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Abordamos nesta tese o problema de modelagem de malhas quadrangulares por com-
posição, isto é, costurando retalhos de malhas. Conseguimos construir malhas quadran-
gulares no espírito de Geometria Sólida Construtiva (CSG em inglês), mas trabalhando
somente com malhas quadrangulares. Nossa proposta preserva a maioria dos layouts orig-
inais das partes, isto é, mantém intactos todos os quadriláteros pertencentes aos “patches”
quadrangulares não envolvidos na composição, e requer um tempo de processamento de
poucos segundos. Usamos várias técnicas para conseguir uma implementação estável. De
forma condensada: primeiro executamos operações booleanas robustas nas malhas trian-
gulares correspondentes; em seguida, usamos esse resultado para identificar e construir
novos patches quadrangulares para pequenas regiões vizinhas às curvas de interseção;
finalmente, esses patches quadrangulares recém criados são cuidadosamente quadrangu-
lados respeitando as restrições nas bordas e levados de volta para os modelos originais. A
malha resultante preserva o fluxo de arestas (edge flow em inglês) que, por construção, é
capturado e incorporado aos novos patches quadrangulares tanto quanto possível. Final-
mente, apresentamos alguns resultados que mostram o potencial de nosso protótipo para
aplicações reais, em particular, para modelos desenhados para animação.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements
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In this work we address the problem of modeling quadrilateral meshes by composi-
tion, i.e., by stitching together parts. We get to build pure quadrilateral meshes in the spirit
of Constructive Solid Geometry (CSG), but working only with quadrilateral meshes. Our
proposal to compose quadrilateral meshes preserves the majority of the original layout of
the parts, i.e, it keeps untouched all the quads in the patches which are not involved in the
blending, and runs at interactive rates. We use a number of well-established techniques to
achieve a stable implementation, but in short, we first perform robust boolean operations
on the corresponding triangle meshes, then we use this result to identify and build new
surface patches for small regions neighboring the intersection curves. These blending
patches are carefully quadrangulated respecting boundary constraints and stitched back
to the untouched parts of the original models. The resulting mesh preserves the designed
edge flow that, by construction, is captured and incorporated to the new quads as much as
possible. At the end, we present some results showing the potential of our prototype for
real applications, in particular, with models designed for animation.
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Chapter 1

Introduction

Animation, VFX, and the game industry have become some of the fastest-growing seg-
ments in the global media and entertainment market, with US$ 259 billion in 2018 and is
expected to reach US$ 270 billion by 2020 [1]. Global consumers are displaying a grow-
ing appetite for engaging, high definition visual experiences. It is for that reason that the
fast generation of high-quality 3D assets is a pressing need for this industry. Moreover, a
significant part of the time in the production stage of films and games is destined to this
task.

Several techniques to model organic shapes faster and more easily were proposed in
the last decades. Depending on the objectives and resources, many ideas on how to use
sketch-based techniques, 3D reconstruction from sophisticated inputs such as curve net-
works or line drawings, boolean operations of triangle meshes, deformation techniques,
or a combination of these have been reported. However, for the films and games market,
where character animation is another challenging process beyond just modeling, little
progress has been made. One reason for this is the use of quadrilateral meshes as surface
representation for part of the production studios throughout the modeling and animation
process. The majority of the exciting advances in modeling were designed to work on
triangle meshes, and the global structure of a quadrilateral meshes makes adapting such
methods impossible in many cases.

We are interested in modeling 3D assets by composition in the spirit of Constructive
Solid Geometry (CSG) but working only with quadrilateral meshes designed for anima-
tion. This process of shape composition has recently gained much interest. Various tech-
niques for combining meshes since [2] have been proposed. Such approaches are quite
intuitive and suitable for novice users. Their primary purpose is to directly combine parts
from existing models to synthesize new models by allowing rapid assembling of com-
plex 3D models from arbitrary input meshes. Recently, many efforts have concentrated
on the other important task of suggesting or choosing what parts to combine. Modern
techniques provide fully automated frameworks to indicate the widest choice of possible
results. However, while the field of modeling-by-composition is quite active and gener-
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ating promising results, all the proposed solutions cannot produce a fully quadrangulated
mesh. Their output is always limited to triangulated surfaces.

One reason why quadrilateral models are desirable for modeling is their simple topol-
ogy, i.e, a topology with a high degree regularity and with the presence of loops of faces
(we will expand on these concepts in the next chapter). That way, the model can be under-
stood in a more straightforward manner and modified by several modelers in an extensive
production line. These loops of faces are, in reality, an advantage of quadrilateral mod-
els since they allow to define more selection mechanisms (edge loops, edge rings) than
with triangle-based ones. These characteristics are explored in animation by aligning the
edge loops of the quadrilateral mesh with the feature lines (joints, principal curvature di-
rections, etc) of the model and, in this way, work with a well-segmented mesh. This is
crucial for a rapid and effective skinning and rigging.

On the other hand, modeling complex shapes from scratch with only quadrilaterals
requires highly skilled artists with extensive professional training at a considerable cost.
Moreover, these efforts are, in many cases, not exploitable multiple times. While for ar-
chitectural and mechanical shapes, the high standardization of the basic elements allows
the reuse of components, the creation of organic models with less structured shape often
starts from scratch. Usually, the pipeline starts by making coarse quad layouts manu-
ally, followed later by creating a subdivision surface. Professional designers employ their
semantic knowledge and experience to adjust the layout to the needs of a particular appli-
cation. Typical modeling systems used in the industry ( AUTODESK, PILGWAY, PIXO-
LOGIC, etc) allow the user to draw vertices and edges on a surface. Since this manual
procedure is time-consuming and error-prone, a series of sketch-based retopology ap-
proaches [6–8] have been proposed. These semi-automatic approaches automate a large
part of the process while allowing the user to efficiently modify the topology of the layouts
without having to start from scratch.

We propose to compose quadrilateral meshes designed for animation, taking inspi-
ration from the classical boolean operations defined on triangle meshes, but with oper-
ators redesigned to work on quadrilateral ones. A quadrilateral mesh designed for ani-
mation presents a particular edge flow, and content creators still consider this feature as
part of the artistic process. For this reason, the preservation of the original quadrilateral
meshes during the composition process is crucial to allow the effective use of modeling-
by-composition in the field of quadrilateral meshes for films and games production. In
the remainder of this thesis, we shorten the phrase quadrilateral mesh to only quad mesh,
meaning a mesh in which all faces are quadrilaterals.

2



(a)

(b) (c)

Figure 1.1: Face modeled for animation. Note the edge flow on the model. Edge loops
conform to feature regions like eyelashes, nose, and ear. Also, note how the modeler
placed irregular points in zones where no deformation occurs due to the animation. (a)
Model designed for animation from scratch. (b) Image zoom on the left eye of model in
(a). Note the contouring edge loops and the irregular point on the eye center. This is an
example of how real modelers displace irregular points in such a way they don’t affect
the animation.(c) Image zoom of the left ear of the model in a). Note how the irregular
points are placed on regions of curvature change following the ear shape perfectly.
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Figure 1.2: Sculpted head model. Note the richness of details, but the large
number of triangles. "The head of the sculpture use Zbrush" by imp is licensed un-
der Creative Commons Attribution. https://skfb.ly/LDtW To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

1.1 Classical pipeline for 3D artists

Generating high-quality quad organic models from scratch is an art that typically begins
with a 2D rough sketch of the model/character via a concept artist. Various software
are used to bring that concept to the 3D world (Maya, 3DSMax, Cinema 4D, zBrush,
Blender, etc.) via one or several techniques (edge-modeling, digital sculpting, box mod-
eling). Often the software will import the 2D image in a background where the 3d modeler
proceeds to build the 3D mesh by tracing the image with 3D geometry (mesh/sculpting)1.
If the 3D model requires a lot of detail like in an animated film, this will be made into
a high-resolution mesh object. Sculpting is usual for more organic designs and detailed
characters. However, sculpting is considered a more intuitive and artistic way of creating
a 3D model, and it is always necessary to retopologize the mesh to a quadrilateral one
with a good topology for the next steps, like texturing and animation (See Figure 1.2).

In this way, there are lots of manual methods for doing retopology. Also, there are
semi-automatic and automatic quadrangulation methods, which are preferably used for
models like rocks or trees, which won’t be under as much scrutiny as characters or they
will be placed at large distances from the observer. Finally, the artist can continue with
UV mapping, texturing/painting and animation.

1An example can be seen in this tutorial.
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1.2 Character modeling for animation

Character modeling takes its own space inside 3D modeling. Due to its particular re-
quirements, designers apply special techniques in comparison with other types of models.
Characters for animation are almost always modeled using quads. This is a difference
from other characters sculpted in a popular Sculpting software. The reason for this is
because a character designed to animation needs not only to look good from every angle
but also in many different poses and expressions. Consider, for instance, the animation
of a human model running on a track. Push-ups of the arms and legs (poses) will occur
and certainly, the face will also undergo different expressions during the run (See Fig-
ure 1.3−(a)). Building a still sculpt allows the modeler little more freedom, but it works
only with characters that won’t be animated where it is just necessary the model to look
good in a specific pose or from a certain camera angle like in Figure 1.2.

