
WEIGHT YOUR WORDS: THE EFFECT OF DIFFERENT WEIGHTING
SCHEMES ON WORDIFICATION PERFORMANCE

Tatiana Sciammarella

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
de Sistemas e Computação, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia de Sistemas e
Computação.

Orientador: Gerson Zaverucha

Rio de Janeiro
Março de 2020

WEIGHT YOUR WORDS: THE EFFECT OF DIFFERENT WEIGHTING
SCHEMES ON WORDIFICATION PERFORMANCE

Tatiana Sciammarella

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO
GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E
COMPUTAÇÃO.

Orientador: Gerson Zaverucha

Aprovada por: Prof. Gerson Zaverucha
Prof. Aline Marins Paes Carvalho
Prof. Valmir Carneiro Barbosa

RIO DE JANEIRO, RJ – BRASIL
MARÇO DE 2020

Sciammarella, Tatiana
Meça suas palavras: o efeito de diferentes esquemas

de pesagem no desempenho do Wordification/Tatiana
Sciammarella. – Rio de Janeiro: UFRJ/COPPE, 2020.

XII, 42 p.: il.; 29, 7cm.
Orientador: Gerson Zaverucha
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2020.
Referências Bibliográficas: p. 36 – 42.
1. Propositionalization. 2. Relational Data Mining.

3. Term Weighting. 4. Wordification. 5. Classification.
I. Zaverucha, Gerson. II. Universidade Federal do Rio de
Janeiro, COPPE, Programa de Engenharia de Sistemas e
Computação. III. Título.

iii

Ao meu marido.

iv

Agradecimentos

Agradeço aos meus pais, Elyane e Carmino, e ao meu irmão, Felipe, por todo carinho
e apoio em todas as horas. Vocês formam meu pilar fundamental para a vida. Em
especial, minha mãe, que me inspira com sua força.

Agradeço também ao meu marido, pelo suporte, conselhos e por ser minha outra
grande fonte de inspiração. Tenho sorte de estar rodeada por pessoas tão maravil-
hosas.

Finalmente agradeço ao professor Gerson e toda a equipe do PESC, que me
acolheram e orientaram durante esse período.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

MEÇA SUAS PALAVRAS: O EFEITO DE DIFERENTES ESQUEMAS DE
PESAGEM NO DESEMPENHO DO WORDIFICATION

Tatiana Sciammarella

Março/2020

Orientador: Gerson Zaverucha

Programa: Engenharia de Sistemas e Computação

Bancos de dados relacionais são amplamente utilizados para armazenar dados
reais como operações financeiras e registros médicos. Nesse tipo de estrutura, os da-
dos são representados em tabelas, que são interconectadas por chaves estrangeiras.
Para realizar a classificação desses dados, podemos optar por duas abordagens: uti-
lizar um classificador multi-relacional para gerar um modelo diretamente sobre os
dados relacionais ou utilizar um método de proposicionalização para transformar o
banco de dados em uma tabela única e em seguida, aplicar um classificador propo-
sitional padrão. Neste trabalho, focamos em um algoritmo de proposicionalização
chamado Wordification. Este algoritmo se destaca por ser simples e rápido com-
parado com outros métodos. O Wordification constrói atributos, também chamados
de witems, a partir do nome da tabela, da coluna e do valor de cada célula. O
conjunto de atributos criados para cada registro do banco forma um documento
de texto. Cada documento é então convertido em um vetor, em que os witems
são os atributos e seus valores são dados por um esquema de pesagem. A imple-
mentação original do Wordification permite utilizar apenas os seguintes métodos de
pesagem: TF-IDF, o TF e o binário. No entanto, diversos trabalhos na área de
classificação de texto e mineração de dados tem mostrado que a escolha do método
de pesagem pode influenciar bastante o desempenho da classificação. Por esse mo-
tivo, nós avaliamos o desempenho do Wordification associado a outros métodos de
pesagem que se mostraram estatisticamente melhores que o TF-IDF nas áreas de
classificação de textos e recuperação de informações. Os resultados deste trabalho
mostram que é possível melhorar o desempenho da classificação com a combinação
certa do esquema de pesagem e do tipo de classificador.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

WEIGHT YOUR WORDS: THE EFFECT OF DIFFERENT WEIGHTING
SCHEMES ON WORDIFICATION PERFORMANCE

Tatiana Sciammarella

March/2020

Advisor: Gerson Zaverucha

Department: Systems Engineering and Computer Science

Relational databases are commonly used to organize and store real-world data
such as financial transactions and medical records. It consists of multiple relations
(tables), which are interconnected through foreign key joins. When it comes to clas-
sification, there are mainly two options: apply a multi-relational learner to discover
patterns across the inter-connected tables or use a propositionalization technique to
transform the relational database into a single-table representation and then use a
standard propositional learner. In this work, we focus on the last approach. We
evaluate a fast and simple propositionalization algorithm called Wordification. This
algorithm constructs features based on the table name, attribute name and its value.
The set of features generated for each instance of the database form a text document.
Each document is converted into a vector, where the features are the attributes, and
their values are given by a weighting scheme. Originally, the implementation of
Wordification only explored the TF-IDF, the term-frequency and the binary weight-
ing schemes. On the other hand, many works in the text classification and data
mining fields have shown that the proper choice of weighting schemes can boost
classification. For this reason, we evaluate the performance of Wordification with
weighting schemes that statistically outperformed TF-IDF. Our results show that
is possible to improve the classification performance with the right combination of
weighting scheme and classification algorithm.

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 3
1.3 Outline . 3

2 Background 5
2.1 Relational dataset . 5
2.2 Propositionalization . 6

2.2.1 Wordification . 7
2.2.2 Binary text classification . 11

2.3 Term Weighting . 12
2.3.1 TF-IDF . 12
2.3.2 BM25 . 12
2.3.3 DELTA TF-IDF . 13
2.3.4 TF-RF . 13

2.4 Statistical Testing . 14
2.4.1 Wilcoxon signed ranks test . 14
2.4.2 Friedman test . 16
2.4.3 Nemenyi post-hoc test . 17

3 Experiments 19
3.1 Datasets . 19
3.2 Clowdflow . 21
3.3 Propositional table . 22
3.4 Classifiers . 22
3.5 Results . 22

3.5.1 ROC AUC score . 23
3.5.1.1 Statistical tests . 24

viii

3.5.2 Accuracy score . 26
3.5.2.1 Statistical tests . 26

3.5.3 Feature construction and filtering 29
3.6 Discussion . 31

4 Conclusions 34
4.1 Future Works . 35

References 36

ix

List of Figures

2.1 Entity-relationship diagram for the Trains dataset [24]. 6
2.2 Example of generated features for each instance of the Trains dataset

presented in Table 2.1. The words are the Wordification features and
the !1 and !0 at the beginning of each document represents the class
positive (east) and negative (west) respectively. 8

2.3 The Wordification process of creating a vector representation of a doc-
ument. The upper-left table is the target table, which is related to the
other tables. The features (words) of a document are first generated
for the i-th entry of the target table and then for the related entries
from the other tables. The generated features can be represented as
a Bag-Of-Words (BOW) vector di. Each vector has the size of the
vocabulary of the document and the values of each feature correspond
to the count of each word in the document. This vector corresponds
to an intermediate state of the algorithm. Modified from [3]. 9

2.4 Example of critical distance diagram for α = 0.10 18

3.1 Wordification workflow on Clowdflow. 21
3.2 Critical distance diagram for the reported (a) SVM and (b) KNN

classification AUC. 26
3.3 Critical distance diagram for the reported KNN classification accuracy. 29
3.4 Feature set size according to the n-gram and the pruning threshold. . 30
3.5 Average ROC AUC score of 5-fold cross-validation for each classifier

and weighting scheme. We vary the n-gram (1 to 5) and keep the
pruning threshold equal to zero. 31

3.6 Average ROC AUC score of 5-fold cross-validation for each classifier
and weighting scheme. We vary the pruning threshold (0 to 50%) and
use 5-grams. 32

x

List of Tables

2.1 Example of two related tables of the Trains dataset [24] before Wordi-
fication. Table (a) is the target table, which is connected to table (b)
by a one-to-many relationship. 8

2.2 Example of the propositional table for the Trains dataset. The value
of each feature is given by a weighting scheme, to be seen in Section
2.3. 9

2.3 Notations . 11
2.4 Example of three terms that share the same IDF. 14
2.5 Comparison of ROC AUC for classifiers A and B. Each cell represents

an average of five-fold cross validation. Adapted from [36]. 15
2.6 Comparison of ROC AUC for classifiers A, B, C and D. Each cell re-

sults from an average over 5-fold cross validation. Adapted from [36].
. 17

2.7 Critical values for the Nemenyi test. Adapted from [36]. 18

3.1 Class Distributions. 20
3.2 Average ROC AUC scores for Decision Tree. 23
3.3 Average ROC AUC scores for Random Forest. 23
3.4 Average ROC AUC scores for SVM. 24
3.5 Average ROC AUC scores for KNN. 24
3.6 Summary of best ROC AUC scores for each combination of classifier

and weighting scheme. 24
3.7 Average ROC AUC based on all datasets and average rank according

to the Friedman test for each classifier. 25
3.8 Average accuracy scores for Decision Tree. 27
3.9 Average accuracy scores for Random Forest. 27
3.10 Average accuracy scores for SVM. 28
3.11 Average accuracy scores for KNN. 28
3.12 Summary of best accuracy scores for each combination of classifier

and weighting scheme. 28

xi

3.13 Average accuracy based on all datasets and average rank according
to the Friedman test for each classifier based on accuracy scores. . . . 29

3.14 Best combinations of classifier, weighting scheme and n-gram. 33

xii

Chapter 1

Introduction

Relational databases are commonly used by companies and research centers to store
and organize their data. Usually, it is useful to explore these data as they may
contain hidden patterns that can guide decision-making processes [1]. However, an-
alyzing a relational dataset can be hard as many data mining algorithms can only
be applied to propositional data [2]. In this case, we can use Inductive Logic Pro-
gramming (ILP) and Relational Data Mining (RDM) algorithms to induce models
or patterns from multi-relational data.

One established approach to ILP and Relational Data Mining (RDM) is called
propositionalization [3]. It transforms a relational database into a single attribute-
value table representation [4]. As a result, each row of the propositional table
corresponds to an example of the original database and is described by a fixed set of
attributes and its values [5]. Then, when it comes to classification, we have to follow
a two-step process: first, we have to use a propositionalization method to transform
the relational data into a single, flat table, and second, we apply a propositional
learning algorithm on the transformed data [2].

Another option is to use ILP methods that can directly induce relational models
from relational data, such as Aleph [6] and Progol [7]. However, it has been shown
that propositionalization can outperform these ILP methods in terms of speed [3],
scalability [3, 8], and predictive performance [9, 10]. In this work, we are going to
focus on a fast propositionalization method called Wordification [3].

Many propositionalization approaches [11–13] constructs first-order features,
which act as binary attributes in the new propositional representation of examples.
Wordification, on the other hand, creates much simpler features to achieve greater
scalability [3]. In [3], Wordification was compared to state-of-the-art proposition-
alization algorithms, RSD [13] and RelF [14], and the feature construction mode
of Aleph [6]. There, the statistical tests showed that the classification accuracy
achieved using Wordification is equivalent to the other approaches while presenting
significant run-time reduction [3].

1

Wordification creates features concatenating the table name, attribute name (col-
umn name), and its discrete (or discretized) value [3]. These features are called
word-items, witems, or simply words. The process starts by selecting the main ta-
ble of the database, which contains an attribute that identifies the class of each
row (also called entry, instance, or an individual example) of this table. Then, the
algorithm generates the word-items for each entry of the main table and then for
the examples of the related tables. At the end of this step, the generated words
are joined together, which results in a text document for each instance of the main
table. In the following step, the documents are represented as vectors with the size
of the vocabulary of the corpus (collection) of documents. Then, the value of each
word in a vector is given by a term weighting scheme, which assigns an appropriate
value to a word according to its importance in a document. In case a word w is not
present in a document d its value is set to zero.

