

FILTRO RIEMANNIANO ADAPTATIVO BASEADO EM CENTROS DE MASSAS: UMA APLICAÇÃO À DIFUSÃO TENSORIAL DE IMAGENS POR RESSONÂNCIA MAGNÉTICA

Charlan Dellon da Silva Alves

Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia de Sistemas e Computação, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia de Sistemas e Computação.

Orientador: Luidi Gelabert Simonetti

Rio de Janeiro Dezembro de 2020

FILTRO RIEMANNIANO ADAPTATIVO BASEADO EM CENTROS DE MASSAS: UMA APLICAÇÃO À DIFUSÃO TENSORIAL DE IMAGENS POR RESSONÂNCIA MAGNÉTICA

Charlan Dellon da Silva Alves

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Orientador: Luidi Gelabert Simonetti

Aprovada por:

RIO DE JANEIRO, RJ – BRASIL DEZEMBRO DE 2020 Alves, Charlan Dellon da Silva

Filtro riemanniano adaptativo baseado em centros de massas: uma aplicação à difusão tensorial de imagens por Ressonância Magnética/Charlan Dellon da Silva Alves. – Rio de Janeiro: UFRJ/COPPE, 2020.

XII, 67 p.: il.; 29, 7cm.

Orientador: Luidi Gelabert Simonetti

Tese (doutorado) – UFRJ/COPPE/Programa de Engenharia de Sistemas e Computação, 2020.

Referências Bibliográficas: p. 62 – 66.

1. Filtro Riemanniano Adaptativo. 2.Mediana 3. Riemanniana Ponderada. DTI-RM. 4. Média Riemanniana Ponderada. 5. Centro de Massa Riemanniano. Processamento de imagens. I. 6. Simonetti, Luidi Gelabert. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia de Sistemas e Computação. III. Título.

Dedico esta Tese aos meus pais, meus maiores e melhores orientadores na vida. À minha esposa, às minhas filhas Luna e Laís e a toda a minha família que, com muito carinho e apoio, não mediram esforços para que eu chegasse até esta etapa de minha vida.

Agradecimentos

Agradeço primeiramente a Deus por me conceder forças para prosseguir nesta jornada. À minha família por estar sempre ao meu lado, principalmente nos momentos difíceis. Agradeço aos professores Paulo e Ronaldo pela oportunidade de poder trabalhar nesta área de pesquisa, visto que este trabalho foi um desdobramento do projeto "Algoritmo de ponto proximal com decomposições de Schur em domínios de positividade" APQ1-FAPERJ (2012-2013), coordenado pelos Professores Ronaldo e Paulo. Gostaria de agradecer à FAPERJ por nos conceder a licença Matlab e a Workstation para a realização dos testes computacionais. Agradeço à CAPES pelo apoio financeiro e todos aqueles que contribuíram de forma significativa para o desenvolvimento deste trabalho. Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

FILTRO RIEMANNIANO ADAPTATIVO BASEADO EM CENTROS DE MASSAS: UMA APLICAÇÃO À DIFUSÃO TENSORIAL DE IMAGENS POR RESSONÂNCIA MAGNÉTICA

Charlan Dellon da Silva Alves

Dezembro/2020

Orientador: Luidi Gelabert Simonetti

Programa: Engenharia de Sistemas e Computação

Esta tese apresenta um método de preservação de bordas e filtragem de tensores para uma imagem de difusão tensorial por ressonância magnética (DTI-RM). A ideia principal consiste em usar os centros de massa riemannianos, denominado por L^{α} , juntamente com às informações das bordas estimadas no domínio do tensor de difusão, permitindo que as bordas da imagem não sejam suavizadas no processo de filtragem. Para $\alpha \in [1, 2]$, o método abrange tanto o caso padrão do filtro de média riemanniana ponderada ($\alpha = 2$) quanto o filtro de mediana riemanniana ponderada ($\alpha = 1$) em apenas um filtro. Com o objetivo de estabelecer os fundamentos para a boa postura do filtro proposto, denominado Filtro Riemanniano Adaptativo (FRA), nos suportamos em um resultado teórico previamente declarado na literatura sobre a continuidade dos centros de massa Riemannianos L^{α} , em relação ao parâmetro α e aos pontos nas vizinhanças do tensor filtrado. Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Doctor of Science (D.Sc.)

ADAPTIVE RIEMANNIAN FILTER BASED ON CENTERS OF MASS: AN APPLICATION TO DIFFUSION TENSOR BY MAGNETIC RESONANCE IMAGE

Charlan Dellon da Silva Alves

December/2020

Advisor: Luidi Gelabert Simonetti

Department: Systems Engineering and Computer Science

This thesis presents an edge preserving and tensor filtering method for diffusion tensor image. The main idea consists in using the L^{α} Riemannian centers of mass attached to the edge information estimated in the domain of the diffusion tensor so that the image edges not been smoothed in the filtering process. For $\alpha \in [1, 2]$, the method encompasses both the standard case of the Riemannian weighted mean filter ($\alpha = 2$) and the Riemannian weighted median filter ($\alpha = 1$) in only one filter. Aiming to establish the fundamentals for the well-posedness of the proposed filter, called adaptive Riemannian filter (ARF), we claimed a theoretical result previously stated in the literature on the continuity of the L^{α} Riemannian centers of mass, with respect to the parameter α and the points in the neighborhood of the filtered tensor.

Sumário

Li	sta d	le Figu	iras	x
\mathbf{Li}	sta d	le Tab	elas	xii
1	Introdução			1
	1.1	Carac	terísticas e objetivos gerais	1
	1.2	Traba	lhos Relacionados	4
2	Var	iedade	es riemannianas: um resumo dos conceitos básicos	7
	2.1	Varied	lades diferenciáveis	7
		2.1.1	Métrica riemanniana	7
		2.1.2	Conexão riemanniana	8
		2.1.3	Geodésica e Aplicação exponencial	9
		2.1.4	Curvatura e Campo de Jacobi	10
		2.1.5	Variedades de Hadamard	11
3	Oti	mizaçã	io em variedades Riemannianas	13
	3.1	Conve	exidade	13
		3.1.1	Propriedades das funções convexas	15
		3.1.2	Derivadas direcionais e sub gradientes	16
	3.2	Algori	tmos de descida em variedade riemanniana	18
4	Cen	tro de	e massa riemanniano L^{lpha}	22
	4.1	Defini	ção e principais propriedades dos centros de massas riemannia-	
		nos L°	α	22
	4.2	A con	tinuidade dos centros de massa riemanniano L^{α} em α , x_i 's e ω_i 's	24
5	Rep	oresent	ação Riemanniana de tensores de difusão	27
	5.1	Conce	eitos de Análise matricial	27
		5.1.1	Tipos de médias	28
		5.1.2	Médias no cone das matrizes simétricas positivas definidas	29

	5.2	2 Métodos numéricos para cômputo de centros de massa riemannianos		
		em $\mathcal{P}(n)$	30	
		5.2.1 Calculando o fluxo do gradiente em Λ_{j+1}	32	
		5.2.2 Calculando o fluxo do gradiente em Q_{j+1}	34	
6	Apl	plicações em DTI-RM		
	6.1	Modelo matemático de Imagem	36	
		6.1.1 Representação espacial da imagem	37	
	6.2	Detecção de bordas em imagens	37	
		6.2.1 Detecção de borda baseado em derivadas de primeira ordem .	38	
		6.2.2 Operador de detecção de bordas	39	
	6.3	Princípio da formação de imagem por DTI-RM	40	
		6.3.1 Cálculo do tensor de difusão	42	
		6.3.2 Índices invariantes	44	
7	O F	iltro Riemanniano Adaptativo	46	
	7.1	O Filtro Riemanniano Adaptativo (FRA)	46	
8	Exp	erimentos computacionais	51	
	8.1	Experimentos com dados sintéticos	51	
		8.1.1 Quantificação do processo de filtragem	52	
	8.2	Experimentos em dados reais	56	
9	Con	aclusões e Trabalhos futuros	60	
Re	Referências Bibliográficas			

Lista de Figuras

6.1	Volume de imagens de ressonância magnética	41
6.2	Representação elipsoidal do tensor de difusão	42
7.1	À esquerda: imagens DTI-RM. À direita: imagem gerada pelos va- lores de τ em cada posição espacial da imagem. Valores de $\tau = 1$ (regiões na cor amarela) representam as regiões de bordas, enquanto que valores de $\phi = 0$ (regiões na cor azul) representam as regiões fora das bordas	48
7.2	Esquema de filtragem de uma imagem	49
8.1	Imagem DTI-RM sintética: (a): Imagem verdadeira; (b): Imagem verdadeira com ruído riciano com $\sigma = 0.5$; (c): Imagem verdadeira com ruído riciano com $\sigma = 0.1$; (d): Imagem verdadeira com ruído riciano com $\sigma = 1.5$ e (e): Imagem verdadeira com ruído impulsivo	
	(sal e pimenta) correspondendo à 30% do sinal	53
8.2	Resultado do processo de filtragem. As imagens (a-d) são os resulta- dos correspondentes à filtragem de imagens ruidosas com $\sigma = 0.5$ para os filtros FRA, Média, Mediana e Bilateral, respectivamente; as ima- gens (e-h) são os resultados correspondentes à filtragem de imagens ruidosas com $\sigma = 1.0$; as imagens (i-l) são os resultados correspon-	
0.9	dentes à filtragem de imagens ruidosas com $\sigma = 1.5.$	55
8.3	Resultado do processo de filtragem: (a) Imagem obtida pela aplicação do filtro FRA; (b) Imagem obtida aplicando o filtro Média; (c) Ima- gem obtida pela aplicação do filtro Mediana; (d) Imagem obtida apli- cando o filtro Bilateral	56
8.4	(a-d): Regiões de interesse a serem filtradas extraída das fatias 22, 26, 28 e 30 do conjunto de dados reais, respectivamente; (e-h): as mesmas regiões de interesse com ruído riciano de $\sigma = 1.5$ e ruído	50
	impulsivo (25%). \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	57

8.5	Resultados da filtragem: (a-d): filtragem aplicada à fatia 22 conside-	
	rando os filtros FRA, Média, Mediana e Bilateral, respectivamente;	
	(e-h) igual ao anterior, porém aplicado à fatia 26; (i-1) igual ao an-	
	terior, porém aplicado à fatia 28; (m-p) igual ao anterior, no entanto	
	aplicado à fatia 30	59

Lista de Tabelas

8.1	Resultados do processo de filtragem considerando as métricas $(8.1.1)$	
	aplicadas ao caso de ruído riciano	54
8.2	Resultados do processo de filtragem considerando as métricas $(8.1.1)$	
	aplicadas ao caso de ruído impulsivo referente à imagem (8.1e). $\ $. $\ $.	55
8.3	Resultados do processo de filtragem considerando as métricas $(8.1.1)$	
	aplicadas as quatro diferentes fatias de imagens do conjunto de dados	
	reais	58

Capítulo 1

Introdução

1.1 Características e objetivos gerais

Com os avanços tecnológicos na medicina, novas técnicas não invasivas e eficazes para detectar tumores ou anomalias em seres vivos foram desenvolvidas. Uma dessas técnicas é a difusão tensorial de imagens por ressonância magnética (DTI-RM).

Trabalhos recentes têm demonstrado o interesse da comunidade científica no processamento de dados dessa natureza. A DTI-RM tem se apresentado como uma técnica promissora no estudo clínico de patologias do cérebro (por exemplo, Esclerose múltipla, Alzheimer, AVC e Evolução tumoral), auxiliando no planejamento neurocirúrgico conforme discutido em [4], [17] e [52].

As imagens DTI-RM estão particularmente sujeitas a ruídos por duas razões. Primeiro, como múltiplas imagens são necessárias para gerar o tensor de difusão, cada imagem individual deve ser adquirida de forma rápida, causando a redução da razão sinal ruído (RSR). Segundo, a propriedade física (difusão da água) das medidas DTI-RM requer um cuidadoso tratamento do ruído. Portanto, isso explicaria a grande demanda por técnicas de processamento de imagens para a remoção do ruído.

Em DTI-RM, cada *voxel* (*voxel* representa um valor em um malha regular em um espaço tridimensional. O nome *voxel* é um neologismo com origem na mistura das palavras "Volume" e "*Pixel*") é apresentado por uma matriz simétrica positiva definida chamada de tensor de difusão. Inicialmente, a abordagem mais simples em DTI-RM é calcular as grandezas escalares relativas ao tensor de difusão, como por exemplo, o coeficiente de difusão aparente (CDA), a anisotropia relativa (AR) e a anisotropia fracionada (AF) e posteriormente, realizar a visualização e interpretação destes dados.

Apesar de simples, estas abordagens não são recomendadas, pois informações importantes sobre os tensores são perdidas devido à redução de dimensionalidade. Contudo, uma alternativa é tratar as imagens DTI-RM como um conjunto de objetos tridimensionais melhorando o processo de visualização. Estes objetos tridimensionais são chamados de elipsoides onde seus semieixos são dados pelos autovetores associados à representação matricial para os tensores e seus comprimentos correspondem aos módulos dos autovalores.

Neste trabalho, estamos particularmente interessados em sintetizar uma metodologia para filtragem em DTI-RM considerando o cone das matrizes simétricas positivas definidas (SPD) como espaço de busca, uma vez que tensores de difusão assumem as características deste espaço.

Normalmente, os trabalhos baseados em aspectos geométricos relacionados à variedade das matrizes simétricas positivas definidas, quando aplicados ao processo de filtragem, restringem-se à utilização da média ou mediana geométrica. No entanto, o número de trabalhos que usam outros centros de massa como filtro quando comparados aos trabalhos baseados em L^1 (mediana riemanniana ponderada) e L^2 (média riemanniana ponderada) são negligenciados. Por exemplo, apenas [3] na listada referência faz um estudo no uso dos centros de massas riemannianos L^{α} , para $\alpha = \infty$ (circuncentro riemanniano ponderado), como ferramenta para composição de filtros de imagens e destaca suas performances.

A existência, unicidade e convexidade dos centros de massas ponderados riemannianos L^{α} , para $\alpha \in [1, \infty)$ é discutido em Afsari [1], bem como enunciado e provado em Afsari [2]. Para o caso $\alpha = 2$, existem vários autores o qual dedicaram seus estudos. Por exemplo, ver [40] e [34].

Levando em conta os resultados sobre a existência e unicidade sintetizadas por [2] sobre os centros de massas riemannianos, o presente trabalho está direcionado à mostrar a possibilidade de usá-los como uma ferramenta para compôr filtros para imagens DTI-RM. Em particular, introduzimos um filtro usando os centros de massas riemannianos ponderados L^{α} , fazendo com que α varie no intervalo [1, 2]. Essa ideia abrange os casos padrões da média ponderada riemanniana e da mediana em um único filtro. Além disso, α é definido usando informações obtidas das regiões de bordas presentes no domínio da imagem.

Existem várias maneiras de identificar bordas em uma imagem, por exemplo, os algoritmos de detecção de bordas é uma delas. Outra maneira consiste em usar algoritmos de segmentação de imagens, mas isso está fora do objetivo de nossa pesquisa até o momento. Nossa abordagem segue o primeiro caso e será discutido com detalhes na Seção (6).

Através da utilização dos centros de massas riemannianos ponderados L^{α} e das informações de bordas obtidas a partir das imagens DTI-RM, propomos o chamado Filtro Riemanniano Adaptativo (FRA) cuja função além de suavizar imagens DTI-RM é garantir que as bordas da imagem sejam preservadas ao longo do procedimento de filtragem. Para isso, extraímos informações sobre a localização das bordas presentes na imagem usando um algoritmo de detecção de bordas. Com essas informações, é possível definir o valor de α que caracteriza o expoente da função potencial associada ao centro de massa riemanniano ponderado L^{α} da localização correspondente. Assim, podemos suavizar as imagens, preservando as descontinuidades referentes às bordas da mesma.

Para a performance do filtro FRA no procedimento de filtragem, aplicamos a metodologia de pontos proximais apresentada em [27] para calcular os centros de massa riemannianos L^{α} . Essa metodologia consiste em uma técnica de otimização não suave, desenvolvida para calcular o mínimo de funções convexas riemannianas definidas em domínios de positividade. O uso dessa metodologia é justificado pelo fato de que a função potencial no caso $\alpha = 1$ (e provavelmente para valores próximos a ele pelo menos numericamente) não é diferenciável para os registros das amostras dos tensores. Portanto, técnicas suaves apresentam um comportamento inadequado para este α ou valores próximos a ele.

A referida metodologia de filtragem descrita nesta Tese, foi aceita e publicada pela revista Applied Mathematics and Computation - Elservier no artigo intitulado L^{α} Riemannian weighted centers of mass applied to compose an image filter to diffusion tensor imaging. Para maiores detalhes ver [13].

No capítulo 2, revisamos alguns conceitos necessários de geometria riemanniana. No capítulo 3, revisamos alguns conceitos de convexidade e otimização em variedades Riemannianas.

No capítulo 4, sintetizamos os resultados referentes à definição, existência, unicidade e continuidade dos centros de massas L^{α} apresentado em [2]. Além disso, esclarecemos detalhes das demonstrações sobre o resultado de continuidade dos centos de massas L^{α} com relação ao parâmetro α e os pontos do domínio.

No capítulo 5, apresentamos resultados sobre o modelo matemático de imagem, metodologias de detecção de bordas e o princípio da formação de imagens por DTI-RM.

No capítulo 6, abordamos a representação riemanniana de tensores de difusão bem como o conceito de média aplicado ao espaço das matrizes simétricas positivas definidas nos casos euclidiano e riemanniano.

No capítulo 7, definimos o filtro (FRA) proposto no presente trabalho para suavizar imagens de DTI-RM. No capítulo 8, apresentamos os resultados numéricos decorrentes dos testes computacionais realizados. Por fim, finalizamos nosso trabalho com as conclusões e as sugestões de trabalhos futuros.

1.2 Trabalhos Relacionados

Existem numerosas técnicas para processamento de imagens que operam diretamente nas imagens de ressonância magnética, porém, poucas delas operam nas imagens de difusão tensorial. As principais técnicas cuja as extensões foram realizadas para o caso tensorial são os filtros baseados em informações estatísticas como medianas, médias ponderadas, além de interpolações e suavização anisotrópica, cujo objetivo é a suavização e preservação das regiões de contornos presentes nas imagens.

Para pesquisas que abordam diretamente no domínio da imagem, destacamos [7]. Os autores propõem uma nova abordagem para suavização das imagens que consiste em combinar o ajuste dos tensores com um termo regularizador para preservação de bordas. Eles introduziram uma função potencial que consiste em um termo de ajuste dos dados adaptado ao ruído riciano nas DWIs e a variação total nos tensores com respeito à variedade riemanniana de matrizes SPD como termo regularizador. Como estratégia de minimização, eles desenvolveram um esquema generalizado de avanço/retrocesso que emprega etapas implícitas baseadas na média geodésica e etapas explícitas de gradiente para o termo de ajuste dos dados.

Em [9], os autores também propõem um modelo variacional para variação total generalizada de segunda ordem para dados de múltiplas origens, fornecendo algoritmos para os modelos propostos. Eles destacaram o poder dos algoritmos aplicandoos a dados sintéticos e reais de vários tipos, incluindo imagens de DTI-RM.

Outras técnicas para processamento e visualização de imagens DTI-RM são apresentadas em [54]. Nesse trabalho, os autores introduziram uma nova solução analítica para o sistema de equação de difusão de Stejskal-Tanner, em que uma base de duplos tensores derivados da configuração de difusão para o gradiente de detecção, elimina a necessidade de resolver essa equação para cada local da imagem.

Em DTI-RM existem técnicas que trabalham no domínio tensorial sob as duas perspectivas para o conjunto de matrizes SPD, a Euclidiana e a Riemanniana. Isso só é possível, uma vez que os conceitos geométricos, como distâncias, ângulos, áreas, volumes, entre outros, são magnitudes conhecidas nessa variedade. Assim, os algoritmos para processamento de imagem em DTI-RM utilizam essas magnitudes como ferramentas para executar procedimentos como filtragem, interpolação e segmentação.

Uma estrutura poderosa para generalizar estatísticas para variedades riemannianas é proposta por [42]. Os autores mostraram que é possível generalizar para campos tensores muitos algoritmos de processamento de dados geométricos importantes, como interpolação, filtragem, difusão e restauração de dados ausentes. Muitos trabalhos que abordam técnicas de filtragem de DTI-RM foram desenvolvidos usando conceitos como média e mediana ponderada. Isso mostra que, como no caso tradicional do processamento de imagens, os pesquisadores usaram esses conceitos para definir filtros.

Os autores em [56] desenvolveram um novo filtro geométrico e um algoritmo de detecção de bordas para processar dados de imagens não euclidianos, ou seja, dados de imagens residindo em uma variedade riemanniana. Assim, eles evidenciaram como a média ponderada é eficientemente calculada aplicando o método de Newton, que converge mais rápido que o método de descida por gradiente, uma vez que sua convergência é quadrática. Além disso, eles propuseram um núcleo gaussiano anisotrópico para filtragem de imagens e também mostraram como o filtro mediano e o filtro gaussiano anisotrópico podem ser combinados para desenvolver um novo filtro de preservação de bordas que é eficaz para remoção de ruído gaussiano e de impulso.