Making a character for animation demands symmetry. Special attention must be given
to the facial topology in order to grant realistic movements when the characters face de-
forms (see Figure1.1). Often modelers align the quad mesh edge flow in such a way
that the region where the model deforms is an edge loop2 from the quad mesh (Fig-
ure 1.1−(b), (c), Figure 1.3−(b)), but in fact, this is still an artistic process and no auto-
matic method exists for performing this task. Therefore, we could consider this type of
model as a target to be achieved by automatic quadrangulators. Until now semi-automatic
retopologizers([6–8]) are the best option to accelerate the modeling process of a character
that will be animated thereafter. On the other hand, we propose a method to compute
“boolean operations” between two quad meshes preserving as much as possible the orig-
inal quadrangulation, thus helping in the reuse of valuable 3D assets designed previously
by modelers.

2Check Section2.1
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(b)

(a)

Figure 1.3: Example of an animation sequence (a) of a human model. As expected,
the modelers aligned the edge loops with features like lips (b). Font: WikiBooks, availabe
in https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Advanced_

Tutorials/Advanced_Animation/Guided_tour/Mesh/Shape/Sync.

6

https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Advanced_Tutorials/Advanced_Animation/Guided_tour/Mesh/Shape/Sync
https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Advanced_Tutorials/Advanced_Animation/Guided_tour/Mesh/Shape/Sync


Chapter 2

Fundamentals of quad meshes

In this chapter, we briefly present the basic concepts related to quad meshes in such a
way that, in the rest of the thesis, we can describe problems and challenges from a more
technical point of view. We take some definitions from the survey about quad meshes by
BOMMES et al. and the Section 2.1 of the thesis of BOMMES.

2.1 Definitions

The valence of a vertex is the number of its incident edges. Interior vertices with valence
four will be called regular vertices, and otherwise, they will be called extraordinary or
irregular vertices. Analogously, on the boundary, a regular vertex is characterized by a
valence of three. The star of a vertex is the set of its incident faces and edges; the star of
an edge is the set of its incident faces. We assume all our meshes to have a 2-manifold

configuration, i.e., the star of any edge and of any vertex is always homeomorphic to either
a disk, or a half plane. This means that any edge may be shared by either two incident
faces, or just one incident face; and the set of faces connected to each vertex forms a
single fan, i.e., there is no “bow tie” configuration (See Figure 2.1).

In a quad mesh, at any interior regular vertex, two pairs of opposite edges meet. Start-
ing from an irregular vertex, any chosen edge can be followed, reaching another vertex.
If that vertex is regular, then the opposite edge can be followed too (if it is not bound-
ary), thus reaching a third vertex, and so on until an irregular vertex is eventually reached.
This collection of edges is what we call a separatrix, i.e., a path of edges crossing regu-
lar vertices and connecting an irregular vertex to either another irregular vertex, or to the
boundary.

Quad meshes can be classified into several classes based on the degree of regularity:
A regular mesh is a mesh that can be globally mapped to a rectangular subset of a square
tiling, although these meshes have a limited scope of applicability. A semi-regular quad
mesh is obtained by gluing in a conforming way several regular 2D arrays of quads side to

7



(a) (b) (c)

Figure 2.1: Examples de non-manifold meshes. We observe an internal edge connected
to more than two faces ((a),(b)). In (c) we see a “bow tie” configuration.

side. Each such regular submesh is called a patch, and the number of patches is assumed to
be much smaller than the total number of faces. In a semi-regular quad mesh, all vertices
that are internal to patches or lie along their boundary edges are regular. In contrast,
only vertices that lie at corners of patches may be extraordinary. Semi-regular meshes
represent the most important class of quad meshes in terms of applications. A quad mesh
is valence semi-regular if most of its vertices have valence 4, and finally, a quad mesh
is unstructured if a large fraction of its vertices are extraordinary. An unstructured mesh
is obtained, for instance, from splitting each face of an arbitrary triangle mesh into three
quads.

We consider conforming meshes, i.e., meshes in which any two faces may share either
a single vertex or an entire common edge. This is a common assumption in geometry
processing; but, unlike in general cases where real meshes are not conforming, quad
meshes modeled by artists always are conforming because of the animation requirements.

The Dual mesh is a concept inspired in the dual for graphs; accordingly, the dual quad

mesh is another mesh that we can construct as follows: Given a quad meshQ = (V,E, F ),
its dual is Q∗ = (V ∗, E∗, F ∗) where each vertex vi ∈ V is identified with a dual face
f ∗i ∈ F ∗, each edge ej ∈ E is identified with a dual edge e∗j ∈ E∗ and each face fk ∈ F
is identified with a dual vertex v∗k ∈ V ∗ (see Figure2.2). The connectivity of the dual is
uniquely inherited by the primal. If, for example, two vertices in the primal are neigh-
bors, so the corresponding faces will be in the dual mesh. The 4−regularity of the faces
in the primal translates into a valence regularity of the dual. Consequently, we can inter-
pret each vertex of the dual mesh as the crossing of two dual curves (see Figure2.2−b).
These dual curves, often called poly-chords, uniquely traverse bands of neighboring pri-
mal quads and induce the global connectivity of the quad mesh. While simple dual curves
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Figure 2.2: a) A quad mesh Q is described by vertices vi , edges ei and faces fi . In a
pure quad mesh each face is four-sided while irregular vertices like v0 are allowed to have
a valence different from 4. b) The dual Q∗ of a quad mesh is an arrangement of curves
where the face regularity translates into vertex regularity.

are usually preferred, even quad meshes which seem to be well structured often exhibit
self-intersecting, long and complicated dual curves (see Figure2.3−c). However, since all
vertices in the dual have a valence of 4, such a dual curve cannot end in the interior, i.e.
each curve is either closed or crosses the boundary twice. This helps us understand why
Lemma 2 is true.

The set of dual curves can be partitioned by an equivalence relation that gives us a
better understanding of the global structure of quad meshes. This relation clusters topo-

logically parallel curves into equivalence classes. More precisely,

Theorem 1. Let d1 and d2 be dual curves. The relation ∼p defined as follows:

d1 ∼p d2 ⇐⇒ one is a transversal offset of the other (2.1)

is an equivalence relation.

Proof. Naturally ∼p is reflexive because we can consider an offset of 0 transversal edges
and symmetric because, if d1 ∼p d2, then there exists an integer n such that d2 is a
transversal offset n dual edges from d1. Therefore, d1 is also a transversal offset n dual
edges from d2, but in the opposite direction, i.e, d2 ∼p d1. Finally, the transitive property
holds because, if d1 ∼p d2 and d2 ∼p d3, then there exist integers n and m such that d2
is an offset n dual edges from d1 and d2 is an offset m dual edges from d3, hence d3 is an
ofsset n+m or |n−m| dual edges from d1, i.e., d1 ∼p d3.

This corresponds intuitively to a “ladder” configuration (see Figure2.4), where each
curve segment of d1 forms a topological quad with two transversely intersecting dual

9



(a) (b) (c)

Figure 2.3: Poly-chords corresponding to the same quad mesh. We can think a poly-
chord as a dual curve. (a) Quad mesh designed for animation. (b) Short dual curves. (c)
Long dual curve crossing itself two times.

curves and a curve segment of d2. It is clear this relation classifies topologically parallel
curves, even more, the number of equivalence classes, i.e., the number of topologically
different dual curves, is invariant under regular refinement1 and, thus, encodes structural
properties. We can, for example, have an alternative definition of the quad mesh base
complex.

Finally, in the 3D modeling software context, we frequently use the term edge ring for
quad meshes, which is quite close to our dual curve definition. An edge ring is a series
of edges which are not directly connected, but share faces. In a quad, the only possibility
is a sequence of opposite edges (Figure 2.5−(a), (b)), but this is just the sequence of
edges crossed by a dual curve. Related to this concept, we also define the term edge loop,
that is, a sequence edges directly connected, where each edge belongs to a different quad
(Figure 2.5−(c), (d)). This sequence ends when an irregular vertex is found or we reach
the boundary. Note that, in this terminology, a separatrix is an edge loop, and, analogously
to dual curves, we can define parallel edge loops.

2.1.1 Base complex

A quad layout is a partitioning of an object’s surface into simple networks of conforming
quadrilateral patches. In the case of semi-regular quad meshes we can consider the quad
layout as a kind of base structure, since the quad mesh is a regular refinement of it. This
quad layout is not unique by definition and structurally does not differ from a quad mesh.

1A regular refinement splits each quad into four by joining opposite edges on their middle points. Given
a quad, this already has a two dual curves crossing it. If we apply a regular refinement we will only add two
dual curves parallel to the existing ones, that is, we will not modify the number of equivalence classes.