The original Wordification paper allowed the use of three schemes: the term
frequency-inverse document frequency (TF-IDF), the term frequency (TF), and the
binary scheme [3]. The TF-IDF value of a word w in a document d increases if
the word is frequent in that document and not frequent in the entire corpus of
documents. The TF value is given by the count of a word w in a document d
and the binary scheme (1/0) just indicates the presence/absence of a word w in
a document d. The use of a term weighting scheme is important to enhance the
performance of classification [15]. After weighting the features, the set of vectors
form the final propositional table, which can be given as input to a propositional
classifier.

The transformation of a database into a set of text documents results in loss of
information [3]. As a way to overcome this loss, the Wordification paper proposes an
extension of the document construction step by also concatenating to each document
n-grams of word-items. The n-gram construction takes every combination of length
k of word-items, where 1 ≤ k ≤ n , from the set of all word-items corresponding
to a given individual, and concatenates them [3]. However, setting a higher n-gram
value also exponentially increases the number of witems in a document. To solve
this problem, the Wordification paper suggests pruning words that occur in less than
a predefined percentage of documents [3].

1.1 Motivation

The original implementation of Wordification allowed only the use of conventional
weighting schemes. As the weighting schemes used did perform significantly dif-
ferently on the classification task, the Wordification paper published the result for
the TF-IDF scheme as it is prevalent in text mining applications [3]. However,

2

works in the text classification and data mining fields show that the proper choice
of weighting schemes can boost classification and many studies propose weighting
schemes that statistically outperforms TF-IDF [16–20]. For this reason, we decided
to empirically experiment different term-weighting approaches with Wordification
in order to improve the classification performance.

We chose three weighting schemes which performed better than TF-IDF in in-
formation retrieval [16, 17] and text classification scenarios [18–20]: the BM25, the
DELTA-TF-IDF, and TF-RF. As [21] and [22] indicate that different classifiers may
work best with different types of weighting schemes, we test the effect of the weight-
ing schemes on four learners: Decision Tree, Random Forest, SVM, and KNN. Last,
but not least, we extend the analysis of [3] regarding the impact of the n-gram setting
and the pruning of the words generated by Wordification on the final classification
performance.

1.2 Contributions

In summary, the main contributions of this dissertation include:

• We show that the right combination of the weighting scheme and classifica-
tion algorithm can significantly improve classification performance and also
highlight which weighting scheme resulted in the best performance for each
classifier. We use statistical tests to check whether the improvement is signif-
icant or not.

• We show that there is not a single weighting scheme that performs better for
every classifier. On the other hand, for most of our cases, DELTA-TF-IDF
outperformed TF-IDF. For this reason, we recommend the DELTA-TF-IDF
weighting scheme to weight the Wordification features and the SVM with the
linear kernel to classify the instances. This combination achieved the best
results among all configurations.

• We show that Random Forest is less sensitive to the choice of n-gram, weighting
scheme, and pruning threshold than other classifiers.

• Last, but not least, we show that the choice of n-gram is more relevant to
classification performance than the use of pruning.

1.3 Outline

The remainder of this dissertation is organized as follows. In Chapter 2 we in-
troduce the main concepts that are relevant to understand this work. First, we

3

review the fundamentals of relational datasets and propositionalization. Then, we
provide a further explanation of the Wordification method and the term-weighting
schemes. Lastly, we present the statistical tests that are used to properly compare
the performance of different configurations.

In Chapter 3 we introduce the datasets, platform, and classifiers used in our
experiments. Next, we present the experimental results and discuss the outcomes.
Finally, we present our conclusions in Chapter 4.

4

Chapter 2

Background

In this chapter, we start by explaining the characteristics of relational datasets.
Then, we provide a deeper insight into propositionalization and the Wordification
algorithm. Lastly, we cover the weighting schemes and the statistical tests used in
this work.

2.1 Relational dataset

Relational datasets describe individuals (entities) by both their own attributes and
by their relations to other individuals [23]. This kind of structure can be found in
databases, both relational and object-oriented, knowledge bases, or software models,
e.g., UML (unified modeling language) class diagrams. In this work, we focus on
relational databases.

In a relational database, each table, also called a relation, contains one or more
data categories in columns, the attributes. One of the columns acts as a set of
primary keys, which uniquely identifies each row/record of a table. The relationship
between tables can then be set via the use of foreign keys, a field in a table that links
to the primary key of another table. Formally, we can describe a relational database
as a set of relations {R1, ..., Rn} and a set of foreign-key connections between the
relations denoted by Ri → Rj [3].

The structure of a relational dataset can be expressed as an ER (entity-
relationship) diagram [3]. Fig. 2.1 shows the ER diagram of the Trains dataset [24]
as an example. The boxes in the ER diagram indicate entities, which are individuals
or parts of individuals. In our diagram, the Train entity is the individual, each Car
is part of a train. The ovals denote attributes of entities and the diamonds indicate
relationships between entities.

A relationship between entities can be of three types: one-to-one, one-to-many,
and many-to-many [25]. In a one-to-one relationship, each record in one table has
at most one related record in another table. In a one-to-many relationship, a record

5

Figure 2.1: Entity-relationship diagram for the Trains dataset [24].

in Table A can have many matching records in Table B, but a record in Table B has
only one matching record in Table A. A many-to-many relationship means that for
each record in one table there can be many records in another table, and for each
record in the second table there can be many in the first. The latter type can be
transformed into two or more one-to-many relationships. In our diagram (Fig. 2.1),
there is a one-to-many relationship from Train to Car, which means that each train
can have an arbitrary number of cars but each car is contained in exactly one train.

When a data structure has only one-to-one relationships, its entities can be com-
bined in a single table. In other words, it becomes a propositional dataset and can
be used as input for propositional learners. On the other hand, entities linked by a
one-to-many relationship cannot be combined without either introducing significant
redundancy or significant loss of information, e.g., introduced through aggregate
attributes. For this reason, when a dataset has one-to-many relationships, rela-
tional learners and Inductive Logic Programming are used instead of propositional
learners [3].

2.2 Propositionalization

Propositionalization is defined as the process of explicitly transforming a relational
dataset into a propositional one [5]. The output is a single table, where a row
is described by a fixed set of attributes and its respective values. This kind of
transformation can only be applied to the so-called individual-centered relational
databases, i.e., databases that have a clear notion of an individual example [26]. As

6

a result, each row of the propositional table corresponds to an individual example
of the original relational dataset [3].

The aim of propositionalization is to pre-process relational data for subsequent
analysis by propositional (feature-based, attribute-value) learning algorithms in-
stead of relational ones [10]. It is advantageous for three main reasons: (1) it
reduces the complexity and speeds up learning; (2) it separates modeling the data
from hypothesis construction; and (3) it allows the usage of a wider range of algo-
rithms [5, 10, 12].

Propositionalization techniques generate features that capture the relational
properties of the learning examples [10]. They can be divided into two main groups:
logic-oriented and database-oriented techniques [12]. The logic-oriented techniques
only generate features that can be defined in pure logic, while database-oriented
methods include features based on, e.g., aggregation. Each group has its own set of
advantages. For instance, logic-oriented methods can handle complex background
knowledge and provide expressive first-order models, while database-oriented meth-
ods can be more efficient especially on larger datasets. The RSD [13] and RelF [14]
methods are logic-oriented, while Wordification is a database-oriented method [3].

2.2.1 Wordification

Logic-oriented propositionalization algorithms construct complex first-order features
[13, 14, 27, 28], which act as binary attributes of the new propositional dataset.
Compared to these methods, the Wordification algorithm proposed in [3] generates
much simpler features to achieve greater scalability.

The process starts when the user selects a target (main) table from the database.
This table must contain the column with the class labels that will be used later in
the classification step. Then, the Wordification algorithm transforms the relational
database into a corpus of text documents, where each document represents an in-
stance of the database and each word corresponds to a feature. These features are
also called word-items, witems, or words. They are formed by the combination of
the table name, attribute name, and its discrete (or discretized) value as shown
below:

[table name]_[attribute name]_[value]

Fig.2.2 shows the documents generated for two instances of the Trains
dataset [24] presented in Table2.1. The instance with trainID 1 is related to four cars
(carID 1,2,3 and 4), while the instance with trainID 15 is only related to two cars
(carID 48,49). For this reason, more features are generated for the first instance.
As result, the first document showed in Fig.2.2 is longer. In this document, for

7

Table 2.1: Example of two related tables of the Trains dataset [24] before Wordifica-
tion. Table (a) is the target table, which is connected to table (b) by a one-to-many
relationship.

trainID direction
1 east
... ...
15 west
... ...

(a) Trains table

carID train position shape len sides roof wheels load_shape load_num
1 1 1 rectangle short not_double none 2 circle 1
2 1 2 rectangle long not_double none 3 hexagon 1
3 1 3 rectangle short not_double peaked 2 triangle 1
4 1 4 rectangle long not_double none 2 rectangle 3
...
48 15 1 rectangle long not_double none 2 rectangle 2
49 15 2 u_shaped short not_double none 2 rectangle 1
...

(b) Cars table

Figure 2.2: Example of generated features for each instance of the Trains dataset
presented in Table 2.1. The words are the Wordification features and the !1 and !0
at the beginning of each document represents the class positive (east) and negative
(west) respectively.

example, the feature Cars_Position_1 is created from the join of attribute Position
with value equal to 1 of table CAR.

The features of a document are first generated for the target table and then for
each entry from the related tables. Each text document can also be represented
as Bag-Of-Words (BOW) vectors as illustrated in Fig.2.3, where the size of the
vector is the size of the vocabulary of a document and the values correspond to the
multiplicity of each word (feature) in the document.

8

Figure 2.3: The Wordification process of creating a vector representation of a docu-
ment. The upper-left table is the target table, which is related to the other tables.
The features (words) of a document are first generated for the i-th entry of the target
table and then for the related entries from the other tables. The generated features
can be represented as a Bag-Of-Words (BOW) vector di. Each vector has the size
of the vocabulary of the document and the values of each feature correspond to the
count of each word in the document. This vector corresponds to an intermediate
state of the algorithm. Modified from [3].

The downside of this process is that there is some loss of information as a con-
sequence of building a document for each instance by concatenating all word-items
from multiple instances of the connected tables [3]. To minimize the loss, the Wordi-
fication paper explores the use of n-grams of word-items to model feature dependen-
cies. The n-gram construction takes every combination of k word-items from a set
of all word-items corresponding to a given individual and concatenates them using
the "__" symbol as follows:

[witem1]__[witem2]__...__[witemk]

where 1 ≤ k ≤ n. These structures represent conjunctions of features occurring
together in individual instances (rows of joined tables). Then, the documents for
each instance are extended by adding the n-gram of word-items. This solution,
however, increases drastically the number of words for each document. For this
reason, the paper [3] suggests the use of pruning to limit the number of features,
meaning that words that occur in less than a predefined percentage of documents
are removed. According to [3], the use of n-grams and pruning is optional.

Table 2.2: Example of the propositional table for the Trains dataset. The value of
each feature is given by a weighting scheme, to be seen in Section 2.3.

Train Cars_Position_1 Cars_LoadNum_3 Cars_Len_Long ... Class
1 0 1.05 0.32 ... 1
...
15 0 0 0.16 ... 0
...

9

After Wordification generates a text document for each entry of the main table,
the documents are transformed into vectors. These vectors have the size of the
vocabulary of the corpus and the set of words are the attributes. The value of an
attribute is given by a weighting scheme. In the case of a word not appearing in a
document, the value of the attribute in the corresponding vector is zero. Each vector
is a row of the final propositional table, as shown in Table 2.2, and can already be
used as input for a propositional learner.