Em [24] também foram desenvolvidos métodos para produzir estatísticas, a saber, médias e modos de variação neste espaço. Além disso, eles mostraram que essas estatísticas preservam as propriedades geométricas naturais dos tensores, incluindo a restrição aos seus autovalores, que devem ser positivos.

Em [46], foi proposto um operador Laplace-Beltrami e um grafo Laplaciano com o objetivo de modelar arestas em um grafo como geodésicas em uma variedade riemanniana. Usando as propriedades dos campos de Jacobi, eles mostraram como calcular uma matriz de pesos das bordas na qual os elementos refletem as curvaturas seccionais associadas aos caminhos geodésicos na variedade entre os nos.

Uma extensão como o filtro bilateral para suavizar imagens em DTI-RM foi apresentada em [29]. O filtro bilateral usa a noção de dissimilaridade entre os tensores e a distância espacial entre eles para definir seus respectivos pesos. Além disso, esses pesos são inversamente proporcionais à dissimilaridade e à distância espacial nas proximidades do tensor alvo. Ainda em [29], algumas métricas são usadas para calcular os pesos. Entre eles, destaca-se a métrica log-euclidiana.

Usando metodologias de segmentação, podemos separar as regiões de bordas das regiões fora das bordas. Em [30], foi proposta uma nova abordagem de segmentação de textura usando o modelo de mistura gaussiana e covariância no caso riemanniano baseado em medidas de Kullback-Leibler para o caso tensorial. Para estimar e atualizar os parâmetros estatísticos com mais precisão, foi proposta a maximização das médias em termos de componentes, em vez do algoritmo K-means usado originalmente.

Agora, para algoritmos de segmentação, os autores in [50] forneceram uma nova formulação variacional para a segmentação juntamente com a regularização via variação total (TV) em uma configuração riemanniana. Além disso, eles forneceram uma divisão do modelo que é acessível computacionalmente usando um esquema forward-backward generalizado. Embora nossa abordagem se concentre no uso de centros de massa riemannianos L^{α} no espaço tensorial para formular filtros para imagens DTI-RM, existem trabalhos que utilizam esse espaço para desenvolver novas metodologias com relação à área de reconhecimento de padrões.

Como a covariância mostra a forma como as matrizes SPD atuam em uma abordagem riemanniana, autores em [55] desenvolveram um algoritmo de redução de dimensionalidade para construir um conjunto de baixa dimensão a partir de uma variedade riemanniana de alta dimensão. Para esse fim, eles modelaram o mapeamento isométrico bi-linear para identificar uma incorporação de baixa dimensão que maximiza e preserva a distância geodésica. Assim, um método de classificação supervisionado, que incorpora análise discriminante, é proposto com base neste novo conjunto de baixas dimensões e é aplicado à imagem por eletroencefalograma para obter um desempenho de classificação adequado.

Ligados aos recursos de uma Rede Neural Convolucional (CNN), os autores em [25] propõem reformular os recursos convolucionais como um problema de geração e transformação de matriz SPD em ma variedade riemanniana. Eles introduziram várias novas camadas, incluindo um núcleo não linear de geração de camadas, uma camada de transformação de matrizes e uma camada de transformação de vetores, considerando a matriz SPD como uma representação de nível intermediário entre recursos convolucionais e recursos semânticos de alto nível.

Em [58], é proposta uma metodologia que usa as matrizes SPD para a tarefa de classificação a partir de um conjunto limitado de dados de treinamento em variedades de matrizes SPD. A estrutura, denominada Manifold Convex Class Model, caracteriza cada classe no espaço SPD através de um modelo convexo, onde a classificação é realizada calculando as distâncias entre estes modelos. A eficácia da estrutura proposta é demonstrada em dados sintéticos e em várias tarefas de visão computacional, incluindo reconhecimento de objetos, classificação de textura, re-identificação de pessoas e classificação de cenas de tráfego.

Capítulo 2

Variedades riemannianas: um resumo dos conceitos básicos

Neste capítulo, introduziremos algumas notações e propriedades em variedades riemannianas. Esses fatos básicos serão apresentados sem demostrações e podem ser encontrados em qualquer texto básico de Geometria riemanniana, por exemplo, [10] e [48].

2.1 Variedades diferenciáveis

Seja M uma variedade diferenciável e conexa n-dimensional. O espaço tangente a M em p, n-dimensional, será denotado por T_pM e o $TM = \bigcup_{p \in M} T_pM$ representa o fibrado tangente de M. Um campo de vetores X em M de classe C^s , para algum inteiro $s \ge 0$, é uma aplicação $X : M \to TM$ que associa a cada $p \in M$ um $X_p \in T_pM$, de classe C^s . Denotaremos o espaço dos campos de vetores em M, de Classe C^s , por $\Psi^s(M)$.

2.1.1 Métrica riemanniana

Seja M uma variedade diferenciável de dimensão n. Para cada ponto $p \in M$ denotaremos por g uma métrica riemanniana definida sobre M. Assim, definimos por métrica riemanniana a correspondência que associa a cada ponto $p \in M$ um produto interno $\langle u, v \rangle_p := g(u, v)$, com $u, v \in T_p M$, que varia diferenciavelmente com p. Uma variedade com uma métrica riemanniana será chamada de variedade riemanniana. Definimos a norma de um vetor $u \in T_p M$ como $||u||_p := (\langle u, u \rangle_p)^{\frac{1}{2}}$.

Seja M uma variedade riemanniana e $f : M \to \mathbb{R}$ uma função de classe C^1 . Definimos o gradiente de f como o único campo grad $f \in \Psi^0(M)$ dado por

$$\langle grad \ f(p), v \rangle_p = df_p \cdot v,$$

para cada $p \in M$ e $v \in T_pM$, onde $df_p \cdot v$ é a derivada direcional de f, na direção v.

Conhecida a métrica riemanniana, podemos determinar o comprimento de uma curva suave c ligando dois pontos quaisquer $p_1, p_2 \in M$. Seja $c : [a, b] \to M$ uma curva C^{∞} por partes, satisfazendo $c(a) = p_1$ e $c(b) = p_2$. O comprimento da curva c, é dado por

$$L(c) = \int_{a}^{b} ||c'(t)||_{c(t)} d(t),$$

e o comprimento de arco de c, denotado por s(t), é dado por

$$s(t) = \int_{a}^{t} ||c'(t)||_{c(t)} d(t),$$

onde $||c'(t)||_p := (\langle c'(t), c'(t) \rangle_p)^{\frac{1}{2}}.$

Assim, se M é uma variedade riemanniana e $p_1, p_2 \in M$, a distância riemanniana de p_1 a p_2 , denotada por

$$d(p_1p_2) = \inf\{L(c) : c \in C_{p_1p_2}\},\$$

onde C_{p_1,p_2} é o conjunto de todas as curvas suaves C^{∞} por partes conectando os pontos $p_1 \in p_2$.

A função distância $d: M \times M \to \mathbb{R}$ acima é contínua e induz a topologia original em M. O conjunto $\mathbf{B}(p_1, r) = \{p_2 \in M : d(p_1, p_2) < r\}$ é chamado de *bola métrica* de centro p_1 e raio r > 0 e seu fecho é dado por $\overline{\mathbf{B}}(p_1, r) = \{p_2 \in M : d(p_1, p_2) \le r\}$.

Dados M e N variedades riemannianas, um difeomorfismo $\phi:M\to N$ de classe C^∞ é chamado de isometriase

$$\langle u, v \rangle_p = \langle d\phi_p(u), d\phi_p(v) \rangle_{\phi(p)},$$

onde $p \in M$ e $u, v \in T_p M$.

2.1.2 Conexão riemanniana

Seja M uma variedade riemanniana. Denotaremos por ∇ a conexão de Levi-Civita de M e por $\nabla_Y X$ a derivada covariante de X por Y, com $X \in \Psi^1(M)$ e $Y \in \Psi^0(M)$. Observe que $(\nabla_Y X)_p$ depende somente de Y_p e do valor de X ao longo de uma curva em M tangente a X_p .

Seja $c : [a, b] \to M$ uma curva de classe C^{∞} e $X : [a, b] \to TM$ um campo de vetores de classe $C^s(s \ge 1)$ ao longo de c, ou seja, $X(t) = X(c(t)) \in T_{c(t)}M$. A derivada covariante de X ao longo de c será dada por $\frac{DX}{dt} = \nabla_{c'(t)}X$. Um campo de vetor X ao longo de c é dito paralelo, se $\frac{DX}{dt} = \nabla_{c'(t)}X = 0$.

Seja M uma variedade riemanniana e $X \in \Psi^1(M)$. O diferencial do campo X

é o operador linear $\mathcal{L}_X : \Psi^0(M) \to \Psi^0(M)$ dado por $\mathcal{L}_X(Y) = \nabla_Y X$, assim, para cada ponto $p \in M$, temos definida uma aplicação linear $\mathcal{L}_X(p) : T_p M \to T_p M$

$$v \mapsto \mathcal{L}_X(p) \cdot v = \nabla_v X.$$

Quando X = grad f, onde $f : M \to \mathbb{R}$ é uma função de classe C^2 , então $\mathcal{L}_X(p) = Hess f_p$ é a hessiana de f em p.

2.1.3 Geodésica e Aplicação exponencial

Seja Muma variedade riemanniana. Uma curva suave $\gamma:I\to M$ é denominada de geodésica quando

$$\frac{D\gamma'(t)}{dt} = 0,$$

para todo $t \in I \subset \mathbb{R}$, onde $\frac{D\gamma'(t)}{dt}$ é a derivada covariante do campo $\gamma'(t)$ (a saber, $\frac{D\gamma'(t)}{dt}$ representa a projeção ortogonal de $\gamma'(t)$ sobre $T_{\gamma(t)}M$, para cada $t \in I$). Decorre imediatamente que se γ é uma geodésica, então $||\gamma'(t)||$ é constante, ou seja, γ tem velocidade constante. logo, o comprimento do arco de γ a partir de um ponto inicial t_0 é dado por $s(t) = ||\gamma'(t)||(t - t_0)$. Se $||\gamma'(t)|| = 1$ dizemos que γ é parametrizada pelo comprimento do arco ou normalizada. A equação que define uma geodésica é uma equação diferencial ordinária não linear de segunda ordem, assim, uma geodésica γ é determinada por sua posição p_1 e sua velocidade v em p_1 . A restrição de uma geodésica a um intervalo fechado e limitado é chamado de segmento geodésico e denotaremos o conjunto de todos os segmentos geodésicos ligando dois pontos p_1 e p_2 por $\Gamma_{p_1p_2}$. Um segmento geodésico ligando p_1 a p_2 em M é dito minimal se seu comprimento é igual a $d(p_1, p_2)$. Neste caso, a geodésica é chamada de geodésica minimizante.

Quando em uma variedade riemanniana as geodésicas estiverem definidas para todo $t \in \mathbb{R}$, a variedade é chamada de variedade riemanniana Completa.

Em uma variedade riemanniana completa M, para cada $p \in M$, a *aplicação* exponencial em p, representada por $exp_p : T_pM \to M$ é definida por

$$exp_p : T_p M \to M$$
$$v \mapsto exp_p v = \gamma_v(1)$$
$$exp_p tv = \gamma_v(t)$$

onde γ_v é a geodésica em M, tal que $\gamma_v(0) = p$, $\gamma'_v(0) = v$. Além disso, para todo $a \in \mathbb{R}$, com a > 0 a igualdade $\gamma_{av}(t) = \gamma(at)$, para todo $t \in \mathbb{R}$.

A aplicação exponencial de classe C^{∞} é um difeomorfismo numa vizinhança Ω da origem em T_pM . O conjunto $exp_p\Omega = \hat{\Omega}$ é chamado uma vizinhança normal de p. Se $\hat{\Omega}$ é uma vizinhança normal em todos os seus pontos, então dizemos que $\hat{\Omega}$ é uma vizinhança totalmente normal. Se $\mathbf{B}_{\epsilon}(0) = \{v \in T_p M : ||v|| < \epsilon\}$ é tal que $\overline{\mathbf{B}}_{\epsilon}(0) \subset \Omega$, chamamos $exp_p \mathbf{B}_{\epsilon}(0) = \mathbf{B}(p, \epsilon)$ a bola normal de centro p e raio $\epsilon > 0$ que, neste caso, coincide com a bola métrica.

Seja $p \in M$, $\zeta \in T_p \mathbf{B}(p, r)$, onde $r \leq ||\zeta||$. Denominamos por $\mathbf{c}(\zeta)$ a distância ao conjunto dos pontos mínimos de p ("*cut locus*" de p) ao longo da geodésica γ , isto é,

$$\mathbf{c}(\zeta) = \sup \{t > 0 : t\zeta \in T_pM, d(p, \gamma(t)) = t\}.$$

Para qualquer $p \in M$, definimos o raio de injetividade de p, denotado injP a partir da seguinte relação

$$injP = inf \{ \mathbf{c}(\zeta) : \zeta \in T_p \mathbf{B}(p, r) \}$$

e o raio de injetividade de M, denotado por injM é dado como

$$injM = inf \{injP : p \in M\}.$$

Para maiores detalhes ver [10].

Teorema 2.1.1 (Teorema Holf-Rinow). Seja M uma variedade riemanniana. As seguintes afirmações são equivalentes:

- i) Para cada ponto $p \in M$, exp_p está definida em todo T_pM , isto é, M é uma variedade riemanniana completa.
- *ii)* (M, d) é completo como espaço métrico, onde d é a distância riemanniana.
- iii) Os subconjuntos limitados e fechados de M são compactos.
- iv) Além disso, cada uma das afirmações acima implica que para quaisquer dois pontos p_1 , $p_2 \in M$ existe um segmento geodésico γ ligando p_1 à p_2 com $L(\gamma) = d(p_1, p_2)$. A geodésica γ com esta propriedade é chamada minimizante.

2.1.4 Curvatura e Campo de Jacobi

O tensor curvatura \mathcal{R} de uma variedade riemanniana M é dado por $\mathcal{R}(X,Y) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]Z}$, onde $X, Y, Z \in \Psi^s(M), s \geq 2$ e o colchete [X,Y] = YX - XY. A partir do tensor curvatura, podemos definir a curvatura seccional K(X,Y) gerado por X e Y como

$$K(X,Y) = \frac{\langle R(X,Y)Y,X \rangle}{\|X\|^2 \|Y\|^2 - \langle X,Y \rangle^2},$$

onde $||X||^2 = \langle X, X \rangle$. Se para cada par (X, Y) temos que $K(X, Y) \leq 0$ (respectivamente, $K(X, Y) \geq 0$) então dizemos que M é uma variedade riemanniana de curvatura não positiva (respectivamente, não negativa).

Para uma variedade riemanniana M e uma geodésica $\gamma : [a, b] \to M$. Definimos uma variação de γ como uma função $\alpha : [a, b] \times (-\epsilon, \epsilon) \to M$ de classe C^{∞} de modo que $\alpha(t, 0) = \gamma(t)$. Se para todo s, a curva $\alpha(\cdot, s)$ é uma geodésica, então o campo $J(t) = \frac{\partial \alpha}{\partial s}(t, s)$ é um campo de Jacobi ao longo de $\alpha(\cdot, s)$.

2.1.5 Variedades de Hadamard

Uma variedade riemanniana completa, com curvatura $K \leq 0$ é chamada de Variedade de Hadamard. Uma das características principais desta variedade é que ela possui a mesma topologia e estrutura diferencial dos espaços Euclidianos \mathbb{R}^n , nos permitindo obter algumas propriedades geométricas similares.

Teorema 2.1.2 (Hadamard). Se M é uma variedade de Hadamard. Então Mé difeomorfo a \mathbb{R}^n , $n = \dim M$, isto é, a aplicação $exp_p : T_pM \to M$ é um difeomorfismo para todo $p \in M$.

Demonstração. Ver Lema 3.2 de [16], p. 149, ou Teorema 4.1 de [48], p. 221. \Box

Seja M uma variedade de Hadamard e $p_2 \in M$. Pelo teorema (2.1.2) podemos obter a inversa da aplicação exponencial $exp_{p_1}^{-1}: M \to T_{p_1}M$ e a relação entre a distância riemanniana e a aplicação exponencial

$$d(p_1, p_2) = \|exp_{p_2}^{-1}p_1\|,$$
(2.1)

onde $exp_{p_2}^{-1}$ é uma aplicação de classe C^{∞} . Além disso, segue de (2.1) que a função $d^2(\cdot, p_2)$ também é de classe C^{∞} .

Outra propriedade similar à dos espaços Euclidianos obtida em variedades de Hadamard, é a *Lei dos cossenos*, uma propriedade geométrica que pode ser utilizada em situações envolvendo qualquer triângulo geodésico, isto é, não necessariamente restritas a triângulos retângulos.

Seja M uma variedade de Hadamard e seja $\Delta(p_1, p_2, p_3)$ um Triângulo geodésico. Os segmentos geodésicos denotados por γ_{i+1} : $[0, l_{i+1}] \rightarrow M$ que ligam os pontos p_{i+1} a p_{i+2} , com $l_{i+1} := L(\gamma_{i+1})$, definem os lados do triângulo, enquanto $\theta_{i+1} = \langle \gamma'_{i+1}(0), -\gamma'_i(l_i) \rangle$, com $i = 1, 2, 3 \pmod{3}$ é o ângulo formado pelos segmentos geodésicos. Então, valem as relações

$$\theta_1 + \theta_2 + \theta_3 \leq \pi \tag{2.2}$$

$$l_{i+1}^2 + l_{i+2}^2 - 2l_{i+1}l_{i+2}\cos\theta_{i+2} \leq l_i^2$$
(2.3)

$$l_{i+1}\cos\theta_{i+2} + l_i\cos\theta_i \geq l_{i+2}. \tag{2.4}$$

Capítulo 3

Otimização em variedades Riemannianas

3.1 Convexidade

Introduziremos alguns conceitos e resultados sobre convexidade em variedades riemannianas dando ênfase às funções convexas. Para maiores detalhes ver [53].

Seja (M, g) uma variedade riemanniana completa e conexa. Seja $p_1, p_2 \in M$ e $\gamma_{p_1p_2} : [0, 1] \to M$ uma geodésica unindo os pontos p_1 e p_2 , isto é,

$$\gamma_{p_1 p_2}(0) = p_1, \quad \gamma_{p_1 p_2}(1) = p_2.$$
 (3.1)

Um subconjunto A de M é dito ser convexo se A contém todas as geodésicas $\gamma_{p_1p_2}$ de M cujo os pontos p_1 e p_2 estão em A. Além disso, toda interseção de conjuntos convexos são convexas.

Seja $A \in B$ dois subconjuntos convexos em $M \in A \cap B$ sua interseção. Se $p_1, p_2 \in A \cap B$, então, $p_1, p_2 \in A \in p_1, p_2 \in B$. Já que A é convexa, as geodésicas $\gamma_{p_1p_2}$ ligando p_1 à p_2 estão incluídas em A. Analogamente, $\gamma_{p_1p_2}$ estão incluídas em B e assim, elas se encontram em $A \cap B$. Isso, significa que $A \cap B$ é convexo.

Para cada ponto $p_0 \in M$ existe uma vizinhança normal esférica e convexa $\mathbf{B}(p_0, r)$, com a fronteira $\mathbf{S}(p_0, r) = \partial \mathbf{B}(p_0, r)$. Portanto, quaisquer dois pontos $p_1, p_2 \in \mathbf{B}(p_0, r)$ podem ser ligados por uma única geodésica $\gamma_{p_1p_2}(t)$, onde $t \in [0, 1]$ e $\gamma_{p_1p_2}(0) = p_1$, $\gamma_{p_1p_2}(1) = p_2$. Sendo assim, supondo que $\gamma_{p_1p_2}$ seja parametrizada pelas equações $\nu^i = \nu^i(t)$, $i = 1, \ldots, n, t \in [0, 1]$ e considerando a função

$$F(t) = \sum_{i=1}^{n} (\nu^{i}(t))^{2}, \ t \in [0, 1].$$

Podemos observar que $F(0) < r^2$, $F(1) < r^2$. Seja $t_0 \in (0, 1)$ a menor solução da

equação $F(t) = r^2$. Desta forma,

$$0 = \frac{dF}{dt}(t_0) = 2\sum_{i=1}^{n} \nu^i(t_0) \frac{d\nu^i}{dt}(t_0)$$

e assim $\gamma_{p_1p_2}$ é tangente a $\mathbf{S}(p_0, r)$ em um ponto $p_3 = (\nu^i(t_0), \dots, \nu^n(t_0)).$

Em uma variedade Riemanniana M. Definimos por Γ o conjunto de todos os arcos geodésicos ligando p_1 à p_2 , para $p_1, p_2 \in A \subset M$.