10



d1 d2 d3

Figure 2.4: Visualization of dual curves. On the left, we see a topological representation
of the dual curves space with d1 ∼p d2 ∼p d3, i.e., parallel curves. On the right we also
see two parallel curves (poly-chords) in red and a non-parallel curve in light-blue.

(a) (b) (c) (d)

Figure 2.5: Edge Selection tools in Blender for quad meshes. (a), (b) shows two edge
rings. Compare with the dual curves in Figure 2.3. (c), (d) shows two examples of an
edge loop. Note that (c) is also a separatrix.
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(a) (b)

Figure 2.6: Visualization of quad layouts. Different patches are depicted with different
colors. Note we have in both of cases two irregular vertices of valence 3 and 5 but different
dual curves topology a) Quad layout coarser. b) Quad layout finer.

Rather, the difference is that patch dimensions are chosen such that the quad layout is
coarse.

The base complex of a quad mesh Q, denoted as BC(Q), is the coarsest quad layout
obtained from a subset of the mesh that has the same boundary and set of irregular ver-
tices. In the primal setting, BC(Q) is constructed by tracing all separatrices and then re-
moving all untraced arcs. Accordingly, the connection between irregular vertices strongly
influences how many patches are required, an observation which is very helpful when op-
timizing the topology of quad meshes (see Figure2.6). Looking at the dual construction,
we obtain the dual of the base complex BC(Q)∗ of Q by choosing exactly one representa-
tive of all topologically parallel curves classified through ∼p and each intersection of two
such representatives generates one patch Pi in the primal, i.e., the base complex BC(Q).

2.1.2 Edge flow

This is a term very common in the 3d modeler community, but with a vague definition.
Sometimes this term means the modeling practice of ensuring that edges follow the cur-
vature and features of the model, in particular, the human anatomy in character modeling
(muscle structure). Other times, edge flow represents the structure of the model itself.
This structure is seen as edge paths (flow) and it is a sort of path guide on how the model
is formed. Certainly, this concept does not make sense in a general polygonal situation,
since the edge flow’s direction is undefined (Figure 2.7−(a)), but, in the context of quad
meshes, due to the existence of the dual curves and the base complex we can define pre-
cisely what would be the edge flow. First, we note that, due to the existence of two dual
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(a) (b)

Figure 2.7: (a) In a polygonal mesh, given the red edge we cannot define unequivocally
the next edge to be followed. We have 5 options, and we don’t know what direction
choose. (b) In a semi-regular quad mesh each edge has a flow direction well-defined.
This is the direction of the dual curves associated to the adjacent faces.

curves crossing on each quad, we can define unequivocally the flow of an edge as the
edge loop associated to that edge. Bearing that in mind, we define the edge flow of the
quad mesh Q as the set of dual curves of the base complex BC(Q). Note that, this is a
global concept, depending, by definition, of base complex of the mesh Q, and therefore,
it is a topological concept. Note also that the edge flow becomes important when this is
well-organized and has few similar flows. In this case we have a good edge flow. A bad

edge flow could be obtained, for instance, in a unstructured quad mesh (Figure 2.8). .

2.1.3 Quadrangulation challenges

Quad-remeshing or retopology is a challenging open problem. It consists in generating
a quad mesh given another mesh, typically a triangle mesh, in such a way the new asset
preserves the geometry as much as possible. The difficulty increases because the connec-
tion between the geometry of a surface and its ideal quad mesh is weak or nonexistent,
primarily application-dependent. For our purposes, if we have a character modeled for an-
imation, its connectivity should have edge loops on its articulation and the entire topology
should be optimized to reduce skinning deformation artifacts; such properties are impos-
sible to automatically extract from static meshes([11]). Figure2.9 shows two automatic
quadrangulations with state of the art methods for the same model of Figure1.1.

Since quad-remeshing is hard to do, we propose blending quad meshes to partially
solve the need for the films and games industry to build quad assets from scratch. Such
blending must be done preserving as much as possible the initial connectivity. In this
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(a) (b)

Figure 2.8: Good and bad edge flow examples. (a) Dual curve in red for an unstructured
quad mesh. We observe that this curve does not follow the muscle structure of the model
and is crooked. The edge flow for this mesh is a good example of a bad edge flow. (b)
The same model like in (a), but with a well-designed mesh with a good edge flow. Note
the regularity, organization and better anatomy flow of the mesh.

way, modelers could perform a process that does not destroy previous work. We will try
to explain in this section why blending on quad meshes poses extra challenges over its
triangle counterpart.

Lemma 1 demonstrates the importance of irregular vertices in the generation of quad
meshes.

Lemma 1. Given a conforming and closed quad mesh with all vertices regular, then the

genus of the surface is 1.

Proof. In a conforming regular quad mesh without boundary the relation between the
number of edges and faces is |E| = 2 |F |, since each face is adjacent to exactly four edges
and each edge is shared by exactly two faces due to the conforming property. Furthermore,
with an analog argument we know that |E| = 2 |V | because each vertex has valence four
and each edge is adjacent to exactly two vertices and consequently |F | = |V | = 1/2 |E|.
The Euler characteristic χ relates these quantities for a closed polyhedron in the following
way to its genus g:

|V | − |E|+ |F | = 2(1− g)

then, because of our relations, g = 1.

Even for genus 1 surfaces, modelers often introduce irregular vertices if the surface is
more complicated than a torus, like e.g., a coffee cup. Another consequence is that we
never could construct a regular mesh in the common industry case of a conforming quad
mesh of genus 0, i.e., we always have a semi-regular quad mesh.
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The next fact we should note is that locations and valences of irregular vertices have
a global effect over the quadrangulation. Lemma 2 reveals the global nature of quadran-
gulations, condition not present in triangle mesh generation.

Lemma 2. A planar and non-intersecting polygon can be quadrangulated if and only if

the number of edges is even.

Proof. The necessity of an even number of edges is consequence of the Euler formula.
Let P be a planar and non-intersecting polygon and Q an arbitrary quadrangulation of P .
Let F be the number of faces, Eb the number of boundary edges, and Ei the number of
internal edges of Q. Since every quad has four edges and every internal edge is shared by
two quads, these variables are related as 4F = Eb + 2Ei , meaning that Eb must always
be even. The sufficiency of the condition is a corollary of a more general algorithm that
constructs a quadrangulation (perfect matching) from a triangulation presented in [12].
Here we use the known theorem about the existence of a triangulation for a planar polygon
[13].

Lemma 2 can even be generalized to non-planar polygons and we have, in particu-
lar, that patches from semi-regular meshes must satisfy the parity of the number of their
boundary edges. This Lemma has important consequences for the design of quad-meshing
algorithms. In Section 4.3 we will face a topological consistency problem due to this re-
quirement. In order to intuitively understand the intrinsic consistency constraint of quad
meshes, it is helpful to examine Figure 2.6. We notice the same number and type of irreg-
ular vertices but in different locations and we have different quadrangulations of the same
patch. When we construct the dual curves we note two different configurations and that is
why the quadrangulation changes: the topology of dual curves determines a unique quad
mesh, except for parallel curves (regular refinements) and this also can be expressed in
the primal viewpoint. In this case, the base complex defines a unique quad mesh unless
regular refinements are introduced.

In our problem, performing blending on quadrilateral meshes preserving as much as
possible the initial connectivity demands working “locally” but we have just seen that we
must manipulate quad meshes taking into account their global structure. In fact, local
changes in the structure usually propagate globally across the whole mesh. Furthermore,
preserving the edge flow from the inputs impose several conditions on the global structure
and the placement of irregular vertices.

Finally, while it is generally a challenging task to define stable boolean operations,
their result can be defined precisely in the context of triangle meshes [16]. In contrast,
this is not true for generic quad meshes. Concerning boolean operations, a first evident
difference between a quad mesh and a triangle mesh is that the former does not admit a
unique piecewise discretization2. Hence, the single intersection between two quadrilateral

2We can split each quad in two different ways.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Automatic quadrangulations for the model in Figure1.1 with the methods
from [14] and [15]. a) Quad-dominant remeshing with the Instant meshes method[14]. b)
Quad-remeshing with the QuadriFlow method[15].c) Left eye view of the quadrangula-
tion with [14]. d) Left eye view of the quadrangulation with [15]. e) Left ear view of the
quadrangulation with [14].f) Left ear view of the quadrangulation with [15].
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elements cannot be unequivocally defined. In this light, we might refer to our operations
as blending to distinguish them from classical boolean operations on triangle meshes.

We summarize the main contributions of this thesis as follows:

• We propose a new technique to mimic boolean operations on quad meshes. Our
system blends quad meshes preserving, as much as possible, the original quadran-
gulation.

• We define a new technique to robustly define a region of interface/blending between
two intersecting surfaces whose boundary can be quadrangulated.

