
AGILEQUBE: AN APPROACH FOR SPECIFICATION AND DETECTION OF

AGILE SMELLS

Ulisses Telemaco

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia de Sistemas e

Computação, COPPE, da Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do título de Doutor em

Engenharia de Sistemas e Computação.

Orientador: Toacy Oliveira

Rio de Janeiro

Dezembro de 2020



AGILEQUBE: AN APPROACH FOR SPECIFICATION AND DETECTION OF

AGILE SMELLS

Ulisses Telemaco

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Orientador: Toacy Oliveira

Examinada por: Prof. Toacy Cavalcante Oliveira

Profa. Cláudia Maria Lima Werner

Prof. Geraldo Bonorino Xexéo

Prof. Rafael Prikladnicki

Prof. Fernando Manoel Pereira da Costa Brito e Abreu

RIO DE JANEIRO, RJ – BRASIL

DEZEMBRO DE 2020



Telemaco, Ulisses

AgileQube: An approach for specification and detection

of agile smells/Ulisses Telemaco. – Rio de Janeiro:

UFRJ/COPPE, 2020.

XIX, 237 p. 29, 7cm.

Orientador: Toacy Oliveira

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2020.

Bibliography: p. 143 – 165.

1. Agility Assessment. 2. Agile Assessment. 3. Agile

Smell. I. Oliveira, Toacy. II. Universidade Federal do Rio

de Janeiro, COPPE, Programa de Engenharia de Sistemas

e Computação. III. Título.

iii



Às mulheres da minha vida:

Noilza, Vanessa, Laura e Beatriz.

iv



Agradecimentos

Muita gente me ajudou nessa longa jornada, portanto, é um grande desafio escrever

essa seção. Mas gostaria de agradecer primeiramente a Deus por Ele estar sempre

ao meu lado e por ter me ajudado a tomar as decisões certas que me fizeram chegar

até aqui.

Agradeço imensamente a Vanessa, minha esposa e cara-metade. Não tenho

palavras para dizer o quanto sou grato por ela ter comprado essa ideia, pelos muitos

sacríficios que ela teve que fazer e por ter sido a retaguarda de apoio que nos permi-

tiu chegar até aqui. É injusto ela não ganhar oficialmente um título. Mas gostaria

que ela soubesse que ela estará sempre homenageada em meu coração. Agradeço

também às minhas filhas, Laura e Beatriz, porque vocês foram meu maior incen-

tivo nessa jornada. Espero que essa experiência inspire as suas vidas e que possam

conquistar tudo aquilo que desejarem.

A todos de minha família. Em especial à minha mãe, Noilza, por ter sido de fato

a primeira pessoa a participar dessa jornada, por me amar e acreditar em mim (mais

do eu mesmo) e por ter vibrado com o Doutorado desde o princípio. Ao meu pai,

Telemaco, por ter me ensinado princípios e valores que levarei por toda a vida por

ter sido um exemplo de pai e de profissional. A sua figura me inspirou e continua me

inspirando muito. Às minhas irmãs, Emmanuelle e Caroline, por termos crescidos

unidos e com muito amor. Esses são, sem dúvidas, ingredientes catalisadores de

grandes transformações e conquistas como um doutorado. Ao meu tio Dr. Isaias

Paiva, por ter sido sempre uma pessoa tão amiga e pelo profissional excepcional que

ele é. O seu amor pela medicina, pela pesquisa científica, pelas pessoas ao seu redor

e a sua inteligência são fontes de inspiração para mim.

A meu orientador, Prof. Toacy Oliveira, por ter acreditado em mim desde o

princípio e pelas orientações durantes os últimos anos. Sem a sua colaboração, con-

fiança, paciência e persistência, nunca teria sido possível concluir esta dissertação.

Aos Professores Paulo Alencar e Don Cowan por terem proporcionado a mim e a

minha família a oportunidade de vir para o Canadá e fazer parte de uma instituição

v



de grande prestígio como a University of Waterloo. Espero que a nossa parceria seja

cada vez mais sólida.

Aos meus amigos do grupo de pesquisa Prisma, Renata, Rachel, Gláucia, Edson,

Fábio e Raquel. Gostaria de agradecê-los por terem me ajudado, de diversas formas,

nessa dura jornada. Sem vocês, tudo teria sido ainda mais difícil.

Aos meus sócios e colegas de trabalho da OWSE que direta ou indiretamente

contribuíram para a realização deste trabalho, em especial ao meu amigo Walter

Magioli por ter sido um grande incetivador e entusiasta do meu doutorado.

Aos professores da linha de Engenharia de Software do PESC, em especial aos

professores Guilherme Travassos, Cláudia Werner e Geraldo Xexeo pela contribuição

ao meu aprendizado e formação como pesquisador. Meu muito obrigado também

aos funcionários da secretaria do PESC, pela dedicação ao trabalho de suporte aos

alunos do programa, especialmente ao Gutierrez da Costa, Ricardo César e Solange.

Ao Emerging Leaders in the Americas Program (ELAP) e ao Governo Canadense

por terem viabilizado a minha vinda para o Canadá que foi fundamental para essa

pesquisa.

E para finalizar, a todas as pessoas que participaram do survey conduzido du-

rante esse estudo.

vi



Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

AGILEQUBE: UMA ABORDAGEM PARA ESPECIFICAÇÃO DE DETECÇÃO

DE AGILE SMELLS

Ulisses Telemaco

Dezembro/2020

Orientador: Toacy Oliveira

Programa: Engenharia de Sistemas e Computação

Contexto: Nos últimos anos, o Desenvolvimento Ágil (AD) tem sido um dos

tópicos mais importantes para a comunidade de Engenharia de Software e tema de

diversos estudos acadêmicos e iniciativas da indústria. Mas “Ser Ágil” se tornou

mais do que uma tendência entre a comunidade de desenvolvimento de software e,

atualmente, é um movimento estratégico para manter as empresas competitivas. No

entanto, apesar de todo o esforço que as empresas investem para entender como

adotar práticas ágeis de forma eficaz, o número de empresas que de fato dominam

o desenvolvimento ágil é baixo. Nesse contexto, a Avaliação da Agilidade (AA), ou

seja, a investigação de como uma empresa adota práticas ágeis, é uma importante

ferramenta para auxiliar organizações na adoção do desenvolvimento ágil.

Problemas e Objetivos: Nesta pesquisa, pretendemos contribuir para a área

de AA da seguinte forma: primeiro, investigamos as abordagens de AA existentes

na indústria e na academia e identificamos os seguintes problemas: 1. Critérios de

avaliação não explícitos ; 2. Falta de um mecanismo para representação dos critérios

de avaliação; 3. Falta de um suporte para inclusão de novos critérios de avaliação;

4. Coleta e entrada de dados predominantemente manual ; 5. Falta de feedback em

tempo real ; and 6. Escalabilidade limitada. Para resolver esses problemas, estende-

mos o termo code smell para o contexto de avaliação de agilidade, introduzimos a

metáfora agile smell para denotar uma situação que em pode prejudicar a adoção

de uma prática ágil e propusemos uma abordagem de avaliação de agilidade baseada

na detecção automática (ou semi-automática) de agile smells em projetos ágeis.

vii



Metodologia: Esta pesquisa foi organizada em 4 fases conforme a metodolo-

gia proposta por PEFFERS et al. 2007 [1]. Na fase 1 (Identificação dos problemas

e definição dos objetos da pesquisa), identificamos os problemas acima menciona-

dos e definimos os objetivos da pesquisa. Na fase 2 (Projeto e desenvolvimento da

solução), realizamos uma revisão da literatura para identificar um conjunto de agile

smells e um survey com profissionais da indústria para entender a relevância dos

agile smells identificados. Outra revisão da literatura foi conduzida para investigar

como os metamodelos para representação de processos de software existentes podem

ser usados para representar um projeto ágil. Na fase 3 (Demonstração e Avaliação),

conduzimos 2 estudos de caso para validar a abordagem proposta. Na fase 4 (Co-

municação), publicamos 3 estudos para comunicar alguns resultados preliminares

desta pesquisa.

Resultados: Esta pesquisa produziu as seguintes contribuições: (a) Catalogue

of Agile Smells , um catálogo com 20 agile smells que serve como base para a abor-

dagem proposta.; (b) Agile Project Metamodel , um metamodelo que contém os el-

ementos necessários para representar um projeto ágil; (c) Agile Smell Schema, um

schema usado para especificar os agile smells ; e (d) AgileQube App, uma infraestru-

tura de suporte computacional formada por 4 elementos (Specification Module, ETL

Module, Detection Engine e Validation Module) que suportam a especificação e de-

tecção de agile smells em projetos ágeis.

Conclusão: As contribuições dessa pesquisa mitigaram os problemas identifi-

cados nessa pesquisa e os resultados observados nos estudos de caso confirmam que

a abordagem proposta foi capaz de detectar agile smells de forma automática nos

projetos ágeis avaliados.

viii



Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

AGILEQUBE: AN APPROACH FOR SPECIFICATION AND DETECTION OF

AGILE SMELLS

Ulisses Telemaco

December/2020

Advisor: Toacy Oliveira

Department: Systems Engineering and Computer Science

Background: Over the last years, Agile Development (AD) has been one of

the most important topics for the Software Engineering community and the subject

of several academic studies and industry initiatives. “Being Agile” became more

than a trend among the geek community and, nowadays, it is a strategic move that

the software industry has embraced and that is critical to keeping companies in the

game in such a competitive industry. However, despite the effort spent to understand

how companies can adopt agile practices more effectively, the number of companies

that master agile development is low. In this context, agility assessment, i.e., an

investigation on how a company is adopting agile practices, is one of the tools to aid

the agile development adoption.

Problems & Goals: In this research, we aimed to contribute to the area of

agility assessment in the following way: first, we investigated existing agility as-

sessment approaches and identified the following problems: 1. Unclear assessment

criteria selection; 2. Unclear assessment criteria representation; 3. Lack of support

for adding new assessment criterion; 4. Manual data collection and input ; 5. Lack of

real-time assessment feedback ; and 6. Limited Scalability . To address these problems,

we extended the code smell term to the context of agility assessment, introduced

the agile smell metaphor to denote a situation that may harm the adoption of an

agile practice and proposed an agility assessment approach that automatically (or

semi-automatically) detects agile smells in agile projects.

ix



Method: This research was organized in 4 stages based on the methodology

proposed by PEFFERS et al. 2007 [1]. In Stage 1 (Identify the problem and de-

fine the objectives), we identified the above mentioned problems and defined the

research goals. In Stage 2 (Design and development of the solution), we conducted

a literature review to identify a set of agile smells and a survey with practitioners

to reveal the relevance of the identified agile smells. Another literature review was

conducted to investigate how existing software process metamodels could be used

to represent the data from an agile project. In Stage 3 (Demonstration and Evalu-

ation), we conducted 2 case studies to validate the proposed approach. In Stage 4

(Communication), we published 3 studies to communicate some preliminary results

of this research.

Results: This research produced the following contributions: (a) the Catalogue

of Agile Smells , a catalogue that acts as the baseline for the proposed approach and

has 20 agile smells; (b) the Agile Project Metamodel , a metamodel that contains

the elements necessary to represent an agile project; (c) the Agile Smell Schema,

a schema that enables the systematic specification of the agile smells; and (d) the

AgileQube App, a computational supporting infrastructure composed of 4 elements

(Specification Module, ETL Module, Detection Engine, and Validation Module) that

together support the specification and detection of agile smells in agile projects.

Conclusion: The resulting contributions addressed the problems identified in

the existing agility assessment approaches and the reports generated in the case

studies confirmed that the proposed approach, along with the other contributions,

was able to automatically detect agile smells in the assessed agile projects.

x



Table of Contents

1 Introduction 5

1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background 17

2.1 Agile Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Agility Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Agility Assessment Approaches and Tools . . . . . . . . . . . . . . . 22

2.4 Agility Maturity Models . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Agile Adoption Framework . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 AgileQube Approach Overview 30

3.1 Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Computational Supporting Infrastructure . . . . . . . . . . . . . . . . 34

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Catalogue of Agile Smells 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Literature Review Planning . . . . . . . . . . . . . . . . . . . 39

4.3.2 Literature Review Execution . . . . . . . . . . . . . . . . . . . 41

xi



4.3.3 Literature Review Reporting . . . . . . . . . . . . . . . . . . . 42

4.4 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Survey Planning . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.2 Characterization of participants . . . . . . . . . . . . . . . . . 51

4.4.3 Survey Reporting . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.4 Data Analysis Discussion . . . . . . . . . . . . . . . . . . . . . 53

4.5 Consolidation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Agile Project Metamodel 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Concepts necessary to represent agile projects . . . . . . . . . . . . . 59

5.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Literature Review Planning . . . . . . . . . . . . . . . . . . . 61

5.3.2 Literature Review Execution . . . . . . . . . . . . . . . . . . . 63

5.3.3 Literature Review Reporting . . . . . . . . . . . . . . . . . . . 63

5.4 The Agile Project Metamodel . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Agile Smell Schema 72

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Schema Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Properties of the Agile Smell Schema . . . . . . . . . . . . . . . . . . 75

6.3.1 Name, Description, Help, and References . . . . . . . . . . . . 76

6.3.2 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.3 Preconditions, When, Then, Params and Expression Language 76

6.4 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5 The Top 10 Agile Smells Specifications . . . . . . . . . . . . . . . . . 79

6.5.1 Lower Priority Tasks Executed First specification . . . . . . . 80

6.5.2 Absence of Frequent Deliveries specification . . . . . . . . . . 81

6.5.3 Iteration Without a Deliverable specification . . . . . . . . . . 82

6.5.4 Goals Not Defined or Poorly Defined specification . . . . . . . 83

6.5.5 Iteration Without an Iteration Planning specification . . . . . 84

6.5.6 Complex Tasks specification . . . . . . . . . . . . . . . . . . . 85

6.5.7 Iteration Without an Iteration Retrospective specification . . . 86

6.5.8 Absence of Timeboxed Iteration specification . . . . . . . . . . 87

xii



6.5.9 Iteration Started without an Estimated Effort specification . . 88

6.5.10 Iteration Without an Iteration Review specification . . . . . . 89

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Supporting Infrastructure: AgileQube App 91

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 AgileQube App Architecture . . . . . . . . . . . . . . . . . . . . . . . 91

7.3 AgileQube App Components . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.1 Specification Module . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.2 ETL Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.3 Detection Engine . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3.4 Validation Module . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Case Studies 106

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2 Case Studies Methodology . . . . . . . . . . . . . . . . . . . . . . . . 107

8.3 Cases Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.4 Open-source projects hosted on GitHub . . . . . . . . . . . . . . . . . 107

8.5 Open-source projects hosted on ZenHub . . . . . . . . . . . . . . . . 108

8.6 Journal Submission System . . . . . . . . . . . . . . . . . . . . . . . 110

8.6.1 Phase 1: Case study design . . . . . . . . . . . . . . . . . . . 110

8.6.2 Phase 2: Preparation for data collection . . . . . . . . . . . . 114

8.6.3 Phase 3: Data Collection . . . . . . . . . . . . . . . . . . . . . 116

8.6.4 Phase 4: Analysis of collected data . . . . . . . . . . . . . . . 116

8.6.5 Phase 5: Reporting . . . . . . . . . . . . . . . . . . . . . . . . 119

8.7 Terminal Operational System . . . . . . . . . . . . . . . . . . . . . . 121

8.7.1 Phase 1: Case study design . . . . . . . . . . . . . . . . . . . 122

8.7.2 Phase 2: Preparation for data collection . . . . . . . . . . . . 123

8.7.3 Phase 3: Data Collection . . . . . . . . . . . . . . . . . . . . . 125

8.7.4 Phase 4: Analysis of collected data . . . . . . . . . . . . . . . 127

8.7.5 Phase 5: Reporting . . . . . . . . . . . . . . . . . . . . . . . . 131

8.8 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9 Conclusion 135

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xiii



9.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.3 Research Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography 143

A Agility Assessment Approaches 166

B Survey Design and Data Analysis 187

C Agile smells literature review selected studies 193

D Catalogue of Agile Smells 199

E Software metamodel literature review selected studies 209

F Journal Submission System Project Structure - Tasks and Iter-

ations 211

G Terminal Operational System Project Structure - Tasks and It-

erations 218

xiv



List of Figures

Figure 1.1 Stages of the research . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 1.2 Macro-activities performed in the research in the BPMN nota-

tion (OMG 2011 [2]) . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.1 AgileQube Approach overview . . . . . . . . . . . . . . . . . . . 31

Figure 4.1 The research methodology organized in three phases and four

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.2 The process of primary study selection . . . . . . . . . . . . . . 42

Figure 4.3 Formula of agile smell relevance by participant. . . . . . . . . . . 49

Figure 4.4 Formula of final agile smell relevance. . . . . . . . . . . . . . . . 50

Figure 4.5 Distribution of the degree of relevance according to the survey. . 53

Figure 5.1 Agile Project Metamodel overview . . . . . . . . . . . . . . . . . 58

Figure 5.2 Agile Project Metamodel (APMM) . . . . . . . . . . . . . . . . . 68

Figure 6.1 Agile Smell Schema overview . . . . . . . . . . . . . . . . . . . . 73

Figure 6.2 Agile Smell Schema documentation . . . . . . . . . . . . . . . . 75

Figure 7.1 AgileQube App overview . . . . . . . . . . . . . . . . . . . . . . 92

Figure 7.2 AgileQube App Architecture overview . . . . . . . . . . . . . . . 93

Figure 7.3 Specification Module overview . . . . . . . . . . . . . . . . . . . 93

Figure 7.4 Agile smell specification form . . . . . . . . . . . . . . . . . . . . 94

Figure 7.5 Agile smells registered in the system . . . . . . . . . . . . . . . . 95

Figure 7.6 ETL Module overview . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 7.7 ZenHub dashboard - an example . . . . . . . . . . . . . . . . . . 97

Figure 7.8 ETL Module form configuration for the ZenHub platform . . . . 98

Figure 7.9 Detection Engine overview . . . . . . . . . . . . . . . . . . . . . 99

Figure 7.10 The expressions preconditions, when and then and the algorithm

to detect the occurrence of an agile smell . . . . . . . . . . . . . 100

Figure 7.11 Agile Smells Report overview . . . . . . . . . . . . . . . . . . . . 101

Figure 7.12 Agile Smells Report - Agile Smells section . . . . . . . . . . . . . 102

xv



Figure 7.13 Agile Smells Report - Iterations section . . . . . . . . . . . . . . 102

Figure 7.14 Validation Module overview . . . . . . . . . . . . . . . . . . . . . 103

Figure 8.1 JSS project configuration in the AgileQube App . . . . . . . . . 115

Figure 8.2 Agile Smells Report overview of the JSS project . . . . . . . . . 117

Figure 8.3 Agile Smells Report of the JSS project - Agile Smells section . . 118

Figure 8.4 Agile Smells Report of the JSS project - Project section . . . . . 119

Figure 8.5 Agile Smells Report of the JSS project - Iterations section . . . . 120

Figure 8.6 Agile Smells Report of the JSS project - Tasks section . . . . . . 121

Figure 8.7 TOS project configuration in the AgileQube App . . . . . . . . . 125

Figure 8.8 Agile Smells Report overview of TOS project . . . . . . . . . . . 126

Figure 8.9 Agile Smells Report of TOS project - Agile Smells section . . . . 128

Figure 8.10 Agile Smells Report of TOS project - Project section . . . . . . . 129

Figure 8.11 Agile Smells Report of TOS project - Iterations section . . . . . 129

Figure 8.12 Agile Smells Report of TOS project - Tasks section . . . . . . . 130

Figure 9.1 Goal: G1. Define a catalogue of agile smells . . . . . . . . . . . 139

Figure 9.2 Goal: G2. Define an agile smell representation approach . . . . 139

Figure 9.3 Goal: G3. Define a data extraction approach . . . . . . . . . . . 140

Figure 9.4 Goal: G4. Define and implement a computational system . . . . 141

Figure B.1 Formula of agile smell relevance by participant. . . . . . . . . . . 189

Figure B.2 Formula of final agile smell relevance for question 1. . . . . . . . 189

Figure B.3 Formula of final agile smell relevance for question 2. . . . . . . . 189

xvi



List of Tables

Table 1.1 Code smell x agile smell metaphors . . . . . . . . . . . . . . . . 10

Table 2.1 Approaches and tools related to this research . . . . . . . . . . . 23

Table 4.1 Summary of the survey participants characterization. . . . . . . 50

Table 4.2 Summary of data collected and analyzed in the survey. . . . . . 52

Table 4.3 Agile smell template. . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 5.1 Software Process Metamodels and their corresponding elements

(part1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Table 5.2 Software Process Metamodels and their corresponding elements

(part2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 7.1 Mapping between the ZenHub/GitHub platforms and the Agile

Project Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 8.1 Agile smells injected in the JSS project . . . . . . . . . . . . . . 114

Table 8.2 Agile smells manually identified in the TOS project . . . . . . . 124

Table 8.3 Agile smells in the TOS project (TP - True Positive; FP - False

Positive; TN - True Negative; FN - False Negative) . . . . . . . 132

Table B.1 Agile smells ranked by their relevance to agility assessment

(question 1 of the survey). . . . . . . . . . . . . . . . . . . . . . 190

Table B.2 Agile smells ranked by their identification strategy relevance

(question 2 of the survey). . . . . . . . . . . . . . . . . . . . . . 191

Table D.1 AS 01: Lower Priority Tasks Executed First . . . . . . . . . . . 199

Table D.2 AS 02: Absence of Frequent Deliveries . . . . . . . . . . . . . . . 200

Table D.3 AS 03: Iteration Without a Deliverable . . . . . . . . . . . . . . 201

Table D.4 AS 04: Goals Not Defined or Poorly Defined . . . . . . . . . . . 202

Table D.5 AS 05: Iteration Without an Iteration Planning . . . . . . . . . 203

Table D.6 AS 06: Complex Tasks . . . . . . . . . . . . . . . . . . . . . . . 204

Table D.7 AS 07: Iteration Without an Iteration Retrospective . . . . . . . 205

xvii



Table D.8 AS 08: Absence of Timeboxed Iteration . . . . . . . . . . . . . . 206

Table D.9 AS 09: Iteration Started without an Estimated Effort . . . . . . 207

Table D.10 AS 10: Iteration Without an Iteration Review . . . . . . . . . . 208

Table F.1 Milestones and Issues of the project Journal Submission System 211

Table G.1 Sprints and their respective tasks of the project Terminal Op-

erational System selected to the case study (E.E.: Estimated

Effort, R.E.: Real effort, A.T.: Assigned to) . . . . . . . . . . . 219

xviii



List of Abbreviations

AA AgileQube Approach. xi, xv, 11–13, 16, 29–33, 35, 36, 55–58, 71, 72, 90, 91, 95,

98, 103–106, 109, 110, 121, 133, 135–138, 141

APD Agile Project Data. 33

APMM Agile Project Metamodel . viii, x, xii, xv, xvii, 11, 12, 15, 16, 32–35, 57–59,

68, 70–72, 76, 78, 90, 94, 97, 98, 105, 106, 108, 109, 136–141

AQApp AgileQube App. viii, x, xiii, xv, xvi, 12, 15, 16, 34, 35, 91–94, 98, 103,

104, 106, 111, 115, 116, 119, 121, 125, 131, 134, 136–140, 142

AQL Agile Smell Schema. viii, x, xii, xv, 11, 15, 16, 32–35, 72–76, 90, 93, 98,

104–106, 136–139

AS 01 Lower Priority Tasks Executed First . xii, xvii, 47, 52, 60, 76, 80, 100, 104,

113, 114, 116, 119, 123, 124, 127, 128, 132, 190, 191, 199

AS 02 Absence of Frequent Deliveries . xii, xvii, 43, 52, 81, 100, 114, 116–118, 124,

127, 132, 190, 191, 200

AS 03 Iteration Without a Deliverable. xii, xvii, 45, 52, 82, 113, 114, 116, 124, 127,

128, 132, 190, 191, 201

AS 04 Goals Not Defined or Poorly Defined . xii, xvii, 44, 52, 59, 83, 113, 114, 116,

119, 124, 127, 128, 130, 132, 190, 191, 202

AS 05 Iteration Without an Iteration Planning . xii, xvii, 45, 52, 84, 114, 116, 119,

124, 127, 132, 190, 191, 203

AS 06 Complex Tasks . xii, xvii, 44, 48, 52, 60, 85, 100, 104, 114, 116, 119, 124,

127, 130, 132, 190, 191, 204

AS 07 Iteration Without an Iteration Retrospective. xii, xvii, 45, 52, 86, 114, 116,

119, 124, 127, 130, 132, 190, 191, 205

1



AS 08 Absence of Timeboxed Iteration. xii, xviii, 43, 52, 60, 87, 104, 114, 116, 119,

124, 127, 130, 132, 190, 191, 206

AS 09 Iteration Started without an Estimated Effort . xiii, xviii, 45, 52, 88, 114,

116, 119, 124, 127, 128, 130, 132, 190, 191, 207

AS 10 Iteration Without an Iteration Review . xiii, xviii, 46, 52, 89, 100, 114, 116,

119, 123, 124, 127, 130, 132, 190, 191, 208

AS 11 Shared Developers . 47, 52, 53, 190, 191

AS 12 Unplanned Work . 47, 52, 53, 190, 191

AS 13 Dependence on Internal Specialists . 44, 52, 190, 191

AS 14 Unfinished Work in a Closed Iteration. 47, 52, 190, 191

AS 15 Absence of Timeboxed Meeting . 43, 44, 52, 190, 191

AS 15 Absence of Test-driven Development . 43, 52, 190, 191

AS 17 Large Development Team. 46, 52, 53, 190, 191

AS 19 Iterations with Different Duration. 46, 52, 190, 191

AS 19 Long Break Between Iterations . 46, 52, 53, 190, 191

AS 20 Concurrent Iterations . 44, 52, 190, 191

ASRC Agile Smells Report . xv, xvi, 33, 100–102, 110, 111, 116–121, 125, 126,

128–131, 134, 138

ASRP Agile Smells Report (preliminary). 33, 98, 103, 105, 108, 121, 131, 137, 138

ASS Agile Smell Specifications . 33

ASSC Agile Smell Specifications (configured). 33

CAS Catalogue of Agile Smells . viii, x, xi, 11, 12, 15, 16, 32, 33, 35, 36, 56, 59, 71,

77, 79, 90, 106, 123, 133, 136–138, 141, 142, 187

DE Detection Engine. viii, x, xiii, xv, 34, 37, 57, 72, 76, 79, 90, 94, 98–100, 104,

105, 108, 137, 140

2



ETLM ETL Module. viii, x, xiii, xv, 33, 34, 57, 94–96, 98, 104, 105, 109, 114, 115,

123, 125, 137, 140, 142

G1 Define a catalogue of agile smells . xvi, 10, 11, 36, 56, 106, 135, 138, 139

G2 Define an agile smell representation approach. xvi, 11, 57, 71, 72, 90, 106, 135,

139

G3 Define a data extraction approach. xvi, 11, 57, 71, 135, 140

G4 Define and implement a computational system. xvi, 11, 91, 105, 135, 140, 141

GitHub GitHub. xiii, xvii, 15, 96, 97, 106–109, 113, 123, 133, 134, 138, 142

JSS Journal Submission System. xiii, xiv, xvi, xvii, 15, 16, 106, 110–112, 114–121,

133, 134, 137, 211

MSMS Manuscrit Submission Management System. 111, 137

P1 Unclear assessment criteria selection. ix, 8, 10, 29, 135, 139

P1 Critérios de avaliação não explícitos . vii

P2 Unclear assessment criteria representation. ix, 8, 11, 29, 135, 139

P2 Falta de um mecanismo para representação dos critérios de avaliação. vii

P3 Lack of support for adding new assessment criterion. ix, 9, 11, 29, 135, 139

P3 Falta de um suporte para inclusão de novos critérios de avaliação. vii

P4 Manual data collection and input . ix, 9, 11, 29, 135, 140

P4 Coleta e entrada de dados predominantemente manual . vii

P5 Lack of real-time assessment feedback . ix, 9, 11, 29, 135, 140

P5 Falta de feedback em tempo real . vii

P6 Limited Scalability . ix, 9, 11, 29, 135, 140

P6 Escalabilidade limitada. vii

PKD Prisma KIP Domain. 12, 15

PNM preconditions not met . 108

3



PZETL Prisma ZenHub ETL. 12, 15, 96

SM Specification Module. viii, x, xiii, xv, 34, 92, 93, 104, 137, 139, 140

TOS Terminal Operational System. xiii, xiv, xvi–xviii, 15, 16, 106, 110, 121, 122,

124–126, 128–134, 138, 218, 219

VM Validation Module. viii, x, xiii, xvi, 34, 35, 103–105, 137, 140

ZenHub ZenHub. xiii, xv, xvii, 12, 15, 34, 94–98, 106–109, 113–116, 122, 123, 125,

133, 134, 137, 138, 142

4



Chapter 1

Introduction

This chapter introduces the study and is organized in the following sec-

tions: Research Context, Problem Statement, Research Goals, Research

Contributions, Publications, and Research Methodology.

1.1 Research Context

Agile Development (AD) has been one of the most important software development

paradigms of the Software Engineering community. Agile evangelists argue that

agile methodologies bring benefits such as: (a) faster deliveries, (b) enhancement

in ability to manage changing priorities, (c) improvement in business/IT alignment

(d) increment in development productivity and quality, (e) focus on business value

and users, (f) reducing project risks and cost, (g) enhancement in distributed team

management, (h) increment in development team and stakeholders engagement, and

(i) improvement in project visibility (RAO et al. 2011 [3], MEYER 2014 [4], TRIPP

and ARMSTRONG 2016 [5], TARWANI and CHUG 2016 [6]).

The promise of such benefits has created a movement towards the adoption of

agile methods by the software industry. This movement can be confirmed by studies

such as the series State of AgileTMReports that, year after year, showed an increment

in the number of companies adopting agile development. In the 4th Annual State of

AgileTMReport 2009 [7], the percentage of respondents that worked in organizations

that use agile software development to some degree was 84%. About a decade later,

the 14th Annual State of AgileTMReport 2020 [8] revealed this percentage increased

to 95%.

This interest in agile software development has produced a significant volume

of peer-reviewed studies and grey literature (books, blogs, magazines, etc.) that

5



focus on proposing frameworks and guidelines on how agile methodologies can be

adopted, combined, and used in software projects (SIDKY et al. 2007 [9], QUMER

and HENDERSON-SELLERS 2008 [10], ELSSAMADISY 2008 [11], ROHUNEN

et al. 2010 [12], HAJJDIAB and TALEB 2011 [13], BARLOW et al. 2011 [14],

GANDOMANI and NAFCHI 2015 [15]).

However, despite the efforts to follow agile practices, mastering agile practices

is still a reality for just a few companies that are willing to adopt agile methods.

The survey (VERSIONONE 2020 [8]) that pointed out that 95% of the participants

worked in companies that somehow adopted agile practices, when analized the agile

maturity of these companies, surprisingly revealed that only 5% of them claim they

have fully integrated agile practices into their software development process.

As a consequence the following question arises “what is happening with those

organizations (95%) that do not master agile practices? ”. Studies such as

DE SOUZA BERMEJO et al. 2014 [16], ELORANTA et al. 2015 [17], LÓPEZ-

MARTÍNEZ et al. 2016 [18], GREGORY et al. 2016 [19], AMBLER 2018 [20] sug-

gest companies may be misusing agile practices without clearly understanding the

consequences of the deviations. ELORANTA et al. 2015 [17] conducted a survey

with 18 teams distributed over 11 organizations to investigate how they are apply-

ing the Scrum methodology (ALLIANCE 2016 [21]) and revealed, for example, that:

(a) when they verified the presence of the Product Owner (which is a role prescribed

by Scrum that is responsible for optimizing Return On Investment (ROI)), 7 teams

did not have a Product Owner; (b) regarding the Work estimation (that is an im-

portant factor of Scrum to enable an efficient resource allocation and to improve

predictability), 2 teams did not do estimates at all and in 6 teams, a project man-

ager or a Product Owner made the estimates; (c) when they verified the use of a

Product Backlog (which is an artifact prescribed in Scrum to control the project

scope), 3 teams were not using it at all; (d) when they analyzed the factor Avoid

team interruptions (that in Scrum means keeping the team focused on the Sprint

goal and protecting it from outside interruptions), 13 teams used to be interrupted

during the Sprint as team members have to answer phone calls, take bug issues

and maintain legacy systems. (e) assessing the aspect Self-organization (Self-orga-

nized teams in Scrum means, among other things, that their members should decide

what task from the Sprint backlog should be worked based on a predefined priority),

the survey revealed that in 9 cases the teams were not self-organized and relied on

the Project Manager to define what should be done and to assign tasks to team

members.

6



Failure to adopt agile practices properly can be harmful and prevent organiza-

tions to obtain full benefits of agile methods. The survey with 149 respondents

conducted by AMBLER 2018 [20], for example, revealed that 36% of the partici-

pants reported that they had experienced challenges in an agile project, and 3% of

the participants reported complete failure. DE SOUZA BERMEJO et al. 2014 [16]

presented a quantitative study that collected data from about 400 companies and

concluded that almost a third of them can be characterized as “organizations that

have high rates of agile principles usage and low success rates in software develop-

ment”. It is quite common to find organizations new to agile software development

techniques, adopt a few agile practices, adapt them in the way they prefer and con-

vince themselves they are doing agile software development until they eventually

realize there are no or few improvements in their software processes (OZCAN-TOP

and DEMIRÖRS 2015 [22]).

To mitigate problems related to the misuse of agile practices, it is important that

organizations understand how they are applying agile practices and the improve-

ments opportunities. Some agile methods already prescribe dynamics for process

improvement such as the Sprint Retrospect in Scrum, the Reflective Improvement

in Crystal (COCKBURN 2002 [23]), and the Learning Loop in ADS (HIGHSMITH

2000 [24]). The Sprint Retrospect, for example, is a meeting that usually follows the

sprint, where the development team discusses how they conducted the iteration, the

main problems they faced and how the process could be improved. These initiatives,

although useful as a simple process improvement strategy, do not provide a com-

prehensive analysis of how an organization is adopting agile practices (PACKLICK

2007 [25]). It is preferable to conduct a more holistic and systematic assessment.

In the context of Software Engineering, Agility Assessment (AA) is an important

tool to assist organizations in understanding how they are applying agile practices

and their gaps toward an effective agile development (ADALI et al. 2016 [26]). There

are many types for AA approaches such as agility maturity models, agility checklists,

agility surveys, and agility assessment tools (SOUNDARARAJAN and ARTHUR

2011 [27]). In this study, we focus on agility assessment approaches that somehow

automate or guide the assessment process.

In the next section, we explore the problems with existing agility assessment

approaches that motivated this research.

7



1.2 Problem Statement

Analyzing the state-of-the-art on agility assessment approaches, we have identified

the following problems and limitations:

P1. Unclear assessment criteria selection : it is not clear how the assessment

criteria were defined in the existing approaches. For example, approaches based on

surveys such as STORM-CONSULTING 2008 [28], KREBS 2011 [29], LAGESTEE

2012 [30], INFOTECH 2013 [31], COHN and RUBIN 2015 [32], TOUSIGNANT

2019 [33] do not make it clear how the questions that compose their questionnaires

were defined. In STORM-CONSULTING 2008 [28] there is even a section whose

title, “Blue Sky thinking”, does not match any term present in the academic

literature on agile development. This problem is relevant because the interpretation

of agile principles, values and practices as assessment criteria is a fundamental

task in the design of an agility assessment approach TURETKEN et al. 2012 [34],

LY et al. 2015 [35] and should be clearly and explicitly documented. The lack of

transparency in the selection of these criteria is a critical threat to the approaches

that could be assessing software development aspects not necessarily related to

agile development (ADALI et al. 2016 [36]).

P2. Unclear assessment criteria representation : this problem refers to the

limitations of the approaches in representing the assessment criteria in a explicit and

clear manner. Approaches based on spreadsheet KREBS 2011 [29], LAGESTEE

2012 [30], INFOTECH 2013 [31], for example, have their assessment algorithms

implemented through undocumented macros and formulae. Other web-based

survey approaches STORM-CONSULTING 2008 [28], COHN and RUBIN 2015

[32], MCCALLA and GIFFORD 2016 [37] have a proprietary code, i.e, they do

not reveal the algorithms used to process the questionnaire answers. The lack of

transparency in representing the assessment criteria jeopardizes the approaches’

ability to adapt to different contexts (ADALI et al. 2016 [36]). It is risky to rely on

static criteria since the assessment context varies from organization to organization

and even among projects inside the same organization. For that reason, it is desired

that an agility assessment approach enables the specification of assessment criteria

using a transparent, expressive, and flexible representation mechanism (MOHA

et al. 2006 [38], LY et al. 2015 [35]).

8



P3. Lack of support for adding new assessment criterion : this problem

refers to the lack of support for adding new elements into the set of criteria

used by the agility assessment approach. For example, none of the agility as-

sessment approaches based on surveys above mentioned (spreadsheet-based or

web-based) KREBS 2011 [29], LAGESTEE 2012 [30], INFOTECH 2013 [31],

STORM-CONSULTING 2008 [28], AGILE 2012 [39], COHN and RUBIN 2015 [32]

offer an extension mechanism to include new questions into their questionnaires.

Similar to the previous problem, this issue restricts the ability of approaches to

adapt to different contexts since they only use a predefined set of assessment criteria

(MOHA et al. 2006 [38], ADALI et al. 2016 [36]).

P4. Manual data collection and input : this problem is related to the fact

that the existing approaches depend mainly on the manual data collection and

input to perform an agility assessment. For example, in self-assessment solutions

such KREBS 2011 [29], LAGESTEE 2012 [30], INFOTECH 2013 [31], ELIASSEN-

GROUP 2013 [40], someone has to enter manually the data into a spreadsheet

so it can be analyzed. Manual data collection and input are laborious, slow,

costly, error-prone, not scalable (ULLAH et al. 2013 [41], DIMYADI and AMOR

2017 [42]), and therefore represent a severe threat to the agility assessment approach.

P5. Lack of real-time assessment feedback : this problem refers to the

limitation of approaches in not providing real-time assessment. Existing agility

assessment solutions usually only perform post mortem (COLLIER et al. 1996 [43])

analysis, i.e., the assessment is performed after the conclusion of an iteration or a

project. Although solutions based on post-mortem analysis are useful to investigate

how agile practices were applied and which gaps should be addressed in the future,

the lack of support for real-time analysis limits the approaches’ ability to identify

the misuse of agile practices during software development and to prevent unwanted

outcomes (PARK et al. 2012 [44], LY et al. 2015 [35]).

P6. Limited Scalability : this problem refers to the limitation of approaches to

scale, i.e., to be able to perform the assessment at the same level of functionality and

usability, regardless of the size of the project or organization. This issue is caused,

in part, by the limitations pointed in P4 (Manual data collection and input) and P5

(Lack of real-time assessment feedback). For example, the existing approaches above

mentioned, as well as other approaches discussed in Chapter 2, require someone to

9



Table 1.1: Code smell x agile smell metaphors
A code smell An agile smell

describes the identification describes the identification
of early warnings signals of early warnings signals
that something in that something in
computer code an agile project/organization

may need to be may need to be
rewritten[45]. adjusted.

manually collect and enter data into the solutions. This interference of human users

may take a significant amount of time and effort to perform, making it challenging

to use these approaches on a large scale.

1.3 Research Goals

In this study, we aim to contribute to the area of agility assessment by proposing an

agility assessment approach that mitigates the problems presented in the previous

section. The proposed approach is based on the “agile smells” concept.

We are adapting the code smell metaphor (FOWLER et al. 1999 [45]) to the con-

text of agility assessment and introducing the agile smell metaphor as illustrated in

Table 1.1. According to Fowler and Beck, who popularized the term in (FOWLER

et al. 1999 [45]), a code smell denotes an indication that may correspond to a deeper

problem in the software source code or architecture that need to be fixed or refac-

tored. We are using the agile smell term to denote a practice that may impair the

proper adoption of an agile practice. Then, the examination of early warning signals

may indicate that certain aspects of agile in a project or organization need to be

adjusted.

The main goal of this study is to propose an agility assessment approach

that mitigates the problems P1 to P6 (described in Section 1.2), while

providing a solid foundation for defining an infrastructure to support

Agility Assessment. To achieve the main goal, we defined 4 fine-grained goals:

G1. Define a catalogue of agile smells : define, through a methodological

process, a catalogue of agile smells that guides the agility assessment approach

and makes explicit the relation between the assessment criteria and the agile

practices that motivated them. This goal aids to address the problem P1 (Unclear

10



assessment criteria selection).

G2. Define an agile smell representation approach : define an expressive

approach to represent the agile smells. The approach must be expressive and flexible

to enable the specification of the agile smells presented in the catalogue produced by

the goal G1 (Define a catalogue of agile smells) as well as support the addition of

new agile smells. This goal aids to address the problems P2 (Unclear assessment cri-

teria representation) and P3 (Lack of support for adding new assessment criterion).

G3. Define a data extraction approach : define a data extraction mechanism

capable of loading data from different sources and using it as input for the agility

assessment approach. This goal aids to address the problems P4 (Manual data

collection and input), P5 (Lack of real-time assessment feedback), and P6 (Limited

Scalability).

G4. Define and implement a computational system : define and implement a

computational system that supports the specification and detection of agile smells.

This goal supports the goals G2 (Define an agile smell representation approach)

and G3 (Define a data extraction approach) and aids to address the problems P5

(Lack of real-time assessment feedback) and P6 (Limited Scalability).

1.4 Research Contributions

The main contributions of this research can be summarized as follows:

C1. AgileQube Approach : an agility assessment approach that defines the steps

and the elements necessary to automatically (or semi-automatically) identify agile

smells in agile projects.

C2. Catalogue of Agile Smells : a set of agile smells that were identified through

a literature review, confirmed by a survey and organized in a structured format.

C3. Agile Project Metamodel : a metamodel to support the collection of data

from agile projects.

C4. Agile Smell Schema : a structure schema to support the representation of

11



agile smells.

C5. AgileQube App: a computational system to support the execution of some

phases from the AgileQube Approach.

1.5 Publications

So far, this research has produced the following peer-reviewed publications:

1. BPMN-R: An extension to BPMN (exploratory proposal)

TELEMACO, U., OLIVEIRA, T. BPMN-R: An extension to BPMN to Repre-

sent Software Process Rules: doctoral symposium. In: XV Workshop de Teses

e Dissertações em Qualidade de Software (WTDQS 2017), 2017 [46]

2. Catalogue of Agile Smells (preliminary version)

TELEMACO, U., OLIVEIRA, T., ALENCAR, P., et al. A catalog of bad

agile smells for agility assessment. In: Proceedings of the 2019 Ibero-American

Conference on Software Engineering, CIbSE 2019, pp. 30–43, 2019 [47];

3. Agile Project Metamodel

TELEMACO, U., OLIVEIRA, T., ALENCAR, P., et al. A metamodel for

representing agile software development projects. In: Proceedings of the 2019

Ibero-American Conference on Software Engineering, CIbSE 2019, 2019 [48];

4. Catalogue of Agile Smells (extended version)

TELEMACO, U., OLIVEIRA, T., ALENCAR, P., et al. A Catalogue of Agile

Smells for Agility Assessment, IEEE Access, v. 8, pp. 79239–79259, 2020 [49].

A manuscript describing the AgileQube Approach and its main components is

almost ready and will be soon submitted to a specialized journal.

We have also published, as open-source projects, two modules that support the

computational system:

1. Prisma KIP Domain 1: a reference implementation of the Agile Project

Metamodel ;

2. Prisma ZenHub ETL 2: an ETL module to extract data from the ZenHub

platform.
1https://github.com/utelemaco/prisma-kip-domain
2https://github.com/utelemaco/prisma-zenhub-etl

12



1.6 Research Methodology

To accomplish the goals and contributions, this research was organized in four stages

based on the methodology proposed by PEFFERS et al. 2007 [1]. An overview of

these stages and the effort distribution along the PhD journey is presented in Figure

1.1. The macro-activities performed in this research are represented in Figure 1.2.

Figure 1.1: Stages of the research

Stage 1. Identify the problem and define the objectives of the solution

At the very early stage of this research, we conducted an ad hoc literature

review to confirm the importance of agility assessment to the agile community,

learn about existing approaches and identify the main problems and limitations of

these approaches. At the end of this phase, we have identified a preliminary lists of

problems and goals. These lists have been evolved during the research and the final

result is presented in Sections 1.2 and 1.3.

Stage 2. Design and development of the solution

We started this stage by working on exploring proposals to mitigate the problems

identified in the first stage. We tried some ideas such as the use of approaches based

on process compliance checking and monitoring (LU et al. 2008 [50], LY et al. 2015

[35], DE MELLO et al. 2016 [51]). However, these approaches did not seem reason-

able in such a flexible and dynamic environment as the agile software development

environment. Then, we decided to adapt the abstraction of code smell to the context

of agile development and introduced the agile smell term. We designed a solution

to automatically detect agile smells (AgileQube Approach) and identified other 4

13



Figure 1.2: Macro-activities performed in the research in the BPMN notation (OMG
2011 [2])

14



additional contributions: Catalogue of Agile Smells, Agile Project Metamodel, Agile

Smell Schema, and AgileQube App. The remainder of Stage 2 was conducted in 4

threads (one for each additional contribution).

A preliminary version of the Catalogue of Agile Smells was elaborated through

three steps: (1) we conducted a literature review (LR1) to identify a set of agile

smells; (2) we conducted a survey with practitioners to confirm the agile smells; and

(3) we organized the agile smells as a catalogue. After submitting the preliminary

results to a conference and receiving feedback from a specialized community, we

produced a final version of the Catalogue of Agile Smells through the following

steps: (1) we updated the literature review (LR1); (2) we conducted the survey

with more participants; and (3) we reorganized the agile smells in the catalogue

according to new results.

The Agile Project Metamodel was elaborated in four steps: (1) we identified a set

of required concepts; (2) we conducted a literature review (LR2) to investigate how

the existing software development metamodels can represent these concepts; (3) we

extended the existing metamodels and proposed the Agile Project Metamodel ; and

(4) we developed a reference implementation of the proposed metamodel.

In Stage 2, we also designed and developed the Prisma ZenHub ETL, the Agile

Smell Schema, and the AgileQube App.

Stage 3. Demonstration and Evaluation

In Stage 3, we designed and conducted two case studies (Journal Submission Sys-

tem and Terminal Operational System) according to RUNESON and HÖST 2009

[52] guidelines to support the demonstration and evaluation of the proposed ap-

proach.

Stage 4. Communication

We published, in a specialized conference, a preliminary version of the Catalogue

of Agile Smells (TELEMACO et al. 2019 [47]) and the Agile Project Metamodel

(TELEMACO et al. 2019 [48]). An extended version of the catalogue was published

in the IEEE Access journal (TELEMACO et al. 2020 [49]). We published as open

source projects onGitHub a reference implementation of the Agile Project Metamodel

(Prisma KIP Domain3) and an ETL module for the ZenHub platform (Prisma

ZenHub ETL4).
3https://github.com/utelemaco/prisma-kip-domain
4https://github.com/utelemaco/prisma-zenhub-etl

15



We are finishing a manuscript describing the AgileQube Approach and its main

components that will be soon submitted to a specialized journal.

The writing and presentation of this thesis conclude this stage.

1.7 Outline

The remainder of this thesis is organized in the following structure: Chapter 2

presents the theoretical foundation of this research and discusses the related work.

The AgileQube Approach is presented in Chapter 3. Chapters 4, 5, and 6 presents,

respectively, the Catalogue of Agile Smells, the Agile Project Metamodel, and the

Agile Smell Schema. The computational infrastructure (AgileQube App) that sup-

ports the proposed approach is presented in Chapter 7. Chapter 8 discusses two case

studies (Journal Submission System and Terminal Operational System) that were

conducted to validate the proposed approach. Chapter 9 presents the final remarks

and concludes this thesis.

16



Chapter 2

Background

This chapter discusses some topics that compose the background of this

research.

2.1 Agile Development

In 2001, as a response to a community that demanded more flexible processes, a

group of 17 software development professionals met to discuss alternative software

development methodologies. The demand for such a innovative approach was mostly

justified by the lack of flexibility in traditional approaches such as the Waterfall

Model that was dominant at that time. HIGHSMITH 2000 [24] pointed that the

cost of change (that grows through the software’s development life cycle) at an ad-

vanced phase of the project was one of the main reasons for project failure at the end

of the 90’s. Having a clear vision of the flexible, lightweight and team-oriented soft-

ware development approach, the 17 practitioners proposed the Manifesto for Agile

Software Development (BECK et al. 2001 [53]) that summarized the fundamental

principles of the new approach:

We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

Complemented with the Twelve Principles of Agile Software, the manifesto

has influenced the software development community and inspired many agile

17



methodologies. But the manifesto was not a pioneer in proposing an agile approach

for software development. Actually the history of agile approaches goes way back

to 1957, when John von Neumann, Geral Weinberg, Bernie Dimsdale, and Herb

Jacobs were applying incremental development techniques for software that were

built in IBM and Motorola. Although not knowing how to classify the approach,

they were practicing, they realized clearly that it was different from the Waterfall

Model in many ways (LARMAN and BASILI 2003 [54]). The main contribution

of the manifesto was packing a set of existing values and principles and creating

a philosophy that has come to be a universal and efficient new way to manage

software projects.

How agile works

In traditional waterfall methods, the development approach follows a strict linear

order that typically involves the stages: requirement, design, implementation, ver-

ification, and maintenance. The business requirements and the project scope are

defined at the beginning of the project and the subsequent phases are planned to

accommodate these requirements and scope. At the end of the project, the soft-

ware is delivered to the customers and stakeholders. The agile methodologies, on

the other hand, take an iterative approach and software development are conducted

through a number of smaller cycles (iterations or sprints). Each cycle is a process

development instance in miniature: it has a backlog and a set of orchestrated tasks

organized in stages such as: requirement, design, coding, testing, and deployment.

At the end of each development cycle, a potentially shippable piece of software

is delivered. Thus, with every iteration new features are added to the product,

which results in the gradual project growth. With the features being validated

early in the development life cycle, the chances of delivering a potentially failed

product are lower.

Agile Frameworks

There is no formal agreement on the meaning of the concept of “agile”. However,

it is common sense to denote as “agile” those software development processes

or methods that are shaped around the values and principles proposed in the

Manifesto for Agile Development. These methods include, but are not limited

to: XP (BECK 1999 [55], BECK 2000 [56], CUNNINGHAM 1999 [57]), Scrum

(SCHWABER 1997 [58], SCHWABER and BEEDLE 2001 [59], ALLIANCE 2016

[21], BERTEIG 2015 [60]), Crystal Family (COCKBURN 2002 [23]), Feature

18



Driven Development (FDD) (PALMER and FELSING 2001 [61], LUCA 1999

[62]), Dynamic Systems Development Method (STAPLETON 1997 [63]), Adaptive

Software Development (HIGHSMITH 2000 [24]), and OpenUp (ABRAHAMSSON

et al. 2002 [64]). Extreme Programming (XP) and Scrum are the most popular of

these agile methodologies.

XP

In (BECK 1999 [55]), Beck introduced XP as “an approach that turns the conven-

tional software process sideways and rather than planning, analyzing, and designing

for the far-flung future, XP exploits the reduction in the cost of changing software to

do all of these activities a little at a time, throughout software development”. That

revolutionary approach Beck was presenting was organized around 12 interconnected

set of software development practices (aka XP practices):

1. 40-hour week

2. Coding Standard

3. Collective Ownership

4. Continuous Integrat.

5. Metaphor

6. Onsite Customer

7. Pair Programming

8. Planning Game

9. Refactoring

10. Simple Design

11. Small Releases

12. Testing

Scrum

First described by TAKEUCHI and NONAKA 1986 [65] as an adaptive, quick,

self-organizing product development method and later adapted by SCHWABER

and BEEDLE 2001 [59] to the context of software development, Scrum is the most

adopted agile framework. It is used exclusively by 58% of organizations while

another 27% of the companies combine it with other frameworks (VERSIONONE

2020 [8]). It differs from XP mainly by its nature. While XP is essentially organized

around its 12 practices, Scrum is more prescriptive (or process-like) and its structure

is based on a set of phases (pre-game, development, and post-game), roles (Scrum

Master, Product Owner, and the Scrum Team), artifacts (Product backlog, Sprint

backlog, and Sprint burndown chart) and activities (Daily Scrum, Sprint Planning,

Sprint Review, and Sprint Retrospective). An Scrum team should consist of up to

7 team members, in order to stay flexible and productive. A basic unit of work in

scrum - sprint - is a short development cycle (between 1 and 4 weeks long) that is

needed to produce a shippable product increment.