Seja $f:A\to \mathbb{R}$ uma função real:

- Se $f(\gamma_{p_1p_2}(t)) \leq (1-t)f(p_1) + tf(p_2), \quad \forall p_1, p_2 \in A, \quad \forall \gamma_{p_1p_2} \in \Gamma, \quad \forall t \in [0,1],$ então f é chamada convexa.
- Se $f(\gamma_{p_1p_2}(t)) < (1-t)f(p_1) + tf(p_2), \quad \forall p_1, p_2 \in A, \ p_1 \neq p_2 \quad \forall \gamma_{p_1p_2} \in \Gamma, \quad \forall t \in [0, 1],$ então a função f é chamada estritamente convexa.
- Se -f é convexa (estritamente convexa), então, f é chamada côncava (estritamente côncava).

Equivalentemente, a função $f : A \to \mathbb{R}$ é convexa se e somente se, para toda geodésica $\gamma : [a, b] \to A$, a função $f \circ \gamma : [a, b] \to \mathbb{R}$ é convexa no caso usual, isto é,

$$(f \circ \gamma)(t - s)t_1 + st_2) \le (t - s)(f \circ \gamma)t_1 + s(f \circ \gamma)t_2, \ \forall t_1, t_2 \in [a, b], \ s \in [0, 1].$$

Dizemos que $f: M \to \mathbb{R}$ é fortemente convexa se existir uma constante estritamente positiva m tal que

$$f(\gamma_{p_1p_2})(t) \le (1-t)f(p_1) + tf(p_2) - \frac{m}{2} \|\gamma'_{p_1p_2}(t)\|^2 (1-t)t, \ \forall p_1, p_2 \in M, \ t \in [0,1].$$

Seja $A \subset M$ um conjunto convexo. Existe uma relação muito forte entre a convexidade da função $f : A \to \mathbb{R}$ e a convexidade do seu epígrafo. A função f é convexa se e somente se seu epígrafo

$$E(f) = \{(p, u) | f(p) \le u\} \subset A \times \mathbb{R}$$

é um conjunto convexo.

Se (p_1, u) , $(p_2, v) \in E(f)$, temos que $u \ge f(p_1)$, $v \ge f(p_2)$ e assim,

$$(1-t)u + tv \ge (1-t)f(p_1) + tf(p_2) \ge f(\gamma_{p-1p_2}(t)).$$

então

$$(\gamma_{p_1p_2}(t), (1-t)u + tv) \in E(f)$$

e assim E(f) é um conjunto totalmente convexo.

3.1.1 Propriedades das funções convexas

Seja $f : A \to \mathbb{R}$ uma função convexa definida em um conjunto convexo A. Seja $I \subset \mathbb{R}$ um conjunto convexo que contém f(A). Considere $\phi : I \to \mathbb{R}$ uma função convexa e crescente. A composição $\phi(f)$ é uma função convexa em A. Pela definição de convexidade temos que

$$f(\gamma_{p_1p_2}(t)) \le (1-t)f(p_1) + tf(p_2)$$

е

$$\phi(f(\gamma_{p_1p_2}(t))) \leq \phi((1-t)f(p_1) + tf(p_2)) \\
\leq (1-t)\phi(f(p_1)) + t\phi(f(p_2)).$$

Além do resultado acima, [53] mostra que funções convexas são fechadas com respeito a combinações lineares positivas. Se f_i , i = 1, ..., n são funções convexas em $A \subset M$ e $c_i \ge 0$, então $\sum_{i=1}^{n} c_i f_i$ é convexa em A. Por hipótese temos que

$$f_i(\gamma_{p_1p_2}(t)) \le (1-t)f_i(p_1) + tf_i(p_2).$$

Sendo assim, segue que

$$(c_i f_i(\gamma_{p_1 p_2}(t)) \le (1-t)c_i f_i(p_1) + tc_i f_i(p_2)$$

е

$$\left(\sum_{i=1}^{n} c_i f_i\right) (\gamma_{p_1 p_2}(t)) \le (1-t) \left(\sum_{i=1}^{n} c_i f_i\right) (p_1) + t \left(\sum_{i=1}^{n} c_i f_i\right) (p_2).$$

A continuidade de uma função está diretamente ligada a propriedade de convexidade. O resultado seguinte nos remete a esta afirmação.

Teorema 3.1.1. Seja A um conjunto convexo com interior não-vazio e $f : A \to \mathbb{R}$ uma função convexa.

- f é contínua em intA.
- Se $p_0 \in A$ é um ponto na fronteira, então

$$\lim_{p \to p_0} \inf f(p) \le f(p_0).$$
(3.2)

Uma função $f:M\to \mathbb{R}$ é chamada de Lipschitz contínua se existe um número real λ tal que

$$|f(p_1) - f(p_2)| \le \lambda d(p_1, p_2), \forall p_1, p_2 \in M,$$
(3.3)

onde $d(p_1, p_2)$ é a distância entre os pontos p_1 e p_2 . O número positivo λ é chamado de constante Lipschitz de f.

O Lema (3.9) em [53] mostra que a propriedade de continuidade Lipschitz em uma variedade riemanniana é apenas uma propriedade local. Sendo assim, uma função $f: M \to \mathbb{R}$ será contínua com constante Lipschitz λ se e somente se f é Lipschitz contínua com a constante λ em uma vizinhança de cada ponto de M. Neste caso, para cada ponto $x \in M$, existe uma vizinhança U_x de x tal que

$$|f(p_1) - f(p_2)| \le \lambda d(p_1, p_2)$$

para todo $p_1, p_2 \in U_x$. Para maiores detalhes e demonstrações ver [53].

3.1.2 Derivadas direcionais e sub gradientes

Seja $A \subset M$ um conjunto convexo. O conjunto T_pA de vetores tangentes à A em p é um cone convexo em T_pM . De fato, suponha que X_p , $Y_p \in T_pA$. Obviamente tX_p , $tY_p \in T_pA, \forall t \geq 0$. Suponha que α , $\beta : [0, \epsilon] \to A$ satisfaz $\alpha(0) = \beta(0) =$ p, $\alpha'(0) = X_p$, $\beta'(0) = Y_p$. Para valores de t > 0 suficientemente pequenos temos uma única geodésica minimizante γ_t que liga $\alpha(t) = \gamma_t(0)$ à $\beta(t) = \gamma_t(1)$. Uma vez que A é convexo e $\gamma_t \subset A$, $\tau(t) = \gamma_t(s)$ $0 \leq s \leq 1$, define uma curva em A tal que $\tau'(0) = (1-s)X_p + sY_p$.

Definição 3.1.1. Seja $f : A \to \mathbb{R}$ uma função real. o limite

$$Df(p, X_p) = \lim_{t \to 0} \frac{f(\gamma(t)) - f(p)}{t}$$
(3.4)

é chamada a derivada direcional de f com respeito à X_p .

Além da noção de derivada direcional, temos a noção de sub-gradiente e subdiferencial. Seja T_p^*A um conjunto de vetores cotangentes à A em um ponto p, onde T_p^*A é um cone convexo em T_p^*M . Considere um ponto genérico $q \in A$ e $\gamma_{pq}(t), t \in [0, 1]$ uma geodésica tal que

$$\gamma_{pq}(0) = p, \ \gamma_{pq}(1) = q, \ \gamma'_{pq}(0) = X_p \in T_p A.$$

Para uma função convexa $f : A \to \mathbb{R}$. A primeira forma $\nu_p \in T_p^*A$ é chamado o sub-gradiente de f em p se

$$f(q) \ge f(p) + \nu_p(\gamma'_{pq}(0)), \ \forall q \in A, \ \forall \gamma_{pq} \in \Gamma.$$

onde Γ é o conjunto de todas as geodésicas qoe conectam p à q.

O conjunto de todos os sub-gradientes de f em p é chamado subdiferencial de fem p e é representado por $\partial f(p)$. O operador $\partial f : p \to \partial f(p)$ é chamado subdiferencial de f.

Segundo [53], se f é uma função convexa então seu subdiferencial $\partial f(p) \subset T_p^*A$ contém pelo menos um elemento. Além disso, $\partial f(p)$ é um conjunto convexo e compacto. Para maiores detalhes ver os teoremas (4.5 e 4.6) em [53].

O teorema seguinte define uma relação direta entre a *derivada direcional* de uma função convexa e seu *subdiferencial*.

Teorema 3.1.2. Seja $f : A \to \mathbb{R}$ uma função convexa. Então, $\omega_p \in \partial f(p)$ se e somente se

$$Df(p, X_p) \ge \omega_p(X_p), \ \forall X_p \in T_p A.$$
 (3.5)

Demonstração. Ver teorema 4.8 em [53].

Existe uma relação direta entre a diferenciabilidade de uma função e sua propriedade de convexidade. Essa relação definem condições necessárias e suficientes para que funções de classe C^1 sejam convexas. Se $f : A \to \mathbb{R}$ é diferenciável em $p \in A$, então sua derivada direcional

$$Df(p, X_p) = \langle gradf(p), X_p \rangle = df(X_p), \ \forall X_p \in T_pA.$$

Se $f : A \to \mathbb{R}$ for diferenciável de classe C^1 em um subconjunto convexo $A \in M$. As seguintes afirmações são válidas:

• A função f é convexa se e somente se

$$f(p_1) + \gamma'_{p_1 p_2}(t)(p_1) \le f(p_2), \ \forall p_1, p_2 \in A, \forall \gamma_{p_1 p_2} \in \Gamma,$$
(3.6)

onde Γ é o conjunto de todas as geodésicas ligando p_1 à p_2 . Além disso, esta expressão é conhecida como desigualdade do gradiente, a mesma válida para o caso euclidiano.

• A função f é estritamente convexa em A se e somente se

$$f(p_1) + \gamma'_{p_1p_2}(t)(p_1) < f(p_2), \ \forall p_1 \neq p_2.$$
 (3.7)

Quando tratamos de uma função de classe C^2 . As condições necessárias e suficientes para que ela seja convexa pode ser descrita da seguinte maneira: Seja $A \subset M$ um conjunto aberto e convexo. Seja $f : A \to \mathbb{R}$ uma função de classe C^2 . A função f é convexa se e somente se

$$\varphi_{p_1 p_2}(t) = f(\gamma_{p_1 p_2}(t)), t \in [0, 1]$$
(3.8)

satisfaz

$$\frac{d^2 \varphi_{p_1 p_2}}{dt^2} \ge 0, \ \forall t \in [0, 1], \ \forall p_1, p_2 \in A, \ \forall \gamma_{p_1 p_2} \in \Gamma.$$
(3.9)

Para $\frac{d^2 \varphi_{p_1 p_2}}{dt^2} \ge 0$, φ é somente uma função convexa. Por outro lado, se $\frac{d^2 \varphi_{p_1 p_2}}{dt^2} > 0$, então φ é uma função estritamente convexa.

Para uma função $f:M\to \mathbb{R}$ de classe $C^2.$ Lembramos que a hessiana de f é definida por

Hess
$$f(X,Y) = \nabla_X(df)(Y), \ \forall X,Y \in \Psi(M).$$

Neste caso, para um conjunto aberto e convexo $A \subset M$. A função $f : A \to \mathbb{R}$ é convexa se e somente se sua hessiana for positiva semidefinida em A. Assim, para $\varphi_{p_1p_2}(t) = f(\gamma_{p_1p_2}(t))$ temos que

$$\frac{d^2\varphi_{p_1p_2}}{dt^2} = \gamma'_{p_1p_2}(\gamma'_{p_1p_2}(f))(\gamma_{p_1p_2}(t)) = \nabla_{\gamma'_{p_1p_2}}(df)(\gamma'_{p_1p_2}) = Hess \ f(\gamma'_{p_1p_2},\gamma'_{p_1p_2}).$$

O Teorema (6.1) em [53] mostra que f é convexa se se somente se $Hess f \ge 0$.

Lembramos que $||\gamma'_{p_1p_2}(t)||$ é constante com respeito à t. Se a função $f: M \to \mathbb{R}$ satisfaz a seguinte desigualdade, para alguma constante m:

$$f(\gamma_{p_1p_2})(t) \le (1-t)f(p_1) + tf(p_2) - \frac{m}{2} ||\gamma'_{p_1p_2}(t)||^2 (1-t)t, \ \forall p_1, p_2 \in M, \ t \in [0,1],$$
(3.10)

então, a função f é chamada fortemente convexa. O teorema apresenta uma caracterização para funções fortemente convexas de classe C^2 .

3.2 Algoritmos de descida em variedade riemanniana

Muitas das propriedades de programação convexa em espaços euclidianos são transferidas para o caso riemanniano devido ao fato das mesmas independerem das métricas riemannianas adotadas. Na verdade, elas representam extensões do caso euclidiano para o riemanniano.

Seja (M, g) uma variedade riemanniana completa de dimensão finita. Lembramos que a geodésica $\gamma : [0, 1] \to M$ a qual verifica as condições iniciais $\gamma(0) = p, \ \gamma'(0) = \nu \in T_p M$ é única e descrita pela fórmula $\gamma(t) = exp_x(t\nu)$.

Os métodos numéricos propostos para encontrar o mínimo de uma função de classe $C^2 f: M \to \mathbb{R}$ são construídos de procedimentos iterativos do tipo

$$p_{i+1} = exp_{p_i}(t_i\nu_i),$$

onde $\nu_i \in T_{p_i}M$ indica a direção e o sentido inicial de movimento do ponto p_i , e

 $t_i \geq 0$ determina o comprimento do passo na geodésica inci
ando em p_i tangente a $\nu_i.$

A utilização de um método iterativo consiste em fixar os vetores ν_i e os números t_i em cada iteração. Desta forma, as sequências $\{p_i\}$ e $\{f(p_i)\}$ dependem da forma escolhida para se gerar tanto ν_i , quanto t_i .

Seja p_* um ponto de mínimo de f. Para obter, a partir de p_i uma vizinhança de p_* , devemos nos mover ao longo da geodésica partindo de p_i em uma direção orientada no sentido na qual a função decresce. Se p_i não for um ponto crítico, então existe uma infinidade de vetores $\nu \in T_{p_i}M$, determinando a *direção* e o *sentido* de descida. A saber, todos os vetores com a propriedade $\langle grad f(p_i), \nu \rangle < 0$, ou equivalentemente $df(p_i)(\nu) < 0$.

Seja $\gamma: [0,1] \to M$ uma geodésica a qual verifica as seguintes condições iniciais

$$\gamma(0) = p_i, \ \gamma'(0) = \nu_i \in T_{p_i} \in M.$$

Nesta geodésica fixe o ponto $p = \gamma(t)$, $0 < t \leq 1$. O arco geodésico que liga p_i à p é a restrição $\gamma(u)$, $u \in [0, t]$. Usando u = st, $s \in [0, 1]$, encontramos a reparametrização $\alpha(s) = \gamma(st), s \in [0, 1]$ e $\alpha(0) = \gamma(0) = p_i$, $\alpha_1(1) = \gamma(t) = p$, $\frac{d\alpha}{ds}(s) = t\frac{d\gamma}{du}(st)$. Definindo $\phi(\alpha) = f(\alpha)$, pela formula de Taylor

$$\phi(1) = \phi(0) + \phi'(0) + \frac{1}{2}\phi''(s_0), \ s_0 \in [0, 1]$$

segue que

$$f(x) = f(p_i) + df(\alpha'(0)) + \frac{1}{2}Hessf(\alpha'(s_0), \alpha'(s_0))$$

= $f(p_i) + tdf(\nu_i) + \frac{t^2}{2}Hessf\left(\frac{d\gamma}{du}(s_0t), \frac{d\gamma}{du}(s_0t)\right), \ s_0 \in [0, 1].$

Alternativamente, para $\phi(t) = f(\gamma(t))$ temos que

$$\phi(t) = \phi(0) + t\phi'(0) + \frac{t^2}{2}\phi''(t_0), \ t_0 \in [0, t]$$

Assim,

$$f(p) = f(p_i) + tdf(\nu_i) + \frac{t^2}{2}Hessf(\gamma'(t_0), \gamma'(t_0))$$

Para |t| suficientemente pequeno, a aproximação linear de f(p) com respeito à t é $f(p_i) + df(\nu_i)$. Desta forma, pelo menos localmente, a relação $df(\nu_i) < 0$ implica $f(p) < f(p_i)$.

Se p_1 é um estimado sem relação ao ponto de mínimo p_* de f, então o algoritmo geral de descida segue a seguinte formulação:

- 1) inicie i=1,
- 2) compute o vetor ν_i tal que $df(\nu_i) < 0$,
- 3) compute o número t_i tal que $f(exp_{p_i}(t_i\nu_i)) < f(p_i)$,
- 4) compute p_{i+1} de $p_{i+1} = exp_{p_i}(t_i\nu_i)$,
- 5) Se p_{i+1} satisfaz o dado critério de convergência, então pare.
- 6) defina i = i + 1 e volte para o passo 2).

Se $p_1, p_2, \ldots, p_i, \ldots$ for uma sequência convergente para p_* , e p_* for um ponto de mínimo local, então a sequência $f(p_1) > f(p_2) > \ldots > f(p_i) > \ldots$ converge para o mínimo local $f(p_*)$.

Do ponto de vista numérico, é suficiente aproximar $f(p_*)$ por $f(p_i)$, onde p_i é fixado por um dos seguintes critérios de parada

$$\|gradf(p_i)\| \le \epsilon \text{ ou } |f(p_i) - f(p_{i-1})| \le \eta.$$

O teorema seguinte nos dá as condições para as quais o critério de parada $||grad f(p_k)|| \leq \epsilon$, para algum $\epsilon > 0$ pré-fixado seja válido.

Teorema 3.2.1. Seja $f : M \to \mathbb{R}$ uma função de classe C^2 em um conjunto aberto e convexo $A \subset M$:

- 1) $p_1 \in A \notin dado;$
- 2) $S = \{p \in M | f(p) \le f(p_1)\}$ é um subconjunto de A;
- 3) $\exists L \in (-\infty, \infty)$ tal que $f(p) \ge L, \forall p \in S$;
- 4) $\exists b > 0$ tal que os valores próprios $\lambda_j(p), j = 1, ..., n$ da Hessf(p) satisfaz $\lambda_j(p) \leq b, \ \forall p \in S;$
- 5) ν_i é escolhido tal que

$$g(\nu_i, gradf(p_i)) \leq -\epsilon_1 \|\nu_i\| \|gradf(p_i)\|,$$

 $\forall i \in \mathbb{N}^*, onde \epsilon_1 > 0 \notin dado;$

6) existe $\epsilon_2 \in [0,1)$ tal que

$$|g(\gamma'_{p_ip_{i+1}}(t_i), gradf(p_{i+1}))| \le \epsilon_2 |g(\nu_i, gradf(p_i))|, \forall i \in \mathbb{N}^*;$$

7) Existe $\epsilon_3 > 0$ tal que

$$f(p_i) - f(p_{i+1}) \ge -\epsilon_3 t_i df(\nu_i), \ \forall i \in \mathbb{N}^*,$$

então para cada $\epsilon_4 > 0$ existe $k \in \mathbb{N}^*$ tal que $\|gradf(p_k)\| < \epsilon_4$.

Demonstração. Pode ser encontrada em ([53], pg 257).

O teorema acima garante apenas que $\lim_{i\to\infty} grad f(p_i) = 0$. Se queremos obter condições suficientes para a convergência da sequência p_i para um ponto crítico de f, devemos introduzir hipóteses adicionais. Por exemplo, supor que o conjunto Sde f definido na hipótese 2 do teorema é compacto.

Se as hipóteses do teorema (3.2.1) são validas e se o conjunto S for compacto, então todo ponto limite da sequência p_i é um ponto crítico de f em S. Neste caso, a sequência $p_i \,\subset S$ contém uma subsequência p_{in} que converge para $p_* \in S$. Supondo que p_* não seja um ponto crítico de f, isto é, $df(p_*) \neq 0$. então $\lim_{n\to\infty} df(p_{in}) =$ $df(p_*) \neq 0$, contradizendo a igualdade $\lim_{i\to\infty} grad f(p_i) = 0$ estabelecida pelo teorema (3.2.1). Assim temos que p_* é um ponto crítico de f.

Se a hipótese 4 do teorema (3.2.1) é substituída pela existência de a > 0 tal que $0 < a \leq \lambda_i(p) < b, i = 1, ..., n, \forall p \in S$, então f é uma função fortemente convexa em S. Consequentemente o ponto crítico p_* de f em S é o seu único mínimo global.

Capítulo 4

Centro de massa riemanniano L^{α}

Embora o centro de massa L^2 seja mais comumente usado em muitas aplicações, os centros de massa generalizados L^{α} , para $1 \leq \alpha \leq +\infty$ ($\alpha \neq 2$), também podem ser úteis. Segundo Afsari [1], a medida que α cresce, o efeito dos *outliers* (os *outliers* são dados que se diferenciam drasticamente de todos os outros) na determinação da média torna-se mais evidente. Dessa forma, usar outros valores de α dão mais flexibilidade ao usuário para diferentes aplicações.

Lembre-se que $\alpha = 1$ corresponde à mediana ponderada em espaços euclidianos. Para $\alpha = 1$ os *outliers* têm um efeito mínimo e neste caso, os centros de massa são mais robustos. Por outro lado, para $\alpha = \infty$, somente os *outliers* contribuem para o cálculo da média.