Algorithm 1 Wordification(T, p, k)

Input: table T , pruning percentage p, maximal number of witems per word k
Output: corpus of documents D, propositional table R with TF-IDF values

1: D ← [] // corpus of documents
2: W ← ∅ // vocabulary set
3: for ex ∈ T do
4: d←Wordify(T , p, k)
5: D ← D + [d]
6: W ← W ∪ keys(d)
7: end for
8: W ← prune(W, p)
9: return D, calculatedTFIDF(D,W)

Algorithm 2 Wordify(T, p, k)

Input: table T , example ex from T , maximal number of witems per word k
Output: document word count d

1: d← {}
2: for i← 1 to k do
3: for comb ∈ attrCombs(ex, k) do
4: d[word(comb)]← d[word(comb)] + 1
5: end for
6: end for

7: for secTable ∈ connectedTables(T) do
8: for secEx ∈ secTable do
9: if primaryKeyV alue(ex) = foreignKeyV alue(sexEx) then
10: for (word, count) ∈ Wordify(secTable, secEx, k) do
11: d[word]← d[word] + count
12: end for
13: end if
14: end for
15: end for
16: return d

The process just described can be broken down into two algorithms according

10

to [3]. Algorithm 1 is the main function, Wordification(T, p, k). The parameters T ,
p and k are set by the user, where T is the main table, p is the pruning percentage
and k is the maximum number of witems per word (n-gram) [3]. For each example
ex of the main table T , Algorithm 1 calls Algorithm 2 (Line 4 in Algorithm 1), the
function Wordify(T, ex, k).

First, the Wordify function creates the n-gram of witems for the attributes of
the main table (Line 2-6 in Algorithm 2), and then, for the related tables (Line 7-15
in Algorithm 2). It then returns a dictionary d (Line 16 in Algorithm 2), where the
keys are the witems and the values correspond to the count of these witems for that
instance. In this way, d represents a BOW vector for the example ex.

When Wordify returns the dictionary d, Algorithm 1 appends the list of words
to D (Line 5 in Algorithm 1), the corpus of documents. The W is the set of witems
created for the corpus, which receives the new witems created for ex (Line 6 in
Algorithm 1). After running these steps for each example of the main table, the set
of words W can be reduced according to parameter p (Line 8 in Algorithm 1). The
last step consists of the weight of witems in W for each document in D (Line 9 in
Algorithm 1).

The original Wordification paper [3] included the results for three weighting
methods: TF-IDF, term-frequency, and binary weighting scheme. However, as these
showed no statistical difference in performance, the paper focused on the TF-IDF.
In this work, the influence of other weighting schemes in the final classification per-
formance is evaluated. Section 2.3 presents a detailed description of each weighting
scheme used in our experiments, including TF-IDF.

2.2.2 Binary text classification

Wordification transforms a database into a corpusD of text documents. In this work,
we focus on binary text classification problems, where the documents are separated
into positive and negative classes. Therefore, we can rewrite |D| as |P | + |N |,
where |P | is the number of documents in the positive class and |N | is the number
of documents in the negative class. The number of documents where the word w

appears is |d ∈ D : w ∈ d| and we can rewrite it as |Pw|+ |Nw|, where |Pw| and |Nw|
are, respectively, the number of documents containing w in the positive and negative
classes. These notations will be useful for the following weighting schemes and are
summarized in table 2.3.

Table 2.3: Notations

Class #Documents #Documents with w #Documents without w
Positive |P | |Pw| |P | − |Pw|
Negative |N | |Nw| |N | − |Nw|

11

2.3 Term Weighting

Different terms (i.e, nouns, verbs, pronouns, etc.) have different importance in a
text. For this reason, information retrieval and text categorization use term weight-
ing to improve performance by assigning numerical values to terms representing
their importance in a document [29]. Here, we present the TF-IDF and other three
term weighting methods that outperformed TF-IDF according to [16, 18–20].

We can break down the term weighting schemes into two groups: unsupervised
and supervised [30]. In the first group, we present the TF-IDF and BM25 algo-
rithms, which come from the information retrieval field. They are used to weight the
terms and then, a ranking function is computed by summing up the assigned weights
for each query [31]. For the supervised group, we selected the DELTA TF-IDF and
TF-RF, which were specially designed to be applied in the text classification field
[18–20]. Supervised term-weighting schemes use the available class information of
each document in their formula to improve the classification performance [32].

2.3.1 TF-IDF

TF-IDF is frequently used as a weighting function in information retrieval
searches [33] to reflect how important a word is to a document in a collection or
corpus. The TF acronym stands for term frequency and is simply a count of occur-
rences of a word w in a document d. If a word appears many times in a document,
then that word may be relevant to that document. IDF is short for inverse document
frequency and measures the weight of a term at the corpus level. It diminishes the
weight of terms that occur repeatedly in the corpus D and increases the weight of
terms that occur rarely. The TF-IDF measure is defined as follows:

tfidf (w, d) = tf (w, d)× log
|D|

|d ∈ D : w ∈ d|
(2.1)

where tf (w, d) is the count of occurrences of a word w in a document d, |D| is
the total number of documents in the corpus and |d ∈ D : w ∈ d| is the number of
documents where the word w appears.

2.3.2 BM25

BM25, short for Okapi BM25 [17], is a state-of-the-art term weighting for informa-
tion retrieval [34]. Its structure is very similar to that of TF-IDF, however, the
term-frequency part is nonlinear. This is desirable due to the statistical dependence
of term occurrences: the information gained by observing a term for the first time is
greater than the information gained when subsequently seeing the same term. The

12

result is that the term weight saturates after a few occurrences. The IDF calculation
is also slightly different as shown below:

bm25 (w, d) = tf ′(w, d)× idf ′(w) (2.2)

tf ′(w, d) =
tf (w, d)× (k1 + 1)

tf (w, d) + k1 × (1− b+ b× dl
avgdl

)
(2.3)

idf ′(w) =
|D| − n(w) + 0.5

n(w) + 0.5
(2.4)

where dl is the length of the document d in words, avgdl is the average document
length in the collection, and n(w) is equal to |Pw|+|Nw|. k1 and b are free parameters
whose values are usually chosen as k1 ∈ [1.2, 2.0] and b ∈ [0.5, 0.8] [31]. In the
absence of parameter tuning, k1 = 1.2 and b = 0.75 are recommended [35].

2.3.3 DELTA TF-IDF

DELTA TF-IDF is a supervised weighting scheme as it takes into account the class
of each document [18]. It assigns the weight of a term in a document by calculating
the difference of the TF-IDF scores of a word in the positive and negative training
corpus [18] as shown below:

delta.tfidf (w, d) = tf (w, d)× log2
|P |

(|Pw|+ 1)
− tf (w, d)× log2

|N |
(|Nw|+ 1)

(2.5)

According to [18], the DELTA TF-IDF scheme enhances the importance of words
that are unevenly distributed between positive and negative classes and discounts
evenly distributed words, for which |P |/|Pw| = |N |/|Nw|. If a word is evenly dis-
tributed, delta.tfidf (w, d) is equal to zero. On the other hand, the more uneven the
distribution, the more important the word should be. This behavior is desirable for
sentiment classification tasks [18]. In equation 2.5, a +1 is added to denominators
to avoid zero division when a word w is not present in |Pw| or |Nw|.

2.3.4 TF-RF

TF-RF uses the same TF factor as TF-IDF, however, it replaces the IDF part. The
problem is that the traditional IDF factor was designed to improve the discriminating
power of terms for the information retrieval field . TF-RF proposes a new factor to
improve the term’s discriminating power focused on the text classification field [19].

To illustrate the problem with the traditional IDF, consider the example of Ta-

13

ble 2.4 from [19]. The terms w1, w2 and w3 share the same IDF, but have different
ratios of |Pw| to |Nw|. We assume they have the same term frequency (TF) and
|D| = 1000.

Table 2.4: Example of three terms that share the same IDF.

Term Sum(|Pw|,|Nw|) |Pw|:|Nw| IDF
w1 100 10:1 log(|D|/100) = 3.32
w2 100 1:1 log(|D|/100) = 3.32
w3 100 1:10 log(|D|/100) = 3.32

In this example, it is clear that w1 and w3 should have more power to discriminate
the documents in the positive and negative categories, respectively, than w2. For this
reason, [19] proposes a new factor RF , the relevancefrequency, which is defined as
follows:

rf = log2(2 +
|Pw|
|Nw|+ 1

) (2.6)

The constant 2 is used because the base of the logarithm is 2. The RF factor
gives more weight to terms that occur more in the positive documents than in the
negative ones. The reason behind this idea is that positive documents belong to one
class, while the negative ones may include all documents in the remaining classes in
the case of a multi-label classification problem [19]. Then, according to this formula,
the weight of w1 becomes higher than those of w2 and w3 since w1 contributes more
to the positive category. In equation 2.6, a +1 is also added to denominator to avoid
zero division when a word w is not present in |Nw|.

2.4 Statistical Testing

The statistical tests are in accordance with [36] to compare the classification result
for different weighting schemes on multiple datasets. The Wilcoxon signed ranks
test [37] is applied for comparison of two classifiers and the Friedman test [38]
with the corresponding post-hoc tests is suitable for comparison of more classifiers
over multiple datasets [36]. Both are simple and robust non-parametric tests for
statistical comparisons of classifiers [36].

2.4.1 Wilcoxon signed ranks test

First, to compute the Wilcoxon signed ranks test, we have to calculate the differences
di in performance of two classifiers on the i-th out of N datasets. Then, ranks are
assigned from the lowest to the highest absolute difference, and average ranks are

14

assigned in case of ties. The sum of ranks for the positive (R+) and negative (R−)
differences are computed as follow:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (2.7)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (2.8)

Then, we find T equal to the smaller of the sums, T = min(R+, R−) and compute
the value of z:

z =
T − 1

4
N(N + 1)√

1
24
N(N + 1)(2N + 1))

(2.9)

With a significance level set to α = 0.05, we can reject the null-hypothesis,
which states that both algorithms perform equally well if z is smaller than −1.96.
Alternatively, we can use a table of critical values for the Wilcoxon test, which
contains the critical values for T according to the value of N . This method is
illustrated in [36] with the following example.

Table 2.5: Comparison of ROC AUC for classifiers A and B. Each cell represents an
average of five-fold cross validation. Adapted from [36].

Dataset A B difference rank
adult 0.763 0.768 +0.005 3.5
breast cancer 0.599 0.591 -0.008 7
breast cancer wisconsin 0.954 0.971 +0.017 9
cmc 0.628 0.661 +0.033 12
ionosphere 0.882 0.888 +0.006 5
iris 0.936 0.931 -0.005 3.5
liver disorders 0.661 0.668 +0.007 6
lung cancer 0.583 0.583 0.000 1.5
lymphography 0.775 0.838 +0.063 14
mushroom 1.000 1.000 0.000 1.5
primary tumor 0.940 0.962 +0.022 11
rheum 0.619 0.666 +0.047 13
voting 0.972 0.981 +0.009 8
wine 0.957 0.978 +0.021 10

Given 14 datasets of UCI repository [39], we desire to compare two classifiers A
and B using the area under the receiver operating characteristic curve (ROC AUC)
[40] as the performance metric. The intent is to reject the null-hypothesis that both
algorithms perform equally well.

After computing the differences, as shown in Table 2.5, we calculate the sum of
ranks for the positive differences R+ = 3.5+9+12+5+6+14+11+13+8+10+1.5 =

15

93 and the negative differences R− = 7 + 3.5 + 1.5 = 12. Then, instead of directly
computing z, we consult the table of exact critical values for the Wilcoxon test, for
a confidence level of α = 0.05 and N = 14 datasets. According to this table, the
difference between the classifiers is significant if the smaller of the sums is equal to
or less than 21. In our example R− = 12, so we can reject the null-hypothesis.

