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UMA ABORDAGEM PROBABILÍSTICA PARA IDENTIFICAR A ORIGEM

DE EPIDEMIAS ALEATÓRIAS EM REDES FINITAS
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Os modelos de redes epidêmicas são estudados há mais de 20 anos e são us-

ados para representar diferentes processos de difusão em redes. Por exemplo, a

propagação de uma doença através do contato f́ısico entre indiv́ıduos numa pop-

ulação ou a propagação de not́ıcias falsas por meio de uma rede social online. Nesse

contexto, surge o problema de identificar o vértice da rede que iniciou a epidemia a

partir da observação parcial do processo epidêmico. Esta tese considera um modelo

probabiĺıstico para uma epidemia de rede finita e pressupõe a observação da árvore

epidêmica ao final do processo. A partir de uma análise probabiĺıstica, apresenta-

mos um algoritmo eficiente para encontrar o vértice com maior probabilidade de

ser a origem da epidemia. Os resultados numéricos ilustram o potencial da abor-

dagem proposta. Usaremos o modelo SI de propagação de epidemias em redes e

métodos probabiĺısticos baseados em análise combinatória para identificar a origem

da propagação de um boato numa rede quando recebermos informações parciais

sobre o processo de propagação e sobre a própria rede.
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Epidemic network models have been studied for over 20 years and are used to

represent different diffusion processes across a network. For example, the spread of

a disease through physical contact between individuals in a population or the spread

of fake news through an online social network. In this context, the problem of iden-

tifying the network vertex that initiated the epidemic from the partial observation

of the epidemic process arises. This thesis considers a probabilistic model for a finite

network epidemic and assumes observation of the epidemic tree at the end of the

process. From a probabilistic analysis, we present an efficient algorithm to find the

vertex most likely to be the epidemic source. Numerical results illustrate the poten-

tial of the approach being proposed. We will use the SI network epidemic spreading

model and probabilistic methods based on combinatorial analysis to identify the

source of the spread of a rumor in a network when we receive partial information

about this propagation process and about the network itself.
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Chapter 1

Introduction

Various biological, social and communication systems can be described through

complex networks where nodes represent individuals, or groups of individuals, and

edges represent their respective connections or interactions. In biological systems,

edges can represent some kind of biological interaction such as the bonding between

pairs of proteins. In social networks, edges represents social relationships such as

friendships or collaborations. The structure of these networks is often complex and

highly asymmetric, as nodes in these networks often have very different degrees.

Among several processes that occur in such networks, a common and important

process are diffusion or epidemics. These processes model the spread of something

that depends on the kind of network. An example in online social networks such

as Facebook or WhatsApp is the propagation of fake news. Another example is

the spread of a disease in a population through the contact network, such as the

spread of HIV. In this context, it is interesting to understand how epidemics unfold

on networks independently of what is spreading, an approach know as network

epidemics.

The study of network epidemics is not a recent subject in academy, epi-

demic models have been studied for centuries and a pioneer paper was written by

BERNOULLI (1766). More recently, spreading processes based on a particular epi-

demic model was proposed by HARRIS and WILSON (1978), epidemic models in

directed-graphs by Kephart and White (1991) and epidemics on scale free networks

by Pastor-Satorras and Vespignani (2001). Recent works in network epidemics focus

on the behavior of the diffusion process to characterize its duration or intensity. In

particular, many works focus on the input that the network structure has on the

epidemic process as well as consider different epidemic models.

At a very high level, the spreading process of a rumor can be regarded as similar

to the spreading process of a disease. An individual initiates a rumor, spreading it to

a friend or a group of friends. Each of them can repeat this spreading process of the

rumor to more people giving rise to an epidemic in a network of friends. This process
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is often random and depends on the network of friends and on the rumor. The study

of such epidemic models, reveals characteristics of the rumor, the time required for

the rumor to reach a given fraction of the population, or the identification of the

node that started the rumor. This thesis, focus in this last problem when partial

information about the epidemic process is available.

1.1 Motivation

In all of humanity’s history several epidemics have happened and continue to

happen, some of which with drastic consequences to society such as The Great

Influenza Epidemic of 1918 (BARRY, 2004). In order to understand the spread of

these diseases in the population, various mathematical models have been developed

to predict the behavior of an epidemic as a function of its parameters and a common

approach is to use graphs.

When considering the population of a city, for example, each individual can be

represented by a node in a graph, and each edge on this graph represents that two

individuals have been in direct contact for a certain period of time. Moreover, this

population can be divided into groups, more specifically, in three groups. Those

who are sick, called infected group; those who are healthy, called susceptible and

those who were sick but have been treated and cured, and cannot be contaminated

by the disease again, called recovered. These groups allow the epidemic model to

capture the infection process in the population over time.

Another epidemic process on a network is the diffusion of computer viruses.

Modern computer viruses are programs capable of transmitting a copy of itself from

one computer to another. Its process of contamination often resembles that of

dissemination of pathogens in a population. In this process the nodes represents

the computers and the edges represents the exchange of information between two

computers. A specific kind of computer virus infect smartphones and propagate

through Bluetooth connections. Thus, Bluetooth viruses can infect smartphones

found within Bluetooth range of the infected phones, which is about 10-30 meters.

The spread of Bluetooth viruses requires physical proximity, and is therefore similar

to the spread of diseases that also require physical proximity.

While digital viruses can spread in networks of digital devices, rumors can spread

in online social networks such as Facebook. Intuitively, the spread of the rumor

depends on the structure of the network which is defined by a given relationship.

For example, a network of students in a school will not have the same structure as the

network induced by some class of this school or a group of friends in this class. The

analogy between the spread of rumors and disease has been recognized for over 50

years. DALEY and KENDALL (1964) propose and discuss the connection between

2



the two kinds of epidemics, an analogy between the spreading of an infectious disease

and dissemination of information as shown in Table 1.1. This connection between

these two kinds of epidemics allow us to use epidemic models to represent rumors

in a more general abstraction.

Table 1.1: Spread of diseases versus informations - DALEY and KENDALL (1964)

Class Rumor Interpretation Epidemic Interpretation

x Has not heard the rumor Susceptible to disease
y Actively Spreading Rumor Infectious Case
z No Longer Spreading Rumor Dead, Isolated or Immune

An important problem when considering epidemics is the identification of the

first node to be infected, often called patient zero. This node is the source or origin

of the epidemic and identifying it is not trivial if only partial information about

the unfolding of the epidemic process is available. However, in many scenarios only

partial information concerning the unfolding of the epidemic is available, such as

the spread of a rumor through a real social network. This motivates algorithms and

models that can effectively be used to identify the source of an epidemic and is the

main topic addressed in this thesis.

1.2 Objective and Contribution

This thesis addresses the problem of identifying the source of an epidemic that

unfolds on a finite network. The recursive random spanning tree model is used

to represent the epidemic process. This model generates a tree that represents an

epidemic spread across the entire population.

Thus, the information observed is a tree through which the epidemic spread.

Given this tree and the underlying network, the goal is to determine the source of

the epidemic. No temporal information is available such as the time nodes were

infected. Thus, the structure of the tree and the underlying graph must be used to

identifying the source. Intuitively, since the epidemic unfolds uniformly, its source

is more likely to be at the “center” of the tree.

This work assumes a single node is infected at time zero and all other nodes

will be infected and be part of the spanning tree. The main contributions of this

thesis is the analysis of the probabilistic epidemic model and the characterization of

the probability that a node is the source given the observed tree. This expression

is solved analytically for when the underlying network is the complete graph. In

this case, an efficient linear time algorithm that finds the most probable source

is presented. Finally, numerical simulation assess the accuracy of the proposed

3



methodology, and indicate that the most probable source is often the epidemic

source. To calculate the probability of each node to be the epidemic source (Chapter

3) of our algorithm which returns the node with maximum probability (Chapter 4).

1.3 Organization

This thesis is organized in 6 Chapters. Chapter 2 presents a literature review on clas-

sic epidemic models, network epidemic models and recursive random trees. Chapter

3 presents the source identification in recursive random trees. In Chapter 4 investi-

gates recursive random tree model on complete graphs and describes the algorithm

to find the most probable source, as well as, numerical evaluation of the methodol-

ogy. In Chapter 5 presents works related to epidemic source identification. Chapter

6 concludes the paper and discuss future works.
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Chapter 2

Epidemic Models

The study of models that capture the nature of an epidemic is quite an old

topic. One of the first studies about rumor spreading was in 1950’s and give rise

to the small world theory. Bernoulli (1766) made a study about network epidemic

models, then, Kephart and White (1991) studied the spreading of computer viruses

and Pastor-Satorras and Vespignani (2001) studied epidemic on scale free networks,

and since then many other authors made several contributions to the area.

When a person catches a disease, depending on the pathological agent contracted,

this person may recover, die or remain in a chronic disease state depending on

the nature of the pathogen. In addition, this disease can spread, depending on

the form of transmission and become an epidemic in the population. In order to

understand how diseases spread in populations beside considering the connections

that characterize the connections of this population, we must take this biological

factor into account. Over the years, several researchers have studied models that

could capture information so that we can mathematically understand the spreading

process of a disease.

In this Chapter, we will introduce some important concepts considered for the

understanding of the content presented in this thesis as classic epidemic models, the

three principal epidemic models (SI, SIS and SIR); network epidemic models and

recursive random trees, that will be used in this thesis.

2.1 Classic Epidemic Models

The epidemic models classify individuals according to their epidemic state that

can be: susceptible, infected and recovered. The susceptible individuals are those who

have not had contact with the pathogen/infected individuals, the infected individuals

are those who have already been contaminated by the pathogen and the recovered

individuals are those who have been contaminated but were healed. Recovered

individuals may be able to contract the disease again never contract the disease
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again and each one of these types are represented in the models that will be present

in this Section.

Consider a population with n individuals with an amount I of infected individu-

als and an amount S of healthy individuals considered susceptible to the pathogen.

The infected individuals may contaminate any susceptible individuals as long as

exist an environment for contamination as direct contact or other form that the

pathogen needs for contamination.

After being contaminated, an individual may or may not recover according to the

pathogen in question. When the pathogen in question does not allow cure, diseases

such as HIV for example, the model that captures the behavior of this epidemic is

the SI model. When the pathogen allows the individual to recover, such as influenza,

measles and others, two models can be used, the SIS model or the SIR model. For a

disease like measles, once cured, the individual does not contract this disease again,

we can use the SIR model. When it comes to a disease that the individual may have

again like the flu, we use the SIS model.

2.1.1 SI Model

The simplest mathematical representation of an epidemic, the SI model, has only

two states: susceptible and infected - see Figure 2.1. In the SI model, the individuals,

once infected, remained in this state, that is, they can not recover from the disease.

So at the beginning of the epidemic, all individuals belong to susceptible state, which

is, healthy individuals who have not had contact with the disease-causing pathogen.

Once infected, an individual, changes its state from susceptible to infected and can

contaminate other individuals in the susceptible state and remain on this state until

the end of the epidemic. This way, the fraction of infected individuals starts in zero

and grows until it stabilizes and reaches one when all individuals are infected - see

Figure 2.1.