4.1 Definição e principais propriedades dos centros de massas riemannianos L^{α}

O processo de filtragem consiste em computar centros de massa riemannianos (centroides riemannianos) de um conjunto de amostras em M e usá-los como solução do processo de filtragem. Formalmente, seja $\{x_i\}_{i=1}^N \subset M$ um conjunto finito. Aqui, discutimos aspectos gerais relacionados à existência e a unicidade de centros de massa ponderados riemannianos L^{α} , por $\alpha \in [1, \infty)$.

Primeiro, para sintetizar uma definição apropriada de centro de massa, devemos assumir que os pontos $x_i \in M$ pertencem a um conjunto convexo $U \subset M$, o qual é um conjunto tal que quaisquer dois pontos nele contidos possam ser conectados por uma simples e única, para variedades Hadamard (variedades riemannianas de curvatura seccional não positiva em qualquer ponto), geodésica inteiramente contida em U. Nesse caso, a média ponderada e a mediana existem e são únicas, conforme discutido em [34].

O mesmo resultado é garantido assumindo que a variedade riemanniana M tenha

uma curvatura seccional limitada superiormente por algum $\delta > 0$, em qualquer ponto. Nesse caso, o limite superior do diâmetro deve ser igual a $\frac{\pi}{2\sqrt{\delta}}$, conforme discutido em [34] e [24]. Para o caso geral, a existência e a unicidade dos centros de massa riemannianos L^{α} para $\alpha \in [1, \infty]$ são garantidas em [1] e [42].

A definição para o caso discreto dos centros de massa ponderados riemannianos L^{α} , para $1 \leq \alpha \leq \infty$, é enunciado como segue.

Definição 4.1.1. Seja (M, d) uma variedade riemanniana. Também, seja β uma distribuição de probabilidade, com suporte finito em $\mathcal{X} = \{x_i\}_{i=1}^N \subset M$, onde $\beta(x_i) = \omega_i > 0$. O centro de massa riemanniano L^{α} é definido como um mínimo da função potencial $f_{\alpha} : M \to \mathbb{R}$ definida por

$$f_{\alpha}(x) = \begin{cases} \frac{1}{\alpha} \sum_{i=1}^{N} \omega_i d(x, x_i)^{\alpha}, \ \alpha \in [1, \infty), \\ \max_i d(x, x_i), \quad \alpha = \infty. \end{cases}$$
(4.1)

Lema 4.1.1. Seja (M, d) uma variedade riemanniana completa com curvatura seccional limitada superiormente por Δ e cujo o raio de injetividade é injM. Se $f_{\alpha} : \overline{\mathbb{B}(o, \rho)} \to \mathbb{R}$ e $\mathcal{X} = \{x_i\}_{i=1}^N \subset \overline{\mathbb{B}(o, \rho)} \subset M$, com $\rho < \rho_{\Delta, \alpha}$, onde $\overline{\mathbb{B}(o, \rho)}$ é o fecho da bola aberta de raio ρ e centro o, onde $\rho_{\Delta, \alpha}$ é definido pela seguinte relação

$$\rho_{\Delta,\alpha} = \begin{cases} \frac{1}{2}min\left\{injM, \frac{\pi}{2\sqrt{\Delta}}\right\} &, \quad 1 \le \alpha < 2, \\ \frac{1}{2}min\left\{injM, \frac{\pi}{\sqrt{\Delta}}\right\} &, \quad 2 \le \alpha \le \infty. \end{cases}$$
(4.2)

Então, f_{α} tem um único centro de massa riemanniano L^{α} , o qual encontra-se em $\mathbb{B}(o, \rho)$. Além disso, a hessiana de f_{α} é positiva definida em $x \neq x_i$.

Demonstração. Segue diretamente do teorema 2.1 em [1].

Lema 4.1.2. Seja $f_{\alpha} : M \to \mathbb{R}, \alpha \in [1, \infty)$, uma função potencial definida em (4.1). Então, f_{α} é estritamente convexa e suave exceto para o caso $\alpha = 1$, onde f_1 é apenas convexa e suave para $x \neq x_i$, $i = 1, \ldots, N$. Seu gradiente, denotado por grad f_{α} , para qualquer $\alpha \in [1, \infty)$, em $x \in M$, é dado por

grad
$$f_{\alpha}(x) = -\sum_{i=1}^{N} \omega_i \ d(x, x_i)^{\alpha - 2} log_x(x_i),$$
 (4.3)

e sua Hessiana é a simétrica e bi-linear forma dada por Hess $f_{\alpha}(x) : T_x M \times T_x M \to \mathbb{R}$, tal que Hess $f_{\alpha}(x)(\dot{\gamma}(t), \dot{\gamma}(t)) = \frac{d^2}{dt^2} f_{\alpha}(\gamma(t))|_{t=0}$, onde $\gamma : \mathbb{R} \to M$ é qualquer curva suave ou geodésica passando por $x \in t$.

Demonstração. Segue diretamente do teorema 2.1 em [1].

Levando em conta os Lemas (4.1.2) e (4.1.1), o centro de massa riemanniano L^{α} , para qualquer $\alpha \in [1, \infty)$ (exceto para o caso $\alpha = 1$ e $x = x_i$, $i = 1, \ldots, N$), é caracterizado pela seguinte equação

$$\sum_{i=1}^{N} \omega_i \ d(x, x_i)^{\alpha - 2} log_x(x_i) = 0.$$
(4.4)

4.2 A continuidade dos centros de massa riemanniano L^{α} em α , x_i 's e ω_i 's

A continuidade dos centros de massas riemannianos L^{α} com relação ao parâmetro α e as amostras no domínio da imagem DTI-RM, bem como em seus pesos, é uma característica essencial para garantir uma boa correlação espacial no processo de filtragem, já que um filtro deve manter-se estável sem grandes variações para pequenas perturbações nos valores de α , bem como nos pontos x_i 's de uma amostra e seus pesos. Aqui, sintetizamos resultados sobre a continuidade dos L^{α} em ralação aos elementos α , $x_i \in \omega_i$ apresentados em [2] e esclarecemos detalhes sobre as provas deles.

Lema 4.2.1. Seja $f_{\alpha} : \overline{\mathbb{B}(o, \rho)} \subset M \to \mathbb{R}$, para $\rho < \rho_{\Delta, \alpha}$, com $\rho_{\Delta, \alpha}$ dado como em (4.2). Para $\alpha = 1$ e $\alpha = \infty$, f_{α} é Lipschitz, com constate Lipschitz igual a 1.

Demonstração. Observe que mantendo os pesos ω_i , $i = 1, \ldots, N$ fixos, a função f_1 é Lipschitz contínua, com constante Lipschitz igual a 1. De fato, $d(x, x_i) \leq d(y, x_i) + d(x, y)$, para qualquer $x, y \in \overline{\mathbb{B}(o, \rho)}$. Isso implica que $\omega_i d(x, x_i) - \omega_i d(y, x_i) \leq \omega_i d(x, y)$, para todo x_i , $i = 1, \ldots, N$. Assim, $f_1(x) - f_1(y) = \sum_{i=1}^N (\omega_i d(x, x_i) - \omega_i d(y, x_i)) \leq \sum_{i=1}^N \omega_i d(x, y) = d(x, y) \sum_{i=1}^N \omega_i = d(x, y)$. Agora, considerando f_{∞} , defina

$$\overline{f}_{\alpha} = \left(\sum_{i}^{N} \omega_{i} d(x, x_{i})^{\alpha}\right)^{\frac{1}{\alpha}}, \quad \{x_{i}\}_{i=1}^{N} \subset \overline{\mathbb{B}(o, \rho)}, \tag{4.5}$$

também mantendo os pesos ω_i , i = 1, ..., N fixos. Podemos observar que $\overline{f}_{\alpha} \to f_{\infty}$ quando $\alpha \to \infty$. Além disso, nas condições do Lema (4.1.1), ambas $f_{\alpha} \in \overline{f}_{\alpha}$ tem o mesmo e único mínimo, isto é, \overline{x}_{α} . Note que pelo Lema (4.1.2) e a conhecida regra da cadeia, que o gradiente de \overline{f}_{α} , em $x \in \overline{\mathbb{B}(o, \rho)}$, é dado por

$$\nabla \overline{f}_{\alpha} = -\frac{1}{\alpha} \left(\sum_{i=1}^{N} \omega_i d(x, x_i)^{\alpha} \right)^{\frac{1}{\alpha} - 1} \sum_{i=1}^{N} \omega_i d(x, x_i)^{\alpha - 2} log_x(x_i).$$

Afirmamos que $\|\nabla \overline{f}_{\alpha}\| \leq 1$ para todo $x \in \overline{\mathbb{B}(o,\rho)}$. Assim, \overline{f}_{α} é Lipschitz contínua, com constante Lipschitz igual a 1, para $1 \leq \alpha \leq \infty$. De fato, $\alpha = 1$
e levando em conta que $\mathcal{X} = \{x_i\}_{i=1}^N \subset \overline{\mathbb{B}(o, \rho)}$, a saber $d(x, x_i) \leq 2\rho$, para qualquer $x \in \overline{\mathbb{B}(o, \rho)}$, $\|\log_x(x_i)\| = d(x, x_i) = d_x(x_i)$ e $\sum_i^N \omega_i = 1$, nós temos que

$$\begin{aligned} \|\nabla \overline{f}_{\alpha}(x)\|_{x} &\leq \frac{1}{\alpha} \left(\sum_{i=1}^{N} \omega_{i} d_{x}(x_{i})^{\alpha}\right)^{\frac{1}{\alpha}-1} \cdot \sum_{i=1}^{N} \omega_{i} d_{x}(x_{i})^{\alpha-2} \|\log_{x}(x_{i})\| \\ &= \frac{1}{\alpha} \left(\sum_{i=1}^{N} \omega_{i} d_{x}(x_{i})^{\alpha}\right)^{\frac{1}{\alpha}-1} \sum_{i=1}^{N} \omega_{i} d_{x}(x_{i})^{\alpha-1} \\ &\leq \frac{1}{\alpha} \left(\sum_{i=1}^{N} \omega_{i}(2\rho)^{\alpha}\right)^{\frac{1}{\alpha}-1} \sum_{i=1}^{N} \omega_{i}(2\rho)^{\alpha-1} = \frac{1}{\alpha} \leq 1, \end{aligned}$$

para todo $\alpha \in [1, \infty)$. Desta forma, para $\alpha \to \infty$ nós temos que $\|\nabla \overline{f}_{\alpha}\| \to 0$. Assim, concluímos o resultado. Já que \overline{f}_{α} é Lipschitz contínua, com Lipschitz constante igual a 1, para todo $1 \leq \alpha \leq \infty$, então a sequência $\{\overline{f}_{\alpha}\}_{\alpha}$ é uniforme, limitada e equicontínua. Pelo Teorema **Arzela-Ascolli**, existe uma subsequência $\{\overline{f}_{\alpha_j}\}$ a qual converge uniformemente para f_{∞} em $\mathbb{B}(o, \rho)$. Como a convergência é uniforme, a função limite f_{∞} é Lipschitz, com constante Lipschitz iguala 1.

Teorema 4.2.1. Seja $\Omega = \{\omega_i\}_{i=1}^N$ uma medida de probabilidade com suporte em $\mathcal{X} = \{x_i\}_{i=1}^n \subset \mathbb{B}(o, \rho) \ e \ \rho < \rho_{\Delta,\alpha}$, onde $\rho_{\Delta,\alpha}$ é definida como em (4.2). Denote o centro de massa riemanniano L^{α} , para $1 \leq \alpha \leq \infty$, correspondendo à Ω , apenas por L^{α} . Então, L^{α} depende continuamente em α , $\mathcal{X} \in \Omega$.

Demonstração. Primeiro assumimos $2 \leq \alpha \leq \infty$. Por hipóteses, L^{α} é a solução da equação $F_{\alpha}(x; \mathcal{X}, \Omega) = -\nabla f_{\alpha} = 0$. Note que a derivada de F_{α} , com respeito a x, é a hessiana de f_{α} . Também, observe que F_{α} não é C^{∞} em $x = x_i, i = 1, \dots, N$, e o grau de suavidade em $x = x_i, i = 1, ..., N$, depende de α . Para $x \notin \mathcal{X}, F_{\alpha}$ é de classe C^{∞} . Usando o fato que $F_{\alpha}(L^{\alpha}; \mathcal{X}, \Omega) = -\nabla f_{\alpha} = 0$ e que o gradiente de ∇F_{α} é não singular (em outra perspectiva, ela é simétrica positiva definida uma vez que f_p é estritamente convexa como afirma o Teorema 2.1 em [1]) como L^{α} é único, pelo teorema da **Função implícita**, existe $\epsilon > 0$ para o qual ∇F_{α} é não singular, para todo x em uma ϵ -vizinhança $V_{\epsilon}(L^{\alpha}) \subset B(o,\rho)$ de L^{α} . Assim, L^{α} depende continuamente em $\mathcal{X} \in \Omega$. Para $1 \leq \alpha < 2$, F_{α} não é diferenciável em $x'_i s$. Assim, a presente argumentação não pode ser usada. No entanto, como $B(o, \rho)$ é compacto $\{\overline{f}_{\alpha}\}_{\alpha}$ é equicontínuo e uniformemente limitado (ver Lema 4.2.1), novamente pelo Teorema Arzela-Ascolli podemos extrair uma subsequência convergente $\langle \overline{f}_{\alpha}^{k_j} \rangle_{k_i}$ que converge uniformemente em \overline{f}_{α} . Assim, para qualquer $\epsilon > 0$ e k_j suficientemente grande, $|\overline{f}_{\alpha}(x,\mathcal{X}_{k_j}) - \overline{f}_{\alpha}(x,\mathcal{X})| < \epsilon$. Então, o min $\overline{f}_{\alpha}(x,\mathcal{X}_{k_j}) \rightarrow \min \overline{f}_{\alpha}(x,\mathcal{X})$ quando $\mathcal{X}_k \to \mathcal{X}$. Como $\overline{f}_{\alpha}(\cdot, \cdot)$ é equicontínua, temos

$$|\overline{f}_{\alpha}(\overline{x}_{\alpha}^{k_{j}},\mathcal{X}) - \overline{f}_{\alpha}(L^{\alpha},\mathcal{X})| \leq |\overline{f}_{\alpha}(\overline{x}_{\alpha}^{k_{j}},\mathcal{X}) - \overline{f}_{\alpha}(\overline{x}_{\alpha}^{k_{j}},\mathcal{X}_{k_{j}})| + |\overline{f}_{\alpha}(\overline{x}_{\alpha}^{k_{j}},\mathcal{X}_{k_{j}}) - \overline{f}_{\alpha}(L^{\alpha},\mathcal{X})|.$$

Desa forma, o lim $\overline{f}_{\alpha}(\overline{x}_{\alpha}^{k_{j}}, \mathcal{X}) = \overline{f}_{\alpha}(L^{\alpha}, \mathcal{X})$ quando $\overline{x}_{\alpha}^{k_{j}} \to L^{\alpha}$. Como L^{α} é o único minimizador de \overline{f}_{α} e f_{α} , temos que o lim $\overline{x}_{\alpha}^{k_{j}} = L^{\alpha}$. Agora, usando o fato que lim $\overline{x}_{\alpha}^{k} = L^{\alpha}$ e que lim $\overline{f}_{\alpha}(L^{\alpha}) = f_{\alpha}(L^{\alpha})$, Nós temos $\lim_{\alpha \to \infty} \overline{f}_{\alpha}(L^{\alpha}) = f_{\alpha}(L^{\alpha})$. \Box

Capítulo 5

Representação Riemanniana de tensores de difusão

Nesta seção apresentamos alguns resultados acerca das matrizes simétricas positivas definidas. Para maiores esclarecimentos, sugerimos a consulta de [31].

5.1 Conceitos de Análise matricial

Seja $x^T y$ o produto interno em \mathbb{R}^n , onde $x \in y$ são vetores dados. Podemos estendê-lo ao espaço das matrizes retangulares levando em consideração a aplicação $vec : M_{m \times n} \to \mathbb{R}^{n.m}$, definida por $vec(A) = (a_{11}, \dots, a_{m1}, a_{12}, \dots, a_{m2}, \dots, a_{1n}, \dots, a_{mn})^T$, que transforma matrizes em vetores. Dadas matrizes $A, B \in M_{m \times n}$, o produto interno entre $A \in B$, denotado por $A \cdot B$, pode ser escrito como

$$A \cdot B = vec(B)^T vec(A) = \sum_{i=1}^m \sum_{j=1}^n a_{ij} b_{ij} = tr(B^T A),$$
(5.1)

com norma dada por

$$\sqrt{(A \cdot A)} = \sqrt{tr(A^T A)} = ||A||_F, \qquad (5.2)$$

onde $||A||_F$ é a norma de Frobenius de A. Uma matriz quadrada A de ordem n é simétrica positiva semi-definida se $x^T A x \ge 0$, para todo $x \in \mathbb{R}^n$ e simétrica positiva definida se $x^T A x > 0$, para todo $x \ne 0$.

Teorema 5.1.1 (Teorema espectral para matrizes simétricas). Uma matriz A é simétrica se, e somente se, existe uma matriz Q, $n \times n$, tal que $Q^T Q = QQ^T = I$ e $Q^T A Q = \Lambda$, onde Λ é real e diagonal. $\Lambda = Q^T A Q$ é a decomposição de Schur em autovalores da matriz A.

Em DTI-RM, torna-se necessário conhecer alguns conceitos e propriedades inerentes à geometria natural da variedade de matrizes simétricas positivas definidas de ordem n, denotado aqui por $\mathcal{P}(n)$. Dentre as referências que tratam do assunto destacam-se [8] e [40].

Seja $\mathcal{P}(n)$ uma variedade diferenciável munida de estrutura Riemanniana cujo produto interno em cada ponto $P \in \mathcal{P}(n)$, é definido por

$$\langle A, B \rangle = tr(P^{-1}AP^{-1}B), \tag{5.3}$$

onde $A, B \in T_P \mathcal{P}(n)$, sendo $T_P \mathcal{P}(n)$ o espaço tangente à $\mathcal{P}(n)$ em P. Sendo assim, para uma curva suave $\gamma : [a, b] \to \mathcal{P}(n)$, o comprimento de $\gamma(t)$ é definido como

$$\int_{a}^{b} \|\gamma'(t)\|_{\gamma(t)} dt = \int_{a}^{b} \sqrt{tr\left([\gamma(t)]^{-1}\gamma'(t)[\gamma(t)]^{-1}\gamma'(t)\right)} dt.$$
(5.4)

Por outro lado, a única geodésica que conecta dois pontos $P, Q \in \mathcal{P}(n)$ é expressa por

$$\gamma(t) = P^{\frac{1}{2}} (P^{-\frac{1}{2}} Q P^{-\frac{1}{2}})^t P^{\frac{1}{2}}.$$
(5.5)

Além disso, a distância geodésica entre $P \in Q$ é dada por:

$$d(P,Q) = \sqrt{tr(log^2(P^{-1}Q))}.$$
(5.6)

Por fim, para um ponto $P \in \mathcal{P}(n)$ as aplicações exponencial $exp_P : T_P\mathcal{P}(n) \to \mathcal{P}(n)$ e logarítmica $log_P : \mathcal{P}(n) \to T_P\mathcal{P}(n)$, têm suas expressões dadas por

$$exp_P V = P^{\frac{1}{2}} exp \ V P^{\frac{1}{2}},$$
 (5.7)

$$log_P Q = log\left(P^{\frac{1}{2}}QP^{\frac{1}{2}}\right),\tag{5.8}$$

onde $V \in T_P \mathcal{P}(n)$, $Q \in \mathcal{P}(n)$, exp representa a aplicação exponencial usual para matrizes simétricas e log, a aplicação logarítmica usual para matrizes simétricas positivas definidas.

Seja $A \in \mathcal{P}(n)$ uma matriz simétrica definida positiva. Denomina-se raiz quadrada de A, a matriz $B \in \mathcal{P}(n)$ que satisfaz BB = A. Nesse caso B é representado por $A^{\frac{1}{2}}$. Se $Q\Lambda^2 Q^T$ é a diagonalização de A, então, $A^{\frac{1}{2}} = Q\Lambda Q^T$ é a raiz quadrada de A e é obtida de maneira única.

5.1.1 Tipos de médias

Os dados de imagens DTI-RM não podem ser tratados pela perspectiva de estruturas matemáticas clássicas, tais como os espaços vetoriais e suas propriedades, visto que as manipulações desses dados são realizadas em $\mathcal{P}(n)$ que topologicamente representa um exemplo de cone convexo, aberto e sem vértice. Portanto, cuidados devem ser tomados quando se realizam cálculos e estatísticas no espaço de tensores conforme pode ser verificado em [24] e [42].

Exemplo 5.1.1. Considere um conjunto de m números positivos, x_1, \dots, x_m , a média aritmética ponderada deste conjunto é o número $\bar{x} = \sum_{i=1}^{m} \omega_i x_i$, onde $\omega_i \in [0, 1], i = 1, \dots, m$ são os pesos com $\sum_{i=1}^{m} \omega_i = 1$. Quando os pesos são igualmente distribuídos, isto é, $\omega_i = \frac{1}{m}$, temos simplesmente a média aritmética. Essa média possui a seguinte propriedade variacional

$$\bar{x} = \min_{x>0} \left\{ \sum_{i=1}^{m} \omega_i d_e(x_i, x)^2 \right\}$$
 (5.9)

onde $d_e(x,y) = |x-y|$ é a distância euclidiana usual em \mathbb{R} .