Agile Practices

19



Although there is no conventional set of “agile practices” (in fact, the Manifesto for

Agile Development focus more on values and principles rather than practices), some

studies tried to identified engineering practices and techniques usually associated

with the concepts of agility. ABRANTES and TRAVASSOS 2011 [66] conducted a

study to identify the most commonly used agile practices that revealed the following

set:

1. Coding Standards

2. Collective Code Ownership

3. Continuous Integration

4. Metaphor

5. Onsite Customer

6. Open workspace

7. Pair Programming

8. Planning Game

9. Product Backlog

10. Project Visibility

11. Refactoring

12. Simple Design

13. Small Releases

14. Stand-up meetings

15. Sustainable Pace

16. Test-Driven Development

17. Whole Team

A recent survey (VERSIONONE 2020 [8]) conducted in the software industry
listed, as the most employed agile techniques, the following items (ordered by per-
centage of use):

1. Daily Standup (85%)

2. Sprint/Iteration Retrospectives (81%)

3. Sprint/Iteration Planning (79%)

4. Sprint/Iteration Review (77%)

5. Short Sprint/Iteration (64%)

This survey also listed, as the most adopted engineering practices associated to

agility, the following items (ordered by percentage of use):

1. Unit Testing (67%)

2. Coding Standards (58%)

3. Continuous Integration (55%)

4. Refactoring (43%)

5. Continuous Delivery (41%)

6. Automated Acceptance Testing (36%)

20



7. Continuous Deployment (36%)

8. Pair Programming (31%)

9. Test-Driven Development (30%)

10. Collective Code Ownership (29%)

11. Sustainable Pace (23%)

12. Behavior-Driven Development (19%)

13. Emergent Design (13%)

2.2 Agility Assessment

Although many companies pursue agility on their software development pro-

cesses, the proper adoption of so-called agile practices is not straightforward and

some authors refer to it as “agile journey” or “agile transformation” (QUMER

and HENDERSON-SELLERS [10], FRASER et al. [67], GANDOMANI et al.

[68, 69], SAHOTA [70]). The 14th Annual State of Agile SurveyTM (VERSIONONE

2020 [8]) confirmed this by revealing that, although 95% of companies surveyed

claimed they are using agile practices, only 5% of the companies indicated they

achieved the high level of competency with agile practices. In such a challenging

scenario, it is important for organizations to identify their gaps in agile practices,

otherwise, they may not receive the benefits of adopting an agility approach (AM-

BLER and LINES 2012 [71]).

Agility Assessment (AA) is an important tool to assist organizations in under-

standing how they are applying agile practices and their gaps towards an effective

agile development (ADALI et al. 2016 [26]). AA encompasses assessment techniques,

models and tools that focus on indicating problems in adopting agile practices at a

project-level, organization-level or individual-level. There are many approaches for

AA such as agility assessment models, agility assessment checklists, agility assess-

ment surveys, and agility assessment tools (SOUNDARARAJAN and ARTHUR

2011 [27]) and they can be organized in the following categories: (a) text-based ;

(b) game-based ; (c) spreadsheet-based ; (d) graph-based ; and (e) web-based (ADALI

et al. 2016 [36]).

Text-based approaches include guidelines, surveys, or checklist available as plain

documents. They are mainly executed without the support of a specialized com-

putational infrastructure. Although it is possible to use a generic software such

as a text editor or a spreadsheet to support some phases of the evaluation pro-

cess. Agile Journey Index (KREBS 2011 [29]), A Corporate Agile 10-point Checklist

(YATZECK 2012 [72]), and Comparativity Agility (WILLIAMS et al. 2010 [73]) are

examples of text-based agility assessment approaches.

21



Game-based approaches are similar to text-based solutions in many ways. They

are supported by plain documents (such as game instruction or card deck) and

there is none or few specialized tools. But they differ from text-based approaches

by proposing assessment strategies based on games. Retropoly (SFIRLOGEA and

GEORGESCU 2017 [74]), The Agile Self-assessment Game (LINDERS 2019 [75]),

and Team Barometer (JANLÉN 2014 [76]) are some examples of game-based ap-

proaches.

Spreadsheet-based approaches are supported by pre-configured spreadsheets

where someone manually enters data on input cells and the results of the agility

assessment are calculated by specific formulae and shown in output cells. Input cells

can be set up with predefined options and outputs cells can be color-coded to enhance

user-friendliness. As examples of spreadsheet-based approaches, we can mention Ag-

ile Health Dashboard (LAGESTEE 2012 [30]), Agility Questionnaire (BRITSCH

2017 [77]), and Team and Technical Agility Self-Assessment.

Graph-based approaches are similar to Spreadsheet-based tools. They are typi-

cally supported by pre-configured spreadsheets where someone inputs data on spe-

cific cells. But they differ from spreadsheet-based solutions by displaying the as-

sessment results using graphs. Depth of Kanban (ACHOUIANTZ 2013 [78]), and

Lean/Agile Depth Assessment Checklist A3 (YERET 2013 [79]) are examples of

graph-based tools.

Web-based approaches are those supported by specialized web-based applications

(aka web apps). Solutions on this category include online surveys and questionnaires

where someone enters data on input fields and the system calculates the agility

assessment results. As examples of web-based approaches, we can mention Agile

Maturity Assessment (TOUSIGNANT 2019 [33]), Measure.Team (ALBRECHT and

EDDINGS 2020 [80]), and Scrum Checklist (KNIBERG 2012 [81]).

In the next section, we present a comprehensive analysis of the main agility

assessment approaches and tools related to this research.

2.3 Agility Assessment Approaches and Tools

This section focuses on presenting studies that proposed approaches or tools that

aim at supporting agility assessment and discuss how they differ from the approach

proposed in this research.

After a careful review of relevant studies in journals and proceeding, as well as

by using the Google search engine, we identified 60 approaches and tools related to

22



this research. The selected approaches and tools are alphabetically listed in Table

2.1. Appendix A presents a description of these approaches.

Table 2.1: Approaches and tools related to this research

# Name Type

1 42 point test: How Agile are You [82] text-based

2 A Better Team [83] text-based

3 A Corporate Agile 10-point Checklist [72] text-based

4 Agile Adoption Interview [84] web-based

5 Agile Alert [85] web-based

6 Agile Assessment [86] spreadsheet

7 Agile Enterprise Survey [87] web-based

8 Agile Excellerate [88] web-based

9 Agile Health Dashboard [30] spreadsheet

10 Agile Journey Index (AJI) [29] text-based

11 Agile Maturity Assessment [33] web-based

12 Agile Skills Self-Assessment [89] web-based

13 Agile Team Evaluation [90] text-based

14 Agility Maturity Self Assessment [91] text-based

15 Agility Maturity Self Assessment Survey [92] text-based

16 Agility Questionnaire [77] spreadsheet

17 Back-of-a-Napkin Agile Assessment [93] text-based

18 Balbes’ Agility Assessment [94] text-based

19 Borland Agile Assessment [95] text-based

20 Business Agility Manifesto [96] text-based

21 Cargo Cult Agile Checklist [97] text-based

22 Comparative AgilityTM(CA) [73] text-based

23 Comprehensive Agility Measurement Tool (CAMT) [98] text-based

24 Depth of Kanban [78] graph-based

25 DIB Guide [99] text-based

26 Enterprise and Team Level Agility Maturity Matrix [40] spreadsheet

27 Enterprise Business Agility Maturity Survey [100] text-based

28 Five Key Numbers to Assess Agile Engineering Practices [101] text-based

Continued on next page

23



Continuation of Table 2.1

# Name Type

29 GAO’s Agile Assessment Guide [102] text-based

30 How Agile are you? A 50 Point Test [103] web-based

31 IBM DevOps Practices Self-Assessment [104] text-based

32 Joe’s Unofficial Scrum Checklist [105] text-based

33 Karlskrona Test [106] text-based

34 Kanban Maturity Assessment [107] web-based

35 Lean Agile Intelligence [37] web-based

36 Lean/Agile Depth Assessment Checklist A3 [79] graph-based

37 Lebow’s Agile Assessment [108] text-based

38 Measure.Team [80] web-based

39 Nokia Test [109] text-based

40 Objectives Principles Strategies (OPS) [110] text-based

41 Open Assessments [111] web-based

42 Organizational Agility Self-Assessment [112] spreadsheet

43 People 10 Team Assessment Approach [113] text-based

44 Perceptive Agile Measurement (PAM) [114] text-based

45 Quick Self-Assessment of Your Organization’s Agility [115] text-based

46 Retropoly [74] game-based

47 Scrum Assessment Series [116] text-based

48 Scrum Checklist [81] web-based

49 ScrumMaster Checklist [117] text-based

50 Self Assessment Tool for Transitioning to Agile [118] text-based

51 Squad Health Check Model [119] game-based

52 Team and Technical Agility Self-Assessment [39] spreadsheet

53 Team Barometer [76] game-based

54 TeamMetrics [120] web-based

55 Test Maturity Card Game [121] game-based

56 The Agile Self-Assessment Game [75] game-based

57 The Art of Agile Development [122] text-based

58 The Joel Test: 12 Steps to Better Code [123] text-based

59 Visual Management Self-Assessment [124] web-based

Continued on next page

24



Continuation of Table 2.1

# Name Type

60 Yodiz’s Team Agility Self Assessment [125] spreadsheet

End of Table 2.1

One of the main limitations of the presented approaches is related to their depen-

dency on manual execution. Indeed, all analyzed agility assessment approaches are

executed almost completely manually. For example, the text-based and game-based

approaches are carried out entirely manually. The execution of these approaches may

involve the following manual tasks: (a) assessment preparation; (b) data collection;

(c) data analysis; and (d) interpretation of data to decide whether the evaluation

criteria were met. For spreadsheet-based, graph-based, and web-based approaches,

the situation is not so different and someone willing to use these approaches still

has to spend a substantial effort executing manual tasks such as: (a) assessment

preparation; (b) data collection; and (c) data analysis. The problem with agility

assessment approaches that rely heavily on manual execution is that they tend to be

more error-prone, costly, and time-consuming. Besides being difficult to scale and

to provide real-time feedback.

The lack of opportunities for automation is another limitation of these ap-

proaches. In fact, the approaches were not designed with requirements for automa-

tion in mind. For approaches based on questionnaires, one factor that contributes to

this limitation is the nature of some questions. For example, how to automate the

data collection and interpretation for questions such as “Is the team empowered to

make decisions? ” or “Does the team have a clear vision? ”? Other approaches pro-

posed assessment criteria that are equally hard to be automated and hence require

someone to manually assess them.

Another limitation presents in almost all the presented approaches came from

the fact the authors failed to make clear the relation between the assessment criteria

and the agile principles, values, and practices. For example, the approaches based

on questionnaires do not explain how the questions were elaborated and how they

relate to agile principles, values, and practices. The spreadsheet-based and web-

based approaches do not present any technical documentation about the macros

and algorithms used to calculate the assessment results.

A limitation observed in the spreadsheet-based and web-based approaches is the

lack of an extension mechanism to enable the tailoring of the assessment criteria (i.e.,

the addition of new criteria, and the configuration or removal of existing criteria).

25



Regarding the efficiency and efficacy of the analyzed agility assessment ap-

proaches, as most of the proposals are not academically created, their empirical

validity is not confirmed.

2.4 Agility Maturity Models

In this section we present studies that proposed agility maturity models and discuss

how they relate to this research.

NAWROCKI et al. 2001 [126] proposed the XPMM, a 4-level maturity model

for eXtreme Programming (XP) based on CMMI v1.02 (TEAM 2000 [127]). The

authors mapped XP practices to CMM Key Practice Areas (KPAs) and defined the

following levels: Level 1. Not compliant at all ; Level 2. Initial ; Level 3. Advanced ;

and Level 4. Mature. Each level has a specific set of obligatory practices and to be

classified at a given level, an organization has to follow all the practices assigned

to that level and all the practices of the lower levels. Using a similar approach,

LUI and CHAN 2005 [128] proposed a 4-stage road map for implementing eXtreme

Programming in a software team. Each maturity stage has a set of XP practices

defined by their interrelations.

The Agile Maturity Map (PACKLICK 2007 [25]) is an agile maturity model

organized in 5 levels: Level 1. Awareness, Level 2. Transformation, Level 3. Break-

through, Level 4. Optimizing, and Level 5. Mentoring. Different from other agile

maturity models that organize their levels in terms of agile practices, the levels in

the Agile Maturity Map are organized in terms of goals. For example, the level

Awareness is achieved when: “The team understands the goals, and understands

the value of pursuing the goals and their acceptance criteria. Awareness of existing

‘better’ practices around the goals typically exists as well. The team may possibly

implement basic activities to address the goal ”.

PATEL and RAMACHANDRAN 2009 [129] proposed the Agile Maturity Model

that organizes the agility maturity in 5 levels: Level 1. Initial, Level 2. Explored,

Level 3. Defined, Level 4. Improved, and Level 5. Sustained. Each level is composed

of a specific set of key process areas (KPA) (e.g., project planning, on-site customer

availability) and questionnaires that enable the assessment of the current state of an

organization or project and the identification of the KPAs that need improvement.

OZCAN-TOP and DEMIRÖRS 2015 [22] developed the AgilityMod, a compre-

hensive software agility assessment reference model based on the structure of the

standard ISO/IEC 15504 (ISO/IEC 15504 [130]). The AgilityMod has 2 dimen-

26



sions: aspect dimension and agility dimension. The aspect dimension defines 4 as-

pects (Exploration, Construction, Transition, and Management) which correspond

to maturity stages. The agility dimension defines 4 agility levels (Level 0. Not Im-

plemented, Level 1. Ad-Hoc, Level 2. Lean, and Level 3. Effective) which represent

the agility capability of the aspects. Each aspect has a set of agile practices and

might be at one of the 4 levels. When an aspect’s agility progresses, its conformance

to agile values and principles increases.

SAFe Maturity Model (SAFe MM) (TURETKEN et al. 2017 [131]) is a ma-

turity model that aids organizations in defining a roadmap for adopting SAFe

(LEFFINGWELL 2016 [132]). The maturity model is organized in 5 levels, 5 prin-

ciples and 62 SAFe practices that together can also be used to assess the level of

SAFe adoption.

Other agility maturity models include PETTIT 2006 [133] and AMBLER 2009

[134].

In general, these models are elaborated using the following structure: they de-

fine their agility maturity levels and provide the basic characteristics of each level

which include an assessment strategy (i.e., a mechanism to verify if an organization

achieved a given level). In a model whose levels are oriented by agile practices, the

assessment approach consists of verifying whether the organization is performing

the agile practices assigned to the given level. Other models prescribe their specific

assessment approaches that could involve a self-assessment survey or a questionnaire

that is filled by the Project Manager.

These models share some of the limitations present in the approaches discussed

in the previous section including their dependency on manual execution and the lack

of opportunities for automation. A factor that contributes to these limitations is

that, in all analyzed models, the assessment criteria are hard to be automated and

hence require someone to manually verify them.

2.5 Agile Adoption Framework

In this section we present studies that proposed approaches to assist organization

introducing agile practices into their development processes. These studies are re-

lated to this research since they define assessment strategies to verify whether the

organization willing to adoption agile practices are applying these practices properly.

In (QUMER and HENDERSON-SELLERS 2008 [10]), the authors presented two

contributions: Agile Software Solution Framework (ASSF) and Agile Adoption and

27



Improvement Model (AAIM). While ASSF is a framework to aid managers assessing

the degree of agility they require and how to identify appropriate ways to intro-

duce this agility into their organization, AAIM aims to indicate the current degree

of agility of an organization. AAIM categorizes agility in 6 agile levels embedded

in 3 agile blocks as follows: (1) Block Prompt : AAIML 1 Agile infancy ; (2) Block

Crux :AAIML 2 Agile Initial, AAIML 3 Agile Realization, and AAIML 4 Agile Value;

and (3) Block Apex : AAIML 5 Agile Smart, and AAIML 6 Agile Progress. The de-

gree of agility of an organization is measured quantitatively by using the 4-DAT tool

(QUMER and HENDERSON-SELLERS 2006 [135]) (an agility measurement mod-

elling approach). In 4-DAT, agility is measured in terms of the following features:

Flexibility (FY ), Speed (SD), Leanness (LS ), Learning (LG) and Responsiveness

(RS ). To define the value of these features, that may be 0 or 1, the project manager

has to answer a questionnaire composed of a yes/no question per feature. For ex-

ample, the question that corresponds to the feature Flexibility is “Does the method

accommodate expected or unexpected changes? ”. The limitations of this approach

include: (a) the lack of objective criteria to assess agility and, hence, the result of

this approach may be threatened by the bias of the person that is responding the

questions; (b) the difficulty of implementing an automated platform to support the

agility assessment.

SIDKY et al. 2007 [9] presented an agile adoption framework composed of two

components: (a) an agile measurement tool, named Sidky Agile Measurement In-

dex (SAMI) and (b) a four-stage process, that together guide and assist the agile

adoption efforts of organizations. SAMI encompasses five agile levels that are used

to identify the agile potential of projects and organizations. The four-stage process,

on the other hand, helps determine (a) whether or not organizations are ready for

agile adoption, and (b) guided by their potential, what set of agile practices can and

should be introduced.

SURESHCHANDRA and SHRINIVASAVADHANI 2008 [136] presented an ag-

ile adoption framework for distributed projects composed of 4 stages: Evaluation,

Inception, Transition, and Steady State. To support the first stage, Evaluation, the

authors developed a tool similar to SAMI that aims at evaluating the degree of

agility and formal ceremonies needed in a given project. The tool assesses factors

such as (a) the benefits achievable by following agile, (b) the need for formal commu-

nications, (c) the need for extensive training, and (d) the extent of documentation

to determine the extent of agility realizable for a project. These studies differ from

ours because the presented tools aim to identify the agile potential (i.e, the degree

28



to which a project or an organization can adopt agile practices) instead of assessing

the current agility capacity of a project or an organization.

Other approaches focused on proposing approaches to support the adoption of

agile development include ELSSAMADISY 2008 [11], ROHUNEN et al. 2010 [12],

BARLOW et al. 2011 [14], HAJJDIAB and TALEB 2011 [13], ESFAHANI 2012

[137], GANDOMANI and NAFCHI 2015 [15], SAHOTA 2012 [70], GLOVER 2012

[138].

As observed in the studies presented in the previous sections, the analyzed frame-

works for agile adoption also have as main limitations the dependence on manual

execution and the lack of automation opportunities.

2.6 Conclusion

In this section, we presented some topics that compose the background of this re-

search which include a brief discussion on agile development and agility assessment.

We also presented a comprehensive analysis of the main approaches and tools focused

on agility assessment. We analyzed 60 approaches and tools including text-based,

graph-based, game-based, spreadsheet-based, and web-based approaches and con-

firmed the problems presented in Section 1.2 that are Unclear assessment criteria

selection, Unclear assessment criteria representation, Lack of support for adding

new assessment criterion, Manual data collection and input , Lack of real-time as-

sessment feedback , and Limited Scalability . In the next chapter, we present the

AgileQube Approach, an approach focused on agility assessment that address these

limitations.

29



Chapter 3

AgileQube Approach Overview

This chapter presents an overview of the AgileQube Approach proposed

in this study that aims to automatically (or semi-automatically) detect

agile smells in agile software projects.

In Sections 1.2 and 1.3, we presented, respectively, the main problems of the ex-

isting agility assessment approaches and how the research proposal mitigates these

problems. In a nutshell, we are adapting the code smell metaphor to the context

of agility assessment and introducing the agile smell term to denote a situation

that may be jeopardizing the adoption of an agile practice. The main goal of the

research was summarized as: propose an agility assessment approach that

mitigates the problems P1 to P6 (described in Section 1.2), while pro-

viding a solid foundation for defining an infrastructure to support Agility

Assessment. This chapter presents an overview of the elements that compose the

AgileQube Approach and how they are combined to fulfill the research goal.

The proposed approach is based on the method presented by MOHA et al. 2009

[139], DECOR. The DECOR method defines the phases for automatic detection

of code smells. It is composed of four phases: Description Analysis, Specification,

Processing, Detection, and Validation. We adapted this method to the context of

agility assessment and designed an approach that we named AgileQube Approach.

The annotated BPMN model presented in Figure 3.1 summarizes the proposed ap-

proach.

We organize the description of the AgileQube Approach overview in four sections:

Phases, Artifacts, Roles, and Computational Supporting Infrastructure.

30



Figure 3.1: AgileQube Approach overview

3.1 Phases

The AgileQube Approach has five phases: Identification, Specification, Configuration,

Detection, and Validation.

1. Identification: the first phase of the method aims at identifying the agile

smells that will be used in the next phases. Like DECOR, that advocates

an explicit definition of the code smells, the AgileQube Approach also needs

an explicit definition of the agile smells that will be specified, detected and

validated in the following phases. This phase is specially important because

the agile smells, in spite of being related to agile practices that are part of the

routine of developers who work with agile methods, are usually not explicitly

described. Thus, the interpretation of agile practices as compliance objectives

and the subsequent identification as agile smells is necessary to the proposed

approach. The Identification phase is performed by a Specialist in Agile De-

velopment. In this study, we performed this phase by identifying a set of agile

smells through the following method: first, we conducted a literature review

that investigated the state-of-the-art in software engineering and selected an

initial set of agile smells. Second, the initial set of agile smells was the subject

31



of a survey with industry practitioners to confirm the agile smells. Third, we

ranked the agile smells according to their relevance revealed in the survey and

organized the agile smells in a structured catalogue. A detailed description of

the literature review and the survey as well as the catalogue of the agile smells

is presented in Chapter 4.

2. Specification: the second phase of the approach consists of translating the

descriptions of the agile smells selected in the first phase into specifications.

This phase is performed by a Programmer and is oriented by two elements:

(a) a model to represent the data from an assessed agile software project; and

(b) a mechanism to systematically specify an agile smell. Hence, to support

the Specification phase, this study proposes a metamodel to represent agile

software projects, that we named Agile Project Metamodel , and a schema to

represent agile smells, that we named Agile Smell Schema. Chapters 5 and 6

present, respectively, the Agile Project Metamodel and the Agile Smell Schema.

3. Configuration: this phase aims at setting up the agile smell specifications

according to the context of the project and organization. For example, the

preferable duration of iterations (that may vary among organizations and even

between the projects from the same company) is defined in this phase through

parameters provided by the Agile Smell Schema. This phase is also performed

by a Programmer.

4. Detection: the fourth phase of the approach is responsible for detecting the

agile smells in an agile software project. This phase takes as input (a) data

from a given agile software project (represented in the Agile Project Meta-

model) and (b) a set of agile smell specifications (represented in the Agile

Smell Schema). At the end of this phase, a set of candidate (or potential)

agile smells is identified.

5. Validation: in the fifth and last phase, the agile smells identified in the

previous phase can be individually assessed by a Team Member that may

confirm or discard them.

The first step, Identification, was already executed as part of this research (see

Chapter 4) and as a result, organizations willing to apply the AgileQube Approach

can skip this step and use the Catalogue of Agile Smells as input for the next steps.

It is important to note that this step may be executed in different occasions as, for

32



example, during a literature review to update the catalogue of agile smells. The

steps Specification and Configuration should be executed only during the approach

setup and when specifying a new agile smell. The last two steps, Detection and

Validation, are always executed during an agility assessment.

3.2 Artifacts

The approach prescribes 6 types of artifacts:

1. Catalogue of Agile Smells : the set of agile smells that is produced in the

Identification phase and used as input for the Specification phase.

2. Agile Smell Specifications : the agile smell specifications represented in the

Agile Smell Schema that is produced in the Specification phase and used as

input for the Configuration phase.

3. Agile Smell Specifications (configured): the agile smell specifications con-

figured to the context of the project and organization. This artifact is the out-

put of the Configuration phase and is used as input for the Detection phase.

4. Agile Project Data : data from the assessed agile software project repre-

sented in the Agile Project Metamodel . This artifact is collected by the ETL

Module and used as input for the Detection phase.

5. Agile Smells Report (preliminary): a preliminary version of the Agile

Smells Report indicating the agile smell detected in the assessed agile software

project. This report is the output of the Detection phase and is used as input

for the Validation phase.

6. Agile Smells Report : a confirmed version of the report that is produced in

the Validation phase.

3.3 Roles

The AgileQube Approach has three roles: Specialist in Agile Methods, Programmer,

and Team Member.

1. Specialist in Agile Methods: this role acts in the Identification phase by

selecting the agile smells that will be used in following phases of the approach.

33



Ideally, this role should be performed by someone who masters agile develop-

ment.

2. Programmer: this role is responsible for coding the agile smells using the

Agile Smell Schema, i.e, translating the description of agile smell into specifi-

cations in the Specification phase. The Programmer also configures the agile

smells specifications to the context of the project and organization in the Con-

figuration phase.

3. Team Member: this role acts in the Validation phase by confirming or re-

jecting the agile smells identified by the Detection Module. The validation

of the agile smells should be performed by someone involved in the project

(project manager, scrum master, developer, etc).

3.4 Computational Supporting Infrastructure

The computational supporting infrastructure, that we named AgileQube App, was

designed to aid the execution of the Specification, Configuration, Detection and Val-

idation phases and is composed of the Specification Module, ETL Module, Detection

Engine, and Validation Module components.

1. Specification Module : this module aids the Programmer performing the

Specification and Configuration phases. It provides the interfaces that allow

specifying and configuring an agile smell using the Agile Smell Schema.

2. ETL Module : the ETL Module (that stands for extracting, transforming and

loading) supports the Detection phase by loading the data related to the agile

project from a project management platform and transforming the loaded data

into the model supported by the Detection Engine (Agile Project Metamodel).

The ETL Module currently is able to load data from the ZenHub platform and

transform data to the Agile Project Metamodel format.

3. Detection Engine : this component plays an important role in the approach

and is responsible for detecting the agile smells in an agile project. To achieve

this goal, it receives two inputs: (a) data from an agile project (represented

in the Agile Project Metamodel) and (b) a set of agile smell specifications

(represented in the Agile Smell Schema).

34



4. Validation Module : this module aids a Team Member performing the Vali-

dation phases. It provides the interfaces to show details of the identified agile

smells and allow the Team Member to confirm or reject the agile smells.

The AgileQube App and its components are presented in Chapter 7.

3.5 Conclusion

This chapter was intended to provide an overview of the AgileQube Approach, an ap-

proach to automatically (or semi-automatically) detect agile smells in agile software

projects. This overview was organized in four sections: Phases, Artifacts, Roles, and

Supporting Infrastructure.

The remainder of this thesis describes in more details the main components that

compose the approach. Chapter 4 describes how the Identification phase was con-

ducted and presents the Catalogue of Agile Smells . Chapter 5 presents the Agile

Project Metamodel that is used in the Specification, Configuration and Detection

phases. The schema to represent the agile smells, the Agile Smell Schema, is pre-

sented in Chapter 6. The AgileQube App is presented in Chapter 7.

35



Chapter 4

Catalogue of Agile Smells

This chapter presents the Catalogue of Agile Smells and is organized

in the following sections: Introduction, Research Methodology, Liter-

ature Review, Survey, Consolidation Phase, Threats to validity, and

Conclusion.

4.1 Introduction

The Catalogue of Agile Smells is one of the contributions of this study and is directly

answering the goal G1 (Define a catalogue of agile smells).

The catalogue was elaborated in the Identification phase of the AgileQube Ap-

proach and organizes a set of agile smells extracted from the specialized literature

and confirmed by the industry. The catalogue gives a clear definition of the agile

smells indicating, for each agile smell, a name, a description, which agile practices

motivated the agile smell, and at least one identification strategy that guides the

specification of the agile smell. The Catalogue of Agile Smells is an important

contribution because, as we have observed (initially through a preliminary Ad hoc

literature review and later confirmed through a literature review) there are few stud-

ies that explicitly describe agile smells or agility assessment criteria. Despite the

substantial amount of content about agile development in both academic forums

and industry, there are few contributions that focus on providing elements to sup-

port agility assessment. The Manifesto for Agile Development (BECK et al. 2001

[53]), for example, proposed a set of values and principles that have inspired many

agile methods. However, the manifesto does not indicate how to verify that such

values and principles are being applied properly. It is challenging and subjective to

assess whether an organization or project is properly applying values such as the re-

36



quirement to focus on “individuals and interactions over processes and tools”. Agile

methods such as Scrum (ALLIANCE 2016 [21]), XP (CUNNINGHAM 1999 [57]),

Crystal Family Methods (COCKBURN 2002 [23]), and Open Up (FOUNDATION

2012 [140]) or other studies that consolidated the body of knowledge around agile

development do not provide objective requirements for assessing the adoption of

agile practices. The so-called agile values, principles, practices and characteristics

are typically described: (a) in a generic way; (b) to be used as reference for projects

or organizations that aim adopting agile development, or (c) to inspire discussions

among the team in retrospective meetings.

To determine the agile smells, this study tries to answer two research questions:

RQ1: What are the practices that impair the proper adoption of agile develop-

ment and can be used to support the agility assessment of organizations,

projects, iterations and agile teams?

RQ2: How can we identify the occurrence of such practices?

The aim of RQ1 is to identify a set of items, that we are naming agile smells,

which are practices that may jeopardize the adoption of agile development and that

can also be used to support organizations and agile teams to assess how they are

applying agile practices. To answer RQ1, we are proposing a catalogue of agile

smells that were identified through a literature review and confirmed by a survey.

The aim of RQ2 is to propose strategies to identify the occurrences of agile smells.

An identification strategy is important to make the agile smell specification less

subjective and less compromised by the Programmer bias in the Specification phase.

Hence, the identification strategies guide the coding of the agile smell specifications

that will be ultimately used by the Detection Engine to identify the agile smells. We

sought to answer RQ2 by proposing at least one identification strategy for each agile

smell. By answering these two questions, we provide a baseline to support agility

assessment at organizational and project levels.

4.2 Research Methodology

This section presents the research methodology followed to identify and confirm a

set of agile practices that may impair the adoption of agile methods (AKA agile

37



smells). The methodology of this research was based on the method proposed by

(SPÍNOLA et al. 2008 [141]) and consists of four steps divided into three phases as

depicted in Figure 4.1:

Figure 4.1: The research methodology organized in three phases and four steps.

Phase 1 - Elicitation: The first phase, elicitation phase, was divided in two steps:

(1) An informal literature review that was conducted to identify basic concepts that

supported the definition of an accurate and comprehensive literature review protocol;

and (2) A literature review that was planned and executed to identify a set of agile

smells. The literature review design details, the mechanisms and collected data and

the set of identified agile smells are described in Section 4.3.

Phase 2 - Confirmation: In the confirmation phase, we conducted a survey with

industry practitioners to confirm the agile smells identified in the elicitation phase

and reveal their relevance. The survey is described in Section 4.4

Phase 3 - Consolidation: In this phase, the most relevant agile smells were orga-

nized in a structured format named the Catalogue of Agile Smells. This catalogue

is presented in Section 4.5.

4.3 Literature Review

In the elicitation phase, a literature review (LR) was conducted to explore the

existing body of knowledge and identify a set of agile smells (ie. practices that may

impair the proper adoption of agile development).

The methodology of the LR was based on the method proposed by KITCHEN-

HAM and CHARTERS 2007 [142] and consists of three main phases: planning,

execution and reporting.

38



4.3.1 Literature Review Planning

Aim, Research Questions and Scope

The aim of the literature review is to identify elements that allow us to answer

the RQ1 and RQ2 questions. In other words, the goal of the LR is to discover (i)

a set of practices that may impair the adoption of agile development (AKA agile

smells) and (ii) strategies on how to check for the occurrence of these practices in

real projects. Since the literature does not use the term “agile smell ”, we extracted

the agile smells from agile practices, rules, constraints or restrictions. The research

questions for this LR were derived from the RQ1 and RQ2 (presented in Section

4.1) and can be summarized as:

LR-RQ1: What are the practices that impair the proper adoption of agile

development?

LR-RQ2: How can we identify the occurrence of these practices?

The scope of this review was defined based on the population, intervention,

comparison and outcome (PICO (PAI et al. 2004 [143])) approach. The Population

denotes software development projects. The Intervention is the collection of agile

software development processes. There is no comparison. The outcome is a set of

agile rules, constraints, practices and techniques. Three papers obtained from a

previous Ad hoc literature review were used as control:

1. MILLER, G. G. The characteristics of agile software processes. In: Proceedings

of the 39th International Conference and Exhibition on Technology of Object-

Oriented Languages and Systems (TOOLS39), TOOLS ’01, Washington, DC,

USA, 2001. IEEE Computer Society [144];

2. LINDVALL, M., BASILI, V. R., BOEHM, B. W., et al. Empirical findings

in agile methods. In: Proceedings of the Second XP Universe and First Agile

Universe Conference on Extreme Programming and Agile Methods - XP/Agile

Universe 2002, London, UK, UK, 2002. Springer-Verlag [145];

3. ABRANTES, J. F., TRAVASSOS, G. H. Common agile practices in software

processes. In: 2011 International Symposium on Empirical Software Engineer-

ing and Measurement, pp. 355–358, Sept 2011 [66]

39



.

The keywords for Population are “software process”, “software projects”, “soft-

ware systems”, “software development”, and “software engineering”. The keywords

for Intervention are “agile methods”, “agile processes”, “agile approaches”, “agile

methodologies”, and “agile development”. The keywords for Outcome are “rules”,

“constraints”, “restrictions”, “practices”, “technics/techniques”, and “classification”.

The sources are collected from the following digital databases, including conferences,

journals and technical reports indexed by ACM Digital Library, IEEE Xplore, Sco-

pus, and Web of Science. The search string taken as the basis for all search engines,

structured according to (PAI et al. 2004 [143]), is presented in Listing 4.1:

1 (

2 ’software process’ OR ’software project’ OR

3 ’software systems’ OR ’software development’ OR

4 ’software engineering’

5 )

6 AND

7 (

8 ’agile methods’ OR ’agile processes’ OR

9 ’agile approaches’ OR ’agile methodologies’ OR

10 ’agile development’

11 )

12 AND

13 (

14 ’rules’ OR ’constraints’ OR ’restrictions’ OR

15 ’practices’ OR ’technic’ OR ’techniques’ OR

16 ’classification’

17 )

Listing 4.1: Agile smells literature review search string base

The set of formal literature studies includes all articles returned by the protocol

that meets at least one of the following inclusion criteria (IC): (IC1) Documents

must address one or more agile methods; (IC2) Documents must discuss practices,

characteristics, rules or constraints related to an agile method.

Publications that satisfy at least one of the following exclusion criteria (EC)

were omitted: (EC1) Documents not written in English; (EC2) Documents whose

full text is not available; (EC3) Documents clearly dealing with topics irrelevant to

the purpose of this review; (EC4) Documents merely reporting the use of individ-

ual software processes in development projects; (EC5) If the same study has been

published more than once, the most relevant version, such as the one explaining the

study in greatest detail will be used and the others will be excluded.

40



Data Extraction Criteria

To identify and extract the agile smells from the selected studies, we defined two

data extraction criteria (DEC): (DEC1) an agile smell is a practice that may impair

the adoption of agile methods; and (DEC2) the occurrence of an agile smell should

be objectively verified. The DEC1 criterion defines an agile smell as a negative

practice that should be avoided. The DEC2 criterion was introduced to reduce the

risk of identifying agile smells that are vague or hard to be verified through objective

strategies. Note that the gap this research is trying to fulfill is the lack of objective

criteria to perform an agility assessment. Since the values and principles proposed

by the Manifesto for Agile Development and the methodologies derived from the

manifesto are described in a vague way (TSOURVELOUDIS and VALAVANIS 2002

[146], GILL and HENDERSON-SELLERS 2006 [147]), identifying agile smells that

are difficult to be objectively verified would not differentiate them from the body of

knowledge already consolidated in this area.

The following information was extracted from each paper selected after running

the data extraction process: document title, author(s), source, year of publication,

agile method, agile smell name and agile smell description. The results were tabu-

lated. Analysis was carried out to identify duplication.

4.3.2 Literature Review Execution

After the planning phase, seven steps were applied in the execution phase to select

the primary studies:

• Step 1: Initial Search. We applied the search string to the selected digital

databases. A broad number of studies was retrieved in this phase: ACM

Digital Library (438), IEEE Xplore (564), Scopus (2233), and Web of Science

(1592).

• Step 2: Combination. Since the digital databases index many of the same pub-

lications (LI et al. 2010 [148]), we combined the results and the total number

of studies after this step was 2376. All the control studies were retrieved.

• Step 3: Filter by Title. This step aimed at applying the exclusion criteria

EC1, EC2, EC3 and EC4 by reading the title of the studies. After this step,

the number of papers was reduced to 261.

• Step 4: Filter by Abstract. This step aimed at applying the exclusion criteria

41



EC3 and EC4 by reading the abstract of the studies. At the end of this step,

127 studies remained.

• Step 5: Filter by full text. It consisted of filtering the selected studies by

reading their full text and applying the exclusion criteria EC3 and EC4. At

the end of this step, 42 studies remained.

• Step 6: Removal of repeated studies. We applied the exclusion criterion EC5

and removed two studies. After this step, the number of papers selected for

full consideration was reduced to 40.

• Step 7: Addition by Heuristic. We inserted 15 relevant studies from other

sources, including grey literature sources, totaling 55 studies. These studies

were added manually, based on our background knowledge. Appendix C shows

the final list of studies considered in this literature review.

Figure 4.2 shows the process and the results obtained in each step. The selected

documents were fully read and the data extraction criteria applied to identify the

agile smells.

Figure 4.2: The process of primary study selection

4.3.3 Literature Review Reporting

During the LR, we identified many agile values, practices and characteristics. How-

ever, none of the studies investigated agile methods from the perspective of this

study, namely, trying to identify a set of agile practices that may impair the adop-

tion of agile methods. The LR confirmed that most of the body of knowledge around

42



agile development focused on adoption of agile development rather than agility as-

sessment. The studies neglected to describe explicitly how to verify whether the val-

ues, practices and characteristics of agile development have been properly adopted.

After reading the selected papers, we extracted 20 agile smells using the two

data extraction criteria (DEC1 and DEC2) established in the research protocol. The

identified agile smells answer research question LR-RQ1 and are presented below in

alphabetical order:

1. Absence of Frequent Deliveries : The practice of delivering products con-

tinuously and frequently is very important to agile methods and that is almost

a mantra among agile software developers. The Absence of Frequent Deliveries

smell is detected when the development team does not deliver a new version

of the software frequently. The occurrence of this smell may indicate that this

practice has been jeopardized. References: [58], [63], [57], [55], [56], [62], [24],

[61], [149], [64], [150], [59], [23], [151], [152], [66], [153], [154], [155], [156], [60],

[21], [157], [158].

2. Absence of Test-driven Development : Test Driven Development (TDD)

is an agile software development technique that is based on the following short

cycle of repetitions: First, the developer writes a test case that defines the

desired behavior for a new functionality. Then, the code is written that can

be validated by the test case. The Absence of Test-driven Development smell

is detected when the development team does not apply the technique TDD

(Test Driven Development) during the development of the software. The pres-

ence of this smell may indicate the team is not applying the TDD technique.

References: [63], [57], [55], [56], [149], [150], [23], [152], [66], [159], [153], [4],

[160], [154], [161], [162], [163], [5], [157], [164], [165].

3. Absence of Timeboxed Iteration : The Timeboxed Iteration practice de-

fines that all iterations should have a fixed time duration. Thus, an iteration

should not be extended or shortened to fit planned or unplanned features. The

Absence of Timeboxed Iteration smell is detected when an iteration is shorter

or longer than the predefined duration. The presence of this smell may indicate

the timeboxed iteration practice has not been applied properly. References:

[58], [24], [144], [59], [23], [151], [159], [153], [4], [154], [155], [60], [21], [158].

4. Absence of Timeboxed Meeting : This smell derives from an agile practice

that states the meetings prescribed by the agile method (iteration planning,

43



review, retrospective, etc) should have a predefined duration and the duration

should preferably be the same during the entire software project. The Absence

of Timeboxed Meeting smell is detected when a given meeting (prescribed by

the agile method) is shorter or longer than the predefined duration. The

presence of this smell may indicate the team is not properly conducting the

meeting or they are not planning the meetings properly. References: [149],

[151], [159], [153], [60]. [162], [157].

5. Complex Tasks : Complex tasks should be avoided in agile projects. They

should be decomposed by the development team into simpler tasks. The Com-

plex Tasks smell is detected when there are complex tasks in a given iteration.

The presence of this smell may indicate that the developers are not properly

breaking complex tasks into simpler tasks. References: [58], [59], [151], [166],

[152], [66], [4], [154], [21], [157], [165].

6. Concurrent Iterations : In an agile project, the entire team should focus on

the same iteration goal. Running two (or more) consecutive iterations means

the team is divided and focused on different goals. The Concurrent Iterations

smell is detected when there are two (or more) open iterations in the same

project. The presence of this smell may indicate the development team is not

focused on the same goal. References: [72], [4], [167], [60].

7. Dependence on Internal Specialists : One characteristic of an ideal agile

team is one in which any participant can work on any feature. Thus, the team

should avoid the situation where a member becomes the only specialist in a

feature or technology. The Dependence on Internal Specialists smell is detected

when all tasks related to a given feature were assigned to the same developer.

The presence of this smell may indicate the creation of an internal specialist

and the project is becoming dependent on a specific developer. References:

[57], [55], [56], [149], [150], [59], [168], [169], [170], [171], [152], [159], [153], [4],

[160], [154], [155], [60], [17], [21].

8. Goals Not Defined or Poorly Defined : Agile development teams need

to know exactly what they are working on and the goals of the project and

iterations should be clear and well-defined. The Goals Not Defined or Poorly

Defined smell is detected when the goals of the project or of a given iteration

are not defined. The presence of this smell may indicate the development team

does not have a clear view of the goals and therefore could not choose the most

44



important work to do. References: [58], [63], [62], [24], [61], [144], [64], [59],

[23], [151], [153], [156], [17], [21]. [157].

9. Iteration Started without an Estimated Effort : The scope and duration

of the iterations in an agile project are typically defined by the development

team that must commit to the iteration goals and deadlines. The Iteration

Started without an Estimated Effort smell is detected when an iteration that

contains non-estimated tasks is started. The presence of this smell may indi-

cate that the development team is committed to a deadline without a good

understanding of the effort to deliver the iteration scope. References: [170],

[72], [167], [60], [17], [165].

10. Iteration Without a Deliverable : The practice of delivering products con-

tinuously and frequently is very important to agile methods and can be con-

sidered a mantra among agile software developers. The agile methods state

the development team should deliver a new version of the software at the end

of each iteration. The Iteration Without a Deliverable smell is detected when

an iteration does not have an associated deliverable product. The presence of

this smell may indicate that the continuous and frequent delivery practice has

been jeopardized. References: [58], [63], [57], [55], [56], [62], [24], [61], [149],

[64], [150], [59], [23], [151], [66], [153], [154], [156], [60], [21], [158].

11. Iteration Without an Iteration Planning : Iteration planning is an impor-

tant success factor in agile methods. Normally an iteration plan is elaborated

with the main stakeholders (developers and customer) that together decide

what should be developed in the iteration. The Iteration Without an Iteration

Planning smell is detected when there is no planning associated with a given

iteration. The presence of this smell may indicate that the iterations are not

being planned properly. References: [58], [63], [57], [55], [56], [62], [24], [61],

[149], [64], [150], [59], [23], [151], [172], [169], [170], [152], [66], [173], [159],

[153], [4], [167], [154], [155], [60], [21], [161], [162], [163], [5], [157], [164], [165].

12. Iteration Without an Iteration Retrospective : Retrospective meetings

represent opportunities for the development team to reflect on how they are

working and improve the method when necessary. The Iteration Without an

Iteration Retrospective smell is detected when there is no retrospective meeting

associated with a given iteration. The presence of this smell may indicate that

an important opportunity for improvement prescribed by agile methods is

45



being wasted. References: [58], [63], [62], [24], [61], [64], [59], [23], [151], [152],

[159], [153] [4], [154], [155], [156], [60], [161], [5], [162], [163], [157], [158], [164],

[165].

13. Iteration Without an Iteration Review : The iteration review is a meeting

where the development team presents to the product owner what was accom-

plished during the previous iteration. Typically, there is a software demon-

stration showing the new features and a discussion of what is being delivered.

The Iteration Without an Iteration Review smell is detected when there is no

review associated with a given iteration. The presence of this smell may indi-

cate the development team is missing an important opportunity to present the

results of the iteration to the product owner. References: [58], [63], [62], [24],

[61], [64], [59], [23], [151], [152], [173], [159], [153], [4], [154], [60], [21], [161],

[163], [5], [157], [158], [164].

14. Iterations with Different Duration : In order to promote sustainable de-

velopment and to understand their productivity, the development team should

work at a constant pace. That means the iterations in a given project should

ideally have the same duration. The Iterations with Different Duration smell

is detected when iterations in the same project do not have the same dura-

tion. The presence of this smell may indicate the development team is not

maintaining a constant pace. References: [152], [72], [4], [167], [60], [157].

15. Large Development Team : An agile development team should be small

to be efficient and effective. The Large Development Team smell is detected

when the development team is larger than the predefined recommended size.

References: [58], [62], [61], [145], [59], [168], [170], [153], [154], [155], [60], [21],

[157], [158].

16. Long Break Between Iterations : To promote sustainable development and

understand its productivity, the development team must measure all the work

done. Since the work done during the interval between iterations is typically

not counted in productivity assessment, long breaks may impact the way the

team measures its productivity. The Long Break Between Iterations smell

is detected when there is a break between two consecutive iterations longer

than a predefined and recommended size. The presence of this smell may

indicate the development team is working on untraceable work that can harm

the calculation of team productivity. References: [151], [72], [4], [167], [60],

46



[162], [164].

17. Lower Priority Tasks Executed First : In an agile project, the develop-

ment team should focus on higher priority tasks. The Lower Priority Tasks

Executed First smell is detected when tasks with lower priority are executed

before tasks with higher priority. The occurrence of this smell may indicate

that the development team has not worked on the highest priority tasks. Ref-

erences: [58], [63], [57], [55], [56], [62], [24], [61], [149], [64], [150], [59], [23],

[151], [153], [4], [154], [156], [17], [21], [157], [158], [164].

18. Shared Developers : In an agile project, business people and developers

must work together daily throughout the project. Developers are expected to

become experts in the project scope and switching a developer across multi-

ple projects does not contribute to the involvement of that developer in the

project. The Shared Developers smell is detected when a developer is working

on more than one project at the same time or when that developer is frequently

switching between different projects. The presence of this smell may indicate

the organization is not properly allocating the developers. References: [151],

[168], [4], [160], [60], [157], [158], [165].

19. Unfinished Work in a Closed Iteration : The entire scope of an iteration

should preferably be delivered at the end of the iteration. But, as the itera-

tion should be timeboxed, the development team must finish the iteration by

the predefined deadline even if there is unfinished work. In that case, those

unfinished work should be moved to the product backlog to be used in a fu-

ture iteration planning. The Unfinished Work in a Closed Iteration smell is

detected when a given iteration is closed even with unfinished tasks. The pres-

ence of this smell may indicate the team is not properly managing the backlog

items and not moving unfinished work to the project backlog. References:

[151], [72], [4], [167], [60]. [17], [157].

20. Unplanned Work : Agile teams usually commit to delivering a set of features

before an iteration begins. To achieve the agreed commitment, the teams

must work without interference, following the iteration plan and unplanned

work should be avoided. The Unplanned Work smell is detected when tasks

are included in a given iteration after it starts. The presence of this smell

may indicate the unplanned tasks are jeopardizing the commitment with the

iteration deadline. References: [149], [151], [153], [4], [156], [60], [17], [157],

47



[164].

To answer LR-RQ2, we propose at least one identification strategy for each one

of the agile smells identified in the literature review. For example, for the Complex

Tasks agile smell, the following identification strategy was proposed:

1. Identification Strategy for the Complex Tasks agile smell: A strategy

to identify the presence of the agile smell Complex Tasks is to verify whether

the tasks estimates exceed an allowable threshold.

The identification strategies for other agile smells are presented in the catalogue

in Section 4.5.

4.4 Survey

In order to confirm the results from the literature review, we conducted a survey with

practitioners based on semi-structured interviews (KAJORNBOON 2005 [174]). The

remainder of this section presents the survey that was based on the protocol proposed

by OISHI 2003 [175]. The survey was divided into three phases: planning, execution

and reporting.

4.4.1 Survey Planning

Aim and Research Questions

The aim of the survey was to evaluate the relevance of the identified agile smells for

purposes of agility assessment. That is, how relevant is each of the agile smells to

assess how an organization is using agile practices. The research questions for the

survey are:

Survey-RQ1: Is the given agile smell relevant to assess how an agile practice

has been applied?

Survey-RQ2: Is the strategy for identification of the agile smell coherent and

consistent with industry practices?

48



Instrumentation and Questionnaire

The material used in the survey included an online questionnaire divided into three

sections: (1) Subject Characterization (2) Organization Characterization and (3) Ag-

ile Smells . In Subject Characterization and Organization Characterization sections,

the participants should provide information about themselves and the companies in

which they work. The Agile Smells section contained a list of the 20 agile smells

collected from the literature review. The agile smells were displayed in alphabetical

order (as presented in Section 4.3.3) in the following structure: Name, Short De-

scription and Identification Strategy. The participants answered two questions for

each agile smell:

SQ1: What is the relevance of the given agile smell to assess how a project/organi-

zation is using agile practices?

SQ2: What is the relevance of the given identification strategy?

The questionnaire accepted the following answers:

(a) Not relevant (0 pts)

(b) Slightly relevant (1 pt)

(c) Very relevant (2 pts)

(d) Absolutely relevant (3 pts)

Each answer has an associated value that varies from 0 to 3 (based on the

relevance of the identification strategy) and that is used to calculate the relevance

of the agile smell. The relevance of an agile smell, to a given participant, is the sum

of the answers of SQ1 and SQ2 as shown in Figure 4.3. Thus, to a given participant,

the most relevant agile smell achieves a 6-point score and the least relevant agile

smell has a 0-point score.

relevanceByParticipant(p) = answerQuestion1(p) + answerQuestion2(p)

Figure 4.3: Formula of agile smell relevance by participant.

The final relevance of an agile smell is the sum of the relevance for all participants

as illustrated in the formula presented in Figure 4.4.

49



finalRelevance =

pn∑
p=p1

relevanceByParticipant(p)

Figure 4.4: Formula of final agile smell relevance.

Participants Selection

We applied a convenience sampling approach (GHAZI et al. 2017 [176]) and partic-

ipants were selected from our professional and academic networks. The criteria for

the selection of participants were: (a) the participant should have at least 5-years

experience as a Project Manager or Quality Assurance Consultant and (b) the par-

ticipant should work or have worked in an organization that adopts a software

process based on agile methods. We avoid selecting participants that are aware of

this research, so we excluded coauthors and coworkers.

During the planning phase, we conducted a preliminary analysis using subjects

from inside our research group. The data from this execution was not considered in

the final results. Our goal was to collect feedback from the participants and assess

the interview plan.

Table 4.1: Summary of the survey participants characterization.
# of participants % of participants

Main Professional Occupation
Project Manager 15 75.0%
Quality Assurance 5 25.0%

Highest Schooling Degree
Associate 3 15.0%
Bachelor 7 35.0%
Master 6 30.0%
Doctoral 4 20.0%

Professional Experience
5 to 10 years 5 25.0%
11 to 20 years 12 60.0%
> 21 years 3 15.0%

Geographic Distribution
Brazil 16 80.0%
Canada 4 20.0%

50



4.4.2 Characterization of participants

During the analysis phase, 20 candidate subjects were chosen to be interviewed. We

focused on practitioners working on agile projects with relevant experience in this

topic. Table 4.1 presents a summary of the participants characteristics.

The selected subjects included 15 Project Managers and 5 Quality Assurance

Consultants. Regarding the highest schooling degree, 4 participants have doctoral

degree, 6 participants have master degree, 7 participants have bachelor degree and

there are 3 participants with associated degree. The distribution for years of pro-

fessional experience is: 12 participants have between 5 and 10 years of professional

experience, 12 participants have between 11 and 20 years and 3 participants have

more than 21 years of professional experience. Regarding the geographic distribu-

tion, 16 participants are from Brazil and 4 from Canada.

4.4.3 Survey Reporting

In the last phase, the data collected in the survey were organized, tabulated and

analyzed. Table 4.2 presents a summary of the data collected and analyzed in the

survey. The table shows the agile smells in relevance order (the most relevant smells

are shown first) and the column R (that stands for Rank) indicates the order in the

list. Columns S1 to S20 represent the raw data collected in the survey (ie. the

answers that each participant provided). These columns are divided in two sides:

the left value refers to the answer to Survey-RQ1 and the right value refers to the

answer to Survey-RQ2. As explained in the research protocol section, the values

vary from 0 to 3 (No relevant to Absolutely relevant). The Total column is the final

degree of relevance for the agile smell and was calculated according to the formula

presented in Figure 4.4.

