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A caracterização petrofísica de rochas reservatório é uma etapa fundamental na

avaliação de reservatórios de petróleo e é normalmente realizada através de ensaios

laboratoriais que incorrem em custos e prazos signi�cativos. Neste trabalho, foram

avaliadas técnicas estatísticas e de aprendizado de máquina na estimativa de perme-

abilidade absoluta, curvas de pressão capilar óleo-água e curvas de permeabilidade

relativa água-óleo, a partir de dados de porosimetria por intrusão de mercúrio, per-

meabilidade absoluta e porosidade. A partir da extração de diversas características

das curvas de pressão capilar por intrusão de mercúrio, algoritmos de aprendizado de

máquina e métodos estatísticos para a estimativa destas propriedades foram avalia-

dos e comparados a métodos clássicos da literatura. Métodos lineares hierárquicos

e multi-task foram avaliados para estimativa de curvas de pressão capilar óleo-água

e permeabilidade relativa água-óleo. Foi demonstrado o efeito de regularização dos

modelos lineares hierárquicos, que resultaram em modelos mais precisos, coerentes

e com menor incerteza a posteriori.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial ful�llment of the

requirements for the degree of Master of Science (M.Sc.)

PREDICTION OF PETROPHYSICAL PROPERTIES USING MACHINE

LEARNING AND HIERARCHICAL MULTI-TASK LINEAR MODELS
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September/2020

Advisor: Carlos Eduardo Pedreira
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Petrophysical characterization of reservoir rocks is a fundamental step in the

evaluation of oil reservoirs, and is usually executed through laboratory experiments

that incur in large costs and schedules. In this work, statistical techniques and

machine learning models were evaluated fo the estimation of absolute permeability,

oil-water capillary pressure and water-oil relative permeability curves, using mer-

cury injection porosimetry, absolute permeability and porosity data. Through the

exploration of several feature engineering and modeling strategies, machine learn-

ing and statistical models were assessed and compared to classical linear methods.

Multi-task and hierarchical linear models were also evaluated for the estimation of

special core analysis parameters from mecrcury injection porosimetry and routine

core analysis data. On the evaluated dataset, hiearchical linear models were shown

to have better precision, consistency and lower posterior uncertainty metrics when

compared to simple linear regression models.
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Chapter 1

Introduction

Since the beginning of the 20th century, oil and the combustion engine have trans-

formed many aspects of modern society in fundamental ways. As a cheap and reliable

energy source, oil provided the means for revolutions in transportation, manufac-

turing, commerce and human behavior, in general. It remains a cornerstone of our

society in 2020.

As knowledge of the warming e�ects of carbon in earth's atmosphere is further

developed, conscious and economically sustainable exploitation of remaining oil re-

serves becomes paramount (Mackay 2009). The high volatility of oil prices induced

by supply and demand shocks in recent years further complicates the assessment of

oil and gas projects.

Reservoir engineering is a branch of petroleum engineering that studies �uid �ow

through porous hydrocarbon bearing rocks (Dake 2015). Assessment of oil and gas

exploitation projects is commonly performed using numerical simulation models that

incorporate geological, �uid and petrophysical information to predict oil and gas pro-

duction curves. Reservoir uncertainties are particularly important at the beginning

of a project, when few wells have been drilled, �uid and rock samples are scarce,

and no production data is available. Petrophysical characterization entails the eval-

Figure 1.1: Reservoir Engineering Simulation Models
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uation of physical and chemical properties of porous media, and its interaction with

reservoir �uids. It is commonly performed through laboratory experiments, known

in the petroleum industry as routine and special core analysis (Peters 2012). Rou-

tine petrophysical experiments characterize rock porosity and absolute permeability,

are considered inexpensive and can be performed in little time, usually taking no

more than a couple of days per sample. Special core analysis, characterize properties

related to the balance of viscous and capillary forces acting at reservoir conditions

and, in many situations, can be expensive and demand long experiments, which can

take up to several months to be executed (Tiab and Donaldson 2004).

In this work, statistical methods were evaluated for the estimation of petrophys-

ical properties using as input Mercury Injection Capillary Pressure (MICP) and

routine core analysis data. This work is organized as follows: on chapter 2, petro-

physical measurement methods and properties are brie�y described; on chapter 3,

black-box machine learning models for the prediction of absolute permeability from

MICP data are evaluated and compared to classical linear models; on chapter 4, lin-

ear models for the prediction of special core analysis properties, using multi-task and

hierarchical models, are studied; limitations and desirable features of the evaluated

methods are further discussed on chapter 4.2.
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Chapter 2

Measuring Petrophysical Properties

The measurement of petrophysical properties is performed through specialized lab-

oratory experiments, which in the petroleum industry are classi�ed as routine or

special core analysis (SCAL), depending on the experiment complexity and on its

investigated properties.

The analyzed rock samples may be extracted from well cores or from open

borehole sidewall sampling tools, and can measure from one to several centimeters

(Kennedy 2015). The rock samples are commonly extracted as cylindrical plugs, but

can also have irregular shapes, case in which they are referred to as rock fragments.

2.1 Routine Core Analysis

Experimental measurements of a rock sample pore volume Vp, grain volume Vg,

porosity φ and absolute permeability kabs are commonly referred to as routine core

analysis.

Porous media can be pictorially described as being constituted of grain and

pore spaces (Figure 2.1). The percentage of the total space occupied by pores is

known as rock porosity. Vp and φ measurements are important for the evaluation of

hydrocarbon reserve volumes.

φ =
Vp

Vp + Vg
(2.1)

At reservoir conditions, porous space is �lled by either water, oil or gas, each of

which in a separate phase. The percentage of the porous volume occupied by water,

oil or gas is known as water, oil or gas saturation, respectively.

Sf =
Vf
Vp
, for f in w, o, g (2.2)

Darcy's law (2.3) describes the linear relationship between instantaneous �ow rate

q and a pressure gradient ∂p
∂x

in laminar single-phase �ow (Tiab and Donaldson

3



Figure 2.1: Pore media grain and pore spaces

2004). Given a stable steady-state single-phase �ow, the porous media absolute

permeability kabs is directly proportional to the instantaneous �ow rate q, �uid

viscosity µ, and is inversely proportional to the pressure gradient ∂p
∂x

and cross-

sectional area A.

q = kabs
A

µ

∂p

∂x
(2.3)

2.2 Special Core Analysis

Measurement of multiphase properties of porous media, on which both viscous and

capillary forces may be relevant, is usually more complex and incurs in longer and

costlier experiments when compared to single-phase routine core analysis measure-

ments.