The traditional approach considers that all individuals in the network have an

equal chance to have direct contact and be contaminated if in contact with infected

individuals. Once infected, this individual can contaminate any other susceptible

individual. Obviously, this is not a realistic representation of the world, as we know

that not all individuals are equally related to the other individuals in the network

(NEWMAN, 2012).

Consider a disease spreading through a population with n individuals and the

homogeneity in the process of contamination. At each unit of time, only one in-

dividual of the population is infected. Let S(t) be the number of individuals who

are healthy (susceptible state) and I(t) the number of infected individuals of the

population at time t, the probability of contamination of a new vertex at time t is

6



1
S(t)

, that is choose one of the susceptible individuals to infect.

At the beginning of the epidemic, all individuals in the population are susceptible

and there are no infected individuals (the infected set is empty). At time t = 0 a first

individual is infected then I(0) = 1 and S(0) = n− 1. Suppose that the probability

of the disease being transmitted from an infected to a susceptible individual at a

unit of time is equal to β.

Since there are I(t) infected individuals transmitting the pathogen at time t,

each at rate β, we can write a differential equation for the rate of new infections

I(t) and to facilitate the notation we will use the fraction of infected and susceptible

individuals respectively as i = I(t)/n and s = S(t)/n, thus (NEWMAN, 2012) then,

the rate of new infections at time t is:

di

dt
= βsi (2.1)

At the same time as the number of infected individuals increases, the number of

susceptible individuals decreases at the same rate:

ds

dt
= −βsi (2.2)

These equations characterize mathematically the SI model. But, as we know that

there is only two possible states in this model, each individual can only belong to

one of the two states. Therefore, the sum of the number of infected and susceptible

individuals must be equal to the size of the population. Mathematically, S(t)+I(t) =

n, this way we can rewrite Equation 2.1 using this information, we have that s = 1−i,
so:

di

dt
= β(1− i)i.

Using standard methods we can solve this equation to give the logistic growth

equation, were i0 is the value of I(t)/n at t = 0.

i(t) =
i0 e

βt

1− i0 + i0eβt
(2.3)

Next, we can see in the Figure 2.1, the graph of the logistic growth curve and

the states that the model presents.
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Figure 2.1: States of SI model and classic logistic growth curve (BARABÁSI, 2017).

The logistic growth curve increases exponentially for a short time as we can see in

Figure 2.1, corresponding to the initial phase of the spreading process when the most

part of the population is susceptible and the final phase when the disease spreads in

the population and most of the population is already infected (NEWMAN, 2012).

As individuals cannot recover, the fraction of infected individuals will always reach

one.

2.1.2 SIS Model

There are many ways to extend the SI model in order to obtain a more realistic

model or a model which is more appropriate for a specific disease. The SIS model, is

a extension of the SI model that allows reinfection, that is, allows the individual to

recover and become susceptible again, being able to be reinfected by the pathogen.

As the SI model, the SIS model presents only two states: Susceptible and Infected,

but the main difference between these two models is that in SIS model the infected

individuals can return to the susceptible state after recovery - see Figure 2.2. The

infection between individuals are assumed to happen at average rate β per individual

and infected individuals return to susceptible state at some constant average rate µ,

that is, the recovery rate. As in SI model, the number of infected individuals at time

t is I(t) and the number of susceptible individuals at time t is S(t). The differential

equations for this model will be present below and to facilitate the notation we will

use i = I(t)/n and s = S(t)/n (NEWMAN, 2012):

ds

dt
= µi− βsi; (2.4a)

di

dt
= βsi− µi. (2.4b)

Note that we have the same equation of the SI model if the recovery rate is

zero. As we know, because there are only two states in the model, s+ i = 1 we can

8



transform Equation 2.4b of infected individuals in:

di

dt
= (β − µ− βi)i

Solving the previous equation using standard methods, we have the logistic growth

equation present below.

i(t) = i0
(β − µ) e(β−µ)t

β − µ+ β i0 e(β−µ)t
(2.5)

Figure 2.2: States of SIS model and classic logistic growth curve (BARABÁSI,
2017).

Note that if β < µ then Equation 2.5 predicts that the disease will die out

exponentially and because of the fact that the individuals can recover from the

disease, the logistic growth curve will never achieve one to the fraction of infected

individuals if β is greater than µ (NEWMAN, 2012). And if β > µ the logistic

growth curve will be similar of the SI model - see Figure 2.2 - but differs in a

important aspect: the population will never be fully infected by the disease.

2.1.3 SIR Model

In some diseases, when a individual recovers, he will never contract it again, this

characterizes the SIR model, where there are three states, which are: Susceptible,

Infected and Recover (or Removed) - see Figure 2.3 (BARABÁSI, 2017).

Different than the SI and SIS model, in the SIR model, once recovered, the

individual is immune to the pathogen and will not return to the susceptible state

anymore.

Just like in SI and SIS models, infection between individuals are assumed to

happen at average rate β per individual and infected individuals recover (or die) at

some constant average rate µ (NEWMAN, 2012). The number of infected individuals

at time t is represented by I(t), the number of susceptible by S(t) and the number

of recovered individuals at time t is represented by R(t). The differential equations
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which represents this model are presented below and to facilitate the notation we

will use i = I(t)/n, s = S(t)/n and r = R(t)/n:

ds

dt
= −βsi; (2.6a)

di

dt
= βsi− µi; (2.6b)

dr

dt
= µi. (2.6c)

Again, if the recovery rate is zero, we have the same equations of the SI model. As

there is only those three possible states, as in the previous models, it is necessary

to satisfy that the sum of the number of individuals in each state be equal to the

population size and by dividing all these quantities by the population size, we have

that: s+ i+ r = 1. Now, solving these equations in 2.6

ds

dt
= −βi [1− r − i]; (2.7a)

di

dt
= −µi+ βi [1− r − i]; (2.7b)

dr

dt
= µi. (2.7c)

In Figure 2.3 we can see the curves of the states of this model. Note that the

number of susceptible individuals decreases exponentially and the number of infected

increases very quickly until the individuals start to recover, than the number of

infected decreases and never reaches one.

Figure 2.3: States of SIR model and classic logistic growth curve (BARABÁSI,
2017).

The difference between these three models is clear when we observe the fraction

of infected individuals in each of them - see Figure 2.4. The outcomes are different

for large times but at the beginning of the epidemic, in the exponential regime,

all increases exponentially. In the SI model everyone becomes infected; in the SIS

model either reaches an endemic state, in which a finite fraction of individuals are

always infected, or the infection dies out; and in the SIR model everyone recovers
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at the end. Note that in SI and SIS models, when the fraction of infected reaches

the maximum, stabilizes and remains until the end of the epidemic. Already in SIR,

when it reaches the maximum, decreases until returning to zero.

Figure 2.4: Exponential regime of those three epidemic models (BARABÁSI, 2017).

In Figure 2.4, we can see the rate of infected individuals throughout the epi-

demic considering finite population. Observing these curves we can have different

questions:

1. If we use finite graphs, this epidemic will last or die?

2. If the epidemic will last, how soon will the entire population be infected?

3. If the epidemic will die, how soon will that happen?

Note that if an epidemic last or die, depends on the rate of infection and recovery

of the population and if we where in infinite graphs the epidemic can last forever

because the population does not stop growing making them always susceptible in-

dividuals.

2.2 Network Epidemic Models

In Section 2.1, we present the three most used epidemic models of literature. But

these models have the assumption of “full mixing” of the population, this means that

each individual may have contact with any other individual who may be contam-

inated in the network and may then be infected. In addition to the assumption

that an individual can infect anyone else in the network, these models also carry

the assumption that all individuals have a comparable number of contacts 〈k〉. In

real word, individuals can transmit a pathogen only to those they come into contact

with and we cannot say that two individuals, or two groups of individuals, could
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potentially have contact with everyone else. This way the pathogens spread on a

complex contact network.

It is important to note that in the network epidemic models the structure of

the network is taken into account. This type of models began to be used approx-

imately 20 years ago and one of the main papers of the subject was published by

PASTOR-SATORRAS e VESPIGNANI (2001). They define a dynamical model

for the spreading of infections on scale-free networks finding the absence of an epi-

demic threshold and its associated critical behavior. This paper is one of the most

important and cited in network epidemic models.

In this Section, we will show some differences with the classic epidemic models

presented in Section 2.1 for epidemic processes on networks and will focus in the

model with only two states, SI and SIS. The approach used in this thesis will consider

the SI model.

Network epidemic models take into account the network structure in equations.

As a network model, we need to understand what means first the motivation to use

structure information in the model equations.

As the network models aim to be as close as possible to the real word, we cannot

consider that all individuals are connected, because the probability of two individuals

randomly chosen in a very large sample meeting each other is very small to the point

of being neglected. So we have to consider that one individual can infect only the

individuals with whom it is connected in some way. Another thing to consider is

that individuals with the same number of connections tend to behave in the same

way in the spreading process and can be grouped with the individuals with the same

number of connections.

Figure 2.5: Degree Block Approximation (BARABÁSI, 2017).

In network epidemic models, the degree of each node is regarded as an implicit

variable and this is achieved by the degree block approximation that distinguishes
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nodes by their degree and makes the assumption that nodes with the same degree

are statistically equivalent and behave similarly - see in the Figure 2.5 (BARABÁSI,

2017).

2.2.1 SI model on Networks

The calculation of the fraction of infected nodes in network epidemic models is

very similar to the classic epidemic models, differing only in taking the degree of the

node into account. By the degree block approximation the calculation of the number

of infected individuals is partitioned because nodes with the same degree tend to

behave similar so the calculation of infected nodes considers the number of infected

nodes with degree 〈k〉
ik =

Ik
nk

(2.8)

where nk is the number of degree-k nodes in the network.

Given all the different nodes degrees, the total fraction of infected nodes can be

calculated by the sum of all infected degree-k nodes multiplied by the fraction of

nodes with degree equal to k, denoted ny pk, as we can see in Equation 2.9.

i =
∑
k

pk ik (2.9)

Calculated the fraction of infected nodes in the network, we can write the differ-

ential equations that represent the SI model on networks for each degree separately.

Then, since we have ik(t) infected individuals with degree equal to k are transmit-

ting the pathogen, each at rate β at time t, a density function that represents the

fraction of infected neighbors of a susceptible node k Θk, the average number of new

infections dik(t) during a timeframe dt is calculated as shown in Equation 2.10.

dik
dt

= β(1− ik)kΘk (2.10)

The Equation 2.10 is similar to Equation 2.1 in the classic epidemic model where

the infection rate is proportional to β and the fraction of degree-k nodes that are

not yet infected (1− ik) and the node degree k. After some calculations, the fraction

of infected nodes with degree k presented in 2.10, becomes:

dik
dt
≈ βki0

〈k〉 − 1

〈k〉
e

(
t
T

)
. (2.11)

This is because we can approximate β(1 − ik)kΘk by the factor βkΘk and

transform the Θk function in i0
〈k〉−1
〈k〉 e

(
t
T

)
which are demonstrated in BARABÁSI

(2017). Beside that, we can calculate the characteristic time T for the spread of
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the pathogen in the network which takes into account the average degree in this

network and the spreading rate β.