51



Table 4.2: Summary of data collected and analyzed in the survey.
R Agile smell name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Total
01 Lower Priority Tasks Executed First 3 3 1 2 2 2 3 3 3 3 2 3 2 3 3 3 2 2 3 3 1 2 1 1 2 3 3 3 3 2 2 2 3 3 2 2 2 2 3 3 96
02 Absence of Frequent Deliveries 3 3 1 1 2 3 3 3 2 2 2 2 3 3 3 2 3 2 2 2 1 2 1 1 2 3 3 3 2 3 2 2 3 3 2 2 1 1 3 3 90
03 Iteration Without a Deliverable 2 2 2 3 2 2 2 2 3 2 2 2 3 2 3 3 1 2 2 3 1 1 1 1 2 2 2 2 3 3 3 2 3 3 2 2 3 3 1 1 86
04 Goals Not Defined or Poorly Defined 2 3 2 1 2 2 2 2 3 2 2 2 2 1 2 2 3 2 2 1 2 2 1 1 2 2 2 1 2 2 3 2 3 3 2 2 3 3 2 2 82
05 Iteration Without an Iteration Planning 2 2 2 1 2 2 2 1 2 3 2 2 2 2 1 2 1 2 2 2 3 3 1 1 2 1 2 2 3 2 2 2 3 3 2 2 3 3 2 2 81
06 Complex Tasks 2 3 1 1 3 2 2 2 2 2 1 1 2 1 2 2 2 1 2 1 2 1 2 2 2 1 3 2 3 3 2 2 3 3 2 2 2 2 2 2 78
07 Iteration Without an Iteration Retrospective 2 2 2 1 2 2 3 2 1 2 3 2 3 3 2 2 2 2 2 2 1 1 1 1 1 2 3 3 1 1 2 1 3 3 2 2 2 2 2 1 77
08 Absence of Timeboxed Iteration 2 3 1 2 2 2 2 2 3 2 2 3 1 1 2 1 2 2 2 1 2 1 1 1 1 2 2 2 1 1 2 2 3 3 2 2 2 2 3 3 76
09 Iteration Started without an Estimated Effort 2 2 2 1 1 1 2 1 2 2 1 1 1 1 1 1 1 2 2 2 3 2 1 1 2 1 3 3 3 3 2 2 3 3 2 2 3 3 2 2 75
10 Iteration Without an Iteration Review 1 2 2 1 2 1 1 2 2 2 2 1 1 1 2 1 2 2 2 2 2 1 1 1 2 2 3 3 2 1 2 2 3 3 2 2 3 3 2 2 74
11 Shared Developers 3 2 2 1 3 2 2 1 2 1 2 1 1 1 1 1 0 0 1 0 3 3 1 1 1 1 3 3 2 1 2 2 2 2 2 2 3 3 3 3 70
12 Unplanned Work 2 2 2 1 2 1 2 2 2 2 1 1 2 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 1 2 2 3 3 2 2 3 3 2 2 70
13 Dependence on Internal Specialists 2 1 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 2 2 2 1 1 1 1 2 1 3 3 1 1 1 2 3 3 2 2 3 3 1 2 69
14 Unfinished Work in a Closed Iteration 2 3 1 1 3 2 1 0 1 1 1 0 1 1 1 1 1 0 1 0 2 2 1 1 2 2 3 3 3 3 3 3 2 2 2 2 2 2 3 3 67
15 Absence of Timeboxed Meeting 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 2 1 2 2 1 2 2 1 2 2 2 2 1 1 2 2 64
16 Absence of Test-driven Development 2 2 1 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 2 2 1 1 1 1 2 1 3 3 0 0 3 3 3 3 2 2 2 2 3 3 62
17 Large Development Team 2 1 1 1 2 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 2 2 1 1 2 2 3 3 2 2 1 2 3 3 2 2 1 1 2 3 57
18 Long Break Between Iterations 1 1 1 0 1 1 2 1 1 0 1 0 1 1 0 0 1 1 1 1 2 2 1 1 1 1 3 3 2 2 1 2 3 3 2 2 3 3 2 2 57
19 Iterations with Different Duration 1 2 1 1 1 1 1 2 1 1 1 0 1 1 0 0 2 1 1 1 3 2 1 1 1 1 3 2 0 2 0 1 2 2 2 2 1 1 2 2 51
20 Concurrent Iterations 1 1 0 0 1 0 1 0 1 1 1 2 1 1 2 1 1 1 1 0 2 2 2 2 1 0 1 0 1 1 1 1 3 3 2 2 3 3 1 1 49

52



Note that, as we did not define any tiebreaker criterion, the agile smells Shared

Developers and Unplanned Work are technically tied. The same issue occurs with

the agile smells Large Development Team and Long Break Between Iterations.

4.4.4 Data Analysis Discussion

Most of the agile smells received a positive value for the degree of relevance (ie,

they were considered Slightly relevant, Relevant or Absolutely relevant). If we take

the top 10 most ranked agile smells in Table 4.2, they were all considered at least

Slightly relevant to all the participants.

Figure 4.5 shows the distribution of the degree of relevance the agile smells

received in the survey. The number of Not relevant answers was considerably low

(only 4.25%, or 34 in 800 responses). The numbers of Slightly relevant, Relevant

and Absolutely relevant were, respectively, 32.25% (or 258 in 800), 43.75% (or 350

in 800) and 19.8% (or 158 in 800). These data reveal the identified agile smells are

coherent with practices adopted by industry and they could be ultimately used to

assess how the agile methods are being applied.

Figure 4.5: Distribution of the degree of relevance according to the survey.

Most participants assigned different degrees of relevance for the presented agile

smells. In other words, for most of the participants, some agile smells are more

or less relevant than others. That perception was crucial to build the ranking of

the most relevant agile smells. Indeed the difference between the relevance of the

agile smells at the top and at the bottom of the ranking is significant. While the

three top-ranked agile smells vary from 96 to 86 points, the three agile smells at the

53



Table 4.3: Agile smell template.

Name: Agile smell name

Description: A description of the agile smell

Target: The element that the agile smell refers to. It can be: Organization, Project,
Iteration or Team

Agile Methods: A discussion on how the analyzed agile methods mention the agile
smell

Industry Perspective: A discussion of relevant aspects of the agile smell from an
industry perspective

Relevance: A percentage value that denotes the degree of relevance of the agile smell
according to the survey

Identification Strategy: A description of the identification strategy

Parameters: A description of the parameters that can be used in the identification
strategy

References: A list of all references for the agile smell

bottom of the ranking vary from 57 to 49. This difference between the degree of

relevance illustrates that the agile smells may impact the adoption of agile methods

in different levels.

4.5 Consolidation Phase

The aim of this phase was to consolidate, complement and organize the agile smells

obtained and confirmed in the previous phases as a structured catalogue. Regarding

the catalogue structure, the agile smells were described using a template adapted

from (GAMMA et al. 1995 [177]) and shown in Table 4.3.

The Name section indicates the name of the agile smell. The Description section

presents a brief description of the agile smell and contains: (a) the motivation behind

the agile smell and (b) the likely consequences if the agile smell occurs. The Target

section indicates which element is being assessed when an occurrence of an agile smell

is identified. It can assume the values: Organization, Project, Iteration or Team.

The Agile Methods section presents the agile methods practices that motivated the

agile smells. Thus, this section establishes a connection between the agile methods

analysed during the literature review and the agile smell. The Industry Perspective

section discusses the agile smell relevance from the perspective of the consulted

industry practitioners. The Relevance section represents the degree of relevance

obtained in the survey converted to the percent of maximum possible score (POMP)

54



(COHEN et al. 1999 [178]). The Identification Strategy and Parameters sections

describe, respectively, strategies to detect the occurrence of the agile smell in real

agile projects and their corresponding parameters. These sections are designed to

support the Specification phase of the AgileQube Approach.

We have selected the 10 highest ranked agile smells to present in Appendix D

(Tables D.1 to D.10).

4.6 Threats to validity

This section discusses the threats to the validity of this study and the actions that

were taken to avoid them.

External Validity. This refers to the degree to which the identified agile smells

are relevant to the industry. To confirm the lack of bias of the extraction method

used in the literature review and to confirm the relevance of the identified agile

smells to the industry, a survey with experienced practitioners from two different

countries was conducted.

Construct Validity. This validates whether the research explores what it claims

to be exploring. A threat in this category is not reaching the “state of the art”

about agile development. As a significant part of the body of knowledge about

Agile Methods is created by software engineering practitioners that usually do not

publish in academic forums (GLASS and DEMARCO 2006 [179]), we decided to

include in the literature review the grey literature (non-peer-reviewed material).

Internal Validity. This validates whether the agile smells identified in the liter-

ature review are internally valid. A risk to this validity came from the fact there is

no use of the term “agile smell” in the current literature. We thus sought to mitigate

this threat by defining objective criteria to extract the agile smells from the selected

papers. Another threat in this category came from the fact we are using the data

collected from Likert scale as continuous data as presented in Figures 4.3 and 4.4.

Appendix B presents a discussion on this issue.

Conclusion Validity. This threat is related to problems that can impact the

reliability of our conclusions. A risk in this category regards the survey sampling

size. The survey was conducted with a sampling that is not representative enough to

allow us to affirm that the set of identified agile smells represents the most relevant.

So, there may be some variation in the ranked list whether we conduct a survey

with a more representative sampling.

55



4.7 Conclusion

This chapter presented the Catalogue of Agile Smells , which is one of the contri-

butions of this research and that supports the goal G1 (Define a catalogue of agile

smells). The presented catalogue aims at: (a) presenting a set of agile smells (i.e.

practices that may impair the proper adoption of agile development); (b) relating

these agile smells with the agile practices and methods that motivated them; and

(c) proposing strategies to identify the occurrence of such agile smells in an agile

software project.

The catalogue was produced in the Identification phase of the AgileQube Ap-

proach and its elaboration followed a three-phase methodology: Elicitation, Con-

firmation, and Consolidation. In the Elicitation phase, we conducted a literature

review including peer-reviewed academic publications and grey literature that ex-

tracted an initial set of 20 agile smells. In the Confirmation phase, the set of selected

agile smells was the subject of a survey that aimed at characterizing the smells ac-

cording to their relevance. Finally, in the Consolidation phase, the data collected in

the survey were analyzed and the most relevant agile smells were organized as a cat-

alogue. One threat to this analysis came from the fact we treated the data collected

in the survey (a 4-level Likert scale) as a continuous scale. Appendix B discusses

this threat in more detail and presents another analysis of the data collected in the

survey.

56



Chapter 5

Agile Project Metamodel

This chapter presents the Agile Project Metamodel, a metamodel used

to represent agile software projects and support the Specification and De-

tection phases of the AgileQube Approach. The chapter is organized

in the following structure: Introduction, Concepts necessary to repre-

sent agile projects, Literature Review, The Agile Project Metamodel, and

Conclusion.

5.1 Introduction

The Agile Project Metamodel is one of the components that compose the AgileQube

Approach and is responsible for representing the data from the assessed agile project.

This contribution aids this research in reaching the goals G2 (Define an agile smell

representation approach) and G3 (Define a data extraction approach).

As depicted in Figure 5.1, the metamodel plays a key role in the approach and

is used in the Specification and Detection phases. In the Specification phase, the

elements of the Agile Project Metamodel are directly referenced in the agile smell

specifications (the agile smell specification will be discussed in Chapter 6). In the

Detection phase, the ETL Module extracts data from a Project Management Tool,

transforms the extracted data to the Agile Project Metamodel format and sends the

resulting model, along with the agile smell specifications, to the Detection Engine.

A preliminary investigation conducted in this study revealed that existing soft-

ware development metamodels fail to represent all the elements the proposed ap-

proach needs. The existing metamodels usually focus on representing elements

related to software process definition and neglect aspects related to agile project

execution such as Iterations, Deliveries, and Task Instances.

57



Figure 5.1: Agile Project Metamodel overview

This chapter aims at presenting the Agile Project Metamodel that composes the

AgileQube Approach. We conducted this study in three steps: First, we identi-

fied the set of concepts, entities, and information needed in the approach (i.e., for

purposes of agility assessment). Second, we investigated how existing software devel-

opment metamodels represent these elements. Third, we proposed the Agile Project

Metamodel which contains all the elements identified in the first step.

Two research questions guided this study:

RQ1: What are the main concepts and information necessary to represent an

agile software project?

RQ2: Which software development metamodels contain or partially contain

the information necessary to represent an agile software development

project?

58



To answer RQ1, we used the Catalogue of Agile Smells presented in Chapter

4 as source for defining the required elements. A literature review was conducted

to answer RQ2 and revealed that there is no metamodel that fully represents the

information identified in RQ1. To fill this gap, we investigated how the metamodels

can be combined and extended.

As a result, this study proposes the Agile Project Metamodel , a metamodel that

combines elements from existing metamodels with elements neglected by these meta-

models. The metamodel is organized in two perspectives, Process Definition and

Process Execution (as proposed by SANTOS 2019 [180]), and includes entities such

as Project, Iteration, and Task as core concepts.

5.2 Concepts necessary to represent agile projects

The goal of this phase was to answer the research question RQ1 and identify a set

of concepts necessary to represent agile software projects. We used as source of

information the Catalogue of Agile Smells presented in Chapter 4.

To identify a set of relevant concepts, we applied an iterative and incremental

method and for each agile smell, we analyzed its description and noted the main

concepts as codes. As more data were collected, and re-reviewed, codes were grouped

into concepts. Repeated tagged-with-codes concepts, concepts or elements became

apparent. At the end of this method, the following concepts composed the basis of

the proposed metamodel: Project, Iteration, and Task.

To identify a set of relevant concepts, we applied the following iterative and

incremental method: for each agile smell, we analyzed its description and noted the

main concepts as potential concepts. As more data were collected, and re-reviewed,

the potential concepts were grouped into relevant concepts. At the end of this

method, the following concepts composed the basis of the proposed metamodel:

Project, Iteration, and Task.

Project: The Project concept is a core entity in the metamodel and all other

entities are in some way related to it. Some agile smells directly mention this

concept. For example, the Goals Not Defined or Poorly Defined agile smell states

that:

The Project’s and Iterations’ goals should be clear and well-defined.

59



Other agile smells mention the Project concept implicitly, as for example, the

Absence of Timeboxed Iteration agile smell that defines:

All Iterations [of the Project] should have a fixed time duration.

Iteration: The Iteration element represents a development cycle that usually pro-

duces a portion of the software. Several agile smells refer to the Iteration concept.

For example, the Absence of Timeboxed Iteration agile smell states:

All Iterations should have a fixed time duration. Thus, an Itera-

tion should not be extended or shortened to fit planned or unplanned

features.

Another example is the Lower Priority Tasks Executed First agile smell that

defines:

The team should deliver a new version of the software at the end of

each Iteration

Task: The Task element denotes a unit of work. It typically has information about

its execution such as start and end dates, complexity, duration, who performed the

task and which artifacts were consumed/produced. The Task concept was extracted

from agile smells such as Lower Priority Tasks Executed First that states:

The Team must work on the highest priority Tasks first.

Another example is the Complex Tasks agile smell that states

60



Complex Tasks should be avoided. During Iteration planning, the

Team should try to break complex Tasks into simpler Tasks.

It is important to note that a Task element is an instance of a Task Definition

defined by a software development process. To avoid confusion, in the remainder of

this chapter we will use the term Task to denote a task instance and TaskDef to

denote a task definition.

5.3 Literature Review

The literature review (LR) conducted in this study aimed at exploring the existing

body of knowledge and investigating how software development metamodels pro-

posed in indexed studies represent (or partially represent) the concepts identified in

the previous phase. As this is an exploratory study designed to organize a research

area (metamodels to support the representation of agile software projects), there is

no baseline for comparison of the results obtained (TRAVASSOS et al. 2008 [181]).

The methodology of the LR was based on the method proposed by KITCHENHAM

and CHARTERS 2007 [142] and consists of three main phases: planning, execution

and reporting.

5.3.1 Literature Review Planning

The research question for this LR was derived from the main RQ2 and can be sum-

marized as: Which Software Development Metamodels contain (or partially contain)

the information necessary to represent an agile software development project?

The scope of this literature review was defined according to the population,

intervention, comparison and outcome PICO (PAI et al. 2004 [143]) approach. The

Population is the set of software development projects. The Intervention is the agile

methodologies and software processes. There is no Comparison. The Outcome is a

set of metamodels to represent software development. Three papers obtained from

a previous conventional literature review were used as control:

1. STEENWEG, R., KUHRMANN, M., MÉNDEZ FERNÁNDEZ, D. Software

engineering process metamodels–a literature review, Technische Universität

München, Tech. Rep. TUM-I1220, 2012 [182]

61



2. BENDRAOU, R., JEZEQUEL, J.-M., GERVAIS, M.-P., et al. A comparison

of six UML-based languages for software process modeling, IEEE Transactions

on Software Engineering, v. 36, n. 5, pp. 662–675, sep 2010 [183]

3. HENDERSON-SELLERS, B., GONZALEZ-PEREZ, C. A comparison of four

process metamodels and the creation of a new generic standard, Information

and Software Technology, v. 47, n. 1, pp. 49 – 65, 2005. ISSN: 0950-5849. doi:

https://doi.org/10.1016/j.infsof.2004.06.001 [184]

The keywords for Population are “software projects”, “software systems”, “soft-

ware development” and “software engineering”. The keywords for Intervention are

“agile methods”, “agile processes” and “software processes”. The keyword for Out-

come is “metamodel”. The search string used as the basis for all search engines,

structured according to PAI et al. 2004 [143], is presented in the Listing 5.1:
1 (

2 ’software project’ OR ’software systems’ OR

3 ’software development’ OR ’software engineering’

4 )

5 AND

6 (

7 ’agile methods’ OR ’agile processes’ OR

8 ’agile approaches’ OR ’software processes’

9 )

10 AND

11 (

12 ’metamodel’

13 )

Listing 5.1: Software development literature review search string base

We chose an incremental approach for the study selection. The final set of pub-

lications is a combination of automated search strategies and “snow-balling” proce-

dures. The sources were collected from the following digital databases, including the

conferences, journals and technical reports indexed by IeeeXplore, Web of Science,

Scopus and ACM digital library.

The set of formal literature studies includes all articles returned by the pro-

tocol that meets the following inclusion criterion (IC): Documents must address

one or more software development/process metamodel; Publications that satisfy

at least one of the following exclusion criteria (EC) were excluded: (EC1) Docu-

ments not written in English; (EC2) Documents whose full text is not available;

(EC3) Documents clearly dealing with topics irrelevant to the purpose of this re-

view; (EC4) Documents merely reporting the use of individual software processes in

development projects; (EC5) If the same study has been published more than once,

62



the most relevant version, that is the one explaining the study in greatest detail,

will be used and the others will be excluded.

The following information was extracted from each paper selected after running

the selection process: document title, author(s), source, year of publication, concepts

and elements described in the metamodels.

The overall goal of the literature review was to select contributions that propose

any metamodel related to software process and analyze the metamodels in order to

investigate how they represent the concepts presented in Section 5.2. Other charac-

teristics, such as the metamodel relevance, adoption by industry, process ecosystem

and supportive tools were not considered in this study. HENDERSON-SELLERS

and GONZALEZ-PEREZ 2005 [184], KUHRMANN et al. 2013 [185] and BEN-

DRAOU et al. 2010 [183] are some examples of comprehensive studies about Soft-

ware Process Metamodel Languages (SPML).

5.3.2 Literature Review Execution

The search with the aforementioned engines returned 119 references, published be-

tween 2001 and 2017. All the controls were retrieved. Repetitions were eliminated

and after the application of the inclusion and exclusion criteria, the number of pa-

pers selected for full reading was 14. Appendix E shows the final list of studies

considered in this literature review. The selected documents were used to extract

the main concepts of the metamodel.

5.3.3 Literature Review Reporting

In the reporting phase, we analyzed the selected studies and investigated how the

metamodels proposed represent the concepts presented in Section 5.2. Following the

criteria established in the research protocol, 12 metamodels were selected from 15

documents. These metamodels in alphabetical order are:

1. APM3 (SADI and RAMSIN 2009 [186])

2. Ayed’s approach (AYED et al. 2012 [187])

3. Chou’s approach (CHOU 2002 [188])

4. DiNitto’s approach (NITTO et al. 2002 [189])

5. ISO/IEC 24744 (SEMDM) (ISO 24744:2014 [190])

6. MetaMe (ENGELS and SAUER 2010 [191])

7. OOSPICE (GONZALEZ-PEREZ et al. 2005 [192])

63



8. OPF (FIRESMITH and HENDERSON-SELLERS 2002 [193])

9. PROMENADE (FRANCH and M. RIB 1999 [194])

10. SPEM (OMG 2008 [195])

11. UML4SPM (BENDRAOU et al. 2005 [196])

12. V-Modell XT (TERNITÉ and KUHRMANN 2009 [197])

One approach initially selected was discarded, the LiveNet approach (referenced

by HENDERSON-SELLERS and GONZALEZ-PEREZ [184]) was not available.

One of the most well-established metamodels for specifying Software Process is

SPEM (Software & Systems Process Engineering Metamodel) (OMG 2008 [195]).

The last specification, SPEM 2.0, was launched in 2008 by the OMG Group and is

focused on defining software and systems development processes and their compo-

nents without adding specific features for particular development domains or disci-

plines such as project management. SPEM aims at enabling the specification of a

large range of development methods and processes of different styles, levels of for-

malism, life-cycle models and areas without imposing predefined modeling concepts.

To achieve this, the SPEM specification is divided into two main packages: Method

Content and Process with Methods. The Method Content package defines the core

concepts such as Task, Role and Work Product, while the Process with Methods

package supports the definition of software process models as nested activities that

embody essentially the predefined elements in the Method Content package.

The main limitation of SPEM in representing agile software projects is that the

metamodel is mainly focused on software process definition and neglects project

execution elements, HENDERSON-SELLERS and GONZALEZ-PEREZ 2005 [184]

call methodology layer and project layer. For example, the Task element in SPEM

represents a task definition and not a task instance. This element has only fields

to describe general characteristics of the task such as description, predecessor tasks

and successor tasks. There is no execution information in its element.

Other analyzed metamodels such as Chou’s approach, DiNitto’s approach,

MetaMe, OOSPICE, OPF, PROMENADE, UML4SPM and V-Modell XT are sim-

ilar to SPEM in this aspect. They focus on the methodology layer and neglect the

representation of the project layer. These approaches have the elements Activity,

Role, Artifact and Tool as a basis for software process definition. No or little infor-

mation about process execution is addressed by these metamodels. The exception

is the MetaME metamodel that represents the concept Project. The metamodels

APM3 and Ayed’s approach, on the other hand, focus on the project layer of Soft-

64



ware Development and do not represent elements related to Process Definition. The

only metamodel that supports the representation of both process and project layer

is the ISO/IEC 24744 (SEMDM) metamodel that has elements corresponding to

the concepts Iteration, Task, Worker, TaskDef, RoleDef and ArtifactDef.

Tables 5.1 and 5.2 present a summary of the analyzed software development

metamodels.

65



Table 5.1: Software Process Metamodels and their corresponding elements (part1)
APM3 Ayed Chou Di Nittos ISO 24744 MetaME

Project - - - - - Project
Iteration Stage Stage - - StageWithDuration -
Iteration
Interval - - - - - -

Case - - - - - -

Task Work-unit Task - - WorkUnit,
Task -

Delivery Product Deliverable - - - -
Delivery
Interval - - - - - -

Worker Role,
Responsibility Producer - -

Producer,
Person,
Team,
Role

-

TaskDef - - Activity Activity,
Humam Activity WorkUnitKind

Process,
Activity,
Task,

ActionStep

RoleDef - - - - ProducerKind,
RoleKind Role

ArtifactDef - - Document Artifact WorkProductKind Artifact

66



Table 5.2: Software Process Metamodels and their corresponding elements (part2)
OOSPICE OPF Promenade SPEM UML4SPM V-Modell XT

Project - - - - - -
Iteration - - - - - -
Iteration
Interval - - - - - -

Case - - - - - -
Task - - - - - -
Delivery - - - - - -
Delivery
Interval - - - - - -

Worker - - - - - -

TaskDef
Technique,

Task,
Action

WorkUnit,
Activity,
Task,

Subtask,
Technique

Task
Activity,
Task,

Definition
Software Activity

Activity,
SubActivity,

Step

RoleDef - Role Role RoleUse,
RoleDefinition Responsible Role Role

ArtifactDef WorkProduct WorkProduct Document WorkProduct WorkProduct
Product,
Subject,
Topic

67



We analyzed 12 software development metamodels. Most approaches focus on

enabling the definition of Software Processes and Methods and neglected the repre-

sentation of elements related to the execution of a Software Process.

5.4 The Agile Project Metamodel

After identifying a set of elements necessary to represent an agile project for the

purposes of agility assessment (Section 5.2) and conducting a literature review to

investigate how existing software development metamodels can be used to represent

such elements (Section 5.3), we observed a need for a metamodel that fully supports

the representation of an agile software project.

To fill this gap, we proposed a software development metamodel, that we named

Agile Project Metamodel (APMM), to represent all the elements selected in the first

step of this study. Figure 5.2 shows the resulting metamodel that is organized in the

two perspectives proposed by SANTOS 2019 [180]: Process Definition and Project

Execution. The Process Definition layer focuses on representing static concepts of

the software process and the Process Execution layers contain elements that repre-

sent dynamic concepts of the agile project.

Figure 5.2: Agile Project Metamodel (APMM)

Process Definition Perspective

• Process: The software processes that guide the Project. A Process has three

collections: ArtifactDefs, TaskDefs, and Roles. Note that a Project can have

tasks from many different Processes.

68



• TaskDef : The specification of a Task from the perspective of process defini-

tion. Some metamodels such as SPEM (OMG 2008 [198], FIRESMITH and

HENDERSON-SELLERS 2002 [193]) use the term Activity or WorkUnit.

• ArtifactDef : The specification of an Artifact from the perspective of process

definition.

• Role: The specification of a Role from the perspective of process definition.

A Role defines the responsibilities of workers that take part in the software

process.

Project Execution Perspective

• Project: The core entity of the model represents the software project. The

Project is associated with Iterations, Cases, Tasks, Deliveries and Delivery

Intervals.

• Iteration: An Iteration denotes a cycle of development that typically pro-

duces a part of the software. It has a duration, a start and an end date, a

status and other fields. Some agile methods such as Scrum (ALLIANCE 2016

[21]) use the term Sprint. FDD methods (LUCA 1999 [62]) use the term Cy-

cle. As the main associations, an Iteration belongs to a Project and has a

collection of Tasks.

• IterationInterval: The interval between two consecutive Iterations.

• Case: A Case represents a coherent subset of tasks. For example, in a project

where the requirement is oriented by Use Cases, a Case denotes the set of

tasks that compose a given Use Case. A Case can also be a software feature,

a software module, a change request, a bug, etc. A Case usually has its own

flow, which typically has requirement, development and test tasks. A Case

may be divided among many Iterations.

• Task: A Task represents a unit of work that is performed during software

development. It may be associated with a Case, associated with an Iteration

and assigned to a Worker. A Task in this perspective has information related

to process execution, such as start and end dates, estimated effort, status,

time spent on task and worker assigned. A Task could also be associated with

a TaskDef, and, in this case, the Task is an instance of the TaskDef.

69



• Delivery: A Delivery represents the software product delivered at the end of

an Iteration.

• DeliveryInterval: The interval between two consecutive Deliveries.

• Worker: A team member who executes Tasks during an Iteration. A Worker

could have an associated Role.

• Artifact: Artifacts are software products produced and consumed by Tasks.

It could include: requirement specification, source code, test cases and man-

agement reports. An Artifact could be associated with an ArtifactDef, and, in

this case, the Artifact is an instance of an ArtifactDef.

Additionally, to comply with UML standards and improve the completeness of

APMM, we have introduced the following OCL (OMG 2014 [199]) constraints as

shown in Listing 5.2:
1 -- OCL constraints

2

3 constraints

4

5 context Project

6 -- tasks in a case must also be in the project

7 inv TasksAndCasesSameProject:

8 self.case.task->forAll(t | self.task->includes(t))

9

10 -- tasks in an iteration must also be in the project

11 inv TasksAndIterationsSameProject:

12 self.iteration.task->forAll(t | self.task->includes(t))

13

14 -- the number of tasks in a project must

15 -- be greater or equal to the number of iterations

16 inv MoreTasksThanIterations:

17 self.task->size >= self.iteration->size

18

19 -- number of delivery intervals must be always lower than the number of deliveries

20 inv MoreDeliveriesThanDeliveryIntervals:

21 self.deliveryInterval->size > 0 implies

22 self.deliveryInterval->size < self.delivery->size

23

24 -- number of iteration intervals must be always lower than the number of iterations

25 inv MoreIterationsThanIterationIntervals:

26 self.iterationInterval->size > 0 implies

27 self.iterationInterval->size < self.iteration->size

28 ---

Listing 5.2: APMM constraints in OCL

• TasksAndCasesSameProject: defines that all tasks associated with a case

must also be associated with the project associated with the case;

70



• TasksAndIterationsSameProject: defines that all tasks associated with an

iteration must also be associated with the project associated with the iteration;

• MoreTasksThanIterations: defines that the number of tasks in a project

must be greater or equal to the number of iterations;

• MoreDeliveriesThanDeliveryIntervals: defines that the number of deliv-

eries in a project must be greater to the number of delivery intervals;

• MoreIterationsThanIterationIntervals: defines that the number of itera-

tions in a project must be greater to the number of delivery intervals;

5.5 Conclusion

This chapter focused on the Agile Project Metamodel , which is another contribution

of the presented research and that aids to achieve the goals G2 (Define an agile

smell representation approach) and G3 (Define a data extraction approach).

This metamodel has an important role in the AgileQube Approach and it is

directly used in the phases Specification and Detection. To define the proposed

metamodel, we conducted a study divided into three phases. First, we defined the

requirements for the metamodel (i.e. which elements the metamodel should provide

to represent an agile project under the perspective of the agile smells presented in the

Catalogue of Agile Smells). Second, we conducted a literature review to investigate

how existing software development metamodels represent (or partially represent)

the elements identified in the first phase. This part of the study revealed that there

is no metamodel that can be used to fully represent the selected elements. Third,

we proposed a metamodel, that we named Agile Project Metamodel , that fills this

gap by combining elements from existing metamodel with the elements neglected by

these metamodels. The proposed metamodel has a total of 13 elements and the 3

most important concepts are: Project, Iteration, and Task.

71



Chapter 6

Agile Smell Schema

This chapter presents the Agile Smell Schema, a schema that is part

of the AgileQube Approach and that enables the specification and con-

figuration of agile smells. The chapter is organized in the following

sections: Introduction, Schema Specification, Properties of the Agile

Smell Schema, An example, The Top 10 Agile Smells Specifications, and

Conclusion.

6.1 Introduction

The systematic specification of an agile smell in the AgileQube Approach is driven

by two components: (a) a metamodel to represent the data of the assessed agile

project, and (b) a schema that is used to describe the structure of the agile smell.

In this chapter, we present the Agile Smell Schema, a schema that, along with the

Agile Project Metamodel , enables the systematic specification of the agile smells in

the AgileQube Approach and, therefore, helps this research to fulfill the goal G2

(Define an agile smell representation approach).

As shown in Figure 6.1, the Agile Smell Schema has a key role in the Specification,

Configuration and Detection phases. The schema is used by the Programmer, who

translates textual descriptions of agile smells into systematic specifications. These

specifications, after properly configured, are ultimately used by the Detection Engine

to detect the agile smells.

72



Figure 6.1: Agile Smell Schema overview

6.2 Schema Specification

We are using the Data Model module of the OpenAPI 3.0 1 to describe the Agile

Smell Schema. The OpenAPI Specification (OAS) (FOUNDATION 2018 [200]),

formerly known as Swagger Specification, is a standard used to describe, produce,

consume, and visualize REST APIs. We selected OAS because it has gained con-

siderable influence over the last years and has become one of the most popular

standards for API/model documentation (KOREN and KLAMMA 2018 [201]). In

addition to being a programming language-agnostic, stable and open specification

supported by a large community and by companies such as Google, Microsoft, and

IBM (SANDOVAL 2018 [202]). In the Data Model module of the OAS, the data

types are based on a subset of the JSON Schema Specification 2 and described

as Schema objects. Listing 6.1 presents the OAS specification of the Agile Smell

Schema.

1https://swagger.io/docs/specification/data-models/
2https://tools.ietf.org/html/draft-wright-json-schema-00

73



1 openapi: 3.0.0

2 info:

3 title: Agile Smell Schema documentation

4 description: This schema is part of the AgileQube approach and aims at describing the

structure to represent an agile smell into the AgileQube App. The schema provides a

comprehensive set of data about an agile smell including its documentation,

references to the agile practices/methods that motivated the agile smell, and the

algorithms that are used to detect the agile smell

5 version: 0.0.1

6 components:

7 schemas:

8 agileSmell:

9 type: object

10 properties:

11 name:

12 type: string

13 description:

14 type: string

15 help:

16 type: string

17 references:

18 type: string

19 target:

20 type: string

21 enum:

22 - PROJECT

23 - ITERATION

24 - TASK

25 preconditions:

26 type: string

27 when:

28 type: string

29 then:

30 type: string

31 params:

32 type: array

33 items:

34 type: object

35 properties:

36 key:

37 type: string

38 value:

39 type: string

40 expressionLanguage:

41 type: string

42 required:

43 - name

44 - target

45 - when

46 - then

47 - expressionLanguage

Listing 6.1: Agile Smell Schema OpenAPI specification

74



A user-friendly representation of the specification presented in Listing 6.1 is

shown in Figure 6.2.

Figure 6.2: Agile Smell Schema documentation

6.3 Properties of the Agile Smell Schema

The Agile Smell Schema provides to the approach a comprehensive set of data about

an agile smell including its documentation, references to the agile practices/methods

that motivated the agile smell, and the algorithms that are used to detect the agile

smell. The schema has 10 properties:

1. Name;

2. Description;

3. Help;

4. References ;

5. Target ;

6. Preconditions ;

7. When;

8. Then;

9. Params ;

10. Expression

Language.

75



6.3.1 Name, Description, Help, and References

The Agile Smell Schema has four properties to document the agile smell: Name,

Description, Help and References.

The Name property is a short name of the agile smell. The Description property

is a extended description of the agile smell. The Help property describes orienta-

tions to eliminate or avoid the agile smell. The References property indicates the

references that support the agile smell.

6.3.2 Target

The Target property denotes the concept (or entity) in the Agile Project Metamodel

that is the target of the agile smell. The properties (Precondition, When and Then)

of the schema reference this concept in their expressions. The Target property can

assume the following values: Project, Iteration, and Task.

6.3.3 Preconditions, When, Then, Params and Expression

Language

The Agile Smell Schema has three expression properties: Preconditions, When, and

Then. These properties denote the algorithms that are evaluated by the Detection

Engine in the Detection phase.

The Preconditions property is an expression that verifies whether the precondi-

tions to execute the other two expressions (When and Then) were met. It should

check if the data required to identify the agile smell are available. For example, the

Precondition expression of an agile smell related to task priority (eg Lower Priority

Tasks Executed First) should verify if the information regarding the priority of the

task is available. Otherwise, it will not be possible to identify the occurrence or

absence of the agile smell in the task.

The When property is an expression that defines whether the agile smell should

be evaluated or not. It verifies the conditions that define if the agile smell is appli-

cable for the given target. For example, the When expression of an agile smell that

is applicable only to finished iterations should verify if the iteration is finished.

The Then property is an expression that ultimately identifies the occurrence or

absence of the agile smell. The agile smell is identified when the Then expression

evaluates to true.

76



The Expression Language property defines the expression language used to spec-

ify the properties Preconditions, When and Then.

The Params property defines the parameters of an agile smell specification. A

parameter is a value used in the expressions above presented (Preconditions, When,

and Then) that may vary from company to company and therefore a constant value

(or hard coded value) is not appropriated. It is possible to set a default value to

a given parameter, but each company should calibrate the agile smell parameters

to fit its context and processes. The team’s expertise with agile methods and the

characteristics of the organization’s processes are some elements that influence the

calibration of the agile smells parameters. For example, experienced teams can

define more flexible values for the parameters while less experienced teams tend

to use more restrictive values for their parameters. The Params property is not

mandatory since an agile smell specification may not have parameters.

6.4 An example

Before diving into the specifications of the 10 agile smells presented in the Catalogue

of Agile Smells discussed in Chapter 4, we will present an example that illustrates

how a simple agile smell could be specified using the proposed data structure. We

will take as example an agile smell that states that all tasks in a given iteration should

have their priority defined prior to the start of the iteration. The specification of

this agile smell, that we named Task without priority in an open iteration, is shown

in Listing 6.2.

77



1 {

2 name: { ’Task without priority in an open iteration’ },

3 description: {

4 ’All tasks in an open iteration should have a priority

5 defined’

6 },

7 target: { TASK },

8 help: {

9 ’To solve this agile smell, the development team should

10 define the priority of all tasks before starting the

11 iteration. If an iteration starts and there are tasks

12 without a priority defined, the development team should

13 define the priority of those tasks as soon as possible.’

14 },

15 preconditions: {

16 boolean isAssociatedToAnIteration = task.iteration

17 boolean iterationHasStatus = task.iteration.status

18 return isAssociatedToAnIteration && iterationHasStatus

19 },

20 when: {

21 boolean isOpen = task.iteration.status == ’open’

22 return isOpen

23 },

24 then: {

25 boolean hasPriority = task.priority

26 return hasPriority

27 },

28 expressionLanguage: { Groovy }

29 }

Listing 6.2: An example of an agile smell specification

The properties name, description and help are text-based elements used to doc-

ument the agile smell. The name property provides the unique identifier to the agile

smell: Task without priority in a open iteration. The description property gives a

detailed explanation of the agile smell including a brief mention of the agile prac-

tices that motivated it. The help property provides instructions for avoiding and

fixing the agile smell. The target property is defined to Task which means the agile

smell is related to the Task concept of the Agile Project Metamodel . The precon-

ditions property is an expression that evaluates two conditions: (a) if the task has

an associated iteration and (b) if the associated iteration has a defined status. The

preconditions for this agile smell are only met when the two conditions are true.

This means that if a task is not associated with an iteration or if the associated

iteration has no defined status, the preconditions to identify this agile smell on that

task are not met. The when property is an expression that checks if the iteration

associated to the assessed task is open. This means the agile smell is applicable only

78



when the iteration associated to the task is open. The then property is an expres-

sion that checks whether the given task has a defined priority. When this expression

evaluates to true, the agile smell is identified. Finally, the expression-language

property sets Groovy (KOENIG et al. 2007 [203]) as the expression language for the

previous expressions (preconditions, when, and then).

6.5 The Top 10 Agile Smells Specifications

In this section, we discuss the specifications of the agile smells from the Catalogue

of Agile Smells presented in Chapter 4. The description and help properties were

omitted to improve the readability of the specifications. However, the absence of

these properties does not jeopardize the understanding of the specification or the

detection of the agile smell by the Detection Engine.

79



6.5.1 Lower Priority Tasks Executed First specification

The specification of the agile smell Lower Priority Tasks Executed First is shown in

Listing 6.3. The target property is defined to Iteration indicating the agile smell is

applied to the iterations of an agile project. The precondition expression checks if

the iteration has a status and tasks associated. The when expression checks if the

iteration is open and has to do and doing tasks. The then expression finds the to

do task with the highest priority and calculates the lists of doing tasks. The agile

smell is detected when the algorithm verifies that there is a doing task with a lower

priority than the highest priority to do task.

1 {

2 name: { ’AS01 Lower Priority Task Executed First’ },

3 target: { ITERATION },

4 preconditions: {

5 boolean hasStatus = iteration.status

6 boolean hasTasks = iteration.tasks

7 return hasStatus && hasTasks

8 },

9 when: {

10 def isOpen = iteration.status == ’open’

11 def todoTasks = iteration.tasks.findAll { it.status == ’todo’ && it.priority }

12 def doingTasks = iteration.tasks.findAll { it.status == ’doing’ && it.priority }

13

14 boolean hasDoingTasks = !doingTasks.isEmpty()

15 boolean hasTodoTasks = !todoTasks.isEmpty()

16 return isOpen && hasDoingTasks && hasTodoTasks

17 },

18 then: {

19 def highestPriorTodoTask = iteration.tasks.findAll {

20 it.status == ’todo’ && it.priority

21 }?.max {

22 it.priority?.value

23 }?.priority?.value

24 def doingTasks = iteration.tasks.findAll {

25 it.status == ’doing’ && it.priority

26 }

27 boolean lowerPriorityTaskExecutedFirst = false

28 doingTasks.each { doingTask ->

29 if (doingTask.priority.value < highestPriorTodoTask) {

30 lowerPriorityTaskExecutedFirst = true

31 }

32 }

33 return lowerPriorityTaskExecutedFirst

34 },

35 expressionLanguage: { Groovy }

36 }

Listing 6.3: Lower Priority Tasks Executed First specification

80



6.5.2 Absence of Frequent Deliveries specification

The specification of the agile smell Absence of Frequent Deliveries is presented in

Listing 6.4. The target property is defined to Project. The preconditions expression

defines the project has to have two collections associated: delivery intervals and

iterations. The when expression defines this agile smell is applied only to projects

that have more than 1 iteration. The then expression verifies whether there are

delivery intervals longer than the maximum allowed delivery interval. The params

property defines a parameter to indicate the maximum allowed delivery interval.

1 {

2 name: { ’AS02 Not Frequent Deliveries’ },

3 target: { PROJECT },

4 preconditions: {

5 boolean hasDeliveryIntervals = project.deliveryIntervals

6 boolean hasIterations = project.iterations

7 return hasDeliveryIntervals && hasIterations

8 },

9 when: {

10 boolean hasMoreThan1It = project.iterations.size() > 1

11 return hasMoreThan1It

12 },

13 then: {

14 def notCompliantDelivIntervals = project.deliveryIntervals.findAll {

15 it.duration.inDays() > param.maxDeliveryInterval

16 }

17 return !notCompliantDelivIntervals.isEmpty()

18 },

19 params: {

20 maxDeliveryInterval: 15

21 },

22 expressionLanguage: { Groovy }

23 }

Listing 6.4: Absence of Frequent Deliveries specification

81



6.5.3 Iteration Without a Deliverable specification

The specification of the agile smell Iteration Without a Deliverable is shown in

Listing 6.5. The target property is defined to Iteration. The precondition expression

specifies the iteration has to have associated tasks. The when expression indicates

the agile smell is always applied regardless of the context of the iteration. The

then expression finds deploy tasks in the iteration and the agile smell is detected

when there is no deploy task in the iteration. The last element, params, defines a

parameter to specify the name of the deploy task.

1 {

2 name: { ’AS03 Iteration Without A Deliverable’ },

3 target: { ITERATION },

4 preconditions: {

5 boolean hasTasks = iteration.tasks

6 return hasTasks

7 },

8 when: {

9 boolean always = true

10 return always

11 },

12 then: {

13 def deployTasks = iteration.tasks.findAll {

14 task -> task.implementedActivities.findAll{

15 activity -> activity.name == params.deployActivityName

16 }

17 }

18

19 boolean doesNotHaveADeployTask = deployTasks.isEmpty()

20 return doesNotHaveADeployTask

21 },

22 params: {

23 deployActivityName: ’Deploy New Version’

24 },

25 expressionLanguage: { Groovy }

26 }

Listing 6.5: Iteration Without a Deliverable specification

82



6.5.4 Goals Not Defined or Poorly Defined specification

The specification of the agile smell Goals Not Defined or Poorly Defined is shown

in Listing 6.6. The target property is defined to Iteration. The absence of the

precondition property means there is no precondition to this agile smell. The when

expression indicates the agile smell is always applied regardless of the context of the

iteration. The then expression assesses the iteration description and the agile smell

is detected when the iteration has no description or when the description does not

have the minimum number of characters required. The params property defines a

parameter to specify the minimum length of an iteration description.

1 {

2 name: { ’AS04 Goals Not Defined or Poorly Defined’ },

3 target: { ITERATION },

4 when: {

5 boolean always = true

6 return always

7 },

8 then: {

9 if (!iteration.description) {

10 boolean doesNotHaveAGoal = true

11 return doesNotHaveAGoal

12 }

13

14 def itDescLen = iteration.description.length()

15 def minDescLen = params.minimalDescriptionLength

16 boolean doesNotHaveAClearGoal = itDescLen <= minDescLen

17 return doesNotHaveAClearGoal

18 },

19 params: {

20 minimalDescriptionLength: 50

21 },

22 expressionLanguage: { Groovy }

23 }

Listing 6.6: Goals Not Defined or Poorly Defined specification

83



6.5.5 Iteration Without an Iteration Planning specification

The specification of the agile smell Iteration Without an Iteration Planning is shown

in Listing 6.7. The target property is defined to Iteration. The precondition expres-

sion specifies the iteration has to have a status and a list of associated tasks. The

when expression indicates the agile smell is applied only to open iterations. The

then expression finds planning tasks in the iteration and the agile smell is detected

when there is no planning task in the iteration. The last element, params, defines a

parameter to specify the name of the planning task.

1 {

2 name: { ’AS05 Iteration Without An Iteration Planning’ },

3 target: { ITERATION },

4 preconditions: {

5 boolean hasStatus = iteration.status

6 boolean hasTasks = iteration.tasks

7 return hasStatus && hasTasks

8 },

9 when: {

10 def isOpen = iteration.status == ’open’

11 return isOpen

12 },

13 then: {

14 def planningTasks = iteration.tasks.findAll {

15 task -> task.implementedActivities.findAll {

16 activity -> activity.name == params.planningActivityName

17 }

18 }

19

20 boolean doesNotHaveAPlanTask = planningTasks.isEmpty()

21 return doesNotHaveAPlanTask

22 },

23 params: {

24 planningActivityName: ’Iteration Planning’

25 },

26 expressionLanguage: { Groovy }

27 }

Listing 6.7: Iteration Without an Iteration Planning specification

84



6.5.6 Complex Tasks specification

Listing 6.8 presents the specification of the agile smell Complex Tasks. The target

property is defined to Task indicating the agile smell is applied to all tasks in the

agile project. The precondition expression indicates that the task should have a

defined effort. The when expression defines that the agile smell is always applied

regardless of the context of the task. The then expression assesses the task effort

and the agile smell is detected when the task effort is greater than the maximum

allowed effort. The params property defines a parameter to indicates the maximum

allowed task effort.

1 {

2 name: { ’AS06 Complex Task’ },

3 target: { TASK },

4 preconditions: {

5 boolean hasEstimatedEffort = task.effort?.estimated

6 return hasEstimatedEffort

7 }

8 when: {

9 boolean always = true

10 return always

11 },

12 then: {

13 def taskEffort = task.effort.estimated

14 def maxAllowedEffort = params.maxAllowedEffort

15 boolean isAComplexTask = taskEffor > maxAllowedEffort

16 return isAComplexTask

17 },

18 params: {

19 maxAllowedEffort: 8

20 },

21 expressionLanguage: { Groovy }

22 }

Listing 6.8: Complex Tasks specification

85



6.5.7 Iteration Without an Iteration Retrospective specifica-

tion

The specification of the agile smell Iteration Without an Iteration Retrospective is

presented in Listing 6.9. The target property is defined to Iteration. The precondi-

tion expression specifies the iteration has to have a status and a list of associated

tasks. The when expression indicates the agile smell is applied only to closed iter-

ations. The then expression finds retrospective tasks in the iteration and the agile

smell is detected when there is no retrospective task in the iteration. The last

element, params, defines a parameter to specify the name of the retrospective task.

1 {

2 name: { ’AS07 Iteration Without An Iteration Retrospective’ },

3 target: { ITERATION },

4 preconditions: {

5 boolean hasStatus = iteration.status

6 boolean hasTasks = iteration.tasks

7 return hasStatus && hasTasks

8 },

9 when: {

10 boolean isClosed = iteration.status == ’closed’

11 return isClosed

12 },

13 then: {

14 def retrospectiveTasks = iteration.tasks.findAll {

15 task -> task.implementedActivities.findAll {

16 activity -> activity.name == params.retrospectActivityName

17 }

18 }

19

20 boolean doesNotHaveARetrospetiveTask = retrospectiveTasks.isEmpty()

21 return doesNotHaveARetrospetiveTask

22 },

23 params: {

24 retrospectActivityName: ’Iteration Retrospective’

25 }

26 expressionLanguage: { Groovy }

27 }

Listing 6.9: Iteration Without an Iteration Retrospective specification

86



6.5.8 Absence of Timeboxed Iteration specification

Listing 6.10 presents the specification of the agile smell Absence of Timeboxed It-

eration. The target property is defined to Iteration. The preconditions property

specifies the iteration has to have an estimated and a real finish dates. The when

expression defines the agile smell is only applied to closed iteration. The then ex-

pression calculates the difference between the estimated and real fish dates and the

agile smell is detected when this difference is greater than the maximum difference

allowed. The last element, params, defines a parameter to indicate the maximum

allowed difference between the estimated and the real finish dates.

1 {

2 name: { ’AS08 Not Timeboxed Iterations’ },

3 target: { ITERATION },

4 preconditions: {

5 boolean hasFinishDate = iteration.finishDate

6 boolean hasEstimatedFinishDate = iteration.estimatedFinishDate

7 return hasFinishDate && hasEstimatedFinishDate

8 }

9 when: {

10 boolean isClosed = iteration.status == ’closed’

11 return isClosed

12 },

13 then: {

14 def finishDate = iteration.finishDate

15 def estimatedFinishDate = iteration.estimatedFinishDate

16 def diff = finishDate.minus(estimatedFinishDate)

17 boolean notTimeboxed = diff <= params.maxFinishVariation

18 return notTimeboxed

19 },

20 params: {

21 maxFinishVariation: 3

22 }

23 expressionLanguage: { Groovy }

24 }

Listing 6.10: Absence of Timeboxed Iteration specification

87



6.5.9 Iteration Started without an Estimated Effort specifica-

tion

The specification of the agile smell Iteration Started without an Estimated Effort is

shown in Listing 6.11. The target property is defined to Iteration. The precondition

expression specifies the iteration has to have a status and a list of associated tasks.

The when expression indicates the agile smell is only applied to open iterations. The

then expression assesses the tasks associated with the iteration and the agile smell

is detected when there is at least one task without an estimated effort.

1 {

2 name: { ’AS09 Iteration Started Without Estimated Effort’ },

3 target: { ITERATION },

4 preconditions: {

5 boolean hasStatus = iteration.status

6 boolean hasTasks = !iteration.tasks.isEmpty()

7 return hasStatus && hasTasks

8 },

9 when: {

10 boolean isOpen = iteration.status == ’open’

11 return isOpen

12 },

13 then: {

14 def notEstTasks = iteration.tasks.findAll {

15 !it.effort || !it.effort.estimated

16 }

17

18 boolean notAllTasksEstimated = !notEstTasks.isEmpty()

19 return notAllTasksEstimated

20 },

21 expressionLanguage: { Groovy }

22 }

Listing 6.11: Iteration Started without an Estimated Effort specification

88



6.5.10 Iteration Without an Iteration Review specification

The specification of the agile smell Iteration Without an Iteration Review is shown in

Listing 6.12. The target property is defined to Iteration. The precondition expression

specifies the iteration has to have a status and a list of associated tasks. The when

expression indicates the agile smell is applied only to closed iterations. The then

expression finds review tasks in the iteration and the agile smell is detected when

there is no review task in the iteration. The last element, params, defines a parameter

to specify the name of the review task.

1 {

2 name: { ’AS10 Iteration Without An Iteration Review’ },

3 target: { ITERATION },

4 when: {

5 boolean isClosed = iteration.status == ’closed’

6 return isClosed

7 },

8 then: {

9 def reviewTasks = iteration.tasks.findAll {

10 task -> task.implementedActivities.findAll{

11 activity -> activity.name == params.reviewActivity

12 }

13 }

14

15 boolean doesNotHaveAReviewTask = reviewTasks.isEmpty()

16 return doesNotHaveAReviewTask

17 },

18 params: {

19 reviewActivity: ’Iteration Review’

20 }

21 expressionLanguage: { Groovy }

22 }

Listing 6.12: Iteration Without an Iteration Review specification

89



6.6 Conclusion

This chapter focused on the Agile Smell Schema, one of the components of the

AgileQube Approach that enables the specification of agile smells into the approach.

This contribution, along with the Agile Project Metamodel , aids this research to

achieve the goal G2 (Define an agile smell representation approach). This schema

is used by a Programmer, who translates the textual descriptions of the agile smells

into specifications during the Specification and Configuration phases. We presented

the specification of the schema using the Data Model module of OpenAPI 3.0. The

Agile Smell Schema has 10 properties (Name, Description, Help, References, Target,

Preconditions,When, Then, and Expression Language) that provide a comprehensive

set of information about the agile smell, including its documentation, references to

agile practices and agile methods related to the agile smell, and the algorithms that

are ultimately used by the Detection Engine to detect the agile smell. We presented

an example to illustrate how to use the schema to specify an agile smell as well as

the specification of 10 agile smells from the Catalogue of Agile Smells using the Agile

Smell Schema.