• We define a strategy to ensure that the intersection between two quadrangulated
models admits a valid quadrangulation.

• We integrated our technique in an interactive tool and demonstrated its practical use
on modeling scenarios.
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Chapter 3

Literature review

In this chapter, we review previous works relevant to our goal and describe important
techniques that we use to achieve our stable blending operations between quad meshes.
There are several areas of research related, but we concentrate our discourse on those
which inspired the present work. We begin with a summary of boolean operations on
triangle and mixed meshes. We also overview methods for automatic quadrangulations,
interactive tools for quadrangulations and quad-meshing techniques for single patches.

Before we starting with the academic works, among commercial software packages,
only the Modo suite [17] provides a tool, called MeshFusion, that can combine quad-
based mesh representations with boolean operations while partially preserving their struc-
ture. Here, the user authors a tree of boolean operations with coarse quad meshes as the
leaves; during editing, the system silently computes and displays a low-level represen-
tation, consisting of a quad-dominant mesh, obtained by subdividing the coarse quad
representations, and performing the boolean operation over the subdivided results, but
considered as triangular meshes in the intersections. In this regard, differently from our
case, a quad-pure representation of the result is never explicitly computed, and the results
include triangulated regions around the intersection lines. Figure 3.1 shows a comparison
between the quad-dominant representation obtained by MeshFusion and the result of our
method. Several video-tutorials1 about Modo MeshFusion are avalaible on the internet
for better comparison.

3.1 Boolean and Composing Operations

Boolean or set-theoretic operations are a natural way of constructing complex objects
from simpler ones, and is the basis of Constructive Solid Geometry, where primitive solids
are usually implicit objects, which naturally support such operations. However, we use
the Boundary Representation B-Rep paradigm where surfaces are usually represented by

1An example: https://www.youtube.com/watch?v=sWBpdElTeV0
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Setup MeshFusion Ours

Figure 3.1: A comparison of our proposal and MeshFusion([17]): the difference in the
intersection portion of the mesh is noticeable.

discrete structures such as meshes, which require considerably more effort when used as
operands of set-theoretic operations. Since B-Rep is very popular in CAD and computer
graphics applications in general, several techniques for computing such operations on
meshes have been devised over the years.

This is a non-trivial problem, especially for complex B-Rep models as it requires
many intersection tests, separating the final surface into pieces and constructing new sur-
faces out of these pieces. Computing the intersection curves between the input models is
a central task and quite difficult if we demand accuracy. Exact arithmetic and complex
techniques were used in several works addressing the issue, as in the Computational Ge-
ometry Algorithms Library (CGAL[18]) that supports robust Boolean operations on Nef
polyhedra[19], which is considered a seminal reference, despite its high memory cost.

BSP-based2 methods have been shown to be highly effective for computing boolean
operations on meshes. With a careful design of predicates, a robust method was reported
in [20]. The authors use an exact geometric computation approach with fixed-precision
instead of arbitrary-precision arithmetic. PAVIĆ et al. [21] extended this technique im-
proving its performance with an adaptive octree and also fixed-precision arithmetic. Be-
sides, due to the BSP representation, these algorithms are able to work with polygonal
meshes, not just triangle-based. However, the output mesh is completely re-tessellated.
This is problematic in many contexts like ours.

More recently, DOUZE et al. [22] developed QuickCSG, a multiple polyhedral input
system for boolean operations which is very fast and robust. They propose a new vertex-
centric view of the problem with good results. Basically, they express a boolean solid
operation using a boolean-valued function over n boolean inputs, f : {0, 1}n 7−→ {0, 1}.
They denote Ii(x) ∈ {0, 1} the indicator function of polyhedron Pi whose value reflects
whether a point x ∈ R3 is in polyhedron Pi’s inner volume. The indicator function If (x)
of the final solid Pf can then be computed as If (x) = f(I1(x), · · · , In(x)). With this

2Sigla de Binary Space Partition, ou Partição Binária do Espaço.
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Setup

QuadriFlow

Ours

Figure 3.2: A simple way to tackle the problem of composition might be to transform
the quad mesh into triangles first, perform the boolean operation, and finally use a quad-
meshing algorithm to obtain a sound quad mesh. However, this approach will inevitably
modify the entire mesh. This result is far from ideal from a modeling point of view, as
an artist would more likely prefer to preserve as much as possible the connectivity he has
designed. The solution with the QuadriFlow method[15] require to re-mesh entirely the
results of the boolean operation and original connectivity is lost, in particular, features
like the eyes of the pig or the armadillo. Our system efficiently preserves the connectivity
and is capable of blending two different connectivities
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approach and a KD-tree3, they focus all classification and subdivision efforts on producing
the final output vertices, excluding higher order primitives or intermediate vertices. Then,
the size and depth of the KD-tree no longer depend on the size of the inputs but on the
size of the output model. This improves performance. The reader can see more details in
the project page of the work.

ZHOU et al. [16] developed a robust boolean system for triangle meshes using the
generalized Winding Number concept restricting the problem to the class of meshes with
a piecewise-constant winding number or PWN meshes. The computation is exact since
they employ the CGAL exact arithmetic kernel. We base our boolean operation between
the triangular parts in our method (see Section 4.1) on this work because of the exhaustive
validation of this method with the online 3D printing repository of 10000 triangle meshes
Thingi10K. There is an implementation of this algorithm in the LIBIGL library.

As explained in the introduction, our approach leverages on the works on the
modeling-by-composition paradigm. These approaches are more interested in achieving
an effective composition with an easy-to-use tool than calculating a boolean operation
precisely. In this sense, blending is a more appropriate term to refer to these composition
operations. The majority of these methods do not compute the intersection curve like in
[23–25] and instead, they use ideas related to the iterative closest point (ICP) algorithm.
Other works address the problem of composition like a part-to-target operation [26, 27]
using more sophisticated techniques. Moreover, the idea of trying to limit the modification
on a mesh when performing boolean operations [28], or repair the result [29], has been
already explored. Finally, no solutions had been suggested until now to compose quad
meshes smoothly and with the result being a quad mesh as in the proposed approach.

3.2 Automatic quadrangulations

A quadrangulation of a 3D polygon surface can be constructed by computing the tessel-
lation directly or by computing a quad patch layout. For an extensive survey on quad-
meshing, readers are referred to BOMMES et al. [9] and CAMPEN [30]. In this section,
we briefly review the approaches most related to our contribution.

Several quadrangulations methods were proposed in the last years. These are com-
prised by global parameterization, field tracing and quad layout generation methods.
Among the methods based on global parameterization we have the work of BOMMES
et al. [31] that transformed the quadrangulation problem into a mixed-integer problem;
KÄLBERER et al. [32] that developed a method to compute a global continuous param-
eterization for an arbitrary given simplicial 2−manifold. CAMPEN et al. [33] introduced
a method to generate an integral global parameterization by finding good quality quan-
tizations on closed, orientable 2−manifolds. More recently, FANG et al. [34] proposed

3Árvore k-dimensional.
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(a) (b)

Figure 3.3: Construction of a cross-field. (a) Generation of the four sides of the cross-
field. (b) Discretization like in CAMPEN et al. [39]

a hybrid technique that combines the theoretical guarantees of Morse-based approaches
with the parameterization-based methods. The use of a four-dimensional periodic vector
field allows an increase in the robustness of the parameterization part. Field tracing meth-
ods have given good results over the last decade. Starting with the work of PALACIOS
e ZHANG [35] about cross-fields or 4-RoSy vector fields, we can mention PANOZZO
et al. [36] that introduced the frame field, a generalization of cross-fields that allows gen-
erating anisotropic and non-uniform quad meshes; JIANG et al. [37], that improves the
generation of frame fields by designing a non-Euclidean metric based on the input con-
straints; and, the state of the art: the Quadriflow method [15] (based on the Instant meshes
method [14]). On the other hand, diverse approaches to quad layout generation exist.
TARINI et al. [38] extract a quad layout by simplifying a given cross-field. CAMPEN
et al. [39] exploited the relation between the dual graph and its quadrangulation, with the
quad layout given by the intersection of dual loops. Also DONG et al. [40] used a spectral
decomposition of the Laplacian to construct a Morse-Smale complex that is guaranteed
to be formed by 4-sided patches. Some works were also aimed at character animation,
for instance,[11, 41] consider the deformation affecting a mesh during an animated se-
quence to generate a quad layout that remains good for all animation frames. On the
other hand, while these approaches were successful on several quantitative metrics (like
singularity placement and coarseness), in production pipelines it is still necessary a more
art-controlled quad generation process.

Since in our pipeline we use a cross-field like in CAMPEN et al. [39], it will be useful
to describe briefly how we constructed that field.

Cross-field generation method

Following KÄLBERER et al. [32], given a surface M , with the exception of the singular-
ities, we make four copies of each point p ∈ M . We associate each copy to one direction
of the cross-field. Then each copy of p encodes both its position and one of the orienta-
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tions of the cross field. This process creates M4, which is a stratification of the original
manifold surface M (Figure 3.3−(a)). Space M2 is the quotient space of M4 obtained by
identifying pairs of opposite directions. Hence M2 is composed only by two sheets. Each
sheet encodes a line-field.