2.2.1 Mercury Injection Capillary Pressure

In multi-phase porous systems, due to di�erent interaction characteristics between

�uid and solid phases, the attraction between the molecules of one of the �uid

phases and the solid surfaces may be greater than that of the other �uid phase.

This physical behavior is known as wettability, and it is responsible for capillary

forces and related phenomena.

For a given multiphase porous system, with a surface tension σ between �uid

phases, wettability may be quanti�ed by the contact angle θ formed by the �uid

phase boundary-solid interface, as depicted in Figure 2.2.

4



Figure 2.2: Contact Angle between �uid phase boundary and solid surface

The Young-Laplace equation describes the capillary pressure sustained across the

interface between �uids at a pore throat constriction (Tiab and Donaldson 2004). A

heterogeneous porous system is connected by pore throats of several di�erent radii.

For a system consisting of mercury and mercury vapor, with surface tension σHg−air
and contact angle θHg−air with the rock surface, the relationship between capillary

pressure and pore throat radius r may be described by equation (2.4). Capillary

forces may strongly a�ect the distribution of �uid phases in the porous space.

Pc =
2σHg−air cos θHg−air

r
(2.4)

A Mercury Injection Capillary Pressure (MICP) experiment consists of pre-speci�ed

and controlled mercury injection steps in a porous medium, previously subjected

to a vacuum. It is usually performed on rock fragments with around one cubic

centimeter, which allows it to be executed both in well core and sidewall sample

fragments. Automated acquisition systems for MICP are commercially available

(Micromeritics 2020)(Figure 2.3), making it a relatively fast and cheap experiment.

A �xed pressure stabilization time and a geometric progression sequence of in-

creasing pressure steps is de�ned before each MICP experiment. At each pressure

step, after the pre-de�ned pressure stabilization time, the volume of intruded mer-

cury in the rock sample pore space is recorded. Given calibrated mercury-mercury-

vapor surface tension σhg−air and contact angle θhg−air, each pressure step may be

associated with a pore throat radius according to equation (2.4). The cumulative

intruded mercury volume Vhg at each step, thus, corresponds to the porous vol-

ume accessible by pore throats with radius equal to or smaller than the relationship

given by equation (2.4). Mercury saturation Shg at each step may be calculated

using equation (2.5).

Shg =
Vhg
VT

(2.5)

The total fragment volume VT is estimated during the experimental data interpreta-

tion procedure, using the di�erence of the total glass bulb volume and the intruded

mercury volume necessary to �envelope� the rock fragment and start intruding the

5



Figure 2.3: AutoPore IV Series Mercury Porosimeter (left) and glass penetrometer
(right) used in automated MICP acquisitions.

porous space. This happens at a pressure known as entrance capillary pressure Pe
The determination of the exact value of this entrance capillary pressure may intro-

duce uncertainty on experimental results, particularly for very irregular shaped or

vuggy rock samples.

The recorded capillary pressure Pc and mercury saturation Shg values form a

capillary pressure curve, whose format is directly related to the distribution of ac-

cessible pore volume in the porous medium of the rock sample. Figure 2.4 shows

several capillary pressure curves acquired in MICP experiments.

A widely used transformation of capillary pressure curves is described by equa-

tion (2.6) (Lenormand 2003), which constructs a probability distribution of accessi-

ble pore volume as a function of the logarithm of the associated pore throat radius r.

Figure 2.5 shows pore volume probability distribution curves p(log r), for the same

MICP experiments depicted in Figure 2.4.

p(log r) =
dShg
d logPc

(2.6)

Several authors have proposed correlations between capillary pressure curve features

and absolute permeability (Kolodzie 1980; Pittman 1992; Purcell 1949; Swanson

1981), among others. These correlations will be further explorer on chapter 3.

In this work, a dataset of 2324 MICP curves acquired on rock fragments of sand-

stone and carbonate reservoirs from several Brazilian reservoirs was compiled. Rou-

tine and special core analysis results, performed on core sample plugs and sidewall

samples extracted from the same well depths as the rock fragments were incorpo-

rated in the dataset.
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Figure 2.4: Mercury Injection Capillary Pressure Curves for several rock samples,
colored by absolute permeability.
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Figure 2.5: Accessible pore volume probability distribution curves p(log r), for the
same MICP experiments depicted in Figure 2.4.
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Figure 2.6: Relationship between median pore throat radius and absolute perme-
ability of several di�erent reservoirs, from most to least heterogeneous

Given that the size of the rock fragments utilized for MICP measurements were

in many cases many times smaller than the size of the corresponding core sample

plugs and sidewall samples, where routine and special core analysis were performed,

it is very likely that, for many samples, the rock fragments may not constitute

a representative volume of the porous space (Blunt 2017). Indeed, as illustrated

in Figure 2.6, it is possible to assess that heterogeneous reservoirs display many

more outlier samples on correlations between MICP and core analysis data, when

compared to more homogeneous reservoirs.

2.2.2 Centrifuge Capillary Pressure

The centrifuge method is a standard technique for capillary pressure curve estima-

tion of porous media. The method consists of imposing a capillary pressure pro�le

on a rotating rock sample through centrifugal acceleration imposition in increasing

rotation speed steps, and recording the average sample saturation at each step (Tiab

9



Figure 2.7: Drainage Oil-Water Centrifuge capillary pressure experiment geometry.

and Donaldson 2004). The fundamental equations that describe the method were

developed by Hassler and Brunner (Hassler and Brunner 1945):

Pc =
1

2
ω2∆ρ(r2 − r22) (2.7)

B = 1− (
r1
r2

)2 (2.8)

Sw =
Vw
Vp

=
Vw

Vw + Vo
(2.9)

Sw(Pc) =
(1 +

√
1−B)

2

∫ 1

0

Sw(xPc)√
1−Bx

dx (2.10)

where ω is the centrifuge rotation speed, ∆ρ is the di�erence in density between

the displacing and displaced �uids, L is the rock sample length, r is the radius

to the centrifuge rotation center, r1 and r2 are the radial distances to the sample

extremities, Vp, Vw and Vo are the sample pore, water and oil volumes, Sw(Pc) is the

water saturation at a given point in the sample subjected to a Pc capillary pressure,

and Sw is the sample average water saturation.