Exemplo 5.1.2. A média geométrica de x_1, \ldots, x_m , dada por $\bar{x} = \sqrt[m]{x_1.x_2...x_m}$, também possui uma formulação variacional. Ela pode ser definida como

$$\bar{x} = \min_{x>0} \left\{ \sum_{i=1}^{m} d_h(x_i, x)^2 \right\},$$
(5.10)

onde $d_h(x,y) = |\log x - \log y|$ é a distância hiperbólica entre x e y.

Exemplo 5.1.3. A média harmônica de um conjunto de m números positivos, é obtida somando-se o inverso de cada valor x_i ., isto é,

$$\bar{x} = \frac{1}{m} \sum_{i=1}^{m} (x_i)^{-1}.$$
 (5.11)

5.1.2 Médias no cone das matrizes simétricas positivas definidas

A média ponderada no caso euclidiano de m matrizes simétricas positivas definidas X_1, \dots, X_m é definida como

$$\mu_{e} = \underset{X \in \mathcal{P}(n)}{\operatorname{argmin}} \left\{ \sum_{i=1}^{m} \omega_{i} ||X_{i} - X||_{F}^{2} \right\}.$$
(5.12)

onde $\omega_i \in [0, 1], \ i = 1, \cdots, m, \ \text{com} \ \sum_{i=1}^m \ \omega_i = 1.$

Contudo, esta abordagem pode ser estendida de forma direta para o caso riemanniano. Deste modo, a média ponderada no caso Riemanniano, isto é, associada à métrica descrita na equação (5.6) de N matrizes simétricas positivas definidas X_1, \dots, X_N pode ser definida como

$$\mu = \underset{X \in \mathcal{P}(n)}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \omega_i d(X, X_i)^2 \right\}.$$
(5.13)

onde $\omega_i \in [0, 1], \ i = 1, \dots, N, \ \text{com } \sum_{i=1}^N \ \omega_i = 1.$

O centro de massa riemanniano L^{α} , com $\alpha \in [1, \infty)$ em $M = \mathcal{P}(n)$, pode ser obtido solucionando o problema de minimização (5.14). Este problema pode ser definido através das relações (5.13 e 4.1). Desta forma, temos o seguinte problema de minimização em $\mathcal{P}(n)$:

$$L^{\alpha} = \underset{X \in \mathcal{P}(n)}{\operatorname{argmin}} \left\{ \frac{1}{\alpha} \sum_{i=1}^{N} \omega_{i} d(X, X_{i})^{\alpha}, \ X_{i} \in \mathcal{P}(n) \right\},$$
(5.14)

onde d(X, Y) é a distância riemanniana entre X e Y em $\mathcal{P}(n)$.

5.2 Métodos numéricos para cômputo de centros de massa riemannianos em $\mathcal{P}(n)$

Seja $\mathcal{X} = \{X_1, \cdots, X_m\} \subset \mathcal{P}(n)$ uma medida de probabilidade discreta com suporte $\mathcal{X} \in 0 \leq \omega(X_i) = \omega_i \leq 1, 1 \leq i \leq m$, tal que $\sum_{i=1}^m \omega_i = 1$. O centro de massa $L^{\alpha} \operatorname{com} (1 \leq \alpha < \infty)$ para \mathcal{X} é definido por $\mu_{\alpha,\mathcal{X}}$. Defina $f : \overline{\mathcal{P}(n)} \to \mathbb{R} \cup \{-\infty, +\infty\}$ por

$$f_{\alpha}(X) = \begin{array}{cc} \frac{1}{\alpha} \sum_{i=1}^{m} \omega_i d^{\alpha}(X, X_i) &, X \in \mathcal{P}(n) \\ +\infty &, X \in \partial \mathcal{P}(n). \end{array}$$

Então, f_p é suave em $\mathcal{P}(n) \setminus \mathcal{X}$ e estritamente convexa em $\mathcal{P}(n)$ (exceto quando a medida de probabilidade ω do segmento geodésico é 1, onde f_1 é apenas convexa), e seu gradiente é dado por

grad
$$f_{\alpha}(X) = -X^{\frac{1}{2}} \left[\sum_{i=1}^{m} \omega_i d^{\alpha-2}(X, X_i) log\left(X^{-\frac{1}{2}} X_i X^{-\frac{1}{2}}\right) \right] X^{\frac{1}{2}}$$

Para calcular o mínimo de f_{α} , uma forma muito utilizada e fácil de implementar, é o método do gradiente descendente, conforme visto em [42] e [24]. O esquema seguinte nos permite calcular o centro de massa ou média riemanniana L^{α} de f_{α} da seguinte forma:

$$X^{t+1} = exp_{X^t} \left(\sum_{k=1}^N \omega_k d(X^t, X_k)^{\alpha - 2} log_{X^t}(X_k) \right).$$

No entanto, esta formulação não pode ser aplicada, uma vez que f_{α} é não diferenciável em $X = X_k$ para $\alpha = 1$. Para contornar este problema, nós propomos a utilização de um algoritmo em variedade de Hadamard proposto por [27]. Esta técnica pertence a classe de métodos de pontos proximais que foi introduzida por [38], estendida para operadores monótonos por [47] e para a classe de métodos em variedades de Hadamard por [20].

Dado uma sequência de números positivos $\{\lambda_t\}$ e um ponto $q_0 \in D$, onde D é uma variedade de Hadamard, o método de ponto proximal consiste em gerar uma sequência $\{q_t\} \subset D$, definida por

$$q_{t+1} = \underset{q \in D}{\operatorname{argmin}} \left\{ f_{\alpha}(q) + \frac{\lambda_t}{2} d^2(q, q_t) \right\} (t = 0, 1, \ldots).$$
(5.15)

onde $\{q_t\}$ está bem definido e é caracterizado por

$$\lambda_t \log_{q_{t+1}}(q_t) \in \partial f_\alpha(q_{t+1}). \tag{5.16}$$

onde ∂f_{α} é o sub-diferencial de f_{α} .

Notemos que para todo $t(t = 0, 1, \ldots)$

$$grad f_{\alpha}(q_{t+1}) = -\lambda_t log_{q_{t+1}}(q_t), \qquad (5.17)$$

se f_{α} é diferenciável.

A metodologia proposta por [27] é uma extensão de [26] a qual consiste em substituir a iteração (5.15) por duas novas iterações. O algoritmo apresentado em [26] é um caso particular do método proposto por [20], onde $M \equiv \mathcal{P}(n)$. Baseado na fatoração de Schur de matrizes simétricas positivas definidas, ele computa pontos nas trajetórias proximais gerados pelo método em [20] dando passos na direção de descida no espectro da matriz iterada da função a ser minimizada, sem perda na positividade, e posteriormente aplica a fatoração de Schur para atualizar a matriz com relação ao passo ortogonal.

Sendo assim, para considerarmos o algoritmo proposto por [27], analisaremos alguns aspectos relacionados ao cálculo do centro de massa L^{α} . Sejam $D_1 \equiv \mathbf{D}\mathcal{P}(n)$, $D_2 \equiv \mathcal{O}(n) \in \mathcal{U}(n)$ os conjuntos de matrizes diagonais positivas definidas, o grupo de matrizes ortogonais e o grupo de matrizes unitárias $n \times n$, respectivamente.

Dado $(b_0, c_0) \in D_1 \times D_2$, o algoritmo gera duas sequências $\{b_j\} \subset D_1 \in \{c_j\} \subset D_2$ definidas pelas seguintes iterações

$$b_{j+1} = \arg\min\{\phi_k(b, c_j) + \frac{\beta_k}{2}\rho_k(b, c_j) : b \in D_1\},$$
(5.18)

$$c_{j+1} \in \arg\min\{\phi_k(b_{j+1}, c) + \frac{\beta_k}{2}\rho_k(b_{j+1}, c) : c \in D_2\}.$$
 (5.19)

Sendo assim, considerando $\varphi(\Lambda, Q) = Q\Lambda Q^T$, temos que $\mathcal{P}(n)$ é um irredutível

domínio de positividade não linear. Isso implica que $\phi_k, \rho_k : \mathbf{D}\mathcal{P}(n) \times \mathcal{O}(n) \to \mathbb{R}$ são dados por

$$\begin{split} \phi_k(\Lambda, Q) &= f_\alpha \left(X^{k^{\frac{1}{2}}} Q \Lambda Q^T X^{k^{\frac{1}{2}}} \right) \\ &= \frac{1}{\alpha} \sum_{i=1}^m \omega_i d^\alpha \left(X^{k^{\frac{1}{2}}} Q \Lambda Q^T X^{k^{\frac{1}{2}}}, X_i \right) = \frac{1}{\alpha} \sum_{i=1}^m \omega_i d^\alpha \left(X_i, X^{k^{\frac{1}{2}}} Q \Lambda Q^T X^{k^{\frac{1}{2}}} \right) \\ &= \frac{1}{\alpha} \sum_{i=1}^m \omega_i d^\alpha \left(I, X_i^{-\frac{1}{2}} X^{k^{\frac{1}{2}}} Q \Lambda Q^T X^{k^{\frac{1}{2}}} X_i^{-\frac{1}{2}} \right) \\ &= \frac{1}{\alpha} \sum_{i=1}^m \omega_i \left[\sum_{\iota=1}^n \ln^2 \lambda_\iota \left(X_i^{-\frac{1}{2}} X^{k^{\frac{1}{2}}} Q \Lambda Q^T X^{k^{\frac{1}{2}}} X_i^{-\frac{1}{2}} \right) \right]^{\frac{\alpha}{2}}. \end{split}$$

е

$$\rho_k(\Lambda, Q) = d^2 \left(Q \Lambda Q^T, I \right) = d^2 \left(I, Q \Lambda Q^T \right) = d^2 \left(I, \Lambda \right) = \sum_{\iota=1}^n ln^2 \lambda_{\iota\iota}.$$

Uma vez que d é invariante sob automorfismos, $T_i, T_Q : \mathcal{P}(n) \to \mathcal{P}(n)$, dados por $T_i(Y) = X_i^{-\frac{1}{2}} Y X_i^{-\frac{1}{2}} \in T_Q(Y) = Q^T Y Q$, são automorfismos $(i = 1, \dots, m)$.

A partir destes resultados podemos obter as soluções dos problemas de minimização (5.18, 5.19), para produzir as soluções para o $b_{j+1} = \Lambda_{j+1} \in \mathbf{DP}(n)$ e $c_{j+1} = Q_{j+1} \in \mathbf{OP}(n)$, respectivamente.

5.2.1 Calculando o fluxo do gradiente em Λ_{j+1}

Os resultados aqui contidos podem ser encontrados na íntegra em [27]. Para solucionarmos o problema (5.18), precisamos quantificar do gradiente em Λ_{j+1} . Para isso, consideremos os resultados a seguir:

Corolário 5.2.1. Seja $f : \mathcal{P}(n) \to \mathbb{R}$ $e \ Q \in \mathcal{O}(n)$ qualquer matriz ortogonal fixa. Defina $\phi_{k,Q} : \mathbf{D}\mathcal{P}(n) \to \mathbb{R}$ por $\phi_{k,Q}(\Lambda) = \phi_k(\Lambda, Q) = f\left(X^{k\frac{1}{2}}Q\Lambda Q^T X^{k\frac{1}{2}}\right)$. Também, defina

$$\mathcal{D} = \{ \tilde{\Lambda} \in \mathbf{D}\mathcal{P}(n) : X^{k^{\frac{1}{2}}} Q \tilde{\Lambda} Q^T X^{k^{\frac{1}{2}}} \in \mathcal{X} \}.$$

Então, $\phi_{k,Q}$ é suave em $\mathbf{DP}(n) \setminus \{\mathcal{D}\}$ e estritamente convexa em $\mathbf{DP}(n)$.

Demonstração. Como f_{α} é suave em $\mathcal{P}(n) \setminus \mathcal{X}$ e estritamente convexa em $\mathcal{P}(n)$ e $T_k^{-1} \circ \varphi$ φ é uma composição de funções de classe C^{∞} , onde $T_k^{-1} \circ \varphi(\Lambda, Q) = T_k^{-1}(\varphi(\Lambda, Q)) = X^{k^{\frac{1}{2}}}Q\Lambda Q^T X^{k^{\frac{1}{2}}}$, $\phi_{k,Q}$ é suave. Sua estrita convexidade segue do Lema 1 em [27]. \Box

Agora, seja $Q_1(\Lambda), \dots, Q_m(\Lambda) \in \mathcal{O}(n) \in \Lambda_1(\Lambda), \dots, \Lambda_m(\Lambda) \in \mathbf{D}\mathcal{P}(n)$ matrizes tais que

$$Q_i^T X_i^{-\frac{1}{2}} X^{k^{\frac{1}{2}}} Q \Lambda Q^T X^{k^{\frac{1}{2}}} X_i^{-\frac{1}{2}} Q_i = \Lambda_i(\Lambda), \ i = 1, \cdots, m.$$

Então,

$$\phi_{k,Q}(\Lambda) = \frac{1}{\alpha} \sum_{i=1}^{m} \omega_i d^{\alpha}(I, \Lambda_i(\Lambda)).$$
(5.20)

Note que o gradiente de $\phi_{k,Q}$ não é obtido diretamente da aplicação da regra da cadeia da composição $d_I^{\alpha} \circ \Lambda_i$, onde $d_I^{\alpha} : \mathcal{P}(n) \to \mathbb{R}$ é definida por $d_I^{\alpha}(Y) = d^{\alpha}(I,Y)$ e $\Lambda_i : \mathbf{D}\mathcal{P}(n) \to \mathbf{D}\mathcal{P}(n), \ i = 1, \cdots, m$ é a aplicação que mapeia Λ como uma matriz diagonal definida positiva cujo os elementos da diagonal são os autovalores de $X_i^{-\frac{1}{2}} X^{k^{\frac{1}{2}}} Q \Lambda Q^T X^{k^{\frac{1}{2}}} X_i^{-\frac{1}{2}}$, apesar de $\phi_{k,Q}$ ser suave em $\mathbf{D}\mathcal{P}(n) \setminus \{\mathcal{D}\}$, uma vez que apenas os elementos diagonais de $\Lambda_i, \ i = 1, \cdots, m$, com multiplicidade 1 são suaves em relação a Λ . Recomendamos [37] para obter mais detalhes sobre autovalores e autovetores como funções suaves de matrizes simétricas. Portanto, métodos analíticos suaves não são adequados para calcular Λ_{j+1} , definida como a solução exclusiva do problema de otimização convexa

minimize
$$\phi_{k,Q_j}(\Lambda) + \frac{\beta_k}{2} \rho_{k,Q_j}(\Lambda),$$

sujeito a $\Lambda \in \mathbf{DP}(n),$

a menos que a fórmula para grad $\phi_{k,Q}(\Lambda)$ possa ser explicitamente obtida.

No entanto, existem formas alternativas para computar numericamente $grad \ \phi_{k,Q_j}(\Lambda)$. Por exemplo, seja $S \in T_{\Lambda} \mathbf{D} \mathcal{P}(n)$ e $\xi : (-\epsilon, \epsilon) \to \mathbf{D} \mathcal{P}(n)$ ser as geodésicas tais que $\xi(0) = \Lambda$ e $\xi'(0) = S$. De acordo com [40], a fórmula para ξ é dada por

$$\xi(t) = \Lambda Exp(t \cdot \Lambda^{-1}S),$$

uma vez que $\Lambda \in S$ são matrizes diagonais. A saber, $Exp(\Lambda^{-1}S)$ é a matriz diagonal definida positiva tal que os elementos da diagonal são da forma $Exp(t \cdot \frac{S_{\iota\iota}}{\Lambda_{\iota\iota}})$, $\iota = 1, \dots, n$, onde Exp denota a função exponencial neste caso. Então, a derivada direcional de ϕ_{k,Q_i} , em Λ , com respeito à S,

$$D\phi_{k,Q_j}(\Lambda)[S] = \lim_{t \to 0^+} \frac{\phi_{k,Q_j}\left(\xi(t)\right) - \phi_{k,Q_j}\left(\Lambda\right)}{t},\tag{5.21}$$

dá o valor de

$$\langle grad \ \phi_{k,Q_j}(\Lambda), S \rangle_{\Lambda}.$$

Seja $\mathcal{B} = \{E_1, \dots, E_n\}$ a base canônica do conjunto de matrizes diagonais, onde $E_{\iota}, \iota = 1, \dots, n,$ é a matriz diagonal do qual $[E_{\iota}]_{\kappa\kappa} = 1$ if $\kappa = \iota$ e $[E_{\iota}]_{\kappa\kappa} = 0$ outro caso ($\kappa = 1, \dots, n$). Substituindo S por $E_{\iota}, \iota = 1, \dots, n,$ em (5.21) e tomando um quociente pequeno o suficiente para t, obtém-se uma aproximação numérica adequada para $[\nabla \phi_{k,Q_j}(\Lambda)]_{\iota\iota}$ já que grad $\phi_{k,Q_j}(\Lambda)$ é metricamente equivalente à $\nabla \phi_{k,Q_j}(\Lambda)$, ou seja,

$$\langle grad \ \phi_{k,Q_i}(\Lambda), S \rangle_{\Lambda} = \langle \nabla \phi_{k,Q_i}(\Lambda), S \rangle_{\Lambda}$$

onde $\nabla \phi_{k,Q_j}(\Lambda)$ denote o gradiente euclidiano de ϕ_{k,Q_j} em Λ , e

$$\langle \nabla \phi_{k,Q_j}(\Lambda), E_{\iota} \rangle = [\nabla \phi_{k,Q_j}(\Lambda)]_{\iota\iota} \ \iota = 1, \cdots, n.$$

Desta forma,

grad
$$\phi_{k,Q_j}(\Lambda) = [F''(\Lambda)]^{-1} \nabla \phi_{k,Q_j}(\Lambda) = \Lambda \nabla \phi_{k,Q_j}(\Lambda) \Lambda.$$
 (5.22)

A fórmula para grad $\phi_{k,Q_j}(\Lambda)$ em (5.22) é uma forma alternativa para computálo. Note que a proposta em [27] consiste em calcular $\nabla \phi_{k,Q_j}(\Lambda)$ numericamente, usando a aproximação para a derivada direcional de ϕ_{k,Q_j} em Λ , para qualquer tsuficientemente pequeno, aproximando-se de cada uma das suas componentes, uma vez que as derivadas direcionais conduzirá ao sub-gradiente cuja existência é satisfeita pela convexidade de ϕ_{k,Q_j} . Outras abordagens numéricas para esse problema, que podem fornecer melhor precisão, também podem ser investigadas.

Corolário 5.2.2. Seja $\rho_{k,Q}$: $\mathbf{DP}(n) \to \mathbb{R}$ uma função definida por $\rho_{k,Q}(\Lambda) = \rho_k(\Lambda, Q)$. Então, $\rho_{k,Q}$ é uma função suave e estritamente convexa em $\mathbf{DP}(n)$, e seu gradiente é dado por

grad
$$\rho_{k,Q}(\Lambda) = -2 \cdot \Lambda Ln(\Lambda^{-1}).$$

Demonstração. O resultado segue como consequência da Proposição 2 em [27]. \Box

5.2.2 Calculando o fluxo do gradiente em Q_{j+1}

Nesta seção, estamos interessados no gradiente natural de ϕ_k , com respeito à estrutura natural para $\mathcal{O}(n)$, o qual é discutido em [23], por exemplo. De fato, seja $Q \in \mathcal{O}(n)$. O espaço tangente à $\mathcal{O}(n)$ em Q é dado por

$$T_Q \mathcal{O}(n) = \{ V \in \mathbb{R}^{n \times n} : V^T Q + Q^T V = \mathbf{0} \}$$

e a métrica riemanniana coincide com o produto interno usual para matrizes, isto é,

$$\langle V_1, V_2 \rangle_Q = Tr\{V_1^T V_2\},\$$

for qualquer $V_1, V_2 \in T_Q \mathcal{O}(n)$, onde $Tr : \mathbb{R}^{n \times n} \to \mathbb{R}$ denote o traço das matrizes quadradas. No entanto, a geodésica $\eta : (-\epsilon, \epsilon) \to \mathcal{O}(n)$ tal que $\eta(0) = Q \in \eta'(0) = V$, para qualquer $V \in T_Q \mathcal{O}(n)$, is dado por

$$\eta(t) = Exp(t \cdot VQ^T)Q, \qquad (5.23)$$

onde Exp(A) denote a exponencial da matriz quadrada A, aqui definida como a série

$$Exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

Agora, seja $g : \mathcal{O}(n) \to \mathbb{R}$ qualquer função diferenciável. Mais uma vez, de acordo com [23], o gradiente de g com respeito à estrutura natural de $\mathcal{O}(n)$ em Q é dado por

$$grad \ g(Q) = \frac{1}{2} \left(\nabla g(Q) - Q \nabla g(Q)^T Q \right), \tag{5.24}$$

onde $\nabla g(Q)$ denote o gradiente euclidiano de g em Q.