2.4.2 Friedman test

The Friedman test [38] starts by ranking the algorithms for each dataset, the best
performing algorithm getting rank of 1, the second-best rank 2, and so on. In case
of ties, average ranks are assigned. Then, it computes the average rank for each
algorithm:

Rj =
1

N

∑
i

rji (2.10)

where rji is the rank of the j-th of k algorithms on the i-th of N datasets. As the
null-hypothesis states that all the algorithms are equivalent, their ranks Rj should
be equal. After computing Rj, we can calculate the Friedman statistic as follow:

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
(2.11)

However, Iman and Davenport [41] showed that χ2
F is undesirably conservative

and derived a better statistic:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

(2.12)

which is distributed according to the F-distribution with k − 1 and (k − 1)(N −
1) degrees of freedom. To reject the null-hypothesis, we have to search the F-
distribution table, with the desired significance level, for the corresponding value for
k− 1 and (k− 1)(N − 1) degrees of freedom and compare it with the calculated FF .
If the value of FF is higher, we can reject the null-hypothesis. In our experiments,
we apply the Friedman test [38] with significance level α = 0.05.

Table 2.6 is an adapted example of [36] to illustrate the calculation of the Fried-
man statistic. In this example, the intent is to compare the performance of classifiers
A, B, C, and D for N = 14 datasets of the UCI [39] repository using the ROC AUC
metric.

We start ranking the algorithms for each dataset. For instance, in the dataset
adult, classifier D is ranked first because it achieved the highest score. On the other
hand, classifier A has the lowest score, so it is ranked last. After this step, the
average rank is computed for each classifier. Then, we can calculate χ2

F and FF as

16

follow:

χ2
F =

12× 14

4× 5

[
(3.1432 + 2.0002 + 2.8932 + 1.9642)− 4× 52

4

]
= 9.28

FF =
13× 9.28

14× 3− 9.28
= 3.69

FF is distributed according to the F-distribution with k−1 = 3 and (k−1)(N −
1) = 39 degrees of freedom. In this case, the critical value of F(3.69) for α = 0.05 is
2.85. As FF = 3.69, we can reject the null-hypothesis.

Table 2.6: Comparison of ROC AUC for classifiers A, B, C and D. Each cell results
from an average over 5-fold cross validation. Adapted from [36].

Dataset A B C D
adult 0.763 (4) 0.768 (3) 0.771 (2) 0.798 (1)
breast cancer 0.599 (1) 0.591 (2) 0.590 (3) 0.569 (4)
breast cancer wisconsin 0.954 (4) 0.971 (1) 0.968 (2) 0.967 (3)
cmc 0.628 (4) 0.661 (1) 0.654 (3) 0.657 (2)
ionosphere 0.882 (4) 0.888 (2) 0.886 (3) 0.898 (1)
iris 0.936 (1) 0.931 (2.5) 0.916 (4) 0.931 (2.5)
liver disorders 0.661 (3) 0.668 (2) 0.609 (4) 0.685 (1)
lung cancer 0.583 (2.5) 0.583 (2.5) 0.563 (4) 0.625 (1)
lymphography 0.775 (4) 0.838 (3) 0.866 (2) 0.875 (1)
mushroom 1.000 (2.5) 1.000 (2.5) 1.000 (2.5) 1.000 (2.5)
primary tumor 0.940 (4) 0.962 (2.5) 0.965 (1) 0.962 (2.5)
rheum 0.619 (3) 0.666 (2) 0.614 (4) 0.669 (1)
voting 0.972 (4) 0.981 (1) 0.975 (2) 0.975 (3)
wine 0.957 (3) 0.978 (1) 0.946 (4) 0.970 (2)
average rank 3.143 2.000 2.893 1.964

Whenever the null-hypothesis is rejected, we proceed with a post-hoc test [36].
Here we use the Nemenyi post-hoc test [42] to compare the multiple algorithms to
one another.

2.4.3 Nemenyi post-hoc test

The Nemenyi test performs a pairwise test of performance [42]. According to [36], the
performance of two classifiers is significantly different if the corresponding average
ranks differ by at least a critical difference CD (critical difference), given by:

CD = qα

√
k(k + 1)

6N
(2.13)

17

where qα is based on the Studentized [43] range statistic divided by
√
2. The result

of this test can be visualized with CD diagrams.

Table 2.7: Critical values for the Nemenyi test. Adapted from [36].

#classifiers 2 3 4 5 6 7 8 9 10
q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164
q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

For the example of Table 2.6, where k = 4, and choosing α = 0.10, we find
qα = 2.291 according to Table 2.7. Then we can compute CD as follow:

CD = 2.291

√
4 · 5
6 · 14

= 1.12

Fig. 2.4 shows the corresponding critical distance diagram, where groups of clas-
sifiers that are not significantly different (for α = 0.10) are connected. According to
this diagram, the performance of A is significantly worse than that of D for α = 0.10.

Figure 2.4: Example of critical distance diagram for α = 0.10

18

Chapter 3

Experiments

In this chapter, we present the datasets, platform, and classifiers used in our exper-
iments. Then we present the results and discuss the outcomes.

3.1 Datasets

For this work, we selected 13 relational datasets. The datasets Trains, IMDB,
Mutagenesis 42, Mutagenesis 188, Carcinogenesis and Financial were used in the
original Wordification paper1 [3]. We also added to our experiments the Hepatitis,
Musk Large, Musk Small, Pima, Toxicology, Student Loan and NBA databases2 [44].
The instances of these datasets must be divided into positive and negative examples
to perform binary classification. Each instance is assigned to a positive or negative
class according to a convention based on an attribute of the main table. Table 3.1
shows the distribution of instances according to their classes.

Trains: this relational dataset was first used in the East-West Trains chal-
lange [24] to predict whether a train was East-bound or West-bound. The original
dataset has three tables: Trains, Car, and Loads, where a train can contain a vari-
able number of cars, with different shapes and loads. In this dataset, East-bound
Trains are considered positive examples.

IMDB: originally, this is a moderately large, real database of movies. However,
we use the same version of the Wordification paper [3], which consists only of movies
whose titles and years of production exist on the IMDB top 250 and bottom 100
charts of July 2, 2012. The result is a database with 166 instances, along with all
of their actors, genres, and directors. Movies present in the IMDB top 250 charts
were considered as positive examples, while those in the bottom 100 were regarded
as negative.

1Datasets available at http://kt.ijs.si/janezkranjc/ilp_datasets/
2Datasets available at https://relational.fit.cvut.cz/

19

http://kt.ijs.si/janez_kranjc/ilp_datasets/
https://relational.fit.cvut.cz/

Table 3.1: Class Distributions.

Database Positive Negative
IMDB 122 44
Trains 10 10
Mutagenesis 42 13 29
Mutagenesis 188 125 63
Carcinogenesis 182 147
Financial 606 76
Hepatitis 294 206
Musk Large 39 63
Musk Small 47 45
Pima 268 500
Toxicology 152 191
Student Loan 643 357
NBA 15 15

Mutagenesis 42 and Mutagenesis 188: these datasets are used to predict the mu-
tagenicity of aromatic and heteroaromatic nitro compounds [45]. The compounds
with positive levels of mutagenicity are labeled "active" and are considered positive
examples. On the other hand, the compounds labeled "inactive" are negative exam-
ples. The original database contains 230 compounds, but the data were split into
two subsets: the Mutagenesis 188 with 188 compounds and the Mutagenesis 42, a
smaller dataset with 42 compounds [45].

Carcinogenesis: this dataset is used to predict the carcinogenicity of a diverse set
of chemical compounds [46]. The compounds classified as carcinogens are positive
examples.

Financial: this dataset was artificially constructed as part of the PKDD99 Dis-
covery Challenge to predict successful loans [47]. It has 8 tables with data about
clients of a bank, their accounts, transactions, permanent orders, granted loans, and
issued credit cards [48]. A successful loan is a positive example.

Hepatitis: this is a modified version of the PKDD02 Discovery Challenge [49]
database, which removes tests with null values. It contains basic information about
hepatitis B and C infected patients and their laboratory test results. Here, patients
with Hepatitis C are considered positive examples.

Musk Large and Musk Small: these datasets contain two tables, the molecules,
and conformations, which are joined by a one-to-many association [50]. The con-
formations of a molecule determine if it is a musk or not. The instances classified
as musk are positive examples. There are two versions of the dataset, MuskSmall,
containing 92 molecules and 476 confirmations, and MuskLarge, containing 102
molecules and 6598 confirmations.

20

Pima: This dataset is originally from the National Institute of Diabetes and
Digestive and Kidney Diseases, which conducted a study on 768 adult Pima Indians,
Native Americans who live around Arizona [51]. The aim is to predict whether or
not a patient has diabetes, based on certain diagnostic measurements included in
the dataset. Patients with diabetes are considered positive examples.

Toxicology: The Predictive Toxicology Challenge (2000) dataset [52] consists of
more than 300 organic molecules marked according to their carcinogenicity on mice
and rats. The challenge aimed to predict the carcinogenicity of chemicals based on
the molecule structure only. Carcinogenic molecules are positive examples.

Student Loan: This dataset contains data about student enrollment and employ-
ment status [53]. The students that are not obligated to pay their loans back are
the positive examples.

NBA: This dataset contains data about basketball matches from the National
Basketball Association. For each player, there are 19 continuous player statistics
recorded, such as the number of free throws attempts and the total number of
player rebounds [54]. The games where team 1 won are the positive examples.

3.2 Clowdflow

Clowdflow [55] is an open-source, web-based data mining platform. It offers many
widgets to build data mining workflows, including a widget with the Wordification
implementation. This widget is used in our workflow, as shown in Fig. 3.1, to
generate a corpus of documents for each database.

Figure 3.1: Wordification workflow on Clowdflow.

The process starts when we use the Database Connect widget to access a database
on a MySQL [56] database server. Then, the Database Context widget is used
to select the target table, the related tables, and the attribute used to separate
the instances into classes. After that, the Dataset Discretization widget is used
to discretize the continuous attributes of the selected tables. It supports three
discretization methods: equal-width interval, equal-frequency intervals, and class-
aware discretization [57]. We use the equi-width discretization, the same used in the

21

Wordification paper [3]. Finally, the Wordification widget takes as input the target
table, the list of additional tables, and the database context with information about
the relation between tables, generating a document for each instance of a database.

Each document shows the class of the instance and a list of features, as shown in
Fig. 2.2, generated based on the database schema and the values of the attributes
for that instance. At the end of the workflow, the corpus of documents for each
dataset is saved to a text file.

3.3 Propositional table

In possession of the text file, we transform the list of features of each document into
a vector, where the words are the attributes and the values are given by a term-
weighting scheme (TF-IDF, BM25, TF-RF, or DELTA-TF-IDF). After that, we
create a propositional table, where each row is a vector that represents an instance
of a database and each column is a word of the Wordification algorithm as shown
in Table 2.2.

3.4 Classifiers

The resulting table can be used as input to our classifiers, for which we apply the
5-fold cross-validation to estimate the ROC AUC and accuracy. We chose the ROC
AUC metric because some of our databases are imbalanced, as shown in Table 3.1,
but we also present the accuracy score. We repeat this process for each combination
of dataset, weighting scheme, and classifier.

We use the Random Forest, Decision Tree, SVM with linear kernel and KNN
classifiers set to the default configurations from the library scikit-learn [58]. Random
Forest and SVM are known to have the best performance among the classifiers [59,
60]. SVM and KNN are also frequently used in works of text categorization [19, 32,
61]. Besides, Decision Tree and SVM were the two learners used in the Wordification
paper [3].

3.5 Results

In this section, we present the results from the 5-fold cross-validation applied for each
combination of database, weighting scheme, and classifier. Based on these results,
we apply the statistical tests to compare the performance of these configurations.
We also evaluate the use of n-gram and feature filtering.

22

3.5.1 ROC AUC score

For each combination of dataset and classifier, we performed 5-fold cross-validation
measuring the ROC AUC score. Tables 3.2, 3.3, 3.4 and 3.5 present the average
scores for each database for Decision Tree, Random Forest, SVM and KNN re-
spectively. Each row also shows the weighting schemes (TF-IDF, BM25, DELTA
TF-IDF, and TF-RF) ranked according to the Friedman test. The best score for
each database is highlighted and ranks are in brackets.