T =
〈k〉

β(〈k〉2 − 〈k〉)
(2.12)

Integrating Equation 2.11 under all k, we get the fraction of infected nodes and

in the same way as in 2.9 the total fraction of infected nodes grows with time as

follows:

i =

∫ kmax

0

ikpk dk

= i0

(
1 +
〈k〉2 − 〈k〉
〈k2〉 − 〈k〉

(
e

(
t
T

)
− 1
)) (2.13)

According to the spreading time equation (2.12) the characteristic time T de-

pends not only on 〈k〉, but also on the network’s degree distribution through 〈k2〉.
In the SI model with time the pathogen reaches all individuals. Consequently the

degree heterogeneity affects only the characteristic time, which in turn determines

the speed with which the pathogen sweeps through the population (BARABÁSI,

2017).

2.2.2 SIS model on a Network

As in the SI model, equations of the SIS model are a direct extension of the classic

SIS model of epidemics. So, as the previous Section, the differential equation to

describe the infected individuals in the model is represented below and the difference

between the classic and the network model is the presence of the recovery term −µik.
This difference impacts on the characteristic time equation (2.15). Note that the

characteristic time in SI model is different of the characteristic time on SIS model.

dik
dt

= β(1− ik)kΘk(t)− µik (2.14)

T =
〈k〉

β〈k2〉 − µ〈k〉
(2.15)

It is important to highlight that depending on the value of µ, if it is large enough,

ik decays exponentially and this condition does not depend only on the recovery rate

and 〈k〉. Another thing important is that in order to predict whether a disease will

persist in a population, the spreading rate is defined. This rate depends only on

the probability of transmission β and the recovery rate µ. The higher the spreading

rate, the more likely it is that the disease will spread in the population (BARABÁSI,
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2017).

λ =
β

µ
(2.16)

Table 2.1 presents the continuum equation for the three basic epidemic models

(SI, SIS, SIR) on a network with arbitrary 〈k〉 and 〈k2〉, this continuum equation

gives the average number of new infections during a certain timeframe. Beside

that, the table contains the corresponding characteristic time T and the epidemic

threshold λc for these three models.

Table 2.1: Main formulas of epidemic models in networks.

Model
Continuum
Equation

T λc

SI dik
dt

= β[1− ik]kΘk
〈k〉

β(〈k2〉−〈k〉) 0

SIS dik
dt

= β[1− ik]kΘk − µik 〈k〉
β〈k2〉−µ〈k〉

〈k〉
〈k2〉

SIR
dik
dt

= βskΘk − µik
sk = 1− il − rk

〈k〉
β〈k2〉−(µ+β)〈k〉

1
〈k2〉
〈k〉 −1

In the SI model, the epidemic threshold λc is equal to zero and there is no

recovery, that is, µ = 0, so the pathogen spreads until all susceptible individuals

in the network are infected and the characteristic time considers only the average

degree in the network and the spreading rate. In the SIS model, the continuum

equation differs of the SI equation for one term which is discounted related to the

recovery rate and the characteristic time also considers the recovery rate in Equation.

For further details, we refer the reader to BARABÁSI (2017).

2.3 Epidemics Through Recursive Random Trees

Recursive random trees models (RRT) are a special class of models used to de-

scribe an epidemic process. We shall see three different types of RRT: classic recur-

sive random trees, recursive random spanning trees and recursive random weighted

spanning trees.

This models represent an epidemic spreading on the population and the repre-

sentation of this population is made as follows. Let G be a general connected graph

where V and E are the sets of vertices and edges of this graph and the total number

of its vertices and edges are denoted by |V | and |E| respectively. An edge con-

necting two vertices belonging to the population is represented by a pair of nodes,

e = {u, v}. As usual, the nodes represents the individuals that may be infected and

the edges the channel through which the epidemic can be spread.
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In the spreading process of the epidemic, only some edges are used. These

edges represents the “path taken by the epidemic”, that is, the channels used to

transmit some pathogen through the population and are represented by pairs of

vertices with the labels linked to the time were they where contaminated in the

epidemic, {vk, vk+t}. In these edges one vertex is the contaminant and the other

is contaminated. To identify the contaminant and the contaminated just look the

label of them, the vertex with the smaller label is the contaminant vertex and the

other vertex is the contaminated.

Considering a population of size n, the population is partitioned in two subsets:

susceptible and infected, named as S and I, respectively. At each contamination

takes a unit of time (time discrete) and there is no chance of two individuals be

infected at the same time. As only one individual is infected at each unit of time,

at time n, all individuals of the population will be infected. At time zero, that is,

before the epidemic starts, all population is susceptible and the infected set is empty.

Let S(t) and I(t) be the sets of susceptible and infected individuals at time t of

the epidemic. At the beginning of the epidemic we have that the susceptible set has

all individuals, |S| = n, and the infected set is a empty set, |I| = 0. After that, at

the first infection in the population, the number of nodes in each set change and the

first vertex infected receive the label v0.

I(0) =

S(0) = V

Throughout the epidemic, the number of vertices in the susceptible and infected

sets will change respecting the fact that the sum of the number of nodes in these two

sets must be equal to the population size regardless of the period of the epidemic

(|S(t)|+ |I(t)| = |V | ∀t).
The epidemic starts in a root vertex labeled as v0. This initiate the set of infected

vertices and decreases the susceptible set in a vertex. When a vertex is infected

it can then infect other vertices that are still susceptible. However, an infected

vertex may only contaminate vertices with which it has some connection, that is,

its neighbors in the graph. As the epidemic continues, new vertices are infected

changing these two sets so that the relationship between S and I is S(t) = V \I(t)

and |S(t)| + |I(t)| = |V |, ∀t. The labels received by the vertices correspond to the

order in which they were contaminated. So, if a vertex has the label vk we know

that this vertex is the k-th infected vertex.

When the epidemic process ends, that is, when all individuals in the population

are contaminated, it can be characterized by a spanning tree τ since the population

is represented by a graph and all nodes in this graph will be included in this tree

and there will be no cycles since the base epidemic model is the SI model. Thus, this

spanning tree can be described by edge sequences b that describes the channels used
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in the process of spreading the epidemic. Beside that, an edge sequence represent,

in a unique way, a spanning tree.

2.3.1 Classical Recursive Random Trees

The recursive random trees model is a procedure to construct trees that can be

interpreted as an epidemic process based in the SI model. The classical recursive

random trees model will represent an epidemic of SI type in a population of size n

that can be understood in this model as a complete graph.

As explained before, this population is partitioned in two subsets, S and I and

considering that the model has discrete times t = 0, 1, · · · , n, that is, ate each unit of

time in the epidemic, one and only one, new vertex is infected. The labels received

by the new infected are referent to the time in which it was contaminated, that

means the k -th infection in the epidemic will occur in time t = k and will receive

the label vk.

Let S(t) and I(t) be the set of susceptible and infected vertices, respectively in

time t. At the beginning of the epidemic, the susceptible set has all individuals and

the infected set is empty. The first infection in the epidemic occurs by selecting

uniformly at random one vertex from S. This means that all vertices has equal

probability of being infected and this probability is equal to 1/|S(0)|, where |S(0)| is

the number of vertices in S at time t = 0. This first infected will receive the label

v0 and the subsets S and I will be now

I(0) = {v0}
S(0) = V \I(0)

The next contamination will occur by selecting uniformly at random an infected

vertex from I and connecting the new infected vertex to the first vertex infected.

The probability of choosing one vertex uniformly at random in the sets I is: 1/|I(t)|,

that means that all vertices in the subset at time t will have the same probability

of being selected.

As defined before b = (e1, e2, · · · , en−1) is the sequence of edges used in the

spreading process and each edge is represented by an unordered e = (u, v) where u

belong to the susceptible set and v to infected set. Considering the construction of

the infected and susceptible sets considering each new edge added in b we have that,

S(t+ 1) = S(t)\{u}
I(t+ 1) = I(t) ∪ {u}.

To keep track of who infected whom, the RRT model build a tree where the

vertex set is {v0, · · · , vn−1} and there is an edge between vi and vj if vi infect vj.

Note that the process defines a tree that is given from the set of pairs of nodes

chosen at every step.
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2.3.2 Recursive Random Spanning Trees

The recursive random spanning tree generalizes the classical model assuming the

existence of specific channels of interactions between the population. In particular,

an individual may infect another only if they can interact. To encode the presence

of these channels of interactions the model assumes the existence of an underlying

graph where the vertices are the individuals and the edges, channels of interaction.

We shall always assume that the graph which describes the population in connected.

Note that, if we use as underling graph a complete graph we have exactly the classical

recursive random trees. Just as in classical recursive random trees, the epidemic

process will generate a spanning tree of the underlying graph.

Definition 2.3.1. A spanning tree of a connected graph G is a sub-graph of G, that

is connected and has no cycles.

Let G be a connected graph representing a finite population. Suppose that

a disease begins to spread through this population. In this epidemic process, we

consider that each vertex can contaminate only their neighbors in the graph, making

the spreading process of this epidemic directly dependent on the structure of this

network. Once contaminated, the vertex does not recover remaining infected until

the end of the epidemic, which occurs when all the individuals are contaminated.

The spreading process occurs as follows: At the start of the epidemic process,

the number of infected is zero, and the number of susceptible is equal the size of the

population.

When the first vertex of G was infected by being selected uniformly at random

from S, the sets of infected and susceptible will change, that is, |I(0)| = 1 and

|S(0)| = n− 1. The initial infected vertex v0 can now infect susceptible individuals

to whom it is connected to.

I(0) = {v0}
S(0) = V \I(0).

Observe that the sets I(0) and S(0) are also partitions of G. Because a node can

only belong to one of these states, the edges that separates these two sets compose

an edge cut of the graph G.

Definition 2.3.2. The edge cut C of a graph G corresponding to the partition S, I

of V, is a set of edges defined as

C = {e = (u, v) ∈ E : u ∈ S, v ∈ I} (2.17)

From this edge cut, an edge is uniformly chosen and the corresponding suscep-

tible node is infected. The probability of choosing an edge from the edge cut is
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proportional to the edge cut size in the moment of infection of the vertex, that is,

for the k -th infection we have that

P (ek = e) =
1

|Ck|
I{e ∈ Ck}

This indicator function implies that the probability is positive only if e belong

to the edge cut, otherwise, is equal to zero because this edge cannot be used at this

moment.

Note that the edge cut is different in every contamination, because the set of in-

fected and susceptible vary, and assuming that every contamination is independent,

the probability of a sequence of contamination is calculated by the product of each

contamination.

It is not difficult to see that the sequence of edges induced by the spreading

process describe the construction of a spanning tree of the underlying graph. At the

end of the spreading process, the probability of an exact sequence of edges that form

the spanning tree will be equal to the product of the probabilities of contamination

in each one of the steps of the epidemic, that is, the probability of choosing each of

the selected edges.

2.3.3 Recursive Random Weighted Spanning Trees

Recursive random weighted spanning trees is very similar to the recursive random

spanning trees. In both models there is an underlying graph that will be used as

base to generate the spanning tree. However, while in recursive random spanning

trees the weight of all edges is equal to one and the decision of which node is going

to be infected is uniformly at random in the edge cut, in recursive random weighted

spanning trees the edges have weights.