Several methods have been proposed for the estimation of capillary pressure

curves from centrifuge experiments. These methods may be classi�ed as direct or

inverse according to how they solve the centrifuge saturation equation. Direct meth-

ods use several proposed di�erential and integral approximations of the saturation

equation to directly estimate capillary-pressure curves from centrifuge experiment

measurements at discrete capillary-pressure steps (Forbes 1994; Hassler and Brun-

ner 1945; Skuse, Flroozabadl, and Ramey Jr. 1992). Inverse methods parameterize

capillary-pressure curves and solve the saturation equation using non-linear regres-
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Figure 2.8: Estimation of capillary pressure curve from centrifuge measurements.

sion (Bentsen 1977) or linear regression with spline basis functions (Nordtvedt and

Kolltvelt 1991). In this work, a dataset of 135 capillary pressure curves estimated

from centrifuge experiments was compiled. Using the parameterization (2.11), pro-

posed in (Albuquerque et al. 2018), each of the capillary pressure curves was �tted

using a least-squares minimization procedure, with parameters Swi, Pe, α and β.

Sw(Pc, Swi, α, β, Pw) =
1 + αSwi(Pc − Pe)β

1 + α(Pc − Pe)β
(2.11)

This parameterization is such that for high values of capillary pressure, water satu-

ration Sw approaches Swi, a parameter thus named irreducible water saturation. In

a drainage capillary pressure model, the smallest pressure at which the saturation of

the sample can be reduced from one hundred per cent is termed �entrance� capillary

pressure (Peters 2012), modeled by parameter Pe in equation (2.11). The remainder

parameters α and β are associated with the capillary pressure curve steepness and

shape.

lim
Pc→+∞

Sw = Swi (2.12)

Pc(Sw = 1) = Pe (2.13)

Considering a transformation analogous to the one utilized for mercury injection

capillary pressure curves (2.6), pore volume probability distribution curves p(log r)

may be estimated from the �tted centrifuge capillary pressure curve parameters, as

described by equation (2.14).

p(log r) =
dSw

d logPc
=
αβSwi(Sw − Swi)(Pc − Pe)β−1

1 + α(Pc − Pe)β
(2.14)

As graphically displayed in Figure 2.10, the parameter α can be shown to be

11



Figure 2.9: Sample of the experimental capillary pressure curve dataset (points) and
�tted capillary pressure model (lines).

associated with the location of the distribution p(log r) and the parameter β can be

shown to be associated with its scale or dispersion.

A dataset combining the �tted centrifuge capillary pressure curve parameters

and several MICP features, detailed on chapter 3, of rock fragments extracted from

corresponding core locations was assembled. As exempli�ed in Figure 2.11, asso-

ciated pore volume distributions of corresponding centrifuge capillary pressure and

MICP curves often display similar distributions, though to varying degrees as MICP

curves may have been measured in rock fragments which may or may not be repre-

sentative of its associated core sample pore volume. MICP experiments also cover

a larger range of pore throat radius sizes and display signi�cantly more detail, as

a much tighter pressure and corresponding pore throat radius experimental grid is

sampled. In Figure 2.12, it is possible to identify signi�cant correlations between

corresponding centrifuge capillary pressure curves α, Swi and MICP median pore

throat radius rmedian parameters. Both α and Swi parameters can be seen, thus, as

correlated with the location of the distribution p(log r).

2.2.3 Relative Permeability

In porous media multiphase �ow, relative permeability describes the linear propor-

tion by which each �uid �ow is penalized when compared to Darcy's law (2.3). For

a water-oil two-phase �ow, the following relations describe oil (kro) and water (krw)
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Figure 2.10: Sample centrifuge capillary pressure curves, parameterized by equation
(2.11), and corresponding pore volume probability distribution curves p(log r).
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Figure 2.11: Associated pore volume distributions p(log r) of correspondent Cen-
trifuge Capillary Pressure (blue curve) and MICP (black curve) samples.

Figure 2.12: Correlations between parameters alpha, Swi and median pore throat
radius of correspondent rock fragment p(log r) distribution.
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Figure 2.13: Unsteady-state relative permeability experimental setup.

relative permeability, and the their associated fractionary water �ow (fw).

qo(Sw) = kro(Sw)
kabsA

µoL
∆p (2.15)

qw(Sw) = krw(Sw)
kabsA

µwL
∆p (2.16)

fw =

krw
µw

krw
µw

+ kro
µo

(2.17)

The most widely used experimental setup for water-oil relative permeability de-

termination is the unsteady-state water-oil relative permeability experiment. In a

unsteady-state water-oil relative permeability experiment, a sample initially satured

at irreducible water saturation Swi condition is subjected to a constant rate water

injection, simulating reservoir secondary recovery water injection.

During the experiment, water injection �ow rate qwinj
and exit pressure Pout are

kept constant, and cumulative oil production Np and pressure di�erential ∆p are

recorded.

qwinj
= cte (2.18)

Pout = cte (2.19)

Unsteady state water-oil relative permeability experiments are usually interpreted

using either the JBN method (Johnson, Bossler, and Naumann 1959) or using history

matched numerical simulated solutions (Lenormand and Lenormand 2016). Figure

2.14 displays an example of recorded and history matched cumulative oil production

Np and pressure di�erential ∆p, obtained using maximum likelihood estimation of

the relative permeability parameters that best �t the recorded experimental data.

History matching is usually performed using parametric relative permeability models

and �nite di�erence partial di�erential equations simulation. The Corey model

(Corey 1954), given by equations (2.20)(2.21)(2.22), is a widely used power-law
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Figure 2.14: Example of history matched experimental data.

Figure 2.15: Example of history matched relative permeability and fractionary �ow
curves compared to analytic JBN interpreted experimental results.
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model for relative permeability curves, whose parameters no and nw are commonly

referred to as Corey exponents.