We summarize in Table 3.6 the occurrences of best scores for each combination
of classifier and weighting scheme. From this table, we can see that DELTA TF-IDF
achieved the highest scores in 9 of 13 databases for Decision Tree, SVM, and KNN,
while TF-RF scored better in 6 cases for Random Forest.

Table 3.2: Average ROC AUC scores for Decision Tree.

Database TF-IDF BM25 DELTA TF-IDF TF-RF
IMDB 0.61 (1.0) 0.60 (2.0) 0.50 (3.5) 0.50 (3.5)
Trains 0.95 (2.0) 0.95 (2.0) 0.95 (2.0) 0.85 (4.0)
Mutagenesis 188 0.93 (1.5) 0.92 (3.5) 0.92 (3.5) 0.93 (1.5)
Mutagenesis 42 0.95 (2.0) 0.93 (4.0) 0.95 (2.0) 0.95 (2.0)
Carcinogenesis 0.50 (4.0) 0.52 (3.0) 0.57 (1.0) 0.53 (2.0)
Financial 0.61 (2.5) 0.61 (2.5) 0.61 (2.5) 0.61 (2.5)
Hepatitis 0.66 (2.5) 0.66 (2.5) 0.66 (2.5) 0.66 (2.5)
Musk Large 0.57 (3.0) 0.63 (1.0) 0.55 (4.0) 0.59 (2.0)
Musk Small 0.59 (3.0) 0.59 (3.0) 0.59 (3.0) 0.63 (1.0)
Pima 0.52 (3.5) 0.52 (3.5) 0.53 (1.5) 0.53 (1.5)
Toxicology 0.55 (2.0) 0.54 (4.0) 0.55 (2.0 0.55 (2.0)
Student Loan 0.65 (4.0) 0.67 (2.5) 0.68 (1.0) 0.67 (2.5)
NBA 0.40 (3.0) 0.45 (1.5) 0.45 (1.5) 0.35 (4.0)

Table 3.3: Average ROC AUC scores for Random Forest.

Database TF-IDF BM25 DELTA TF-IDF TF-RF
IMDB 0.58 (1.5) 0.58 (1.5) 0.46 (4.0) 0.54 (3.0)
Trains 0.75 (4.0) 0.90 (1.5) 0.80 (3.0) 0.90 (1.5)
Mutagenesis 188 0.97 (2.5) 0.98 (1.0) 0.96 (4.0) 0.97 (2.5)
Mutagenesis 42 0.87 (4.0) 1.00 (1.0) 0.95 (2.0) 0.92 (3.0)
Carcinogenesis 0.53 (4.0) 0.59 (2.5) 0.59 (2.5) 0.61 (1.0)
Financial 0.60 (3.5) 0.62 (1.0) 0.60 (3.5) 0.61 (2.0)
Hepatitis 0.66 (2.0) 0.65 (4.0) 0.68 (2.0) 0.66 (2.0)
Musk Large 0.68 (3.5) 0.68 (3.5) 0.75 (1.0) 0.71 (2.0)
Musk Small 0.63 (3.0) 0.69 (2.0) 0.61 (4.0) 0.71 (1.0)
Pima 0.64 (3.0) 0.62 (4.0) 0.65 (2.0) 0.67 (1.0)
Toxicology 0.63 (2.0) 0.60 (4.0) 0.62 (3.0) 0.64 (1.0)
Student Loan 0.65 (4.0) 0.66 (3.0) 0.68 (1.0) 0.67 (2.0)
NBA 0.63 (1.0) 0.45 (3.5) 0.60 (2.0) 0.45 (3.5)

23

Table 3.4: Average ROC AUC scores for SVM.

Database TF-IDF BM25 DELTA TF-IDF TF-RF
IMDB 0.65 (2.5) 0.65 (2.5) 0.65 (2.5) 0.65 (2.5)
Trains 0.40 (4.0) 0.80 (2.5) 0.90 (1.0) 0.80 (2.5)
Mutagenesis 188 0.93 (4.0) 0.95 (3.0) 0.96 (2.0) 0.97 (1.0)
Mutagenesis 42 0.95 (2.5) 0.95 (2.5) 1.00 (1.0) 0.93 (4.0)
Carcinogenesis 0.60 (4.0) 0.61 (2.5) 0.62 (1.0) 0.61 (2.5)
Financial 0.61 (1.0) 0.45 (3.0) 0.54 (2.0) 0.44 (4.0)
Hepatitis 0.61 (1.5) 0.56 (3.5) 0.61 (1.5) 0.56 (3.5)
Musk Large 0.76 (3.5) 0.81 (2.0) 0.92 (1.0) 0.76 (3.5)
Musk Small 0.78 (4.0) 0.81 (2.0) 1.00 (1.0) 0.79 (3.0)
Pima 0.67 (3.5) 0.67 (3.5) 0.79 (1.0) 0.68 (2.0)
Toxicology 0.53 (3.0) 0.60 (1.0) 0.54 (2.0) 0.51 (4.0)
Student Loan 0.67 (3.0) 0.71 (1.0) 0.67 (3.0) 0.67 (3.0)
NBA 0.60 (2.0) 0.55 (3.5) 0.80 (1.0) 0.55 (3.5)

Table 3.5: Average ROC AUC scores for KNN.

Database TF-IDF BM25 DELTA TF-IDF TF-RF
IMDB 0.57 (2.0) 0.58 (1.0) 0.50 (3.5) 0.50 (3.5)
Trains 0.50 (4.0) 0.90 (2.0) 0.85 (3.0) 0.95 (1.0)
Mutagenesis 188 0.81 (3.0) 0.80 (4.0) 0.92 (2.0) 0.93 (1.0)
Mutagenesis 42 0.68 (3.0) 0.54 (4.0) 0.85 (1.0) 0.80 (2.0)
Carcinogenesis 0.62 (1.0) 0.61 (2.5) 0.61 (2.5) 0.53 (4.0)
Financial 0.56 (2.0) 0.56 (2.0) 0.56 (2.0) 0.55 (4.0)
Hepatitis 0.59 (2.0) 0.58 (3.5) 0.63 (1.0) 0.58 (3.5)
Musk Large 0.57 (3.5) 0.57 (3.5) 0.79 (1.0) 0.60 (2.0)
Musk Small 0.60 (4.0) 0.64 (2.5) 0.83 (1.0) 0.64 (2.5)
Pima 0.63 (4.0) 0.64 (3.0) 0.69 (1.0) 0.67 (2.0)
Toxicology 0.56 (4.0) 0.61 (2.0) 0.63 (1.0) 0.58 (3.0)
Student Loan 0.64 (4.0) 0.67 (1.5) 0.67 (1.5) 0.66 (3.0)
NBA 0.63 (3.0) 0.65 (2.0) 0.75 (1.0) 0.20 (4.0)

Table 3.6: Summary of best ROC AUC scores for each combination of classifier and
weighting scheme.

Database TF-IDF BM25 DELTA TF-IDF TF-RF
Decision Tree 7/13 5/13 9/13 7/13
Random Forest 3/13 5/13 3/13 6/13
SVM 3/13 3/13 9/13 2/13
KNN 2/13 3/13 9/13 2/13

3.5.1.1 Statistical tests

After ranking each weighting scheme, for each classifier according to the Friedman
Test, we present the Table 3.7 with the average ranks. The lower the rank, the better.
We can see from these tables that DELTA TF-IDF achieved the best rank in most of

24

the cases, except for Random Forest. We can also notice that TF-IDF was ranked
last for Random Forest, SVM, and KNN. We apply the Friedman test, for each
classifier separately according to [36], to check if we can reject the null-hypothesis,
which states that all weighting schemes are equivalent, with a significance level of
α = 0.05. If the null-hypothesis is rejected, we can proceed with a post hoc test, in
our case the Nemenyi test.

Table 3.7: Average ROC AUC based on all datasets and average rank according to
the Friedman test for each classifier.

Weighting scheme Average ROC AUC Average rank
TF-IDF 0.65 2.6
BM25 0.66 2.7
DELTA TF-IDF 0.65 2.3
TF-RF 0.64 2.4

(a) Decision Tree

Weighting scheme Average ROC AUC Average rank
TF-IDF 0.68 2.9
BM25 0.69 2.5
DELTA TF-IDF 0.69 2.6
TF-RF 0.70 2.0

(b) Random Forest

Weighting scheme Average ROC AUC Average rank
TF-IDF 0.67 3.0
BM25 0.70 2.5
DELTA TF-IDF 0.77 1.5
TF-RF 0.69 3.0

(c) SVM

Weighting scheme Average ROC AUC Average rank
TF-IDF 0.61 3.0
BM25 0.64 2.6
DELTA TF-IDF 0.71 1.7
TF-RF 0.63 2.7

(d) KNN

For the Decision Tree and Random Forest classifiers, the null-hypothesis cannot
be rejected (p-value > 0.05; Decision Tree: 0.759; Random Forest: 0.249), which
means the results are statistically equivalent even if the weighting scheme is changed.
On the other hand, for both the SVM and KNN classifiers, the null-hypothesis was
successfully rejected (p-value < 0.05; SVM = 0.004; KNN = 0.029). Then, we can
say that the performance of these classifiers varies significantly depending on the
choice of weighting scheme.

We then apply the Nemenyi test for SVM and KNN. The results can be visualized

25

compactly with the critical distance diagram in Fig. 3.2. The diagram interconnects
the algorithms in which performance is statistically equivalent. For the SVM clas-
sifier, the diagram in Fig. 3.2a shows that the performance using DELTA TF-IDF
was significantly better than the performance using TF-IDF or TF-RF. We can
also notice from Fig. 3.2b that DELTA-TF-IDF performed significantly better than
TF-IDF for KNN.

According to table 3.7, the combination of SVMwith the DELTA TF-IDF weight-
ing scheme resulted in the highest average ROC AUC score. On the other hand, in
the original Wordification paper, the best-reported results were achieved using the
weights from TF-IDF as input to a Decision Tree classifier [3]. Then, we apply the
Wilcoxon signed ranks test [37] to compare these two configurations using the AUC
as the performance metric. The test shows that the results of SVM with DELTA
TF-IDF are significantly better than those of Decision Tree with TF-IDF (p-value
= 0.043; α = 0.05).

(a) SVM (b) KNN

Figure 3.2: Critical distance diagram for the reported (a) SVM and (b) KNN clas-
sification AUC.

3.5.2 Accuracy score

We present Tables 3.8, 3.9, 3.10 and 3.11, which show the average accuracy results
from the 5-fold cross-validation for each classifier. The best score for each database
is highlighted and ranks are in brackets. From Table 3.12, we can notice that all
classifiers achieved the highest scores in most of the databases using the DELTA
TF-IDF weighting scheme.

3.5.2.1 Statistical tests

Table 3.13 shows the average ranks for each weighting scheme and classifier according
to the Friedman test. From these tables, we can see that DELTA TF-IDF achieved
the best rank in all cases. On the other hand, the TF-IDF was ranked in the last

26

Table 3.8: Average accuracy scores for Decision Tree.

Database TF-IDF BM25 DELTA TF-IDF TF-RF
IMDB 0.57 (3.5) 0.57 (3.5) 0.74 (1.5) 0.74 (1.5)
Trains 0.90 (3.0) 0.90 (3.0) 0.95 (1.0) 0.90 (3.0)
Mutagenesis 188 0.95 (2.0) 0.94 (4.0) 0.95 (2.0) 0.95 (2.0)
Mutagenesis 42 0.98 (2.0) 0.95 (4.0) 0.98 (2.0) 0.98 (2.0)
Carcinogenesis 0.47 (4.0) 0.56 (1.0) 0.53 (2.5) 0.53 (2.5)
Financial 0.88 (2.5) 0.88 (2.5) 0.88 (2.5) 0.88 (2.5)
Hepatitis 0.66 (2.5) 0.66 (2.5) 0.66 (2.5) 0.66 (2.5)
Musk Large 0.55 (3.0) 0.71 (1.0) 0.58 (2.0) 0.54 (4.0)
Musk Small 0.58 (3.0) 0.60 (1.0) 0.59 (2.0) 0.54 (4.0)
Pima 0.58 (4.0) 0.60 (2.0) 0.61 (1.0) 0.59 (3.0)
Toxicology 0.55 (3.0) 0.56 (1.5) 0.56 (1.5) 0.54 (4.0)
Student Loan 0.67 (3.5) 0.69 (1.5) 0.67 (3.5) 0.69 (1.5)
NBA 0.47 (2.5) 0.53 (1.0) 0.47 (2.5) 0.38 (4.0)

Table 3.9: Average accuracy scores for Random Forest.