90



Chapter 7

Supporting Infrastructure:

AgileQube App

This chapter presents a supporting infrastructure for the AgileQube Ap-

proach and is organized in the following sections: Introduction, Agile-

Qube App Architecture, AgileQube App Components, and Conclusion.

7.1 Introduction

The AgileQube App is the one of the contributions of this research and it aims to

answer the goal G4 (Define and implement a computational system). We believe that

developing such a infrastructure to support AA built on top of a solid conceptual

foundation such as ours, is a valuable contribution, not only to test our ideas but

also to motivate other researchers and practitioners in pursuing AA in their projects.

The AgileQube App supports three phases of the AgileQube Approach (Specification,

Configuration, Detection, and Validation) and has four components (Specification

Module, ETL Module, Detection Engine, and Validation Module) as depicted in

Figure 7.1.

Two key users interact with the AgileQube App: a Programmer that uses the

Specification Module in the phases Specification and Configuration and a Team Mem-

ber that performs the phase Validation through the Validation Module.

7.2 AgileQube App Architecture

The AgileQube App is a web based application built according to the software archi-

tecture shown in Figure 7.2. The architecture is divided into three layers: front ent,

91



Figure 7.1: AgileQube App overview

back end, and database. The front end layer is based on the framework Vue.jsTM1

which is an open source JavaScript framework focused on developing single page

applications (SPA) (MIKOWSKI and POWELL 2013 [204]). The back end layer

is based on the framework SpringTM2 that is an application framework and inver-

sion of control container for the Java platform focused on creating stand-alone and

preconfigured applications. The database layer is an instance of a PostgreSQLTM3

which is a free and open-source relational database management system (RDBMS).

7.3 AgileQube App Components

This section presents the main components that compose the AgileQube App.

7.3.1 Specification Module

As highlighted in Figure 7.3, the Specification Module aids the Programmer in the

execution of the Specification and Configuration phases.
1https://vuejs.org/
2https://spring.io/
3https://www.postgresql.org/

92



Figure 7.2: AgileQube App Architecture overview

Figure 7.3: Specification Module overview

This module provides the features that enable a Programmer to specify and

configure the agile smells using the Agile Smell Schema. Figures 7.4 and 7.5 show the

interfaces that compose the Specification Module. The agile smell specification form

(Figure 7.4) provides the following input entries that correspond to the properties in

the Agile Smell Schema: name, description, target, preconditions, when, then, and

params. The list of the agile smells specified and configured in the AgileQube App

is shown in Figure 7.5.

93



Figure 7.4: Agile smell specification form

7.3.2 ETL Module

ETL (Extracting, Transforming and Loading) is the general procedure of transfer

data from one or more sources to a destination system which may represent the data

differently from the source(s) or in a different context than the source(s) (VASSIL-

IADIS et al. 2002 [205]).

As depicted in Figure 7.6, the ETL Module in the AgileQube App is responsible

for: (a) extracting the data related to the assessed agile project from a project

management systems such as ZenHub4; (b) transforming the extracted data into the

format supported by the Detection Engine (which is the Agile Project Metamodel);

and (c) inputting the transformed data into the Detection Engine.
4https://www.zenhub.com/

94



Figure 7.5: Agile smells registered in the system

Figure 7.6: ETL Module overview

Since there is a vast number of Software Project Management Tools in the lit-

erature (SAJAD et al. 2016 [206]), the ETL Module has an important role in the

AgileQube Approach by isolating the complexity of dealing with the extraction of

data from different sources with different data representation formats. Hence, this

module was designed to load data from a wide range of tools such as ZenHub4,

95



HuBoard5, Waffle.io6, Redmine7, BaseCamp8, and Jira9. The implementation of

the ETL Module presented in this study supports the integration with the ZenHub

platform. This module is published as a separated and open-source project, the

Prisma ZenHub ETL10.

Project Management on GitHub

GitHub is the most popular web-based git repository platform for software develop-

ment. The platform has more than 30 million active users and hosts more than 100

million repositories (WARNER 2018 [207]). Besides the git repository (that is the

main feature and that gives the name for the platform), GitHub offers many other

native features such as: (a) Issue Tracker, (b) Web IDE, (c) Discussion Forum, and

(d) Wiki (BLEIEL 2016 [208]). The platform is also highly extensible and provides

a framework to aid the implementation of GitHub extensions. The GitHub market-

place11 has more than 3000 plugins and applications distributed over categories such

as: Project management, Chat, Code quality, Code review, Continuous integration,

and IDEs.

Project management on GitHub is usually achieved with the use of the Issue

Tracker feature (BLEIEL 2016 [208], ARORA et al. 2017 [209]) where an issue on

GitHub denotes a task in the project. A GitHub issue has a very simple structure:

name, description, and labels. Each issue can be associated with a milestone, which

is an easy way to schedule a deadline for when work should be completed by. Issues

can also be assigned to a developer (GitHub user).

Project Management on ZenHub

ZenHub is an extension for GitHub that enhances the project management capability

and fills some gaps present in the GitHub Issue Tracker (RACASAN 2020 [210]).

In addition to the properties inherited from GitHub issue (name, description, labels,

milestone, and assignee), a ZenHub issue has properties to represent information

such as:

1. the estimated effort to complete the issue;
5https://huboard.com/
6https://waffle.io//
7https://www.redmine.org/
8https://basecamp.com/
9https://www.atlassian.com/software/jira

10https://github.com/utelemaco/prisma-zenhub-etl/
11https://github.com/marketplace

96



Table 7.1: Mapping between the ZenHub/GitHub platforms and the Agile Project
Metamodel

GitHub ZenHub Agile Project Metamodel
issue issue task

issue.name issue.name task.name
issue’s labels issue’s labels task.priority
issue’s labels issue.estimate task.effort
milestone milestone iteration

2. the current state of the issue in the workflow; and

3. dependencies between the issues.

Additionally, the ZenHub platform provides a customizable dashboard that gives

an easy and comprehensive visualization of the issues workflow. Figure 7.7 shows

the dashboard of a project hosted on ZenHub.

Figure 7.7: ZenHub dashboard - an example

ZenHub/GitHub to Agile Project Metamodel

We use the issue and milestone elements to represent, respectively, the task and

iteration elements. Table 7.1 shows the mapping between GitHub/ZenHub elements

and Agile Project Metamodel elements.

Note that ZenHub and GitHub do not support the inclusion of custom properties

in their issue element. Instead of that, the platforms support the use of labels as

a way to customize project specific information. Thus, we use labels for mapping

some properties as detailed in Table 7.1. The priority of a task, for example, is

represented by a label that may assume values such as LOW, NORMAL, and HIGH.

The configuration form that indicates to the ETL module how to load and trans-

form data from ZenHub/GitHub is presented in Figure 7.8.

97



Figure 7.8: ETL Module form configuration for the ZenHub platform

7.3.3 Detection Engine

The Detection Engine appears as the core of the AgileQube App and has the respon-

sibility of executing the Detection phase proposed in the AgileQube Approach that

aims at identifying agile smells in a given agile project.

As depicted in Figure 7.9, the Detection Engine performs the Detection phase

receiving two inputs ((a) an instance of the Agile Project Metamodel that represents

the data from the assessed agile project and (b) a set of agile smell specifications

coded in the Agile Smell Schema) and producing an Agile Smells Report (prelimi-

nary).

During the Detection phase, each target element (the project, the iterations and

the tasks) are assessed and for each agile smell specification, the Detection Engine

calculates one of the following results:

1. Preconditions not met: this result indicates the preconditions to identify

the presence of the agile smell were not met and therefore it is not possible to

assert the presence or absence of the agile smell in the target element;

98



Figure 7.9: Detection Engine overview

2. Not applicable: the agile smell is not applicable to the target element;

3. OK: the agile smell was not detected in the target element; and

4. Not OK: the agile smell was detected in the target element.

Expressions Evaluation

The Detection Engine evaluates the expressions preconditions, when and then from

an agile smell specification to detect the occurrence of such agile smell as illustrated

in Figure 7.10.

If the preconditions expression evaluates to false, the algorithm finishes and

returns Preconditions not met. Otherwise, the when expression is evaluated. Thus,

the when expression is only evaluated when the preconditions for evaluation are met.

If the when expression evaluates to false, the algorithm finishes and returns Not

applicable. Otherwise, the then expression is evaluated. Thus, the then expression is

only evaluated when the previous expressions (preconditions and when) evaluate to

true. When the then expression evaluates to false, the agile smell is not detected

and the algorithm returns OK. Otherwise, when the then expression evaluates to

true, the agile smell is detected and the algorithm returns Not OK.

99



Figure 7.10: The expressions preconditions, when and then and the algorithm to
detect the occurrence of an agile smell

Agile Smells Report

After executing the Detection phase, the Detection Engine produces an Agile Smells

Report which is a report that indicates the agile smells that were detected in the

Project, Iteration and Task elements. Figure 7.11 shows an overview of the re-

port that is organized in 5 sections: (A) Summary ; (B) Agile Smells ; (C) Project ;

(D) Iterations ; and (E) Tasks.

The section Summary presents a bar chart that indicates the distribution of

occurrences per agile smell. Thus, it is possible to highlight the agile smells that

have more occurrences in the project.

The section Agile Smells depicts the information presented in the bar chart and

shows a table with the 10 agile smells and their corresponding occurrences in the

project. The agile smells on this table are presented on the following order: first the

agile smell related to the Project (AS 02 ), followed by the agile smells related to

the Iterations (AS 01 to AS 10 ) and finally the agile smell related to the Tasks (AS

06 ). The report also provides an expanded view for each agile smell that shows the

target elements associated with the given agile smell (see Figure 7.12). The target

elements are listed on the following order: first the elements where the agile smell

was detected, followed by the elements were the agile smell was not applicable and

finally the elements where the preconditions for detecting the agile smell were not

met.

The sections Project, Iterations and Tasks show the corresponding target ele-

ments and the occurrences of agile smells associated with each of them. The report

also provides an expanded view for each target element that lists the agile smells

occurrences associated to the given target element (see Figure 7.13). The expanded

view has three columns: (A) agile smell name; (B) result (not ok, not applicable or

100



Figure 7.11: Agile Smells Report overview

preconditions not met) and; (C) a description that gives a hint of the result. When

the result is not ok, the first column also shows a button that allows marking that

101



Figure 7.12: Agile Smells Report - Agile Smells section

Figure 7.13: Agile Smells Report - Iterations section

102



occurrence as a false-positive (the feature is discussed in the next section).

The sections Agile Smells, Project, Iterations and Tasks also have labels (ele-

ments F and G) that summarize the number of occurrences of agile smells as follows:

1. Agile Smells (red label): indicates the number of agile smells detected; 2. Not ap-

plicable (black label): indicates the number of cases where the agile smells were not

applicable; 3. Preconditions not met (orange label): the number of cases where the

preconditions to detect the agile smell were not met; and 4. No Agile Smells (green

label): the label is shown when the value of all previous labels are zero.

The Agile Smells Report (preliminary) is the input of the next and last phase,

Validation.

7.3.4 Validation Module

Figure 7.14: Validation Module overview

The last component of the AgileQube App is the Validation Module, a module

that is used in the Validation phase of the AgileQube Approach. As highlighted

in Figure 7.14, this module enables a Team Member (or someone who knows the

project context) to assess the Agile Smells Report (preliminary) and decide which

of the detected agile smells are false-positive. A false-positive occurrence of an agile

smell is a situation in which the agile smell is misdetected or the team deliberately

accepts the situation that produces the agile smell. For example, a project may have

some complex tasks that are difficult to break down into smaller tasks. In this case,

103



the Detection Engine identifies the agile smell Complex Tasks in the tasks whose

complexity exceeds the maximum limit defined in the specification. It is possible to

use the Validation Module to individually assess each occurrence of the agile smell

Complex Tasks and mark those unbreakable tasks as false-positive. The detection

of false-positive agile smells may occur in other situations such as:

(a) Not timeboxed iterations that generate occurrences of the agile smell Absence

of Timeboxed Iteration but that exceed the predefined duration for acceptable

reasons not mapped in the project management system;

(b) Low priority tasks started at the beginning of an iteration that generate occur-

rences of the agile smell Lower Priority Tasks Executed First but are assigned

to developers that do not have the skills required to perform high priority

tasks.

Although the Agile Smell Schema offers an expressive mechanism to specify the

agile smells and the use of parameters enables the configuration of context based

variables, it is almost inevitable that the Detection Engine detects false-positive agile

smells. The expertise and seniority of the team with agile development have a strong

influence on this stage of the approach. A team with little or no experience with

agile development tends to mark fewer items as false-positive. After all, applying

agile practices in a straightforward manner is more suitable for beginning teams. On

the other hand, a more experienced team is usually more flexible and creative in its

development processes. Some situations detected as agile smells were deliberately

introduced by the team. Thus, it is common for more experienced teams to mark

more agile smells as false-positive. Figure 7.13 shows the interface that enables a

Team Member to manually assess an occurrence of an agile smell and mark it as a

false-positive.

7.4 Conclusion

This chapter presented the AgileQube App, a computational system that is part of

the AgileQube Approach and that supports the phases Specification, Configuration,

Detection, and Validation.

The AgileQube App is composed of four components: (a) Specification Module,

(b) ETL Module, (c) Detection Engine, and (d) Validation Module. The Specifica-

tion Module enables a Programmer to specify and configure agile smells using the

104



Agile Smell Schema. The ETL Module loads data directly from a project man-

agement platform, transforms the loaded data into an instance of the Agile Project

Metamodel and sends the resulting data to the Detection Engine. The Detection

Engine identifies agile smells in an agile project and generates an Agile Smells Re-

port (preliminary). The Validation Module enables a Team Member to assess the

generated report and mark the false-positive occurrences of agile smells.

This contribution enables this research to address the goal G4 (Define and im-

plement a computational system) by providing a computational system to support

the AgileQube Approach.

105



Chapter 8

Case Studies

This chapter focuses on demonstrating and validating the AgileQube

Approach to automatically (or semi-automatically) detect agile smells in

agile projects and is organized in the following sections: Introduction,

Open-source projects hosted on GitHub, Open-source projects hosted on

ZenHub, Journal Submission System, Terminal Operational System, and

Conclusion.

8.1 Introduction

In the previous chapters, we have presented the AgileQube Approach (Chapter 3)

and its main components which include: the Catalogue of Agile Smells (Chapter 4),

the Agile Project Metamodel (Chapter 5), the Agile Smell Schema (Chapter 6), and

the AgileQube App (Chapter 7). We have also partially demonstrated and validated

the research goals as follows:

1. In Section 4.5, we presented the Catalogue of Agile Smells that fulfills the goal

G1 (Define a catalogue of agile smells);

2. In Section 6.5, we demonstrated how the Agile Project Metamodel and the

Agile Smell Schema enable the specification of many different agile smells and,

hence, validated the goal G2 (Define an agile smell representation approach).

This chapter presents the case studies that were conducted in the demonstration

and validation phase of this research and that aim to validate whether the proposed

approach is capable of automatically (or semi-automatically) detecting agile smells

in agile projects.

106



8.2 Case Studies Methodology

The methodology of the case studies were based on the guidelines proposed by

RUNESON and HÖST 2009 [52] and is organized in 5 major process phases:

Phase 1 - Case study design: the case is selected, objectives are defined and the

case study is planned.

Phase 2 - Preparation for data collection: procedures and protocols for data

collection are defined.

Phase 3 - Data Collection

Phase 4 - Analysis of collected data

Phase 5 - Reporting

8.3 Cases Selection

The selection of the agile projects that would be used in the case studies was a

challenging endeavour in this research. We have tried four strategies:

1. Open-source projects hosted on GitHub;

2. Open-source projects hosted on ZenHub;

3. Simulated agile project hosted on ZenHub; and

4. Private and real agile project (migrated to ZenHub).

The remainder of this chapter presents and discusses the results of these strate-

gies.

8.4 Open-source projects hosted on GitHub

Initially, our strategy was to conduct case studies using open-source (OS) projects

hosted on GitHub. As the platform is the most popular repository for open-source

projects (with more than 30 million active users and more than 100 million repos-

itories (WARNER 2018 [207])), this strategy would allow us to reach a potential

high number of projects.

We initiated this strategy by mapping the candidate projects, i.e., projects that

met the following criteria: (C1) the project should be hosted on GitHub; (C2) the

project should be public; (C3) the project should have issues (not only source-code);

107



and (C4) the issues should be organized in milestones. As detailed in Section 7.3.2,

GitHub issues and milestones are mapped, respectively, to tasks and iterations in

the Agile Project Metamodel . We used both the conventional Google search engine

and the GitHub search engine to search for projects that met the mapping criteria.

We have found and analyzed many projects but this strategy showed unsuccessful

for the following reasons:

1. The number of projects that met criteria C1 and C2 was high but few of these

projects met criteria C3 and C4;

2. The issues and milestones of the candidate projects did not have the infor-

mation required to perform the detection of agile smells. For example, the

issues on these projects usually have only a description and a few labels but

no information related to: (a) their priority, (b) effort estimation, (c) start

and finish dates, (d) workflow status, and (e) activity in the process. In this

scenario, the Agile Smells Report (preliminary) generated by the Detection

Engine contained only preconditions not met occurrences.

These limitations revealed that we needed a more effective way to find projects

hosted on GitHub that use the platform not only as source-code repository but

also as project management system. As this attempt stopped in phase 1 (Case

study design), we decided to try a second strategy: selecting open-source software

projects hosted on ZenHub to validate the proposed approach.

8.5 Open-source projects hosted on ZenHub

The second strategy consisted in selecting open-source software projects hosted on

ZenHub to validate the proposed approach. As the platform is focused on project

management (ZenHub is one of the most popular GitHub extensions for project

management (BUTLER and PAQUETTE 2016 [211])), we estimated that the issues

of the selected projects had the information required to perform the detection of agile

smells. To select the projects, we adapted the mapping criteria mentioned above as

follows: (C1) the project should be hosted on ZenHub; (C2) the project should be

public; (C3) the project should have issues; and (C4) the issues should be organized

in milestones. A challenge faced at the mapping projects phase is that ZenHub

does not provide a search engine to find projects hosted on the platform. Thus,

although the platform has more than 3000 public projects, it was only possible to

access them if you were a project member or if you had the ZenHub project access

108



code. To overcome this limitation, we contacted the ZenHub support team and

after explaining the purpose of our research, they provided us access to two public

projects:

1. Mozilla/Bedrock 1 (issues: approx. 2,000; milestones: approx. 20)

2. Google/Flutter 2 (issues: approx. 40,000; milestones: approx. 60)

The Mozilla/Bedrock project aims to maintain the mozilla.org website (Bedrock

is the code name of mozilla.org). The project had around 2,000 issues and 20

milestones when we performed the agility assessment. The ETL Module was able to

load the data from ZenHub and transform the extracted data to the Agile Project

Metamodel . A limitation observed is that the ZenHub API, after receiving a certain

number of requests from the same host in a short time period, blocked new requests

from that host for 60 seconds. During this time, all requests from the blocked host

receive an error response 403 Forbidden/API Rate limit reached. To overcome this

limitation, we programmed the ETL Module to “wait” for 60 seconds when this

situation happens. As the project had a high number of issues, the overall time

to load the data from ZenHub ranged between 30 to 40 minutes. Although this

research has not established any response time requirements, the data load time of

the Mozilla/Bedrock project was a threat to validate the AgileQube Approach. In

addition, similar to what was observed in GitHub projects, most of the project’s

issues did not contain the information required to detect agile smells.

The Google/Flutter project aims to maintain the framework of the same name

owned by Google to create mobile, web, and desktop applications from a single

codebase. The project had about 40,000 issues distributed over 60 milestones when

we performed the agility assessment. The ETL Module was able to load the data

from ZenHub and transform the extracted data to the Agile Project Metamodel

but, due to the API rate limitations above discussed, the overall time to load the

data ranged between 150 to 180 minutes. The data load time of the Google/Flutter

project made almost impracticable to use this project to validate the AgileQube

Approach.

The attempts of using the OS projects presented above have revealed unsuc-

cessful mostly because the issues of these projects did not have the information
1https://app.zenhub.com/workspaces/websites-team-59bd527821e82e515786ca73/

board?repos=1616665
2https://app.zenhub.com/workspaces/flutter-add-to-app-58ed3fad669ec5806a2cbbae/

board?repos=31792824

109



required to detect agile smells such as: 1. priority, 2. effort estimation, 3. start and

finish dates, 4. workflow status, and 5. activity in the process. The lack of this

information can be explained by the fact that OS projects, unlike conventional agile

projects, generally do not have a project plan, schedule or delivery list (MOCKUS

et al. 2000 [212]).

As we could not explore the use of the proposed approach to detect agile smells

in OS projects, we decided to apply other two strategies to validate the AgileQube

Approach: (a) use a simulated agile project, Journal Submission System, (Section

8.6) and (b) use a private and real agile project, Terminal Operational System,

(Section 8.7).

8.6 Journal Submission System

The third strategy in our endeavor to validate the AgileQube Approach was to con-

duct a case study with a simulated agile project. Given the challenges faced in our

attempts to use OS projects to demonstrate the proposed approach, such a strategy

was fundamental to enable the first experiment involving the use of the AgileQube

Approach to detect agile smells.

8.6.1 Phase 1: Case study design

Case Study Objective, Research Question, and validation criteria

The purpose of the case study is to answer the following research question:

RQ: How suitable is the AgileQube Approach to be used with the purpose of

identifying agile smells in the selected agile project?

To answer RQ, we observed two criteria:

1. The recall and precision of the AgileQube Approach;

2. The computational time to generate an Agile Smells Report .

We borrowed the precision and recall measures from the field of information

retrieval (GROSSMAN and FRIEDER 2012 [213]) and from studies aimed at evalu-

ating and comparing code smell detection tools (MOHA et al. 2009 [139], FERNAN-

DES et al. 2016 [214], PAIVA et al. 2017 [215]) and adapted them in the following

way:

110



(a) precision denotes the number of true agile smells identified among the detected

agile smells, while

(b) recall denotes the number of detected agile smells among the existing agile

smells.

precision =
|{existing agile smells} ∩ {detected agile smells}|

|{detected agile smells}|

recall =
|{existing agile smells} ∩ {detected agile smells}|

|{existing agile smells}|

Computational time refers only to the time spent in loading data from the project

management system and generating the Agile Smells Report (Detection phase).

Thus, the time spent in specifying the agile smells and configuring the project in

the AgileQube App (Specification and Configuration phases) is not considered.

Issues related to the usability of the approach or the applicability of the results

are not subject of this validation. These aspects, although relevant, will not be

considered in this research.

About the Journal Submission System project

We selected an agile project, that we named Journal Submission System, to validate

the detection of agile smells by the proposed approach according to the validation

protocol presented previously. The project aims the development of a web-based

Manuscrit Submission Management System (MSMS) that simplifies and facilitates

collecting, tracking and management of academic research paper submissions. Note

that the Journal Submission System does not represent a real project. Hence, there

is no development team or source-code.

The design of the Journal Submission System is based on the model proposed

in (JACKSI 2015 [216]) that has 6 main features and 3 key users:

Main features:

1. Authors Registration;

2. Manuscript Submission;

3. Invite Reviewers ;

4. Reply Invitation to Review ;

111



5. Review Manuscript ; and 6. Notify Editor and Authors

Key users:

1. Authors, 2. Editors, and 3. Reviewers

A detailed description of these features is not relevant to the analysis conducted

in this case study. For this reason, we have not included a full description of these

features and key users in this text.

Project Structure

Project structure, in the context of this experiment, denotes the iterations and

the tasks that compose the project. Since the Journal Submission System is a

simulated project, we had to create its project structure. To mitigate the bias of

this strategy, two independent Project Managers (PM) aided the definition of this

structure. These professionals have a large experience with agile development (more

than 10 years) and both are PMP certified3. One of them has a Master degree.

To define the project structure, we followed, along with the PMs, the steps below:

(1) We analyzed the project main features and broke them into more detailed

features;

(2) We defined the tasks necessary to implement each detailed feature;

(3) We included generic tasks such as those related to project setup, iteration

planning, iteration review and release deployment;

(4) We included tasks related to bugs and change requests; and

(5) We defined the iterations and distributed the tasks over them (AKA Iteration

Planning).

It is not usual to plan multiple iterations ahead in an agile project. However, as

this is a case study with a simulated project, we adopted this strategy to build the

simulation project structure required for data collection. These steps were performed

collaboratively through a Google Drive document. The resulting project structure

had a total of 109 tasks distributed over the following 7 iterations:

1. Sprint 1 - Setting up the project : 10 tasks/10 days;
3https://www.pmi.org/certifications/project-management-pmp

112



2. Sprint 2 - Authors registration: 10 tasks/10 days;

3. Sprint 3 - Manuscript submission: 15 issues/20 days;

4. Sprint 4 - Invite reviewers : 21 issues/15 days;

5. Sprint 5 - Reply invitation to review : 21 issues/13 days;

6. Sprint 6 - Manuscript review : 21 issues/17 days;

7. Sprint 7 - Authors notification: 12 issues/15 days.

Next, we created public projects on GitHub4 and ZenHub5 and entered the

project structure according to the approach proposed in Section 7.3.2. The 7 mile-

stones and the 109 issues that compose the project are shown in Table F.1 of Ap-

pendix F. The issue identifiers range from #50 to #212 with gaps between some

identifiers and, therefore, the greatest identifier does not represent the number of

issues.

Agile Smells Injection

To simulate the agile smells, we applied a technique based on bug injection, which

consists of deliberately injecting bugs into the source-code for evaluating the ef-

fectiveness of bug finders. Bug injection as a validating approach has been ex-

tensively explored in the domain of traditional programs (PEWNY and HOLZ

2016 [217], DOLAN-GAVITT et al. 2016 [218], BONETT et al., GHALEB and

PATTABIRAMAN 2018, 2020 [219, 220]).

We intentionally injected the following agile smells into the Journal Submission

System project:

(a) There are low priority tasks executed before high priority tasks in the iterations

Sprint 05 and Sprint 06 (Lower Priority Tasks Executed First);

(b) There is no deliverable in the iterations Sprint 01, Sprint 04 and Sprint 07

(Iteration Without a Deliverable);

(c) There is no goal defined for the iteration Sprint 02 and the goals defined for

the iterations Sprint 05 and Sprint 07 are too short (less than the required

length defined on the agile smell specification) (Goals Not Defined or Poorly

Defined);
4https://github.com/utelemaco/journal-submission-system/issues
5https://app.zenhub.com/workspaces/project-a-5f40b4508f8d67000f5fde0b

113



Table 8.1: Agile smells injected in the JSS project
Agile Smell Target Occurrences
(AS 01) Lower Priority Tasks Executed First Sprint 05 2

Sprint 06
(AS 02) Absence of Frequent Deliveries 0
(AS 03) Iteration Without a Deliverable Sprint 01 3

Sprint 04
Sprint 07

(AS 04) Goals Not Defined or Poorly Defined Sprint 02 3
Sprint 05
Sprint 07

(AS 05) Iteration Without an Iteration Planning Sprint 02 2
Sprint 06

(AS 06) Complex Tasks #51 #52 #53 9
#72 #92 #119
#148 #172 #202

(AS 07) Iteration Without an Iteration Retrospective Sprint 03 1
(AS 08) Absence of Timeboxed Iteration Sprint 01 2

Sprint 03
(AS 09) Iteration Started without an Estimated Effort Sprint 05 3

Sprint 06
Sprint 07

(AS 10) Iteration Without an Iteration Review Sprint 01 2
Sprint 04

Total 27

(d) There is no planning in the iterations Sprint 02 and Sprint 06 (Iteration

Without an Iteration Planning);

(e) There is no retrospective in the iteration Sprint 03 (Iteration Without an

Iteration Retrospective);

(f) The iterations Sprint 01 and Sprint 03 are not timeboxed (Absence of Time-

boxed Iteration);

(g) The iterations Sprint 05, Sprint 06 and Sprint 07 started with no estimated

tasks (Iteration Started without an Estimated Effort);

(h) There is no review in the iterations Sprint 01 and Sprint 04 (Iteration Without

an Iteration Review);

(i) There are complex tasks in the project: #51, #52, #53, #72, #92, #119,

#148, #172 and #202 (Complex Tasks);

A summary of the agile smells injected in the Journal Submission System project

are presented in Table 8.1.

8.6.2 Phase 2: Preparation for data collection

The preparation for data collection in this case study consists of indicating to the

ETL Module how to load the project data from ZenHub. The project configuration,

that is shown in Figure 8.1, contains the following information:

114



(A) Github and Zenhub identifiers and

API access tokens;

(B) Priorities Map;

(C) Status Map; and

(D) Process Activities Map.

There are four labels to represent task priorities (priority:very high, priority:high,

priority:normal, and priority:low), four status (New Issues and Backlog that map

to todo, Doing, and Done) and four labels to represent the activities from the soft-

ware process (deploy that corresponds to the activity Deploy New version, sprint

planning that corresponds to the activity Iteration Planning, sprint review that cor-

responds to Iteration Review, and sprint retrospective that corresponds to Iteration

Retrospective).

This configuration enables the ETL Module to load project data from ZenHub,

i.e. to access the platform, extract the data, transform the extracted data and send

the transformed data to the detection engine as described in Section 7.3.2.

Figure 8.1: JSS project configuration in the AgileQube App

115



8.6.3 Phase 3: Data Collection

After configuring the JSS project, the AgileQube App was able to load the project

data from ZenHub, detect the agile smells and generate an Agile Smells Report .

Figure 8.2 shows an overview of the generated report that can be divided in 5

sections: Summary, Agile Smells, Project, Iterations, and Tasks.

8.6.4 Phase 4: Analysis of collected data

The bar chart in the section Summary presents the distribution of agile smells

occurrences over the project and reveals that: (a) the agile smell AS 06 Complex

Tasks has the highest number of occurrences (9 in total); (b) the agile smells AS 03

Iteration Without a Deliverable, AS 04 Goals Not Defined or Poorly Defined and AS

09 Iteration Started without an Estimated Effort have 3 occurrences each; (c) the

agile smells AS 01 Lower Priority Tasks Executed First, AS 05 Iteration Without

an Iteration Planning, AS 08 Absence of Timeboxed Iteration and AS 10 Iteration

Without an Iteration Review have 2 occurrences each; (d) the agile smell AS 07

Iteration Without an Iteration Retrospective has 1 occurrence; and (e) the agile

smell AS 02 Absence of Frequent Deliveries has no occurrences.

Section Agile Smells presents the 10 agile smells and their corresponding occur-

rences. For example, the agile smell AS 01 Lower Priority Tasks Executed First has

2 occurrences and 4 not applicable cases. The agile smell AS 05 Iteration Without

an Iteration Planning has 2 occurrences. The agile smell AS 07 Iteration Without

an Iteration Retrospective has 1 occurrence and 3 not applicable cases. The agile

smell AS 02 Absence of Frequent Deliveries has 1 case where the preconditions to

detect the agile smell were not met. Section Agile Smells also shows in its title a

summary of the total numbers of detected agile smells (27 agile smells occurrences,

17 not applicable cases, 11 cases where the preconditions for detection were not

met).

An expanded view of section Agile Smells is shown in Figure 8.3. In the expanded

view, it is possible to check the target elements associated with each agile smell. For

example, the agile smell AS 01 Lower Priority Tasks Executed First is detected

in the iterations Sprint 06 and Sprint 05 but is considered not applicable for the

iterations Sprint 04, Sprint 03, Sprint 02 and Sprint 01. The agile smell AS 08

Absence of Timeboxed Iteration is detected in the iterations Sprint 03 and Sprint

01 but is considered not applicable for the iterations Sprint 07, Sprint 06, and Sprint

05.

116



Figure 8.2: Agile Smells Report overview of the JSS project

Section Project presents the agile smells whose target element is the Project.

Only the agile smell AS 02 Absence of Frequent Deliveries appears in this category.

117



Figure 8.3: Agile Smells Report of the JSS project - Agile Smells section

An expanded view of the section Project (see Figure 8.4) reveals the preconditions

to detect the agile smell AS 02 were not met since there is no delivery interval

information for the given project.

Section Iterations presents the 7 iterations and their corresponding agile smells.

For each iteration, it is shown labels indicating: the number of agile smells (Agile

Smells), the number of not applicable cases (Not Applicable), the number of cases

where the preconditions to detect the agile smell were not met (Preconditions not

met) or a label indicating all previous numbers are zero (No Agile Smells). For

example, iteration Sprint 06 has 3 agile smells and 3 not applicable cases. Iteration

Sprint 01 has 3 agile smells and 2 not applicable cases. Section Iterations also shows

a summary with the total numbers of detected agile smells in the iterations (18 agile

118



Figure 8.4: Agile Smells Report of the JSS project - Project section

smells occurrences and 17 not applicable cases).

An expanded view of section Iterations is shown in Figure 8.5. In the expanded

view, it is possible to see details of the agile smell occurrence such as: agile smell

name, result and description. For example, the three agile smells detected in it-

eration Sprint 06 are AS 01, AS 05, and AS 09. AS 01 was detected because a

normal priority task (#182 ) is being executed before a high priority task (#190 ).

AS 04 was detected because no planning activity was found in the iteration. AS 09

was detected because the iteration is open but the tasks #182, #189, #190, #191,

and #192 were not estimated. The agile smells AS 07, AS 08, and AS 10 are not

applicable for Sprint 06 because the iteration is not closed.

Section Tasks lists the 109 tasks and their corresponding agile smells. Similarly

to section Iterations, this section shows, for each task, labels indicating the number

of agile smells associated with the task (Agile Smells, Not applicable, Preconditions

not met, No Agile Smell). A pagination component is enabled when the list of tasks

reaches a specific number of elements. According to the section Tasks shown in

Figure 8.2, 2 not applicable cases were detected in tasks #205 and #204. No agile

smells were detected in the tasks #212, #211, #210, #209, #208, #207, #206, and

#203. Section Tasks also presents a summary with the total numbers of detected

agile smells in the tasks (9 agile smells occurrences and 10 preconditions not met

cases).

Figure 8.6 shows an expanded view of section Tasks. According to this snippet,

AS 06 was detected in task #202 because the task complexity is higher than the

maximum allowed complexity defined in the agile smell specification. For tasks

#192, #191, #190, and #189, the preconditions to detect AS 06 are not met

because these tasks have no defined effort. The remaining tasks have no agile smells.

8.6.5 Phase 5: Reporting

The AgileQube App found 27 agile smells in the Agile Smells Report which leads to

a precision of 100 percent and a recall of 100 percent. Additionally, the Agile Smells

Report indicate 17 situations where the agile smells were not applicable and 11 situa-

119



Figure 8.5: Agile Smells Report of the JSS project - Iterations section

120



Figure 8.6: Agile Smells Report of the JSS project - Tasks section

tion where the preconditions to detected the agile smells were not met. The average

computational time for the generation of the Agile Smells Report (preliminary) was

around 15 seconds.

The high recall and precision observed in this experiment revealed that, in this

scenario, the AgileQube App was able to detect all known agile smells and that all

detected agile smells were indeed an agile smell. Such efficiency and effectiveness is

explained by the size and controlled nature of the experiment. The project structure

(iterations and tasks) was relatively small and the agile smells were deliberately in-

jected in this structure. That was no surprise the lack of false-positive results in such

a simulated dataset. However, since this is a controlled experiment, these results

may not represent a solid conclusion and they reveal that more empirical experi-

ments may be needed to further investigate the ability of the proposed approach to

detect agile smells in agile projects.

To mitigate this threat, we conducted an additional case study using a private

and real agile project from a medium-sized software company.

8.7 Terminal Operational System

The fourth strategy to validate the AgileQube Approach was made with a private and

real agile project. Given the limitations in the results observed in the case study

with a simulated project, the execution of a case study with a private and real

project was important to provide us with further experimental evidence to validate

121



our approach.

8.7.1 Phase 1: Case study design

Case Study Objective, Research Question, and validation criteria

This case study has the same objective, research question and validation criteria

presented in Section 8.6.1.

Case selection

The selection of the private and real agile project considered the following crite-

ria: (a) the project should be a conventional project (not an open-source project);

(b) the project should have a well defined team; (c) the project should have a well

defined scope; (d) the project should have a project manager (or an equivalent role);

(e) the project should work through a well defined plan (with tasks and iterations);

(f) preferably conducted in a software company; and (g) none of the authors of this

research must have participated in the project.

Selecting such a project was particularly difficult because most of the compa-

nies that our research group usually cooperate with were facing an unprecedented

situation. The new social-distance policies had prevented us, for example, from con-

ducting face-to-face experiments to observe the occurrence of agile smells in loco.

Additionally, the feedback we have received from some companies suggested the

challenges of working in a fully virtual environment have made development teams

less available for academic experiments.

Despite these limitations, we were able to select a project from a medium-sized

software development organization to use as case study. The selected project aims

the development of a Terminal Operating System (TOS) for a large logistic company.

The TOS had about 8,000 tasks distributed over 125 iterations when we performed

the experiment.

Project Structure Preparation

The project structure preparation consisted in selecting a subset of iterations and

tasks to be subject of validation, extracting the selected project structure from the

proprietary project management system, and inputting the extracted project struc-

ture into a ZenHub project created for this experiment. Two experienced members

of the project were assigned to help us in the project structure preparation steps.

122



The members have been working in this project for more than 5 years and have

graduate degree in computer science.

The selected subset project structure had a total of 279 tasks distributed over 6

iterations:

1. Sprint 102 : 44 tasks/26 calendar days/18 business days;

2. Sprint 103 : 46 tasks/33 calendar days/20 business days;

3. Sprint 117 : 28 tasks/15 calendar days/11 business days;

4. Sprint 118 : 30 tasks/16 calendar days/11 business days;

5. Sprint 119 : 42 tasks/16 calendar days/12 business days;

6. Sprint 120 : 89 tasks/23 calendar days/15 business days.

The 6 iterations and the 279 tasks that compose the dataset selected to this case

study are shown in Table G.1 of Appendix G.

Then, we entered the extracted project structure into the GitHub6 and ZenHub7

projects that were created for this experiment.

Known Agile Smells

In order to calculate the precision and recall measures, we needed to know the real

agile smells present in the selected project structure. To identify occurrences of the

agile smells AS 01 to AS 10, we, along with the assigned team members, manually

analyzed the selected dataset. When in doubt, we referred to the Catalogue of Agile

Smells to decide whether the issue was actually an agile smell. The 61 agile smells

manually identified in this phase are presented in Table 8.2.

8.7.2 Phase 2: Preparation for data collection

The preparation for data collection in this case study consists of indicating to the

ETL Module how to load the project data from ZenHub. The project configuration,

that is shown in Figure 8.7, contains the following information:

(A) Github and Zenhub identifiers and

API access tokens;

(B) Priorities Map;

(C) Status Map; and

(D) Process Activities Map.

6https://github.com/utelemaco/tos-case-study-agileqube/issues
7https://app.zenhub.com/workspaces/tos-5f8faf96ca3c9b00160b8d1f/

board?repos=305730028

123



Table 8.2: Agile smells manually identified in the TOS project
Agile Smell Target Occurrences
(AS 01) Lower Priority Tasks Executed First Sprint 120 1
(AS 02) Absence of Frequent Deliveries Project 1
(AS 03) Iteration Without a Deliverable Sprint 117 3

Sprint 118
Sprint 119

(AS 04) Goals Not Defined or Poorly Defined Sprint 102 5
Sprint 117
Sprint 118
Sprint 119
Sprint 120

(AS 05) Iteration Without an Iteration Planning 0
(AS 06) Complex Tasks #27780 #27973 #29932 36

#29953 #29557 #30042
#30045 #30046 #30048
#30035 #29930 #29927
#30051 #30136 #30175
#30180 #30187 #30192
#30196 #30202 #30203
#30205 #30207 #30208
#30209 #30218 #30233
#30235 #30236 #30238
#30241 #30242 #30244
#30479 #30361 #30442

(AS 07) Iteration Without an Iteration Retrospective Sprint 102 4
Sprint 103
Sprint 117
Sprint 119

(AS 08) Absence of Timeboxed Iteration Sprint 102 4
Sprint 103
Sprint 117
Sprint 120

(AS 09) Iteration Started without an Estimated Effort Sprint 117 3
Sprint 118
Sprint 120

(AS 10) Iteration Without an Iteration Review Sprint 103 4
Sprint 117
Sprint 118
Sprint 119

Total 61

124



There are 5 labels to represent task priorities (priority:immediate, priority:very

high, priority:high, priority:normal, and priority:low), four status (New Issues and

Sprint Backlog that map to todo, In Progress that maps to doing, and Done) and four

labels to represent the activities from the software process (deploy that corresponds

to the activity Deploy New version, sprint planning that corresponds to the activity

Iteration Planning, sprint review that corresponds to Iteration Review, and sprint

retrospective that corresponds to Iteration Retrospective).

This configuration enables the ETL Module to load project data from ZenHub,

i.e. to access the platform, extract the data, transform the extracted data and send

the transformed data to the detection engine as described in Section 7.3.2.

Figure 8.7: TOS project configuration in the AgileQube App

8.7.3 Phase 3: Data Collection

After configuring the TOS project, the AgileQube App was able to load the project

data from ZenHub, detect the agile smells and generate an Agile Smells Report .

Figure 8.8 shows an overview of the generated report that can be divided in 5

125



sections: Summary, Agile Smells, Project, Iterations, and Tasks.

Figure 8.8: Agile Smells Report overview of TOS project

126



8.7.4 Phase 4: Analysis of collected data

The bar chart in the section Summary presents the distribution of agile smells occur-

rences over the project and reveals that: (a) the agile smell AS 06 has the highest

number of occurrences (42 in total); (b) the agile smells AS 03 Iteration Without

a Deliverable and AS 04 Goals Not Defined or Poorly Defined have 6 occurrences

each; (c) the agile smell AS 07 Iteration Without an Iteration Retrospective has 5

occurrences; (d) the agile smell AS 10 Iteration Without an Iteration Review has

4 occurrences; (e) the agile smell AS 08 Absence of Timeboxed Iteration has 3 oc-

currences; (f) the agile smells AS 01 Lower Priority Tasks Executed First and AS

09 Iteration Started without an Estimated Effort have 6 occurrences each; (g) the

agile smells AS 02 Absence of Frequent Deliveries and AS 05 Iteration Without an

Iteration Planning have no occurrences.

Section Agile Smells presents the 10 agile smells and their corresponding occur-

rences. For example, the agile smell AS 01 Lower Priority Tasks Executed First has

1 occurrence and 5 not applicable cases. The agile smell AS 05 Iteration Without an

Iteration Planning has no agile smell. The agile smell AS 07 Iteration Without an

Iteration Retrospective has 5 occurrences and 1 not applicable case. The summary

presented in the section title reveals: 68 agile smells occurrences, 13 not applicable

cases, and 89 cases where the preconditions for detection were not met.

An expanded view of section Agile Smells is shown in Figure 8.9. In the expanded

view, it is possible to check the target elements associated with each agile smell. For

example, the agile smell AS 01 Lower Priority Tasks Executed First is detected in

the iteration Sprint 120 but is considered not applicable for the iterations Sprint

119, Sprint 118, Sprint 117, Sprint 103, and Sprint 102. The agile smell AS 08

Absence of Timeboxed Iteration is detected in the iterations Sprint 117, Sprint 103,

and Sprint 102 but is considered not applicable for the iteration Sprint 120.

Section Project presents the agile smells whose target element is the Project.

Only the agile smell AS 02 Absence of Frequent Deliveries appears in this category.

An expanded view of the section Project (see Figure 8.10) reveals the preconditions

to detect the agile smell AS 02 were not met since there is no delivery interval

information for the given project.

Section Iterations presents the 6 iterations and their corresponding agile smells.

For each iteration, it is shown labels indicating: the number of agile smells (Agile

Smells), the number of not applicable cases (Not Applicable), the number of cases

where the preconditions to detect the agile smell were not met (Preconditions not

127



Figure 8.9: Agile Smells Report of TOS project - Agile Smells section

met) or a label indicating all previous numbers are zero (No Agile Smells). For

example, iteration Sprint 120 has 4 agile smells and 3 not applicable cases. Iteration

Sprint 117 has 5 agile smells and 2 not applicable cases. Section Iterations also

shows a summary with the total numbers of detected agile smells in the iterations

(26 agile smells occurrences and 13 not applicable cases).

An expanded view of section Iterations is shown in Figure 8.11.

In the expanded view, it is possible to see details of the agile smell occurrences

such as: agile smell name, result and description. For example, the 4 agile smells

detected in iteration Sprint 120 are AS 01, AS 03, AS 04, and AS 09. AS 01

Lower Priority Tasks Executed First was detected because a normal priority task

(#30480 ) was executed before a high priority task (#30224 ). AS 03 Iteration

128



Figure 8.10: Agile Smells Report of TOS project - Project section

Figure 8.11: Agile Smells Report of TOS project - Iterations section

129



Figure 8.12: Agile Smells Report of TOS project - Tasks section

Without a Deliverable was detected because no deployment activity was found in

the iteration. AS 04 Goals Not Defined or Poorly Defined was detected because

no goal was defined to the iteration. AS 09 Iteration Started without an Estimated

Effort was detected because the iteration is open but has 35 not estimated tasks.

The agile smells AS 07, AS 08, and AS 10 are not applicable for Sprint 120 because

the iteration is not closed.

Section Tasks lists the 279 tasks and their corresponding agile smells. Similarly

to section Iterations, this section shows, for each task, labels indicating the number

of agile smells associated with the task (Agile Smells, Not applicable, Preconditions

not met, No Agile Smell). A pagination component is enabled when the list of tasks

reaches a specific number of elements. According to the expanded view of the section

Tasks shown in Figure 8.12, the agile smell AS 06 Complex Tasks was detected in

the tasks #29557 and #30238 because their complexities (16 and 21 respectively)

are higher than the suggested complexity defined in the agile smell specification

(which is 8). For the tasks #30488, #30477, #30360, #30439, #30460, #30475,

and #30186, the preconditions to detect the agile smell AS 06 Complex Tasks were

not met because these tasks have no defined effort. No agile smells were detected

in the task #30296. Section Tasks also presents a summary of the total numbers of

detected agile smells in the tasks (42 agile smells occurrences and 88 preconditions

130



not met cases).

8.7.5 Phase 5: Reporting

The Agile Smells Report of the Terminal Operational System project reveals the

AgileQube App found 68 agile smells, 13 situations where the agile smells were not

applicable and 89 situation where the preconditions to detected the agile smells

were not met. The average computational time for the generation of the Agile

Smells Report (preliminary) ranged between 10 and 15 seconds.

Table 8.3 shows a summary of the agile smells, the assessed targets (project,

iterations and tasks) and their corresponding number of true positive (TP), false

positive (FP), true negative (TN), and false negative (FN). Where TP means the

agile smell was correctly detected, FP means the agile smell was incorrectly detected,

TN means the agile smell was correctly not detected, and FN means the agile smell

was incorrectly not detected. For readability purposes, we do not include in the

table target entities with a TN instance.

The precision and recall were calculated as follows:

(a) 57 of the detected 68 agile smells were indeed an agile smell

which leads to:

precision =
TP

(TP + FP)
=
57
68

= 83.8%

(b) 57 of 61 known agile smells were found which leads to:

recall =
TP

(TP + FN)
=
57
61

= 93.4%

One of the limitations to assess the results observed in this case study is the lack

of a framework or baseline to evaluate and compare the proposed approach with

other agile smell detection tools. As the term agile smell and its use to support the

assessment of agility are novelties proposed in this research, there are no other agile

smell detection tool described in the literature. However, the results in this case

study, although not conclusive, indicate that the proposed approach was capable of

131



Table 8.3: Agile smells in the TOS project (TP - True Positive; FP - False Positive;
TN - True Negative; FN - False Negative)

Agile Smell Target TP FP TN FN
(AS 01) Lower Priority Tasks Executed First Sprint 120 (TP) 1 0 5 0
(AS 02) Absence of Frequent Deliveries Project (FN) 0 0 0 1
(AS 03) Iteration Without a Deliverable Sprint 102 (FP) 3 3 0 0

Sprint 103 (FP)
Sprint 117 (TP)
Sprint 118 (TP)
Sprint 119 (TP)
Sprint 120 (FP)

(AS 04) Goals Not Defined or Poorly Defined Sprint 102 (TP) 5 1 0 0
Sprint 103 (FP)
Sprint 117 (TP)
Sprint 118 (TP)
Sprint 119 (TP)
Sprint 120 (TP)

(AS 05) Iteration Without an Iteration Planning 0 0 6 0
(AS 06) Complex Tasks #14687 (FP) #27780 (TP) 36 6 237 0

#27973 (TP) #29927 (TP)
#29930 (TP) #29932 (TP)
#29953 (TP) #29557 (TP)
#30042 (TP) #30044 (FP)
#30045 (TP) #30046 (TP)
#30048 (TP) #30035 (TP)
#30030 (FP) #30033 (FP)
#30051 (TP) #30136 (TP)
#30175 (TP) #30180 (TP)
#30187 (TP) #30192 (TP)
#30196 (TP) #30202 (TP)
#30203 (TP) #30205 (TP)
#30207 (TP) #30208 (TP)
#30209 (TP) #30218 (TP)
#30219 (FP) #30233 (TP)
#30234 (FP) #30235 (TP)
#30236 (TP) #30238 (TP)
#30241 (TP) #30242 (TP)
#30244 (TP) #30479 (TP)
#30361 (TP) #30442 (TP)

(AS 07) Iteration Without an Iteration Retrospective Sprint 102 (TP) 4 1 1 0
Sprint 103 (TP)
Sprint 117 (TP)
Sprint 118 (FP)
Sprint 119 (TP)

(AS 08) Absence of Timeboxed Iteration Sprint 102 (TP) 3 0 2 1
Sprint 103 (TP)
Sprint 117 (TP)
Sprint 120 (FN)

(AS 09) Iteration Started without an Estimated Effort Sprint 117 (FN) 1 0 3 2
Sprint 118 (FN)
Sprint 120 (TP)

(AS 10) Iteration Without an Iteration Review Sprint 103 (TP) 4 0 2 0
Sprint 117 (TP)
Sprint 118 (TP)
Sprint 119 (TP)

Total 57 11 256 4

132



detecting agile smells in a real agile project with reasonable performance (about 15

seconds) and high precision and recall (83.8% and 93.4%).

8.8 Threats to validity

This section discusses the threats to the validity of the case studies and the actions

that were taken to avoid them.

Construct Validity. This refers to what extent the experimental measures really

represent what is investigated according to the research questions. A threat in this

category regards the simulated project structure (i.e. the set of iterations and tasks)

that were elaborated to the case study Journal Submission System. To mitigate the

problem of building biased project structure, two independent Project Managers

aided the definition of the simulated project structure.

Another threat to construct validity was the identification of “true” occurrences

of agile smells that was necessary in the case study Terminal Operational System to

calculate the precision and recall measures. To identify those agile smells, we had

to manually analyze the project structure selected for the case study. To mitigate

the bias of this strategy, two independent members of the project were assigned to

help us in this step. Thus, we collaboratively identified the agile smells and when in

doubt, we referred to the Catalogue of Agile Smells to decide together whether the

issue was actually an agile smell.

Conclusion Validity. This aspect examines the extent to which conclusions de-

rived using experimental results is valid. A threat in this category regards the

number of case studies carried out in the research. Since we conducted a non-

representative number of experiments, the results observed in the presented case

studies are not conclusive. However, the results allowed us to observe that the pro-

posed approach was capable of identifying agile smells in the selected agile projects

with reasonable performance and high precision and recall.

8.9 Conclusion

In this chapter we presented the case studies that were conducted to validate the

AgileQube Approach. We tried 4 strategies to demonstrate the use of the proposed

approach: (a) OS projects hosted on GitHub; (b) OS projects hosted on ZenHub;

(c) a simulated agile project (Journal Submission System); and (d) a real agile

project (Terminal Operational System).

133



We started the demonstration and evaluation phase by exploring the use of

OS projects (hosted on GitHub and ZenHub) to validate the proposed approach.

The strategies involving OS projects would enable this research to reach a high

number of projects and hence demonstrate the use of the proposed approach in

different scenarios. However, these strategies revealed unsuccessful mostly because

OS projects, unlike conventional agile projects, generally do not have a project plan,

schedule or delivery list (MOCKUS et al. 2000 [212]) (that are fundamental data to

detect agile smells).

In the strategy using a simulated agile project, we created a project hosted on

ZenHub, that we named Journal Submission System, and, along with two indepen-

dent Project Managers, defined its project structure (i.e., its iterations and tasks).

We deliberately injected 27 agile smells into the JSS project structure. After con-

figuring the project, the AgileQube App was capable of loading the project data

from ZenHub and detecting all the injected agile smells. The approach achieved, in

this case study, a precision and recall of 100 percent and the average computation

time to load data from ZenHub and generate the Agile Smells Report was about 15

seconds.