SwD =
Sw − Swi

1− Swi − Sor
(2.20)

kro(Sw) = kro@Swi
(1− SwD)no (2.21)

krw(Sw) = krw@Sor(SwD)nw (2.22)

The LET model (Lomeland, Ebeltoft, and Thomas 2005), given by equations

(2.23)(2.24), was developed with six shape parameters Lo, Eo, To, Lw, Ew, Tw, and

can accommodate much more �exible relative permeability curves. It is commonly

used in reservoir simulation models, especially for history matching procedures that

demand �exible representations of relative permeability models.

kro(Sw) = kro@Swi

(1− SwD)Lo

(1− SwD)Lo + Eo(SwD)To
(2.23)

krw(Sw) = krw@Sor

(SwD)Lw

(SwD)Lw + Ew(1− SwD)Tw
(2.24)

In this work, a dataset of 226 unsteady-state water-oil relative permeability curves

was assembled. LET parameters for each of the 226 curves were �t using maximum

likelihood estimation (DeGroot and Schervish 2012). Multivariate and multi-task

linear regression models built using this dataset are described on chapter 4.
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Chapter 3

Absolute Permeability Regression

Several authors have studied the use of MICP curves to estimate absolute perme-

ability. Many of the proposed regression models use linear correlations between the

logarithm of absolute permeability log kabs and many di�erent proposed capillary

pressure curve features (Kolodzie 1980; Pittman 1992; Purcell 1949; Swanson 1981).

Comparison of linear regression and machine learning models for the estimation

of absolute permeability using MICP data has been performed on datasets from

middle-east reservoirs by several authors (Al Khalifah, Glover, and Lorinczi 2020;

Nooruddin, Anifowose, and Abdulraheem 2013), showing promising results for non-

linear machine learning models.

In this work, a comparison of linear regression and machine learning models for

the estimation of absolute permeability using MICP data is performed on a dataset of

2324 MICP curves acquired on rock fragments of sandstone and carbonate reservoirs

from several Brazilian reservoirs.

3.1 Mercury Porosimetry Feature Engineering

Several feature engineering and regression techniques were evaluated on the assem-

bled MICP dataset, exploring both linear correlation features as well as non-linear

transformations. The following sections describe each of the feature extraction pro-

cedures and the choice and training of the selected regression models.

3.1.1 Statistical Features

For each capillary pressure curve and associated pore volume probability distribution

p(log r), mean pore throat radius rmean and median pore throat radius rmedian were

calculated. Quantiles ranging from the 15th to the 90th pore throat radius values

were estimated {r15, r20, ..., r85, r90}. As a proxy for distribution heterogeneity, the

interquartile-range iqr, given by the di�erence of pore-throat radius associated with
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the 25th and 75th quartiles of the p(log r) distribution was estimated.

iqr = r25 − r75 (3.1)

3.1.2 Linear Features

The following features, whose main authors are listed on Table 3.1 as feature names,

were calculated for each one of the datasets MICP curves. Each of these features is

associated with a linear equation, proposed by its authors as regression models for

log kabs.

Table 3.1: Classical MICP linear correlation features

Feature Name Feature Linear Equation

Swanson

(Swanson 1981)

(
Shgφ

Pc
)max log kabs = a+ b.(

Shgφ

Pc
)max

Purcell

(Purcell 1949)

∫ 1

0

dShg

P 2
c

log kabs = a+ b.
∫ 1

0

dShg

P 2
c

Winland

(Kolodzie 1980)

r35 log kabs = a+ b.r35

Pittman

(Pittman 1992)

rapex log kabs = a+ b.rapex

Dastidar

(Dastidar 2007)

rWGM = [
∏n

i=1 r
wi
i ]1/

∑
wi log kabs = a+ b.φ+ c.rWGM

3.1.3 Pore Throat Size Class Distribution

Pore throat size ternary class distributions were calculated for each p(log r) distribu-

tion, assigning classes micro, meso and macro to the percentage of the pore volume

associated with pore throat sizes bellow 0.5 µm, between 0.5 µm and 2.5 µm, and

above 2.5 µm, respectively.

Figure 3.1 displays examples of ternary plots for micro, meso and macro pore vol-

ume percentage for p(log r) distributions of samples from reservoirs of two Brazilian

�elds A and B.
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Figure 3.1: Pore-throat class distribution for two sample reservoirs (A and B).

Figure 3.2: Example of bimodal gaussian mixture �t of p(log r) distribution.

3.1.4 Gaussian Mixture Fit Features

Following the methodology proposed by (Xu and Torres-Verdín 2013), bimodal gaus-

sian mixture distributions, with parameters µ1, µ2, σ1, σ2, λ1 and λ2, were �tted

to each MICP associated pore volume distributions p(log r), using the following

approximation.

p(log r) ≈ λ1
1√

2πσ1
exp
−(log r − µ1)

2σ2
1

+ λ2
1√

2πσ2
exp
−(log r − µ2)

2σ2
2

(3.2)

λ1 + λ2 = 1 (3.3)

The parameters µ1, µ2, σ1, σ2, λ1 and λ2, provide a compact representation of the

MICP associated pore volume distributions p(log r), as exempli�ed in Figures 3.2

and 3.3.
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Figure 3.3: Gaussian mixture (red lines) �tted to p(log r) distributions of MICP
data samples (black lines).
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3.1.5 Dimensionality Reduction Features

Both linear and non-linear dimensionality reduction methods were used to extract

features from the dataset of MICP curves. Dimensionality reduction techniques

allow for the approximation of the dataset using a lower-dimensional representation,

useful for data exploration and visualization and for data compression.

Using as input pore-throat radius quantiles {r15, r20, ..., r85, r90}, the �rst two

principal components PC1 and PC2 were estimated for each of the sample MICP

curves using Principal Component Analysis (Hastie, Tibshirani, and Friedman

2009). The �rst two principal components represented a total of 96.1% of the vari-

ance in the dataset. A graphical depiction of the PC1 and PC2 features, colored by

absolute permeability can be seen on Figure 3.4.

The �rst and second principal components were shown to be correlated with

absolute permeability kabs and interquartile range iqr, respectively, as displayed on

Figures 3.5 and 3.6.

Figure 3.4: First two principal components of each of the datasets MICP samples.

Non-linear dimensionality reduction features were also estimated using Uniform

Manifold Approximation and Projection, also known as UMAP (McInnes and Healy

2018), using as input pore-throat radius quantiles {r15, r20, ..., r85, r90}.

The Uniform Manifold Approximation and Projection technique constructs a

high dimensional graph representation of the data and optimizes a low-dimensional

manifold to be as structurally similar to the high dimensional graph as possible

(McInnes and Healy 2018). Due to its distance preserving properties, the low-
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Figure 3.5: Negative correlation between absolute permeability and the �rst princi-
pal component.

Figure 3.6: Positive correlation between the interquartile-range iqr and the second
principal component PC2.
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Figure 3.7: MICP curves non-linear decomposition using UMAP.

dimensional manifold, represented in Figure 3.7 by variables x1.umap and x2.umap,

is useful for visualization and identi�cation of similar MICP curve samples.