Let G = (V, E) be a connected weighted graph, where to each e ∈ E is associated

a positive value, we > 0 and Ct be the edge cut at time t and W the sum of the

weights of the edges belonging to the edge cut.

W =
∑
e∈Ct

we

The contamination in recursive random weighted spanning trees is made by the

weight of the edges. The first node is selected uniformly at random as all the other

models of recursive random trees. But, from the second node, the way that the

infection occurs is different. An edge belonging to the edge cut will be selected with

probability to the corresponding weight and the vertex of the end of this edge that

belongs to the susceptible set is infected.

19



P (et = e) =
we
W

I{e ∈ Ct}. (2.18)

Those weights will represent a proportion of times that an edge belonging to the

edge cut at time t is chosen instead others. If we have in a edge cut two edges with

weights 7 and 3, this means that if we select one edge from the edge cut 10 times,

one of them will be selected 7 times and another 3.

After every infection the node, the edge cut will change because the set of infected

nodes change and after that, the next infection will occurs. This process keep

repeating until all nodes are infected.
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Chapter 3

Source Identification in Recursive

Random Trees

Using recursive random trees as the epidemic model. Yields a labeled spanning

tree where the labels represent the order of infection. Now, suppose that the labels

are removed and what is observed is only a tree structure without any temporal

information that characterizes the order of infection. The epidemic source can be

identified by calculating the probability of a node being the epidemic source (given

the observed tree) and finding the node with maximal probability.

Example

Consider the graph shown in Figure 3.1(a) and an epidemic. The nodes of the

graph represent the individuals of the population, which we assume to have labels

a,b,c,d,..., and the edges the connections among them. At the end of the epidemic

the spanning tree resulting is labeled with the moments when each node was in-

fected, v0, · · · , vn−1 - see Figure 3.1(b). Now, suppose that we cannot observe those

labels (times) and the only information is the spanning tree resulting from this epi-

demic and the original labels a,b,c,d,.. - see Figure 3.1(c). The main problem is to

determine which node was first infected and the underlying graph.

a

b c

(b, v0)

(a, v1)

(c, v2)
b

a

c

Figure 3.1: (a) Arbitrary Graph, (b) Resulting spanning tree, (c) Resulting spanning
tree without labels.
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Note that the tree in Figure 3.1(c) can be obtained in several ways. In Table 3.1

we show the edge sequences that can describe this tree. For example, the first line an

epidemic with source in node a which contaminate node b and node b contaminate

node c.

Table 3.1: Sequence of infection of the nodes.

Sequence of infection of nodes given the source

a : (a, b), (b, c)
c : (c, b), (b, a)
b : (b, a), (b, c)
b : (b, c), (b, a)

We can observe from Table 3.1 that there are twice as many sequences starting

with node b than the other two nodes. This gives the intuition that node b is the

most probable source of the epidemic, because the chance to build this tree is larger

than the others.

The calculations to find the most probable source of the tree must result in the

node b. In this example is easy to see that there are more sequences that start in

node b, but when the tree is very large the most probable source must be identified

without enumerating every possible sequence.

3.1 Computing the Probability of the Epidemic

Source

There are many alternatives to infer an epidemic source from the epidemic tree.

One of them is the method proposed in this thesis, which is simply to find the node

that has the largest probability to be the epidemic source given the tree and the

underlying graph.

To characterize an epidemic tree, we use rooted edge sequences that allow us to

represent the course of the epidemic in the network starting from a fixed node. Each

one of these rooted sequences has a probability associated and the probability that

a node is the source is the sum of the probability of all rooted sequences describing

the epidemic tree.

Definition 3.1.1. Given a rooted tree (τ, v0) were the root is v0, an edge sequence

rooted in v0, b = (e1, · · · , en−1) generates (τ, v0) if e1 ∩ {v0} 6= ∅ and for all

k = 2, . . . , n, ek = {uk, vk} ∈ E(τ) and

|
k−1⋃
i=1

{ui, vi} ∩ {uk, vk}| = 1
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Note that this definition makes clear that one node cannot be infected twice.

Moreover, the condition for adding a new edge in the edge sequence ensures that at

one edge point is infected and the other edge point is susceptible. Several sequences

starting at the same vertex can describe the same tree. The set of those different

sequences rooted in the same vertex v0 that generate the tree τ is denoted B(τ,v0) and

all sequences belonging to this set must satisfy the condition described in Definition

3.1.1.

Note that every node in τ can be the root v0. In addition to having several

sequences starting at the same vertex, there is at least one sequence starting at each

vertex of the tree. The set of all possible edge sequences regardless of the root vertex

that represents the tree τ , is called Bτ and can be described mathematically as:

Bτ =
⋃

v ∈V (τ)

B(τ,v) (3.1)

The probability of a node being the epidemic source is given by the sum across the

sequences rooted on the node. Note that an edge sequence has a unique probability

that can be calculated using the edge cut of the underlying graph at each edge. The

Definition 2.3.2 makes clear that at each time step only one infection occurs in the

epidemic, giving rise to a new edge whose probability is uniform in the edge cut.

Thus, the probability of an edge sequence b is given by:

P (b) =

|V |−1∏
t=1

1

Ct(b)
(3.2)

where b is a rooted sequence which represents the spanning tree τ and Ct(b) is

the size of the edge cut in the underlying graph after the first t nodes have been

infected.

Note that every infection event is independent of prior infections. Thus, the

product of the probability of each infection determines the probability of the edge

sequence.

The probability calculated in Equation 3.2 is the probability of a particular

rooted edge sequence. To calculate the probability of the rooted tree, all possible

edge sequences rooted in the same vertex v0 = r must be added. More formally,

P (τ |v0 = r) =
∑

b∈B(τ,v0)

P (b). (3.3)

Example

Suppose G = (V,E) is the complete graph with four vertices and six edges, and a

star tree resulting from an epidemic, see Figure 3.2. We are interested in calculating

the probability of a vertex x being the epidemic source. Table 3.2 shows all possible
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sequences starting on the vertex x, all sequences belonging to the set B(τ,x).

Table 3.2: Sequence of infection of the nodes when starting in node x.

Sequence of infection of nodes

(x, y), (x, z), (x,w)
(x, y), (x,w), (x, z)
(x, z), (x, y), (x,w)
(x, z), (x,w), (x, y)
(x,w), (x, y), (x, z)
(x,w), (x, z), (x, y)

To calculate the probability of a sequence b, we need the edge cut at each new

infection. Figure 3.2 presents the evolution of the edge cut and the different edges:

the filled edges are those used in the spreading process, that is, the edges used for

infection, and the dotted edges are those in the edge cut, that is, the edges that can

be used for infecting.

x

y z

w

-

x

y z

w

-

x

y z

w

-

x

y z

w

Figure 3.2: Evolution of the edge cut of an epidemic

As shown in Figure 3.2, the edge cut is equal to three at every infection. Note

that other sequences will have this same probability and thus it depends on the

number of sequences as follows:.

P (b) =
1

3
· 1

3
· 1

3
=

1

9

P (τ |v0 = x) = 6 · 1

9
=

2

3

The probability of interest is the probability of the tree τ rooted in vertex v0.

However, there is no information about which node v0 might have started the epi-

demic. Thus, we assume a uniform prior for the source of the epidemic, and in

particular:

P (v0 = r) =
1

|V (τ)|
, r ∈ V (τ) (3.4)

As the probability of a spanning tree τ is equal to the sum of the probability

under all possible rooted sequences across all possible root nodes, we can use the

law of total probability to obtain:
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P (τ) =
∑

r∈V (τ)

P (τ |v0 = r)P (v0 = r). (3.5)

The probability of interest is the probability of a node being the root given τ .

To calculate this probability we can use the Bayes rule and obtain

P (v0 = r|τ) =
P (τ |v0 = r)P (v0 = r)

P (τ)
(3.6)

Analyzing Equations 3.4, 3.5 and 3.6 we can see that Equation 3.4 and Equation

3.5 are constant with respect to the root node. Thus, finding the most probable

node is equal to maximizing the probability P (v0 = r|τ) and, as Equation 3.5 and

Equation 3.4 are constants, this is the same maximizing P (τ |v0 = r). Thus,

arg max
r∈V (τ)

P (v0 = r|τ) = arg max
r∈V (τ)

P (τ |v0 = r). (3.7)

Then, we can use the probability P (τ |v0 = r) to identify the most probable

source of the epidemic by computing

arg max
r∈V (τ)

∑
b∈B(τ,r)

P (b).

Note that finding the maximum above involves the rooted sequences and their

probabilities. In general these are not trivial quantities as it depends on the un-

derlying graph. However, in special cases this can be computed efficiently as in the

case where the underlying graph is the complete graph, a scenario we discuss in the

next chapter.
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Chapter 4

Source Identification in Recursive

Random Trees: a Special Case

with Complete Graphs

When the underlying graph is complete, at every step of the epidemic, every

susceptible vertex has the same probability to be infected than any other vertex. In

particular, the size of the edge cut at a given time only depends on the number of

infected nodes in epidemic and not on which nodes have been infected. This char-

acteristic of the complete graph greatly simplifies the problem and will be detailed

in this chapter.

In particular, we first show that the probability of a rooted sequence does not

depend on the sequence because at any time the edge cut size depends only of the

number of infected vertices at that time. Then, we show that the probability of a

rooted tree depends on the number of rooted sequences that can generate the tree,

and finally we show how to efficiently calculate the number of rooted sequences for a

given tree. We also present a algorithm to calculate the root node that maximizes the

probability of generate the tree given the root. We close this chapter by presenting

a numerical evaluation of the algorithm.

4.1 Probability of an Edge Sequence

The probability that a node is the source considers the edge sequences that

can generate the epidemic tree. As defined in Equation 3.2, this probability is

proportional to the size of the edge cut induced by the epidemic. A interesting point

is that in complete graphs, the size of the edge cut at any instant of the epidemic

depends only on the number of infected nodes since all nodes are connected. In this

case, the nodes infected do not matter, but only the number of infected nodes in
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the epidemic.

The probability of a specific edge sequence for an epidemic rooted in a fixed

vertex r, can be expressed according to the formula given in Equation 4.1. This

formula is the same that calculate the fraction of the number of susceptible nodes

multiplied by the fraction of the number of infected nodes.

P (b) =

|V |−1∏
t=1

1

Ct(b)
I{v0=r} =

|V |−1∏
t=1

1

(n− t) ∗ t
(4.1)

As explained before, at each unit of time, one and only one individual is infected.

This way the time t is equal to the number of infected individuals. Note that

knowing the population size and the number of infected individuals, we are able to

calculate the size of the edge cut and we do not need any other information about

the spreading process. The edge cut size is easily calculate because the full mixing

assumption in the population. At each contamination in the population, we add

in the cut the degree of the new infected minus the edges that can not used to

contaminate susceptible individuals.

4.1.1 Numerical Example

Consider a complete graph with eight nodes as shown in Figure 4.1. To illustrate

the behaviour of different rooted sequences generated from this graph. First we will

calculate the probability of two different sequences representing the same tree and

then we will calculate probability of a different tree.