In the strategy using a realistic agile project, we selected a project from a

medium-size company, that we renamed to Terminal Operational System, and, along

with two team members, selected a subset of the project structure to be used as

dataset for the case study. We analyzed the selected project structure and manually

detected 61 agile smells. Then we entered the project structure into the GitHub

and ZenHub projects created for the case study. After configuring the project, the

AgileQube App was capable of loading the project data from ZenHub and detecting

68 agile smells. The approach achieved, in this case study, a precision of 83.8 percent

and recall of 93.4 percent. The average computation time to load data from ZenHub

and generate the Agile Smells Report was about 15 seconds.

The results collected in the presented case studies, although not conclusive and

not representative, represent a clear indication that the proposed approach was

capable of detecting occurrences of the catalogued agile smells in the selected agile

projects.

134



Chapter 9

Conclusion

This chapter presents our final remarks about the presented thesis, in-

cluding a summary of the research, our main contributions, threads to

validity and future work.

9.1 Summary

This research had as its main topic agility assessment, which is an assessment to

reveal how a certain company has been adopting agile practices in its software

development process. Despite being an important tool to assist in the adoption

of agile development, the existing agility assessment solutions have some critical

gaps.

In the early stage of this research, we investigated the existing agility assess-

ment approaches and identified the following problems and limitations: P1 (Unclear

assessment criteria selection); P2 (Unclear assessment criteria representation); P3

(Lack of support for adding new assessment criterion); P4 (Manual data collection

and input); P5 (Lack of real-time assessment feedback); and P6 (Limited Scalability).

To address these problems, we extended the code smell term to the context of

agility assessment and introduced the agile smell term to denote a situation that

may impair the proper adoption of agile practices. Then, we proposed an agility

assessment approach that automatically (or semi-automatically) detects agile smells

in an agile project. To support the elaboration of such approach, we defined 4

specific goals: G1 (Define a catalogue of agile smells); G2 (Define an agile smell

representation approach); G3 (Define a data extraction approach); and G4 (Define

and implement a computational system).

In addition to the proposed approach, that we named AgileQube Approach, this

135



research produced 4 contributions: the Catalogue of Agile Smells , the Agile Project

Metamodel , the Agile Smell Schema, and the AgileQube App.

The AgileQube Approach is an agility assessment approach based on the DECOR

method proposed by MOHA et al. 2009 [139]. While DECOR focuses on automatic

detection of code smells in source code, the AgileQube Approach defines the steps

and the components for specification and automatic detection of agile smells in agile

projects. The approach has five phases: Identification, Specification, Configuration,

Detection, and Validation. In the Identification phase, the agile smells that will

be used in the following phases are selected. The Specification and Configuration

phases focus on translating the descriptions of the selected agile smells into sys-

tematic specifications. These phases are supported by a metamodel (Agile Project

Metamodel) and a specification language (Agile Smell Schema). In the Detection

phase, the agile smells are ultimately detected by a detection engine and, in the last

phase, Validation, these agile smells are manually analized and the false-positive

occurrences discarded.

The Catalogue of Agile Smells was elaborated in the Identification phase of the

approach in a three-step methodology: first, we conducted a literature review that

analyzed peer-reviewed and grey literature studies to identify the agile smells, i.e,

practices that may impair the adoption of an agile practice. Second, we conducted

a survey with practitioners to reveal the relevance of these agile smells from an

industry perspective. Finally, we organized the top 10 agile smells as a catalogue

in a structure that provides a clear definition of the agile smells and indicates its

name and description, which agile practices motivated the agile smell, and at least

one identification strategy that guides the specification of the agile smell.

The role of the Agile Project Metamodel in the approach is twofold: (a) it is

used to represent the data from the evaluated agile project and (b) it is used in the

specification of the agile smells. The metamodel was also elaborated in three steps:

first, we selected from the descriptions of the agile smells, the concepts necessary to

represent an agile project. Second, we conducted a literature review to investigate

how existing software development metamodels could be used to represent these

elements. Third, we proposed a metamodel that combines elements from existing

metamodels with new elements.

The Agile Smell Schema, along with the metamodel, enables the systematic

specification of the agile smells into the approach. The schema is composed of 10

elements that provide a comprehensive definition of an agile smell. These elements

can be divided into three categories: (a) elements to document the agile smell; (b)

136



elements to relate the agile smell with the agile practices and methods that motivated

the agile smell; and (c) elements that are used by the detection engine which include

3 expression elements that are ultimately used by the detection algorithm. We

presented the specifications of 10 agile smells from the Catalogue of Agile Smells

using the Agile Smell Schema.

The AgileQube App is a computational system that supports the Specification,

Configuration, Detection, and Validation phases of the AgileQube Approach. The

AgileQube App is composed of 4 main components:

(a) Specification Module, a module that aids the Programmer in the Specification

and Configuration phases and provides the interfaces to input the agile smells

into the application;

(b) ETL Module, a module that automatically collects data from a project man-

ager system, transforms the extracted data and inputs the translated data into

the Detection Engine. The current version of the ETL Module supports the

ZenHub platform;

(c) Detection Engine, a module responsible for performing the Detection phase,

i.e., detecting the agile smells in a given agile project. This module receives

two inputs ((a) the data from the assessed agile project represented in the

Agile Project Metamodel and (b) a set of agile smell specifications coded in

the Agile Smell Schema) and, for each target element and each agile smell

specification, it calculates one of the following results: (a) Preconditions not

met, (b) Not applicable, (c) OK, or (d) Not OK. At the end of this phase, this

module produces an Agile Smells Report (preliminary);

(d) Validation Module, a module that is used in the Validation phase and enables a

Team Member (or someone who knows the project context) to assess the Agile

Smells Report (preliminary) and decide which of the detected agile smells are

false-positive.

To validate the proposed approach and verify whether the research contributions

can be used to automatically detect agile smells in an agile project, we conducted

2 case studies. The first case study was a simulated agile project to develop a

Manuscrit Submission Management System (MSMS), that we named Journal Sub-

mission System. The project was hosted on ZenHub and had a total of 109 tasks

distributed over 7 iterations. We deliberately injected 27 agile smells into the project,

configured the ETL Module, and requested an agility assessment to the AgileQube

137



App that generated an Agile Smells Report (preliminary) with all injected agile

smells. The approach achieved, in this case study, a precision and recall of 100

percent and the average computation time to generate the Agile Smells Report was

about 15 seconds.

In the second case study, we selected a real agile project from a medium-size

software company that we renamed to Terminal Operational System. The project

management was hosted on a proprietary platform and had more than 8,000 tasks

distributed in about 100 iterations. We exported a subset of tasks from the propri-

etary platform and manually entered them into the GitHub and ZenHub projects

created to this case study. The selected subset had 279 tasks from 6 iterations. We

manually analyzed the selected project structure and found 61 agile smells . The

AgileQube App was able to load the project data from ZenHub and detect 68 agile

smells. The approach achieved, in this case study, a precision of 83.8 percent and

recall of 93.4 percent. The average computation time to generate the Agile Smells

Report was about 15 seconds.

The results obtained in the case studies, although not conclusive, indicate the

proposed approach was able to automatically detect agile smells in the observed

agile projects.

9.2 Contributions

The 4 contributions presented in this thesis (Catalogue of Agile Smells , Agile Project

Metamodel , Agile Smell Schema, and AgileQube App) aid somehow the research in

achieving its main goal which was to propose an agility assessment approach

that mitigates the problems P1 to P6 (described in Section 1.2), while

providing a solid foundation for defining an infrastructure to support

Agility Assessment. In the remainder of this section, we will analyze the re-

search contributions and discuss how the specific goals presented in Section 1.3 were

achieved.

Goal: G1. Define a catalogue of agile smells

The goal G1 (Define a catalogue of agile smells) was achieved by the contribution C2

(Catalogue of Agile Smells). The catalogue was produced in the Identification phase

of the AgileQube Approach and contains the agile smells that are used in the following

phases (Specification, Configuration, Detection, and Validation). To identify such

agile smells, we conducted a literature review and a survey with practitioners and

138



then we organized the top 10 agile smells as a catalogue. In the catalogue, for each

agile smell, we indicated the agile practices and methods that motivated the agile

smell and at least one strategy to identify the agile smell in an agile project. This

goal mitigates the problem P1 (Unclear assessment criteria selection). The relations

between P1, G1 and C2 are presented in Figure 9.1.

Figure 9.1: Goal: G1. Define a catalogue of agile smells

Goal: G2. Define an agile smell representation approach

Three contributions (C3 Agile Project Metamodel , C4 Agile Smell Schema, and C5

AgileQube App/Specification Module) aid the research achieving the goal G2 (De-

fine an agile smell representation approach). The Agile Project Metamodel and the

Agile Smell Schema contains, respectively, the metamodel and the specification lan-

guage that drive the specification of an agile smell. The Specification Module of

the AgileQube App provides the interfaces necessary to specify an agile smell in a

computational system. This goal addresses the problems P2 (Unclear assessment

criteria representation) and P3 (Lack of support for adding new assessment crite-

rion). The relations between P2, P3, G2, C3, C4, and C5 are presented in Figure

9.2.

Figure 9.2: Goal: G2. Define an agile smell representation approach

139



Goal: G3. Define a data extraction approach

The goal G3 (Define a data extraction approach) is supported by the contributions

C3 (Agile Project Metamodel) and C5 (AgileQube App/ETL Module) in the following

way: the Agile Project Metamodel is the model supported by the Detection Engine

while the ETL Module is responsible for extracting data from different sources (with

different formats) and converting the extracted data into the supported format. The

goal G3 mitigates the problems P4 (Manual data collection and input), P5 (Lack of

real-time assessment feedback), and P6 (Limited Scalability). The relations between

P4, P5, P6, G3, C3, and C5 are presented in Figure 9.3.

Figure 9.3: Goal: G3. Define a data extraction approach

Goal: G4. Define and implement a computational system

The AgileQube App and its 4 components (Specification Module, ETL Module, De-

tection Engine, and Validation Module) support the goal G4. This goal solves the

problem P6 (Limited Scalability). The relations between P6, G4, and C5 are pre-

sented in Figure 9.4.

9.3 Research Limitations

The limitations of this research were discussed throughout the chapters, specifically

when the threats to the validity of the contributions were presented. It is worth

mentioning the following limitations:

140



Figure 9.4: Goal: G4. Define and implement a computational system

Catalogue of Agile Smells

• When we conducted the literature review to identify agile smells, there was no

use of the term “smell” in the literature. We mitigated this issue by defining

objective criteria to identify in the selected papers situations that may impair

the adoption of agile practices.

• A significant part of the body of knowledge about Agile Development is created

by software engineering practitioners that usually do not publish in academic

forums [179]. Hence, we decided to include grey literature sources (non-peer-

reviewed material) in literature review to identify agile smells.

• The survey sampling size is not representative enough to allow us to affirm

that the set of identified agile smells represents the most relevant ones. So,

there may be some variation in the ranked list if we conduct a survey with a

more representative sampling.

Agile Project Metamodel

• Although the Agile Project Metamodel can be used in a wide range of research

related to Agile Development, the motivation to identify such a model came

from the need to represent the data from an agile project for the purposes

of agility assessment. We are not claiming the metamodel can represent all

aspects from an agile project and even the possible inclusion of new agile

smells into the AgileQube Approach may reveal the need for new concepts in

the metamodel.

141



AgileQube App

• Although the ETL Module was designed to enable the approach to collect data

from a wide range of project management tools such as ZenHub, HuBoard,

Waffle.io, Redmine, BaseCamp, and Jira, the implementation presented in

this study supports only the ZenHub platform.

Case Studies

• The difficulty of finding open access projects hosted on GitHub or ZenHub

that could be used as case studies to validate whether the proposed approach

can automatically detect agile smells;

• The difficulty of conducting experimental studies to assess the usability and

applicability of proposed approach.

9.4 Future Work

The future work intended to be done includes the following:

1. Technical debts - Investigate the potential technical debts caused by an agile

smell. This includes identifying the potential technical debt, understanding

how to measure it, and including it in the catalogue and in the schema.

2. New Agile Smells - continue the evolution of the Catalogue of Agile Smells

by identifying and cataloguing new agile smells.

3. Survey with a representative sampling - Conduct a survey with a more

representative sampling in order to confirm (or adjust) the rank of the most

relevant agile smells presented in this research. Such a survey mitigates the

conclusion validity threat present in this research.

4. New Empirical Studies – Conduct empirical studies to assess the aplicabil-

ity and usability of the proposed approach.

5. Agile Smells and Agility Maturity Models - Investigate the potential

relationship between the agile smells and an agility maturity model.

6. Evolve the ETL Module - Evolve the ETL Module to support other project

management platforms besides ZenHub.

142



Bibliography

[1] PEFFERS, K., TUUNANEN, T., ROTHENBERGER, M., et al. “A design
science research methodology for information systems research”, J. Man-
age. Inf. Syst., v. 24, n. 3, pp. 45–77, dez. 2007. ISSN: 0742-1222. doi:
10.2753/MIS0742-1222240302. Available at: <http://dx.doi.org/
10.2753/MIS0742-1222240302>.

[2] OMG. Business process model and notation (BPMN). Final specification, OMG,
jan 2011. http://www.omg.org/spec/BPMN/2.0/.

[3] RAO, K. N., NAIDU, G. K., CHAKKA, P. “A study of the agile software
development methods, applicability and implications in industry”, Inter-
national Journal of Software Engineering and its applications, v. 5, n. 2,
pp. 35–45, 2011.

[4] MEYER, B. Agile!: the good, the hype and the ugly, v. 9783319051550, Agile!:
the good, the hype and the ugly. Cham, Spring, 2014.

[5] TRIPP, J., ARMSTRONG, D. “Agile methodologies: organizational adoption
motives, tailoring, and performance”, Journal of Computer Information
Systems, v. 58, pp. 1–10, 10 2016. doi: 10.1080/08874417.2016.1220240.

[6] TARWANI, S., CHUG, A. “Agile methodologies in software maintenance: A
systematic review”, Informatica, v. 40, n. 4, 2016.

[7] VERSIONONE. “The 4th annual state of agile reportTM 2009”.
https://stateofagile.com/, 2009. Accessed: 2020-09-25.

[8] VERSIONONE. “The 14th annual state of agile reportTM 2020”.
https://stateofagile.com/, 2020. Accessed: 2020-09-25.

[9] SIDKY, A., ARTHUR, J., BOHNER, S. “A disciplined approach to adopting
agile practices: the agile adoption framework”, Innovations in systems and
software engineering, v. 3, n. 3, pp. 203–216, 2007.

143



[10] QUMER, A., HENDERSON-SELLERS, B. “A framework to support the eval-
uation, adoption and improvement of agile methods in practice”, Journal
of Systems and Software, v. 81, n. 11, pp. 1899–1919, 2008.

[11] ELSSAMADISY, A. Agile Adoption Patterns: A Roadmap to Organizational
Success (Adobe ebook). Addison-Wesley Professional, 2008.

[12] ROHUNEN, A., RODRIGUEZ, P., KUVAJA, P., et al. “Approaches to ag-
ile adoption in large settings: a comparison of the results from a litera-
ture analysis and an industrial inventory”. In: International Conference
on Product Focused Software Process Improvement, pp. 77–91. Springer,
2010.

[13] HAJJDIAB, H., TALEB, A. “Adopting Agile Software Development: Issues and
Challenges”, International Journal of Managing Value and Supply Chains,
v. 2, pp. 1–10, 09 2011. doi: 10.5121/ijmvsc.2011.2301.

[14] BARLOW, J. B., GIBONEY, J., KEITH, M. J., et al. “Overview and guid-
ance on agile development in large organizations”, Communications of the
Association for Information Systems, v. 29, n. 2, pp. 25–44, 2011.

[15] GANDOMANI, T. J., NAFCHI, M. Z. “An empirically-developed framework
for Agile transition and adoption: A Grounded Theory approach”, Journal
of Systems and Software, v. 107, pp. 204–219, 2015.

[16] DE SOUZA BERMEJO, P., ZAMBALDE, A., TONELLI, A., et al. “Agile
Principles and Achievement of Success in Software Development: A Quan-
titative Study in Brazilian Organizations”, Procedia Technology, v. 16,
pp. 718–727, 12 2014. doi: 10.1016/j.protcy.2014.10.021.

[17] ELORANTA, V.-P., KOSKIMIES, K., MIKKONEN, T. “Exploring ScrumBut
– An Empirical Study of Scrum Anti-Patterns”, Information and Software
Technology, v. 74, 12 2015. doi: 10.1016/j.infsof.2015.12.003.

[18] LÓPEZ-MARTÍNEZ, J., JUÁREZ-RAMÍREZ, R., HUERTAS, C., et al. “Prob-
lems in the adoption of agile-scrum methodologies: A systematic literature
review”. In: 2016 4th international conference in software engineering re-
search and innovation (conisoft), pp. 141–148. IEEE, 2016.

[19] GREGORY, P., BARROCA, L., SHARP, H., et al. “The chal-
lenges that challenge: Engaging with agile practitioners’ con-
cerns”, Information and Software Technology, v. 77, pp. 92 – 104,
2016. ISSN: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2016.04.

144



006. Available at: <http://www.sciencedirect.com/science/
article/pii/S0950584916300623>.

[20] AMBLER, S. “IT project success rates survey results”.
http://www.ambysoft.com/surveys/success2018.html, 2018. Accessed:
2019-10-01.

[21] ALLIANCE, S. “Learn about scrum”. https://www.scrumalliance.-org/why-
scrum, 2016. Accessed: 2017-12-01.

[22] OZCAN-TOP, O., DEMIRÖRS, O. “A Reference Model for Software Agility
Assessment: AgilityMod”. In: Rout, T., O’Connor, R. V., Dorling, A.
(Eds.), Software Process Improvement and Capability Determination, pp.
145–158, Cham, 2015. Springer International Publishing. ISBN: 978-3-
319-19860-6.

[23] COCKBURN, A. Agile software development. Boston, MA, USA, Addison-
Wesley Longman Publishing Co., Inc., 2002. ISBN: 0-201-69969-9.

[24] HIGHSMITH, III, J. A. Adaptive software development: a collaborative ap-
proach to managing complex systems. New York, NY, USA, Dorset House
Publishing Co., Inc., 2000. ISBN: 0-932633-40-4.

[25] PACKLICK, J. “The agile maturity map a goal oriented approach to agile
improvement”. In: Agile 2007 (AGILE 2007), pp. 266–271. IEEE, 2007.

[26] ADALI, O. E., ÖZCAN-TOP, Ö., DEMIRÖRS, O. “Evaluation of Agility As-
sessment Tools: A Multiple Case Study”. In: Clarke, P. M., O’Connor,
R. V., Rout, T., et al. (Eds.), Software Process Improvement and Ca-
pability Determination, pp. 135–149, Cham, 2016. Springer International
Publishing. ISBN: 978-3-319-38980-6.

[27] SOUNDARARAJAN, S., ARTHUR, J. D. “A structured framework for assess-
ing the “goodness” of agile methods”. In: 2011 18th IEEE International
Conference and Workshops on Engineering of Computer-Based Systems,
pp. 14–23. IEEE, 2011.

[28] STORM-CONSULTING. Agile Enterprise Survey, 2008. Avail-
able at: <http://www.storm-consulting.com/
agile-enterprise-survey/>.

[29] KREBS, B. Agile Journey Index, 2011. Available at: <http://www.
agiledimensions.com/blog/>.

145



[30] LAGESTEE, L. Agile Health Dashboard, 2012. Available
at: <http://illustratedagile.com/2012/09/25/
how-to-measure-team-agility/>.

[31] INFOTECH. Agile Process Assessment Tool, 2013. Avail-
able at: <https://www.infotech.com/research/
it-agile-process-assessment-tool>.

[32] COHN, M., RUBIN, K. Comparative Agile, 2015. Available
at: <https://www.comparativeagility.com/capabilities/
agile-assessment>.

[33] TOUSIGNANT, D. Agile Maturity Assessment, 2019. Available at: <https:
//capeprojectmanagement.com/individual-assessment/>.

[34] TURETKEN, O., ELGAMMAL, A., VAN DEN HEUVEL, W., et al. “Captur-
ing Compliance Requirements: A Pattern-Based Approach”, IEEE Soft-
ware, v. 29, n. 3, pp. 28–36, 2012.

[35] LY, L. T., MAGGI, F. M., MONTALI, M., et al. “Compli-
ance monitoring in business processes: functionalities, application,
and tool-support”, Information Systems, v. 54, pp. 209 – 234,
2015. ISSN: 0306-4379. doi: https://doi.org/10.1016/j.is.2015.02.
007. Available at: <http://www.sciencedirect.com/science/
article/pii/S0306437915000459>.

[36] ADALI, O. E., ÖZCAN-TOP, Ö., DEMIRÖRS, O. “Evaluation of agility as-
sessment tools: a multiple case study”. In: International Conference on
Software Process Improvement and Capability Determination, pp. 135–
149. Springer, 2016.

[37] MCCALLA, M., GIFFORD, J. Lean Agile Intelligence, 2016. Available at:
<https://www.leanagileintelligence.com/>.

[38] MOHA, N., GUEHENEUC, Y., LEDUC, P. “Automatic Generation of Detec-
tion Algorithms for Design Defects”. In: 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE’06), pp. 297–300,
2006.

[39] AGILE, S. Team and Technical Agility Self-Assessment, 2012. Available at:
<https://www.scaledagileframework.com/metrics/#T4>.

146



[40] ELIASSEN-GROUP. Enterprise Agility Maturity Matrix,
2013. Available at: <http://blog.eliassen.com/
introducing-the-enterprise-agility-maturity-matrix>.

[41] ULLAH, K. W., AHMED, A. S., YLITALO, J. “Towards Building an Au-
tomated Security Compliance Tool for the Cloud”. In: 2013 12th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications, pp. 1587–1593, 2013.

[42] DIMYADI, J., AMOR, R. “Automating Conventional Compliance Audit Pro-
cesses”. In: Product Lifecycle Management and the Industry of the Future,
pp. 324–334, Cham, 2017. Springer International Publishing.

[43] COLLIER, B., DEMARCO, T., FEAREY, P. “A defined process for project
post mortem review”, IEEE Software, v. 13, n. 4, pp. 65–72, 1996. ISSN:
0740-7459.

[44] PARK, J. S., SPETKA, E., RASHEED, H., et al. “Near-Real-Time Cloud
Auditing for Rapid Response”. In: 2012 26th International Conference
on Advanced Information Networking and Applications Workshops, pp.
1252–1257, 2012.

[45] FOWLER, M., BECK, K., BRANT, J., et al. Refactoring: improving the design
of existing code. Addison-Wesley Professional, 1999.

[46] TELEMACO, U., OLIVEIRA, T. “BPMN-R: An extension to BPMN to Rep-
resent Software Process Rules: doctoral symposium”. In: XV Workshop
de Teses e Dissertações em Qualidade de Software (WTDQS 2017), 2017.

[47] TELEMACO, U., OLIVEIRA, T., ALENCAR, P., et al. “A catalog of bad agile
smells for agility assessment”. In: Proceedings of the 2019 Ibero-American
Conference on Software Engineering, CIbSE 2019, pp. 30–43, 2019.

[48] TELEMACO, U., OLIVEIRA, T., ALENCAR, P., et al. “A metamodel for
representing agile software development projects”. In: Proceedings of the
2019 Ibero-American Conference on Software Engineering, CIbSE 2019,
2019.

[49] TELEMACO, U., OLIVEIRA, T., ALENCAR, P., et al. “A Catalogue of Agile
Smells for Agility Assessment”, IEEE Access, v. 8, pp. 79239–79259, 2020.

[50] LU, R., SADIQ, S., GOVERNATORI, G. “Compliance aware business process
design”. In: Business Process Management Workshops, Springer Nature,
pp. 120–131, 2008.

147



[51] DE MELLO, R. M., MOTTA, R. C., TRAVASSOS, G. H. “A Checklist-Based
Inspection Technique for Business Process Models”. In: International Con-
ference on Business Process Management, pp. 108–123. Springer, 2016.

[52] RUNESON, P., HÖST, M. “Guidelines for conducting and reporting case study
research in software engineering”, Empirical software engineering, v. 14,
n. 2, pp. 131, 2009.

[53] BECK, K., BEEDLE, M., VAN BENNEKUM, A., et al. “Manifesto for agile
software development”. http://www.agilemanifesto.org/, 2001.

[54] LARMAN, C., BASILI, V. R. “Iterative and incremental developments. a brief
history”, Computer, v. 36, n. 6, pp. 47–56, 2003.

[55] BECK, K. “Embracing change with extreme programming”, Computer, v. 32,
n. 10, pp. 70–77, 1999.

[56] BECK, K. Extreme programming explained: embrace change. Boston, MA,
USA, Addison-Wesley Longman Publishing Co., Inc., 2000. ISBN: 0-201-
61641-6.

[57] CUNNINGHAM, W. “Extreme programming”. http://www.-
extremeprogramming.org/, 1999. Accessed: 2017-12-01.

[58] SCHWABER, K. “SCRUM development process”. In: Business Object Design
and Implementation, Springer London, pp. 117–134, 1997.

[59] SCHWABER, K., BEEDLE, M. Agile software development with scrum. 1st
ed. Upper Saddle River, NJ, USA, Prentice Hall PTR, 2001. ISBN:
0130676349.

[60] BERTEIG, M. “Rules of scrum”. http://www.agileadvice.com/rules-of-scrum/,
2015. Accessed: 2017-12-01.

[61] PALMER, S. R., FELSING, M. A practical guide to feature-driven development.
Pearson Education, 2001. ISBN: 0130676152.

[62] LUCA, J. D. “Feature driven development FDD”. http://www.-
featuredrivendevelopment.com/, 1999. Accessed: 2017-12-01.

[63] STAPLETON, J. Dynamic systems development method: the method in prac-
tice. Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc.,
1997. ISBN: 0201178893.

148



[64] ABRAHAMSSON, P., SALO, O., RONKAINEN, J., et al. Agile software de-
velopment methods - review and analysis. Relatório Técnico 478, VTT
Publications, Espoo, Finland, 2002.

[65] TAKEUCHI, H., NONAKA, I. The New New Product Development Game,
1986.

[66] ABRANTES, J. F., TRAVASSOS, G. H. “Common agile practices in software
processes”. In: 2011 International Symposium on Empirical Software En-
gineering and Measurement, pp. 355–358, Sept 2011.

[67] FRASER, S., BOEHM, B., JÄRKVIK, J., et al. “How Do Agile/XP Devel-
opment Methods Affect Companies?” In: Abrahamsson, P., Marchesi,
M., Succi, G. (Eds.), Extreme Programming and Agile Processes in Soft-
ware Engineering, pp. 225–228, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg. ISBN: 978-3-540-35095-8.

[68] GANDOMANI, T. J., ZULZALIL, H., GHANI, A. A. A., et al. “Obstacles in
moving to agile software development methods at a glance”, Journal of
Computer Science, v. 9, n. 5, pp. 620, 2013.

[69] GANDOMANI, T. J., ZULZALIL, H., GHANI, A., et al. “Important consid-
erations for agile software development methods governance.” Journal of
Theoretical & Applied Information Technology, v. 55, n. 3, pp. 345–351,
2013.

[70] SAHOTA, M. An Agile Adoption and Transformation Survival Guide. Lulu.
com, 2012.

[71] AMBLER, S. W., LINES, M. Disciplined agile delivery: a practitioner’s guide
to agile software delivery in the enterprise. IBM press, 2012.

[72] YATZECK, E. “A corporate agile 10-point checklist”.
http://pagilista.blogspot.com/2012/12/a-corporate-agile-10-point-
checklist.html, Dec 2012. Accessed: 2019-06-30.

[73] WILLIAMS, L., RUBIN, K., COHN, M. “Driving process improvement via
comparative agility assessment”. In: 2010 Agile Conference, pp. 3–10.
IEEE, 2010.

[74] SFIRLOGEA, S., GEORGESCU, F. Retropoly, 2017. Available at: <https:
//www.agilepractice.eu/retropoly/>.

[75] LINDERS, B. The Agile Self-assessment Game. Leanpub, 2019.

149



[76] JANLÉN, J. Team Barometer, 2014. Available at:
<https://blog.crisp.se/2014/01/30/jimmyjanlen/
team-barometer-self-evaluation-tool>.

[77] BRITSCH, M. Agility Questionnaire, 2017. Available at:
<https://thedigitalbusinessanalyst.co.uk/
agility-questionnaire-130b03133b98>.

[78] ACHOUIANTZ, C. Depth of Kanban, 2013. Available at:
<http://leanagileprojects.blogspot.com/2013/03/
depth-of-kanban-good-coaching-tool.html>.

[79] YERET, Y. Lean/Agile Depth Assessment Checklist A3, 2013.
Available at: <https://www.slideshare.net/yyeret/
leanagile-depth-assessment>.

[80] ALBRECHT, K., EDDINGS, S. Measure.team, 2020. Available at: <https:
//measure.team/>.

[81] KNIBERG, H. “Scrum checklist”. http://www.crisp.se/scrum/checklist, 2012.
Accessed: 2019-06-30.

[82] WATERS, K. How agile are you? ((Take This 42 Point Test)),
2008. Available at: <https://www.101ways.com/2008/01/21/
how-agile-are-you-take-this-42-point-test/>.

[83] HERMIDA, S. “A better team”. http://www.abetterteam.org/, 2009. Accessed:
2019-06-30.

[84] BONAMASSA, M. Agile Adoption Interview, 2018. Available at: <https:
//pladcloud.typeform.com/to/HjcVKG>.

[85] HOFFMANN, R., BONA, T., PETIT, S. Agile Alert, 2018. Available at:
<https://huz.de/en/agile-alert/>.

[86] NOWINSKI, P. Agile Assessment, 2016. Available at: <http://
piotr-nowinski.pl/agile-assessment/>.

[87] LEWIS, R., WENDLER, R. Agile Enterprise Survey, 2016.
Available at: <http://www.storm-consulting.com/
agile-enterprise-survey/>.

[88] SFIRLOGEA, S., GEORGESCU, F. Agile Excellerate, 2020. Available at:
<https://www.agilepractice.eu/agile-excellerate/>.

150



[89] BPMI, B. I. Agile Skills Self-Assessment, 2019. Available at: <https://
www.bpminstitute.org/skills-self-assessments#>.

[90] GUNNERSON, E. Agile Team Evaluation, 2015. Available at:
<https://docs.microsoft.com/en-us/archive/blogs/
ericgu/agile-team-evaluation>.

[91] CAMPBELL, B., MACIVER, R. “Agility maturity self assessment”.
http://www.robbiemaciver.com/documents/presentations/A2010-
Agile%20Maturity%20Self-Assessment.pdf, 2010. Accessed: 2019-06-30.

[92] RIBEIRO, E. “Agility maturity self assessment survey”.
https://beyondleanagile.com/2015/12/08/agile-maturity-self-assessment-
survey-published-at-scrumalliance/, 2015. Accessed: 2019-06-30.

[93] HENDRICKSON, E. Back-of-a-Napkin Agile Assessment, 2008.
Available at: <https://testobsessed.com/2008/11/
back-of-a-napkin-agile-assessment/>.

[94] BALBES, M. How Agile Are You? Let’s Actually Measure It!, 2015.
Available at: <https://adtmag.com/articles/2015/12/15/
balbes-agile-model-0-intro.aspx>.

[95] SCHUMACHER, D. Borland Agile Assessment 2009, 2009. Available at:
<https://borland.typepad.com/agile_transformation/
2009/03/borland-agile-assessment-2009.html>.

[96] BURLTON, R. T., ROSS, R. G., ZACHMAN, J. A. Business Agility Mani-
festo, 2018. Available at: <https://busagilitymanifesto.org/
accompaniments/supplements/diagnostics>.

[97] WOLPERS, S. Cargo Cult Agile Checklist, 2016. Avail-
able at: <https://age-of-product.com/
cargo-cult-agile-state-agile-checklist-organization/>.

[98] ERANDE, A. S., VERMA, A. K. “Measuring agility of organizations-a com-
prehensive agility measurement tool (CAMT)”, International journal of
applied management and technology, v. 6, n. 3, 2008.

[99] OF DEFENSE DOD, D. DIB Guide: Detecting Agile BS, 2018. Available at:
<https://media.defense.gov/2018/Oct/09/2002049591/
-1/-1/0/DIB_DETECTING_AGILE_BS_2018.10.05.PDF>.

151



[100] RIBEIRO, E. Enterprise Business Agility Maturity Survey, 2018.
Available at: <https://beyondleanagile.com/2018/12/12/
enterprise-business-agility-maturity-survey/>.

[101] NIELSEN, J. Five key numbers to gauge your agile engineering efforts, 2011.
Available at: <https://www.slideshare.net/jeffreymads/
five-key-numbers-to-gauge-your-agile-engineering-efforts-7980346>.

[102] GAO, U. G. A. O. Agile Assessment Guide, 2020. Available at: <https:
//www.gao.gov/assets/710/709711.pdf>.

[103] FINITE. How Agile are you? A 50 Point Test, 2019. Avail-
able at: <https://www.finite.com.au/blog/2019/08/
how-agile-are-you/>.

[104] IBM. “IBM devops self-assessment”. https://devopsassessment.mybluemix.net//,
2008. Accessed: 2019-06-30.

[105] LITTLE, J. H. Joe’s Unofficial Scrum Checklist, 2012. Available at:
<http://agileconsortium.pbworks.com/w/file/fetch/
66642311/Joe\%E2\%80\%99s\%20Unofficial\%20Scrum\

%20CheckList\%20V13.pdf>.

[106] SEUFFERT, M. Karlskrona test online, 2019. Available at: <https://
mayberg.se/karlskrona-test-online>.

[107] CHIVA, G. Kanban Maturity Assessment, 2019. Available at: <https:
//aktiasolutions.com/kanban-maturity-assessment/>.

[108] LEBOW, J. Agile Assessment: Test Your Team’s Agility, 2018.
Available at: <https://digital.ai/resources/agile-101/
agile-assessment>.

[109] VODDE, B., SUTHERLAND, J. Nokia Test, 2010.
Available at: <https://www.scruminc.com/
official-scrumbutt-test-otherwise-known/>.

[110] SOUNDARARAJAN, S. Assessing agile methods: investigating adequacy, ca-
pability, and effectiveness (an objectives, principles, strategies approach).
Tese de Doutorado, Virginia Tech, 2013.

[111] SCRUM.ORG. Open Assessments, 2020. Available at: <https://www.
scrum.org/open-assessments>.

152



[112] AGILE, S. Organizational Agility Self-Assessment, 2012. Available at:
<https://www.scaledagileframework.com/metrics/#PF9>.

[113] SHOUKATH, N. Are you really agile?, 2012. Avail-
able at: <https://blog.people10.com/
are-you-really-agile-a-free-assessment-here/>.

[114] SO, C., SCHOLL, W. “Perceptive Agile Measurement: New Instruments for
Quantitative Studies in the Pursuit of the Social-Psychological Effect of
Agile Practices”. In: Abrahamsson, P., Marchesi, M., Maurer, F. (Eds.),
Agile Processes in Software Engineering and Extreme Programming, pp.
83–93, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN: 978-
3-642-01853-4.

[115] PARRY, C. Quick self-assessment of your organization’s agility, 2009.
Available at: <http://www.signetconsulting.com/action_
items/assessment.php>.

[116] HAWKS, D. Scrum Assessment Series, 2013.

[117] JAMES, M. ScrumMaster Checklist, 2007. Available at: <https://
scrummasterchecklist.org/pdf/ScrumMaster_Checklist_

12_unbranded.pdf>.

[118] ROTHMAN, J. Self assessment tool for transitioning to agile, 2013. Avail-
able at: <https://www.jrothman.com/mpd/agile/2013/04/
self-assessment-tool-for-transitioning-to-agile/>.
Accessed: 2019-06-30.

[119] KNIBERG, H., LINDWALL, K. Squad Health Check Model, 2014.
Available at: <https://engineering.atspotify.com/2014/
09/16/squad-health-check-model/>.

[120] VERWIJS, C. TeamMetrics, 2017. Available at: <https://teammetrics.
theliberators.com/>.

[121] SCHOOTS, H., SCHUURKES, J. Test Maturity Card Game,
2017. Available at: <https://www.huibschoots.
nl/wordpress/wp-content/uploads/2017/02/

Test-Improvement-Huib-Schoots-Joep-Schuurkes.pdf>.

[122] SHORE, J., WARDEN, S. The art of agile development: pragmatic guide to
agile software development. " O’Reilly Media, Inc.", 2007.

153



[123] SPOLSKY, J. The Joel Test: 12 Steps to Better Code, 2000. Avail-
able at: <https://www.joelonsoftware.com/2000/08/09/
the-joel-test-12-steps-to-better-code/>.

[124] HOGAN, B. Visual Management Self-Assessment, 2017.
Available at: <http://agileben.com/blog/
kanban-online-assessment>.

[125] YODIZ. Team Agility Self Assessment, 2017. Avail-
able at: <https://www.yodiz.com/blog/
how-agile-is-your-team-take-our-team-agility-self-assessment-to-find-out/>.

[126] NAWROCKI, J., WALTER, B., WOJCIECHOWSKI, A. “Toward maturity
model for extreme programming”. In: Proceedings 27th EUROMICRO
Conference. 2001: A Net Odyssey, pp. 233–239. IEEE, 2001.

[127] TEAM, C. P. “CMMI for Systems Engineering/Software Engineering/In-
tegrated Product and Process Development/Supplier Sourcing, Version
1.02”, CMU/SEI, 2000.

[128] LUI, K. M., CHAN, K. C. “A Road Map for Implementing eXtreme Program-
ming”. In: Software Process Workshop, pp. 474–481. Springer, 2005.

[129] PATEL, C., RAMACHANDRAN, M. “Agile maturity model (AMM): a soft-
ware process improvement framework for agile software development prac-
tices”, International Journal of Software Engineering, IJSE, v. 2, n. 1,
pp. 3–28, 2009.

[130] ISO/IEC 15504. ISO/IEC 15504: Information Technology - Process Assess-
ment, Part 1 to Part 5. Standard, International Organization for Stan-
dardization, Geneva, CH, 2002.

[131] TURETKEN, O., STOJANOV, I., TRIENEKENS, J. J. “Assessing the adop-
tion level of scaled agile development: a maturity model for Scaled Agile
Framework”, Journal of Software: Evolution and process, v. 29, n. 6,
pp. e1796, 2017.

[132] LEFFINGWELL, D. SAFe 4.0 Reference Guide: Scaled Agile Framework for
Lean Software and Systems Engineering. Addison-Wesley Professional,
2016. ISBN: 0134510542.

[133] PETTIT, R. Innovation Maturity Model, 2006. Available at: <http://www.
rosspettit.com/2007/02/innovation-maturity-model.

html>.

154



[134] AMBLER, S. W. “The agile scaling model (ASM): adapting agile methods for
complex environments”, Environments, pp. 1–35, 2009.

[135] QUMER, A., HENDERSON-SELLERS, B. “Measuring agility and adaptibil-
ity of agile methods: A 4 dimensional analytical tool”. In: The IADIS
international conference on applied computing 2006. IADIS Press, 2006.

[136] SURESHCHANDRA, K., SHRINIVASAVADHANI, J. “Adopting agile in dis-
tributed development”. In: 2008 IEEE International Conference on Global
Software Engineering, pp. 217–221. IEEE, 2008.

[137] ESFAHANI, H. C. Transitioning to agile: A framework for pre-adoption anal-
ysis using empirical knowledge and strategic modeling. Tese de Doutorado,
2012.

[138] GLOVER, B. Scrum Checklist 2012, 2012. Available at: <https://www.
infoq.com/minibooks/scrum-checklists/>.

[139] MOHA, N., GUEHENEUC, Y.-G., DUCHIEN, L., et al. “Decor: a method for
the specification and detection of code and design smells”, IEEE Trans-
actions on Software Engineering, v. 36, n. 1, pp. 20–36, 2009.

[140] FOUNDATION, E. “OpenUp methodology”.
http://epf.eclipse.org/wikis/openup/, 2012. Accessed: 2017-12-01.

[141] SPÍNOLA, R. O., DIAS-NETO, A. C., TRAVASSOS, G. H. “Abordagem para
desenvolver tecnologia de software com apoio de estudos secundários e
primários”. In: Experimental Software Engineering Latin American Work-
shop (ESELAW), 2008.

[142] KITCHENHAM, B., CHARTERS, S. Guidelines for performing Systematic
Literature Reviews in Software Engineering. Relatório Técnico EBSE
2007-001, Keele University and Durham University Joint Report, Jul 2007.

[143] PAI, M., MCCULLOCH, M., GORMAN, J., et al. “Systematic reviews and
meta-analyses: an illustrated, step-by-step guide.” The Medical Journal
of India, 2004.

[144] MILLER, G. G. “The characteristics of agile software processes”. In: Proceed-
ings of the 39th International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems (TOOLS39), TOOLS ’01, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

155



[145] LINDVALL, M., BASILI, V. R., BOEHM, B. W., et al. “Empirical findings
in agile methods”. In: Proceedings of the Second XP Universe and First
Agile Universe Conference on Extreme Programming and Agile Methods -
XP/Agile Universe 2002, London, UK, UK, 2002. Springer-Verlag.

[146] TSOURVELOUDIS, N. C., VALAVANIS, K. P. “On the measurement of
enterprise agility”, Journal of Intelligent and Robotic Systems, v. 33, n. 3,
pp. 329–342, 2002.

[147] GILL, A., HENDERSON-SELLERS, B. “Measuring agility and adaptibility
of agile methods: a 4 dimensional analytical tool”. In: The IADIS inter-
national conference on applied computing 2006. IADIS Press, 2006.

[148] LI, J., BURNHAM, J. F., LEMLEY, T., et al. “Citation analysis: comparison
of Web of Science R©, Scopus R©, SciFinder R©, and Google Scholar”, Journal
of electronic resources in medical libraries, v. 7, n. 3, pp. 196–217, 2010.

[149] MAURER, F., MARTEL, S. “Extreme programming: rapid development for
web-based applications”, IEEE Internet Computing, v. 6, n. 1, pp. 86–90,
2002.

[150] NEWKIRK, J. “Introduction to agile processes and extreme programming”. In:
Proceedings of the 24th International Conference on Software Engineering.
ICSE 2002, pp. 695–696, May 2002.

[151] MARTIN, R. C. Agile software development: principles, patterns, and prac-
tices. Upper Saddle River, NJ, USA, Prentice Hall PTR, 2003. ISBN:
0135974445.

[152] WILLIAMS, L. “Agile software development methodologies and practices”. In:
Advances in Computers, v. 80, Elsevier, pp. 1–44, 2010.

[153] ALZOABI, Z. “Agile software: body of knowledge”. In: Business In-
telligence and Agile Methodologies for Knowledge-Based Organizations:
Cross-Disciplinary Applications, IGI Global, pp. 14–34, 2012.

[154] MORAN, A. “Agile software development”. In: Agile Risk Management,
Springer International Publishing, pp. 1–16, Cham, 2014.

[155] DIEBOLD, P., DAHLEM, M. “Agile practices in practice: a mapping study”.
In: Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, p. 30. ACM, 2014.

156



[156] GHANI, I., BELLO, M. “Agile adoption in IT organizations”, KSII Trans-
actions on Internet and Information Systems, v. 9, n. 8, pp. 3231–3248,
2015.

[157] SUNNER, D. “Agile: adapting to need of the hour: understanding agile
methodology and agile techniques”. In: Proceedings of the 2016 2nd In-
ternational Conference on Applied and Theoretical Computing and Com-
munication Technology, iCATccT 2016, pp. 130–135, 2017.

[158] BELLO, M., GHANI, I. “A survey on success factors and obstacles for further
adoption of agile in IT organisations”, International Journal of Advanced
Media and Communication, v. 7, n. 3, pp. 167–180, 2017.

[159] SLETHOLT, M., HANNAY, J., PFAHL, D., et al. “What do we know about
scientific software development’s agile practices?” Computing in Science
and Engineering, v. 14, n. 2, pp. 24–36, 2012.

[160] PAPATHEOCHAROUS, E., ANDREOU, A. “Empirical evidence and state
of practice of software agile teams”, Journal of Software: Evolution and
Process, v. 26, n. 9, pp. 855–866, 2014.

[161] UIKEY, N., SUMAN, U. “Tailoring for agile methodologies: a framework for
sustaining quality and productivity”, International Journal of Business
Information Systems, v. 23, n. 4, pp. 432–455, 2016.

[162] KROPP, M., MEIER, A., BIDDLE, R. “Agile Practices, Collaboration and
Experience”. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A.,
et al. (Eds.), Product-Focused Software Process Improvement, pp. 416–431,
Cham, 2016. Springer International Publishing. ISBN: 978-3-319-49094-6.

[163] JAIN, R., SUMAN, U. “Effectiveness of agile practices in global software
development”, International Journal of Grid and Distributed Computing,
v. 9, n. 10, pp. 231–248, 2016.

[164] LACERDA, L., FURTADO, F. “Factors that help in the implantation of agile
methods: a systematic mapping of the liteature”. In: Iberian Conference
on Information Systems and Technologies, CISTI, v. 2018-June, pp. 1–6,
2018.

[165] VALLON, R., DA SILVA ESTÁCIO, B., PRIKLADNICKI, R., et al. “System-
atic literature review on agile practices in global software development”,
Information and Software Technology, v. 96, pp. 161–180, 2018.

157



[166] NISAR, M., HAMEED, T. “Agile methods handling offshore software devel-
opment issues”. In: Proceedings of INMIC 2004 - 8th International Multi-
topic Conference, pp. 417–422, 2004. doi: 10.1109/INMIC.2004.1492915.

[167] CHAGAS, L. F., DE CARVALHO, D. D., LIMA, ADAILTON MAGALHÃES
AN REIS, C. A. L. “Systematic Literature Review on the Characteristics
of Agile Project Management in the Context of Maturity Models”. In:
Mitasiunas, A., Rout, T., O’Connor, R. V., et al. (Eds.), Software Process
Improvement and Capability Determination, pp. 177–189, Cham, 2014.
Springer International Publishing. ISBN: 978-3-319-13036-1.

[168] CAO, L., RAMESH, B. “Agile software development: ad hoc practices or
sound principles?” IT professional, v. 9, n. 2, pp. 41–47, 2007.

[169] THOMAS, J. “Introducing agile development practices from the middle”. In:
Engineering of Computer Based Systems, 2008. ECBS 2008. 15th Annual
IEEE International Conference and Workshop on the, pp. 401–407. IEEE,
2008.

[170] MISRA, S. C., KUMAR, V., KUMAR, U. “Identifying some important success
factors in adopting agile software development practices”, J. Syst. Softw.,
v. 82, n. 11, pp. 1869–1890, nov 2009.

[171] LI, J. “Research and practice of agile unified process”. In: ICSTE 2010 - 2010
2nd International Conference on Software Technology and Engineering,
Proceedings, v. 2, pp. V2340–V2343, 2010.

[172] MCMAHON, P. “Extending agile methods: a distributed project and organi-
zational improvement perspective”, CrossTalk, , n. 5, pp. 16–19, 2005.

[173] SHI, Z., CHEN, L., CHEN, T.-E. “Agile planning and development meth-
ods”. In: ICCRD2011 - 2011 3rd International Conference on Computer
Research and Development, v. 1, pp. 488–491, 2011.

[174] KAJORNBOON, A. B. “Using interviews as research instruments”, E-journal
for Research Teachers, v. 2, n. 1, pp. 1–9, 2005.

[175] OISHI, S. How to conduct in-person interviews for surveys. SAGE Publications
Inc., 2003.

[176] GHAZI, A. N., PETERSEN, K., REDDY, S. S. V. R., et al. “Survey re-
search in software engineering: problems and strategies”, arXiv preprint
arXiv:1704.01090, 2017.

158



[177] GAMMA, E., HELM, R., JOHNSON, R., et al. Design patterns: elements of
reusable object-oriented software. Pearson Education India, 1995.

[178] COHEN, P., COHEN, J., AIKEN, L. S., et al. “The problem of units and the
circumstance for POMP”, Multivariate behavioral research, v. 34, n. 3,
pp. 315–346, 1999.

[179] GLASS, R. L., DEMARCO, T. Software Creativity 2.0. Atlanta, Georgia,
Developer Dot Star Books, 2006. ISBN: 0977213315.

[180] SANTOS, R. M. D. S. Mapeamento entre Representações de Processo e Pro-
jeto de Software. Tese de Doutorado, UFRJ/ COPPE/ Programa de
Engenharia de Sistemas e Computação, 2019.

[181] TRAVASSOS, G. H., D. SANTOS, P. S. M., MIAN, P. G., et al. “An en-
vironment to support large scale experimentation in software engineer-
ing”. In: 13th IEEE International Conference on Engineering of Com-
plex Computer Systems (iceccs 2008), pp. 193–202, March 2008. doi:
10.1109/ICECCS.2008.30.

[182] STEENWEG, R., KUHRMANN, M., MÉNDEZ FERNÁNDEZ, D. “Software
engineering process metamodels–a literature review”, Technische Univer-
sität München, Tech. Rep. TUM-I1220, 2012.

[183] BENDRAOU, R., JEZEQUEL, J.-M., GERVAIS, M.-P., et al. “A compar-
ison of six UML-based languages for software process modeling”, IEEE
Transactions on Software Engineering, v. 36, n. 5, pp. 662–675, sep 2010.

[184] HENDERSON-SELLERS, B., GONZALEZ-PEREZ, C. “A comparison of four
process metamodels and the creation of a new generic standard”, Infor-
mation and Software Technology, v. 47, n. 1, pp. 49 – 65, 2005. ISSN:
0950-5849. doi: https://doi.org/10.1016/j.infsof.2004.06.001.

[185] KUHRMANN, M., FERNÁNDEZ, D. M., STEENWEG, R. “Systematic
software process development: where do we stand today?” In: Pro-
ceedings of the 2013 International Conference on Software and System
Process, ICSSP 2013, pp. 166–170, New York, NY, USA, 2013. ACM.
ISBN: 978-1-4503-2062-7. doi: 10.1145/2486046.2486077. Available at:
<http://doi.acm.org/10.1145/2486046.2486077>.

[186] SADI, M. H., RAMSIN, R. “APM3: A Methodology Metamodel for Agile
Project Management.” In: SoMeT, pp. 367–378, 2009.

159



[187] AYED, H., VANDEROSE, B., HABRA, N. “A metamodel-based approach
for customizing and assessing agile methods”. In: Quality of Information
and Communications Technology (QUATIC), 2012 Eighth International
Conference on the, pp. 66–74. IEEE, 2012.

[188] CHOU, S.-C. “A process modeling language consisting of high level UML
diagrams and low level process language”, Journal of Object- Oriented
Programming, v. 1, n. 4, pp. 137–163, 2002.

[189] NITTO, E. D., LAVAZZA, L., SCHIAVONI, M., et al. “Deriving executable
process descriptions from UML”. In: Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002, pp. 155–165, May 2002.
doi: 10.1109/ICSE.2002.1007964.

[190] ISO 24744:2014. ISO/IEC 24744:2014 - Software engineering — metamodel
for development methodologies (SEMDM). Standard, International Orga-
nization for Standardization, Geneva, CH, Nov 2014.

[191] ENGELS, G., SAUER, S. “A Meta-Method for Defining Software Engineer-
ing Methods”. In: Graph transformations and model-driven engineering,
Springer, pp. 411–440, 2010.

[192] GONZALEZ-PEREZ, C., MCBRIDE, T., HENDERSON-SELLERS, B. “A
metamodel for assessable software development methodologies”, Software
Quality Journal, v. 13, n. 2, pp. 195–214, Jun 2005. ISSN: 1573-1367.
doi: 10.1007/s11219-005-6217-7. Available at: <https://doi.org/
10.1007/s11219-005-6217-7>.

[193] FIRESMITH, D., HENDERSON-SELLERS, B. The OPEN process frame-
work: an introduction. Addison-Wesley, 2002. ISBN: 978-0201675108.

[194] FRANCH, X., M. RIB, J. “PROMENADE: a modular approach to software
process modelling and enaction”, 05 1999.

[195] OMG. Software process engineering metamodel (SPEM)
2.0 specification. Final specification, OMG, apr 2008.
http://www.omg.org/spec/SPEM/2.0/PDF/.

[196] BENDRAOU, R., GERVAIS, M.-P., BLANC, X. “UML4SPM: a UML2.0-
Based metamodel for software process modelling”. In: Briand, L.,
Williams, C. (Eds.), Model Driven Engineering Languages and Systems,
pp. 17–38, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN:
978-3-540-32057-9.

160



[197] TERNITÉ, T., KUHRMANN, M. Das V-Modell XT 1.3 Metamodell. Stan-
dard, Technische Universität Münchenn, Germany, 2009.

[198] OMG. Software Process Engineering Metamodel (SPEM)
2.0 Specification. Final specification, OMG, apr 2008.
http://www.omg.org/spec/SPEM/2.0/PDF/.