In Figure 3.8, this property is exempli�ed by a sequence of three pairs of plots,

showing that samples mapped to the same regions of the UMAP manifold, marked

in the red in each of the plot pairs, correspond to distributions p(log r) with similar

characteristics.

3.2 Absolute Permeability Regression Models

The regression metrics root mean squared error (3.4), median absolute error (3.5)

and R2 (3.6) were evaluated for the trained regression models. Due to the issues

regarding the representativeness of the rock fragments with respect to the measured

absolute permeability values, discussed on chapter 2, minimization of the median

absolute deviation metric (3.5) was chosen to increase the robustness to outliers

of the trained non-linear regression models, described in section 3.2.2. In both

linear and non-linear regression methods, the R2 metric (3.6) was used for further

assessment of the trained regression models.

RMSE =

√∑n
i=1 (log k̂absi − log kabsi)

2

n
(3.4)

MAE =

∑n
i=1 | log k̂absi − log kabsi |

n
(3.5)
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Figure 3.8: Manifold maps (left) showing areas with similar associated pore volume
distributions p(log r) (right).

R2 = 1−
∑n

i=1 (log k̂absi − log kabsi)
2∑n

i=1 (log kabsi − log kabsi)
2

(3.6)

3.2.1 Linear Regression Models

The linear features, described in section 3.1.2, were used to �t linear regression

logarithmic absolute permeability log kabs models.

Among the �tted linear regression models, the Winland and Swanson models

obtained the lowest root mean squared error and highest coe�cient of determination

metrics.

Figure 3.9 shows a graphical representation of the �tted models, where a signif-

icant number of outlier logarithmic absolute permeability estimates log k̂abs , with

more than one order of magnitude errors, can be seen. The presence of this large
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Figure 3.9: Visual evaluation of the predicted and observed absolute permeability
models using linear features.

number of outliers can be explained by the limited rock fragment representativeness

of the core sample pore volume for heterogeneous reservoirs, described in chapter 2.

3.2.2 Black-Box Machine Learning Models

Using the features described in section 3.1, six additional non-linear regression mod-

els were �t to the dataset using machine learning models. The 2324 MICP curves

were split between training and test data, with a eighty to twenty percent ratio.

Using the training set, each algorithm went through a hyper-parameter tuning pro-

cedure, using ten times repeated �ve-fold cross-validation error estimation, on a grid

of selected hyper-parameters.

Two knn nearest neighbors models (P. Murphy 2012), were �t to the training

set, one using features extracted using PCA (Hastie, Tibshirani, and Friedman 2009)

and the other features extracted using UMAP non-linear dimensionality reduction

(McInnes and Healy 2018).

A simple linear regression model was �t using the features extracted from the bi-

modal gaussian mixture model proposed by (Xu and Torres-Verdín 2013), described

in section 3.1.4.

A support vector regression (SVR) model, a random forest model and a gradient

boosted trees model (Hastie, Tibshirani, and Friedman 2009) were �t to an expanded

feature set, consisting of the features proposed by Swanson, Winland, Purcell, the

sample porosity φ, the micropores and mesopores ternary class distributions, the
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Figure 3.10: Comparison of the R2 metric for the �tted linear regression models.

UMAP features and the bi-modal gaussian mixtures distribution features. A pre-

processing standardizing step was applied to each feature. The gradient boosted

trees model was �tted using the implementation provided by the XGBoost library

(Chen and Guestrin 2016).

Table 3.2 and Figure 3.12 show median values of repeated �ve-fold cross-validated

MAE, R2 and RMSE metrics for each of the trained regression models. The regres-

sion models with the lowest median absolute error were the SVR, randomForest and

gradient boosted trees XGB models. Through the use of a radial basis function

kernel and an optimization procedure that minimizes hinge loss (Hastie, Tibshirani,

Figure 3.11: Five-fold cross-validation procedure.
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and Friedman 2009), the SVR algorithm provides outlier robust predictions. The

random forest and gradient boosted trees algorithms use randomized selection of

features and data subsets, bagging and boosting techniques, respectively, to reduce

prediction errors of ensembles of simpler decision tree models (Chen and Guestrin

2016).

Table 3.2: Median repeated �ve-fold cross-validated

MAE, R2 and RMSE metrics for each model.

Regression Model MAE R2 RMSE

SVR 0.412 0.722 0.596

randomForest 0.437 0.712 0.604

XGB 0.439 0.711 0.605

Swanson 0.471 0.681 0.639

GaussianMixture 0.477 0.675 0.641

Winland 0.481 0.674 0.643

Purcell 0.487 0.661 0.654

Dastidar 0.520 0.642 0.673

knnUMAP 0.565 0.562 0.744

knnPCA 0.581 0.547 0.753

Pittman 0.613 0.523 0.775

Non-linear machine learning models presented consistently lower prediction er-

rors, as can be seen on Figure 3.12. On Figure 3.13, a visual comparison between

linear and non-linear machine learning models of the predicted versus measured data

for the test dataset is shown. Although the non-linear machine-learning models did

obtain better MAE, R2 and RMSE metrics results, a signi�cant number of outliers

are still present, probably related to the issue of limited rock fragment representa-

tiveness of highly heterogeneous reservoirs described in chapter 2.
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Figure 3.12: Boxplots for repeated �ve-fold cross-validated MAE, R2 and RMSE
metric results for each model.
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Figure 3.13: Visual evaluation of the estimated absolute permeability models using
Machine Learning and linear models.
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Chapter 4

Hierarchical Multi-Task Linear

Regression

Linear regression methods are widely used in petrophysical characterization. Com-

pared to non-linear machine learning models, they have as advantages simplicity,

interpretability and their inherent linear behavior on extrapolated predictions. For

the estimation of special core analysis properties, which are costly to acquire and

thus usually scarce, simple models with a low number of parameters and that can

deliver interpretable probabilistic inferences are highly desirable. In this work, two

di�erent linear regression techniques are evaluated on special core analysis datasets.

On a dataset containing 135 capillary pressure curves estimated from centrifuge

experiments, a multi-task linear regression model is �t and evaluated, and some of

its properties are analyzed.

On another dataset, containing 226 unsteady-state water-oil relative permeabil-

ity curves, partially pooled hierarchical linear regression models are evaluated and

compared to simple linear regression models.

4.1 Multi-Task Linear Regression

Using the parameterization (4.1), proposed by (Albuquerque et al. 2018), a dataset

containing parameters Swi, Pe, α and β �tted to each of the available 135 centrifuge

capillary pressure curves, was assembled.