0

1

2

3

4

5

6

7

Figure 4.1: Complete graph with eight vertices.

If the epidemic tree that is a star tree, there are 5040 different rooted sequences

that can generate the tree when the root is a fixed node v0 (this number is equal to

7!). Next, we consider two different sequences b1 and b2 of a star tree rooted in the

node v0 = 0 to show that they are equally likely.

P (b1) =
1

7 · 12 · 15 · 16 · 15 · 12 · 7
= 3.937 ∗ 10−8
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Edge Sequences

b1 = {(0, 1); (0, 2); (0, 3); (0, 4); (0, 5); (0, 6); (0, 7)}
b2 = {(0, 2); (0, 4); (0, 6); (0, 1); (0, 3); (0, 5); (0, 7)}

P (b2) =
1

7 · 12 · 15 · 16 · 15 · 12 · 7
= 3.937 ∗ 10−8

Consider a different sequence b3 that generate a tree different from the star but

also rooted at v0 = 0. Note that the probability of b3 is the same as b1 and b2.

Edge Sequence

b3 = {(0, 1); (0, 2); (0, 3); (1, 4); (1, 5); (2, 6); (2, 7)}

P (b3) =
1

7 · 12 · 15 · 16 · 15 · 12 · 7
= 3.937 ∗ 10−8

Note that the size of the edge cut first increases and then decreases. If starts with

7 and ends with 7 both cases representing the scenario with a single node infected

(in the beginning) or a single node susceptible (at the end).

The edge cut size will grow until half, or half plus one, of the nodes are infected,

giving the largest possible cut size. The Table below, shows the size of the edge cut

considering the number of infected vertices in the epidemic process on a complete

graph with 8 nodes. Clearly, the order in which the nodes are infected does not

matter and the probability of infecting the vertices according to any rooted sequence

is the same. This obsdervation will simplify significavely the analysis.

time of infection/
number of infected

edge cut size
(n-t)*t

1 (8-1)·1 = 7
2 (8-2)·2 = 12
3 (8-3)·3 = 15
4 (8-4)·4 = 16
5 (8-5)·5 = 15
6 (8-6)·6 = 12
7 (8-7)·7 = 7

4.2 Probability of a Tree by Fixing a Root

Recall that more than one rooted sequence can describe the same tree, specially

if we do not fix the root. Each of these sequences are independent of the others
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that represents the same tree. Thus, the probability of a tree must consider the

probability of all possible sequences that can generate it. The probability of a

tree is just the sum of the probabilities of each of these independent sequences, as

described in Equation 3.3.

Recall that B(τ,v0) is the set of all possible rooted sequences describing the tree τ

with root in v0. For the complete graph, the probability of each sequence b ∈ B(τ,v0)

to obtain the probability of the tree fixing a root in v0 as follows:

P (τ |v0 = r) =
∑

b∈B(τ,v0)

P (b)

=
∑

b∈B(τ,v0)

1

[(n− i)!]2

=
|B(τ,r)|

[(n− 1)!]2
, (4.2)

Were |B(τ,v0)| is the size of the set B(τ,v0).

4.3 Counting the Number of Sequences in B(τ,v0)

The probability of a spanning tree rooted in v0, as present in Equation 4.2 of

the previous Section, depends on the number of possible rooted sequences induced

by the spanning tree. As the graph is complete we can use some characteristics as

symmetry to count the number of different combinations that will allows to describe

(τ, v0).

These different combinations take into account the size of the sub-trees and the

number of arrangements that can be made observing a vertex. To understand these

calculations, we need to define some notations that will be used.

Notation Significance

τv0 Simplification of (τ, v0);

B(τv0) Simplification of B(τ,v0);

τ v0i Sub-tree of (τ, v0) hung on node;

|τ v0i | Size of the sub-tree of (τ, v0) hung on node i ;

Ni Set of neighbors of node i in the graph G.

Lemma 4.3.1. Let |B(τk)| be the number of rooted sequences induced by a tree (τ, k)

29



rooted in the vertex k.

|B(τk)| =
∏
j∈Nk

|B(τ kj )|
(
∑

i∈Nk
|τ ki |)!∏

i∈Nk
|τ ki |!

(4.3)

Proof:

When we want to calculate the number of sequences of (τ, k), we need to consider

the ways to construct the edge sequences. We can think of the construction of the

edge sequence as the choice of edges of the sub-trees of the child nodes of k. In a

simpler way, we partitioned the tree (τ, k) in dk subsets, were dk is the number of

child nodes of k. This way we have dk sub-trees that united compose (τ, k).

The simplest construction would be to build each one of these dk sub-trees com-

pletely, that is, construct all dk sub-tree until the leaves, and count the number of

arrangements we can make with these sub-trees. This would be just the product of

the number of sequences each of the dk sub-trees has, which is the first part of the

Equation 4.3. But we can construct (τ, k) with different combinations that combine

together the dk sub-trees.

The construction of (τ, k) can be done by alternating the edges of these dk

sub-trees. We can start one sub-tree, stop, start another sub-tree, return to a sub-

tree already started and alternating until construct (τ, k). To count the number of

ways to construct the edge sequence this way we need to calculate all the possible

arrangements.

Calculating the number of possible arrangements is the same that having a box

with n-1 balls of dk colors (a, b, c,..., dk), select one by one and note the color

taken. At the end, when the box is empty we will have a sequence of color like

(a,a,b,c,b,b,a,c,...). With each ball representing one edge and each child node rep-

resenting one color, in this sequence of size n-1 with dk colors note that we do not

distinguish the edge itself but the sub-tree that this edge belongs. This occurs be-

cause there exists an order to put the edges and when the color is selected, that is,

one sub-tree is chosen, we are choosing the sub-tree but will use the next possible

edge in the selected sub-tree. This way the second term of the Equation 4.3 counts

all the possible arrangements that we can make by selecting edges from different

sub-trees to construct the edge sequence of (τ, k).

Proposition 4.3.1. The number of rooted sequences induced by a tree |B(τk)| can

be simplified as

|B(τk)| =
(n− 1)!∏
i 6=0 |τ 0i |

. (4.4)

Proof:

Let us assume, without less of generality, that the root 0 has k neighbors. Then,
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the Equation 4.4 can be expanded as follows.

|B(τ0)| = |B(τ1)| · · · |B(τk)|
(|τ1|+ · · ·+ |τk|)!
|τ1|! · · · |τk|!

.

Similarly, for all the neighbors of the node zero we can apply and expand using the

Equation 4.4 to calculate the arrangements of them. Considering that together the

number of neighbors of them are l, we have that:

= |B(τk+1)| · · · |B(τk+l)|
(|τ1|+ · · ·+ |τk|)!(|τk+1|+···+|τk+l)!

|τ1|! · · · |τk|! · |τk+1|!|τk+l|!
.

Repeating this step until there is no arrangement to expand and knowing that the

arrangements of leaf nodes are equal to one and considering that leaf nodes will

received labels from j to n,

=
(|τ1|+ · · ·+ |τk|)!(|τk+1|+···+|τk+l)! · · · |τj|! · · · |τn|!
|τ1|! · · · |τk|! · |τk+1|!|τk+l|! · · · |τj|! · · · |τn|!

=
(|τ1|+ · · ·+ |τk|)!(|τk+1|+···+|τk+l)! · · · |τj|! · · · |τn|!∏

i 6=0 |τi|!
.

We know that the sum of the number of nodes in a sub-tree rooted in u, τ ku with

neighbors v,x,y,z, will be the same that sum the sub-tree sizes |τ kv | + |τ kx | + |τ ky | +

|τ kz |. This way, we can eliminate the factorial of these factors in the fraction above

and use only the size of the tree rooted in u and this is valid for all sub-trees in this

case.

So, using standard combinatorics, it is possible to show that the number of pos-

sible sequences which generate the same rooted spanning tree τ0 obeys the following

recursive formula:

|B(τ0)| =
∏
i∈N0

|B(τ 0i )| (|τ0| − 1)!∏
i∈N0
|τ 0i |!

=
∏
i∈N0

|B(τ 0i )|
|τ 0i |!

· (|τ 0i | − 1)!

So, recursively applying Equation 4.4 and using the fact that |V | = n we obtain:

|B(τ0)| =
(|V | − 1)!∏

i 6=0 |τ 0i |

=
(n− 1)!∏
i 6=0 |τ 0i |

. (4.5)

Returning to Equation 4.2 in the previous Section and considering Lemma 4.3.1
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and Proposition 4.3.1, we can make a simplification obtaining:

P (τ |v0 = r) = |B(τr)|
1

((n− 1)!)2

=
(n− 1)!∏
i 6=0 |τ 0i |

1

((n− 1)!)2

=
1

(n− 1)!

1∏
i 6=r |τ ri |

(4.6)

4.3.1 Line and Star Example

We want to calculate |B(τ0)| for two trees, the line tree and the star as illustrated

in Figures 4.2 and 4.3.

0 ... n-1

Figure 4.2: Line tree - τLine

Using Equation 4.5, considering the line tree in example and fixing the root in

the node zero, the orientation to use in the calculations will be starting in the node

zero to n − 1 - see Figure 4.2. So, the size of each sub-tree will be different of the

previous sub-tree by a unit (|τ 0n−1| = 1, |τ 0n−2| = 2, . . . |τ 0n−k| = k). This way, we

have that:

|B(τ0)| =
(n− 1)!∏
i 6=0 |τ 0i |

=
(n− 1)!∏n−1

i=1 i

=
(n− 1)!

(n− 1)!
= 1

This means that starting in a node at the end of the tree, the number of ways

to construct this tree is equal to one. The line tree is the example of tree based in a

complete graph with smaller probability because has a smaller number of different

sequences that forms the same tree starting in a fixed node, that is one.
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0

1

...

i

i+1

i+2

...

n-2

n-1

Figure 4.3: Star tree - τStar

Using Equation 4.5 and considering the star tree in the example, we fix the root

in the node zero. The size of each sub-tree hung in every neighbour of 0 will be

equal to one because is a star tree. So, we have that:

|B(τ0)| =
(n− 1)!∏
i 6=0 |τ 0i |

= (n− 1)!

This way, by comparing the probability 4.2 in both trees, we have that:

P (τLine|v0 = 0) =
1

[(n− 1)!]2

P (τStar|v0 = 0) =
1

(n− 1)!

We can use those two examples as a lower and upper bound respectively to

complete graphs. Note that, despite the probability of any sequence in the complete

graph be equal, the number of ways to construct each one is very different as we can

see in the probabilities above, because the number of ways to construct the tree is

very different.

4.4 The Most Likely Source

As we can see from Equation 4.6, the first part is constant depending only on the

size of the network and the second part depends on the sub-trees size. To maximize

this probability we must minimize the denominator of this ratio so that smaller

the value of the denominator greater the value of the ratio since the numerator is

constant equal to one. This way, we need minimize the product of the sub-tree sizes

and find the node that makes this product as small as possible. Overall, we reduce
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to

arg min
r

∏
i 6=r

|τ ri |.

In order to find a way to calculate this arg min more quickly, we will use the next

three lemmas which will be of extreme importance for understanding the algorithm.