[199] OMG. Object constraint language 2.4 (OCL). Final specification, fev 2014.
https://www.omg.org/spec/OCL/2.4/.

[200] FOUNDATION, T. L. OpenAPI Specification, 2018. Available at: <https:
//www.openapis.org/>.

[201] KOREN, I., KLAMMA, R. “The Exploitation of OpenAPI Documentation
for the Generation of Web Frontends”. In: Companion Proceedings of the
The Web Conference 2018, WWW ’18, p. 781–787, Republic and Canton
of Geneva, CHE, 2018. International World Wide Web Conferences Steer-
ing Committee. ISBN: 9781450356404. doi: 10.1145/3184558.3188740.
Available at: <https://doi.org/10.1145/3184558.3188740>.

[202] SANDOVAL, K. What Should You Consider Before OpenAPI Adop-
tion?, 2018. Available at: <https://nordicapis.com/
what-should-you-consider-before-openapi-adoption/#:

~:text=OpenAPI\%20Specification\%20can\%20be\

%20used,and\%20visualize\%20RESTful\%20web\

%20services.>.

[203] KOENIG, D., GLOVER, A., KING, P., et al. Groovy in action. Manning
Publications Co., 2007.

[204] MIKOWSKI, M., POWELL, J. Single page web applications: JavaScript end-
to-end. Manning Publications Co., 2013.

[205] VASSILIADIS, P., SIMITSIS, A., SKIADOPOULOS, S. “Conceptual mod-
eling for ETL processes”. In: Proceedings of the 5th ACM international
workshop on Data Warehousing and OLAP, pp. 14–21, 2002.

[206] SAJAD, M., SADIQ, M., NAVEED, K., et al. “Software Project Management:
Tools assessment, Comparison and suggestions for future development”,
International Journal of Computer Science and Network Security (IJC-
SNS), v. 16, n. 1, pp. 31, 2016.

161



[207] WARNER, J. “Thank you for 100 million repositories”.
https://github.blog/2018-11-08-100m-repos/: :text=TodayNov 2018.
Accessed: 2020-08-25.

[208] BLEIEL, N. “Collaborating in GitHub”. In: 2016 IEEE International Profes-
sional Communication Conference (IPCC), pp. 1–3. IEEE, 2016.

[209] ARORA, R., GOEL, S., MITTAL, R. K. “Supporting collaborative software
development over GitHub”, Software: Practice and Experience, v. 47,
n. 10, pp. 1393–1416, 2017.

[210] RACASAN, M. How To Use GitHub for Agile Project Manage-
ment, May 2020. Available at: <https://blog.zenhub.com/
how-to-use-github-agile-project-management/>.

[211] BUTLER, M., PAQUETTE, P. Better Software & Stronger Teams - Project
Management for GitHub. ZenHub, 2016.

[212] MOCKUS, A., FIELDING, R. T., HERBSLEB, J. “A case study of open
source software development: the Apache server”. In: Proceedings of the
22nd international conference on Software engineering, pp. 263–272, 2000.

[213] GROSSMAN, D. A., FRIEDER, O. Information retrieval: Algorithms and
heuristics, v. 15. Springer Science & Business Media, 2012.

[214] FERNANDES, E., OLIVEIRA, J., VALE, G., et al. “A Review-Based Com-
parative Study of Bad Smell Detection Tools”. In: Proceedings of the 20th
International Conference on Evaluation and Assessment in Software En-
gineering, EASE ’16, New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN: 9781450336918. doi: 10.1145/2915970.2915984.
Available at: <https://doi.org/10.1145/2915970.2915984>.

[215] PAIVA, T., DAMASCENO, A., FIGUEIREDO, E., et al. “On the evalua-
tion of code smells and detection tools”, Journal of Software Engineering
Research and Development, v. 5, n. 1, pp. 7, 2017.

[216] JACKSI, K. “Design and implementation of online submission and peer review
system: A case study of ejournal of university of zakho”, International
Journal of Scientific and Technology Researches, v. 4, n. 8, pp. 83–85,
2015.

[217] PEWNY, J., HOLZ, T. “EvilCoder: automated bug insertion”, Proceedings of
the 32nd Annual Conference on Computer Security Applications, 2016.

162



[218] DOLAN-GAVITT, B., HULIN, P., KIRDA, E., et al. “LAVA: Large-Scale
Automated Vulnerability Addition”, 2016 IEEE Symposium on Security
and Privacy (SP), pp. 110–121, 2016.

[219] BONETT, R., KAFLE, K., MORAN, K., et al. “Discovering Flaws in Security-
Focused Static Analysis Tools for Android using Systematic Mutation”.
In: USENIX Security Symposium, 2018.

[220] GHALEB, A., PATTABIRAMAN, K. “How Effective Are Smart Contract
Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using
Bug Injection”. In: Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2020, p. 415–427,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN:
9781450380089. doi: 10.1145/3395363.3397385. Available at: <https:
//doi.org/10.1145/3395363.3397385>.

[221] EOYANG, G. H. Conditions for self-organizing in human systems. Union
Institute, 2001.

[222] LENCIONI, P. “The five dysfunctions of a team”. In: A workshop for teams.
Pfeiffer, a Wiley Imprint, 2012.

[223] COVEY, S. R., MERRILL, R. R. The speed of trust: The one thing that
changes everything. Simon and schuster, 2006.

[224] TOUSIGNANT, D. Agile Maturity Matrix, 2019. Available at: <https:
//capeprojectmanagement.com/agile-self-assessment/>.

[225] AMBLER, S. “Survey says: agile works in practice”, Dr. Dobb’s Journal, v. 31,
n. 9, pp. 62–64, 2006.

[226] ANDERSON, D. J. Kanban: successful evolutionary change for your technol-
ogy business. Blue Hole Press, 2010.

[227] AGILE, S. Metrics - Scaled Agile Framework, 2012. Available at: <https:
//www.scaledagileframework.com/metrics/>.

[228] AGILE, S. Organizational Agility, 2012. Available at: <https://www.
scaledagileframework.com/organizational-agility/>.

[229] AGILE, S. Team and Technical Agility, 2012. Available
at: <https://www.scaledagileframework.com/
team-and-technical-agility/>.

163



[230] JOSHI, A., KALE, S., CHANDEL, S., et al. “Likert scale: Explored and
explained”, Current Journal of Applied Science and Technology, pp. 396–
403, 2015.

[231] JAMIESON, S. “Likert scales: How to (ab) use them?” Medical education,
v. 38, n. 12, pp. 1217–1218, 2004.

[232] KUZON, W., URBANCHEK, M., MCCABE, S. “The seven deadly sins of
statistical analysis”, Annals of plastic surgery, v. 37, pp. 265–272, 1996.

[233] STEVENS, S. S., OTHERS. “On the theory of scales of measurement”, Science,
New Series, v. 103, pp. 677–680, Jun 1946.

[234] BORGATTA, E. F., BOHRNSTEDT, G. W. “Level of measurement: Once
over again”, Sociological Methods & Research, v. 9, n. 2, pp. 147–160, 1980.

[235] KNAPP, T. R. “Treating ordinal scales as interval scales: an attempt to resolve
the controversy”, Nursing research, v. 39, n. 2, pp. 121–123, 1990.

[236] CARIFIO, J., PERLA, R. “Resolving the 50-year debate around using and
misusing Likert scales”, Medical education, v. 42, n. 12, pp. 1150–1152,
2008.

[237] HODGE, D. R., GILLESPIE, D. F. “Phrase completion scales: a better mea-
surement approach than Likert scales?” Journal of Social Service Re-
search, v. 33, n. 4, pp. 1–12, 2007.

[238] LEUNG, S.-O. “A comparison of psychometric properties and normality in
4-, 5-, 6-, and 11-point Likert scales”, Journal of Social Service Research,
v. 37, n. 4, pp. 412–421, 2011.

[239] WU, H., LEUNG, S.-O. “Can Likert scales be treated as interval scales?—A
Simulation study”, Journal of Social Service Research, v. 43, n. 4, pp. 527–
532, 2017.

[240] MILLER, G. “Agile software development for the entire project”, CrossTalk,
v. 18, n. 12, pp. 9–12, 2005.

[241] PIKKARAINEN, M., SALO, O., STILL, J. “Deploying Agile Practices in
Organizations: A Case Study”. In: Richardson, I., Abrahamsson, P.,
Messnarz, R. (Eds.), Software Process Improvement, pp. 16–27, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. ISBN: 978-3-540-32271-9.

164



[242] KAUTZ, K., PEDERSEN, C., MONRAD, O. “Cultures of agility - agile soft-
ware development in practice”. In: ACIS 2009 Procedings - 20th Aus-
tralasian Conference on Information Systems, pp. 174–184, 2009.

[243] BATRA, D. “Modified agile practices for outsourced software projects”, Com-
munications of the ACM, v. 52, n. 9, pp. 143–148+10, 2009.

[244] POPPENDIECK, M., CUSUMANO, M. “Lean software development: a tu-
torial”, IEEE Software, v. 29, n. 5, pp. 26–32, 2012.

[245] DYCK, S., MAJCHRZAK, T. “Identifying common characteristics in funda-
mental, integrated, and agile software development methodologies”. In:
Proceedings of the Annual Hawaii International Conference on System
Sciences, pp. 5299–5308, 2012.

[246] GREGORY, P., BARROCA, L., TAYLOR, K., et al. Agile challenges in
practice: a thematic analysis, v. 212. 2015.

[247] DIKERT, K., PAASIVAARA, M., LASSENIUS, C. “Challenges and success
factors for large-scale agile transformations: a systematic literature re-
view”, Journal of Systems and Software, v. 119, pp. 87–108, 2016.

[248] HODA, R., NOBLE, J. “Becoming agile: a grounded theory of agile transi-
tions in practice”. In: Proceedings - 2017 IEEE/ACM 39th International
Conference on Software Engineering, ICSE 2017, pp. 141–151, 2017.

[249] TERNITE, T. Variability of Development Models. Tese de Doutorado,
Clausthal University of Technology, 2010.

165



Appendix A

Agility Assessment Approaches

1. 42 point test: How Agile are You

In WATERS 2008 [82], the author presented an approach composed of a 42-

statement questionnaire that should be used in the following way: the Project

Manager should ask every team member of an agile team (including the product

owner, tester, manager, everyone) to review the statements “honestly”. They should

score 1 for each statement they believe they are consistent and it could be audited.

Otherwise they should score 0 for the statement. The author suggested to calculate

the average final score but did not provide any indication of how to analyze this

result.

2. A Better Team

(HERMIDA 2009 [83]) proposed an online agility assessment approach called

Abetterteam. The tool has a questionnaire composed of 30 three-option questions.

The author claimed the tool is able to verify the adoption of the practices proposed

by SHORE and WARDEN 2007 [122]. However, the author did not indicate how

the questionnaire is related to the practices proposed by Shore and the rationale

behind the assessment result.

3. A Corporate Agile 10-point Checklist

YATZECK 2012 [72] proposed a two-checklist method to aid the adoption and

assessment of agile process in large companies. The first checklist is focused on

guiding the adoption of Scrum and it is composed of 10 items. The second checklist,

called “You Should Immediately Be Suspicious If ”, describes 8 practices that may

indicate misuse of agile practices: 1. “There is no high-level architecture”, 2. “There

is no plan”, 3. “There is no project dashboard, or you don’t have access”, 4. “You

166



aren’t invited to an iteration planning meeting and a showcase for every iteration”,

5. “You don’t get any escalations coming out of the planning workshop”, 6. “The

team performs perfectly in Iteration 1”, 7. “You aren’t welcome to join daily standup

Scrum meetings as an observer”, and 8. “You can’t get metrics about software

quality”. The items in the second checklist are similar to the agile smells proposed

in this study since they describe practices that may jeopardize the adoption of

agile methods. However, these items from the agile smells in some aspects: (a) the

practices are described in a generic way and there is no indication of how they could

be checked in real scenarios. Therefore, the detection of these practices may be

threatened by the bias of the person performing the agility assessment who has to

interpret the practice and determine how to check it; (b) there is no clear relation

between the items and the agile practices that motivated them. The author did not

explain the origin of the items; (c) the solution is based on checklists that have to be

manually filled by the Project Manager; the items are focused on the Scrum method.

4. Agile Adoption Interview

Agile Adoption Interview (BONAMASSA 2018 [84]) is a web-based survey to assist

agile team members self-assess their skills in agile development and to provide

information about areas of strengths and opportunities for individual improvements.

The survey, which can be used to assess skill in Scrum or Kanban method, is

composed of open and closed question organized in 5 sections: Overall, Team

Dynamics, Scrum/Kanban Events, Scrum/Kanban Intrinsics, and Scrum/Kanban

Roles. After submitting the responses, the tool sends to the participants an email

with the assessment result.

5. Agile Alert

Agile Alert (HOFFMANN et al. 2018 [85]) is a web-based assessment tool designed

to aid organizations and agile teams to rate their agile capabilities. The tool

is divided into 2 parts: part 1, named “Do you work in an agile framework?”,

is organized in the sections Agile Strategy, Agile structure, and Agile culture

while part 2, named “Are you agile?”, is organized in the sections Hyperaware,

Informed Decision-making, and Fast Execution. Each section contains statements

that describe a specific agile capability and that should be rated using a 5-point

Likert scale that ranges from 1 to 5, where 1 means a low capability and 5 a high

capability. The results should be interpreted as follows: 0–30 points: Agile Alert! ;

30–60 points: Agile Beginner ; 60–90 points: Agile Adopter ; and 90–120 points:

167



Agile Front-Runner.

6. Agile Assessment

In (NOWINSKI 2016 [86]), the author presented a self-assessment agility approach

available as a spreadsheet survey with 66 statements/questions grouped in 7

areas: product ownership, agile process, team, quality, engineering practices, fun

and learning, and integration. Every team member should assess each statement

using a 5 point likert scale. The spreadsheet is configured to calculate the average

assessment of each statement for the whole team and for each area. The average

of each area is used to plot a radar diagram that graphically presents the results.

One of the main limitations of this approach come from the fact that the author

did not provide any reference material to aid the interpretation of the statements.

Thus, the participants in the survey should assess the statement and assign a 5

point Likert scale to it only by analyzing the statement description.

7. Agile Enterprise Survey

Agile Enterprise Survey (LEWIS and WENDLER 2016 [87]) is a web-based

self-assessment survey designed by Storm Consulting in collaboration with the

Dresden University. The survey’s questionnaire has 44 statements and 2 open-

ended questions organized in 6 sections as follows: Values and Practices, Working

Environment, Capabilities - human resources, Activities, “Blue sky” thinking, and

Organisation background. The survey presents a set of statements and asks the

participant to specify, using a 5-point Likert scale, how well these statements

reflect their organization. The section “Blue Sky” thinking presents two open-ended

questions including one that asks “If you could wave a magic wand to make any

changes you wished to your working environment, what would you change? ”. After

submitting the answers, the assessment result is calculated and sent by email to

the participant. The authors did not indicate how the questions where selected,

how they are linked with the agile practices and how the answers are analyzed.

8. Agile Excellerate

Agile Excellerate (SFIRLOGEA and GEORGESCU 2020 [88]) is a web-based

questionnaire that assists agile team members to evaluate their understanding of

agile principles, their values and adherence to good practices. It also highlights

potential issues related to trust, team cohesion, commitment, constructive conflicts

and accountability. It is based on several theories related to self-organization

168



(Container-Difference-Exchange (EOYANG 2001 [221])), team building (Five

dysfunctions of a team (LENCIONI 2012 [222])) and trust (Speed of trust (COVEY

and MERRILL 2006 [223])). The questionnaire is composed of 80 questions

that assess the developer’s opinions and perceptions about various aspects of the

team agility. Questions are grouped in 8 analysis dimensions, covering the most

important aspects of the Agile practice: Respect and Communication, Collaborative

Improvement, Sustainable Delivery, Disciplined Self-Organization, Predictable

Quality, Empowered Courage, Focused Commitment, and Transparency and Visi-

bility. Results are consolidated and analyzed by the authors (the current version

of Agile Excellerate does not feature automatic reporting). After analysis, the

following reports are provided: 1. Radar chart of team agility based on all analysis

dimensions; 2. Results on each dimension emphasizing critical aspects (low scoring

or abnormal distribution of answers) 3. Correlation map (how various answers

correlate or not) 4. Container — Difference — Exchange score 5. Scoring of po-

tential team dysfunctions 6. Trust analysis: integrity, intent, capabilities and results.

9. Agile Health Dashboard

Agile Health Dashboard (LAGESTEE 2012 [30]) is a coaching tool available as

spreadsheet that helps agile teams to continuously improve their development

process. To use the tool, a team member should manually fill a pre-configured sheet

entering information about each sprint (start and end dates, number of completed

stories, team velocity, etc). Based on the raw data provided, the tool calculates

and shows a dashboard organized in 4 areas: Sprint Planning, Sprint Velocity,

Team Flow, and Team Dynamics. The team should use the data emerging from the

dashboard to find areas to become a stronger, more agile team.

10. Agile Journey Index (AJI)

KREBS 2011 [29] proposed an agility assessment model called Agile Journey

Index (AJI) that aids organizations in improving their application of the agile

method. The model covers 19 key practices organized in 3 categories: Plan, Do

and Feedback. The assessment consists of rating each practice on a scale of 1

to 10. Although the model specifies criteria for each score, the evaluation of

these criteria depends on qualitative analysis and there is no indication of how to

identify the occurrence of these practices in real projects. Another drawback of

this model is that it considers only Scrum practices and neglects other agile methods.

169



11. Agile Maturity Assessment

TOUSIGNANT 2019 [33] presented the Agile Maturity Assessment, a self-

assessment approach available as a web tool that aims at measuring the organization

agile maturity according to the Agile Maturity Model (TOUSIGNANT 2019 [224]).

The approach is composed of 60 agree/disagree statements that, after completed,

generate a weighted total score that indicates the organization maturity level as

follows: 0 - 80 points: “Ad-hoc Agile”; 81-160 points: “Doing Agile”; 161-240 points:

“Being Agile”; 241 - 320 points: “Thinking Agile”; and > 320 points: “Culturally

Agile”. One of the main limitations of the tool is the lack of transparency on how

the total score is calculated. The approach is a commercial tool but it is possible

to run individual assessments free of charge.

12. Agile Skills Self-Assessment

The BPM Institute proposed in (BPMI 2019 [89]) the Agile Skills Self-Assessment,

a web-based survey to assist agile team members in creating a professional develop-

ment game plan. The survey covers 6 critical practice areas: 1. Agile Concepts, 2.

Agile Rituals and Ceremonies, 3. Agile Business Analysis Principles, 4. Estimation

and Velocity, 5. Creating and Managing Quality User Stories, and 6. Utilizing

Waterfall Business Analysis Techniques in Agile. Each area has 5 questions that

should be scored using a 5-point Likert scale as follows: 1. Not at all, 2. Somewhat,

3. Middling, 4. Mostly, and 5. Very. The final score, that ranges from 30 to 150,

indicates the agile skill level (Beginner, Intermediate, Advanced, or Expert) across

the 6 critical practice areas covered.

13. Agile Team Evaluation

In GUNNERSON 2015 [90], the author proposed a text-based questionnaire,

Agile Team Evaluation, to aid development teams to evaluate themselves. The

questionnaire has 17 yes/no questions organized in 4 groups (Delivery of Business

Value, Code Health, Team Health, and Organization Health). The author, who

intended to provide a “ less prescriptive approach”, suggested questions such as “Is

the team healthy and happy? ” and “Is the code well architected? ” that aim at

promoting internal team discussions rather than defining a degree of agility to the

team.

170



14. Agility Maturity Self Assessment

There are also models that aim to assess team members individually. CAMPBELL

and MACIVER 2010 [91] defined a self-assessment model named Agility Maturity

Self-Assessment that intends to identify the skills of individuals in six areas: Agile

Teams, Agile Leadership, Agile Project Management, Agile Communication/Pro-

motion, Business Value, and Risk Management. The questions have the following

structure “How experienced are you in the given area...”. The author did not

provide any indication on how to analyze the answers.

15. Agility Maturity Self Assessment Survey

In RIBEIRO 2015 [92], the author proposed the Agile Maturity Self-Assessment

Survey, a survey where the participants can assess their skill in agile development by

answering a questionnaire composed of 25 questions (including an open question).

The author did not provide indications on how to analyze the answers and to assess

the skill of the individuals.

16. Agility Questionnaire

In BRITSCH 2017 [77], BRITSCH proposed the Agility Questionnaire, a

spreadsheet-based questionnaire that helps to assess whether agile development is

the proper approach for a specific organization and project and highlights associated

challenges, risks and areas where specific tailoring is required. The Agility Question-

naire is not a self-assessment approach. Instead of that, the approach was designed

to support consultant companies (called suppliers) and organizations willing to

adopt agile development (called clients) to collaboratively assess the client’s agile

capability and propose the best ways to work. The questionnaire is composed of 60

questions organized in two parts: Agility Profile and Project Profile. Each question

should be assigned with a 5-point agree/disagree Likert scale (Strongly Agree,

Agree, Neutral, Disagree, and Strongly Disagree). The answers of the first part

(Agility Profile) are organized in 6 areas: Value Focus, Ceremony, Collaboration,

Decisions and Information, Responsiveness, and Experience. The results of the

second part (Project Profile) are organized in 12 areas: Confidence, Objectives and

Goals, Volatility, Funding / Resourcing Challenge, Analysis Challenge, Political /

Delivery Challenge, Technology Challenge, Design Challenge, Reputational Risk,

Legal / Regulatory Risk, Financial Risk, and Operational Risk.

171



17. Back-of-a-Napkin Agile Assessment

The Back-of-a-Napkin Agile Assessment (HENDRICKSON 2008 [93]) is a text-

based agile assessment checklist composed of 10 statements that aim at promoting

internal team discussions rather than assessing the agility to the team.

18. Balbes’ Agility Assessment

BALBES 2015 [94] proposed a text-based self-assessment approach to evaluate

how agile teams are improving their ability to be agile over time. The approach

is composed of assessment questions that has 6 statements that correspond to

different levels of maturity as described below: Level 0: No Capability ; Level

1: Beginning ; Level 2: Learning ; Level 3: Practicing ; Level 4: Measuring ; and

Level 5: Innovating The assessment questions are grouped into 9 different areas:

Technical Craftsmanship, Quality Advocacy, User Experience, Team Dynamics,

Product Ownership, Project Management, Risk Management, Organizational Sup-

port, and Change Management. Once an assessment is complete and responses to

each question are evaluated, results can be aggregated to show progress in each area.

19. Borland Agile Assessment

In (SCHUMACHER 2009 [95]), SCHUMACHER presented the Borland Agile

Assessment 2009, a text-based survey that was initially developed to be used

as a internal coaching tool. The survey consists of 12 questions answered on a

5-point agree/disagree scale. There is no “score” to this assessment that should be

administered anonymously with results reported in an aggregate form. The Borland

Agile Assessment 2009 is a diagnostic tool to help development teams reflect on

their processes and identify ways to improve (although the author did not make

clear how to analyze the results). It should not be used to measure “improvement”

from a previous assessment, only relative importance of potential improvements to

their current situation. The author claimed the approach was cross-referenced with

the Manifesto for Agile Development BECK et al. 2001 [53], as well as with agile

principles from COCKBURN 2002 [23], SHORE and WARDEN 2007 [122], and

AMBLER 2006 [225]. However, no evidence of such relations was provided.

20. Business Agility Manifesto

Business Agility Manifesto (BURLTON et al. 2018 [96]) is a text-based assessment

approach that aims to provide initial insights into an organization’s need and

readiness to become more agile. The approach consists of a questionnaire composed

172



of 47 yes/no questions divided into 8 sections, 1. Perpetual Change, 2. Business

Strategy and Value Creation, 3. Business Integrity, 4. Business Solution Agility, 5.

Organization Agility, 6. Value Chain Perspective, 7. Business Knowledge and its

Management, and 8. Business Knowledge-Base / Single source of business truth.

The authors suggested the survey can be used to organizations understand their

gaps to become more agile but they failed in providing details of how to analyze

the survey results.

21. Cargo Cult Agile Checklist

Cargo Cult Agile Checklist (WOLPERS 2016 [97]) is a text-based questionnaire

that should be used as a start point for organizations adopting agile development to

assess what part of the agile transition is going well and where action needs to be

taken. The questionnaire has 25 yes/no questions that are similar to the agile smells

described in this research in the sense they denote practices that may jeopardize

the adoption of the agile development culture. One of the main limitations of this

approach is that the author only provided the question statement. There is no

further description or a hint on how to identify the occurrence of such practices.

Regarding the analysis of the results, the author provided a 5-level scale ranging

from “Well done! ” (the first level with 0-2 “yes”) to “You either haven’t started

going agile yet” (the last level with 21-25 “yes”).

22. Comparative Agility (CA)

In (WILLIAMS et al. 2010 [73]), WILLIAMS et al. proposed the Comparative

AgilityTM (CA) method to aid organizations in determining their relative agile

capability compared to other companies who responded to CA. The tool, which

is available as a survey-tool, assesses agility using seven dimensions: Teamwork,

Requirements, Planning, Technical Practices, Quality, Culture, and Knowledge

Creation. Each dimension has between three and six characteristics (32 in total)

and each characteristic is made up of approximately four agile practices (125 in

total). For each practice, the respondent indicates the truth of the practice using a

6-point Likert scale: True; More true than false; Neither true nor false; More false

than true; or False. Although the approach uses an innovative assessment technique

(by comparing the answers given by the company with a global trend), the authors

neglected to indicate how the practices were identified, how they are related to the

agile methods, and how they can be verified. One of the questions that composes

the method, for example, is “Team members leave planning meetings knowing what

173



needs to be done and have confidence they can meet their commitments”. There are

no clear criteria to check the occurrence of this practice.

23. Comprehensive Agility Measurement Tool (CAMT)

Comprehensive Agility Measurement Tool (CAMT) (ERANDE and VERMA 2008

[98]) is a text-based tool that supports the assessment of an organization’s level

of agility. The approach proposes a unit measure, Comprehensive Agility Index

(CAI), that indicates the level of agility on a scale of 1 to 5, where 1 means “least

agile” and 5 means “highly agile”. To calculate this index, the approach uses a

questionnaire that assesses 10 critical agility factors: 1. TAKT time; 2. Plant

Capacity ; 3. Inventory ; 4. Problem Solving ; 5. e-manufacturing ; 6. Continuous

Improvement ; 7. Operational Flexibility ; 8. SMED / quick changeover ; 9. Internal

Customer Satisfaction; and 10. Human Resource Management. Each critical factor

should be assigned with a 5-point Likert scale that score from 1 to 5 points.

24. Depth of Kanban

Depth of Kanban (ACHOUIANTZ 2013 [78]), proposed by Achouiantz, is a

graph-based coaching tool (not an evaluation or compliance tool) for assessing

the depth of Kanban (ANDERSON 2010 [226]) adoption in an organization. The

tool is available as an offline spider graph that is structured around the 7 Kanban

principles: 1. Visualize, 2. Limit Work in Progress, 3. Manage Flow, 4. Make

Policies Explicit, 5. Implement Feedback Loops, 6. Improve, and 7. Effects.

Each axe has a different number of yes/no questions (the Limit Work in Progress

axe, for example, has 4 questions while the Visualize axe has 13). The result of

each axe (i.e., the level of agility) is denoted by the number of “yes” received.

Regarding the analysis of the results, the author divided the spider graph into four

areas (represented by different colors): Necessary for sustainable improvements

(red), Improving Sustainably (yellow), Excellent (light green), and Lean (dark

green). The red area on the graph defines the minimal depth a team must reach

in order to start improving on its own. While the team is “in the red” it can-

not improve. The other colors indicate other “levels” of depth, the greener the better.

25. Department of Defense Guide

The U.S. Department of Defense (DoD) proposed in (OF DEFENSE DOD 2018 [99])

the Defense Innovation Board Guide: Detecting Agile BS, a text-based approach to

provide guidance to DoD program executives and acquisition professionals on how

174



to detect software projects that are really using agile development versus those that

are simply waterfall or spiral development in agile clothing (“agile-scrum-fall”).

The guide is divided into 4 sections: (a) Section 1, named “Key flags that a project

is not really agile”, has 6 statements that may indicate a project is not using a

process based on agile development; (b) Section 2 describes a set of tools usually

used by agile teams; (c) Section 3 has a questionnaire organized in 5 subsections:

Questions to Ask Programming Teams with 4 open questions, Questions for Pro-

gram Management with 4 open questions, Questions for Customers and Users with

3 open questions, and Questions for Program Leadership with 6 open questions;

and (d) Section 4 has a graphical version of the questionnaire with a flow connected

through yes/no questions that illustrates the path to a desired agile development

process.

26. Enterprise and Team Level Agility Maturity Matrix

The Enterprise and Team Level Agility Maturity Matrix (ELIASSEN-GROUP

2013 [40]) is an agility assessment method available as a spreadsheet divided into

two sections: one for describing the Organization and another for describing the

Development Team. There are a number of agile indicators for each section (14

organizational indicators and 37 team indicators) and each indicator ranges from

a ‘0’ (impeded) to a ‘4’ (ideal). For each cell in the matrix, there is a simple

explanation of what it means to be at that level for that indicator.

27. Enterprise Business Agility Maturity Survey

In (RIBEIRO 2018 [100]), RIBEIRO proposed the Enterprise Business Agility

Maturity Survey, an approach to support organizations measure their agility

capability. The survey is composed of 53 questions (including an open question)

organized in 6 sections: Leadership and Culture, Lean Business and Portfolio

Management, Organisational Structure, Agile Mindset and Methods, Performance

and Measurements, and Make It Stick and Sustain. The author did not provide

indications of how to analyze the answers and to assess the organization agility

capability.

28. Five Key Numbers to Assess Agile Engineering Practices

NIELSEN 2011 [101] proposed a text-based questionnaire to assess the team agile

engineering practices. The questionnaire is composed of 5 questions that should

be scored using a gauge scale divided into three areas: green, yellow, and red. For

175



example, the question “How many manual steps does it take to get a build into

production? ” has its gauge scale divided as follows: 0-1 steps: green; 2-9 steps:

yellow; and 9-15 steps: red. The red area indicates the engineering practice has

to be improved. The yellow area indicates the engineering practice is acceptable

but it could be improved. The green area indicates the engineering practice is well

implemented.

29. GAO’s Agile Assessment Guide

The U.S. Government Accountability Office (GAO) has published in (GAO 2020

[102]) the Agile Assessment Guide to aid federal agencies, departments, and

auditors in assessing an organization’s readiness to adopt Agile methods. The

guide contains 5 text-based checklists to assess specific areas of agile adoption:

1. Adoption of Agile Methods Checklist : 24 statements organized in 9 areas;

2. Requirements Development Checklist : 16 statements organized in 8 areas; 3.

Contracting for an Agile Program Checklist : 9 statements organized in 3 areas; 4.

Agile and Program Monitoring and Control Checklist : 9 statements organized in 3

areas; and 5. Agile Metrics Checklist : 14 statements organized in 6 areas.

30. How Agile are you? A 50 Point Test

How Agile are you? A 50 Point Test (FINITE 2019 [103]) is a web-based survey

to help agile teams to determine how agile they are. The survey is composed

of 50 yes/no questions, allowing a team to arrive at a score out of 50 for each

respondent. Every team member of the agile team, including the Product

Owner, testers, and managers have to honestly answer each statement. Once

each team member has completed the 50 point test, add up the points for each

respondent and average them to arrive at a total score for the team. Ideally,

an agile team should have an average score greater than 40 points. If a team’s

score is below 40, they should be looking to update your processes and team culture.

31. IBM DevOps Practices Self-Assessment

IBM DevOps Practices Self-Assessment (IBM 2008 [104]) is an agility assessment

approach available as a web application. The solution contains 15 questions divided

into 4 areas: Demographic, Practices, Strategies, and Motivation. The authors

claimed the tool can “evaluate the state of an organization’s software delivery

approach”. However, there are no indications of how the questions were formed,

how the answers should be analyzed and how the results are related to agile practices.

176



32. Joe’s Unofficial Scrum Checklist

LITTLE 2012 [105] adapted the approach proposed by KNIBERG 2012 [81] and

proposed the Joe’s Unofficial Scrum Checklist, an approach to assist Scrum teams

to assess their agility. The approach, that should be used as basis for discussion

preferably with the full team, has a checklist with 87 yes/no questions organized

in 6 areas: The Bottom Line, Core Scrum, Recommended, Engineering Practices,

Scaling, and Positive Indicators.

33. Karlskrona Test

In (SEUFFERT 2019 [106]), SEUFFERT presented a self-assessment approach,

named Karlskrona Test, that was developed in 2008-2009 with companies in Sweden

and Germany to see how far an agile adoption came and to monitor progress over

time. The test has 11 single-choice questions where each question has 4 options

(2 of them score 0 and 2 score 1). The author suggested to submit the survey to

all team members. The final result is calculated according to the average amount

of points for the whole team and ranges from Grade 1 - Waterlfall to Grade 5 -

Agile. Although the author claimed this approach is an “easy way to claim an

organization is agile”, there are no indications on how the questions are related to

agile practices or empirical evidences to support this statement.

34. Kanban Maturity Assessment

Kanban Maturity Assessment (CHIVA 2019 [107]) is a web-based assessment

approach that allows managers and Kanban coaches or consultants to help the

teams evaluate and understand their progress and level of understanding of

principles and practices of the Kanban Method (ANDERSON 2010 [226]). The

Kanban Maturity Assessment consists of 9 sections: Section 1 is reserved to the

assessment configuration; Sections 2 to 6 focus on the 6 core Kanban practices,

namely visualize, limit WIP, manage flow, explicit policies, feedback loops, and

improvement ; Section 8 assesses service and organizational effects of Kanban

adoption; Section 9 focuses on Fitness for Purpose. To what extent the Service

is servicing customer expectations. Each section contains a set of statement that

should be answered using a 5-point Likert scale: Strongly agree, Agree, Neutral,

Disagree, and Strongly disagree.

177



35. Lean Agile Intelligence

The Lean Agile Intelligence (MCCALLA and GIFFORD 2016 [37]) is an assessment

platform available as online questionnaires. The approach provides the ability of

customizing out-of-the-box assessment templates or creating new questionnaires

from a question bank compiled from published works of agile specialists, framework

reference guides, and collaborative feedback sessions with coaches. The assessment

results are presented as dashboards that aggregate team assessment results in a

format that captures a holistic view of the organizations agility maturity and iden-

tifies patterns preventing the organizations from achieving their desired outcomes.

36. Lean/Agile Depth Assessment Checklist A3

In (YERET 2013 [79]), YERET adapted the approach proposed by ACHOUIANTZ

2013 [78] and proposed the Lean/Agile Depth Assessment Checklist A3, a graph-

based coaching tool for evaluating the current agile capability of a team. The tool

is available as an offline spider graph that is structured around 7 perspectives:

1. Visualize Manage the Flow ; 2. Business Value Driven Development ; 3.

Individuals and Interactions Feedback Loops ; 4. Engineering Practices ; 5. Build

and Deployment ; 6. Empowered Teams and Individuals ; and 7. Improve. Each

axe has a different number of yes/no questions (the Visualize Manage the Flow

axe, for example, has 15 questions while the Build and Deployment axe has 6).

The result of each axe (i.e., the level of agility) is denoted by the number of “yes”

received. Regarding the analysis of the results, the author divided the graph into 3

areas (represented by different colors): (a) the red area indicates that the team has

to improve its capability in this perspective; (b) the yellow area indicates that the

team has an acceptable capability on this perspective but there are some problems

that need to be addressed; and (c) the green area indicates that the team has good

capability in this perspective.

37. Lebow’s Agile Assessment

LEBOW 2018 [108] presented an agility self-assessment approach composed of

two elements: (a) a questionnaire and (b) a checklist; The questionnaire contains

10 agility factors (Team Communication, User Accessibility, Team Location,

Team Structure, Delivery Frequency, Measurement of Progress, Ability to Change

Direction, Testing, Planning Approach, and Process Philosophy) that are rated

from 1 to 5, where 1 being the least agile and 5 being the most agile. The final

score of the questionnaire, which is the sum of the rate assigned to each agility

178



factor, should be analyzed as follows: 50 points: Agile maven; 40-49 points: Agilist

all the way ; 30-39 points: Agilist in training ; 20-29 points: Closet agilist ; 10-19

points: Thanks for taking the test. The checklist, that is named “You might not be

agile if...”, has 10 statements that describe “bad” practices (i.e., practices that may

impair the adoption of agile development). One of the statements, for example, is

“Your white boards are mostly white”.

38. Measure.Team

Measure.team (ALBRECHT and EDDINGS 2020 [80]) is a web-based self-

assessment survey that aids agile teams tracking their progress and monitoring

improvements over time. The survey has 16 statements that should be scored using

a 5-point Likert scale as follows: Not at all/Not sure, Rarely, Sometimes, Often, and

Consistently. After submitting the questionnaire, the tool calculates and presents

an overall score and, for each statement, its corresponding score and the following

sections: Why it is valuable to be consistent, How to start How to improve How to

sustain, and Additional Resources.

39. Nokia Test

The Nokia Test (VODDE and SUTHERLAND 2010 [109]) for Scrum teams

was developed originally by Bas Vodde at Nokia Siemens Networks in Finland

and has been updated several times with the contribution of Jeff Sutherland.

The test is a self-assessment questionnaire organized in 10 agile areas: Iteration,

In-Sprint Testing, Sprint Stories, Product Owner, Product Backlog, Estimation,

Sprint Burndown, Retrospective, ScrumMaster, and Team. Each area has a

set of statement that should be scored by each person in a team. The total

score of an area ranges from 0 to 10 and, hence, the total score ranges from

0 to 100. The team score is the average of the total score of each team mem-

ber. The authors failed in providing any indication of how to analyze the team score.

40. Objectives Principles Strategies (OPS)

SOUNDARARAJAN 2013 [110] proposed the Objectives, Principles and Strategies

Framework (OPS), a framework that assists agility assessment by identifying 5

elements: 1. Objectives of the agile development; 2. Principles that support the

Objectives ; 3. Strategies that implement the Principles ; 4. Linkages that relate

Objectives to Principles, and Principles to Strategies, and 5. Indicators for assessing

the extent to which an organization supports the implementation and effectiveness

179



of the Strategies.

41. Open Assessments

The Open Assessments (SCRUM.ORG 2020 [111]) is a series of web-based ques-

tionnaires focuses on assessing someone’s knowledge on specific areas of Scrum.

The series is composed of the following tests: Scrum Open: 30 questions to assess

basic knowledge of Scrum; Nexus Open: 15 questions to assess basic understanding

of the Nexus Framework; Product Owner Open: 15 questions to assess knowledge

of the role of the Product Owner in Scrum; Developer Open: 30 questions to assess

knowledge of development practices used across a Scrum Team; Scrum with Kanban

Open: 15 questions to assess knowledge of practicing Professional Scrum with

Kanban; and Agile Leadership Open: 10 questions to assess knowledge of Agile

Leadership essentials.

42. Organizational Agility Self-Assessment

The Scaled Agile initiative proposed 8 self-assessment approaches (AGILE 2012

[227]): 1. Business Agility Self-Assessment, 2. Lean Portfolio Management Self-

-Assessment, 3. Continuous Learning Culture Self-Assessment, 4. Organizational

Agility Self-Assessment, 5. Enterprise Solution Delivery Self-Assessment, 6. Lean

Agile-Leadership Self-Assessment, 7. Agile Product Delivery Self-Assessment, and

8. Team and Technical Agility Self-Assessment. These approaches are available as

spreadsheet questionnaires where the respondents should assign a 6-point Likert

scale to each question: True (5 points), More True than False (4 points), Neither

False nor True (3 points), More False than True (2 points), False (1 point), and

Not Applicable (0 point). The approaches more related to this research are the

Organizational Agility Self-Assessment (AGILE 2012 [112]) and the Team and

Technical Agility Self-Assessment (AGILE 2012 [39]). The Organizational Agility

Self-Assessment enables organizations to assess their proficiency in the Organiza-

tional Agility (AGILE 2012 [228]) competency that describes how Lean-thinking

people and Agile teams optimize their business processes, evolve strategy with

clear and decisive new commitments, and quickly adapt the organization as needed

to capitalize on new opportunities. This assessment approach is composed of 29

questions divided into 3 dimensions: Lean Thinking People and Agile Teams, Lean

Business Operations, and Strategy Agility.

180



43. People 10 Team Assessment Approach

In (SHOUKATH 2012 [113]), SHOUKATH presented the People 10 Team Assess-

ment Approach a text-based assessment approach for organizations to benchmark

the agile maturity of their teams. The approach is composed of 24 engineering

practices (for example Continuous integration, Refactoring, Build frequency). Each

practice has 2 statements, one that best describes an ‘iterative’ team and another

that best describes an ‘agile’ team. Someone using the approach to assess a given

team should mark, for each engineering practice, 1 point against the statement that

best describes the team: ‘iterative’ or ‘agile’ team. At the end, the assessed team

has 2 scores, an ‘iterative’ team score and ‘agile’ team score. The greater score

indicates the team’s strongest capability.

44. Perceptive Agile Measurement (PAM)

The method proposed by SO and SCHOLL 2009 [114], the Perceptive Agile

Measurement (PAM), is an agility assessment approach composed of 48 yes/no

question organized in 8 agile areas, namely Iteration Planning, Iterative Develop-

ment, Continuous Integration and Testing, Stand-Up Meetings, Customer Access,

Customer Acceptance Tests, Retrospectives, and Collocation.

45. Quick Self-Assessment of Your Organization’s Agility

PARRY 2009 [115] defined a questionnaire to aid organizations to self-assess their

agility. The questionnaire has 22 statements that should be scored using the

following scale: 1 point if the statement is not true for the team; 3 points if the

statement is somehow true for the team; and 5 points if the statement is completely

true for the team. The author failed in describing how to analyze the final score.

46. Retropoly

Retropoly (SFIRLOGEA and GEORGESCU 2017 [74]) is a game, based on the

Monopoly game concept, to be used during retrospective meetings to aid agile

teams self-assessing themselves. It is mainly designed for Scrum teams, but it is

suitable with minor adjustments for any other agile methodology. The game is an

alternative to traditional retrospective meetings and some benefits reported by the

authors are: (a) It encourages an honest self-assessment of each member of the team

and the positive feedback for the support provided by colleagues. It will improve the

ability of the team to take common decisions in a timely manner and the practice

of moderated debates; (b) It strengthens the team relationships by getting to know

181



each other through sharing of personal life aspects, like hobbies and passions; and

(c) It allows to observe how retrospectives are improving over the time. The game

contains, among other things, a deck of 18 cards with questions about agile practices.

47. Scrum Assessment Series

The Scrum Assessment Series (HAWKS 2013 [116]) is an agility assessment

approach divided in 5 series, each focusing on a different Scrum practice: 1. Daily

Scrum; 2. Retrospective; 3. Sprint Planning ; 4. Sprint Review ; and 5. Release

Planning. Each series contains a questionnaire with yes/no questions organized in

3 sections (The Basics, Good, and Awesome) and a section Ideas for Improvement

with statements to aid improving that area.

48. Scrum Checklist

The Scrum Checklist (KNIBERG 2012 [81]) is a tool to help development teams

getting started with Scrum, or assessing their current implementation of Scrum.

The checklist is made up of 80 yes/no questions divided into 4 groups: The Bottom

Line; Core Scrum; Recommended But Not Always Necessary ; Scaling ; and Positive

Indicators. According to the author, the items on the checklist are not rules and

therefore were not designed to be verifiable or to produce a measure that indicates

the level of compliance with Scrum. Instead, they are guidelines that might be used

by the team as a discussion tool at the retrospective meetings. Examples of items

on the checklist are “Whole team believes plan is achievable?” or “Having fun? High

energy level?”.

49. ScrumMaster Checklist

The ScrumMaster Checklist (JAMES 2007 [117]) is a text-based coaching tool

for Scrum Masters elaborated according to the personal experience of the author

that has a large experience training Scrum Masters. The approach is divided into

2 parts. The first part contains 42 one-choice questions while the second part

contains open questions to describe the organizational impediment. The questions

in the first part are organized in 4 parts: 1. How Is My Product Owner Doing? ;

2. How Is My Team Doing? ; 3. How Are Our Engineering Practices Doing?, and

4. How Is The Organization Doing?. Each question should be marked with one

of the following options: Option 1 (if the respondent considering they are “doing

well”); Option 2 (for “could be improved and I know how to start”); Option 3 (for

“could be improved, but how?”); or N/A (for “not applicable” or “would provide no

182



benefit”). The author did not give indications on how to calculate and analyze the

results. The instructions provided in the approach indicate that if the respondents

check off most of the items, they are on track to become an efficient Scrum Master.

50. Self Assessment Tool for Transitioning to Agile

ROTHMAN 2013 [118] proposed the Self Assessment Tool for Transitioning to

Agile, a self-assessment tool for measuring agile maturity composed of 8 questions.

The author also supplied, for some question, the expected answers for those

organizations willing to adopt agile development and a discussion about the answer.

As an example, the question: “If you are doing iterations, are they four weeks or

less? The answer should be yes. Many of us like one or two week iterations. Why?

Because you get feedback more often rather than less often. And, you get to see

working software”.

51. Squad Health Check Model

The Squad Health Check Model (KNIBERG and LINDWALL 2014 [119]) is

a game-based approach used to aid organizations tracking the health of their

squads (the term used by the authors to denote a small, cross-functional, and

self-organizing development team). The model, that was firstly developed and

applied at Spotify, prescribes three phases: Phase 1. A Workshop to collect data

where members of a squad discuss and assess their current situation based on a

number of different perspectives, namely Delivery Value, Easy to release, Fun,

Health of Codebase, Learning, Mission, Pawns or Players, Speed, Suitable Process,

Support, and Teamwork. This phase is supported by a deck of cards where each card

has 2 statements, one green describing a good aspect of the assessed perspective

and one red describing a bad aspect. For each perspective, the team has to define

a colour that best describes their current squad for that perspective where: (a)

Green means the squad is satisfied with their ability on that perspective and does

not see need for improvement now; (b) Yellow means there are some important

problems that need to be addressed; and (c) Red means the perspective needs to

be improved. Phase 2. Create a graphical summary of the result. Phase 3. Use the

data to help the squads improve.

52. Team and Technical Agility Self-Assessment

Team and Technical Agility (AGILE 2012 [229]) competency which is the collection

of foundation practices on which Agile development is based (see approach 42).

183



This assessment approach has 34 questions divided into 3 dimensions: Agile Teams,

Team of Agile teams, and Built-in Quality. Regarding the analysis of the results,

the approaches calculate the average score for each dimension considering the

questions with a positive score (Not applicable answers are not counted in the final

result) and present a radar chart with the dimensions and their corresponding

score. However, there is no clear indication of how to interpret these results and

which action should be taken.

53. Team Barometer

Team Barometer (JANLÉN 2014 [76]) is an approach that has a twofold goal: (a)

to evaluate how an agile team gets stronger over time, and (b) to be conducted as

an alternative to the traditional iteration retrospective meetings. The approach is

executed as a survey in a workshop with the whole agile team. The survey consists

of 16 team characteristics, packaged as a deck of cards. Each card has a headline

naming the corresponding characteristic of the team, a green and a red statement.

The green statement denotes a good practice while the red statement denotes a

bad practice. For example, the card that corresponds to the characteristic “Trust”

has the following statements: “We have the courage to be honest with each other.

We don’t hesitate to engage in constructive conflicts” (green) and “Members rarely

speak their mind. We avoid conflicts. Discussions are tentative and polite.” (red).

Team members vote green, yellow or red for each card in the meeting. Green means

that the member agrees with the green statement, red that the member agrees with

the red statement. A yellow vote means that the member thinks it is neither green

nor red but something in the middle. Once all cards have been run through, the

team reflects and discusses the results.

54. TeamMetrics

The TeamMetrics (VERWIJS 2017 [120]) is a web-based survey proposed by

Christiaan Verwijs that aims at helping agile teams improve by gathering data

about key team factors such as team morale, motivation, happiness, learning,

performance, communication, and leadership and interpret the results with the

help of benchmarks. The survey has 10 statements that should be scored using a

19-point Likert scale where the lowest value means Very inaccurate and the highest

value means Very accurate. One of the statements that compose the survey, for

example, is “My job requires me to use a number of high level or complex skills”.

184



55. Test Maturity Card Game

The Test Maturity Card Game (SCHOOTS and SCHUURKES 2017 [121]) is

game-based tool designed to help teams assess and improve their testing capability.

The approach is supported by a card game that helps teams discuss and identify

strengths and weaknesses in their process. The model consists of a set of criteria

organized in 6 different areas: 1. Test Culture, 2. Context, 3. Trait, 4. Skills, 5.

Processes, and 6. Artefacts. The team uses a card game to identify the criteria

most relevant to their context. The approach is supported by a card game that is

used to aid the teams identify the most relevant criteria to their context and to

assess the teams ability in the selected criteria.

56. The Agile Self-Assessment Game

LINDERS 2019 [75] presented the Agile Self-Assessment Game, a game-based

approach that assists teams to reflect on their own team interworking, discover

how agile they are and decide what they can do to increase their agility. The game

consists of a deck of cards with statements on applying agile practices organized

in 5 “suits”: 52 Basic Agile cards, 39 Scrum cards, 52 Kanban cards, 26 DevOps

cards, and 26 Business Agility cards.

57. The Art of Agile Development

In (SHORE and WARDEN 2007 [122]), SHORE and WARDEN proposed a

self-assessment survey that aims to help agile teams review and evaluate their

approach to adopting agile development. It focuses on five important aspects of

agile development: Thinking, Collaborating, Releasing, Planning, and Developing.

The approach is available as a text-based survey composed of 46 yes/no questions.

Each question has a specific weight that ranges from 3 to 75. The final score, that

is calculated as the sum of each question, should be analyzed as follows: 75 points

or less: “immediate improvement required ” (red); 75 to 96 points: “improvement

necessary” (yellow); 97, 98, or 99: “improvement possible” (green); and 100: “no

further improvement needed ”.

58. The Joel Test: 12 Steps to Better Code

SPOLSKY proposed in (SPOLSKY 2000 [123]) a self-assessment questionnaire for

measuring how good a software team is. The questionnaire has 12 yes/no questions.

Each ’yes’ answer scores 1 point and the final score, which is the sum of the 12

questions, should be analyzed as follows: A score of 12 means the organization is

185



perfect, 11 is tolerable, but 10 or lower and the organization has serious problems.

59. Visual Management Self-Assessment

The Visual Management Self-Assessment (HOGAN 2017 [124]) is a web-based

self-assessment survey to aid organization to identify what techniques an organi-

zation are currently doing and find next steps for improvement. The survey is

useful as a baseline for measuring an organization depth of Kanban adoption over

time and also as a checklist of ideas for techniques to try. The survey is organized

in 3 areas: Clarity of the the work (position of the work, performance measures

and identification of problems), Controls (over team capacity and commitments

to stakeholders) and Collaboration (feedback mechanisms and team collaboration

practices). The tool sends to all participants a report on insights into the state of

Kanban across the survey once there are enough responses.

60. Yodiz’s Team Agility Self Assessment

The Yodiz’s Team Agility Self Assessment (YODIZ 2017 [125]) is a self-assessment

survey available as a spreadsheet that can be used to support agile teams under-

standing whether and in which extend they are applying agile practices. The survey

is composed of 37 questions organized in 8 agile areas (Team, Backlog, Daily Scrum,

Sprint, Coding Practices, Testing, Business, and Retrospective). Each question as-

sesses whether the team is applying a specific agile practice and is scored using the

following scale: 0 points: Never, 1 point: Rarely, 2 points: Occasionally, 3 points:

Often, 4 points: Very Often, and 5 points: Always. The findings from the survey

are illustrated in the form of a pie chart. The chart visualizes the overall progress

and where the team needs to improve.

186



Appendix B

Survey Design and Data Analysis

In Chapter 4 we presented the methodology conducted to produce the Catalogue

of Agile Smells . In a nutshell, the catalogue was elaborated through three steps:

1. Step 1: We conducted a literature review to identify the agile smells; 2. Step 2:

We conducted a survey to reveal the relevance of the agile smells; and 3. Step 3:

We organized the agile smells as a catalogue. This appendix focus on discussing

some aspects of the design of the survey and the analysis of the collected data.

The remainder of this Appendix is divided in three issues:

1. Asymmetric Likert scale;

2. Likert scale as interval data; and

3. Aggregation of two Likert scales.

Asymmetric Likert scale

The first issue is related to the design of the Likert scale used in the survey. As

we presented in Section 4.4, the questionnaire was composed of two questions that

accepted the following answers:

(a) Not relevant (0 pts) (b) Slightly relevant (1 pt) (c) Very relevant (2 pts)

(d) Absolutely relevant (3 pts)

This scale is unbalanced and asymmetric since it has 1 negative option (Not

relevant) and 3 positive options (Slightly relevant, Very relevant, and Absolutely

relevant). As the scale has more positive options than negative, it may induce the

respondent to give a positive answer. As suggested by JOSHI et al. 2015 [230], it is

preferable to use a symmetric Likert scale since it provides independence to a par-

ticipant to choose any response in a balanced and symmetric way in either directions.