Sw(Pc, Swi, Pe, α, β) =
1 + αSwi(Pc − Pe)β

1 + α(Pc − Pe)β
(4.1)

To each of these samples, features extracted from MICP curves obtained on cor-

responding rock fragments were associated in a dataset containing {Swi, Pe, α, β,

kabs, r35, iqr} values for each MICP and centrifuge capillary pressure curve pair.
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Figure 4.1: Sample of the experimental capillary pressure curve dataset (points) and
�tted capillary pressure model (lines).

Signi�cant correlations between corresponding centrifuge capillary pressure curves

α, Swi and MICP median pore throat radius rmedian parameters can be visualized

in Figure 4.2.

Given x a vector of input parameters {kabs, r35, iqr} and y a vector of output

parameters {Swi, α, β, Pe}, and considering a multivariate gaussian distribution

described by equation (4.2), the conditional distribution of the output parameters

given known input parameters p(y|x) may be described by equations (4.3)(4.4)(4.5).

Estimating mean and covariance matrix statistics of the multivariate gaussian dis-

tribution (4.2) on the assembled dataset, using maximum likelihood methods (De-

Figure 4.2: Correlations between parameters alpha, Swi and median pore throat
radius of correspondent rock fragment p(log r) distribution.
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Groot and Schervish 2012), inference and uncertainty evaluation may be performed

on desired new input x values.(
x

y

)
∼ N

((
µx

µy

)
,

(
Σxx Σxy

Σyy Σxy

))
(4.2)

p(y|x) ∼ N (µy|x,Σy|x) (4.3)

µy|x = µy + (Σ−1xxΣyx)
t(x− µx) (4.4)

Σy|x = Σyy − Σt
xyΣ

−1
xxΣyx (4.5)

Given new x = {kabs, r35, iqr} values, the expected capillary pressure curve parame-

ters E[y|x] may be obtained by the conditional mean µy|x. Uncertainty evaluation of

this prediction may be executed using samples of the conditional distribution p(y|x).

Figure 4.3 displays examples of experimental capillary pressure curves and predic-

tions of these curves using as input associated {kabs, r35, iqr} values. Samples from

the conditional distribution p(y|x) are shown as grey lines and illustrate prediction

uncertainty.

On Figure 4.4, a comparison between experimental and predicted capillary pres-

sure curve parameters is shown. Due to inherent noise associated with heterogeneous

reservoir rocks and, as also observed in Figure 4.3, there is signi�cant dispersion of

experimental and predicted parameters values. Both in Figures 4.4 and 4.5, it is pos-

sible to visualize that capillary curve parameter predictions follow linear tendencies

with absolute permeability. This property of linear model predictions is desirable,

as it follows the expected physical behavior of reservoir rocks.

4.2 Hierarchical Linear Regression

In a reservoir model, the prediction of petrophysical properties on simulation cells

distant from wells with available sampled cores is commonly performed using linear

regression methods (Peters 2012). To account for sampling bias, special core analysis

properties such as relative permeability and capillary pressure are commonly scaled

according to reservoir wide available information, such as absolute permeability,

porosity and geological facies models. For relative permeability, this procedure is

commonly performed using simple linear regression (Gelman et al. 2014) of relative

permeability parameters as a function of absolute permeability.

On this work, simple linear and hierarchical linear regression models were eval-

uated in a dataset containing 226 unsteady-state water-oil relative permeability

curves from several Brazilian reservoirs. Parameters for each of the 226 curves were

�tted using maximum likelihood estimation (Migon, Gamerman, and Louzada 2015)
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Figure 4.3: Visual comparison of experimental capillary pressure curves (blue lines),
samples from the conditional distribution (grey lines) and average predicted curves
(dashed black lines).
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Figure 4.4: Experimental capillary pressure curve parameters (blue dots and line
tendency) and predicted parameters estimated using the posterior mean (black dots).

Figure 4.5: Behaviour of predicted capillary pressure curves with absolute perme-
ability.
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and the LET parameterization (4.6)(4.7)(4.8) proposed in (Lomeland, Ebeltoft, and

Thomas 2005).

SwD =
Sw − Swi

1− Swi − Sor
(4.6)

kro(Sw) = kro@Swi

(1− SwD)Lo

(1− SwD)Lo + Eo(SwD)To
(4.7)

krw(Sw) = krw@Sor

(SwD)Lw

(SwD)Lw + Ew(1− SwD)Tw
(4.8)

Categorical variables, such as �eld, reservoir or geological facies, may be used to

group petrophysical models. A model that does not distinguish between groups,

using constant intercept and slope parameters for all categories according to equation

(4.9), may be referred to as a non-pooled model (Gelman et al. 2014). Figure 4.6

displays a simple linear non-pooled regression model of irreducible water saturation

Swi as the predicted y variable and the logarithm of absolute permeability log kabs

as the observed x variable. On equation (4.9), n represents the total number of data

samples, indexed by the letter i, and α, β and σ2
y represent the intercept, slope and

variance linear model parameters.

yi ∼ N (α + βx, σ2
y), for i = 1, ..., n (4.9)

Usually, though, separate linear regression models are �tted to each category of

interest, in models that may be referred to as completely pooled. For each category

j, independent αj, βj and σ2
yj parameters are estimated, as described in equation

(4.10).

yji ∼ N (αj + βjx
j
i , σ

2
yj), for i = 1, ..., n; for i = 1, ..., J (4.10)

Figure 4.7 displays a simple linear completely pooled regression model of irreducible

water saturation Swi and the logarithm of absolute permeability log kabs, grouped

by reservoir. In completely pooled regression models, each linear regression model

is independent of each other, with varying degrees of uncertainty on each model

parameters αj, βj and σ2
yj . Categories with larger number of samples and smaller

heterogeneities, usually display smaller uncertainties on model parameters.

Hierarchical or partially pooled linear regression models introduce information

sharing and coupling between model parameters of di�erent categories, modeling

intercept and/or slope parameters as sampled from a latent parent distribution.