Database TF-IDF BM25 DELTA TF-IDF TF-RF
IMDB 0.57 (3.5) 0.57 (3.5) 0.74 (1.5) 0.74 (1.5)
Trains 0.75 (4.0) 0.80 (2.0) 0.80 (2.0) 0.80 (2.0)
Mutagenesis 188 0.95 (1.5) 0.95 (1.5) 0.94 (3.5) 0.94 (3.5)
Mutagenesis 42 0.86 (2.0) 0.86 (2.0) 0.84 (4.0) 0.86 (2.0)
Carcinogenesis 0.58 (2.5) 0.58 (2.5) 0.59 (1.0) 0.57 (4.0)
Financial 0.89 (1.0) 0.88 (3.0) 0.88 (3.0) 0.88 (3.0)
Hepatitis 0.66 (2.5) 0.66 (2.5) 0.66 (2.5) 0.66 (2.5)
Musk Large 0.66 (2.5) 0.66 (2.5) 0.67 (1.0) 0.65 (4.0)
Musk Small 0.65 (3.5) 0.71 (2.0) 0.72 (1.0) 0.65 (3.5)
Pima 0.65 (3.0) 0.67 (1.0) 0.65 (3.0) 0.65 (3.0)
Toxicology 0.59 (2.0) 0.57 (4.0) 0.59 (2.0) 0.59 (2.0)
Student Loan 0.68 (3.0) 0.69 (2.0) 0.67 (4.0) 0.70 (1.0)
NBA 0.50 (2.0) 0.47 (3.5) 0.53 (1.0) 0.47 (3.5)

place for all classifiers. We apply the Friedman test to check if we can reject the
null-hypothesis, with a significance level of α = 0.05.

For Decision Tree, Random Forest and SVM, the null-hypothesis could not be
rejected (p-value > 0.05; Decision Tree: 0.076; Random Forest: 0.751; SVM: 0.489).
Only for KNN was the null-hypothesis successfully rejected (p-value < 0.05; KNN
= 0.007). The result of the Nemenyi test for the KNN classifier is shown in Fig. 3.3.
Once more the DELTA TF-IDF performed significantly better than TF-IDF for
KNN.

We can see from table 3.13, that DELTA TF-IDF with SVM achieved the highest
average accuracy. We also compare it with the best configuration of the Wordifica-
tion paper [3], TF-IDF with a Decision Tree classifier. We use the Wilcoxon signed
ranks test using accuracy as the performance metric. The test shows that the results

27

Table 3.10: Average accuracy scores for SVM.

Database TF-IDF BM25 DELTA TF-IDF TF-RF
IMDB 0.74 (2.5) 0.74 (2.5) 0.74 (2.5) 0.74 (2.5)
Trains 0.45 (4.0) 0.70 (2.0) 0.70 (2.0) 0.70 (2.0)
Mutagenesis 188 0.89 (4.0) 0.95 (1.5) 0.93 (3.0) 0.95 (1.5)
Mutagenesis 42 0.91 (2.0) 0.88 (3.0) 0.98 (1.0) 0.83 (4.0)
Carcinogenesis 0.62 (2.5) 0.61 (4.0) 0.64 (1.0) 0.62 (2.5)
Financial 0.89 (2.5) 0.89 (2.5) 0.89 (2.5) 0.89 (2.5)
Hepatitis 0.62 (2.0) 0.62 (2.0) 0.61 (4.0) 0.62 (2.0)
Musk Large 0.72 (4.0) 0.77 (2.0) 0.88 (1.0) 0.73 (3.0)
Musk Small 0.75 (3.0) 0.75 (3.0) 0.97 (1.0) 0.75 (3.0)
Pima 0.67 (2.5) 0.67 (2.5) 0.73 (1.0) 0.65 (4.0)
Toxicology 0.59 (2.0) 0.59 (2.0) 0.58 (4.0) 0.59 (2.0)
Student Loan 0.70 (1.5) 0.69 (3.5) 0.69 (3.5) 0.70 (1.5)
NBA 0.43 (2.5) 0.43 (2.5) 0.60 (1.0) 0.40 (4.0)

Table 3.11: Average accuracy scores for KNN.

Database TF-IDF BM25 DELTA TF-IDF TF-RF
IMDB 0.69 (4.0) 0.70 (3.0) 0.74 (1.5) 0.74 (1.5)
Trains 0.55 (4.0) 0.75 (2.5) 0.80 (1.0) 0.75 (2.5)
Mutagenesis 188 0.78 (3.5) 0.78 (3.5) 0.90 (1.0) 0.87 (2.0)
Mutagenesis 42 0.70 (3.5) 0.70 (3.5) 0.77 (2.0) 0.81 (1.0)
Carcinogenesis 0.60 (1.0) 0.58 (2.0) 0.56 (3.0) 0.51 (4.0)
Financial 0.88 (3.0) 0.88 (3.0) 0.88 (1.0) 0.89 (1.0)
Hepatitis 0.63 (2.5) 0.63 (2.5) 0.66 (1.0) 0.62 (4.0)
Musk Large 0.56 (4.0) 0.62 (2.5) 0.70 (1.0) 0.62 (2.5)
Musk Small 0.57 (3.0) 0.63 (1.0) 0.58 (2.0) 0.52 (4.0)
Pima 0.65 (3.0) 0.66 (2.0) 0.69 (1.0) 0.46 (4.0)
Toxicology 0.55 (4.0) 0.58 (2.0) 0.59 (1.0) 0.57 (3.0)
Student Loan 0.65 (4.0) 0.70 (1.0) 0.68 (2.0) 0.67 (3.0)
NBA 0.57 (2.0) 0.43 (3.0) 0.60 (1.0) 0.27 (4.0)

Table 3.12: Summary of best accuracy scores for each combination of classifier and
weighting scheme.

Database TF-IDF BM25 DELTA TF-IDF TF-RF
Decision Tree 4/13 8/13 8/13 6/12
Random Forest 5/13 5/13 8/13 6/13
SVM 5/13 6/13 9/13 7/13
KNN 1/13 2/13 8/13 3/13

of SVM with DELTA TF-IDF are significantly better than the Decision Tree with
TF-IDF (p-value = 0.049; α = 0.05).

28

Table 3.13: Average accuracy based on all datasets and average rank according to
the Friedman test for each classifier based on accuracy scores.

Weighting scheme Average accuracy Average rank
TF-IDF 0.68 3.0
BM25 0.70 2.2
DELTA TF-IDF 0.70 2.0
TF-RF 0.69 2.8

(a) Decision Tree

Weighting scheme Average accuracy Average rank
TF-IDF 0.69 2.5
BM25 0.70 2.5
DELTA TF-IDF 0.71 2.3
TF-RF 0.70 2.7

(b) Random Forest

Weighting scheme Average accuracy Average rank
TF-IDF 0.69 2.7
BM25 0.71 2.5
DELTA TF-IDF 0.76 2.1
TF-RF 0.71 2.7

(c) SVM

Weighting scheme Average accuracy Average rank
TF-IDF 0.64 3.2
BM25 0.66 2.4
DELTA TF-IDF 0.70 1.6
TF-RF 0.64 2.8

(d) KNN

Figure 3.3: Critical distance diagram for the reported KNN classification accuracy.

3.5.3 Feature construction and filtering

In this part, we test the effect of the n-gram construction and pruning on classifica-
tion. We use the Trains database [24] as input to the Wordification workflow and
vary the n-gram and the pruning threshold parameters. Fig 3.4 shows the size of

29

the resulting feature set according to the choice of n-gram (1 to 5) and the pruning
threshold (0 to 50%).

Figure 3.4: Feature set size according to the n-gram and the pruning threshold.

To simplify the analysis, we vary one parameter and keep the other constant.
In the first scenario, we vary the n-gram parameter and keep the pruning threshold
constant and equal to zero. We perform 5-fold cross-validation measuring the ROC
AUC for each combination of classifier, weighting scheme, and n-gram. Fig 3.5
shows the results for each configuration.

We can see from Fig 3.5 that the performance of Random Forest is more stable
than that of the other classifiers. This figure shows that the ROC AUC score for
SVM and KNN varies a lot with the choice of weighting scheme and the n-gram
parameter, although Decision Tree seems more sensitive to the choice of n-gram.

According to Fig 3.5, Random Forest achieved the highest average results using
the TF-RF weighting scheme with 2-grams and had the lowest for DELTA TF-
IDF. Decision Tree performed best for all weighting schemes using unigrams. In
contrast, SVM and KNN achieved the highest scores using DELTA TF-IDF with
5-grams and 3-grams respectively. Another interesting point is that DELTA TF-IDF
achieved good results for all classifiers with unigrams. We can also notice that SVM
and KNN performed poorly with TF-IDF.

In the second scenario, we analyze the effect of pruning on classification. To
do so, we use 5-grams and vary the pruning threshold. Once more, we perform
the 5-fold cross-validation and measure the ROC AUC for each combination of
classifier, weighting scheme, and pruning threshold. Fig 3.6 shows the results for
each configuration. We can see that the average values for Random Forest and

30

Figure 3.5: Average ROC AUC score of 5-fold cross-validation for each classifier and
weighting scheme. We vary the n-gram (1 to 5) and keep the pruning threshold
equal to zero.

Decision Tree almost never vary when the pruning threshold changes. We can also
notice that the average scores for SVM with TF-IDF and BM25 increase when the
pruning threshold rises. A similar pattern is observed for KNN with BM25 and
DELTA TF-IDF.

3.6 Discussion

In our experiments, we analyze the results for two metrics: the ROC AUC and
accuracy, as in the Wordification paper [3]. The results showed that the choice
of weighting scheme can have a great impact on the performance of a classifier.
However, a given weighting scheme may not be the best option for all classifiers.
For example, Table 3.6 shows that DELTA TF-IDF achieved the highest ROC AUC
scores for most of the datasets for Decision Tree, SVM, and KNN, but it did not
perform well with Random Forest. We can also notice that Random Forest and
Decision Tree performed well using TF-RF, although SVM and KNN performed
poorly. According to this table, only Decision Tree achieved the best ROC AUC
score for most datasets (7 of 13) using TF-IDF. On the other hand, Table 3.12 shows
that all classifiers achieved the best accuracy scores for most datasets using DELTA
TF-IDF.

Although it may not be the best solution in every case, DELTA TF-IDF achieved

31

Figure 3.6: Average ROC AUC score of 5-fold cross-validation for each classifier and
weighting scheme. We vary the pruning threshold (0 to 50%) and use 5-grams.

the highest average accuracy and ROC AUC scores for most classifiers. Especially
for the SVM and KNN, the statistical tests showed a significant difference between
DELTA-TF-IDF and TF-IDF for the ROC AUC score. Besides, DELTA-TF-IDF
with KNN also performed statistically better than TF-IDF for accuracy. Among all
combinations of classifier and weighting scheme, we can see from Tables 3.13 and
3.7 that the highest average score for accuracy (0.76) and ROC AUC (0.77) were
achieved by SVM with DELTA TF-IDF.

We statistically compared the best configuration of this work, DELTA-TF-IDF
with SVM, with the one in the original Wordification paper [3], TF-IDF with De-
cision Tree. We used the Wilcoxon signed ranks test with a significance level of
α = 0.05 to compare the accuracy and ROC AUC scores. The results showed, for
both metrics, a statistically significant difference between the two configurations, in
favor of DELTA-TF-IDF with SVM.