187



Likert scale as interval data

The second issue discussed in this appendix regarding the decision of using the

data collected from a Likert scale, which is an ordinal scale, as continuous data.

The treatment as continuous data was done when we add the answers of the SQ1

and SQ2 and when we used the result to rank the agile smells (see Figures 4.3 and

4.4). Theoretically, only interval and ratio scales are considered to be continuous,

where arithmetic operations can be conducted, while nominal and ordinal scales

are considered to be categorical data, where arithmetic operation should not be

applied. There are many studies dealing with the disadvantages of treating ordinal

as interval scales. JAMIESON 2004 [231] reviewed ways of using Likert scales, and

stated that it is a common practice, but controversial, to treat a Likert scale as

interval scale. Computing means and standard deviations for Likert scale data are

considered to be inappropriate. Instead, nonparametric statistics should be used.

KUZON et al. 1996 [232] maintained that one of the seven deadly sins of statistical

analysis is using parametric analysis for ordinal scales. There are thus arguments

against the use of Likert scales as continuous measures. On the other hand, there

are arguments in favor of considering Likert scales as continuous interval scales.

STEVENS et al. 1946 [233] accepted, under some circumstances, the use of ordinal

as interval scales and this was re-stated in other studies such as BORGATTA and

BOHRNSTEDT, KNAPP 1980, 1990 [234, 235], CARIFIO and PERLA 2008 [236].

There have been numerous studies using Likert scale as interval data. The impasse

is then that, even though the Likert scale violates basic statistical assumptions,

many studies find it useful. One alternative to mitigate this threat is to increase

the number of Likert scale points to make it closer to continuous scales and

normality HODGE and GILLESPIE 2007 [237], LEUNG 2011 [238]. Traditionally,

the number of points in a Likert scale can be as few as four or five (in this study we

used four) but if it can be increased to eleven, a common metric that ranges from

0 to 10, as recommended by HODGE and GILLESPIE 2007 [237], LEUNG 2011

[238], it can be treated as a continuous measure and hence arithmetic operations

can be used WU and LEUNG 2017 [239].

Aggregation of two Likert scales

As presented in Section 4.4.1, the questionnaire used in the survey is composed

of two questions (Survey-RQ1 and Survey-RQ2 ) and each question has an as-

sociated value that varies from 0 to 3 ((a) Not relevant (0 pts) (b) Slightly relevant

188



(1 pt) (c) Very relevant (2 pts) (d) Absolutely relevant (3 pts)). The relevance of a

given agile smell (that is ultimately used to rank the agile smells) is calculated by

adding the values of the two answers as shown in Figure B.1.

relevanceByParticipant(p) = answerQuestion1(p) + answerQuestion2(p)

Figure B.1: Formula of agile smell relevance by participant.

We understand that analysing these two questions together to generate a unique

classification may jeopardize the resulting ranking since each question assesses a

different aspect of an agile smell and therefore the sum of the collected data should

not be applied. Thus, in the remainder of this section, we present an alternative

analysis that considers the questions separately.

Firstly, we analyzed the question Survey-RQ1 and calculated the value rele-

vanceQ1 as shown in Figure B.2. Table B.1 shows the agile smells ranked according

to the value of relevanceQ1 that each agile smells achieved.

Secondly, we analyzed the question Survey-RQ2 and calculated the value rele-

vanceQ2 as shown in Figure B.3. Table B.2 shows the agile smells ranked according

to the value of relevanceQ2 that each agile smells achieved.

relevanceQ1 =

pn∑
p=p1

answerQuestion1(p)

Figure B.2: Formula of final agile smell relevance for question 1.

relevanceQ2 =

pn∑
p=p1

answerQuestion2(p)

Figure B.3: Formula of final agile smell relevance for question 2.

189



Table B.1: Agile smells ranked by their relevance to agility assessment (question 1 of the survey).
R Agile smell name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Total
01 Lower Priority Tasks Executed First 3 1 2 3 3 2 2 3 2 3 1 1 2 3 3 2 3 2 2 3 46
02 Absence of Frequent Deliveries 3 1 2 3 2 2 3 3 3 2 1 1 2 3 2 2 3 2 1 3 44
03 Goals Not Defined or Poorly Defined 2 2 2 2 3 2 2 2 3 2 2 1 2 2 2 3 3 2 3 2 44
04 Iteration Without a Deliverable 2 2 2 2 3 2 3 3 1 2 1 1 2 2 3 3 3 2 3 1 43
05 Complex Tasks 2 1 3 2 2 1 2 2 2 2 2 2 2 3 3 2 3 2 2 2 42
06 Iteration Without an Iteration Planning 2 2 2 2 2 2 2 1 1 2 3 1 2 2 3 2 3 2 3 2 41
07 Iteration Without an Iteration Retrospective 2 2 2 3 1 3 3 2 2 2 1 1 1 3 1 2 3 2 2 2 40
08 Iteration Started without an Estimated Effort 2 2 1 2 2 1 1 1 1 2 3 1 2 3 3 2 3 2 3 2 39
09 Iteration Without an Iteration Review 1 2 2 1 2 2 1 2 2 2 2 1 2 3 2 2 3 2 3 2 39
10 Shared Developers 3 2 3 2 2 2 1 1 0 1 3 1 1 3 2 2 2 2 3 3 39
11 Absence of Timeboxed Iteration 2 1 2 2 3 2 1 2 2 2 2 1 1 2 1 2 3 2 2 3 38
12 Unplanned Work 2 2 2 2 2 1 2 1 2 2 2 1 1 1 2 2 3 2 3 2 37
13 Dependence on Internal Specialists 2 2 2 2 2 1 1 2 2 2 1 1 2 3 1 1 3 2 3 1 36
14 Unfinished Work in a Closed Iteration 2 1 3 1 1 1 1 1 1 1 2 1 2 3 3 3 2 2 2 3 36
15 Absence of Timeboxed Meeting 2 2 1 2 2 1 1 1 2 2 2 1 2 2 1 2 2 2 1 2 33
16 Absence of Test-driven Development 2 1 1 2 1 1 1 0 2 2 1 1 2 3 0 3 3 2 2 3 33
17 Large Development Team 2 1 2 1 1 1 1 1 0 1 2 1 2 3 2 1 3 2 1 2 30
18 Long Break Between Iterations 1 1 1 2 1 1 1 0 1 1 2 1 1 3 2 1 3 2 3 2 30
19 Concurrent Iterations 1 0 1 1 1 1 1 2 1 1 2 2 1 1 1 1 3 2 3 1 27
20 Iterations with Different Duration 1 1 1 1 1 1 1 0 2 1 3 1 1 3 0 0 2 2 1 2 25

190



Table B.2: Agile smells ranked by their identification strategy relevance (question 2 of the survey).
R Agile smell name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Total
01 Lower Priority Tasks Executed First 3 2 2 3 3 3 3 3 2 3 2 1 3 3 2 2 3 2 2 3 50
02 Absence of Frequent Deliveries 3 1 3 3 2 2 3 2 2 2 2 1 3 3 3 2 3 2 1 3 46
03 Iteration Without a Deliverable 2 3 2 2 2 2 2 3 2 3 1 1 2 2 3 2 3 2 3 1 43
04 Iteration Without an Iteration Planning 2 1 2 1 3 2 2 2 2 2 3 1 1 2 2 2 3 2 3 2 40
05 Goals Not Defined or Poorly Defined 3 1 2 2 2 2 1 2 2 1 2 1 2 1 2 2 3 2 3 2 38
06 Absence of Timeboxed Iteration 3 2 2 2 2 3 1 1 2 1 1 1 2 2 1 2 3 2 2 3 38
07 Iteration Without an Iteration Retrospective 2 1 2 2 2 2 3 2 2 2 1 1 2 3 1 1 3 2 2 1 37
08 Complex Tasks 3 1 2 2 2 1 1 2 1 1 1 2 1 2 3 2 3 2 2 2 36
09 Iteration Started without an Estimated Effort 2 1 1 1 2 1 1 1 2 2 2 1 1 3 3 2 3 2 3 2 36
10 Iteration Without an Iteration Review 2 1 1 2 2 1 1 1 2 2 1 1 2 3 1 2 3 2 3 2 35
11 Unplanned Work 2 1 1 2 2 1 1 1 2 2 2 1 1 1 1 2 3 2 3 2 33
12 Dependence on Internal Specialists 1 1 1 1 2 2 1 1 2 2 1 1 1 3 1 2 3 2 3 2 33
13 Unfinished Work in a Closed Iteration 3 1 2 0 1 0 1 1 0 0 2 1 2 3 3 3 2 2 2 3 32
14 Shared Developers 2 1 2 1 1 1 1 1 0 0 3 1 1 3 1 2 2 2 3 3 31
15 Absence of Timeboxed Meeting 2 1 1 2 2 1 1 1 2 2 2 1 1 2 2 1 2 2 1 2 31
16 Absence of Test-driven Development 2 1 1 1 1 0 1 0 1 2 1 1 1 3 0 3 3 2 2 3 29
17 Large Development Team 1 1 1 0 1 0 1 1 0 0 2 1 2 3 2 2 3 2 1 3 27
18 Long Break Between Iterations 1 0 1 1 0 0 1 0 1 1 2 1 1 3 2 2 3 2 3 2 27
19 Iterations with Different Duration 2 1 1 2 1 0 1 0 1 1 2 1 1 2 2 1 2 2 1 2 26
20 Concurrent Iterations 1 0 0 0 1 2 1 1 1 0 2 2 0 0 1 1 3 2 3 1 22

191



Discussion

In this appendix, we discussed and presented possible solutions for three issues

related to the survey conducted in this research (see Chapter 4). First, we analysed

the problem of using an asymmetric Likert scale that could be fixed by using a sym-

metric Likert scale. Then, we discussed the problem of treating the data collected

from a Likert scale, which is an ordinal scale, as continuous data. One possible so-

lution to mitigate this threat is increasing the number of points of the Likert scale.

The third threat is related to the analysis of the collected data that aggregated two

Likert scales. An alternative analysis that considers the two questions separately

was presented. Although these items are important, they were were pointed by

reviewers at an advanced stage of this research so we were not able to apply the

proposed solutions during the catalogue elaboration. However, we strongly suggest

that researchers consider these points in an eventual continuation or replication of

this research.

192



Appendix C

Agile smells literature review

selected studies

The 55 studies selected for full consideration in the literature review are listed below.

P1: SCHWABER, K. SCRUM development process. In: Business Object Design and

Implementation, Springer London, pp. 117–134, 1997 [58].

P2: STAPLETON, J. Dynamic systems development method: the method in practice.

Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc., 1997. ISBN:

0201178893 [63].

P3: BECK, K. Embracing change with extreme programming, Computer, v. 32, n. 10,

pp. 70–77, 1999 [55].

P4: BECK, K. Extreme programming explained: embrace change. Boston, MA, USA,

Addison-Wesley Longman Publishing Co., Inc., 2000. ISBN: 0-201-61641-6 [55].

P5: CUNNINGHAM, W. Extreme programming. http://www.-

extremeprogramming.org/, 1999. Accessed: 2017-12-01 [57].

P6: LUCA, J. D. Feature driven development FDD. http://www.-

featuredrivendevelopment.com/, 1999. Accessed: 2017-12-01 [62].

P7: HIGHSMITH, III, J. A. Adaptive software development: a collaborative approach to

managing complex systems. New York, NY, USA, Dorset House Publishing Co., Inc.,

2000. ISBN: 0-932633-40-4 [24].

P8: MILLER, G. G. The characteristics of agile software processes. In: Proceedings of the

39th International Conference and Exhibition on Technology of Object-Oriented Lan-

guages and Systems (TOOLS39), TOOLS ’01, Washington, DC, USA, 2001. IEEE

Computer Society [144].

193



P9: PALMER, S. R., FELSING, M. A practical guide to feature-driven development.

Pearson Education, 2001. ISBN: 0130676152 [].

P10: MAURER, F., MARTEL, S. Extreme programming: rapid development for web-

based applications, IEEE Internet Computing, v. 6, n. 1, pp. 86–90, 2002 [149].

P11: NEWKIRK, J. Introduction to agile processes and extreme programming. In: Pro-

ceedings of the 24th International Conference on Software Engineering. ICSE 2002,

pp. 695–696, May 2002 [150].

P12: LINDVALL, M., BASILI, V. R., BOEHM, B. W., et al. Empirical findings in ag-

ile methods. In: Proceedings of the Second XP Universe and First Agile Universe

Conference on Extreme Programming and Agile Methods - XP/Agile Universe 2002,

London, UK, UK, 2002. Springer-Verlag [145].

P13: ABRAHAMSSON, P., SALO, O., RONKAINEN, J., et al. Agile software devel-

opment methods - review and analysis. Relatório Técnico 478, VTT Publications,

Espoo, Finland, 2002 [64].

P14: SCHWABER, K., BEEDLE, M. Agile software development with scrum. 1st ed.

Upper Saddle River, NJ, USA, Prentice Hall PTR, 2001. ISBN: 0130676349 [59].

P15: COCKBURN, A. Agile software development. Boston, MA, USA, Addison-Wesley

Longman Publishing Co., Inc., 2002. ISBN: 0-201-69969-9 [23].

P16: MARTIN, R. C. Agile software development: principles, patterns, and practices.

Upper Saddle River, NJ, USA, Prentice Hall PTR, 2003. ISBN: 0135974445 [151].

P17: NISAR, M., HAMEED, T. Agile methods handling offshore software development

issues. In: Proceedings of INMIC 2004 - 8th International Multitopic Conference, pp.

417–422, 2004. doi: 10.1109/INMIC.2004.1492915 [166].

P18: MCMAHON, P. Extending agile methods: a distributed project and organizational

improvement perspective, CrossTalk, , n. 5, pp. 16–19, 2005 [172].

P19: MILLER, G. Agile software development for the entire project, CrossTalk, v. 18,

n. 12, pp. 9–12, 2005 [240].

P20: PIKKARAINEN, M., SALO, O., STILL, J. Deploying Agile Practices in Organi-

zations: A Case Study. In: Richardson, I., Abrahamsson, P., Messnarz, R. (Eds.),

Software Process Improvement, pp. 16–27, Berlin, Heidelberg, 2005. Springer Berlin

Heidelberg. ISBN: 978-3-540-32271-9 [241].

194



P21: AMBLER, S. Survey says: agile works in practice, Dr. Dobb’s Journal, v. 31, n. 9,

pp. 62–64, 2006 [225].

P22: CAO, L., RAMESH, B. Agile software development: ad hoc practices or sound

principles? IT professional, v. 9, n. 2, pp. 41–47, 2007 [168].

P23: THOMAS, J. Introducing agile development practices from the middle. In: Engineer-

ing of Computer Based Systems, 2008. ECBS 2008. 15th Annual IEEE International

Conference and Workshop on the, pp. 401–407. IEEE, 2008 [169].

P24: KAUTZ, K., PEDERSEN, C., MONRAD, O. Cultures of agility - agile software

development in practice. In: ACIS 2009 Procedings - 20th Australasian Conference

on Information Systems, pp. 174–184, 2009 [242].

P25: BATRA, D. Modified agile practices for outsourced software projects, Communica-

tions of the ACM, v. 52, n. 9, pp. 143–148+10, 2009 [243].

P26: MISRA, S. C., KUMAR, V., KUMAR, U. Identifying some important success fac-

tors in adopting agile software development practices, J. Syst. Softw., v. 82, n. 11,

pp. 1869–1890, nov 2009 [170].

P27: LI, J. Research and practice of agile unified process. In: ICSTE 2010 - 2010 2nd

International Conference on Software Technology and Engineering, Proceedings, v. 2,

pp. V2340–V2343, 2010 [171].

P28: WILLIAMS, L. Agile software development methodologies and practices. In: Ad-

vances in Computers, v. 80, Elsevier, pp. 1–44, 2010 [152].

P29: ABRANTES, J. F., TRAVASSOS, G. H. Common agile practices in software pro-

cesses. In: 2011 International Symposium on Empirical Software Engineering and

Measurement, pp. 355–358, Sept 2011 [66].

P30: SHI, Z., CHEN, L., CHEN, T.-E. Agile planning and development methods. In:

ICCRD2011 - 2011 3rd International Conference on Computer Research and Devel-

opment, v. 1, pp. 488–491, 2011 [173].

P31: POPPENDIECK, M., CUSUMANO, M. Lean software development: a tutorial,

IEEE Software, v. 29, n. 5, pp. 26–32, 2012 [244].

P32: SLETHOLT, M., HANNAY, J., PFAHL, D., et al. What do we know about scientific

software development’s agile practices? Computing in Science and Engineering, v. 14,

n. 2, pp. 24–36, 2012 [159].

195



P33: DYCK, S., MAJCHRZAK, T. Identifying common characteristics in fundamental,

integrated, and agile software development methodologies. In: Proceedings of the

Annual Hawaii International Conference on System Sciences, pp. 5299–5308, 2012

[245].

P34: ALZOABI, Z. Agile software: body of knowledge. In: Business Intelligence and Agile

Methodologies for Knowledge-Based Organizations: Cross-Disciplinary Applications,

IGI Global, pp. 14–34, 2012 [153].

P35: YATZECK, E. A corporate agile 10-point checklist.

http://pagilista.blogspot.com/2012/12/a-corporate-agile-10-point-checklist.html,

Dec 2012. Accessed: 2019-06-30 [72].

P36: MEYER, B. Agile!: the good, the hype and the ugly, v. 9783319051550, Agile!: the

good, the hype and the ugly. Cham, Spring, 2014 [4].

P37: PAPATHEOCHAROUS, E., ANDREOU, A. Empirical evidence and state of practice

of software agile teams, Journal of Software: Evolution and Process, v. 26, n. 9,

pp. 855–866, 2014 [160].

P38: CHAGAS, L. F., DE CARVALHO, D. D., LIMA, ADAILTON MAGALHÃES

AN REIS, C. A. L. Systematic Literature Review on the Characteristics of Agile

Project Management in the Context of Maturity Models. In: Mitasiunas, A., Rout,

T., O’Connor, R. V., et al. (Eds.), Software Process Improvement and Capability

Determination, pp. 177–189, Cham, 2014. Springer International Publishing. ISBN:

978-3-319-13036-1 [167].

P39: MORAN, A. Agile software development. In: Agile Risk Management, Springer In-

ternational Publishing, pp. 1–16, Cham, 2014 [154].

P40: DIEBOLD, P., DAHLEM, M. Agile practices in practice: a mapping study. In:

Proceedings of the 18th International Conference on Evaluation and Assessment in

Software Engineering, p. 30. ACM, 2014 [155].

P41: BERTEIG, M. Rules of scrum. http://www.agileadvice.com/rules-of-scrum/, 2015.

Accessed: 2017-12-01 [60].

P42: GHANI, I., BELLO, M. Agile adoption in IT organizations, KSII Transactions on

Internet and Information Systems, v. 9, n. 8, pp. 3231–3248, 2015 [156].

P43: GREGORY, P., BARROCA, L., TAYLOR, K., et al. Agile challenges in practice: a

thematic analysis, v. 212. 2015 [246].

196



P44: ELORANTA, V.-P., KOSKIMIES, K., MIKKONEN, T. Exploring ScrumBut –

An Empirical Study of Scrum Anti-Patterns, Information and Software Technology,

v. 74, 12 2015. doi: 10.1016/j.infsof.2015.12.003 [17].

P45: DIKERT, K., PAASIVAARA, M., LASSENIUS, C. Challenges and success factors for

large-scale agile transformations: a systematic literature review, Journal of Systems

and Software, v. 119, pp. 87–108, 2016 [247].

P46: UIKEY, N., SUMAN, U. Tailoring for agile methodologies: a framework for sustain-

ing quality and productivity, International Journal of Business Information Systems,

v. 23, n. 4, pp. 432–455, 2016 [161].

P47: TRIPP, J., ARMSTRONG, D. Agile methodologies: organizational adoption mo-

tives, tailoring, and performance, Journal of Computer Information Systems, v. 58,

pp. 1–10, 10 2016. doi: 10.1080/08874417.2016.1220240 [5].

P48: KROPP, M., MEIER, A., BIDDLE, R. Agile Practices, Collaboration and Experi-

ence. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., et al. (Eds.), Product-

Focused Software Process Improvement, pp. 416–431, Cham, 2016. Springer Interna-

tional Publishing. ISBN: 978-3-319-49094-6 [162].

P49: JAIN, R., SUMAN, U. Effectiveness of agile practices in global software development,

International Journal of Grid and Distributed Computing, v. 9, n. 10, pp. 231–248,

2016 [163].

P50: ALLIANCE, S. Learn about scrum. https://www.scrumalliance.-org/why-scrum,

2016. Accessed: 2017-12-01 [21].

P51: HODA, R., NOBLE, J. Becoming agile: a grounded theory of agile transitions in

practice. In: Proceedings - 2017 IEEE/ACM 39th International Conference on Soft-

ware Engineering, ICSE 2017, pp. 141–151, 2017 [248].

P52: SUNNER, D. Agile: adapting to need of the hour: understanding agile methodology

and agile techniques. In: Proceedings of the 2016 2nd International Conference on

Applied and Theoretical Computing and Communication Technology, iCATccT 2016,

pp. 130–135, 2017 [157].

P53: BELLO, M., GHANI, I. A survey on success factors and obstacles for further adop-

tion of agile in IT organisations, International Journal of Advanced Media and Com-

munication, v. 7, n. 3, pp. 167–180, 2017 [158].

P54: LACERDA, L., FURTADO, F. Factors that help in the implantation of agile meth-

ods: a systematic mapping of the liteature. In: Iberian Conference on Information

Systems and Technologies, CISTI, v. 2018-June, pp. 1–6, 2018 [164].

197



P55: VALLON, R., DA SILVA ESTÁCIO, B., PRIKLADNICKI, R., et al. Systematic

literature review on agile practices in global software development, Information and

Software Technology, v. 96, pp. 161–180, 2018 [165].

198



Appendix D

Catalogue of Agile Smells

Table D.1: AS 01: Lower Priority Tasks Executed First
Name: AS 01 - Lower Priority Tasks Executed First
Description: In an agile project, the development team should focus on higher priority
tasks. The Lower Priority Tasks Executed First smell is detected when tasks with lower
priority are executed before tasks with higher priority. The occurrence of this smell
may indicate that the development team has not worked on the highest priority tasks.
Target: Team
Agile Methods: Four agile method explicitly state that higher priority tasks must
be executed first: Scrum, Crystal Methods, DSDM and OpenUP. For Scrum, the whole
team should focus on the Sprint goal. In Crystal methods, the project leader should
prioritize the goals that guide developers to focus on particular areas. In DSDM, to
fulfill the principles Focus on the Business Need and Deliver On Time, DSDM teams
must focus on business priorities. OpenUP teams must self-organize around how to
accomplish iteration objectives and commit to delivering the results.
Industry Perspective: All survey participants confirmed that working on higher
priority tasks is an important agile practice. However, a participant mentioned that
exceptions are tolerated in situations where it is not possible to work on high priority
tasks. As example, he cited a situation where an available worker does not have the
required skills to perform a high-priority task. In this case, the worker is allowed to
work on a less important tasks.
Relevance: 80%
Identification Strategy: The occurrence of this smell could be detected by assessing
the tasks execution history.
Parameters: No parameter was identified for this identification strategy.
References: [58], [63], [57], [55], [56], [62], [24], [61], [149], [64], [150], [59], [23], [151],
[153], [4], [154], [156], [17], [21], [157], [158], [164].

199



Table D.2: AS 02: Absence of Frequent Deliveries
Name: AS 02 - Absence of Frequent Deliveries
Description: The practice of delivering products continuously and frequently is very
important to agile methods and that is almost a mantra among agile software developers.
The Absence of Frequent Deliveries smell is detected when the development team does
not deliver a new version of the software frequently. The occurrence of this smell may
indicate that this practice has been jeopardized.
Target: Project
Agile Methods: All analyzed agile methods state that the software project deliveries
should be frequent. XP proposes breaking the work in Small and Short Releases in order
to guarantee regular and frequent deliveries. In Scrum, the work is broken in sprints
which are timeboxed periods (approximately 15 to 30 days) where the development team
produces a new executable version of the software. In Crystal methods, the development
result product is also incremental and the deliveries interval depends on the length of the
project: In Crystal Clear, the delivery intervals are periods of two to three months and in
Crystal Orange, the increments can be extended to four months. In FDD, the iterations
should take from a few days to a maximum of two weeks. DSDM’s philosophy states
“best business value emerges when projects are aligned to clear business goals, deliver
frequently and involve the collaboration of motivated and empowered people”. In ADS,
the project is broken into units called Adaptive Development Cycles that typically last
between four and eight weeks. OpenUP suggests breaking the work into iterations that
take a few weeks.
Industry Perspective: All participants indicated - with different levels of relevance
- that the detection of this smell is relevant for an Agility Assessment. No additional
comment was given.
Relevance: 75%
Identification Strategy: The occurrence of this smell could be detected by assessing
the interval between two consecutive Iterations with deliverable.
Parameters: A Desirable Delivery Interval parameter could be used to specify the
expected duration of the deliveries interval.
References: [58], [63], [57], [55], [56], [62], [24], [61], [149], [64], [150], [59], [23], [151],
[152], [66], [153], [154], [155], [156], [60], [21], [157], [158].

200



Table D.3: AS 03: Iteration Without a Deliverable
Name: AS 03 - Iteration Without a Deliverable
Description: The practice of delivering products continuously and frequently is very
important to agile methods and can be considered a mantra among agile software de-
velopers. The agile methods state the development team should deliver a new version
of the software at the end of each iteration. The Iteration Without a Deliverable smell
is detected when an iteration does not have an associated deliverable product. The
presence of this smell may indicate that the continuous and frequent delivery practice
has been jeopardized.
Target: Iteration
Agile Methods: The smell is mentioned by five agile methods: Scrum, FDD, DSDM,
ADS and OpenUp. For Scrum, it is desired that the team deliver a new version of the
software at the end of each Sprint. In FDD, at least one new feature should be delivered
at the end of an Iteration. A key factor for the success of the principle Deliver on Time
in DSDM is that at the end of each iteration, the team shows a deliverable. In ADS,
at least one new component should be delivered at the end of a Development Cycle.
The practice Iterative Development in OpenUp defines that an iteration should not be
extended without any software to be demonstrated.
Industry Perspective: All participants indicated - with different levels of relevance
- that the smell is relevant. No additional comment was given.
Relevance: 71.67%
Identification Strategy: A strategy to assess whether an iteration has a deliverable
is to use a specific field to describe the deliverable of an iteration. With such field, the
occurrence of this smell could be detected by assessing this field.
Parameters: A Tolerated Number of Consecutive Iterations Without Deliverable pa-
rameter could be used to specify a tolerable number of consecutive iterations without a
deliverable.
References: [58], [63], [57], [55], [56], [62], [24], [61], [149], [64], [150], [59], [23], [151],
[66], [153], [154], [156], [60], [21], [158].

201



Table D.4: AS 04: Goals Not Defined or Poorly Defined
Name: AS 04 - Goals Not Defined or Poorly Defined
Description: Agile development teams need to know exactly what they are working on
and the goals of the project and iterations should be clear and well-defined. The Goals
Not Defined or Poorly Defined smell is detected when the goals of the project or of a
given iteration are not defined. The presence of this smell may indicate the development
team does not have a clear view of the goals and therefore could not choose the most
important work to do.
Target: Project/Iteration
Agile Methods: Goals should be clear and well-defined is a practice mentioned
by the following methods: Scrum, Crystal, DSDM, ADS and OpenUp. Scrum states
that the iterations (called sprints in Scrum) should have well-defined goals. In Crystal
methods, goals should be clear and developers should know exactly what the goals of
the project are. The principle Focus On The Business Need in DSDM defines that
every decision taken during a project must be guided by the project goals. Thus, it is
important that these goals are well-defined and communicated to all team. In ADS, the
development process should be mission-oriented (or goal-oriented) and the activities in
each iteration (called cycle in ADS) must be aligned with the project mission. Thus,
having a well-defined and clear goal is a key factor for ADS method. The development
team in OpenUP method should be self-organized around how to accomplish iteration
objectives.
Industry Perspective: All participants indicated - with different levels - that the
agile smell is relevant. No additional comment was given.
Relevance: 68.33%
Identification Strategy: Decide what is “clear and well-defined” could not be an
easy decision specially since there is no pre-defined format to specify “goals” in agile
method. Thus, we propose a simpler strategy that only verifies if the goals of the project
and iterations are defined. To achieve this verification, specific fields should be used to
describe the goals.
Parameters: A Min Length parameter could be used to specify the minimum length
the goal description should have.
References: [58], [63], [62], [24], [61], [144], [64], [59], [23], [151], [153], [156], [17], [21].
[157].

202



Table D.5: AS 05: Iteration Without an Iteration Planning
Id: AS 05
Name: Iteration Without an Iteration Planning
Description: Iteration planning is an important success factor in agile methods. Nor-
mally an iteration plan is elaborated with the main stakeholders (developers and cus-
tomer) that together decide what should be developed in the iteration. The Iteration
Without an Iteration Planning smell is detected when there is no planning associated
with a given iteration. The presence of this smell may indicate that the iterations are
not being planned properly.
Target: Iteration
Agile Methods: Iteration planning is mentioned by all agile methods investigated.
The Planning Game practice in XP promotes a close interaction between developers
and customers. Developers estimate the effort for implementing customer stories and
customers then decide about timing and scope of the iterations. Scrum proposes the
Sprint Planning which is a meeting divided in two parts: in the first part, all stakehold-
ers (customer, scrum master and developers) select the items that should be worked in
the iteration. In the second part, the team discusses technical issues related to selected
items and decides what features could be delivered in the iteration. Crystal methods
define a planning meeting to decide the next increment of the system. In FDD, develop-
ment is feature-oriented which includes the creation of a high-level plan where features
are organized according to their priority. Before each iteration, customer and team
decide together which features should be developed in the next iteration. In DSDM,
the scope of an iteration is planned beforehand. Planning the cycles in ADS is part of
the iterative process. ADS method also proposes Joint Application Development (JAD)
sessions which are workshops where developers and customer representative discuss
product features and decide the components that will be included in the next cycle.
The Iteration Plan practice in OpenUp suggests planning an iteration in detail only
when it is due to start. An iteration planning meeting should be held by the whole
project team who decide the iteration scope.
Industry Perspective: All the participants considered the Iteration Planning rel-
evant. One participant mentioned that, in some Projects, the Iteration Planning is
divided in two parts (different from Scrum division mentioned above). In the first part
(called Pre-Iteration Planning) a team representative (usually the most experienced)
and a business analyst discuss details about the candidates iteration backlog items.
The goal of the first part is to anticipate potential technical problems (inconsistent
business rules, incomplete or hard-to-implement requirements, business processes not
mapped, etc). In case a problem is detected, the issue should be resolved before the
Iteration Planning.
Relevance: 67.5%
Identification Strategy: We propose three strategies to verify the presence of the
Iteration Without an Iteration Planning smell. The first strategy is to check if there is
a task in the iteration plan that represents the Iteration Planning meeting. Another
strategy is to verify if there is a task in the iteration plan that produces an Iteration
Plan artifact. A third strategy is to check if all the tasks in the iteration plan are
estimated before starting the iteration.
Parameters: No parameter was identified for the evaluation strategy.
References: [58], [63], [57], [55], [56], [62], [24], [61], [149], [64], [150], [59], [23], [151],
[172], [169], [170], [152], [66], [173], [159], [153], [4], [167], [154], [155], [60], [21], [161],
[162], [163], [5], [157], [164], [165].

203



Table D.6: AS 06: Complex Tasks
Name: AS 06 - Complex Tasks
Description: Complex tasks should be avoided in agile projects. They should be
decomposed by the development team into simpler tasks. The Complex Tasks smell is
detected when there are complex tasks in a given iteration. The presence of this smell
may indicate that the developers are not properly breaking complex tasks into simpler
tasks.
Target: Iteration
Agile Methods: The motivation for avoiding complex tasks in Scrum is derived from
a technique for project management called a Burndown Chart. A Burndown Chart
reflects the daily progress of the team and decreases according to the number of finished
tasks. The chart is expected to decrease daily after the Daily Meeting. Otherwise, a
delay in working-in-progress is detected. The problem with complex tasks - those whose
duration exceeds 8 hours - is that they may give a false indication that the work-in-
progress is not evolving. Therefore, simple tasks make the iteration management easier
and more reliable since it is expected that each developer finishes at least one task per
day. Avoiding complex tasks is also explicitly mentioned by FDD that suggests that the
features should be small enough to be implemented in a few hours or days.
Industry Perspective: All participants indicated - with different levels - that the
agile smell is relevant. No additional comment was given.
Relevance: 65%
Identification Strategy: A strategy to identify the presence of the Complex Tasks
smell is to verify whether the tasks estimates exceed an allowable threshold.
Parameters: A Maximum Estimation Allowed parameter could be used to configure
the threshold that used to identify complex tasks.
References: [58], [59], [151], [166], [152], [66], [4], [154], [21], [157], [165].

204



Table D.7: AS 07: Iteration Without an Iteration Retrospective
Name: AS 07 - Iteration Without an Iteration Retrospective
Description: Retrospective meetings represent opportunities for the development
team to reflect on how they are working and improve the method when necessary.
The Iteration Without an Iteration Retrospective smell is detected when there is no
retrospective meeting associated with a given iteration. The presence of this smell may
indicate that an important opportunity for improvement prescribed by agile methods
is being wasted.
Target: Iteration
Agile Methods: Retrospective meetings are mentioned by three agile methods:
Scrum, Crystal methods and ADS. Scrum defines Sprint Retrospect as a meeting that
usually follows the Sprint Review, where the development team (and only it) gives
and receives feedback on the process followed during the Sprint. Crystal encourages a
practice called Reflective Improvement in which developers take a break from regular
development and try to improve their processes. The Learning Loop principle in ADS
is also based on retrospective meetings that are usually performed after each cycle.
Industry Perspective: All participants indicated - with different levels - that the
agile smell is relevant. No additional comment was given.
Relevance: 64.17%
Identification Strategy: Two strategies were proposed to verify the presence of
a Retrospective Meeting. The first strategy consists in checking if there is any task
associated with the iteration plan that represents the Retrospective meeting. The second
strategy is to verify if there is any task in the iteration plan that produces an Iteration
Retrospective Minute artifact.
Parameters: A Tolerated Number of Consecutive Iterations Without Retrospective
parameter could be used to specify a tolerable number of consecutive iterations without
retrospective meetings.
References: [58], [63], [62], [24], [61], [64], [59], [23], [151], [152], [159], [153] [4], [154],
[155], [156], [60], [161], [5], [162], [163], [157], [158], [164], [165].

205



Table D.8: AS 08: Absence of Timeboxed Iteration
Name: AS 08 - Absence of Timeboxed Iteration
Description: The Timeboxed Iteration practice defines that all iterations should have
a fixed time duration. Thus, an iteration should not be extended or shortened to fit
planned or unplanned features. The Absence of Timeboxed Iteration smell is detected
when an iteration is shorter or longer than the predefined duration. The presence of
this smell may indicate the timeboxed iteration practice has not been applied properly.
Target: Iteration
Agile Methods: The Timeboxed Iteration practice is mentioned by four methods:
Scrum, DSDM, ADS and OpenUp. Scrum method defines that an iteration (called
sprint in Scrum) should be timeboxed. In DSDM, the Deliver On Time principle states
that delivering a solution on time is a very desirable outcome for a project and is quite
often the single most important success factor. In order to achieve this principle, DSDM
teams should need to timebox work. ADS method argues that ambiguity in complex
software development can be alleviated by fixing tangible deadlines on a regular basis.
The Iterative Development practice in OpenUp defines that do not extend an iteration
in order to finish work.
Industry Perspective: Regarding the survey, there was no unanimity among the
participants. Some participants said timeboxing should be rigidly followed. Other
subjects said that timeboxing is desired, but not applied as a rigid rule. Changes in
iteration duration are indeed a common practice. For these participants, it is preferable
to extend an iteration in order to include important features than achieve timeboxing
with less features.
Relevance: 63.33%
Identification Strategy: Timeboxing could be verified assessing if there was any
variation in the iteration duration after it has been planned.
Parameters: A Tolerance Of Change parameter (absolute or percentage value) could
be used to indicate the maximum tolerated variation. For example, a 5% tolerance
means that an iteration could have their duration shortened or extended by 5% of its
baseline duration.
References: [58], [24], [144], [59], [23], [151], [159], [153], [4], [154], [155], [60], [21],
[158].

206



Table D.9: AS 09: Iteration Started without an Estimated Effort
Name: AS 09 - Iteration Started without an Estimated Effort
Description: The scope and duration of the iterations in an agile project are typically
defined by the development team that must commit to the iteration goals and deadlines.
The Iteration Started without an Estimated Effort smell is detected when an iteration
that contains non-estimated tasks is started. The presence of this smell may indicate
that the development team is committed to a deadline without a good understanding
of the effort to deliver the iteration scope.
Target: Iteration
Agile Methods: Understanding the effort necessary to developer all the features
selected to a given iteration is a key success factor for all agile methods investigated. In
the Planning Game practice proposed in XP, the developers should estimate the effort
for implementing customer stories and customers then decide about timing and scope
of the deliverables. Scrum proposes the Sprint Planning meeting where the develop-
ers discuss and scrutinize technical issues related to backlog to decide what features
they are able to deliver after the next iteration. Similarly, Crystal methods define a
planning meeting where the team decides the next increment of the system. In FDD,
development is feature-oriented which includes the creation of a high-level plan where
features are organized according to their priority. Before each iteration, customer and
team decide together, based on the priority of the items and the team productivity,
which features should be developed in the next iteration. In DSDM, the scope of an
iteration is planned beforehand. Planning the cycles in ADS is part of the iterative pro-
cess. ADS method also proposes Joint Application Development (JAD) sessions which
are workshops where developers and customer representative discuss product features
and decide the components that will be included in the next cycle. The Iteration Plan
practice in OpenUp suggests planning an iteration in detail only when it is due to start.
An iteration planning meeting should be held by the whole project team who decide
the iteration scope.
Industry Perspective: All participants indicated - with different levels - that the
agile smell is relevant. No additional comment was given.
Relevance: 62.5%
Identification Strategy: A strategy to verify the occurrence of this agile smell is to
check whether all the tasks selected to a given open iteration are estimated (have an
effort estimated).
Parameters: No parameter was identified for the evaluation strategy.
References: [58], [63], [62], [24], [61], [64], [59], [23], [151], [152], [173], [159], [153], [4],
[154], [60], [21], [161], [163], [5], [157], [158], [164].

207



Table D.10: AS 10: Iteration Without an Iteration Review
Name: AS 10 - Iteration Without an Iteration Review
Description: The iteration review is a meeting where the development team presents
to the product owner what was accomplished during the previous iteration. Typically,
there is a software demonstration showing the new features and a discussion of what is
being delivered. The Iteration Without an Iteration Review smell is detected when there
is no review associated with a given iteration. The presence of this smell may indicate
the development team is missing an important opportunity to present the results of the
iteration to the product owner.
Target: Iteration
Agile Methods: Review meetings are explicitly mentioned by three agile methods:
Scrum, Crystal methods and ADS. Scrum defines Sprint Review as a meeting that
should be held on the last day of the iteration to the team presents the results (ie
the features added to the software) to the stakeholders. The participants assess the
new features and may decide for adjustments or even new features that change the
direction of the software development. Similarly, Crystal methods propose a review
meeting just after the end of each iteration to the team presents the resulting software.
The Learning Loop principle in ADS also contains a review meeting that should be
performed after each cycle. This meeting should be performed in the presence of a
customer representative (called customer focus-group).
Industry Perspective: All participants indicated - with different levels - that the
agile smell is relevant. No additional comment was given.
Relevance: 61.67%
Identification Strategy: Two strategies were proposed to verify the presence of a
Review Meeting. The first strategy consists in checking if there is any task associated
with the iteration plan that represents the Review meeting. The second strategy is to
verify if there is any task in the iteration plan that produces an Iteration Review Minute
artifact.
Parameters: A Tolerated Number of Consecutive Iterations Without Review pa-
rameter could be used to specify a tolerable number of consecutive iterations without
retrospective meetings.
References: [58], [63], [62], [24], [61], [64], [59], [23], [151], [152], [173], [159], [153], [4],
[154], [60], [21], [161], [163], [5], [157], [158], [164].

208



Appendix E

Software metamodel literature

review selected studies

The 14 studies selected for full consideration in the literature review are listed below.

P1: FRANCH, X., M. RIB, J. PROMENADE: a modular approach to software process

modelling and enaction, 05 1999 [194].

P2: CHOU, S.-C. A process modeling language consisting of high level UML diagrams

and low level process language, Journal of Object- Oriented Programming, v. 1, n. 4,

pp. 137–163, 2002 [188].

P3: NITTO, E. D., LAVAZZA, L., SCHIAVONI, M., et al. Deriving executable pro-

cess descriptions from UML. In: Proceedings of the 24th International Conference on

Software Engineering. ICSE 2002, pp. 155–165, May 2002. doi: 10.1109/ICSE.2002.

1007964 [189].

P4: FIRESMITH, D., HENDERSON-SELLERS, B. The OPEN process framework: an

introduction. Addison-Wesley, 2002. ISBN: 978-0201675108 [193].

P5: HENDERSON-SELLERS, B., GONZALEZ-PEREZ, C. A comparison of four pro-

cess metamodels and the creation of a new generic standard, Information and

Software Technology, v. 47, n. 1, pp. 49 – 65, 2005. ISSN: 0950-5849. doi:

https://doi.org/10.1016/j.infsof.2004.06.001 [184].

P6: GONZALEZ-PEREZ, C., MCBRIDE, T., HENDERSON-SELLERS, B. A meta-

model for assessable software development methodologies, Software Quality Journal,

v. 13, n. 2, pp. 195–214, Jun 2005. ISSN: 1573-1367. doi: 10.1007/s11219-005-6217-7.

Available at: <https://doi.org/10.1007/s11219-005-6217-7> [24].

209



P7: BENDRAOU, R., GERVAIS, M.-P., BLANC, X. UML4SPM: a UML2.0-Based meta-

model for software process modelling. In: Briand, L., Williams, C. (Eds.), Model

Driven Engineering Languages and Systems, pp. 17–38, Berlin, Heidelberg, 2005.

Springer Berlin Heidelberg. ISBN: 978-3-540-32057-9 [196].

P8: OMG. Software process engineering metamodel (SPEM) 2.0 specification. Final

specification, OMG, apr 2008. http://www.omg.org/spec/SPEM/2.0/PDF/ [195].

P9: SADI, M. H., RAMSIN, R. APM3: A Methodology Metamodel for Agile Project

Management. In: SoMeT, pp. 367–378, 2009 [186].

P10: TERNITÉ, T., KUHRMANN, M. Das V-Modell XT 1.3 Metamodell. Standard,

Technische Universität Münchenn, Germany, 2009 [197].

P11: ENGELS, G., SAUER, S. A Meta-Method for Defining Software Engineering Meth-

ods. In: Graph transformations and model-driven engineering, Springer, pp. 411–440,

2010 [191].

P12: TERNITE, T. Variability of Development Models. Tese de Doutorado, Clausthal

University of Technology, 2010 [249].

P13: AYED, H., VANDEROSE, B., HABRA, N. A metamodel-based approach for cus-

tomizing and assessing agile methods. In: Quality of Information and Communi-

cations Technology (QUATIC), 2012 Eighth International Conference on the, pp.

66–74. IEEE, 2012 [187].

P14: ISO 24744:2014. ISO/IEC 24744:2014 - Software engineering — metamodel for de-

velopment methodologies (SEMDM). Standard, International Organization for Stan-

dardization, Geneva, CH, Nov 2014 [190].

210



Appendix F

Journal Submission System Project

Structure - Tasks and Iterations

The Journal Submission System project has a total of 111 tasks distributed over 7

iterations as shown in Table F.1.

Table F.1: Milestones and Issues of the project Journal

Submission System

Id Issue title Labels Status Complexity

Milestone 1: Sprint 01 - Setting Up the Project - Number of issues: 9

1 Status: Closed - Start: Jan 1, 2020 - Due by: Jan 10, 2020 - Duration: 10 days

Goal: This sprint has as the main goal defining the software architecture and the tools that will support

the remainder of the project.

2 #50 Plan sprint 01 [sprint planning] done 8

3 #51 Define software architecture [architecture] done 40

4 #52 Configure CI/CD pipelines [devops] done 21

5 #53 Configure developers environment [devops] done 21

6 #54 Present software architecture to developers [architecture] done 5

7 #55 Present software architecture to stakeholders [architecture] done 2

8 #56 Create database schema [devops] done 2

9 #57 Configure application server profiles [devops] done 3

10 #60 Retrospective sprint 01 [sprint retrospective] done 2

Milestone 2: Sprint 02 - Authors Registration - Number of issues: 10

11 Status: Closed - Start: Jan 11, 2020 - Due by: Jan 25, 2020 - Duration: 15 days

Goal: -

Continued on next page

211



Continuation of Table F.1

Id Issue title Labels Status Complexity

12 #71
Write specification for the feature Author

Registration
[req],

[priority:high]
done 8

13 #72 Code the feature Author Registration
[dev],

[priorirty:high]
done 13

14 #73
Code the feature Send Confirmation Account

Email to Author
[dev],

[priority:high]
done 5

15 #74 Test the feature Author Registration
[qa],

[priorirty:high]
done 5

16 #75
Write specification for the feature Integration

with the ORCID platform
[req],

[priority:normal]
done 3

17 #76
Code the feature Integration with the OR-

CID platform
[dev],

[priority:normal]
done 8

18 #77
Test the feature Integration with the ORCID

platform
[qa],

[priority:normal]
done 5

19 #78 Deploy Release v.02 [deploy] done 1

20 #79 Review sprint 02 [sprint review] done 1

21 #80 Retrospective sprint 02 [sprint retrospective] done 2

Milestone 3: Sprint 03 - Manuscript Submission - Number of issues: 15

22 Status: Closed - Start: Jan 26, 2020 - Due by: Feb 14, 2020 - Duration: 20 days

Goal: This sprint aims at developing all features to support the submission of a manuscript. It includes

the following features: manuscript submission form; upload documents; send an email notification to

Editor; send an email notification to Authors;

23 #90 Plan sprint 03 [sprint planning] done 8

24 #91
Write specification for the feature

Manuscript Submission
[req],

[priority:high]
done 5

25 #92 Code the feature Manuscript Submission
[dev],

[priority:high]
done 21

26 #93 Test the feature Manuscript Submission
[qa],

[priority:high]
done 8

27 #94
Write specification for the feature Manage

Categories
[req],

[priority:normal]
done 5

28 #95 Code the feature Manage Categories
[dev],

[priority:normal]
done 8

29 #96 Test the feature Manage Categories
[qa],

[priority:normal]
done 5

30 #97 Code the feature Upload documents
[dev],

[priority:normal]
done 5

31 #98
Code the feature Send Notification Email to

Editor
[dev],

[priority:normal]
done 5

32 #99
Code change in the feature Author Registra-

tion: Add new field (Second email address)

[change],

[dev],

[priority:low]

done 5

Continued on next page

212



Continuation of Table F.1

Id Issue title Labels Status Complexity

33 #100
Test change in the feature Author Registra-

tion: Add new field (Second email address)

[change],

[qa],

[priority:low]

done 3

34 #101 Deploy release v.03 [deploy] done 1

35 #102 Review sprint 03 [sprint review] done 1

36 #104
Fix bug 001 in the feature Send Confirma-

tion Account Email to Author

[bug],

[dev],

[priority:high]

done 5

37 #105
Test Fix bug 001 in the feature Send Confir-

mation Account Email to Author

[bug],

[qa],

[priority:high]

done 3

Milestone 4: Sprint 04 - Invite Reviewers - Number of issues: 21

38 Status: Closed - Start: Feb 15, 2020 - Due by: Feb 29, 2020 - Duration: 15 days

Goal: This sprint aims at delivering all the features that support an Editor invite Reviewers to assess a

manuscript.

39 #110 Plan sprint 04 [sprint planning] done 8

40 #111
Write specification for the feature Invite Re-

viewers
[req],

[priority:high]
done 8

41 #112
Code the feature Find Candidate Reviewers

by Manuscript Key Words
[dev],

[priority:high]
done 8

42 #113
Code the feature Send Invitation to Review

Email to Reviewer
[dev],

[priority:high]
done 5

43 #114 Test the feature Invite Reviewers
[qa],

[priority:high]
done 5

44 #115
Write specification for the feature Manage

Reviewers
[req],

[priority:normal]
done 5

45 #116 Code the feature Manage Reviewers
[dev],

[priority:normal]
done 8

46 #117 Test the feature Manage Reviewers
[qa],

[priority:normal]
done 5

47 #118
Write specification for the feature Integration

with the Publons platform
[req],

[priority:normal]
done 8

48 #119
Code the feature Integration with the

Publons platform
[dev],

[priority:normal]
done 13

49 #120
Test the feature Integration with the Publons

platform
[qa],

[priority:normal]
done 5

50 #121
Write specification for the feature Manage

Invitations
[req],

[priority:normal]
done 8

51 #122 Code the feature Manage Invitations
[dev],

[priority:normal]
done 8

52 #123 Test the feature Manage Invitations
[qa],

[priority:normal]
done 5

Continued on next page

213



Continuation of Table F.1

Id Issue title Labels Status Complexity

53 #124

Code change in the feature Manuscript Sub-

mission: Add new field (Agreement confir-

mation checkbox)

[change],

[dev],

[priority:low]

done 5

54 #125

Test change in the feature Manuscript Sub-

mission: Add new field (Agreement confir-

mation checkbox)

[change],

[qa],

[priority:low]

done 3

55 #128 Retrospective sprint 04 [sprint retrospective] done 2

56 #129
Fix bug 002 in the feature Manuscript Sub-

mission

[bug],

[dev],

[priority:high]

done 3

57 #130
Test Fix bug 002 in the feature Manuscript

Submission

[bug],

[qa],

[priority:high]

done 2

58 #131
Fix bug 003 in the feature Send Notification

Email to Editor

[bug],

[dev],

[priority:normal]

done 3

59 #132
Test Fix bug 003 in the feature Send Notifi-

cation Email to Editor

[bug],

[qa],

[priority:normal]

done 2

Milestone 5: Sprint 05 - Reply Invitation to Review - Number of issues: 21

60 Status: Open - Start: Mar 1, 2020 - Due by: Mar 13, 2020 - Duration: 13 days

Goal: Sprint to implement Reply Invitation to Review.

61 #140 Plan sprint 05 [sprint planning] done -

62 #141
Code refactoring in the feature Manage Au-

thors: fixing critical code smells
[dev],

[priority:high]
done -

63 #142
Test refactoring in the feature Manage Au-

thors: fixing critical code smells
[qa],

[priority:high]
doing 5

64 #143
Write specification for the feature Reply In-

vitation to Review
[req],

[priority:high]
done -

65 #144
Code the feature Send Friendly Reminder

Notification Email to Reviewers
[dev],

[priority:high]
to do 5

66 #145
Code the feature Reply Invitation to Review

(Agree)
[dev],

[priority:normal]
to do 8

67 #146
Code the feature Reply Invitation to Review

(Decline)
[dev],

[priority:normal]
to do 5

68 #147
Code the feature Send Notification Email to

Editor
[dev],

[priority:normal]
to do 5

69 #148
Code the feature Send Confirmation Email

to Reviewer
[dev],

[priority:normal]
to do 13

70 #149 Test the feature Reply Invitation to Review
[qa],

[priority:normal]
to do 5

Continued on next page

214



Continuation of Table F.1

Id Issue title Labels Status Complexity

71 #150

Code change in the feature Send Notifica-

tion Email to Editor : Include authors’ email

name

[change],

[dev],

[priority:low]

to do 3

72 #151

Test change in the feature Send Notifica-

tion Email to Editor : Include authors’ email

name

[change],

[qa],

[priority:low]

to do 2

73 #152 Deploy release v.05 [deploy] to do 1

74 #153 Review sprint 05 [sprint review] to do 2

75 #154 Retrospective sprint 05 [sprint retrospective] to do 2

76 #155
Fix bug 004 in the feature Manage Invita-

tions

[bug],

[dev],

[priority:high]

to do 5

77 #156
Test Fix bug 004 in the feature Manage In-

vitations

[bug],

[qa],

[priority:high]

to do 3

78 #157 Fix bug 005 in the featureManage Reviewers
[bug],

[dev],

[priority:normal]

doing 3

79 #158
Test Fix bug 005 in the feature Manage Re-

viewers

[bug],

[qa],

[priority:normal]

to do 3

80 #159
Fix bug 006 in the feature Integration with

the Publons platform

[bug],

[dev],

[priority:low]

to do 3

81 #160
Test Fix bug 006 in the feature Integration

with the Publons platform

[bug],

[qa],

[priority:low]

to do 2

Milestone 6: Sprint 06 - Manuscript Review - Number of issues: 21

82 Status: Open - Start: Mar 11, 2020 - Due by: Mar 17, 2020 - Duration: 17 days

Goal: The main goal of this sprint is to support the Reviewers to assess a manuscript.