Varying intercept models, assume that the intercept of each category αj is sam-

pled from a common latent gaussian distribution (4.12). This information sharing,

has a regularizing e�ect of shrinking the partially pooled parameters towards a com-
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Figure 4.6: Non-pooled simple linear regression.

mon mean µα.

yji ∼ N (αj + βjx
j
i , σ

2
yj), for i = 1, ..., n; for j = 1, ..., J (4.11)

αj ∼ N (µα, σ
2
α), for j = 1, ..., J (4.12)

Varying slope models, assume that the slope of each category βj is sampled from

a common latent gaussian distribution (4.14), with the same regularizing e�ect of

shrinking the partially pooled parameters towards a common mean µβ.

yji ∼ N (αj + βjx
j
i , σ

2
yj), for i = 1, ..., n; for j = 1, ..., J (4.13)

βj ∼ N (µβ, σ
2
β), for j = 1, ..., J (4.14)

Varying intercept and slope models, assume that both the intercept and slope of

each category αj and βj are sampled from a common latent multivariate gaussian

distribution (4.16).

yji ∼ N (αj + βjx
j
i , σ

2
yj), for i = 1, ..., n; for j = 1, ..., J (4.15)
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Figure 4.7: Completely pooled simple linear regression models, grouped by reservoir.
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(
αj

βj

)
∼ N

((
µα

µβ

)
,

(
σ2
α ρσασβ

ρσασβ σ2
β

))
, for j = 1, ..., J (4.16)

For the dataset of 226 unsteady-state water-oil relative permeability curve LET

parameters, hierarchical varying slope models of relative permeability endpoint pa-

rameters Swi, Sor, kro@Swi and krw@Sor, and logarithm of absolute permeability

log kabs were �t and compared to completely pooled simple linear regression models,

grouped by reservoir.

Both hierarchical and simple linear regression model parameters were inferred us-

ing bayesian Hamiltonian Markov-Chain Monte-Carlo (Ho�man and Gelman 2014)

and the software Stan (Carpenter et al. 2017). Default weakly informative model

parameter priors were utilized, following the recommendations of (Gelman et al.

2008).

Comparison between hierarchical and simple linear regression models were per-

formed using the root mean squared error RMSE, the Watanabe-Akaike Information

Criteria (WAIC), the leave-one-out information criteria (LOOIC), and the bayesian

R-squared R2 and adjusted R-squared R2
adj metrics (Gelman et al. 2019)(Vehtari,

Gelman, and Gabry 2017). The WAIC and LOOIC information criteria provide

a trade-o� between goodness-of-�t and model complexity, with lower WAIC and

LOOIC values corresponding to lower cross-validation errors.

Hierarchical varying slope and simple linear regression models of irreducible wa-

ter saturation Swi and logarithm of absolute permeability log kabs were evaluated on

the assembled dataset.

Table 4.1 displays the obtained regression metrics for each �tted model. Hierar-

chical linear regression achieved slightly better WAIC, LOOIC and R2
adj metrics.

Table 4.1: Swi linear regression model metrics.

Regression Model RMSE WAIC LOOIC R2 R2
adj

Simple Linear Regression 0.05 -681.48 -680.96 0.20 0.16

Hierarchical Linear

Regression

0.05 -684.89 -684.66 0.24 0.17

Figure 4.8 displays simple and hierarchical linear regression Swi vs log kabs mod-

els, grouped by reservoir. Black dots represent observed samples, light blue lines

represent samples from the posterior distribution of intercept and slope parame-

ters, and dark blue lines represent mean intercept and slope parameters, for each

reservoir.

Completely pooled, simple linear regression models display larger between-groups

slope variations and uncertainty, as shown in Figure 4.9. Reservoirs with large num-
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ber of samples, such as reservoir F, display only small changes between hierarchical

and simple linear regression model posterior distributions. A stronger regularizing

e�ect is displayed in reservoir H, which contains a small number of samples. Overall

behavior consistency of Swi with respect to log kabs is increased in the hierarchical

partially pooled linear model, as slopes are regressed towards a common mean. As

information is shared between di�erent reservoirs, posterior uncertainties are notice-

ably reduced in the hierarchical linear model.

Hierarchical varying slope and simple linear regression models of residual oil

saturation Sor and logarithm of absolute permeability log kabs were evaluated on the

assembled dataset.

Table 4.2 displays the obtained regression metrics for each �tted model. Both

models achieved similar WAIC, LOOIC and R2
adj metrics.

Table 4.2: Sor linear regression model metrics.

Regression Model RMSE WAIC LOOIC R2 R2
adj

Simple Linear Regression 0.09 -414.47 -413.64 0.18 0.11

Hierarchical Linear

Regression

0.09 -414.40 -414.06 0.22 0.11

Figure 4.10 displays simple and hierarchical linear regression Sor vs log kabs mod-

els, grouped by reservoir. Black dots represent observed samples, light blue lines

represent samples from the posterior distribution of intercept and slope parame-

ters, and dark blue lines represent mean intercept and slope parameters, for each

reservoir.

Completely pooled, simple linear regression models display larger between-groups

slope variations and uncertainty, as shown in Figure 4.11. Reservoirs with large

number of samples, such as reservoir F, show only small changes between hierarchical

and simple linear regression model posterior distributions. A stronger regularizing

e�ect is displayed in reservoir I, which contains a small number of samples. Overall

behavior consistency of Sor with respect to log kabs is increased in the hierarchical

partially pooled linear model, as slopes are regressed towards a common mean.

As information is shared between di�erent reservoirs, posterior uncertainties are

noticeably reduced in the hierarchical linear model.

Hierarchical varying slope and simple linear regression models of oil relative

permeability at irreducible water saturation condition kro@Swi and logarithm of

absolute permeability log kabs were evaluated on the assembled dataset.

Table 4.3 displays the obtained regression metrics for each �tted model. Hierar-

chical linear regression achieved slightly better WAIC, LOOIC and R2
adj metrics.
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Figure 4.8: Simple (top) and Hierarchical (bottom) linear regression models of Swi
vs log(kabs), grouped by reservoir.
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Figure 4.9: Intercept (top) and slope (bottom), simple and hierarchical linear re-
gression Swi vs log(kabs) model parameters, grouped by reservoir.
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Figure 4.10: Simple (top) and Hierarchical (bottom) linear regression models of Sor
vs log(kabs), grouped by reservoir.

43



Figure 4.11: Intercept (top) and slope (bottom), simple and hierarchical linear re-
gression Sor vs log(kabs) model parameters, grouped by reservoir.
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Table 4.3: kro@Swi linear regression model metrics.