In Section 3.5.3 we also perform experiments to test the effect of using higher
values of n-gram and pruning. We can see from Fig. 3.4 that the number of features
increases exponentially when we increase the maximum word length (n-gram). The
original Wordification paper [3] suggests the use of pruning to reduce the feature
space and improve classification accuracy. However, we could observe only small
improvements in the classification performance for isolated cases. Besides, Fig 3.6
shows that the pruning threshold practically did not affect Random Forest and
Decision Tree. For this reason, we consider the benefit of pruning irrelevant for

32

classification performance.
On the other hand, our experiments showed that the choice of the n-gram param-

eter can considerably change classification performance. For instance, in Fig. 3.5,
Decision Tree performed best for all weighting schemes using unigrams. In contrast,
SVM and KNN had the best results using a higher n-gram setting with DELTA
TF-IDF.

The Wordification paper [3] tested the n-gram parameter with a Decision Tree
classifier and the TF-IDF weighting scheme. In these conditions, the paper [3]
achieved the best results for most of the datasets using unigrams and stated that
larger n-grams of witems only marginally improve classification. According to our
result, this statement is true only in certain conditions. As we have seen, Decision
Tree did indeed achieve the best scores using unigrams. However, this fact does not
hold for SVM and KNN. The downside of using larger n-grams is that this results in
longer running times of the propositionalization step due to a larger feature space [3].
In these cases, the use of pruning can be advantageous to reduce the running time
to calculate the weighting schemes and build a model.

To sum up, Table 3.14 shows the configurations we recommend for Wordification
to achieve the best results.

Table 3.14: Best combinations of classifier, weighting scheme and n-gram.

Classifier Weighting scheme + n-gram
Random Forest (TF-RF + 2-grams), (DELTA TF-IDF + 1-gram)
Decision Tree (TF-IDF + 1-gram), (DELTA TF-IDF + 1-gram)
SVM (DELTA TF-IDF + 1-gram/3-gram/5-gram)
KNN (DELTA TF-IDF + 3-gram)

33

Chapter 4

Conclusions

This study was inspired by works in the text classification and information re-
trieval fields that explore new weighting schemes to improve performance. Weighting
schemes can be considered an important step for Wordification as they produce many
text documents based on the instances of a database. The words of these documents
are the features that are used in the learning step and therefore, their values affect
the performance of a classifier. Although the original Wordification paper used TF-
IDF, which is one of the most used weighting schemes, there are other methods in
the literature that statistically outperform it. For this reason, we proposed the use
of other schemes to improve the Wordification workflow.

As expected, our empirical experiments showed that it is possible to improve
Wordification performance by changing the weighting scheme. However, more im-
portant than the choice of a weighting scheme is the combination of weighting
schemes and classifiers. According to our statistical tests, some classifiers, such
as Decision Tree and Random Forest, are very robust and are less impacted by the
choice of a weighting scheme. However, the performance of other classifiers, such as
SVM and KNN, can greatly differ according to this choice.

According to our experiments, the use of DELTA TF-IDF weighting scheme and
SVM with linear kernel resulted in the best scores for most datasets. On the other
hand, SVM and KNN performed poorly with TF-IDF. We compared the use of SVM
with DELTA TF-IDF with the original proposal of Wordification, where the weights
of the features were given by TF-IDF and were used as input to a Decision Tree
classifier [3]. Using the Wilcoxon signed ranks test with α = 0.05, we showed that
the difference of accuracy and ROC AUC for both configurations are statistically
significant in favor of SVM with DELTA-TF-IDF.

We also extended the experiment with n-grams and pruning using four options
of classifiers (Decision Tree, Random Forest, SVM, and KNN) and four options of
weighting scheme (TF-IDF, DELTA TF-IDF, BM25, and TF-RF). The Random
Forest classifier presented the most stable performance. Our results also showed

34

that Decision Tree performs better for most weighting schemes using unigrams. In
contrast, SVM and KNN combined with DELTA TF-IDF can have their performance
improved by the use of higher n-gram values, although it may result in longer running
times. Additionally, we could notice that, for most configurations, increasing the
pruning threshold did not improve classification performance. For this reason, it
should only be used when the intent is to reduce the running time.

In this work, we only compared TF-IDF with three other weighting schemes,
BM25, DELTA-TF-IDF, and TF-RF. Although there are many more options avail-
able in the literature, we could demonstrate that it is possible to improve Wordi-
fication performance with the right combination of parameters and classifier. For
cases where is not possible to test different configurations, we recommend the use of
DELTA-TF-IDF with SVM with the linear kernel instead of the traditional TF-IDF.

4.1 Future Works

The original Wordification paper [3] suggested the use of pruning to filter words
that appear in less than a predefined percentage of documents. However, there are
more sophisticated techniques of feature selection based on chi-square, information
gain, etc. It is possible to explore these methods to improve the performance of
classification. Besides, we can extend the analysis of n-gram and pruning to other
datasets. We also propose the comparison of Wordification with recently proposed
propositionalization approaches, such as Cardinalization [4] and the Bottom Clause
Propositionalization (BCP) [62].

35

References

[1] ŢĂRANU, I., OTHERS. “Data mining in healthcare: decision making and pre-
cision”, Database Systems Journal, v. 6, n. 4, pp. 33–40, 2016.

[2] KASSARNIG, V., WOTAWA, F. “Evolutionary propositionalization of multi-
relational data”, International journal of software engineering and knowl-
edge engineering, v. 28, n. 11n12, pp. 1739–1754, 2018.

[3] PEROVŠEK, M., VAVPETIČ, A., KRANJC, J., et al. “Wordification: Propo-
sitionalization by unfolding relational data into bags of words”, Expert
systems with applications, v. 42, n. 17, pp. 6442–6456, out. 2015. ISSN:
0957-4174. Disponível em: <https://doi.org/10.1016/j.eswa.2015.
04.017>.

[4] AHMED, C. F., LACHICHE, N., CHARNAY, C., et al. “Flexible propositional-
ization of continuous attributes in relational data mining”, Expert Systems
with Applications, v. 42, n. 21, pp. 7698–7709, 2015.

[5] LACHICHE, N. “Propositionalization”, Encyclopedia of Machine Learning, pp.
812–817, 2010.

[6] SRINIVASAN, A. “The aleph manual”. 2001.

[7] MUGGLETON, S. “Inverse entailment and Progol”, New generation computing,
v. 13, n. 3-4, pp. 245–286, 1995.

[8] ALFRED, R., KAZAKOV, D. “Pattern-Based Transformation Approach to Re-
lational Domain Learning Using Dynamic Aggregation for Relational At-
tributes.” In: DMIN, pp. 118–124, 2006.

[9] KNOBBE, A., HAAS, M., SIEBES, A. “Propositionalisation and Aggregates”.
In: 5th European Conference on Principles of Data Mining and Knowledge
Discovery, p. 277–288, 2001.

[10] KRAMER, S., LAVRAČ, N., FLACH, P. “Propositionalization Approaches to
Relational Data Mining”. In: Džeroski, S., Lavrač, N. (Eds.), Relational

36

https://doi.org/10.1016/j.eswa.2015.04.017
https://doi.org/10.1016/j.eswa.2015.04.017

Data Mining, Springer Berlin Heidelberg, pp. 262–291, Berlin, Heidelberg,
2001. ISBN: 9783662045992. Disponível em: <https://doi.org/10.
1007/978-3-662-04599-2_11>.

[11] LAVRAČ, N., FLACH, P. A. “An extended transformation approach to in-
ductive logic programming”, ACM Transactions on Computational Logic
(TOCL), v. 2, n. 4, pp. 458–494, 2001.

[12] KROGEL, M.-A., RAWLES, S., ŽELEZNỲ, F., et al. “Comparative evaluation
of approaches to propositionalization”. In: International Conference on
Inductive Logic Programming, pp. 197–214. Springer, 2003.

[13] ŽELEZNÝ, F., LAVRAČ, N. “Propositionalization-based relational subgroup
discovery with RSD”, Machine learning, v. 62, n. 1, pp. 33–63, fev. 2006.
ISSN: 0885-6125, 1573-0565. Disponível em: <https://doi.org/10.
1007/s10994-006-5834-0>.

[14] KUŽELKA, O., ŽELEZNÝ, F. “Block-wise construction of tree-like relational
features with monotone reducibility and redundancy”, Machine learn-
ing, v. 83, n. 2, pp. 163–192, maio 2011. ISSN: 0885-6125, 1573-0565.
Disponível em: <https://doi.org/10.1007/s10994-010-5208-5>.

[15] ALSMADI, I., HOON, G. K. “Term weighting scheme for short-text classifica-
tion: Twitter corpuses”, Neural Computing and Applications, v. 31, n. 8,
pp. 3819–3831, 2019.

[16] PAIK, J. H. “A Novel TF-IDF Weighting Scheme for Effective Ranking”. In:
Proceedings of the 36th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’13, pp. 343–352, New
York, NY, USA, 2013. ACM. ISBN: 9781450320344. Disponível em:
<http://doi.acm.org/10.1145/2484028.2484070>.

[17] ROBERTSON, S. E., WALKER, S., JONES, S., et al. “Okapi at TREC-3”,
NIST Special Publication, v. 109, pp. 109, 1995.

[18] MARTINEAU, J. C., FININ, T. “Delta tfidf: An improved feature space for
sentiment analysis”. In: Third international AAAI conference on weblogs
and social media, 2009. Disponível em: <https://www.aaai.org/ocs/
index.php/ICWSM/09/paper/viewPaper/187>.

[19] LAN, M., TAN, C. L., LOW, H.-B. “Proposing a new term weighting scheme
for text categorization”. In: AAAI, v. 6, pp. 763–768, 2006. Disponível
em: <https://www.aaai.org/Papers/AAAI/2006/AAAI06-121.pdf>.

37

https://doi.org/10.1007/978-3-662-04599-2_11
https://doi.org/10.1007/978-3-662-04599-2_11
https://doi.org/10.1007/s10994-006-5834-0
https://doi.org/10.1007/s10994-006-5834-0
https://doi.org/10.1007/s10994-010-5208-5
http://doi.acm.org/10.1145/2484028.2484070
https://www.aaai.org/ocs/index.php/ICWSM/09/paper/viewPaper/187
https://www.aaai.org/ocs/index.php/ICWSM/09/paper/viewPaper/187
https://www.aaai.org/Papers/AAAI/2006/AAAI06-121.pdf

[20] KIM, Y., ZHANG, O. “Credibility Adjusted Term Frequency: A Supervised
Term Weighting Scheme for Sentiment Analysis and Text Classification”.
In: Proceedings of the 5th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis, maio 2014.

[21] DOMENICONI, G., MORO, G., PASOLINI, R., et al. “A comparison of term
weighting schemes for text classification and sentiment analysis with a
supervised variant of tf. idf”. In: International Conference on Data Man-
agement Technologies and Applications, pp. 39–58. Springer, 2015.

[22] SCIAMMARELLA, T., ZAVERUCHA, G. “Weight Your Words: The Effect of
Different Weighting Schemes on Wordification Performance”. In: Interna-
tional Conference on Inductive Logic Programming, pp. 114–128. Springer,
2019.

[23] HUCHARD, M., HACENE, M. R., ROUME, C., et al. “Relational concept
discovery in structured datasets”, Annals of Mathematics and Artificial
Intelligence, v. 49, n. 1-4, pp. 39–76, 2007.

[24] MICHIE, D., MUGGLETON, S., PAGE, D., et al. “To the international com-
puting community: A new East-West challenge”, Distributed email docu-
ment available from http://www. doc. ic. ac. uk/˜ shm/Papers/ml-chall.
pdf, 1994.

[25] DELOBEL, C. “Normalization and hierarchical dependencies in the relational
data model”, ACM Transactions on Database Systems (TODS), v. 3, n. 3,
pp. 201–222, 1978.