We discretize M4 for tracing following the approach proposed by CAMPEN et al.

[39]. Given an input manifold surface equipped with a per-vertex cross-field, we create a
graph with four nodes on every vertex, one for each direction of the cross-field.

We connect each node with the neighbors whose position is within the visibility cone
of its emanating direction, for each position, we choose the copy having the more aligned
direction. We also augment the graph with vertices belonging to the 1-ring to provide
more degrees of freedom to the tracing process.

Given an initial node which corresponds to a vertex and a field direction, the tracing
process is a propagation process where at every step we select the connected nodes whose
position is the most aligned with the field. This way, we have a fast and robust tracing
setup.

Finally, we have seen that automatic quadrangulation doesn’t get the desired good
topology that expert modelers give to their creations and, for that reason, our approach
provides a solution to this problem by creating the model blending previous modeled parts
created by artists preserving as much as possible the initial topology. However, even in the
case that automatic quadrangulation methods advance to cover current impossible cases
like in Figure1.1 our modeling by composition approach to compose quad meshes still
will be of great help to modelers since our restriction of preserving as much as possible
the initial topology allows reusing previous expensive work. Using an automatic method
will inevitably modify the entire mesh due to the global nature of quadrangulations as
we had seen. In Figure 3.2 we illustrate this with an example and compare it with our
proposal.

3.3 Interactive Quadrangulation tools

The combination of the global behavior of quadrangulations with the non-interactive na-
ture of an automatic method makes the tuning of parameters an unintuitive and time-
consuming task. Therefore, many approaches have considered the issue of helping a
manual quadrangulation process leaving most of the control to the final user. BESS-
MELTSEV et al. [42] developed a technique for generating quad meshes starting from an
input 3D curve network, possibly created by the user; with this approach, geometry and
topology are defined based on flow-lines set by pairs of segments on a closed 3D path.

Inspired quadrangulation [43] can also be considered related to our approach. In this
work, the authors transfer quadrangulations between surfaces on a per-partition basis (e.g.,
head, arm, torso) via cross-parameterization. Unfortunately, this approach does not pro-

23



Figure 3.4: An example of a quadrangulation for adjacent patches using the Takayama’s
method[45].

vide precise local control over the mesh layout. Instead, our method enables the direct
combination of portions of quad meshes.

Finally, connectivity editing operations have been developed to enable users to modify
existing quad meshes by moving pairs of irregular vertices [44]. These methods provide
lower-level local operators, and they can be integrated with practices of the previous class
to fine-tune the mesh topology.

3.4 Quad-Meshing Patches

In our pipeline, we face the issue of completing a partial quad mesh. This task is an es-
sential part of all sketch-based retopology techniques [7, 45, 46]. In these semi-automatic
approaches, a patch layout is first interactively sketched over the input surface. Then each
patch side is subdivided into many edges as prescribed by the user [47–49] and finally
automatically quadrangulated. The present work also requires quadrangulating patches
defined by their sides (see Figure 3.4). In [7, 45], a set of manually designed patterns are
expanded to tessellate arbitrary polygons with up to 6 sides. More recently, MARCIAS
et al. [8] proposed another approach for filling with quad patches a 2D n−sided patch
by using a pattern-based algorithm that uses a trained database of quadrangular patches.
Another possibility is to use filling patterns generated procedurally as in PENG et al. [46].
This approach requires first to derive a bijective parametrization of the triangular patch;
then the final patch layout is produced by tracing straight lines in the bidimensional para-
metric space. As explained in Chapter 1, we expect to produce quadrangular patches that
are relatively small with respect to the input meshes, and, for that reason, we propose
using Takayama’s method [45]. While Marcias’ method is generally better for controlling
the edge flow, in our case, the edge flow is given by exploiting the existing field around
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the boundary of the patches.
It is important highlight that we share some ideas for our cross-field generation step

(subsection 4.2.3) with the PENG et al. [46] approach (like the classification between
concave and convex corners and the emanating directions), but unlike that work, we do
not require any bijective parametrization, and this is a significant advantage. The de-
cision to trace paths directly on the surface is crucial to make the method general and
reliable. Constructing a low distortion bijective parametrization can be difficult and time-
consuming for the general case and even particularly tricky for the thin regions which
can result from the boolean operations. Moreover, designing a cross-field that aligns to
boundary constraints leads to a traced subdivision that blends the flow among the existing
quadrangulations smoothly.
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Chapter 4

Blending of quad meshes

In this chapter, we describe in detail our proposal to compose quadrilateral assets from
other quad meshes. In particular, we address this composition in the case of quad meshes
designed for animation, which present good edge flow and, until now, were impossible to
generate automatically. In this way, we can supply a need in the film and game industry.

Our method assumes two input quad meshes, more usually, models produced by
artists. The two main objectives are: (1) perform the composition of these models guaran-
teeing a pure quad mesh as a result, and (2) preserve as much as possible the connectivity
of the original quad models. In order to achieve these goals, we proceed to tackle the
problem “locally” around the intersection curve of the inputs. All the work will be done
in a neighborhood of this curve. With that purpose, we compute a quad patch layout
of the meshes to be composed and work on the intersecting patches (see Figure 4.1−a).
Our idea is to define a new set of patches on these regions close to intersection curves,
quadrangulating each patch independently. As we have seen, we have to deal with the
global effects of our “local” modifications. We transform these global-local relations into
an Integer Programming formulation that solves our requirements efficiently.

We based this section on our paper “QuadMixer: Layout Preserving Blending of

Quadrilateral Meshes”[50].
In essence, our entire pipeline can be expressed as:

• We first compute a patch decomposition of the quadrilateral meshes by using a sim-
ple motorcycle graph [51] tracing algorithm (see Figure 4.1−a) or solely emanating
separatrices from irregular vertices.

• We split each quad into two triangles, and we perform the boolean operation using
the implementation of [16] (see Figure 4.1−b).

• We select the patches that have not been modified by the boolean operation. We
retract the sides of the patches that are partially affected by the boolean operations.
Those patches are the ones that contain only a subset of the original set of quads.
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At this stage the mesh can be divided into two sets: a quadrilateral mesh Q0 and a
triangle mesh T (see Figure 4.1−c) which share a common boundary.

• We smooth these internal patches to generate a fair geometry surface, which can be
quadrangulated nicely. The user can control the amount of introduced smoothing.

• We trace a set of internal patches P on the triangulated mesh T (see Figure 4.1−d).
This step uses the definition of a cross-field [52] and applies a tracing algorithm
[39].

• We solve an Integer Quadratic Program with linear constraints to derive the opti-
mal subdivision for each side of the patches P . The energy formulation balances
regularity of the patches (to avoid inserting unnecessary irregular vertices) with
the global uniformity of edge sizes (see Figure 4.1−e). The number of subdivisions
along the border sides ofP are constrained to match the corresponding subdivisions
on Q0.

• We quadrangulate each patch using the data-driven approach proposed in [45] (see
Figure 4.1−f ) obtaining a new quadrangulated mesh Q1. The union of Q1 and Q0

provides the final result.

The first step of our pipeline extracts a quad patch layout. This step is not difficult and
consists of tracing all the separatrices stemming from irregular vertices (see Figure 4.2).
Each separatrix is defined as a sequence of edges starting at a singular vertex (i.e., a
vertex of valence different from four) and ending at another singular one, such that no
two consecutive edges limit the same quad. When applied to manually-modeled meshes,
this process typically produces well-structured and compact patch decompositions, since
the tools used by the artists tend to align the singularities naturally. As an alternative, we
can simultaneously propagate all the separatrices and stop tracing each separatrix as soon
as it crosses another one. Literature usually describes this procedure as tracing motorcycle

graphs [51]. While this tends to create fewer patches, it can easily introduce t-junctions
in the patch layout. We do not need to make any particular assumption on the structure
or the alignment of the separatrices. Hence, both approaches are valid as they produce
quadrilateral patches. Any algorithm capable of improving the regularity of the patch
layout (such as [38, 53]) is not useful in this context since it might modify the original
edge flow designed by the artist.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: An overview of our processing pipeline: (a) Given two separate quad meshes
we compute an initial patch layout for each; (b) then quads are split to form triangular
meshes, which are then combined. (c) We update the patch layout for the patches that are
affected by the boolean operation. (d) We split the triangulated portion of the surface into
sub patches. (e) We derive the optimal subdivision for each side. (f) We perform the final
quadrangulation.
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Figure 4.2: On the left: the input quad mesh; in the center: the patch layout with separa-
trices; on the right: the patch layout typical of a motorcycle graph.