Lemma 4.4.1. Given u and v, neighbors in the tree τ ,

|τ vw| = |τuw| ∀ w ∈ V (τ)\u, v;

Proof:

Since the size of any tree is the number of nodes it has, the size of τ kw is the

number of nodes below w in the sub-tree of τ k hung in node w. Given u and v,

neighbors in the tree τ and a node w, w 6= u, v, there are two possibilities: either

w ∈ τuv or w ∈ τ vu . As there is only one path that connects the nodes u to w, and

this path passes through v, the size of the sub-tree hung in the node w will be the

same if the tree has root in the node u or v.

The tree in Figure below. will leave the idea clearer to the reader.

u v w ...

...

...

......

...
...

Lemma 4.4.2. Given u and v neighbors in the tree τ

P (τ |v0 = u)

P (τ |v0 = v)
=
|τuv |
|τ vu |

.

Proof:

From Equation 4.6 we have:

P (τ |v0 = u)

P (τ |v0 = v)
=

1
(n−1)!

1∏
i6=u |τui |

1
(n−1)!

1∏
i 6=v |τvi |

.

As the first part of both probabilities are constant and equal, the ratio of these two

probabilities will be equal to:

P (τ |v0 = u)

P (τ |v0 = v)
=

1∏
i 6=u |τui |

1∏
i6=v |τvi |

=

∏
i 6=v |τ vi |∏
i 6=u |τui |

.
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From Lemma 4.4.1 we can write the sizes of the sub-trees differing by only one

term as below

P (τ |v0 = u)

P (τ |v0 = v)
=

∏
i 6=u.v |τ vi | · |τ vu |∏
i 6=u.v |τui | · |τuv |

=
|τ vu |
|τuv |

.

Note that this Lemma serves to choose the node with larger probability when com-

paring two nodes. But, when the tree has a even number of nodes, two nodes can

have the same sub-tree size that is half the number of tree nodes, so there may be

two neighbors u and v belonging to τ such that |τuv | = |τ vv | = |τ |/2 this implies that

P (τ |v0 = u) = P (τ |v0 = v).

Lemma 4.4.3. Let τ be a tree and r∗ be such that |τwr∗| ≥
|τ |
2
, ∀ w ∈ V (τ). Then,∏

i 6=r∗
|τ r∗i | ≤

∏
i 6=r

|τ ri | ∀ r ∈ V (τ)

Proof:

Let us assume, towards a contradiction, that ∃ r ∈ V (τ) such that,∏
i 6=r

|τ ri | <
∏
i 6=r∗
|τ r∗i | (4.7)

Let p denote the unique path in τ connecting r and r∗; we shall denote by V (p)

and E(p), the vertices and edges of p.

Fact 1: ∀ w ∈ V (τ)\V (p) it holds that |τ rw| = |τ r
∗
w | thus, Equation 4.7 reduces to∏

i∈V (p)

i 6=r

|τ ri | <
∏
i∈V (p)

i 6=r∗

|τ r∗i |

The last equation can be written as( ∏
i 6=r,r∗

|τ ri |

)
|τ rr∗| <

( ∏
i 6=r,r∗

|τ r∗i |

)
|τ r∗r | (4.8)

If |τ rr∗ | < |τ r
∗
r |, then, to Equation 4.8 be true, must exist at least one i so that

∏
i 6=r,r∗

|τ ri | <
∏
i 6=r,r∗

|τ r∗i |

35



Fact 2: Note that |τ r∗r | + |τ rr∗ | ≤ |τ | and due to the hypothesis that |τwr∗| ≥
|τ |
2
∀w,

we have that

|τ r∗r | ≤ |τ | − |τ rr∗ | ≤
|τ |
2
≤ |τ rr∗|

Thus, if 4.8 holds =⇒ ∃i ∈ V (p) i 6= r, r∗ such that

|τ ri | < |τ r
∗

i |

whenever this is the case, we should have that

|τ rj | < |τ r
∗

j |

∀ j ∈ p, were p is the path connecting i to r∗, thus in particular we must have that

|τ rw∗| < |τ r
∗

w∗| (4.9)

were w∗ ∈ p and w∗, r∗ ∈ E(p) (w∗ is a neighbor of r∗ in p).

r i j w r∗

S

However, if w∗ is a neighbor of r∗ in p, it holds that

1) |τ r∗w∗ | = |τ | − |τw
∗

r∗ | ≤
|τ |
2

2) |τ rw∗ | ≥
|τ |
2

Thus, if 4.9 holds it must also be the case that

|τ |
2
≤ |τ rr∗| < |τ rw∗| < |τ r

∗

w∗ | ≤
|τ |
2

a contradiction!

Lemma 4.4.4. Given a tree τ it always exists at least one vertex r∗ satisfying

|τwr∗ | ≥
|τ |
2
∀w ∈ V (τ).

Proof:

Given a tree, a vertex is randomly selected as root to give orientation to this tree

and then we are able to calculate the sub-tree sizes starting on the leaf nodes. As

explained before, the size of a sub-tree is the number of nodes that this sub-tree

has, this way leaf nodes has sub-tree size equal one.
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We start to calculate the number of nodes in each sub-tree by the leaves and

iteratively “leveling up” in the tree. For each calculated sub-tree, its respective

number of nodes is added to the node that is hanging, i.e., if the sub-tree hung on

a has four nodes and the sub-tree hung on b has five nodes, the sub-tree hung on

c has nine nodes if the child nodes of c was a and b. Using the information of the

sub-tree size of child nodes we avoid recalculate several times how many nodes has

at the levels below. This way we calculate the sub-tree sizes by level in the tree and

as the tree has size equal to |τ | always exist a node that has sub-tree size bigger

than |τ |/2 satisfying this condition of existence of a node with size |τ |/2.

Observing the graph in Lemma 4.4.3, let s be the initial vertex were the tree

begins and r∗ the identified source. We know that τ sr∗ ≥
|τ |
2

and the size of all

sub-trees hung in vertices in τ r
∗
s are smaller than |τ |

2
. To analyse the correctness

proof we want to look for these two cases presented below.

Case 1: v ∈ V (τ)\τ sr∗
If τ sr∗ ≥

|τ |
2

we know that for all v ∈ V \τ sr∗ the sub-tree size |τ r∗v | <
|τ |
2

, than v

cannot be the vertex which maximizes Equation 4.6.

Case 2: v ∈ V (τ sr∗) and neighbor of r∗

If τ sr∗ ≥
|τ |
2

than, between s and r∗ has less than |τ |
2

vertices. So, for a tree

with root in r∗ hung in a vertex in the neighborhood of r∗, |τ r∗v | < |τ sr∗| ≤
|τ |
2

, then

|τ r∗v | <
|τ |
2

. This is valid for all neighbors of v and neighbors of neighbors, so, v

cannot be the vertex which maximizes Equation 4.6 and r∗ satisfy Lemma 4.4.3.

4.5 Source Identification Algorithm

The algorithm takes as input the spanning tree that represents the epidemic

without temporal labels, and it solves the optimization problem presented in Lemma

4.4.3. To do this, we choose a node uniformly at random from all nodes of the

spanning tree and use a BFS to induce orientation to this spanning tree. The

information that we use from the BFS is the number of child of each node and

its parent. With these two information we are able to perform a post-order and

calculate the size of the sub-trees.

It is worth remembering that the size of each sub-tree is the number of vertices

that it has and this calculations are recursively made until all nodes are calculated

or satisfy the stopping criterion. To calculate the number of nodes of each sub-tree,

we need to set the leaf nodes, that is, the nodes with no child nodes. Selecting a

node from the leaf list, we add a unit to the size of its sub-tree and its size to the

sub-tree size of it respective parent. After this, we decrease a unit in the number of
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child nodes of its parent and, if the number of child is zero, this parent is added to

the leaf list, if not, we select a new node from the leaf list until the list be empty or,

at some point, the stopping criterion is satisfied. The stopping criterion is to find

node whose sub-tree size is at least half the vertices. This allows us identifying the

node as the node whose probability is larger than every others in the tree.

The pseudo-code used in this thesis will be presented below and the symbols

used in the pseudo-code are described in the table below:

Variable Significance

|τ | Number of vertices in the tree τ ;

τr Spanning tree rooted in the node r ;

τ ri Sub-tree of τr hung on node i ;

Parent[i] Unique node neighbor of i in the tree and at one level higher than i

Child[i] All i neighbors that are one level below the level of i ;

The pseudo-code follows some steps to find the epidemic source. The first step

consists in choosing a node u uniformly at random in τ as root - see line 2 of

Algorithm 1. In the second step, a BFS algorithm is used to induce orientation in

the spanning tree received as input. This BFS will return two lists, one with the

Parents and another with the number of Children of each node as represented in

line 3 of Algorithm 1. After creating these lists of parents and child, all nodes with

no child will be added in a list of leaves, lines 4-7 in Algorithm 1. In the third step,

the size of the sub-trees are calculated from the leaves to the root.

During the calculations of a sub-tree size hung on a node i, we count the number

of nodes hung on i, add in the sub-tree size of the parent of i this number and

decrements the number of children that the parent of i have. This way, we know

when all the children nodes have its sizes of sub-tree calculated. When this occurs,

the node with no children is added to the leaves list. When there is no node to

calculate the sub-tree size, the While condition is satisfied.

Now, if during the calculations of sub-tree sizes, Lemma 4.4.3 is satisfied, that is,

when the tree whose size is half the number of nodes (or this value added/decreased

one unit) is found, the If within this While is satisfied. When the condition of this

If is satisfied, the leaves list is emptied so that it also satisfies the While condition

and completes the loop and the node that satisfied the If condition is declared as

an epidemic source (r).
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Algorithm 1: Root Identification of Recursive Random Spanning Trees

Data: Epidemic tree (τ).

1 begin

2 u = any node in τ ;

3 Parent, Child = bfs(τ , u);

4 Leaves = ∅;
5 Sizes[·] = 0;

6 for i ∈ V (τ) do

7 if Child[i] == 0 then

8 Leaves.push(i);

9 end

10 while Leaves 6= ∅ do

11 i = Leaves.pop();

12 Sizes[i] += 1;

13 Sizes[Parent[i]] += Sizes[i];

14 Child[Parent[i]] -= 1;

15 if Sizes[i] ≥ τ/2 then

16 root = Parent[i];

17 Break;

18 if Child[Parent[i]] == 0 then

19 Leaves.push(Parent[i]);

20 end

21 return root;

22 end

23

The proof of the algorithm correctness is exactly the proof of Lemma 4.4.3 and

4.4.4.
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Chapter 5

Numerical evaluation

The numerical evaluation used the source identification algorithm 1 taking

as input the spanning tree which represents the spread of an epidemics through

a complete graph. This spanning tree was obtained using the classical recursive

random trees algorithm described below. Note that the node label corresponds to

the order the node was added to the tree. Thus, node 0 is the epidemic root and

node i is the i-th node to be infected or equivalently join the tree.

Algorithm 2: Recursive Random Spanning Trees

Data: Number of nodes of the spanning tree (n).