Regression Model RMSE WAIC LOOIC R2 R2
adj

Simple Linear Regression 0.20 -48.72 -47.50 0.34 0.28

Hierarchical Linear

Regression

0.20 -62.02 -61.77 0.39 0.33

Figure 4.12 displays simple and hierarchical linear regression kro@Swi vs log kabs

models, grouped by reservoir. Black dots represent observed samples, light blue lines

represent samples from the posterior distribution of intercept and slope parameters,

and dark blue lines represent mean intercept and slope parameters, for each reservoir.

Completely pooled, simple linear regression models display larger between-groups

slope variations and uncertainty, as shown in Figure 4.13. Reservoirs with large

number of samples, such as reservoir F, show only small changes between hierarchical

and simple linear regression model posterior distributions. A stronger regularizing

e�ect is displayed in reservoir D, which contains a small number of samples. Overall

behavior consistency of kro@Swi in respect to log kabs is increased in the hierarchical

partially pooled linear model, as slopes are regressed towards a common mean.

As information is shared between di�erent reservoirs, posterior uncertainties are

noticeably reduced in the hierarchical linear model.

Hierarchical varying slope and simple linear regression models of water relative

permeability at residual oil saturation condition krw@Sor and logarithm of absolute

permeability log kabs were evaluated on the assembled dataset.

Table 4.4 displays the obtained regression metrics for each �tted model. Hierar-

chical linear regression achieved slightly better WAIC, LOOIC and R2
adj metrics.

Table 4.4: krw@Sor linear regression model metrics.

Regression Model RMSE WAIC LOOIC R2 R2
adj

Simple Linear Regression 0.10 -366.62 -366.13 0.20 0.16

Hierarchical Linear

Regression

0.10 -372.34 -372.18 0.24 0.17

Figure 4.14 displays simple and hierarchical linear regression krw@Sor vs log kabs

models, grouped by reservoir. Black dots represent observed samples, light blue lines

represent samples from the posterior distribution of intercept and slope parameters,

and dark blue lines represent mean intercept and slope parameters, for each reservoir.

Completely pooled, simple linear regression models display larger between-groups
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Figure 4.12: Simple (top) and Hierarchical (bottom) linear regression models of
kro@Swi vs log(kabs), grouped by reservoir.
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Figure 4.13: Intercept (top) and slope (bottom), simple and hierarchical linear re-
gression kro@Swi vs log(kabs) model parameters, grouped by reservoir.
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slope variations and uncertainty, as shown in Figure 4.15. Reservoirs with large

number of samples, such as reservoir F, show only small changes between hierarchical

and simple linear regression model posterior distributions. A stronger regularizing

e�ect is displayed in reservoir D, which contains a small number of samples. Overall

behavior consistency of krw@Sor in respect to log kabs is increased in the hierarchical

partially pooled linear model, as slopes are regressed towards a common mean.

As information is shared between di�erent reservoirs, posterior uncertainties are

noticeably reduced in the hierarchical linear model.

Posterior distribution of latent µα and µβ parameters of hierarchical linear re-

gression models represent average behavior of model parameters across the di�erent

evaluated categories. Thus, they represent quanti�ed petrophysical parameter model

analogues, and may be used for preliminary characterization of reservoirs with sim-

ilar characteristics as the ones used in the assembled model, but with no sampled

data.

Multi-task simple and varying slopes hierarchical linear regression models,

grouped by reservoir, were �tted to the assembled LET relative permeability pa-

rameter dataset. Comparison of WAIC and LOOIC metrics between them is shown

in Table 4.5, displaying slightly better results for the multi-task hierarchical linear

regression model.

Table 4.5: Multi-task linear regression model metrics.

Regression Model WAIC LOOIC

Simple Linear Regression 1119.6 1129.8

Hierarchical Linear Regression 1043.3 1048.0

The posterior distribution of the LET relative permeability parameters for a

given reservoir and logarithmic absolute permeability may be used to sample relative

permeability curves, fully incorporating the information from the available dataset,

as exempli�ed in Figure 4.16.
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Figure 4.14: Simple (top) and Hierarchical (bottom) linear regression models of
krw@Sor vs log(kabs), grouped by reservoir.
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Figure 4.15: Intercept (top) and slope (bottom), simple and hierarchical linear re-
gression krw@Sor vs log(kabs) model parameters, grouped by reservoir.
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Figure 4.16: Example of multivariate posterior sample of relative permeability
curves, fully incorporating the information from the available dataset.
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Conclusion

In this work, machine learning and statistical regression models were evaluated

for the prediction of routine and special core analysis petrophysical properties on

datasets containing experimental results for rock samples from many Brazilian reser-

voirs.

Several feature engineering and machine learning techniques were evaluated for

the estimation of absolute permeability from mercury injection capillary pressure

curves. The absolute permeability regression models that achieved the lowest median

absolute errors and largest correlation coe�cients used the support-vector machine

(SVR), random forest or gradient boosted decision trees algorithms, and several fea-

tures extracted from the mercury porosimetry capillary pressure curve data. Among

the linear models for prediction of absolute permeability, the models proposed by

Swanson (Swanson 1981) and Winland (Kolodzie 1980) obtained the lowest root

mean squared errors and highest correlation coe�cients.

Using a parametric formulation, special core analysis capillary pressure and rel-

ative permeability curve regression problems were framed in a multi-task regression

approach. For the estimation of capillary pressure curve parameters, an analytic

formulation of the multi-task linear regression problem was considered using the

multivariate gaussian conditional distribution. This model was evaluated on an ex-

perimental dataset, comparing average predictions and samples from the conditional

distribution of parameters, to the observed capillary pressure curve parameters. Al-

though signi�cant dispersion of experimental and predicted parameters values were

observed, it was possible to identify that predictions followed expected linear ten-

dencies of capillary pressure curve parameters and absolute permeability.

Posterior distribution of partially pooled varying slopes hierarchical and com-

pletely pooled simple linear regression models, with respect to logarithmic absolute

permeability, were inferred for relative permeability parameters. Hierarchical linear

regression models displayed overall improved information criteria metrics, evaluated

using bayesian Watanabe-Akaike and Leave-one-out information criteria. Due to the

regularizing e�ect of the information sharing between di�erent reservoir categories,

posterior distribution of relative permeability parameters of hierarchical linear re-

gression models displayed smaller uncertainties and greater consistency.
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Posterior distribution of latent parameters of hierarchical linear regression mod-

els represent average behavior of model parameters across the di�erent evaluated

categories and may be used as quanti�ed petrophysical parameter model analogues

for petrophysical characterization of reservoirs with similar characteristics as the

ones used in the assembled model, but with no sampled data.
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