Seja $\Lambda \in \mathbf{DP}(n)$ e $Q : (-\epsilon, \epsilon) \to \mathcal{O}(n)$ ser um caminho diferenciável (Ver Proposição (8) em [27]). Defina $R_{ki} : (-\epsilon, \epsilon) \to \mathbf{SP}(n)$ e $g_{ki} : (-\epsilon, \epsilon) \to \mathbb{R}$ por

$$R_{ki}(t) = X_i^{-\frac{1}{2}} X^{k^{\frac{1}{2}}} Q(t) \Lambda Q(t)^T X^{k^{\frac{1}{2}}} X_i^{-\frac{1}{2}}$$

е

$$g_{ki}(t) = Tr\left\{Ln^2\left(R_{ki}(t)\right)\right\}$$

Então,

$$\frac{d}{dt}g_{ki}(t) = 4 \cdot Tr\left\{ \left(\frac{d}{dt}Q(t)\right)^T X^{k^{\frac{1}{2}}} X_i^{-\frac{1}{2}} Ln\left(R_{ki}(t)\right) \left(R_{ki}(t)\right)^{-1} X_i^{-\frac{1}{2}} X^{k^{\frac{1}{2}}} Q(t)\Lambda \right\}.$$

O gradiente de grad $\phi_{k,\Lambda}(Q)$ é definido como segue:

Corolário 5.2.3. Seja $\Lambda \in \mathbf{DP}(n)$. Defina $\phi_{k,\Lambda} : \mathcal{O}(n) \to \mathbb{R}$ by

$$\phi_{k,\Lambda}(Q) = \phi_k(\Lambda, Q)$$

Então,

grad
$$\phi_{k,\Lambda}(Q) = \frac{1}{2} \left\{ \sum_{i=1}^{m} \left[P_{ki} - P_{ki}^T \right] \right\} Q,$$

onde $P_{ki} = 2 \cdot \omega_i \left[Tr \left\{ Ln^2 \left(R_{ki} \right) \right\} \right]^{\frac{\alpha - 2}{2}} X^{k^{\frac{1}{2}}} X_i^{-\frac{1}{2}} Ln \left(R_{ki} \right) X_i^{\frac{1}{2}} X^{k^{-\frac{1}{2}}}.$

Demonstração. Ver demonstração do Corolário (5) em [27].

Assim, tendo em mãos os elementos para computar os centros de massas, podemos utilizar a versão inexata do algoritmo de ponto proximal proposto por [27].

Capítulo 6

Aplicações em DTI-RM

6.1 Modelo matemático de Imagem

Quando observamos uma fotografia, ou uma cena real, recebemos de cada ponto do espaço um pulso luminoso que associa uma informação de cor a esse ponto. Dessa forma, um modelo matemático natural para descrever uma imagem é o de uma função definida em uma superfície bidimensional e tomando valores em um espaço de cor.

Uma imagem contínua é uma aplicação $f: U \subset \mathbb{R}^2 \to C$, onde C é o espaço de cor. Enfatizamos que o adjetivo contínuo nesta definição é usado para informar a forma original da imagem antes de algum processo de discretização, e não com o seu significado usual em topologia de que uma aplicação f é contínua. Em geral temos $C = \mathbb{R}^n$, a função f é chamada de função imagem. O conjunto U é chamado de suporte da imagem, e o conjunto dos valores de f, f(U), que é um subconjunto de C, é chamado de conjunto de cores da imagem.

Os dois casos mais comuns são n = 1 e n = 3. Para n = 3 temos um espaço de representação de cor tricromático, em geral um espaço com base nas cores **R**, **G**, **B** (vermelho, verde e azul), e portanto uma imagem colorida. Quando n = 1 dizemos que a imagem é monocromática.

Uma imagem monocromática pode ser visualizada geometricamente como o gráfico de G(f) da função imagem f,

$$G(f) = \{(x, y, z); (x, y) \in U \ e \ z = f(x, y)\},\tag{6.1}$$

considerando os valores de intensidade como a altura z = f(x, y) em cada ponto (x, y) do domínio.

Essa interpretação geométrica permite uma visão mais intuitiva de certos aspectos da imagem, como por exemplo identificar as regiões de descontinuidade da função, que correspondem a variações bruscas na intensidade dos pontos da imagem.

6.1.1 Representação espacial da imagem

De acordo com [15], o método mais utilizado de discretização espacial de uma imagem é a amostragem matricial uniforme. Neste método consideramos o conjunto suporte da imagem como sendo um retângulo

$$U = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2; a \le x \le b \ e \ c \le y \le d\},$$
(6.2)

e discretizamos esse retângulo usando pontos da malha bidimensional. Mais precisamente, podemos supor, sem perda de generalidade, que a = c = 0, e a malha de discretização P_{Δ} é o conjunto

$$P_{\Delta} = \{ (x_j, y_k) \in \mathbb{R}^2 \}, \tag{6.3}$$

onde

$$x_j = j \cdot \Delta x, \ j = 0, 1, \dots m - 1, \Delta x = b/m,$$
 (6.4)

$$y_k = k \cdot \Delta y, \ k = 0, 1, \dots n - 1, \Delta y = d/n.$$
 (6.5)

A malha P_{Δ} é formado por um conjunto de células

$$c_{jk} = [j\Delta x, (j+1)\Delta x] \times [k\Delta y, (k+1)\Delta y].$$
(6.6)

Representar a função f reduz-se a obter um valor de cor para a função imagem f em cada uma dessas células. Para maiores detalhes ver [15].

6.2 Detecção de bordas em imagens

O objetivo de detectar mudanças bruscas no brilho é capturar eventos importantes e mudanças nas propriedades da imagem. Uma imagem digital convencional consiste de *pixels* regularmente arranjados em linhas e colunas. Seus níveis de cores em cada *pixel* (aglutinação de *picture's element*, ou seja, elemento de imagem, sendo *pix*, a abreviatura em inglês para *picture*, o menor elemento em um dispositivo de exibição, por exemplo, um monitor, ao qual é possível atribuir uma cor.) tomam valores entre [0, L - 1], onde L é um número que define os níveis de cores.

Para imagens digitais, os níveis de cores em dois pixeis vizinhos podem ser diferentes devido à digitalização da imagem, especialmente quando o número de possíveis níveis de cor L é elevado. As **bordas** definem o contorno dos objetos encontrados nas imagens.

Considere a imagem como a superfície da função imagem f. As bordas na imagem correspondem então às variações na função f. Ao redor de uma borda,

a intensidade da imagem muda de um nível de cor mais elevado para outro de menor intensidade e vice-versa.

A detecção de bordas é um processo que utiliza essa variação brusca nas imagens para definir os contornos das regiões, contando com uma grande variedade de algoritmos. Uma vez detectadas as bordas dos objetos, eles podem ser localizados e suas propriedades básicas, como áreas, perímetros e formas podem ser medidas e segmentadas. Portanto, o processo de detecção de bordas se qualifica como uma ferramenta essencial para a análise de imagens.

Os operadores de detecção de bordas podem ser classificados em três grupos em geral: (a) aqueles com base em derivadas parciais, aproximadas por *diferenças* para o caso discreto das imagens digitais, cuja função é identificar lugares onde existem grandes mudanças de intensidade; (b) aqueles que modelam a borda com um filtro de pequenas dimensões mostrando propriedades abstratas de uma borda ideal; e (c) operadores que usam modelos matemáticos para as bordas, com base em equações diferenciais parciais, ou modelos de difusão, que procuram, dependendo do método, por máximos e mínimos de funções. Nossa abordagem, recai no primeiro tipo devido à simplicidade em quantificar o gradiente, onde utilizamos a variação local deste gradiente da imagem para definir a existência de bordas.

6.2.1 Detecção de borda baseado em derivadas de primeira ordem

Considere a função imagem $\mathcal{I} : U \subset \mathbb{R}^n \to \mathbb{R}, n = 2,3$ onde para um ponto $x \in U$ na imagem, $\mathcal{I}(x) \in \mathbb{R}$ é sua intensidade(por exemplo, os níveis de brilho). Intuitivamente, se um *pixel* localizado na posição x se encontra em uma borda, então as derivadas parciais de primeira ordem de \mathcal{I} deve possuir magnitudes elevadas. Dessa forma, isso é identificado a partir da estimativa da norma do vetor gradiente $\nabla \mathcal{I}(x)$ da imagem $\mathcal{I}(x)$, isto é,

$$M(x) = \|\nabla \mathcal{I}(x)\|,\tag{6.7}$$

Para usar a equação (6.7) para detecção de bordas, a primeira derivada com relação às coordenadas espaciais de \mathcal{I} deve ser estimada. Por isso, muitos estimadores de derivadas de primeira ordem têm sido sugeridos na literatura de processamento de imagem, como por exemplo [33].

Definição das derivadas da imagem

Considere uma imagem \mathcal{I} e suponha que os níveis de cores observados na imagem são $\{c_{ij}, i = 1, \ldots, n_1; j = 1, \ldots, n_2\}$. Então, no *pixel* (i, j), as duas derivadas parciais $\mathcal{I}_x \in \mathcal{I}_y$ podem ser estimadas pelas diferenças entre os pixeis vizinhos

$$\mathcal{I}_x = c_{i+1,j} - c_{i,j} \tag{6.8}$$
$$\mathcal{I}_y = c_{i,j+1} - c_{i,j},$$

respectivamente. Consequentemente, a norma do vetor gradiente de $\mathcal I$ pode ser estimada como

$$\overline{M}_2(i,j) = \sqrt{(c_{i+1,j} - c_{i,j})^2 + (c_{i,j+1} - c_{i,j})^2}, \tag{6.9}$$

ou

$$\overline{M}_{1}(i,j) = |(c_{i+1,j} - c_{i,j}| + |(c_{i,j+1} - c_{i,j}|.$$
(6.10)

Certamente, as duas diferenças em (6.8) mencionadas acima podem ser substituídas por $c_{i,j} - c_{i-1,j}$ e $c_{i,j-1}$, respectivamente. Para maiores detalhes ver [45].

6.2.2 Operador de detecção de bordas

O operador de detecção de bordas de **Canny** [32] é um filtro de convolução que usa a derivada de primeira ordem. Ele suaviza e localiza as bordas combinando um operador diferencial com um filtro gaussiano. Esta operação pode ser realizada através do uso de uma função gaussiana em duas dimensões, ou uma função na direção de x e posteriormente na direção y. As formas da função gaussiana dependem da escolha do desvio padrão σ , cuja função é controlar o grau de suavização da imagem no processo de filtragem.

A função Gaussiana em uma dimensão é expressa por:

$$G(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-x^2}{2\sigma^2}},$$
(6.11)

de modo que sua derivada de primeira ordem é:

$$G'(x) = \frac{-x}{\sqrt{2\pi\sigma^3}} e^{\frac{-x^2}{2\sigma^2}}.$$
 (6.12)

O princípio do filtro de Canny para detecção de bordas é usar G'(x) através da operação de convolução com a imagem para obter uma imagem I que mostrará as bordas. Considere, como uma borda, toda região da imagem cujo valor da norma de G'(x) esteja situado acima de um determinado limite superior e rejeitando todo valor situado abaixo de um limite inferior, ou seja, pontos situados entre os dois limites serão aceitos como bordas.

Perona and Malik [44] também propuseram um operador de identificação de bordas utilizando a equação de difusão anisotrópica. Eles usaram a equação padrão do gradiente (6.7), para definir o coeficiente de condução $c_{\mathcal{I}}(x)$ para quantificar a presença de bordas de acordo com a seguinte equação:

$$c_{\mathcal{I}}(x) = \exp\left(-\frac{\|\nabla \mathcal{I}\|}{2\sigma^2}\right),\tag{6.13}$$

onde $\nabla \mathcal{I}$ é o gradiente de \mathcal{I} e σ é o desvio padrão do ruído presente na imagem. O coeficiente de condução é escolhido localmente para ser uma função monotonicamente decrescente não negativa. Desta forma, o processo de difusão ocorrerá principalmente no interior das regiões, e não afetará os limites da região onde a magnitude de $\nabla \mathcal{I}$ é alta. A partir de um destes operadores de identificação de bordas, podemos quantificar a probabilidade de um certo tensor de difusão pertencer a uma região de bordas da imagem. Maiores detalhes podem ser encontrados em [32], [33], [14] e [45].

No caso do tensor de difusão de imagem (DTI-RM), Lenglet et al. [35] propõe uma metodologia de segmentação através do uso de medidas de dissimilaridades entre os tensores. Eles utilizaram um consistente gradiente da imagem DTI-RM para detectar as fronteiras de várias estruturas no material branco cerebral, propondo uma formulação variacional do problema de segmentação. O gradiente espacial da imagem DTI-RM $\mathcal{T}(x)$ para todo $x \in \Omega$ pode ser estimado a partir do gradiente das distâncias geodésicas:

$$\nabla_{k=1,2,3}^{\pm} \mathcal{T}(x) \simeq \frac{1}{|e_k|} \mathcal{T}(x) log(\mathcal{T}(x \pm e_k)^{-1} \mathcal{T}(x))$$
(6.14)

onde o e_k são os elementos da base canônica do \mathbb{R}^3 e são usados para acessar a vizinhança de $\mathcal{T}(x)$ no malha discreta espacial. O + e – identificam os operadores de diferenças finitas para frete e para trás, respectivamente. Usando diferenças finitas central, o gradiente na direção e_k é dado por: $\nabla_k \mathcal{T}(x) \simeq \frac{1}{2} (\nabla_k^+ \mathcal{T}(x) - \nabla_k^- \mathcal{T}(x))$. Assim, obtemos a norma do gradiente como:

$$\|\nabla \mathcal{T}(x)\|^2 = \sum_{k=1}^3 \|\nabla_k \mathcal{T}(x)\|_{\mathcal{T}(x)}^2 = \frac{1}{2} \sum_{k=1}^3 tr((\mathcal{T}^{-1}\nabla_k \mathcal{T}(x))^2).$$
(6.15)

6.3 Princípio da formação de imagem por DTI-RM

A DTI-RM é uma modalidade recente de formação e tratamento de imagens geradas por ressonância magnética. Em DTI-RM, um tensor descreve a difusão local da molécula de água onde este é calculado, permitindo a qualificação da microestrutura do tecido vivo. A construção do tensor de difusão requer a aquisição de um conjunto de imagens de difusões ponderadas associadas a n gradientes de direções não-colineares ($n \ge 6$). Desta forma, torna-se possível estimar um tensor de difusão em cada localização espacial da imagem.

Existem duas formas de difusão: isotrópica e anisotrópica. A primeira acontece quando as moléculas têm igual probabilidade de se movimentar em todas as direções. Para isso, precisa-se apenas de um coeficiente de difusão para sua descrição. Já na segunda, existente nos tecidos biológicos, a mobilidade da molécula de água é alterada pela formação celular. Para maiores esclarecimentos é recomenda-se [41].

A figura 6.1 apresenta um exemplo de imagens de ressonância magnética extraídas de [39].

Figura 6.1: Volume de imagens de ressonância magnética.

Para descrever o movimento de água nas estruturas celulares, torna-se necessário a utilização de um tensor de difusão de ordem 3. Considere a representação matricial do tensor:

$$D = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix}.$$
 (6.16)

A matriz do tensor é constituída por nove elementos e por ser simétrica existem três elementos iguais $(D_{xy} = D_{yx}, D_{xz} = D_{zx} e D_{yz} = D_{zy}).$

A partir deste tensor de difusão é possível obter os autovetores $(v_1, v_2 e v_3)$ e autovalores $(\lambda_1, \lambda_2 e \lambda_3)$ para cada um dos eixos dos elipsoides.

Além da representação matricial do tensor, pode-se representá-lo na forma de elipsoide como pode ser visto na figura 6.2 obtida de [43]:

Figura 6.2: Representação elipsoidal do tensor de difusão.

6.3.1 Cálculo do tensor de difusão

A partir de um conjunto $S_n : \Omega \subset \mathbb{R}^3 \to \mathbb{R}$ de múltiplas imagens de ressonância magnética (MRI) podemos gerar $\mathcal{T} : \Omega \subset \mathbb{R}^3 \to S_3^+$ o volume de imagens DTI-RM correspondente. através da equação de Stejskal-Tanner

$$S_i = S_0 \exp(-bg_i Dg_i^T), \ i \ge 6,$$
 (6.17)

onde $D \in \mathcal{T}$, g_i é o gradiente de direção associado a imagem S_i , S_0 é a intensidade do sinal sem a aplicação de gradiente e b é uma constante calculada a partir dos parâmetros de aquisição das imagens e o sinal S_0 é obtido com b = 0. Para maiores detalhes ver [41].

O método mais comum de determinar uma imagem DTI-RM para um dado volume S_n é via a equação (6.17) utilizando a técnica de mínimos quadrados. Isso, significa que o tensor D_{ijk} na localização (i, j, k) é obtido pela minimização da seguinte função objetivo:

$$\mathcal{D} = \underset{D \in \mathcal{T}}{\operatorname{argmin}} \left\{ \sum_{ijk} \sum_{l} \left| bg_{l}^{T} D_{ijk} g_{l} - log \left(\frac{S_{ijk}^{l}}{S_{ijk}^{0}} \right) \right|^{2} \right\}.$$
(6.18)

No entanto, este modelo assume que o volume de imagens IDP são corrompidas por ruído gaussiano. Um modelo de ruído mais razoável para esta classe de dados é o Riciano, como visto em [22]. Isto significa que calcular o tensor tensor D_{ijk} na localização (i, j, k) pode ser feito minimizando a seguinte função objetivo:

$$\mathcal{D} = \sum_{ijkl} -\log\left(\frac{S_{ijk}^l}{\sigma^2} exp\left(-\frac{P_{ijk}^l}{2\sigma^2}\right) I_0\left(\frac{Q_{ijk}^l}{\sigma^2}\right)\right),$$

onde $P_{ijk}^l = R_{ijk}^l (D_{ijk})^2 + (S_{ijk}^l)^2$, $R_{ijk}^l (D_{ijk}) = S_{ijk}^0 \exp(-bg_l^T D_{ijk}g_l)$, $Q_{ijk}^l = R_{ijk}^l (D_{ijk})S_{ijk}^l$ and I_0 é a função de Bessel modificada de ordem zero e primeiro tipo.

Exemplo 6.3.1. Através de equação (6.17), podemos definir o tensor D como solução de um sistema de equações lineares. Admitindo o número mínimo de imagens S_i , $i = 0, \dots 6$, resolver o problema (6.18) equivale a resolver um sistema de equações lineares em cada localização da imagem da forma

$$AX = B, (6.19)$$

onde A é a matriz dos coeficientes do sistema, o vetor X contém as variáveis e o vetor B as constantes dadas em [51] e [54]. Sendo assim, o vetor B pode ser definido como

$$B = \begin{bmatrix} log(s_1/S_0) \\ log(s_2/S_0) \\ log(s_3/S_0) \\ log(s_4/S_0) \\ log(s_5/S_0) \\ log(s_5/S_0) \\ log(s_6/S_0) \end{bmatrix}$$
(6.20)

que corresponde ao lado direito do sistema (6.19).

Para obter a matriz A, do lado esquerdo do sistema (6.19), levamos em consideração que D pode ser escrito segundo a equação (6.17). Contudo, calculamos para cada gradiente g_i , o lado esquerdo da equação (6.19) que corresponde a uma das seis imagens adquiridas na difusão. Com isso, obtém-se

$$-bg_i^T g_i \cdot D = -b \begin{bmatrix} g_{ix}g_{ix} & g_{ix}g_{iy} & g_{ix}g_{iz} \\ g_{ix}g_{iy} & g_{iy}g_{iy} & g_{iy}g_{iz} \\ g_{ix}g_{iz} & g_{iy}g_{iz} & g_{iz}g_{iz} \end{bmatrix} \cdot \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix}.$$
(6.21)

Resolvendo a operação de matrizes do lado direito, temos a seguinte expansão

$$-bg_i^T g_i \cdot D = -b(g_{ix}^2 D_{xx} + g_{iy}^2 D_{yy} + g_{iz}^2 D_{zz} + 2g_{ix}g_{iy} D_{xy} + 2g_{ix}g_{iz} D_{xz} + 2g_{iy}g_{iz} D_{yz}).$$
(6.22)

Extraindo da expansão acima os coeficientes das variáveis D_{xx} , D_{yy} , D_{zz} , D_{xy} , D_{xz}

 $e D_{yz}$, podemos montar a matriz A da seguinte forma

$$A = -b \begin{bmatrix} g_{1x}^2 & g_{1y}^2 & g_{1z}^2 & 2g_{1x}g_{1y} & 2g_{1x}g_{1z} & 2g_{1y}g_{1z} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ g_{6x}^2 & g_{6y}^2 & g_{6z}^2 & 2g_{6x}g_{6y} & 2g_{6x}g_{6z} & 2g_{6y}g_{6z} \end{bmatrix}.$$
 (6.23)

O sistema finalmente pode ser resolvido, através de métodos tais como: eliminação de Gauss, decomposição LU ou métodos iterativos.

6.3.2 Indices invariantes

O tensor de difusão D contém várias informações e muitas aplicações requerem uma noção de intensidade anisotrópica. No entanto, para medições quantitativas no material branco cerebral, um único escalar é particularmente útil para comparar diferentes grupos ou para monitorar mudanças no mesmo. Este escalar é chamado de índice de difusão anisotrópica (IDA).