4.1 Optimal Patch Retraction

Given two pure quadrilateral meshes QA and QB, along with their original quad patch
layouts (Figure 4.3−a), we start by splitting each quad element along its smaller diagonal1

to transform QA and QB into two triangle meshes T A and T B. Next, we perform the
boolean operation between T A and T B using [16]. The result is the new triangle mesh
T bool. Notice that the triangles in T bool are of two kinds: (i) the triangles from the input
quads; (ii) the triangles modeling the intersection region between the two meshes. The
exact implementation of the boolean operations guarantees that the vertices of the new
triangles lie on the input mesh.

We now need to rebuild the quad patch layout. We start by preserving the quads ofQA

andQB that contain triangles not changed in the boolean operation (Figure 4.3−b). Then
we consider, as part of a blending area that will be remeshed, also the quads that are close
to the intersection curve to provide sufficient space to blend neighboring quadrilateral
layouts smoothly. For this area, we consider the quads on each side where their geodesic
distance to the intersection line is below a given threshold of δr, which is proportional to
the average edge length of the retracted patches (Figure 4.3−c). At this point, we have a
collection of unorganized quads that we need to assemble into patches by building a new
layout.

The idea is to favor the formation of large, compact rectangular patches with a regu-
lar and straight boundary with the remaining triangulated surface. For this purpose, we
repeatedly search, in the set of unorganized quads, the largest inscribed rectangle com-
posed only by quads not associated with any entirely preserved patch (Figure 4.3−d).
Specifically, we use the largest rectangle in a histogram (see [54], chapter 21) algorithm
to generate this new set of rectangular patches.

Finally, we perform a pruning step that eliminates all the newly created patches having

1In this way, we obtain a more isotropic triangulation.
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(a) (b) (c) (d) (e) (f)

Figure 4.3: Patch layout retraction: (a) The initial patch layout of the two meshes. (b) The
two quad meshes are split into triangle meshes to perform the boolean operation, and then
the triangles are clustered to recompose the original quads when possible. (c) Original
patches are retracted to maintain a certain geodesic distance from intersection line. (d)
The new patches are extracted by repeatedly finding the largest rectangles composed of
quads in the partially preserved patches. (e) Small patches are pruned. (f) The final
quadrangulation.

a number of forming quads below a given threshold (Figure 4.3−e). We set this threshold
to a fraction of the average area of the current patches.

At the end of this step, we obtain a new quad-only meshQ0 and a triangulated surface
T 0. Notice that because of the robust and precise implementation of the boolean opera-
tions, the triangle and the quad meshes will necessarily share the same set of boundary
edges, that is, the boundary of Q0 coincides precisely with the boundary of T 0.

4.2 Patch Subdivision

We now need to transform the triangulated portion of the surface T 0 into a quad meshQ1

that, once attached to the preserved quadrangulationQ0, will become the final quad mesh
of the mixed shape. To be able to join the two portions correctly, we must match, for
each portion of the boundary ofQ1, the number of subdivisions ofQ0 along the common
border. Since the number of edges along the boundaries is unchangeable, the problem
becomes untractable with methods that derive quadrangulations from field-aligned global
parameterizations [31]. To the best of our knowledge, none of these methods can guaran-
tee to produce valid quadrangulations for an arbitrary subdivision of the boundaries.

Hence, we rely on procedural methods that are explicitly designed to produce valid
quadrangulations for a given input boundary subdivision. These methods automatically
insert singularities in the interior of the patch to accommodate for the changes in the res-
olution needed to match the prescribed boundary subdivisions. However, these methods
work only on input patches homeomorphic to a disk, and with a given maximum number
of sides. In particular, the method by Takayama et al. [45] requires the number of sides
of the input patch to be between three and six. As a consequence, to use this method in
our pipeline, we need to split the triangulated surface T 0 into patches respecting these
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(a) (b) (c) (d) (e)

Figure 4.4: Patch tracing procedure: (a) The Initial patch; (b) The re-meshing step; (c)
Cross field computation; (d) Concave corner tracing; (e) Final splitting of the patches to
match the requirements.

requirements.

4.2.1 Field-aligned Patch Tracing

We produce a valid decomposition via a two-step process: (i) we first derive a smooth
cross-field; (ii) we iteratively trace polylines along the cross-field to create a proper patch
decomposition. Every trace starts from a border vertex and ends on another border vertex,
following the flow of the underlying field. To ensure that the patch layout will blend
smoothly with the existing quadrangulation Q0 at the border, we align the cross-field
along the boundaries, and we smooth it in the interior. We can also include in the field
computation any additional conditions on prescribed curvature directions, for instance,
a desired edge flow. However, given the small areas covered by the boundaries, these
conditions are usually not taken into account.

The following are the steps of the subdivision pipeline (see Figure 4.4) :

• We perform a re-meshing of the initial surface T 0 keeping fixed all triangles that
have an edge on the boundary. We use this step to remove badly shaped triangles
appearing along the intersection lines, blending the tessellation with the boundary
constraints. This pre-processing step increases the robustness of the overall ap-
proach. We use the iterative approach included in the Meshlab framework [55].

• We compute a smooth cross field that conforms to the boundary using the poly-
vector field smoothing [52]. The cross-field is computed for each face and then
re-interpolated for each vertex considering the invariance to π

2
rotations.

• We split all concave corners by tracing polylines with an end-point in the corner
using [39].

• We iteratively re-apply this step for any sub-patch not yet respecting the conditions
imposed by the constrained quadrangulation algorithm.
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Figure 4.5: On the top left the initial corner classification: we mark each angle either as
convex or as concave; on the top right we show the directions stemming from concave
vertices that we use for splitting the patch in quads; on the bottom we show how we can
split the concave corner into a flat and a convex corner using a single trace (left), or into
three convex corners using two traces at the same time.

4.2.2 Patch configuration

After computing a cross-field on the triangle mesh T 0 (for a more exhaustive description
of cross-fields see [56]), we classify each border vertex of the triangle mesh T 0 as convex

(if less than π − π/8), concave (if greater than π + π/8), or flat elsewhere. The classi-
fication of a vertex vi (see Figure 4.5 for an example) is based upon the angle between
the two edges of T 0 incident on vi. We iteratively trace polylines until each patch has a
number of sides between three and six.

Each vertex has a different number of possible directions for tracing the splitting
pipelines (yellow arrows in Figure 4.5): the concave vertices have two tracing directions,
the flat vertices have one tracing direction, and the convex vertices have no tracing di-
rections. To reduce the number of sides in the patch, we repeatedly trace the subdividing
polylines (the red lines in Figure 4.5) following the tracing directions. Note that each split
of a patch reduces the number of sides in the two resulting parts by, at least, one.

Each split changes also the classification of the associated boundary vertex as follows:

• A single trace splits a concave corner into a convex and a flat corner.

• Two traces stemming from the same concave corner split it into three convex cor-
ners.

• A trace splits a flat corner into two convex corners.

• Two orthogonally intersecting traces originate four convex corners.

• A trace can never split a convex corner.
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Figure 4.6: Tangential (left) and orthogonal (right) path intersections.

Figure 4.7: Example of our technique to trace concave vertex

Notice that the two corners resulting from a split belong to different sub-patches.

4.2.3 Cross-field generation

To associate a cross-field to the triangle mesh T 0, we use the anisotropic field tracing
strategy as proposed in [39]. We recap the tracing method in Section 4.2.1. In our ex-
periments, we always have accurate results and, thus, we do not use more sophisticated
trace strategies (e.g., the ones described in [57] or [58]). These methods usually require a
more complex pre-processing step, and this might affect the interactivity of the modeling
process negatively.

Once we have linked the cross-field to the mesh, every vertex has an associated tracing
direction in theM4 domain, as described in [39]. When two traces intersect, we classify
their intersection either as tangential or as orthogonal by looking at the index of the field
in M2. We want to avoid inserting any tangential crossing in the final layout, as they
tend to create poorly shaped, elongated patches. Orthogonal intersections, instead, create
a well-shaped patch layout that efficiently captures the structure of the underlying field.
Figure 4.6 shows the difference between the two types of intersections.
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4.2.4 Concave vertex tracing

We trace the polylines that split the patches, choosing first the ones that have an end-
point in a concave vertex. When multiple alternative traces are available, we follow these
selection heuristics: (i) we never add a new trace if it introduces tangential intersections;
(ii) we favor traces starting from concave vertices not yet split; (iii) we prefer shorter
traces to longer ones.

As we repeat the process in the sub-patches still having concave vertices, we dramati-
cally reduce the probability of tangential collisions. At the end of the process, all concave
vertices should vanish, and we have a correct convex patch layout (see Figure 4.7). This
condition is necessary to make the procedural quad mesh generation of [45] to generate
high-quality quadrilateral elements. Although we have no theoretical guarantee to be able
to split all concave corners, we never encountered any failure case in our editing session,
even for complex configurations.