[26] FLACH, P., LACHICHE, N. “1BC: A first-order Bayesian classifier”. In:
International Conference on Inductive Logic Programming, pp. 92–103.
Springer, 1999.

[27] KRAMER, S., PFAHRINGER, B., HELMA, C. “Stochastic propositionaliza-
tion of non-determinate background knowledge”. In: Inductive Logic Pro-
gramming, pp. 80–94. Springer Berlin Heidelberg, 1998. Disponível em:
<http://dx.doi.org/10.1007/BFb0027312>.

[28] LAVRAČ, N., DŽEROSKI, S., GROBELNIK, M. “Learning nonrecursive def-
initions of relations with linus”. In: Machine Learning — EWSL-91,
pp. 265–281. Springer Berlin Heidelberg, 1991. Disponível em: <http:
//dx.doi.org/10.1007/BFb0017020>.

38

http://dx.doi.org/10.1007/BFb0027312
http://dx.doi.org/10.1007/BFb0017020
http://dx.doi.org/10.1007/BFb0017020

[29] EL-KHAIR, I. A. “Term Weighting”. In: LIU, L., ÖZSU, M. T. (Eds.), Ency-
clopedia of Database Systems, pp. 3037–3040, Boston, MA, Springer US,
2009. ISBN: 978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9_943.
Disponível em: <https://doi.org/10.1007/978-0-387-39940-9_
943>.

[30] KOŁCZ, A., TEO, C. H. “Feature weighting for improved classifier robustness”.
In: CEAS’09: sixth conference on email and anti-spam, 2009.

[31] ROBERTSON, S., ZARAGOZA, H. “The Probabilistic Relevance Framework:
BM25 and Beyond”, Foundations and Trends® in Information Retrieval,
v. 3, n. 4, pp. 333–389, 2009. ISSN: 1554-0669. Disponível em: <http:
//dx.doi.org/10.1561/1500000019>.

[32] LAN, M., TAN, C. L., SU, J., et al. “Supervised and traditional term weighting
methods for automatic text categorization”, IEEE transactions on pattern
analysis and machine intelligence, v. 31, n. 4, pp. 721–735, abr. 2009.
ISSN: 0162-8828, 0098-5589. Disponível em: <http://dx.doi.org/10.
1109/TPAMI.2008.110>.

[33] SPARCK JONES, K. “A statistical interpretation of term specificity and its
application in retrieval”, Journal of documentation, 1972. Disponível em:
<https://www.emeraldinsight.com/doi/abs/10.1108/eb026526>.

[34] MIROŃCZUK, M. M., PROTASIEWICZ, J. “A recent overview of the state-of-
the-art elements of text classification”, Expert systems with applications,
v. 106, pp. 36–54, set. 2018. ISSN: 0957-4174. Disponível em: <https:
//doi.org/10.1016/j.eswa.2018.03.058>.

[35] TROTMAN, A. “Learning to Rank”, Information retrieval, v. 8, n. 3, pp. 359–
381, jan. 2005. ISSN: 1386-4564, 1573-7659. Disponível em: <https:
//doi.org/10.1007/s10791-005-6991-7>.

[36] DEMŠAR, J. “Statistical Comparisons of Classifiers over Multiple Data Sets”,
Journal of machine learning research: JMLR, v. 7, n. Jan, pp. 1–30, 2006.
ISSN: 1532-4435, 1533-7928. Disponível em: <http://www.jmlr.org/
papers/volume7/demsar06a/demsar06a.pdf>.

[37] WILCOXON, F. “Individual Comparisons by Ranking Methods”. 1945.
Disponível em: <http://dx.doi.org/10.2307/3001968>.

[38] FRIEDMAN, M. “The Use of Ranks to Avoid the Assumption of Normality
Implicit in the Analysis of Variance”, Journal of the American Statis-

39

https://doi.org/10.1007/978-0-387-39940-9_943
https://doi.org/10.1007/978-0-387-39940-9_943
http://dx.doi.org/10.1561/1500000019
http://dx.doi.org/10.1561/1500000019
http://dx.doi.org/10.1109/TPAMI.2008.110
http://dx.doi.org/10.1109/TPAMI.2008.110
https://www.emeraldinsight.com/doi/abs/10.1108/eb026526
https://doi.org/10.1016/j.eswa.2018.03.058
https://doi.org/10.1016/j.eswa.2018.03.058
https://doi.org/10.1007/s10791-005-6991-7
https://doi.org/10.1007/s10791-005-6991-7
http://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
http://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
http://dx.doi.org/10.2307/3001968

tical Association, v. 32, n. 200, pp. 675–701, dez. 1937. ISSN: 0162-
1459. Disponível em: <https://www.tandfonline.com/doi/abs/10.
1080/01621459.1937.10503522>.

[39] ASUNCION, A., NEWMAN, D. “UCI machine learning repository”. 2007.

[40] HANLEY, J. A., MCNEIL, B. J. “The meaning and use of the area under a
receiver operating characteristic (ROC) curve”, Radiology, v. 143, n. 1,
pp. 29–36, abr. 1982. ISSN: 0033-8419. Disponível em: <http://dx.
doi.org/10.1148/radiology.143.1.7063747>.

[41] INMAN, R., DAVENPOT, J. “Approximations of the critical region of the
Friedman statistic”, Communications in Statistics, Theory and Methods
A, v. 9, pp. 571–595, 1980.

[42] NEMENYI, P. “Distribution-free multiple comparisons”. In: Biometrics, v. 18,
p. 263, 1962.

[43] HARTER, H. L. “Tables of range and studentized range”, The Annals of Math-
ematical Statistics, pp. 1122–1147, 1960.

[44] MOTL, J., SCHULTE, O. “The CTU prague relational learning repository”,
arXiv preprint arXiv:1511.03086, 2015.

[45] DEBNATH, A. K., LOPEZ DE COMPADRE, R. L., DEBNATH, G., et al.
“Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hy-
drophobicity”, Journal of medicinal chemistry, v. 34, n. 2, pp. 786–797,
1991.

[46] SRINIVASAN, A., KING, R. D., MUGGLETON, S., et al. “Carcinogenesis
predictions using ILP”. In: International Conference on Inductive Logic
Programming, pp. 273–287. Springer, 1997.

[47] ZYTKOW, J., RAUCH, J. Principles of Data Mining and Knowledge Dis-
covery: Third European Conference, PKDD’99 Prague, Czech Republic,
September 15-18, 1999 Proceedings. Springer, 2004.

[48] BERKA, P. “The pkdd discovery challenges on thrombosis data”. In: Euro-
pean Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD), 2001.

[49] ELOMAA, T., MANNILA, H., TOIVONEN, H. Principles of Data Mining and
Knowledge Discovery: 6th European Conference, PKDD 2002, Helsinki,
Finland, August 19–23, 2002, Proceedings, v. 2431. Springer, 2003.

40

https://www.tandfonline.com/doi/abs/10.1080/01621459.1937.10503522
https://www.tandfonline.com/doi/abs/10.1080/01621459.1937.10503522
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1148/radiology.143.1.7063747

[50] KNOBBE, A. J. Multi-relational data mining, v. 145. Ios Press, 2006.

[51] BOZKURT, M. R., YURTAY, N., YILMAZ, Z., et al. “Comparison of dif-
ferent methods for determining diabetes”, Turkish Journal of Electrical
Engineering & Computer Sciences, v. 22, n. 4, pp. 1044–1055, 2014.

[52] HELMA, C., KING, R. D., KRAMER, S., et al. “The Predictive Toxicology
Challenge 2000–2001 ”, Bioinformatics, v. 17, n. 1, pp. 107–108, 01 2001.
ISSN: 1367-4803. doi: 10.1093/bioinformatics/17.1.107. Disponível em:
<https://doi.org/10.1093/bioinformatics/17.1.107>.

[53] PAZZANI, M., BRUNK, C. “Finding accurate frontiers: A knowledge-intensive
approach to relational learning”. 1994. Disponível em: <http://hdl.
handle.net/2060/19940029538>.

[54] SCHULTE, O., ROUTLEY, K. “Aggregating predictions vs. aggregating fea-
tures for relational classification”. In: 2014 IEEE Symposium on Compu-
tational Intelligence and Data Mining (CIDM), pp. 121–128. IEEE, 2014.

[55] KRANJC, J., PODPEČAN, V., LAVRAČ, N. “ClowdFlows: A Cloud Based
Scientific Workflow Platform”. In: Machine Learning and Knowledge
Discovery in Databases, pp. 816–819. Springer Berlin Heidelberg, 2012.
Disponível em: <http://dx.doi.org/10.1007/978-3-642-33486-3_
54>.

[56] ORACLE CORPORATION. “MySQL”. 2019. Disponível em: <https://www.
mysql.com/>.

[57] FAYYAD, U. M., IRANI, K. B. “Multi-Interval Discretization of Continuous-
Valued Attributes for Classification Learning”, Proceedings of the confer-
ence of International Joint Conferences on Artificial Intelligence, 1993.
ISSN: 1045-0823. Disponível em: <https://www.semanticscholar.
org/paper/1dc53b91327cab503acc0ca5afb9155882b717a5>.

[58] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., et al. “Scikit-
learn: Machine Learning in Python”, Journal of machine learning re-
search: JMLR, v. 12, n. Oct, pp. 2825–2830, 2011. ISSN: 1532-4435,
1533-7928. Disponível em: <http://www.jmlr.org/papers/volume12/
pedregosa11a/pedregosa11a.pdf>.

[59] FERNÁNDEZ-DELGADO, M., CERNADAS, E., BARRO, S., et al. “Do we
need hundreds of classifiers to solve real world classification problems?”
Journal of Machine Learning Research, 2014. Disponível em: <http:
//www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf>.

41

https://doi.org/10.1093/bioinformatics/17.1.107
http://hdl.handle.net/2060/19940029538
http://hdl.handle.net/2060/19940029538
http://dx.doi.org/10.1007/978-3-642-33486-3_54
http://dx.doi.org/10.1007/978-3-642-33486-3_54
https://www.mysql.com/
https://www.mysql.com/
https://www.semanticscholar.org/paper/1dc53b91327cab503acc0ca5afb9155882b717a5
https://www.semanticscholar.org/paper/1dc53b91327cab503acc0ca5afb9155882b717a5
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
http://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf

[60] ZHANG, C., LIU, C., ZHANG, X., et al. “An up-to-date comparison of state-of-
the-art classification algorithms”, Expert systems with applications, v. 82,
pp. 128–150, out. 2017. ISSN: 0957-4174. Disponível em: <https://dx.
doi.org/10.1016/j.eswa.2017.04.003>.

[61] YANG, Y., LIU, X., OTHERS. “A re-examination of text categorization meth-
ods”. In: Sigir, v. 99, p. 99, 1999. Disponível em: <http://people.
csail.mit.edu/jim/temp/yang.pdf>.

[62] FRANÇA, M. V., ZAVERUCHA, G., GARCEZ, A. S. D. “Fast relational
learning using bottom clause propositionalization with artificial neural
networks”, Machine learning, v. 94, n. 1, pp. 81–104, 2014.

42

https://dx.doi.org/10.1016/j.eswa.2017.04.003
https://dx.doi.org/10.1016/j.eswa.2017.04.003
http://people.csail.mit.edu/jim/temp/yang.pdf
http://people.csail.mit.edu/jim/temp/yang.pdf

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Outline

	Background
	Relational dataset
	Propositionalization
	Wordification
	Binary text classification

	Term Weighting
	TF-IDF
	BM25
	DELTA TF-IDF
	TF-RF

	Statistical Testing
	Wilcoxon signed ranks test
	Friedman test
	Nemenyi post-hoc test

	Experiments
	Datasets
	Clowdflow
	Propositional table
	Classifiers
	Results
	ROC AUC score
	Statistical tests

	Accuracy score
	Statistical tests

	Feature construction and filtering

	Discussion

	Conclusions
	Future Works

	References