Os IDA's mais utilizados variam de 0 (isotrópico) a 1 (anisotrópico) e eles podem ser calculados a partir dos autovalores associados aos tensores de difusão.

A partir dos tensores de difusão podemos calcular uma série desses índices que ajudam a caracterizá-los, especialmente no que se refere a sua forma e tamanho. Esses escalares são invariantes, ou seja, têm o mesmo valor independente da orientação do tensor. A utilidade dos índices está em fornecer informações relevantes sobre cada ponto da imagem, como a organização e forma dos tensores. Nesta seção, denotamos os autovalores do tensor de difusão D por λ_i , com i = 1, ..., 3.

A seguir, descreveremos alguns desses índices:

$$I_1 = \lambda_1 + \lambda_2 + \lambda_3 \tag{6.24}$$

$$I_2 = \lambda_1 \lambda_2 + \lambda_3 \lambda_1 + \lambda_2 \lambda_3, \ e \tag{6.25}$$

$$I_3 = \lambda_1 \lambda_2 \lambda_3. \tag{6.26}$$

A invariância desses índices decorrem diretamente do fato que eles não se baseiam nos coeficientes do tensor, mas nos autovalores, que são invariantes. O índice I_1 é o escalar conhecido como traço. Através dele, podemos definir outro índice muito importante, a difusidade média que é a média entre os autovalores associados ao tensor de difusão. Esta será definida como

$$I_4 = \frac{I_1}{3}$$

Podemos definir também a magnitude do tensor, que corresponde a sua norma, com respeito ao seu espectro. Neste caso, tem-se

$$I_5 = \sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^3}$$

Com base nos índices apresentados, introduz-se o índice invariante de anisotropia fracionada (FA)

$$FA = \sqrt{\frac{3[(\lambda_1 - I_4) + (\lambda_2 - I_4) + (\lambda_3 - I_4)]}{2I_5}}$$
(6.27)

O índice FA assume valores no intervalo [0, 1]. Um meio totalmente isotrópico tem como resultado FA = 0, e um meio em que uma das direções de difusão é muito maior que as demais, isto é, $\lambda_1 > \lambda_2 \approx \lambda_3$, onde λ_2 e λ_3 possuem magnitudes aproximadas entre si, resulta em um valor de FA próximo de 1. Baseando-se na relação entre os autovalores do tensor de difusão, [54] divide a difusão em três casos:

- Caso linear, em que λ₁ > λ₂ ≈ λ₃: a difusão acontece principalmente na direção do autovetor associado a λ₁;
- Caso planar, em que λ₁ ≈ λ₂ > λ₃: a difusão restringe-se ao plano definido pelos autovetores associados à λ₁ e λ₂;
- Caso esférico, em que $\lambda_1 \approx \lambda_2 \approx \lambda_3$: a difusão é isotrópica.

Capítulo 7

O Filtro Riemanniano Adaptativo

7.1 O Filtro Riemanniano Adaptativo (FRA)

Os filtros clássicos de média e mediana em escala de cinza são filtros não-lineares cujo as respostas se baseiam na disposição dos *pixels* contidos na região de imagem a ser filtrada conforme verificado em [5] e [21].

Nossa contribuição consiste em utilizar o centro de massa ponderado riemanniano $L^{\alpha} \operatorname{com} \alpha \in [1, 2]$ como uma ferramenta de filtragem. A ideia central consiste na escolha do parâmetro α que é feita com base em informações obtidas a partir da imagem antes do processo de filtragem. Estas informações identificam de antemão as regiões de bordas presentes na imagem. Isso é feito, através da utilização de algorítimos de detecção de bordas que utilizam a quantificação da variação da norma do vetor gradiente na imagem. A utilização da mediana ($\alpha = 1$) em regiões de bordas o valor de a vai se aproximando de 2, ou seja, da média riemanniana ponderada. Com essa abordagem, podemos filtrar e preservar as regiões de bordas sem a necessidade de realizar mais de um processo de filtragem reduzindo o tempo de processamento e custo computacional associado ao consumo de memória RAM.

Seja $I_k : \mathbb{R}^n \to \mathbb{R}$, com n = 2, 3 onde k representa o número de fatias no volume de imagens e $\mathcal{T}_k : \mathbb{R}^n \to \mathcal{P}(3)$ a imagem DTI-RM correspondente ao volume de imagem I_k .

A definição do parâmetro α consiste inicialmente em aplicar o procedimento de detecção de borda na imagem $\mathcal{T} \subset \mathcal{T}_k$, conforme descrito na seção (6). Portanto, com base na ideia de [44], usamos o coeficiente de condução para quantificar e mapear as bordas da imagem. Ao contrário de [44], o procedimento de detecção de borda é aplicado à imagem DTI-RM usando a equação (6.15) para quantificar a norma do gradiente de \mathcal{T} . Definimos uma equação que usa o gradiente espacial de \mathcal{T} para quantificar a presença de bordas e depois definimos o valor de α que permite a aplicação do filtro desejado. Sendo assim, quantificamos a probabilidade do *pixel* ou *voxel* estar na borda da imagem, mesmo sob a presença de ruído:

$$p_I = \exp\left(-c(\|\nabla \mathcal{T}(x)\|)\right). \tag{7.1}$$

com $c(u) = 1/(\epsilon + u^2)$ e ϵ é configurado para ser um valor pequeno e constante, conforme visto em [35].

Conhecendo o valor de p_I nas regiões da imagem, podemos quantificar quão próximo de uma borda o tensor de difusão se encontra. Através da combinação linear entre a máxima e a mínima norma do gradiente espacial da imagem, podemos definir o quão próximo destes valores as demais magnitudes do gradiente da imagem \mathcal{T} se encontram..

Depois de quantificar $\|\nabla \mathcal{T}(x)\|$ da imagem, obtemos $M_{max} = max(\|\nabla \mathcal{T}(x)\|)$ e $M_{min} = min(\|\nabla \mathcal{T}(x)\|)$ como o maior e o menor valor em norma do gradiente da imagem, respectivamente. Assim, podemos definir p_I como uma combinação linear de probabilidade entre p_{max} e p_{min} relacionadas à M_{max} e M_{min} , respectivamente.

Conhecendo o valor p_I das regiões de bordas da imagem, podemos quantificar o quão perto de uma borda o *pixel* em análise se encontra. Através da combinação linear entre a máxima e mínima norma do vetor gradiente da imagem, podemos definir quão próximos destes valores estão as demais magnitudes dos vetores gradientes da imagem I em cada *pixel*.

Após quantificarmos a norma do vetor gradiente em todos os pixeis da imagem, podemos obter M_{max} e M_{min} como o maior e menor valor em norma desta imagem, respectivamente. Desta forma, podemos definir o valor da variável $\tau \in [0, 1]$. Sendo assim, podemos definir p_I como uma combinação linear das probabilidades p_{max} e p_{min} relativas às magnitudes M_{max} e M_{min} , respectivamente. Sendo assim, temos

$$p_I = (1 - \tau)p_{min} + \tau p_{max}.$$
 (7.2)

Como calculamos p_I previamente, obtido através da equação (7.1) em todos os pixels da imagem, podemos definir o valor $\tau \in [0, 1]$ correspondente em cada pixel e posteriormente definir o valor de α referente a este pixel em questão. Sendo assim, temos

$$\tau = \frac{p_I - p_{min}}{p_{max} - p_{min}} \tag{7.3}$$

е

$$\alpha = 2 - \tau. \tag{7.4}$$

A figura abaixo ilustra o processo de detecção de bordas em uma imagem. Podemos perceber que existe um maior contraste nas regiões de bordas da imagem quando $\tau \rightarrow 1$:

Figura 7.1: À esquerda: imagens DTI-RM. À direita: imagem gerada pelos valores de τ em cada posição espacial da imagem. Valores de $\tau = 1$ (regiões na cor amarela) representam as regiões de bordas, enquanto que valores de $\phi = 0$ (regiões na cor azul) representam as regiões fora das bordas.

O objetivo da equação (7.4) é quantificar o expoente das parcelas da função objetivo que define o problema (5.14). Assim, limitamos o parâmetro α ao intervalo [1,2], cumprindo os critérios de preservação das bordas da imagem, conforme descrito em [44].

Observe que conseguimos definir α de forma a satisfazer as condições desejadas, ou seja, quanto maior for a magnitude do gradiente da imagem, maior é a probabilidade da existência de bordas. Isso implica que é necessário a aplicação do filtro de mediana ponderada com objetivo de preservar estas características. Observe que α se aproxima de 1 quando p_I se aproxima de p_{max} , consequentemente $\tau \to 1$, satisfazendo as condições desejadas, caso contrário, temos α aproximando-se de 2 quando $\tau \to 0$, pois, p_I se aproxima de p_{min} .

O filtro FRA consiste em resolver o seguinte problema de otimização:

$$W_{FRA} = \arg \min_{X \in \mathcal{P}(3)} \frac{1}{\alpha} \sum_{i=1}^{N} \omega_i d(X, W_i)^{\alpha}, \ W_i \in \mathcal{P}(3),$$
(7.5)

com α dado pela equação (7.4) e os ω_i , $i = 1, \ldots N$ são os pesos dados.

O filtro FRA pode ser utilizado em qualquer classe de imagens definida em uma variedade Riemanniana. No entanto, nos limitamos a classe de imagens DTI-RM que pode ser representada como uma variedade de Hadamard de matrizes simétricas positivas definidas. Dado $\mathcal{W} = \{W_1, \dots, W_N\} \in \mathcal{T}$ um conjunto de tensores, o filtro FRA consiste em encontrar o centro de massa L^{α} de \mathcal{W} através da resolução de um problema de otimização (7.5) em cada localização espacial da imagem. Este processo é aplicado em todo domínio espacial para cada nova vizinhança definida em torno do tensor alvo.

Para a resolução do problema (7.5), foi usado a metodologia proposta por [27] e apresentada na seção (5.2). No entanto, outras metodologias em variedades Riemannianas como [12], [19], [18], [26] e [49] podem ser utilizadas.

A seguir apresentamos a formulação do processo de filtragem para o caso particular de $\alpha = 2$. Defina \mathcal{W} como o conjunto de tensores vizinhos ao tensor alvo W_0 . A média Riemanniana μ referente ao tensor W_0 é dada por

$$\mu = \arg \min \frac{1}{2} \sum_{k=1}^{8} \left(\sum_{n=1}^{3} \log^2 \lambda_n \left(W_k^{-\frac{1}{2}} \mu W_k^{-\frac{1}{2}} \right) \right), \quad \mu \in \mathcal{P}(3)$$

onde λ_n são os autovalores da matriz $W_k^{-\frac{1}{2}} \mu W_k^{-\frac{1}{2}}$, onde $k = 1, \dots 8$ é o número de tensores na vizinhança de W_0 , conforme pode ser visto na figura (7.2).

A filtragem leva em consideração a posição do tensor na imagem. Se observada a figura abaixo, podemos ver que o tensor central W_0 será o elemento de referência para o cálculo da média através da utilização dos seus vizinhos. Uma vez obtido a média μ , este novo tensor será posicionado nas mesmas coordenadas de W_0 em uma nova imagem. Este processo é realizado até obter a nova imagem completa.

Figura 7.2: Esquema de filtragem de uma imagem.

No caso do filtro FRA, a matriz μ é definida como o centro de massa Riemanniano L^{α} dos vizinhos de W_0 para um valor de $\alpha \in [1, 2]$ calculado através da equação (7.4). Para tensor, define-se uma vizinhança conforme a figura (7.2) e posteriormente aplica-se o filtro FRA. O processo computacional é oneroso, pois, para cada tensor resolve-se um problema de otimização, além disso, o acesso as informações são feitas de forma sequencial, onde percorre-se toda a imagem, elemento por elemento até o final do processo de filtragem.

No entanto, este processo de filtragem pode ser realizado em paralelo, onde partes da imagem podem ser distribuídas em vários núcleos do processador reduzindo consideravelmente o tempo de processamento. Abaixo, temos a descrição do algoritmo para o processo de filtragem.

Algoritmo 1: FILTRO	Riemanniano	Adaptativo
---------------------	-------------	------------

Entrada:

W: Imagem DTI-RM. $Nx \times Ny$: Dimensão da imagem. Saída: W_{FRA} : Imagem filtrada. 1 início $\mathbf{2}$ para $i = 1, 2, \cdots, Nx$ faça para $j = 1, 2, \cdots, Ny$ faça 3 Defina a vizinhança \mathcal{W} , centrada em W(i, j): $\mathbf{4}$ $\mathcal{W} = \{W(i-1, j-1), W(i-1, j), W(i-1, j+1), W(i, j-1), W(i, j-1$ $\mathbf{5}$ $W(i, j + 1), W(i + 1, j - 1), W(i + 1, j), W(i + 1, j + 1)\}.$ 6 Defina os pesos ω_k , $k = 1, \cdots, 8$ associados aos tensores vizinhos 7 contidos em \mathcal{W} . Calcule α segundo a equação (7.4) como descrito na seção (7.1). 8 Calcule $W_{FRA}(i, j)$ resolvendo o problema (7.5). 9 \mathbf{fim} $\mathbf{10}$ fim 11 12 fim 13 retorna W_{FRA}

Capítulo 8

Experimentos computacionais

Para realização dos testes, foi utilizado uma máquina Intel Xeon processor E3-1270V2, 8MB cache, 3.50 GHz, sistema operacional LINUX Ubuntu e uma licença MATLAB 2012a instalada, do projeto: "Algoritmo de ponto proximal com decomposições de Schur em domínios de positividade"/APQ1-FAPERJ/2012-2013, [28].

8.1 Experimentos com dados sintéticos

Geramos um conjunto de dados sintéticos similar ao utilizado por [7] e [22]; onde usamos os seguintes tensores de difusão:

$$D_1 = \begin{pmatrix} 0.97 & 0.0 & 0.0 \\ 0.0 & 1.751 & 0.0 \\ 0.0 & 0.0 & 0.842 \end{pmatrix} D_2 = \begin{pmatrix} 1.556 & 0.338 & 0.0 \\ 0.338 & 1.165 & 0.0 \\ 0.0 & 0.0 & 0.842 \end{pmatrix}$$

para gerar uma imagem DTI-RM de tamanho 10×10 .

Esta imagem DTI-RM possui duas regões diferentes, isto é, uma metade da imagem consiste da cópia do tensor D_1 e a outra metade consiste da cópia do tensor D_2 . O próximo passo foi usar a equação (6.17) e recriar o volume de imagens de difusões ponderadas (IDP) de dimensão $10 \times 10 \times 10$ correspondente à imagem DTI-RM, isto é, S_G^k , k = 1, ..., 10, onde G faz menção a imagem original. Para estes testes computacionais, consideramos os valores dos pixeis da imagem $S_G^0 = 10$ e os valores de b = 1 para todo o volume. Os gradientes de direções associados às imagens S_G^k , k = 1, ..., 10 foram obtidos de [7].

Para avaliar o desempenho do processo de filtragem, criamos dois cenários onde avaliamos dois diferentes tipos de ruído:

1 (Cenário 1) Assumindo que o volume de imagens (IDP) estão corrompidos por ruído Riciano, que surge do ruído gaussiano de valor complexo nas medidas originais no domínio da frequência. Isso significa que substituímos o valor real do sinal $S_{G,ij}^k$ da localização (i, j) por

$$S_{R,ij}^k = S_{G,ij}^k + r_{\sigma}, \ i, j = 1, \dots, 10,$$
(8.1)

onde S_R^k é a imagem depois da adição do ruído e $r_{\sigma} \sim N(0, \sigma^2)$ é uma distribuição gaussiana de média 0 e desvio padrão σ ao redor do sinal original para criar uma desejada razão sinal ruído (RSR).

2 (Cenário 2) Adicionamos ruído impulsivo (Sal e Pimenta) às imagens. Ruídos desse tipo são geralmente causados por interferências eletromagnéticas, arranhões nos discos de gravação, explosões e má sincronização na gravação e comunicação digital.

8.1.1 Quantificação do processo de filtragem

Uma forma natural de quantificar o processo de filtragem no caso euclidiano é definir o erro médio quadrático euclidiano entre a imagem real sem ruído e a imagem filtrada [36]. Jesus [3] utiliza o erro médio riemanniano para quantificar o processo de filtragem, enquanto nos trabalhos de [56], [57] eles utilizam o erro médio quadrático riemanniano entre a imagem suavizada e a imagem sem ruído. No entanto, seguindo os trabalhos de [7] e [22] utilizamos as seguintes medidas para quantificar o processo de filtragem:

 EMQ nas imagens DTI-RM: Sejam *F* e *D* as imagens DTI-RM filtrada e livre de ruído, respectivamente. A partir destas imagens, computamos o erro médio quadrático (EMQ) conforme equação abaixo:

$$EMQ = \sqrt{\frac{\sum_{ij} d\left(\mathcal{F}_{i,j}, \mathcal{D}_{i,j}\right)^2}{m}}$$
(8.2)

onde $d(\cdot, \cdot)$ é a distância riemanniana entre os dois tensores e m é o número de tensores das imagens $\mathcal{F} \in \mathcal{D}$.

2. ΔRSR nas imagens (IDP): Computamos a razão sinal ruido após o processo de filtragem:

$$\Delta RSR = 10 \log_{10} \left(\frac{\sum_{ijk} |S_{G,ij}^k - S_{R,ij}^k|^2}{\sum_{ijk} |S_{G,ij}^k - S_{F,ij}^k|^2} \right),$$
(8.3)

onde $S_{F,ij}^k$ define a k-esima (IDP) reconstruída a partir do tensor filtrado localizado na posição (i, j). 3. Média dos traços: Computamos a porcentagem média dos traços dos tensores reconstruídos $\mathcal{F}_{i,j}$ com relação ao verdadeiro tensor \mathcal{D}_{ij} , conforme equação abaixo:

$$TM = 100 \times \frac{\sum_{ij} \left(\frac{Tr(\mathcal{F}_{i,j})}{Tr(\mathcal{D}_{i,j})}\right)}{m},$$
(8.4)

onde $Tr(\cdot)$ é o traço da matriz e m é o número de tensores presentes nas imagens $\mathcal{F} \in \mathcal{D}$.

O próximo passo foi reconstruir o volume de imagens ruidosas DTI-RM S_R^k , considerando três diferentes níveis de ruído riciano com desvio padrão $\sigma = 0.5$, $\sigma = 1.0$ and $\sigma = 1.5$ e outra reconstrução considerando o tipo de ruído impulsivo, onde substituímos 30% de sinal real, por um ruidoso em cada imagem (IDP), conforme visto na figura (8.1).

Figura 8.1: Imagem DTI-RM sintética: (a): Imagem verdadeira; (b): Imagem verdadeira com ruído riciano com $\sigma = 0.5$; (c): Imagem verdadeira com ruído riciano com $\sigma = 0.1$; (d): Imagem verdadeira com ruído riciano com $\sigma = 1.5$ e (e): Imagem verdadeira com ruído impulsivo (sal e pimenta) correspondendo à 30% do sinal.

Após a geração destas imagens, aplicou-se 4 diferentes tipos de filtros com o objetivo de suavizar as imagens ruidosas de DTI-RM. Aplicamos os filtros de média ponderada, mediana ponderada, FRA e o filtro Bilateral, todos definidos em variedade Riemanniana das matrizes simétricas positivas definidas, exceto o último que utiliza a métrica log-euclidiana.

Para a visualização utilizamos uma versão modificada da função de visualização disponível na toolbox FanDTasia escrita na plataforma Matlab por [6]. Os resultados

do processo de filtragem para estes testes foram quantificados a partir das métricas (8.1.1) e estão descritos na tabela (8.1).

Métrica	σ	\mathbf{FRA}	Média	Mediana	Bilateral
MSE	0.5	0.0036	0.0078	0.0039	0.0068
	1.0	0.0035	0.0037	0.0037	0.0038
	1.5	0.0039	0.0042	0.0041	0.0041
AT	0.5	100.35	96.97	100.37	97.60
	1.0	99.80	98.50	99.59	98.58
	1.5	98.61	97.44	97.62	97.50
ΔSNR	0.5	8.30	8.25	8.28	7.75
	1.0	3.15	3.06	3.12	3.01
	1.5	5.56	5.11	5.31	3.40

Tabela 8.1: Resultados do processo de filtragem considerando as métricas (8.1.1) aplicadas ao caso de ruído riciano.

Podemos observar que o FRA obtém melhores resultados com relação ao EMQ. No entanto, o ganho não é muito significativo comparado as demais técnicas. Podemos ver que a metodologia proposta pode ser aplicável para resolver este tipo de problema.

Em relação ao traço médio (TM) da imagem filtrada, podemos verificar que o filtro FRA preservou melhor os traços dos tensores. Ao contrário do (EMQ), o ganho foi significativo comparado as demais metodologias abordadas. Onde o filtro FRA foi capaz de recuperar o traço médio dos tensores de uma maneira mais eficiente.