4.2.5 Patch splitting

At this point, we must still check that each generated patch has no more than six sides,
where every side of the patch consists of a sequence of edges between convex corners,
and that it is homeomorphic to a disk. If we find an unsuitable patch, we first initialize
a dense set of candidate traces that do not intersect tangentially. This set is obtained
by tracing from all flat border vertices, and iteratively removing traces having tangential
intersections, favoring the shortest ones. The result of this final step is the patch layout
for T 0.

4.3 Subdivision Optimization

Once we derive a proper patch layout, we have to devise the optimal integer subdivision
for each edge. We set up a global Integer Program with multiple quadratic objective
functions, and linear constraints that contribute to obtaining a proper tessellation:

1. A patch admits a quadrangulation only if the sum of boundary subdivisions is even
(Lemma 2).

2. The subdivisions on the boundaries are constrained to match the preserved quad-
rangulated mesh.

3. To increase the isometry of the tessellation, we penalize the discrepancy of each
side with respect to its ideal subdivision. We compute the ideal subdivision for
each patch that has a border by averaging the edge size of adjacent quads. The
ideal subdivision would be dside length/average edge sizee, where d e is the ceil
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(a) (b)

(c) (d)

Figure 4.8: An example, with actual values, of the optimization procedure inside a patch.
In (a) each side is divided into sub-sides, considering all incident T-junctions of adja-
cent patches (numerical values in red); in (b) we show that the sum of all the edge sizes
must be even; in (c) we show how regularity pushes equal subdivisions on the opposite
sides of the quad patch; in (d) we show how isometry encourages each sub-side to match
geometrically sound values.

function. Then we propagate that value on internal patches, and we smooth between
adjacent patches in order to discourage abrupt changes of resolution.

4. To increase the regularity of the tessellation, we favor the equality of opposite edges
for every 4-sided patches.

Objectives (i) and (ii) are hard constraints that have to be satisfied to admit a valid
quadrangulation, while (iii) and (iv) are energy terms that favor the formation of nicely
shaped quad layouts.

We define an integer positive variable ei for each sub-side of an edge. Because our
patch layouts admit the formation of T-junctions, we must split each side of a patch into
sub-sides by considering all of the subdivision with respect to the adjacent patches. An
example of edge variable definition is shown in Figure 4.8−a.

We first define a least squares isometry energy term that penalizes the discrepancy of
every ei from its ideal size êi:

min
∑

(ei − êi)2

s.t. ei ≥ 1
(4.1)

Every subdivision ei should be at least 1. For each sub-side on the border B, we also
add a linear constraint to force its value to match the one defined by the quadrilateral
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mesh.

ei = qi ∀ei ∈ B (4.2)

As previously stated, a quadrangulation is only possible if the sum of its subdivision
is an even number. Hence, for each patch Pk, we include an additional linear constraint:

∑
ej = 2n ∀ej ∈ Pk
n ≥ 1

(4.3)

For a quadrilateral patch, we want to favor the formation of a regular grid tessellation.
Hence, for each quadrilateral patch, we add an energy term that favors the equality of
opposite sides:

min(
∑
eu∈S0

eu −
∑
ew∈S2

ew)
2 + (

∑
eu∈S1

eu −
∑
ew∈S3

ew)
2 (4.4)

where S0, S1,S2 and S3 are the four sides of the quadrilateral patch. We use a param-
eter 0 < α < 1 to blend the two energy terms expressed by equation 4.1 and 4.4. The
effect of this parameter on the final quadrangulation is quite intuitive (see Figure 4.9).
We verified in our experiments that a value of α = 0.5 is a good compromise between
regularity and isometry. For complex quad layouts, we can minimize the equation 4.1
using the L1 norm to speed up the entire process, in such case, both equation 4.1 and
4.4 are modified such that the least-squares energy term is substituted with an absolute
difference. This modification can speed the solving up to a factor of 10 when using∼ 150

subdivision variables. While this approximation might accumulate the error on single
variables (rather than distributed in as the least-squares minimization), we experimented
that it works pretty well in practice.

α = 0.01 α = 0.5 α = 0.99

Figure 4.9: The regularization term governs the distribution of singularities and the isom-
etry of the tessellation.

4.3.1 On the existence of a valid solution

In order to derive a proper subdivision assignment, it is necessary that every connected
component of the triangulated patch decomposition has an even number of subdivisions
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Figure 4.10: A torus with a pentagonal section intersects a block (left). The patch sur-
rounding the intersection curve has a boundary with an odd number of sides (5 on the
torus and 8 on the block) and therefore cannot be quadrangulated. Refining a polychord
makes the boundary even (6 and 8 sides) and the patch become quadrangulable.

at the boundary. Indeed, in case this pre-condition is not verified, it is not possible to
obtain a quadrangulation of such a patch: regardless of the internal patch subdivision,
an odd subdivision at the boundary will necessarily introduce an unsolvable set of con-
straints. In order to better understand this, imagine we have one connected component on
the triangulated part. This region is isomorphic to (1) a triangulation of a closed planar
polygon or (2) a triangulation of a planar polygon with holes (see Figure 4.11). In the
first case the boundary has an even number of edges because this was also the boundary
of a quadrangulated region (the quads removed). In the second case we can face the situ-
ation of and odd number of edges at the boundary. Lemma 3 statements that we can never
quadrangulate that region.

Lemma 3. Given a planar polygon O with a holes. If O has and odd number of edges,

then O can not be quadrangulated.

Proof. We can convert the polygon O into a closed polygon without holes by making
cuts from each hole to the boundary. It is always possible to make these cuts without
intersection. Consider the new polygon C formed by a circulation of the edges passing
through the cuts twice. As we passed twice by the cuts we did not modify the parity of
the final boundary, i.e., the final boundary has also an odd number of edges. By Lemma 2
C can not be quadrangulated, then O also can not be quadrangulated, since if O could be
quadrangulated we could join the holes to the boundary by a sequence of edges ( from
the quadrangulation) and we could find a polygon C ′ like in our construction that can be
quadrangulated, a contradiction.

Lemma 4. Given a planar polygon O with a holes and with the outer boundary with an

even number of edges. If O has and even number of edges, then the number of holes with

an odd number of edges is even.
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(a) (b) (c) (d)

Figure 4.11: (a) and (b) show an example of a triangulated part with a simple boundary
in the composition of two quad meshes. In (c) and (d) we see the other possibility:
the triangulated part has a complex boundary with many loops. Note that the region is
isomorphic to a planar triangulation of a polygon with holes.

Proof. Since O has an even number of edges and the outer boundary also has an even
number of edges, then, the sum of the number of edges of the holes must be even. Finally,
the number of holes with an odd number of edges have to be even.

Fortunately, even in the case (2), we always can quadrangulate the triangulated part.
First, note that it still holds that the overall sum of the subdivisions of all the boundaries is
even ( what can happen is that single boundaries can have an odd number of subdivisions).
It’s easy to see why this is true. Looking at the remaining quad meshes after the patch
retraction in the case (2). The outer boundary has an even number of edges because the
same argument like in case (1). The inner boundaries(loops) are the boundary of an open
quad mesh. As we had seen, the dual curves are loops or cross the boundary twice, then
the overall number of edges at the boundary (the inner boundaries for the triangulated
part) is even. We show in Figure 4.10 such an example: the intersection between a torus
with a pentagonal section and a box. In this case, every single boundary over the torus will
have five sides, and the connected component identified by the intersection curves over
the torus has an overall even number of sides (10). However, the two blending regions
that we need to quadrangulate will have an odd number of sides, making their direct
quadrangulation not possible. To solve this problem, we could refine the whole connected
component with non disk-like topology in order to make these boundaries even. However,
to make this modification minimal, we search for the shortest polychord, connecting two
odd boundaries and we refine only this strip of quads [59].

Note that it is always possible to find such a connecting polychord. By Lemma 4, the
number of odd boundaries in the triangulated part is even. Suppose, by contradiction, that
there is a boundary A with an odd number of edges such that there is no polychord going
from A to any other boundary, then all the polychords starting on A are also ending on A,
thus, covering an even number of edges, that is wrong because we assumed has an odd
number of edges. Finally, how the number of odd boundaries is even, we can pair all of
them by a polychord, and, then, we can always quadrangulate a composition of two quad
meshes.
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4.4 Final quadrangulation

At this point, we have a set of disk-like triangle patches whose sides are between the limits
imposed by the quadrangulation algorithm. Also, every patch has a single boundary. We
then map the boundary of the patch onto the borders of a regular polygon and use this
mapping as a constraint to parameterize the interior using least-squares conformal maps
[60]. We compute the quadrangulation in parametric 2D space using [45], and then we
interpolate the 3D positions of the vertices in parametric space.
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Chapter 5

Implementation and results

In this chapter we expose our results and some implementation details of our small inter-
active system to test our proposed technique to blend quad meshes preserving as much as
possible their initial conectivity. We performed our test on a desktop computer Intel Core
i7-8750H with 16GB of RAM. We used Gurobi [61] to solve the minimization of Section
4.3. All the code is single-threaded and not highly optimized; it has been implemented
using the VCG Library [62], CG3Lib [63], libigl [64], and CGAL [18].