1 begin

2 G = Graph();

3 G.add.node(0);

4 for i=0 to n-1 do

5 node = random.uniform(0, i+1);

6 G.add.node(i+1);

7 G.add.edge(node, i+1);

8 end

9 end

Considering that the graph representing the population is a complete graph,

each new individual added to the tree has equal probability of being connected

to any other node already belonging to the tree. This means that, for each new

contamination, the individual has equal probability of being infected by any of the

individuals already infected in the epidemic. Thus, line 5 of the algorithm chooses

this node uniformly at random.
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5.1 Numerical evaluation of relative frequency of

identified sources

We simulate an epidemics through a population of 10 individuals. Figure 5.1

shows the relative frequency in which each one of the individuals was identified

by Algorithm 1 as the epidemic source. That is, the number of times that each

individual was returned as the epidemic source divided by the 100000 rounds of

independent simulations.

The individuals are labeled from zero to nine representing the time in which they

were infected by the epidemic. Note that, as expected, the nodes labeled as zero and

one have relative frequency almost identical because these two nodes belong to the

first edge in the epidemic and as the epidemics are represented by edges, these two

individuals have the same probability. In fact, the structure of the tree τ is identical

from the point of view of each of these nodes, statistically speaking. Differences in

their relative frequencies are due to simulations.

Figure 5.1: Relative frequency with which a node is identified as the epidemic source.

The first bar shows the relative frequency at which the algorithm actually found

the true epidemic source, i.e., the node with label zero. This shows that almost

35.4% of the time the algorithm finds the true source of the epidemic, and also

35.4% choose as source the first node to be infected in the epidemic. Thus, if we

add the relative frequency values we can see that the method identifies the nodes

incident to the first infected edge about 70% of the time showing a good rate of

accuracy in the identification of the real epidemic source. We can also observe the

monotonic behavior of the chart showing that as the node “enters the epidemic later

it is less likely to be identified as the source” since its labels reflect the moment of
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entry into the epidemic tree. Note that nodes with label larger than 5 (which entered

after half the tree was generated) are never identified as the source.

The histogram in Figures 5.2 and 5.3 show the relative frequency for larger trees

with sizes equal to 100, 300, 900, 2000, 5000 and 10000 nodes. In these plots, the x-

axis represents the label of the nodes, that is, their order of infection in the epidemic

tree, while the y-axis represents the relative frequency with which these nodes were

identified as the epidemic source by the proposed algorithm.

Figure 5.2: Relative frequency with which a node is identified as the epidemic source
by the algorithm (average over 100000 rounds).

From these plots it is clear that the nodes with the high relative frequencies are

the ones with the smallest labels, that is, the ones that entered the tree first. In

all scenarios, we observe the same monotonic behavior and an exponential decay of

the relative frequency, showing that, in fact, the algorithm returns much more often

the first nodes to be infected, and nodes that were infected after half of the tree has

been constructed are never returned; note that in our simulations nodes with label

higher than 20 are never returned.
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Figure 5.3: Relative frequency with which a node is identified as the epidemic source
by the algorithm (average over 100000 rounds).

Figure 5.4 shows the relative frequency of correct identification of the proposed

algorithm with 100000 iterations. Note that this relative frequency is around 30%

regardless of the network size. This is important because it indicates that the

performance of the proposed algorithm does not decay as the tree grows. However,

the performance also does not improve as the tree grows in size. The values of relative

frequency for the first 5 infected nodes of the realized simulations are presented in

Table 5.1. Note that for all networks the nodes with label zero and one, as expected,

have the same probability and as the label increases, the frequency drops in half in

each step.
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Figure 5.4: Frequency with which node zero (the actual source) is identified as
epidemic source for different network sizes.

Is important emphasize that as the algorithm works using edges the probability of

returning the epidemic source and the the first node to be infected is the same since

they share the first edge of the contamination process. Note that the probability

of returning the source of the epidemic or the first infected node is about 60%,

independently of the network size and with probability 97% the algorithm returns

the first 5 infected nodes in the epidemic, shown in the Accumulated column in Table

5.1.

Table 5.1: Frequency with which the nodes are returned as source in networks with
different sizes.

Nodes 0 1 2 3 4 5 Acumulated

size 10 0.354 0.353 0.187 0.076 0.022 0.004 0.996
size 100 0.313 0.310 0.183 0.097 0.049 0.023 0.975
size 300 0.310 0.307 0.183 0.097 0.050 0.025 0.972
size 900 0.307 0.306 0.182 0.097 0.050 0.027 0.969
size 2000 0.308 0.305 0.182 0.096 0.052 0.027 0.970
size 5000 0.305 0.309 0.181 0.097 0.051 0.026 0.969
size 10000 0.306 0.308 0.182 0.097 0.051 0.026 0.970
size 50000 0.307 0.304 0.180 0.101 0.051 0.026 0.969
size 100000 0.305 0.308 0.182 0.099 0.050 0.026 0.970

As the algorithm returns nodes with labels different from zero and one, it is

worth understanding the distance that these nodes have from the real epidemic

source (node zero). This distance is calculated by the number of nodes in the path

between the identified source and node zero and can be interpreted as the error
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when identifying the epidemic source. This measure is interesting because it gives

us information on the distance between the source identified by the algorithm and

the real epidemic source.

5.2 Distance distribution on source identification

The purpose of analysing the distance distribution is to understand “how close”

the source returned by the proposed algorithm is to the real epidemic source.

Since the epidemic is represented by a spanning tree, we know by definition that

a path connecting the real epidemic source and the source identified by the algorithm

is unique. This distance d(0, v0) is calculated by running a BFS in node 0 (the true

source) and checking the level of the node identified by the algorithm on this tree.

Algorithm 3 describes this procedure.

For each one of the networks with sizes 100, 300, 900, 2000, 5000 and 10000

and for each one of the 100000 epidemics simulated for each network size, we have

an associated distance. With this values we calculate the distribution of these

distances. This empirical distribution allows us to estimate the probability that the

node identified by the algorithm is at distance k from node zero, the real epidemic

source.

Algorithm 3: Distance between the 0 and the source identified.

Data: Epidemic tree (τ);

v0 = identified source.

1 begin

2 if v0 = 0 then

3 return 0;

4 Parent = bfs(0);

5 Distance = 1;

6 i = v0;

7 while Parent[i]! = 0 do

8 Distance += 1;

9 i = Parent[i];

10 end

11 return Distance

12 end

Figure 5.5 shows the distance on the tree between the node identified as source

and node zero, the actual epidemic source.
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Figure 5.5: Relative frequency of the distance of the identified epidemic source to
the real epidemic source for a tree with size 10.

Figure 5.5 shows that the nodes with distance one from the real source have a

larger relative frequency than the true source (distance zero). This occurs because

this frequency accumulates the frequency with which the node with label one is

returned as source plus the cases in which a neighbor of the true source is returned.

As the node with label one has the same probability to be identified as the epidemic

source as node zero, it is expected that the relative frequency of nodes with distance

one (the neighbors of the real epidemic source) is larger. The Table 12 present the

values of the nodes returned by the algorithm and distances from the true source.

Table 5.2: Identification and distances of nodes in a network of size 10.
0 1 2 3 4 5

Identification 0.354 0.354 0.188 0.077 0.023 0.004
Distance 0.354 0.479 0.145 0.021 0.001 0.00004

Figure 5.6 presents the relative frequency with which the identified source is at

distance k from node zero. The relative frequency is calculated by the number of

distances equal to k divided by the number of iterations made in the simulations for

each network size.
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Figure 5.6: Relative frequency of the distance of the node identified as the source
and the real epidemic source.
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As expected, the nodes with distance one of the real epidemic source have a

higher relative frequency because the first node infected in the epidemic has the

same probability to be chosen as the epidemic source. This behavior is observed

in all networks regardless of their size. Table 5.3 presents the mean and standard

deviation of the relative frequency of distance 5 from the real epidemic source (node

zero). Note that the probability decays very fast (exponentially) with the distance

for all network sizes.

Table 5.3: Mean and SD of the distance distribution.

0 1 2 3 4 5

size = 10 0.35 (0.28) 0.48 (0.35) 0.15 (0.13) 0.02 (0.02) 1*10-3 (1*10-3) 4*10-5 (4*10-5)
size = 100 0.31 (0.26) 0.46 (0.34) 0.18 (0.16) 0.04 (0.04) 0.01 (0.01) 0.001 (0.001)
size = 300 0.31 (0.26) 0.45 (0.34) 0.18 (0.17) 0.04 (0.04) 0.01 (0.01) 0.001 (0.001)
size = 900 0.31 (0.26) 0.45 (0.34) 0.18 (0.17) 0.04 (0.04) 0.01 (0.01) 0.001 (0.001)
size = 2000 0.31 (0.26) 0.45 (0.33) 0.19 (0.17) 0.05 (0.04) 0.01 (0.01) 0.001 (0.001)
size = 5000 0.31 (0.25) 0.45 (0.34) 0.18 (0.17) 0.05 (0.04) 0.01 (0.01) 0.001 (0.001)
size = 10000 0.31 (0.26) 0.45 (0.34) 0.18 (0.17) 0.05 (0.04) 0.01 (0.01) 0.001 (0.001)

Note that, similar to (BUBECK, 2017), we can calculate a set of possible sources.

Here, this set accumulating 1−ε of probability, estimates that the identified epidemic

source will be within k steps of the actual epidemic source. For example, if we want

a set of node with probability 0.99 to contain the real epidemic source, the identified

epidemic source will be until 3 hops from the real epidemic source for networks of

size equal to 10000 nodes.

5.3 Runtime

This Section present the runtime of the simulations including just the time to run

the algorithm. In Table 5.4 we can see the mean and standard deviation of runtime

in seconds for all the sizes of network returned from the simulations in 100000 rounds

(just the time to run the source identification algorithm). For each network size,

these are the average execution times for the 100000 iterations performed. Note

that the runtime increases almost linearly as the network size increases.

Figure 5.8 presents the mean of the runtime over 100000 iterations for all tested

network sizes. In the x-axis we have the size of these networks and in the y-axis we

have the average runtime in seconds.
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Table 5.4: Mean and standard deviation of runtime of source identification algorithm
in the simulation.

Mean SD

size = 10 4.525*10-05 1.934*10-05
size = 100 3.033*10-04 1.247*10-04
size = 300 9.673*10-04 2.884*10-04
size = 900 2.869*10-03 6.726*10-04
size = 2000 6.589*10-03 2.848*10-03
size = 5000 1.668*10-02 6.632*10-03
size = 10000 4.654*10-02 1.317*10-02
size = 50000 5.422*10-01 70.905
size = 10000 9.508*10-01 72.884

Figure 5.7: Barplot of the average runtime.

Figure 5.8: Barplot of the average runtime.
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Chapter 6

Related Work

This chapter presents a brief review of articles published in the last 20 years

concerning epidemic models on networks and rumors source identification. As in

this thesis, the susceptible-infected epidemic model, is the focus of this brief review.

The seminal of work of Vespignani, Pastor-Satorras, et. al. (2004) models

the spread of information in networks using epidemic spreading models, such as

the susceptible-infected (SI) and susceptible-infected-recovered (SIR) models. Their

work showed the importance of the network structure on the epidemic process and

in particular the degree distribution specially when it follows a power law. This

highly influential paper opened the doors for many subsequent works.