Podemos observar que o filtro FRA também obteve melhores resultados em relação ao (ΔRSR), mesmo considerando casos com crescentes níveis de ruído na imagem. A partir dos resultados obtidos no processo de filtragem na tabela (8.1), o filtro FRA provou ser uma técnica promissora na solução desse tipo de problema. Este pequeno ganho pode estar relacionado ao parâmetro α , porque para $\alpha \rightarrow 1$ significa que temos uma possível região de borda, então a mediana Riemanniana garante a manutenção dessas regiões. No entanto, para $\alpha \rightarrow 2$ (média Riemanniana) significa que o tensor está longe de uma borda e, neste caso, uma imagem mais suave pode ser alcançada, garantindo maior supressão de ruído nessas regiões.

Mesmo para o *cenário 2*, podemos observar que o filtro FRA obteve melhores resultados em relação às métricas usadas em comparação com os outros filtros. Para o caso em que consideramos o ruído impulsivo, obtivemos os seguintes resultados:

Tabela 8.2: Resultados do processo de filtragem considerando as métricas (8.1.1) aplicadas ao caso de ruído impulsivo referente à imagem (8.1e).

Métrica	FRA	Média	Medina	Bilateral
MSE	0.0023	0.0025	0.0023	0.0051
AT	98.99	98.32	98.45	98.15
ΔSNR	3.67	0.95	2.81	0.58

Figura 8.2: Resultado do processo de filtragem. As imagens (a-d) são os resultados correspondentes à filtragem de imagens ruidosas com $\sigma = 0.5$ para os filtros FRA, Média, Mediana e Bilateral, respectivamente; as imagens (e-h) são os resultados correspondentes à filtragem de imagens ruidosas com $\sigma = 1.0$; as imagens (i-l) são os resultados correspondentes à filtragem de imagens ruidosas com $\sigma = 1.5$.

As figuras (8.2 e 8.3) nos fornecem um resultado qualitativo do processo de filtragem em um conjunto de dados sintético, cujos resultados são apresentados na tabela (8.1 e 8.2) com situação diferente de ruído riciano e ruído impulsivo (sal e pimenta). Diante dos resultados obtidos, podemos observar que os filtros de FRA

e mediana riemanniana foram capazes de manter a região de descontinuidade com mais eficiência.

Figura 8.3: Resultado do processo de filtragem: (a) Imagem obtida pela aplicação do filtro FRA; (b) Imagem obtida aplicando o filtro Média; (c) Imagem obtida pela aplicação do filtro Mediana; (d) Imagem obtida aplicando o filtro Bilateral.

Além de suavizar a imagem, outra característica dos filtros descritos acima é a eliminação de todas as matrizes (tensores) simétricas definidas negativas, ou seja, eles eliminam todos os tensores que contém autovalores negativos, que contrariam o sentido do tensor de difusão no tecido observado. Essa característica de positividade é muito importante quando se pretende quantificar grandezas como anisotropia fracionada (AF), uma vez que sua quantificação depende da existência apenas de tensores positivos definidos na região observada.

No entanto, o filtro FRA fornece uma técnica promissora para resolver esse tipo de abordagem. Esse pequeno ganho pode estar relacionado ao parâmetro α , porque para $\alpha \to 1$ significa que temos uma região de borda possível, portanto a mediana riemanniana garante a manutenção dessas regiões. No entanto, de $\alpha \to 2$ (média riemanniana) significa que o tensor está longe de uma borda e, nesse caso, uma imagem mais suave pode ser obtida, garantindo maior supressão de ruído nessas regiões.

8.2 Experimentos em dados reais

Para demonstrar o potencial dos métodos em dados reais, utilizamos um conjunto de dados reais de DTI-RM de um cérebro humano disponibilizado pelo Projeto Camino [11]. Como este conjunto é livre para uso em pesquisas, ele é particularmente adequado como um conjunto de testes que permitem que pesquisadores compare seus algoritmos no mesmo conjunto de dados.

Aplicamos os filtros em uma pequena região de interesse extraída das imagens de tensores geradas a partir desse conjunto de dados. Consideramos a aplicação dos filtros em quatro fatias diferentes de imagens, onde essas imagens foram inicialmente corrompidas com ruído riciano com $\sigma = 1.5$ e ruído impulsivo referente à 25% do sinal verdadeiro e posteriormente filtradas. A figura (8.4) contém as imagens antes e depois da adição de ruído.

Figura 8.4: (a-d): Regiões de interesse a serem filtradas extraída das fatias 22, 26, 28 e 30 do conjunto de dados reais, respectivamente; (e-h): as mesmas regiões de interesse com ruído riciano de $\sigma = 1.5$ e ruído impulsivo (25%).

Os resultados do processo de filtragem para o conjunto de dados real considerando a métrica (8.1.1) estão descritos na tabela (8.3). Em vista dos resultados obtidos, podemos ver que o filtro FRA obteve melhores resultados em relação às medidas analisadas. Embora esse ganho não seja muito significativo em relação às demais metodologias de filtragem, percebe-se o potencial da metodologia proposta no processo de filtragem para o caso real em imagens dessa natureza.

Métrica	Fatia	\mathbf{FRA}	Média	Medina	Bilateral
MSE	22	0.0011	0.0015	0.0011	0.0013
	26	0.0009	0.0014	0.0009	0.0013
	28	0.0002	0.0018	0.0002	0.0013
	30	0.0004	0.0016	0.0004	0.0007
AT	22	99.90	98.38	99.81	98.55
	26	99.50	98.49	99.32	98.66
	28	99.30	98.30	99.21	98.46
	30	99.33	98.36	99.24	98.38
ΔSNR	22	3.90	3.70	3.80	3.74
	26	4.94	4.70	4.80	4.70
	28	3.60	3.20	3.35	3.17
	30	4.84	4.13	4.23	3.60

Tabela 8.3: Resultados do processo de filtragem considerando as métricas (8.1.1) aplicadas as quatro diferentes fatias de imagens do conjunto de dados reais.

Assim como no caso sintético, todos os filtros obtiveram resultados semelhantes com relação aos testes aplicados ao volume real de imagens. Com isso, podemos observar o potencial do filtro FRA diante dos demais filtros apresentados na literatura aplicado ao processo de filtragem em DTI-RM. Além disso, com esses resultados, abrimos a possibilidade de considerar centros de massa mais gerais como soluções para esta classe de dados volumétricos.

Figura 8.5: Resultados da filtragem: (a-d): filtragem aplicada à fatia 22 considerando os filtros FRA, Média, Mediana e Bilateral, respectivamente; (e-h) igual ao anterior, porém aplicado à fatia 26; (i-1) igual ao anterior, porém aplicado à fatia 28; (m-p) igual ao anterior, no entanto aplicado à fatia 30.

Capítulo 9

Conclusões e Trabalhos futuros

Inicialmente, o objetivo deste trabalho foi demonstrar a possibilidade de usar centros de massa mais gerais como elementos para compor filtros em variedades diferenciáveis. Mais precisamente, propomos a filtragem de imagens cujo domínio pode ser visto como uma variedade riemanniana de curvatura não-positiva.

Por meio do parâmetro α , propomos uma metodologia que consiste em filtrar as imagens DTI-RM e preservar suas bordas. Definimos a aplicação do filtro ARF com base nos centros de massa riemannianos, além disso, demonstramos a eficiência do uso desse elemento no processo de filtragem, onde comparamos seu desempenho com o dos filtros já existentes na literatura e verificamos através de vários testes computacionais em imagens corrompidas com diferentes níveis de ruídos. Com isso, mostramos a viabilidade de utilização do uso do chamado centro de massa riemanniano como ferramenta para compor filtros.

A primeira vantagem dessa metodologia é a possibilidade de usar um filtro que une as características dos filtros com base em médias e medianas, equilibrando assim, os níveis de suavização e mantendo as regiões de bordas das imagens, melhorando a qualidade do processo de filtragem. Segundo, existe a possibilidade de usar outros centros de massas no processo de filtragem, uma vez que é possível definir novos valores de α com base nas propriedades da imagem ou de outra forma independente.

Como a obtenção de centros de massa para $\alpha = 1$ consiste em resolver um problema não diferenciável quando a solução pode ser um dos pontos do conjunto, outra vantagem dessa metodologia está no uso de um algoritmo de ponto proximal em domínios de positividade, proposto para resolver problemas diferenciáveis e não diferenciáveis em S_n^+ . Outra contribuição deste trabalho é a apresentação de um resultado que garante que as soluções obtidas pelo filtro variam continuamente em seu domínio e em relação ao parâmetro α .

A principal desvantagem dessa classe de filtros é o alto custo computacional, uma vez que é necessário resolver um problema de minimização em cada localização espacial da imagem. Além disso, diferentemente das outras metodologias de filtra-
gem apresentadas neste documento, o filtro ARF tem um custo adicional ao calcular o parâmetro α em todos os pontos da imagem.

Para pesquisas futuras, propomos uma possível implementação do filtro em paralelo usando computação de alto desempenho. Com isso, teremos um ganho considerável com relação ao tempo de execução do processo de filtragem, além de abordar outros tipos de ruído no processo de filtragem.

Também pretendemos avaliar novas maneiras de quantificar o parâmetro α , a fim de favorecer outras características desejáveis nas imagens de DTI-RM, como textura, ligadas a técnicas de reconhecimento padrão por meio do uso de aprendizado de máquina com o objetivo de identificar regiões tumorais. Assim, podemos usar centros de massas riemannianos em algoritmos de agrupamento, como k-means e extrair recursos de imagens DTI-RM.

Outro ponto a ser abordado será quantificar as incertezas nas imagens de DTI-RM, construindo um conjunto de imagens que seguem alguma distribuição de probabilidade. A partir desse conjunto de imagens, podemos gerar mapas de incertezas como desvio padrão para extrair informações sobre a variabilidade das imagens que compõem a distribuição. Este conjunto de imagens pode ser obtido usando cadeia de Markov geradas pelo método Monte Carlo (MCMC).

Referências Bibliográficas

- AFSARI, B., 2011, "Riemannian L^P center of mass: existence, uniqueness, and convexity", Proceedings of the American Mathematical Society, v. 139, n. 2, pp. 655–673.
- [2] AFSARI, B., 2009, Means and averaging on Riemannian manifolds, Ph.D. thesis. university of Maryland, College Park., university of Maryland.
- [3] ANGULO, J., 2014, "Structure Tensor Image Filtering Using Riemannian L1 and L[∞] Center-of-Mass", Image Analysis & Stereology, v. 33, n. 2, pp. 95–105.
- [4] ASSAF, B. A., MOHAMED, F. B., ABOU-KHALED, K. J., et al., 2003, "Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy", American journal of neuroradiology, v. 24, n. 9, pp. 1857–1862.
- [5] ASTOLA, J., HAAVISTO, P., NEUVO, Y., 1990, "Vector median filters", Proceedings of the IEEE, v. 78, n. 4, pp. 678–689.
- [6] BARMPOUTIS, A., 2010, "Tutorial on diffusion tensor MRI using Matlab", Electronic Edition, University of Florida.
- BAUST, M., WEINMANN, A., WIECZOREK, M., et al., 2016, "Combined tensor fitting and TV regularization in diffusion tensor imaging based on a Riemannian manifold approach", *IEEE transactions on medical imaging*, v. 35, n. 8, pp. 1972–1989.
- [8] BHATIA, R., New Jersey, US, 2007., "Positive definite matrices." Priceton University Press.
- BREDIES, K., HOLLER, M., STORATH, M., et al., 2018, "Total generalized variation for manifold-valued data", SIAM Journal on Imaging Sciences, v. 11, n. 3, pp. 1785–1848.
- [10] CARMO, M. P. D., 1992, *Riemannian geometry; 2nd ed.* Mathematics : theory and applications. Boston, MA, Birkhäuser.

- [11] COOK, P., 2006, "Camino: Open-source diffusion-MRI reconstruction and processing", 14 th Sci. Meet. Int. Soc. Magn. Reson. Med, p. 2759.
- [12] DA CRUZ NETO, J. X., DE LIMA, L. L., OLIVEIRA, P. R., 1998, "Geodesic algorithms in Riemannian geometry." J. Geom. Appl. v.3, n.2, pp. 89–100.
- [13] DA SILVA ALVES, C. D., OLIVEIRA, P. R., GREGÓRIO, R. M., "Lα Riemannian weighted centers of mass applied to compose an image filter to diffusion tensor imaging", *Applied Mathematics and Computation*, v. 390, pp. 125603.
- [14] DAVIS, L. S., 1975, "A survey of edge detection techniques", Computer graphics and image processing, v. 4, n. 3, pp. 248–270.
- [15] DE MIRANDA GOMES, J., VELHO, L., 2008, Fundamentos da computação gráfica. Impa, Rio de Janeiro, Impa.
- [16] DO CARMO, M. P., 1988, Geometria riemanniana. Rio de janeiro, Impa, 2 ed.
- [17] ERIKSSON, S., RUGG-GUNN, F., SYMMS, M., et al., 2001, "Diffusion tensor imaging in patients with epilepsy and malformations of cortical development", *Brain*, v. 124, n. 3, pp. 617–626.
- [18] FERREIRA, O. P., OLIVEIRA, P. R., 1998, "Subgradient algorithms in on Riemannian manifolds." J. Geom. Appl. v.97, n.1., pp. 93–104.
- [19] FERREIRA, O. P., OLIVEIRA, P. R., 2002, "Proximal point algorithms in on Riemannian manifolds." J. Geom. Appl. v.51, n.2., pp. 257–270.
- [20] FERREIRA, O. P., OLIVEIRA, P. R., 2002, "Proximal point algorithm on Riemannian manifolds", *Optimizacion.*, v. v. 51, n. 2, pp. 257-270.
- [21] FILHO, O. M., NETO, H. V., 1999, "Processamento digital de Imagens", Rio de Janeiro: Brasport. Série Acadêmica.
- [22] FILLARD, P., PENNEC, X., ARSIGNY, V., et al., 2007, "Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics", *IEEE transactions on medical imaging*, v. 26, n. 11, pp. 1472–1482.
- [23] FIORI, S., 2005, "Quasi-geodesic neural learning algorithms over the orthogonal group: A tutorial", Journal of Machine Learning Research, v. 6, n. May, pp. 743–781.

- [24] FLETCHER, P. T., JOSHI, S., 2007, "Riemannian geometry for the statistical analysis of diffusion tensor data", *Signal Processing*, v. 87, n. 2, pp. 250– 262.
- [25] GAO, Z., WU, Y., BU, X., et al., 2019, "Learning a robust representation via a deep network on symmetric positive definite manifolds", *Pattern Recognition*, v. 92, pp. 1–12.
- [26] GREGORIO, R. M., OLIVEIRA, P. R., 2009, "Proximal point algorithm with Schur decomposition on the cone of symmetric semidefinite positive matrices", J. Math. Anal. Appl., v. v. 355, n. 2, 469-479.
- [27] GREGÓRIO, R. M., OLIVEIRA, P. R., ALVES, C. D. D. S., 2019, "A twophase-like proximal point algorithm in domains of positivity", *Applied Mathematics and Computation*, v. 343, pp. 67–89.
- [28] GREGÓRIO, R., OLIVEIRA, P. R., 2012, "Método Proximal com Fatorações de Schur para Determinação da Média Riemanniana de Matrizes Simétricas Definidas Positivas", CLAIO/SBPO, Rio de Janeiro, RJ. Préanais XVI CLAIO - XLIV SBPO - Workshoping LIA SGT.
- [29] HAMARNEH, G., HRADSKY, J., 2007, "Bilateral filtering of diffusion tensor magnetic resonance images", *IEEE Transactions on Image Processing*, v. 16, n. 10, pp. 2463–2475.
- [30] HAN, S., TAO, W., WU, X., 2011, "Texture segmentation using independentscale component-wise Riemannian-covariance Gaussian mixture model in KL measure based multi-scale nonlinear structure tensor space", *Pattern Recognition*, v. 44, n. 3, pp. 503–518.
- [31] HORN, R., JOHNSON, C., 1985, "Matrix Analysis", Sci. Tech. Perspect. 23, v. 1 ed. Cambridge, Cambridge University Press.
- [32] JOHN, C., 1986, "A computational approach to edge detection", IEEE Transactions on Pattern Analysis and Machine Intelligence.
- [33] KANOPOULOS, N., VASANTHAVADA, N., BAKER, R. L., 1988, "Design of an image edge detection filter using the Sobel operator", *IEEE Journal* of solid-state circuits, v. 23, n. 2, pp. 358–367.
- [34] KARCHER, H., 1977, "Riemannian center of mass and mollifier smoothing", Communications on pure and applied mathematics, v. 30, n. 5, pp. 509– 541.

- [35] LENGLET, C., ROUSSON, M., DERICHE, R., et al., 2006, "Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing", *Journal of Mathematical Imaging and Vision*, v. 25, n. 3, pp. 423–444.
- [36] LIN, T.-C., 2007, "A new adaptive center weighted median filter for suppressing impulsive noise in images", *Information Sciences*, v. 177, n. 4, pp. 1073– 1087.
- [37] MAGNUS, J. R., 1985, "On differentiating eigenvalues and eigenvectors", Econometric Theory, v. 1, n. 2, pp. 179–191.
- [38] MARTINET, B., 1970, "Brève communication. Régularisation d'inéquations variationnelles par approximations successives", R.I.R.O., v. 4, n. 3, pp. 154–158. doi: 10.1051/m2an/197004R301541. Disponível em: <https://doi.org/10.1051/m2an/197004R301541>.
- [39] MITTIMANN, A., 2009, "Tractografia em Tempo Real Através de Unidades de Processamento Gráfico", *Florianópolis*, SC.
- [40] MOAKHER, M., 2005, "A differential geometry approach to the geometric mean of symmetric positive-definite matrices", SIAM J. Matrix Anal., v. Appl. 26, pp. 735–747.
- [41] MORI, S., 2007, Introduction to diffusion tensor imaging. Baltimore, MD, Elsevier.
- [42] PENNEC, X., FILLARD, P., AYACHE, N., 2005, "A Riemannian Framework for Tensor Computing", EPIDAURE / ASCLEPIOS Project-team, IN-RIA Sophia-Antipolis 2004 Route des Lucioles BP 93, F-06902 Sophia Antipolis Cedex, FRANCE, v. v. 149.
- [43] PEREIRA, A. S. B. M., 2008, Imagem de tensor de difusão em alzheimer. Tese de Doutorado, FCT-UNL.
- [44] PERONA, P., MALIK, J., 1990, "Scale-space and edge detection using anisotropic diffusion", *IEEE Transactions on pattern analysis and machine intelligence*, v. 12, n. 7, pp. 629–639.
- [45] QIU, P., 2005, Image processing and jump regression analysis, v. 599. Hoboken, New Jersey, John Wiley & Sons.
- [46] ROBLES-KELLY, A., HANCOCK, E. R., 2007, "A Riemannian approach to graph embedding", *Pattern Recognition*, v. 40, n. 3, pp. 1042–1056.

- [47] ROCKAFELLAR, R. T., 1976, "Monotone operators and the proximal point algorithm", SIAM journal on control and optimization, v. 14, n. 5, pp. 877– 898.
- [48] SAKAI, T., 1996, *Riemannian geometry*, v. 149. Rhode Island, American Mathematical Soc.
- [49] SMITH, S. T., 1994, "Optimization Techniques on Riemannian Manifolds", *Fields Institute Communications*, v. 3.
- [50] STEFANOIU, A., WEINMANN, A., STORATH, M., et al., 2016, "Joint segmentation and shape regularization with a generalized forward-backward algorithm", *IEEE Transactions on Image Processing*, v. 25, n. 7, pp. 3384– 3394.
- [51] STEJSKAL, E. O., TANNER, J. E., 1965, "Pin diffusion measurements: spin References echoes in the presence of a time-dependent field gradient", *NMR Biomed.*, v. S J. Chem. Phys. 42, 288–292.
- [52] SYMMS, M., JÄGER, H. R., SCHMIERER, K., et al., 2004, "A review of structural magnetic resonance neuroimaging", Journal of Neurology, Neurosurgery & Psychiatry, v. 75, n. 9, pp. 1235–1244.
- [53] UDRISTE, C., 1994, Convex functions and optimization methods on Riemannian manifolds, v. 297. The Netherlands, Amsterdam, Springer Science & Business Media.
- [54] WESTIN, C.-F., MAIER, S. E., MAMATA, H., et al., 2002, "Processing and visualization for diffusion tensor MRI", *Medical image analysis*, v. 6, n. 2, pp. 93–108.
- [55] XIE, X., YU, Z. L., GU, Z., et al., 2019, "Classification of symmetric positive definite matrices based on bilinear isometric Riemannian embedding", *Pattern Recognition*, v. 87, pp. 94–105.
- [56] ZHANG, F., HANCOCK, E. R., 2010, "New Riemannian techniques for directional and tensorial image data", *Pattern recognition*, v. 43, n. 4, pp. 1590–1606.
- [57] ZHANG, F., HANCOCK, E. R., 2006, "A Riemannian weighted filter for edgesensitive image smoothing", in:Proceedings of International Conference on Pattern Recognition, pp. 594 – 598.

[58] ZHAO, K., WILIEM, A., CHEN, S., et al., 2019, "Convex class model on symmetric positive definite manifolds", *Image and Vision Computing*, v. 87, pp. 57–67.