83 #171
Write specification for the feature Enter

Manuscript Reviews
[req],

[priority:high]
to do 5

84 #172 Code the feature Enter Manuscript Reviews
[dev],

[priority:high]
to do 13

85 #173 Test the feature Enter Manuscript Reviews
[qa],

[priority:high]
to do 5

86 #174
Code the feature Send Notification Email to

Editor
[dev],

[priority:normal]
to do 5

87 #175
Write specification for the feature Send Final

Result Email to Authors
[req],

[priority:normal]
to do 5

88 #176
Code the feature Send Final Result Email to

Authors
[dev],

[priority:normal]
to do 8

Continued on next page

215



Continuation of Table F.1

Id Issue title Labels Status Complexity

89 #177
Test the feature Send Final Result Email to

Authors
[qa],

[priority:normal]
to do 5

90 #178

Code change in the feature Send Friendly

Reminder Notification Email to Reviewers:

include the Editor’s email

[change],

[dev],

[priority:low]

to do 8

91 #179

Test change in the feature Send Friendly Re-

minder Notification Email to Reviewers: in-

clude the Editor’s email

[change],

[qa],

[priority:low]

to do 5

92 #180
Code change in the feature Manage Invita-

tions: include filter by status

[change],

[dev],

[priority:low]

to do 5

93 #181
Test change in the feature Manage Invita-

tions: include filter by status

[change],

[qa],

[priority:low]

to do 3

94 #182
Code refactoring in the feature Reply Invita-

tion to Review : fixing critical code smells
[dev],

[priority:normal]
doing -

95 #183
Test refactoring in the feature Reply Invita-

tion to Review : fixing critical code smells
[qa],

[priority:normal]
to do 3

96 #184 Deploy release v.06 [deploy] to do 1

97 #185 Review sprint 06 [sprint review] to do 1

98 #187
Fix bug 007 in feature Send Invitation to Re-

view Email to Reviewer

[bug],

[dev],

[priority:high]

to do 5

99 #188
Test Fix bug 007 in the feature Send Invita-

tion to Review Email to Reviewer

[bug],

[qa],

[priority:high]

to do 3

100 #189
Fix bug 008 in the feature Reply Invitation

to Review (Decline)

[bug],

[dev],

[priority:high]

to do -

101 #190
Test Fix bug 008 in the feature Reply Invi-

tation to Review (Decline)

[bug],

[qa],

[priority:high]

to do -

102 #191
Fix bug 009 in the feature Send Confirma-

tion Email to Reviewer

[bug],

[dev],

[priority:normal]

to do -

103 #192
Test Fix bug 009 in the feature Send Confir-

mation Email to Reviewer

[bug],

[qa],

[priority:normal]

to do -

Milestone 7: Sprint 07 - Authors Notification - Number of issues: 12

104 Status: Open - Start: Mar 28, 2020 - Due by: Apr 11, 2020 - Duration: 15 days

Goal: The main goal of this sprint is to support the Reviewers to assess a manuscript.

105 #200 Plan sprint 07 [sprint planning] done 8

Continued on next page

216



Continuation of Table F.1

Id Issue title Labels Status Complexity

106 #201
Write specification for the feature Authors

Notification
[req],

[priority:high]
done 8

107 #202 Code the feature Authors Notification
[dev],

[priority:high]
doing 13

108 #203 Test the feature Authors Notification
[qa],

[priority:high]
to do 5

109 #204
Code change in the feature Send Final Result

Email to Authors: include review notes

[change],

[dev],

[priority:normal]

to do -

110 #205
Test change in the feature Send Final Result

Email to Authors: include review notes

[change],

[qa],

[priority:normal]

to do -

111 #206

Code change in the feature Enter Manuscript

Reviews: include section Confidential Com-

ments to the Editor

[change],

[dev],

[priority:low]

to do 8

112 #207

Test change in the feature Enter Manuscript

Reviews: include section Confidential Com-

ments to the Editor

[change],

[qa],

[priority:low]

to do 5

113 #208

Code refactoring in the feature Send Notifi-

cation Email to Editor : fixing critical code

smells

[dev],

[priority:normal]
to do 8

114 #209

Test refactoring in the feature Send Notifi-

cation Email to Editor : fixing critical code

smells

[qa],

[priority:normal]
to do 5

115 #211 Review sprint 07 [sprint review] to do 1

116 #212 Retrospective sprint 07 [sprint retrospective] to do 2

End of Table F.1

217



Appendix G

Terminal Operational System

Project Structure - Tasks and

Iterations

The subset of the project structure selected for the validation conducted in this

research has a total of 90 tasks distributed over 2 iterations as shown in Table G.1.

218



Table G.1: Sprints and their respective tasks of the

project Terminal Operational System selected to the case

study (E.E.: Estimated Effort, R.E.: Real effort, A.T.:

Assigned to)

Id Type Status E.E. R.E. A.T. Category Priority Title

Sprint #102 - Number of tasks: 44

Status: Closed - Duration: 26 calendar days / 18 business days

Goal: EDI Log-In

15150 Reuniao Done 8,00 8,00 - - Média Planejamento Sprint 102

15157 Desenv Done 4,00 1,50 - Não Planejada Alta [2.10.1] [ EDI ] Implementar EDI para armador Log-In

15459 Desenv Done 1,00 1,00 - Planejada Imediata [2.10.0] [BOLETIM CARGA DESCARGA] Alteração na query de geração de XML de Contêiner

15460 Desenv Done 1,00 0,70 - Planejada Alta [2.10.0] [PRESENÇA CARGA] Item 3 - Nova coluna na tela de filtros para inclusão

15461 Desenv Done 6,00 10,00 - Planejada Normal [2.10.1] [PRESENÇA CARGA] Item 26 - Edição Presença Carga

15462 Desenv Done 0,50 0,50 - Planejada Alta [2.10.0] [PRESENÇA CARGA] Alterar nome do menu

15463 Desenv Done 0,50 0,25 - Planejada Alta [2.10.0] [PRESENÇA CARGA] Alterar título da tela

15465 Desenv Done 2,00 1,00 - Planejada Alta [2.10.0] [PRESENÇA CARGA] Extrato do Despacho

15466 Desenv To Test 1,00 1,50 - Erro Alta [2.10.0] [PRESENÇA CARGA] Mensagem anexos errada

15467 Desenv Done 0,50 0,20 - Planejada Alta [2.10.0] [PRESENÇA CARGA] Alterar título da tela de detalhes

15468 Desenv Done 1,00 0,50 - Planejada Alta [2.10.0] [PRESENÇA CARGA] Item 15 - Indicador Parte

Continued on next page

219



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

15471 Desenv Done 5,00 3,00 - Planejada Alta [2.10.0] [PRESENÇA CARGA] Consulta inclusao de carga está retornando bookings a mais

15480 Test Done 1,00 0 Analist 1 Planejada Normal [2.10.0] [BOLETIM CARGA DESCARGA] Alteração na query de geração de XML de Contêiner

15481 Test Done 1,00 1,00 Analist 1 Planejada Normal [2.10.0] [PRESENÇA CARGA] Item 3 - Nova coluna na tela de filtros para inclusão

15482 Test Done 0,50 0,50 Analist 1 Planejada Normal [2.10.0] [PRESENÇA CARGA] Alterar nome do menu

15483 Test Done 0,50 0,50 Analist 1 Planejada Normal [2.10.0] [PRESENÇA CARGA] Alterar título da tela

15486 Test Done 0,50 0,50 Analist 1 Planejada Normal [2.10.0] [PRESENÇA CARGA] Alterar título da tela de detalhes

15487 Test Done 1,00 0,50 Analist 1 Planejada Normal [2.10.0] [PRESENÇA CARGA] Item 15 - Indicador Parte

15488 Test Done 5,00 12,00 Analist 1 Planejada Normal [2.10.0] [PRESENÇA CARGA] Consulta inclusao de carga está retornando bookings a mais

15490 Test Done 6,00 3,00 Analist 1 Planejada Normal [2.10.1] [PRESENÇA CARGA] Item 26 - Edição Presença Carga

15496 Desenv Done 1,00 3,00 - Planejada Normal [2.10.1] [PRESENÇA CARGA] Query Tela detalhes Inclusão

15497 Test Done - 1,00 Analist 1 Planejada Normal [2.10.1] [PRESENÇA CARGA] Query Tela detalhes Inclusão

15498 Desenv Done 1,00 1,00 - Planejada Alta [2.10.1] [RECEPÇÃO] Liberação de Pagamento

15499 Test Done - 3,00 Analist 1 Planejada Normal [2.10.1] [RECEPÇÃO] Liberação de Pagamento

15502 Desenv To Test 4,00 10,50 - Planejada Normal [2.10.1] [PRESENÇA CARGA] Nova Dinâmica/Regras dos Anexos

15509 Desenv Done 1,00 1,00 - Erro Normal [Crosscheck Descarga] [2.10.1] - O sistema deve considerar somente os CE’s de importação para o crosscheck

15514 Desenv Done 2,00 1,00 - Planejada Normal [2.10.1] [PRESENÇA CARGA] Item 26 - Edição

15515 Test Done - 1,00 Analist 1 Planejada Normal [2.10.1] [PRESENÇA CARGA] Item 26 - Edição

15522 Desenv Done 3,00 4,90 - Planejada Muito Alta [2.10.1] [RECEPÇÃO] [BOLETO] Nome Arquivo Remessa

15524 AD Done - 1,00 - Planejada Normal [Presença de Carga] Alterações na tabela tb_presenca_carga_patio

Continued on next page

220



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

15525 Desenv Done - 0,25 - Planejada Muito Alta [2.10.1] [PRESENÇA CARGA] Alteração no Job de atualização das presenças de carga

15528 Desenv Done 5,00 9,00 - Planejada Muito Alta [2.10.1] [PRESENÇA CARGA] Erro Siscomex

15529 Test Done - 3,50 Analist 1 Planejada Muito Alta [2.10.1] [PRESENÇA CARGA] Erro Siscomex

15530 Test Done - 1,00 Analist 1 Planejada Muito Alta [2.10.1] [PRESENÇA CARGA] Alteração no Job de atualização das presenças de carga

15534 Desenv Done 4,00 3,00 - Não Planejada Muito Alta [2.10.1] [RECEPCAO] Falha ao reprogramar alguns cntrs Pendentes de Aprovação

15535 Desenv Done 3,00 4,50 - Não Planejada Alta [ EDI ] [2.10.1] Validar navio através do Código Lloyd

15540 Desenv To Test 1,00 0,50 - Não Planejada Normal [2.10.1] [Editar Presença Carga] - Ajuste no status ao excluir associação de uma presença carga

15557 Desenv To Test 1,00 1,00 - Erro Normal
[2.10.1] [PRESENÇA CARGA] Nova Dinâmica/Regras dos Anexos - AJUSTAR FLUXO QUANDO LOCAL
= REDEX

15559 Desenv To Test 0,50 0,75 - Erro Normal [2.10.1] [PRESENÇA CARGA] Edição na tela de detalhes da CONSULTA

15562 Desenv To Test 2,00 1,00 - Erro Normal [2.10.1] [Presença de Carga] - Ajustes na tela de consulta - Detalhes

15565 Desenv Done 1,00 1,00 - Não Planejada Alta [ EDI ] [2.10.1] Importador Login - Desconsiderar segmento FTX após segmento DGS

15566 Desenv Done 3,00 1,00 - Erro Normal
[PRESENCA CARGA INCLUIR] - Sistema esta salvando presencas de carga com transitodiretoats incor-
reto.

15578 Desenv To Test 3,00 1,00 - Erro Normal [Excluir Associação Presenca Carga] - Sistema não realiza desassociação de presença de carga.

15876 Reuniao Done 8,00 8,00 - - Média Apresentação da aplicação para cliente

Sprint #103 - Number of tasks: 46

Status: Closed - Duration: 33 calendar days / 20 business days

Goal: Corretiva Liberação Pagto pedido IMO

Continued on next page

221



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

15150 Reuniao Done 8,00 8,00 - - Média Planejamento Sprint 102

15285 Reuniao Done 8,00 8,00 - - Média [2.10.2] [ Cadastro de Booking ] Planejamento Sprint 103

13495 Desenv Done 3,00 10,50 - Não Planejada Média [2.10.2] [ Cadastro de Booking ] Adicionar campo Terminal de Descarga

14687 Test Done 11,00 12,00 Tester 1 Planejada Normal [TRUNK] [CONTROLE DE CARGAS EXPORTAÇÃO] CANCELAR PRESENCA

15166 Test Done - 0,50 Tester 1 Erro Alta
[2.10.2] [LIBERAÇÃO EMBARQUE] - Sistema não está preenchendo a flag inliberacaoembarque ao liberar
embarque.

15419 Test Done - 9,00 Tester 1 Erro Normal
[TRUNK] [Cancelar Presenca Carga] - Sistema não envia ’ADD HOLD’ no cancelamento da presença de
carga.

15454 Desenv Done 2,00 2,00 Dev 2 Erro Normal
[TRUNK] [IMPORTAÇÃO SISCOMEX] Divergência quanto ao comportamento dos bloqueios da escala
siscomex nas telas de Crosscheck de Descarga e Controle de cargas.

15485 Test Done 1,00 1,50 - Erro Alta [2.10.2] [PRESENÇA CARGA] Mensagem anexos errada

15489 Test Done - 4,00 Tester 2 Não Planejada Normal [2.10.2] [ EDI ] Implementar EDI para armador Log-In

15518 Desenv Done 3,00 1,00 - Planejada Alta [2.10.2] [PRESENÇA CARGA] Item 14 - Inserir novas colunas

15519 Test Done - 0,50 Analist 1 Planejada Alta [2.10.2] [PRESENÇA CARGA] Item 14 - Inserir novas colunas

15520 Test Done - 1,00 Analist 1 - Alta [ 2.10.2] [ Cadastro de Booking ] Adicionar campo Terminal de Descarga

15523 Test Done - 0,50 Analist 1 Planejada Alta [2.10.2] [RECEPÇÃO] [BOLETO] Nome Arquivo Remessa

15536 Desenv Done 8,00 7,50 - Não Planejada Alta [2.10.2] [Presença de carga] - Mudança de requisito na inclusão / edição da presença de carga

15537 Test Done - 17,50 - Planejada Alta [2.10.2] [PRESENÇA CARGA] Nova Dinâmica/Regras dos Anexos

15560 Desenv Done - 0 Dev 3 Erro Alta [2.10.2] [LIBERACAO SISCOMEX DESCARGA ] Sistema não envia Lacres para o Navis

15561 Test Done - 4,50 Tester 1 Erro Alta [2.10.2] [LIBERACAO SISCOMEX DESCARGA ] Sistema não envia Lacres para o Navis

Continued on next page

222



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

15567 Test Done - 1,00 - Erro Alta
[2.10.2] [PRESENCA CARGA INCLUIR] - Sistema esta salvando presencas de carga com transitodiretoats
incorreto.

15570 Desenv Done 4,00 24,50 Dev 1 Não Planejada Alta [2.10.2] [Presença de Carga] - Máscara para os tipos de documento

15571 Desenv To Test 3,00 2,00 - Erro Alta [2.10.2] [Presença de Carga] Ajustes na tela de detalhes

15574 Desenv Done 2,00 1,00 - Erro Normal
[TRUNK] [CONTROLE CARGA] Presenças de carga com status -7 - Associação Excluída- estão consider-
adas -cargas- para liberação de embarque

15579 Test Done - 0,50 - Erro Alta [2.10.2] [Excluir Associação Presenca Carga] - Sistema não realiza desassociação de presença de carga.

15580 Desenv Done 1,00 1,00 - Erro Normal [2.10.2] [Liberar Embarque] Sistema exibe mensagem de Erro ao liberar presenca de carga

15581 Test Done - 1,00 Tester 1 Erro Normal [2.10.2] [Liberar Embarque] Sistema exibe mensagem de Erro ao liberar presenca de carga

15582 Desenv To Test 4,00 4,00 Dev 3 Não Planejada Alta [2.10.2] [ EDI ] Enviar código lloyd para o Portal de Monitoramento

15583 Desenv Done 1,00 0,25 - Erro Normal
[TRUNK] [Controle de cargas] Icone das ocorrências divergentes entre o grid de documentos e o icone das
cargas

15585 Desenv To Test 1,00 1,50 - Erro Normal [2.10.2] [Presença de carga] Exibição incorreta de anexo na tela de detalhes - consulta

15587 Desenv Done 2,00 2,00 Dev 1 Não Planejada Normal Auxílio ao testador em Controle Documental

15588 Desenv Done 1,50 1,50 Dev 1 Não Planejada Normal Configuração máquina: Baixar e atualizar projetos

15590 Test Done - 8,00 - Planejada Alta [2.10.2] [RECEPÇÃO - STATUS] Verificar status para carga perigosa

15591 Test Done - 1,50 - Não Planejada Normal [2.10.2] [ EDI ] Enviar código lloyd para o Portal de Monitoramento

15593 Desenv Done 1,00 1,00 - Erro Alta [2.10.2] [Boleto Cobranca Log Arquivo de Remessa] Adicionar Appender e log

15594 Test Done - 0,50 Analist 1 Erro Alta [2.10.2] [Boleto Cobranca Log Arquivo de Remessa] Adicionar Appender e log

15595 Desenv Done 3,00 3,00 - Erro Normal [CONTROLE CARGAS] - Sistema esta enviando 2 HOLDS no cancelamento da presença de carga.

Continued on next page

223



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

15597 Test Done - 5,00 Tester 1 Erro Normal [CONTROLE CARGAS] - Sistema esta enviando 2 HOLDS no cancelamento da presença de carga.

15598 Desenv Done 3,00 3,00 - Planejada Muito Alta [2.10.2] [RECEPÇÃO IMO - Liberar Pagamento] Ajustes

15599 Test Done - 1,00 Analist 1 Planejada Alta [2.10.2] [RECEPÇÃO IMO] Ajustes

15607 Test Done - 1,00 Analist 1 Planejada Alta [2.10.2] [LIBERAR PAGAMENTO] Pedido Recepção Reefer

15634 Desenv To Test 2,00 2,00 - Não Planejada Muito Alta [2.10.2] [Recepção] Edição de Cliente/Pagador

15643 Desenv Done 1,00 1,00 Dev 1 Planejada Muito Alta [2.10.2] [PRESENÇA CARGA] Item 35 - Mensagem Sucesso

15644 Test Done 1,00 1,00 Analist 1 Planejada Alta [2.10.2] [PRESENÇA CARGA] Item 35 - Mensagem Sucesso

15651 Test Done - 4,00 Tester 1 Não Planejada Normal Geração de massa para teste/homologação

15654 Test Done - 1,50 Tester 1 Não Planejada Alta [2.10.2] [Presença de carga] [Granel] Mudança de requisito na inclusão / edição da presença de carga

15659 Desenv To Test 3,00 5,00 - Erro Normal
[2.10.2] [PRESENÇA CARGA] [EDICAO] Ao editar pedido o sistema náo persiste dos dados de novos
documentos.

15664 Desenv Done 3,00 3,00 - Erro Normal
[2.10.3][Presença de Carga] Corrigir Contador de quantidade no footer ao consultar ou incluir presenca
Carga

15694 Desenv To Do - 0 - Erro Normal [TRUNK] [LIBERAR EMBARQUE] - Sistema não exibe ocorrência ao tentar liberar embarque de presenca

15695 Test To Do - 0 - Erro Normal [TRUNK] [LIBERAR EMBARQUE] - Sistema não exibe ocorrência ao tentar liberar embarque de presenca

Sprint #117 - Number of tasks: 28

Status: Closed - Duration: 16 calendar days / 11 business days

Goal:

29847 Desenv Done 4,00 5,00 Dev 1 Planejada Muito Alta [Interno] [Conclusão Serviço] Disparar evento Pendência Concluída

Continued on next page

224



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

29868 Desenv Done 2,00 3,00 Dev 1 Planejada Muito Alta [Recepção] [Externo] Indicador de Cabotagem

29927 Desenv Done 16,00 34,10 Dev 4 Planejada Muito Alta [Posicionamento] [Externo] Cancelamento (RN_POSIC_15)

29942 Desenv Done 2,00 2,00 Dev 1 Planejada Muito Alta
[Siscomex] [Escala] Importação do arquivo Siscomex está permitindo fazer associação de consignatário com
cliente inativo na tabela de cliente

29947 Desenv Done 8,00 7,75 Dev 4 Planejada Muito Alta [Posicionamento] [Interno & Externo] Implementar dependência entre as pendências (RN_POSIC_09)

29860 Desenv Done 4,00 5,75 Dev 8 Melhoria Alta [Recepção] [Externo] Flags IMO, Reefer e OOG na adição de cargas

27780 Integracao Done 16,00 15,50 Analist 3 Planejada Média Integração Navis2PTVV Booking

29945 Desenv Done 8,00 15,65 Dev 1 Melhoria Média [Recepção] [Externo] [back-end] [front-end] [Pendência Carga Perigosa] Fix Carga Perigosa

29985 Integracao Done - 7,50 Analist 3 Melhoria Normal Revisão dos Plug-ins (Conlusão Retirada e Conclusão Recepção)

30139 Integracao Done - 24,35 Analist 3 Melhoria Normal Ambientes TST e HOMOL

29745 Desenv Done - 0,25 Dev 3 Melhoria Baixa
[Front-end][Layout] Mudar layout da sidebar de criação de serviço para utilizar botões ao invés de drop-
downs

30052 Desenv Done - 1,00 Dev 3 Melhoria Baixa [Front-end] Fixing de várias tarefas pendentes

29918 Desenv To Test 4,00 4,65 Dev 1 Planejada Muito Alta [Interno] [Cliente] [Front-end] [Back-end] Alterar atributo Carga.numeroONU para String

29934 Integracao To Test - 0,00 - Planejada Muito Alta [Posicionamento] PTVV2Billing Posicionamento

29935 Integracao To Test - 0,00 - Planejada Muito Alta [Posicionamento] Navis2PTVV Posicionamento

29943 Integracao To Test - 0,00 - Planejada Muito Alta [Posicionamento] [Externo] Implementar Conclusão Posicionamento

29933 Integracao To Test 4,00 3,75 Analist 3 Planejada Muito Alta [Posicionamento] PTVV2Navis Posicionamento - Envio de ICU

29941 Desenv To Test 4,00 7,75 Dev 1 Planejada Muito Alta [Siscomex] [Atualização Escala] Importação do arquivo Siscomex não atualizou campos do CE mercante

30026 Integracao To Test - 7,00 Dev 3 Não Planejada Muito Alta [LIQUIBASE] [UPDATE] App Event Action Config

Continued on next page

225



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30061 Integracao To Test 3,00 3,00 Dev 3 Não Planejada Muito Alta [PROJETO EXTERNO/INTERNO] [AppEventPublisher] App Event Action Config

30069 Integracao To Test - 3,00 Dev 3 Erro Muito Alta [Consumo Navis] Consumo Navis PTVV

29929 Desenv To do 8,00 11,00 Dev 6 Planejada Muito Alta Refactory TipoServico / SubtipoServico

29930 Desenv To Review 16,00 19,75 Dev 6 Planejada Muito Alta [Posicionamento] [Externo] Implementar Agendamento (RN_POSIC_10)

29932 Desenv To Review 16,00 28,00 Dev 7 Planejada Muito Alta [Posicionamento] [Externo] PDF Termo (RN_POSIC_11)

29957 Reuniao Doing - 29,25 - - Normal Daily Meeting 17

29996 Test Doing - 18,25 Analist 3 Não Planejada Normal Testes de Integração

29931 Reuniao To Do - 19,70 - Planejada Normal Pre-Planning da Sprint #117

29949 Reuniao To Do - 20,00 - Planejada Normal Planning da sprint #117

Sprint #118 - Number of tasks: 30

Status: Closed - Duration: 16 calendar days / 11 business days

Goal:

29868 Desenv Done 2,00 3,00 Dev 1 Planejada Muito Alta [Recepção] [Externo] Indicador de Cabotagem

30130 Desenv Done - 2,50 Dev 6 Melhoria Muito Alta [Interno / Externo] Alterações no modelo para atender o retorno das requisições

30035 Desenv Done 9,00 20,50 Dev 4 Planejada Alta
[Interno e Externo] Alterar estrutura Carga e criar novas entidades RetornoRequisicaoCCT, RequisicaoCCT
e EventoGate

30040 Desenv Done 5,00 4,50 Dev 4 Planejada Alta [Interno] [back-end] Implementar consumidor para processar evento LIBERACAO_EMBARQUE

30042 Desenv Done 13,00 23,25 Dev 8 Planejada Alta [Interno] [front-end/back-end] [framework de busca] Tela de busca de escala

30044 Desenv Done 9,00 11,00 Dev 4 Planejada Alta [Interno] [back-end] Serviço para recuperar estrutura Armador/Carga por escalaId

Continued on next page

226



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30045 Desenv Done 13,00 13,70 Dev 1 Planejada Alta [Interno] [back-end] Serviço de Entrega de Contêineres

30046 Desenv Done 13,00 7,25 Dev 1 Planejada Alta [Interno] [back-end] Serviço de Recepção de Contêineres

30048 Desenv Done 17,00 15,50 Dev 7 Planejada Alta [Interno] [front-end] Criar estrutura da tela de Entrega/Recepção Carga Contêiner

30049 Desenv Done 5,00 4,75 Dev 7 Planejada Alta "[Interno] [front-end] Implementar botões Entrega e Entregar Escala

30051 Desenv Done 9,00 15,75 Dev 4 Planejada Alta [front-end] Botão e modal de troca de Armador

29936 Desenv Done 2,00 2,75 Dev 8 Não Planejada Normal [Externo] [Pendência OOG] [Backend] Enviar evento ao resolver/reabrir pendência

30022 Reuniao Done - 35,25 - Planejada Normal Pre-Planning da Sprint #118

30031 Reuniao Done - 42,50 - Planejada Normal Planning da Sprint #118

30066 Reuniao Done - 32,00 - - Normal Daily Meeting #118

30053 Arquitetura To Test 8,00 5,50 Dev 6 Planejada Muito Alta [IPUE] Fazer um fork do projeto IPUE e criar projeto novoportaltvv-integracoes-portal-unico

30077 Integracao To Test 4,00 1,00 Analist 3 Planejada Alta [NAVIS2PTVV] [LIBERAR EMBARQUE] [TELA FIEL] Alteração do plugin

30054 Desenv To Test 8,00 6,50 Dev 6 Planejada Alta [IPUE] Refactoring no algoritmo de decisão de fluxo

30050 Desenv To Review 5,00 3,00 Dev 7 Planejada Alta "[Interno] [front-end] Botão Recepção (Cargas)

30056 Desenv To Review 8,00 3,00 Dev 6 Planejada Alta [IPUE] Refactoring no serviço Recepção por NFe

30059 Desenv To Review 4,00 3,25 Dev 6 Planejada Alta [IPUE] Refactoring no serviço Recepção por Contêiner (Processo manual)

30038 Desenv To Review 3,00 2,00 Dev 4 Planejada Alta [Externo] [back-end] Alterar fluxo criação Recepção

30039 Desenv To Review 5,00 5,90 Dev 1 Planejada Alta [Interno] [back-end] Alterar fluxo importação arquivo SISCOMEX

30047 Desenv To Review 7,00 3,50 Dev 4 Planejada Alta [back-end] Serviço de Troca de Armador por Contêineres

30055 Desenv To Review 8,00 6,00 Dev 6 Planejada Alta [IPUE] Incluir/atualizar registros de retorno dos serviços do Portal Único

Continued on next page

227



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30057 Desenv To Review 8,00 4,00 Dev 6 Planejada Alta [IPUE] Refactoring no serviço Recepção por Contêiner (Processo automático)

30058 Desenv To Review 8,00 7,50 Dev 6 Planejada Alta [IPUE] Refactoring no serviço Entrega por Contêiner (Processo manual)

29959 Desenv To Review - 4,25 Dev 4 Não Planejada Normal [Externo] [Pendência de Dados Documentais] Correções do codereview do branch CHRISTIAN-S15-T29587

30034 Desenv To Review 8,00 13,55 Dev 1 Não Planejada Normal [Recepção] [Externo] [back-end] [front-end] [Pendência Carga Perigosa] Fix Carga Perigosa

30060 Desenv To Review 4,00 5,00 Dev 6 Melhoria Normal [Externo] [Posicionamento] Implementar melhorias no agendamento (AJUSTES DE REVIEW)

30162 Reuniao To Do - 2,50 - Planejada Normal [REUNIAO] - Reuniao tratamento de bugs de retirada / recepcao

Sprint #119 - Number of tasks: 42

Status: Closed - Duration: 16 calendar days / 12 business days

Goal:

30174 Desenv Done 3,00 2,25 Dev 1 Planejada Muito Alta [NIC] [NPTVV] Fazer script de insert na tabela PresencaCargaImportacaoCodigoErro

30194 Desenv Done 7,00 8,50 Dev 4 Planejada Muito Alta [Recepção Contêiner Cheio] [Cliente] Ajustar fluxo de criação de pendências

30195 Desenv Done 5,00 2,25 Dev 4 Planejada Muito Alta [Recepção Contêiner Cheio] [Interno] Ajustar fluxo de resolução de pendências financeiras

30202 Desenv Done 13,00 17,75 Dev 7 Planejada Muito Alta
[VagaExtra] [Projeto Interno] [Back-end] [Front-end] Criar tela de consulta de pendências de aprovação/re-
provação de vagas-extras

30203 Desenv Done 21,00 22,50 Dev 1 Planejada Muito Alta [VagaExtra] [Projeto Interno] [Back-end] [Retirada] Ajustar fluxo de Resolver Pendência Financeira

30204 Desenv Done 5,00 12,85 Dev 1 Planejada Muito Alta [VagaExtra] [Projeto Interno] [Recepção] [Back-end] Ajustar fluxo de Resolver Pendência Financeira

30205 Desenv Done 9,00 20,00 Dev 7 Planejada Muito Alta
[VagaExtra] [Projeto Interno] [Back-end] [front-end] [Recepção] Aprovar Pendência de Aprovação de Vaga-
Extra

30206 Desenv Done 7,00 3,25 Dev 7 Planejada Muito Alta [VagaExtra] [Projeto Interno] [Back-end] [Retirada] Aprovar Pendência de Vaga-Extra

Continued on next page

228



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30207 Desenv Done 9,00 12,00 Dev 6 Planejada Muito Alta
[VagaExtra] [Projeto Interno] [Back-end] [front-end] [Recepção] [Retirada] Reprovar Pendência de Vaga-
Extra

30208 Desenv Done 17,00 21,00 Dev 4 Planejada Muito Alta
[VagaExtra] [Projeto externo] [Agendamento] [Back-end] [Front-end] [Retirada] Alterar agendamento para
permitir vaga extra

30209 Desenv Done 13,00 18,00 Dev 4 Planejada Muito Alta [VagaExtra] [Agendamento] [Recepção] [Back-end] Alterar agendamento para permitir vaga extra

30340 Desenv Done - 0,25 Dev 4 Não Planejada Muito Alta
[Agendamento Vaga Extra] [Projeto Interno] [front-end]Tela de agendamento quebrou após reprovar vaga
extra

30188 Desenv Done 4,00 3,50 Dev 4 Planejada Alta
[Cancelar CargaServico] [Projeto Externo] [back-end] Incluir acao de CANCELAR_CARGA_SERVICO
na api que retorna acoesPermitidas

30173 Desenv Done 5,00 5,50 Dev 1 Planejada Alta
[NIC] [NPTVV] [Interno] [Cliente] Criar tabelas PresencaCargaImportacaoErro e PresencaCargaImporta-
caoCodigoErro

30180 Desenv Done 17,00 15,50 Dev 6 Planejada Alta [Cancelar CargaServico] [back-end] [Recepcao e Posicionamento] Implementar cancelamento de cargas

30183 Desenv Done 7,00 10,25 Dev 7 Planejada Alta
[Cancelar CargaServico] [Projeto Interno] [back-end] [front-end] Não exibir cargas canceladas nas telas de
pendência

30187 Desenv Done 17,00 3,75 Dev 1 Planejada Alta
[Cancelar CargaServico] [Projeto Externo] [back-end] Implementar metodo cancelarResolverPendencias ao
cancelar cargaServico

30189 Desenv Done 2,00 1,00 Dev 6 Planejada Alta
[Cancelar CargaServico] [front-end] [Recepção] [Posicionamento] Ajustar front-end para o cancelamento de
cargas

30199 Desenv Done 3,00 2,25 Dev 4 Planejada Alta [Projeto Interno e Externo] Ajustar estrutura Agendamento/GradeHoraria (2h)

30317 Desenv Done - 8,50 Dev 6 Erro Alta [Erro] Corrigir fluxo de confirmação de agendamento para serviços de Retirada

30331 Desenv Done - 2,75 Dev 4 Não Planejada Alta
[Interno] [back-end] [ERRO] Consumidor de pagamento de recepção não verifica se existem pendencias
vaga extra ativas e reabre pendencia de agendamento

30171 Reuniao Done - 48,55 - Planejada Normal Planning da sprint #119

Continued on next page

229



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30198 Reuniao Done - 26,00 - Planejada Normal Pré-Planning da sprint #119

30250 Reuniao Done - 29,00 - - Normal Daily Meeting #119

29954 Integracao To Test 2,00 1,50 Dev 3 Planejada Muito Alta [LIQUIBASE][POSICIONAMENTO] - Envio de ICU

30230 Integracao To Test 2,00 1,75 Analist 3 Não Desenvolvida Alta [N4] Alterar o envio das mensagens de gate-in para enviar também para a nova fila do IPUE

29956 Integracao To Test 1,00 0,50 Dev 3 Erro Média [LIQUIBASE] Erro ao enviar email de perda de vaga na grade

30001 Integracao To Test 1,00 0,50 Dev 3 Erro Média [LIQUIBASE] [EMAIL] - Pendencia reaberta

30102 Integracao To Test 1,00 1,00 Dev 3 Erro Média [LIQUIBASE] [DADOS TRANSPORTE] Update Appointment

30114 Integracao To Test 3,00 1,50 Dev 3 Erro Média [LIQUIBASE] [RECEPÇÃO CHEIO] Criação de Pre-Advise

30299 Integracao To Test 8,00 9,30 Analist 3 Não Planejada Normal [Booking] [Porto Descarga] Alteração dos mapas e configuração no N4

30305 Desenv To do - 6,50 Dev 7 Erro Alta [Interno] [Entrega Carga Contêiner] Alterar armador não valida statusCCT

30196 Desenv To do 9,00 6,00 Dev 4 Planejada Normal [Externo] [Recepção Contêiner Cheio] Ajustar fluxo de agendamento de carga

30172 Desenv To Review 5,00 4,50 Dev 6 Planejada Muito Alta [NIC] [NPTVV] Criar projeto no git da owse

30175 Desenv To Review 13,00 8,75 Dev 6 Planejada Muito Alta [NIC] [integracao-presencaCargaImportacao] Fazer persist na entidade PresencaCargaImportacaoNPTVV

30191 Desenv To Review 7,00 3,00 Dev 6 Planejada Muito Alta [NIC] [integracao-presencaCargaImportacao] processamento de retorno sucesso

30192 Desenv To Review 9,00 4,75 Dev 6 Planejada Muito Alta [NIC] [integracao-presencaCargaImportacao] processamento de retorno erro

30076 Integracao To Review 6,00 6,00 Dev 3 Planejada Alta [CONCLUSÃO SERVIÇOS] Retiradas e Recepção + mapeamento + liquibase

30184 Integracao To Review 2,00 1,00 Analist 3 Planejada Alta [RECEPÇÃO CHEIO] [PTVV2NAVIS] Mensagem de ICU

30240 Integracao To Review 4,00 3,00 Analist 3 Planejada Alta [RECEPÇÃO CHEIO] [PTVV2BILLING] Mensagem de Monitoramento Reefer

30260 Integracao To Review 3,00 2,50 Analist 3 Planejada Alta [VAGA EXTRA] [E-MAIL] Enviar e-mail Planejamento

Continued on next page

230



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30310 Integracao To Review 1,00 1,25 Analist 3 Não Planejada Normal
[HML/TST] [APP EVENT ACTION CONFIG] [FINANCEIRA CANCELADA] Alteração da mensagem de
cancelamento para o Billing

Sprint #120 - Number of tasks: 89

Status: Open - Duration: 23 calendar days / 15 business days

Goal:

30350 Desenv Done 8,00 11,75 Dev 6 Não Desenvolvida Imediata [Cabotagem] [front-end] Permitir Criação de Serviço Retirada Contêiner Cabotagem como Agente de Carga

30218 Desenv Done 12,00 5,75 Dev 4 Não Desenvolvida Urgente [AcessoConsultaServico] Ajustar DAO para buscar injetar filtro de empresa requisitante

30219 Desenv Done 12,00 6,00 Dev 4 Não Desenvolvida Urgente [AcessoConsultaServicoCliente] Ajustar DAO para buscar injetar filtro de empresa consignatário

30241 Desenv Done 40,00 26,00 Dev 7 Não Desenvolvida Urgente [Acesso] Manter Usuários

30030 Desenv Done 13,00 12,90 Dev 1 Planejada Muito Alta [Arquivo siscomex] Atualização de escala siscomex não funciona corretamente

30033 Desenv Done 12,00 14,50 Dev 6 Planejada Muito Alta [Recepção e Posicionamento] [Externo] Finalizar o cancelamento de cargas

30168 Desenv Done 8,00 1,25 Dev 4 Erro Alta
[Cancelar Serviço] [Posicionamento] [Posicionamento - Tratamento Pendência] [RN_POSIC_08] - Cance-
lamento de Posicionamento não esta funcionando

30105 Desenv Done 6,00 10,00 Dev 4 Erro Alta
[Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_12] - Sistema não resolve pendencia agen-
damento apos mensagem do billing de antecipacao de gate pago

30266 Integracao Done - 2,00 Dev 3 Planejada Alta [LIQUIBASE] [VAGA EXTRA] [E-MAIL] Enviar e-mail Planejamento

30332 Desenv Done 4,00 1,00 Dev 4 Erro Alta [Projeto Cliente] [Recepção] [Pendencia Carga Perigosa] Botão Resolver Pendência não aparece

30397 Desenv Done - 5,50 Dev 4 Não Planejada Alta
[Posicionamento] [Projeto Interno] [back-end] Consumidor de pagamento não resolve pendencia de reagen-
damento

30232 Desenv Done 8,00 7,00 Dev 7 Não Desenvolvida Média [BoletimPesagem] Criar estrutura (entities, dtos, mapper, script liquibase, controller, repository)

30233 Desenv Done 16,00 17,50 Dev 7 Não Desenvolvida Média [BoletimPesagem] Tela de Busca (framework de busca, sem agrupamento, com paginação)

Continued on next page

231



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30342 Reuniao Done - 18,00 - Planejada Normal Reunião de planning e planning da Sprint #120

30394 Reuniao Done - 1,00 - - Normal Integração Ptvv2Billing

30413 Desenv Done 3,00 18,25 Dev 9 Não Planejada Normal [Retirada Cabotagem - Tratamento Pendência] [RN_CABOT_13] Correção de mascara na tela do fiel

30464 Desenv Done 3,00 2,25 Dev 9 Não Planejada Normal
[Cadastro de Escala] - Colocar máscara de inteiro nos campos Abertura de Gate e Limite de Recepção
Cheio

30473 Reuniao Done 1,00 2,50 Analist 3 - Normal Review Módulo de Integração NPTVV

30421 Desenv Done - 3,60 Dev 4 Não Planejada Normal
[Posicionamento - Tratamento Pendência] [RN_RECCONTCH_10] - Cancelamento de posicionamento não
devolve as grades (capacidade) corretamente

30483 Reuniao Done - 1,50 - - Normal Status Integração

30375 Integracao To Test - 6,00 Dev 3 Erro Imediata
[LIQUIBASE][Recepção cheio - Criação Serviço] [RN_RECCONTCH_09] - Sistema deve enviar primeiro
o preadvise para o N4, depois as demais integrações

30243 Desenv To Test 8,00 5,25 Dev 4 Não Desenvolvida Muito Alta [ReagendamentoPosicionamento] Alterar a criação de serviço para criar a multa (indicação multa)

30024 Desenv To Test 6,00 0,75 Dev 4 Erro Alta
[Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_12] - Erro ao tentar resolver a pendencia
financeira (scanner)

30025 Desenv To Test 5,00 1,00 Dev 4 Erro Alta
[Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_12] - Erro ao tentar resolver a pendencia
financeira (VGM)

30185 Integracao To Test - 25,00 Dev 3 Planejada Alta [LIQUIBASE] [RECEPÇÃO CHEIO] Mensagem de ICU

30322 Integracao To Test - 1,00 Dev 3 Planejada Alta [LIQUIBASE] [RECEPÇÃO CHEIO] [PTVV2BILLING] Mensagem de Monitoramento Reefer

30311 Integracao To Test - 3,00 Dev 3 Não Planejada Normal
[HML/TST] [LIQUIBASE] [FINANCEIRA CANCELADA] Alteração da mensagem de cancelamento para
o Billing

30435 Integracao To Test - 2,00 Dev 3 Erro Normal [LIQUIBASE] [HML/TST/DSV] [Constraint][BOLETIMPESAGEM] Mais de 30 posicoes

Continued on next page

232



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30373 Integracao To Test - 1,00 Dev 3 Erro Normal
[LIQUIBASE] [Retirada Cabotagem - Tratamento Pendência] [RN_CABOT_09] - Sistema deve enviar
e-mail caso a solicitação seja reagendada

30401 Integracao To Test - 4,00 Dev 3 Erro Normal
[LIQUIBASE] [Posicionamento - Criação Serviço] [RN_POSIC_09] - Sistema não envia integração pro
billing na criação da solicitação.

30432 Integracao To Test - 2,50 Dev 3 Erro Normal [LIQUIBASE] [HML/TST] [PTVV2Billing] Alteração dos indicadores de imo, reefer e oog para string

30433 Integracao To Test - 2,00 Dev 3 Erro Normal [LIQUIBASE] [HML/TST] [PTVV2Billing][CABOTAGEM] Criação de pendência armazenagem adicional

30438 Integracao To Test - 1,00 Dev 3 Erro Normal
[LIQUIBASE][HML/TST][Posicionamento - Tratamento Pendência] [RN_POSIC_12_PTVV2Navis] - Sis-
tema não envia mensagem de integração para o navis

30482 Integracao To Test - 1,00 - Não Planejada Normal
[LIQUIBASE][Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_07] - Sistema nao gera um
ADD HOLD de PENDENCIA LIBERACAO_MEIO_AMBIENTE

30485 Integracao To Test - 2,00 Dev 3 Erro Normal [Billing2PTVV] Autorização de execução

30492 Integracao To Test - 1,50 Dev 3 Não Planejada Normal
[LIQUIBASE] [Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_12] - Incluir Excesso lateral
esquerda no script de OOG

30498 Integracao To Test - 3,50 Dev 3 Não Planejada Normal
[Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_12] - Resolução pendencia de OOG não
envia mensagem de OOG para o N4

30224 Desenv To do 8,00 13,15 Dev 4 Não Desenvolvida Imediata [Cabotagem/Importacao] [back-end] Implementar ajustes na busca de cargas

27973 Desenv To do 13,00 24,05 Dev 1 Planejada Muito Alta [Arquivo Siscomex] Popular Bloqueios nas Cargas

30267 Desenv To do 4,00 1,00 Dev 5 Erro Alta
[Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_19] - Sistema esta permitindo salvar a NFE
sem dados obrigatórios

30442 Desenv To do 16,00 10,50 Dev 7 Não Planejada Normal
[BoletimPesagem] [Erro de Planejamento] Adaptar tela de busca de boletins para perfis de Cliente e
Despachante

29953 Desenv Reviewing 16,00 7,25 Dev 5 Erro Média
[Retirada Cabotagem - Tratamento Pendência] [Cancelamento Serviço] Pendencia financeira criada com
subtipo reagendamento não gera linha na tbl indicar multa apos cancelar solicitação

Continued on next page

233



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30215 Desenv To Review 8,00 6,00 Dev 6 Não Desenvolvida Imediata [Recepcao] [front-end] Permitir Criação de Serviço Recepcao como Despachante

30220 Desenv To Review 8,00 8,25 Dev 6 Não Desenvolvida Imediata [Recepcao] [front-end] Permitir Criação de Serviço Recepcao como Transportador

30223 Desenv To Review 8,00 7,35 Dev 6 Não Desenvolvida Imediata [Importacao] [front-end] Permitir Criação de Serviço Retirada Contêiner Importação como Despachante

30328 Integracao To Review 6,00 6,75 Analist 3 Erro Imediata
[Recepção cheio - Criação Serviço] [RN_RECCONTCH_09] - Sistema deve enviar primeiro o preadvise
para o N4, depois as demais integrações

30341 Desenv To Review 4,00 5,00 Dev 4 Planejada Imediata [MóduloInterno] Ajustar acesso as funcionalidades para permitir apenas ADMIN

30472 Integracao To Review 1,00 1,00 Analist 3 Não Desenvolvida Imediata [PTVV2Billing] [RECEPÇÃO] Vaga extra

30136 Desenv To Review 24,00 28,75 Dev 4 Planejada Muito Alta [ReagendamentoPosicionamento] Reagendamento Serviço Posicionamento

30242 Desenv To Review 16,00 8,00 Dev 4 Não Desenvolvida Muito Alta [ReagendamentoPosicionamento] Aplicar multa ao reagendar

30234 Desenv To Review 16,00 18,40 Dev 1 Não Desenvolvida Muito Alta [BoletimPesagem] Complementar resultado tela de busca com informações Navis (a confirmar)

30229 Desenv To Review 6,00 1,00 Dev 6 Não Desenvolvida Alta [IPUE] Alterar o nome de todas as filas consumidas para não roubar mensagens do legado

30361 Desenv To Review 13,00 25,05 Dev 1 Planejada Alta
[Cancelar CargaServico] [Projeto Externo] [back-end] Implementar metodo cancelarResolverPendencias ao
cancelar cargaServico

30478 Desenv To Review 6,00 6,00 Dev 4 Erro Alta [Recepção cheio] [Projeto externo] [Finalizar Agendamento] - Ajustes ao finalizar agendamentos.

29925 Desenv To Review 6,00 5,25 Dev 4 Erro Média
[Retirada Cabotagem - Tratamento Pendência] [RN_CABOT_13] - Alterar fluxo de confirmação de Agen-
damento para cancelar agendamentos que já venceram

30376 Desenv To Review 2,00 2,00 Dev 6 Não Desenvolvida Média [IPUE] Atualizar Certificado

30422 Integracao To Review 3,00 3,00 Analist 3 Não Desenvolvida Normal Migrar Peso Bruto Conteiner do Navis

30429 Integracao To Review 2,00 1,50 Analist 3 Erro Normal [HML/TST] [PTVV2Billing] Alteração dos indicadores de imo, reefer e oog para string

30440 Integracao To Review 1,00 1,00 Analist 3 Erro Normal
[Posicionamento - Tratamento Pendência] [RN_POSIC_12_PTVV2Navis] - Sistema não envia mensagem
de integração para o navis

Continued on next page

234



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30374 Integracao To Review 1,00 4,00 Analist 3 Erro Normal
[Posicionamento - Criação Serviço] [RN_POSIC_09] - Sistema não envia integração pro billing na criação
da solicitação.

30456 Integracao To Review 10,00 14,00 Analist 3 Erro Normal [PTVV2Billing][RETIRADA CABOT/IMPORT] Alteração das mensagens de cobrança

30491 Integracao To Review 1,00 0,25 Analist 3 Não Planejada Normal
[Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_12] - Incluir Excesso lateral esquerda no
script de OOG

30502 Desenv To Review 2,00 0,00 Dev 5 Melhoria Normal [Externo] Adicionar CNPJ e Endereço na página de empresas

30479 Desenv To Review 12,00 9,00 Dev 5 Planejada Normal [Externo] Alterações de layout

30480 Integracao To Review 0,50 1,00 Analist 3 Não Planejada Normal
[Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_07] - Sistema nao gera um ADD HOLD de
PENDENCIA LIBERACAO_MEIO_AMBIENTE

30235 Desenv Doing 16,00 12,00 Dev 7 Não Desenvolvida Muito Alta [BoletimPesagem] Tela de Detalhes

30236 Desenv Doing 16,00 6,00 Dev 7 Não Desenvolvida Muito Alta [BoletimPesagem] PDF do Boletim Pesagem

30244 Integracao Doing 16,00 0,00 Dev 3 Planejada Normal [Booking] [Code Extension] - Disparo de evento após validar o booking

30416 Desenv Doing 6,00 0,00 Dev 9 Não Planejada Normal
[Retirada Cabotagem - Tratamento Pendência] [RN_CABOT_13] - Apos a suspensão sistema não altera
a solicitação para o status pendente

30231 Integracao To do - 0,00 Dev 3 Não Desenvolvida Muito Alta [BoletimPesagem] Integrar dados SBP/NPTVV

30186 Integracao To do - 0,00 Dev 3 Não Desenvolvida Muito Alta [BOOKING][NAVIS2PTVV] Consumir Booking

30475 Integracao To do - 0,00 - Não Desenvolvida Muito Alta [LIQUIBASE] [PTVV2Billing] [RECEPÇÃO] Vaga extra

30296 Desenv To do 8,00 0,00 - Não Planejada Alta
[Retirada Cabotagem - Tratamento Pendência] [RN_CABOT_13] - Sistema não envia integração para o
billing corretamente ( reagendamento )

30460 Integracao To do - 0,00 Dev 3 Erro Alta [LIQUIBASE] [PTVV2Billing][RETIRADA CABOT/IMPORT] Alteração das mensagens de cobrança

29557 Integracao To do 16,00 0,00 Dev 3 Erro Média [Booking] Ajustes em Code Extensions

Continued on next page

235



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30238 Desenv To do 24,00 0,00 - Não Desenvolvida Média [ConsultaServico] Opção de pesquisar por BL/Contêiner/Booking

30439 Integracao To do - 0,00 Dev 3 Não Desenvolvida Média Consumo Peso Bruto Conteiner do Navis

30360 Reuniao To do - 39,00 - - Normal Daily Meeting #120

30393 Desenv To do 8,00 0,00 - Não Planejada Normal
Criar script no liquibase do Novo PTVV com as configurações do Novo IPUE e PresencaCargaImportacao
(NIC)

30477 Desenv To do - 0,00 - Não Planejada Normal
[Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_11] - Sistema esta gerando antecipação de
gate incorretamente

30488 Desenv To do - 0,00 - Não Planejada Normal
[Importação - Pendência] RN_SERVICOS_CANCELAMENTO - Solicitação com status cancelado não
exibe suas cargas

30501 Desenv To do - 0,00 - Não Planejada Normal
[Recepção cheio - Criação Serviço] [RN_RECCONTCH_12] - Pendencia de scanner não esta sendo criada
da recepção com booking

30503 Desenv To do - 0,00 - Não Planejada Normal
[Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_12] - Pendencia de dados documentais só
pode ser criada para pedidos tipo Longo curso

30508 Desenv To do - 0,00 - Não Planejada Normal
[Importação Siscomex] - Processo de importação do siscomex não popula a coluna CARGA_-
CONSIGNATARIO.TIPO_CONHECIMENTO

30486 Desenv To do - 0,00 - Não Planejada Normal
[Retirada Importação - Criação Serviço] [RN_CABOT_04] - Não exibir para o usuário problemas de
conectividade entre sistemas log-in

30419 Desenv To do - 2,50 - Não Planejada Baixa [Siscomex] - Arquivo de produção nao é importado no ambiente de teste

30227 Desenv To do 8,00 0,00 - Não Desenvolvida Média
[Cabotagem] [front-end] Permitir Criação de Serviço Retirada Contêiner Cabotagem como Agencia Marí-
tima

30225 Desenv To do 8,00 0,00 - Não Desenvolvida Média [Cabotagem] [front-end] Permitir Criação de Serviço Retirada Contêiner Cabotagem como Armador

30400 Desenv To do - 0,00 - Não Planejada Média [Externo] [Criação do Serviço de Retirada] Recuperar o consignatário após a consulta de cargas por CE

Continued on next page

236



Continuation of Table G.1

Id Type Status E.E. R.E. A.T. Category Priority Title

30494 Desenv To do - 0,00 - Não Planejada Normal
[Recepção cheio - Tratamento Pendência] [RN_RECCONTCH_12] Criação de evento Dados OOG alter-
ados

End of Table G.1

237


