P NP—c| NP—-c Open NP —c
COMPLETION
k-PARTIAL EDGE | P | NP-c | NP-c NP-c NP-c NP-c
COLORABILITY 4] [4] 4] [4] 4] [4]
t-TESSELLABILITY | P P P P P Open
[ | [ [1] [1] [1]
k- EDGE P P P P P Open
COLORABILITY 5] [5] 6] 5] 9]

4 Final Remarks

In this work, we show that the tessellation cover number of quasi-
threshold graphs is T'(G) = ), T(C;), where C; is a connected compo-
nent of G. Using these results we also prove that the ¢t-TESSELLABILITY
is polynomial-time solvable for quasi-threshold graphs.

There exist polynomial algorithms for k-EDGE COLORING restricted to
complete graphs [5], complete bipartite graphs [6], complete split graphs [10],
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split indifference [8], and threshold graphs [9]. Similarly, in this work we
have established polynomial time solutions for ¢-TESSELLABILITY COM-
PLETION restricted to star graphs and complete graphs. Moreover, we
showed the hardness of t~-TESSELLABILITY COMPLETION for complete bi-
partite graphs and triangulated complete graphs, a subclass of split graphs.
Table 1 summarizes these results.

All the proofs for t-TESSELLABILITY N P-complete also hold in the case
of t-TESSELLABILITY COMPLETION. Therefore, it is only interesting to
investigate graph classes for which ¢-TESSELLABILITY is in P or its com-
putational complexity is open. We are close to establish a polynomial time
algorithm for ¢~-TESSELLABILITY COMPLETION restricted to line graphs of
bipartite graphs, complete split graphs, and split indifference graphs, all
graph classes for which we know ¢-TESSELLABILITY has linear time solu-
tion [1].
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