The work of Shah and Zaman (2010) was among the first to model and analyse

mathematically the rumor source identification. Their seminal work considers SI

epidemics on infinite trees and the observation of infected nodes after a long time

period (as well as knowledge of the tree).

Below, we provide a summary of some of the main articles addressing rumor

source identification in network epidemics and briefly discuss the main differences

with the model studied in this thesis.

The work of Shah and Zaman (2010) presents the first steps towards modeling

the question of identifying the rumor source in infinite networks based on infected

nodes of an SI epidemic. The authors proposed a node centrality metric called rumor

centrality to estimate the rumor source nodes showing that the node with maximal

rumor centrality is the maximum likelihood estimator (MLE) of the source of the

epidemic. Another main contribution is a linear time message-passing algorithm to

compute the rumor centrality for every node in the network (tree).

Xu, Peng, et. al. (2006) present a modified susceptible-infected-susceptible (SIS)

model where the observation of an infection suffers a random delay. Considering dif-

ferent network topologies and both uniform and degree-dependent delays, the conta-

gion process enhanced and there are more prevalent infectious in the network. They

focus on network topology reconstruction and not epidemic source identification.
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The subsequent work of Shah and Zaman (2012) shows that as the size of infected

graph increases, the probability of source identification remains bounded away from

0 and 1
2

depending on the graph topology. This result assumes that the epidemic

model is the Susceptible-Infected (SI) with exponential infection times. Simulations

are used to compute this value for specifies cases.

Dong, Zang and Tan (2013) approach the study of rumor source identification

with a set of suspects (as opposed to a single node) conditioning on an observed

subset of infected nodes in the network. The goal is to identify the source based on

the network structure and the subset of infected nodes observed. The main result is

the calculation of the probability of correct detection using a set of suspects of the

population varying its size and comparing results.

Zheng and Tan (2015) consider a probabilistic approach to rumor source iden-

tification like Shah and Zaman (2010) e Shah and Zaman (2012). Differently from

Shah and Zaman, they characterize the boundary of the rumor center given the

graph, and the infected nodes. The goal is to infer the rumor source using the

network topology and the boundary of the rumor graph. A main contribution is

the probabilistic analysis of the rumor boundary in terms of the graph connectivity

properties and the observation of infection time, as well as the formulation of the

maximum likelihood estimation problem and the proposal of a distributed message-

passing algorithm to solve it. Their model is based on differential equations with

several states that represent the epidemic process.

Lugosi, Devroye and Bubeck (2017) investigate algorithms to find the epidemic

source of large trees generated by either the uniform attachment or preferential

attachment model. The algorithm outputs a set of K nodes, such that, with prob-

ability at least 1-εk, the epidemic source belongs to this set.

Antulov-Fantulin, Lančić, et. al. (2015) use exact analytical calculations and

Monte Carlo simulations to demonstrate the limits for correctly identifying the ru-

mor source in the Susceptible-Infected-Recovered (SIR) model. They also demon-

strate their approach in the simulation of a sexually transmitted infection spreading

over a temporal network of sexual interactions.

In a more recent paper, Shah and Zaman (2016) overcome the limitations of

their previous articles and establish the effectiveness of rumor centrality for source

identification for generic random trees and an SI model with generic infection time

distribution. The main result is an interesting connection between a continuous time

branching process and the effectiveness of rumor centrality, as well as an estimation

of the probability for correctly identifying the epidemic source.

Yu, Tan and Fu (2017) study network boundary effects and the message-passing

algorithm in arbitrary graphs, solving the constrained maximum likelihood estima-

tion problem using a generalized rumor centrality metric. They propose a message-
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passing algorithm that is near-optimal for graphs with more complex boundaries

consisting of multiple end vertices, i.e., the susceptible nodes with only a single

neighbour.

Melnyk and Styopochkina (2019) investigate the problem of malicious informa-

tion source detection among the users of online social networks. They analyse the

advantages and disadvantages of existing algorithms of rumor source detection in

rest data of information spread, using as baseline the message-passing of Shah and

Zaman (2010).

Lugosi and Pereira (2019) assume that the epidemic starts with a small graph

(as opposed to a single node), and consider the problem of finding the source tree

in large observed tree. They determine when is possible to identify this source

and the role of the initial tree structure on the difficulty of identification problem.

They consider three types of initial trees: paths, stars, and small random uniform

recursive trees.
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Chapter 7

Conclusion

This thesis addressed the problem of identifying the source of random epidemics

in finite networks. The environment through which the epidemic spread, that is, the

population, is represented by a graph where the nodes represent the individuals of

this population and the edges their interactions. We focus on the most common rep-

resentation of the population, i.e., complete graphs, which encodes the assumption

that the population in homogeneously mixed.

The epidemic model used is the SI model where individuals can only be in one

state at time, susceptible or infected, and once infected the individual remains in-

fected ever since. This model was chosen because it is able to capture the process of

information diffusion in networks; once one becomes aware of the information, it is

no longer lost. It is important to emphasize that in this model the entire population

will be infected after some time, since the network is connected. Thus, when an

epidemic occurs in a graph, as a individual cannot be infected twice, the result of

this epidemic can be represented by a spanning tree because a rooted spanning tree

must have all the nodes in the graph and each node has a parent which is the node

that infect it.

To model the spread of an epidemic, in this thesis, we use the recursive random

spanning tree model and its algorithm to simulate the epidemic. This algorithm

uses a complete graph as underlying graph and returns a labeled spanning tree that

represents the epidemic occurred in the population, where the labels encode the

infection times of each individual (node).

Removing the labels of the resulting spanning tree that allow us to know where

the epidemic starts and the exact path the epidemic through the population, we have

only a unlabeled tree with the edges of the contamination process. Our aim was,

using only these edges as input information, identify where the epidemic started. To

do this, we represent the spanning tree by rooted edge sequences and calculate all

the possible combinations that can generate the corresponding tree, and compare

these numbers. This edge sequence is made by fixing one node as root and finding
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the possible edge sequences that respect the structure of the spanning tree; after

that, the node with the highest number of combinations is the most likely node to

be the source.

The calculation considers all possible combinations of edges to construct the

epidemic tree must respect the order of contamination, that is, an edge connecting a

leaf node cannot be added in the sequence before the edges connecting all nodes in

the path between the fixed root and this leaf node. Mathematically, this calculation

is based on the the size of the population and the product of the sub-tree sizes. As

the size of the population is constant, the product of the sub-tree sizes is the part

of the equation that we can compare to infer which node will be the most likely

epidemic source.

This thesis proposes an efficient (linear time) algorithm that uses a stopping

criteria to ensure that the returned node is the one that maximizes the probability

of being the source. This stopping criterion returns the first node that has as sub-

tree size at least half of the nodes of the epidemic tree. In Chapter 4 we prove that

this stopping criterion, in fact, returns the most probable node to be the epidemic

source, independent of the orientation of the tree.

As it turns out, the numerical evaluation of the algorithm shows that the prob-

ability of identifying the real epidemic source converges to 30%. Since the tree

description is given by edge sequences, the algorithm identifies with equal probabil-

ity the real epidemic source and the first infected node. This way, the probability of

identifying the real epidemic source or the first infected converges to 60%. Beside

that, we can observe that at each unit of time in the contamination process, the fre-

quency with which the node is identified as epidemic source falls by half comparing

to the previous time, indicating ab exponential decay.

As some nodes with higher labels where identified as epidemic source by our

algorithm, we analyse the distance (in the tree) that the node identified has from

the actual epidemic source (node with label zero). The higher frequency was in the

nodes at distance one, that is, the neighbors of the actual source in the epidemic

tree, showing that the algorithm returns nodes that aare close (in the tree) to the

actual source.

7.1 Future Work

A natural extension of the work presented in this thesis that would be interest-

ing to address is the identification of the most probable epidemic source in other

underlying graph, which are more realistic models of human and social interaction.

One possible extension are regular graphs, as all nodes have the same degree.

Differently from complete graphs, in regular graphs (and more general graphs too)
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the sequences representing the same tree have different probabilities and the order

of contamination makes difference, which makes the analysis hard. In what follows

we discuss two kinds of regular graphs.

The hypercube graph Qn has 2n vertices, 2n−1n edges, and is a regular graph

with n edges touching each vertex. For instance, the hypercube graph Q3 is the

graph formed by the 8 vertices and 12 edges of a three-dimensional cube.

0 1

67

3 2
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Figure 7.1: Hypercube Q3

Now, suppose a line spanning tree is the result of the epidemic on the hypercube

Q3. The sequences b1 and b2, shown below, that represent epidemic processes oc-

curred in the graph of Figure 7.1, both rooted in zero, give rise the same line tree

but have different probabilities as we will show next.

Edge Sequence

b1 = {(0, 1); (1, 2); (2, 3); (3, 4); (4, 5); (5, 6); (6, 7)}
b2 = {(0, 1); (1, 6); (6, 7); (7, 4); (4, 3); (3, 2); (2, 5)}

P (b1) =
1

3 · 4 · 5 · 5 · 5 · 4 · 3
= 5.555 ∗ 10−5

P (b2) =
1

3 · 4 · 5 · 4 · 5 · 4 · 3
= 6.944 ∗ 10−5

This occurs because, the order of contamination changes the size of the edge

cut. More specifically, the number of edges added to the edge cut at each new

contamination depends on the number of neighbours already infected of the new

infected node. Thus, how the edge cut changes at a given infection does not just

depend on which node is infected but also on whom has been infected until that

time.

In regular graphs, different from complete graphs we need more information to

know the size of the edge cut, because one node can increase the size of the edge

cut in different ways depending on the number of neighbors already infected. So,

when the underlying graph is a regular graph, the order in which vertices are added

to the tree, that is, the moment of contamination of an individual matters.
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A lattice graph, or grid graph, is a graph whose drawing, embedded in some

Euclidean space Rn, forms a regular tiling, with wrap around. Figure 7.2 depicts a

lattice with 9 nodes and 18 edges.

0 1 2

3 4 5

6 7 8

Figure 7.2: 2D lattice with 9 nodes.

As in the previous example, let us consider the case in which the spanning tree

representing the epidemic process is a line tree. Below we have two different edge

sequences rooted in zero representing a line tree; as it turns out, these sequences

have different probabilities.

Edge Sequence

b1 = {(0, 1); (1, 2); (2, 5); (5, 4); (4, 3); (3, 6); (6, 7); (7, 8)}
b2 = {(0, 6); (6, 8); (8, 2); (2, 1); (1, 7); (7, 4); (4, 3); (3, 5)}

P (b1) =
1

4 · 6 · 6 · 8 · 6 · 6 · 5 · 4
= 1.205 ∗ 10−6

P (b2) =
1

4 · 6 · 8 · 8 · 8 · 6 · 4 · 4
= 8.477 ∗ 10−7

As expected, the order of addition of the vertices in the infection sequence of

the epidemic process matters, making it clear that the approach used for complete

graphs cannot directly be applied to arbitrasry regular graphs.
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