5.1 Smoothing the surface nearby the intersection curve

Given two meshes, the user can smooth along the intersection of the two meshes providing
a more attractive organic look to the final result. However, the smoothing should not
be too invasive and let that part of the original mesh remain as close to the original as
possible.

We apply this initial smoothing step on the triangulated mesh resulting from the first
boolean operation. We first select the intersection curve, then we propagate a geodesic
from the intersection curve toward the interior, and we choose the subset of vertices whose
geodesic distances are below a certain threshold (we use a 5% of the diagonal of the
bounding box). Then we perform a Laplacian smoothing on this subset of vertices. Intu-

(a) (b) (c) (d)

Figure 5.1: The effect of the smoothing of the intersection curve: (a)The result of the
boolean operation; (b) the first smooth steps on the triangulated mesh; (c) The quad-
rangulation step with tangent space smoothing; (d) the final result after the last step of
Laplacian smooth.
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Figure 5.2: In the centre, we can see the result for the composition of the head on the left
and the ears on the right.

itively, the vertices that are close to the intersection lines should move more than the ones
that are far away. To obtain this effect, we linearly weight the effect of the smoothing with
respect to the geodesic distance from the intersection line (see Figures 5.1−a and 5.1−b).
Once the final quadrangulated mesh is obtained, we perform an additional smooth step in
tangent space that successfully redistributes the total distortion. This step is localized to a
neighborhood of the new created surface. Finally, we perform a Laplacian smooth close
to the intersection line. Figures 5.1−c and 5.1−d show how these smooth operations can
significantly improve the final tessellation. As with any other blending tool, we let the
user exert control over the smoothing steps and on the area of influence.

5.2 Character head models

We held a small session with a character animation model in order to demonstrate the
application of our system in this area. We also used animal heads and try to get interesting
humanoid head models. We pre-process the models with the purpose of gathering the
necessary isolated parts and deleting whatever artifact like non-2-manifoldness or non-
pure quad meshing.

A nice application we found for our system was the exchange of well-separated parts
of the head for different 3d models. Figure 5.2 illustrates how we can change the ear of
our human head by two new ones.

We also could generate a less intuitive new model by merging two models with an
appropriate translation and rotation. In Figure 5.3 and Figure 5.4 we could see examples
of this process.
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Figure 5.3: We join three models to generate a man with tentacles and antennae.

Figure 5.4: We join two models to generate a man with mouth and nose of a python.

42



Figure 5.5: Iteratively merging the fertility model to check the robustness of the proposed
approach.

5.3 Running-time

In order to test the robustness of the proposed approach, we iteratively added merging
operations on rotated versions of the fertility model. Our technique always produced a
two-manifold closed quadrilateral surface. Figure 5.5 shows some of the first steps of the
test. In Figure 5.6, we show a full set of combinations among six meshes having different
topologies, complex connectivity, or intricate geometric details.

Figure 5.8 reports the distribution of distortion in individual elements relative to the
experiment shown in Figure 3.2. Distortion has been computed by using the distance with
respect to the ideal quad as defined in [65]. As shown in the histograms, our method does
not affect the overall quality of the quads.
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Figure 5.6: All the pairwise joins of six meshes, different in genus, complexity, and
details.

Table 5.1: Time of execution of each step of the pipeline for the examples generated with
our system. Times are all in millisecond with the exception of the total time which is
reported in seconds.

Models K Tris Bool Trace Solve Quad Other Total

Dolphin ∪ Alpaca 3 / 2 92 79 25 44 11 0.25
Alpaca ∪ Dolphin 5.4 / 1.6 93 68 24 62 17 0.26
Mannequinn ∪ Alpaca 5.3 / 2 156 94 26 80 32 0.39
Lizard ∪ Elephant 6.2 / 2.4 144 174 29 93 23 0.46
Elephant ∪ Lizard 7.8 / 1.2 162 126 159 149 39 0.64
Armadillo ∪ Pig 9.1 / 4.6 338 259 160 198 86 1.04
Monkey ∪ Dolphin 10.7 / 3 328 198 702 360 54 1.64
Monkey ∩ Dolphin 10.7 / 3 313 166 202 27 32 0.74
Monkey / Dolphin 10.7 / 3 315 347 904 173 56 1.80
Monkey ∪Mannequinn 10.7 / 5.3 391 451 1324 356 118 2.64
Monkey ∩Mannequinn 10.7 / 5.3 379 129 51 12 28 0.60
Monkey / Mannequinn 10.7 / 5.3 392 206 162 299 53 1.11
Rockerarm ∪ Rod 47.6 / 17.7 790 822 720 701 238 3.27
Fertility ∪ Fertility 26.2 / 26.2 2649 3102 2402 438 223 8.81
Fertility2 ∪ Fertility 39.5 / 26.2 4179 5052 4073 728 883 14.92
Fertility3 ∪ Fertility 59 / 26.2 1628 2055 1700 920 1102 7.41
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Figure 5.7: An overview of the final results obtained with our modelling tool. All the
displayed models are available in the additional material.

Figure 5.8: Distortions of the quads of Figure 3.2 measured using the metric defined in
[65] (0 means no distortion).
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Chapter 6

Conclusions

We proposed a novel powerful pipeline for freely composing quadrilateral meshes. Our
method takes advantage from boolean operations to smoothly blend between quadrilat-
eral meshes keeping as much as possible the tessellation of the original surfaces. We
integrated our technique into an interactive system and tested its effectiveness in a mod-
eling scenario. Given the robustness and the visual quality of the generated meshes, we
believe that our composing technique might become a powerful tool in current produc-
tion pipelines allowing artists to rapidly exploit portions of existing models instead of
resorting to complete re-topology sessions.

Moreover, our method can successfully mimic all the boolean operations, such as
union, difference, and intersection.

6.1 Limitations and future work

Our method, currently, cannot efficiently preserve sharp features, as shown in Figure 6.1.
An exact boolean operation will introduce sharp features, especially for the difference op-
eration. However, our framework can be extended to include sharp feature preservation:
feature alignment can be enforced in the step of field calculation, and the features can be
included as traces in the patch subdivision step. The same can be done along the inter-
section curve. Additionally, the field can be constrained to align with these feature lines
together with boundaries. Finally, the vertices along sharp features must have a special
treatment during the smoothing. These extensions would guarantee the preservation of
sharp features.

Another limitation of our method is its dependence on the initial resolution and the ini-
tial patch layout. We experimented that, as can be expected, the better results are obtained
if the two meshes have a similar resolution (see Figure 6.2), which can be attributed to the
intrinsic limitations of quad mesh modeling. One practical solution to this problem con-
sists in matching the resolutions by using some subdivision steps before performing the
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Figure 6.1: Our algorithm can mimic any boolean operation on quad meshes generating
a well-shaped quad mesh which reuses the most of the initial layout. We show here, from
left to right: the input consisting of two quad meshes (a dolphin D and a chimpanzee C)
interactively placed in the scene; the two differences; their intersection; the union, which
is, typically, the most interesting operation from a semantic standpoint.

Figure 6.2: Blending meshes of different resolution.

Figure 6.3: The sensitivity with respect to two different initial patch layout: motorcycle
graph (left) and emanating separatrices (right).
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Figure 6.4: The variation of the tessellation configurations: close geometric configuration
might cause abrupt changes in the tessellation (top); such an artefact can be mitigated with
simple improvements (bottom).

boolean operation. Figure 6.3 instead shows the sensitivity of the method to two different
initial patch layouts.

Our method cannot guarantee that the produced quadrangulation variates smoothly
while the user variates the intersection configuration. The accompanying video and the
examples shown in Figure 6.4 (top) shows this limitation: while the arm moves slowly
to the bottom, the produced quadrangulation might have some unexpected change in the
tessellation. This limitation might affect the overall usability. The patch layout procedure
can be redesigned to variate continuously under small modifications of the intersecting
region. We believe this can be a compelling topic for future work. Nevertheless, we
experimented a simple procedure which already provides encouraging improvements: we
randomly perturb the intersection configuration, and we select the best tessellation for a
given metric. For this experiment we used as metric a linear combination between the
quality of the quadrilateral elements and the number of singularities: 0.3∗Qt+0.7∗Avd,
where Qt is the average quad quality using the metric in [65] and Avd is the average
absolute valence deficit (the absolute difference of valence for each vertex from 4). We
show the result obtained with this improvement Figure 6.4 (bottom).

Finally, our approach can fail in the extreme case when the boolean operations do not
preserve any of the original quads, e.g., the space around the intersection lines covers all
the remaining meshes: in this case our algorithm will not produce a valid patch decom-
position and therefore will not be able to generate a quad meshing. However, this kind
of situations is well managed by a complete re-meshing of the result since with such a
configuration the original quad structure could probably not preserved.
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