
UNSUPERVISED CONCEPT EXTRACTION IN AN INTRODUCTION TO
PROGRAMMING COURSE

Laura de Oliveira Fernandes Moraes

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia de Sistemas e
Computação, COPPE, da Universidade Federal
do Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Doutor em
Engenharia de Sistemas e Computação.

Orientador: Carlos Eduardo Pedreira

Rio de Janeiro
Fevereiro de 2021

UNSUPERVISED CONCEPT EXTRACTION IN AN INTRODUCTION TO
PROGRAMMING COURSE

Laura de Oliveira Fernandes Moraes

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO
LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Orientador: Carlos Eduardo Pedreira

Aprovada por: Prof. Carlos Eduardo Pedreira
Prof. Edmundo Albuquerque de Souza e Silva
Prof.ª Carla Amor Divino Moreira Delgado
Prof. Sandro José Rigo
Prof.ª Ana Cristina Bicharra Garcia

RIO DE JANEIRO, RJ – BRASIL
FEVEREIRO DE 2021

Moraes, Laura de Oliveira Fernandes
Unsupervised Concept Extraction in an Introduction to

Programming Course/Laura de Oliveira Fernandes Moraes.
– Rio de Janeiro: UFRJ/COPPE, 2021.

XIII, 86 p.: il.; 29, 7cm.
Orientador: Carlos Eduardo Pedreira
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2021.
Referências Bibliográficas: p. 69 – 86.
1. Topic Modeling. 2. Clustering. 3. Educational

Data Mining. 4. Computer Science Education. I.
Pedreira, Carlos Eduardo. II. Universidade Federal do Rio
de Janeiro, COPPE, Programa de Engenharia de Sistemas
e Computação. III. Título.

iii

Personally, as an educator, I’ve
struggled to understand which

contents my students are
mastering and which ones they

are having difficulties with. As a
data scientist, I value the

awareness and consistency given
by data-driven decisions. I
dedicate this thesis to my

students.

iv

Agradecimentos

Meu conselho para quem quer fazer um doutorado: pesquise um assunto que você
curta! À primeira vista parece ser um conselho óbvio, mas não custa reforçar. São
muitas horas necessárias e dedicadas para fazer esse trabalho, são fins de semanas e
feriados, são férias e muitas (muitas!) conversas e trocas de ideias para a pesquisa
seguir em uma direção frutífera. Por isso, deixo aqui os meus agradecimentos para
quem, direta ou indiretamente, fez parte dessa história.

Agredeço ao meu orientador, Carlos Eduardo Pedreira, que, na medida correta,
sabe empurrar, questionar e confiar. Agredeço pela pergunta: “o que VOCÊ quer
pesquisar?” feita nos corredores do PESC e que me motivou a buscar um assunto
do meu interesse. Agradeço à todos os professores e funcionários do PESC por
girarem a roda do departamento e torná-lo um lugar agradabilíssimo e motivador
de trabalhar. Agradeço aos meus amigos e colegas do LaSI (ou seria LabIA?) com
os quais, além de aprender sobre os mais diversos assuntos, me diverti e aprimorei
as minhas habilidades em cantar.

Agradeço à Carla Delgado, que desde o início foi entusiasta desse projeto. Posso
dizer com toda certeza que sem seu apoio não teríamos conseguido ir tão longe.
Agradeço à todos os professores e alunos que participaram dessa pesquisa tanto
utilizando a ferramenta como avaliando os resultados. Agradeço ao Departamento
de Ciência da Computação da UFRJ por abraçar esse projeto e torná-lo realidade.

Agradeço aos organizadores e amigos do Data Science for Social Good. Espero
ter podido ensinar pelo menos 10% do que aprendi com vocês em intensos 3 meses.
Agredeço à Sherry Sahebi e seus alunos que me receberam de braços abertos na
SUNY Albany e me proporcionaram o pedaço que faltava para fechar a tese.

Agradeço aos meus sócios e amigos da TWIST: Fernando Ferreira e Felipe Grael.
Não consigo mensurar o quanto o companheirismo de vocês contribuiu para eu chegar
até aqui. Essa tese leva um pedacinho de tudo que contruímos na TWIST esses anos.
Aproveito e agradeço à todos que já trabalharam com a gente, deixando seu tijolinho
na história da empresa.

Agradeço ao João Paixão, meu grande companheiro, que contribuiu não somente
com apoio e paciência, mas com ideias, experiência e conhecimento. Agradeço aos
meus pais Altamirando e Mônica por sempre terem me dado a segurança e indepên-

v

dencia de buscar meus objetivos. À minha irmã, ao meu sobrinho, à minha afilhada,
aos meus avós, tios, primos e à toda a minha família pelos prazerosos fins de semana
em Itaipava, almoços de domingo, aniversários, viagens ou qualquer outra desculpa
para nos reunirmos e jogarmos conversa fora. À todos os meus amigos por estarem
presentes nas dificuldades e nas alegrias.

Agradeço à UFRJ, minha casa pelos últimos 15 anos, e ao CNPq pelo suporte
financeiro.

vi

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

EXTRAÇÃO NÃO-SUPERVISIONADA DE CONCEITOS EM UM CURSO
INTRODUTÓRIO DE PROGRAMAÇÃO

Laura de Oliveira Fernandes Moraes

Fevereiro/2021

Orientador: Carlos Eduardo Pedreira

Programa: Engenharia de Sistemas e Computação

Determinar manualmente os conceitos presentes em um grupo de perguntas é
um processo desafiador e demorado. No entanto, este processo é uma etapa essen-
cial durante a modelagem de um ambiente virtual de aprendizagem, uma vez que
é necessário o mapeamento entre conceitos e perguntas para avaliação automática
de conhecimento, produção de feedback e recomendação de exercícios. Esta tese
fornece ferramentas para auxiliar no ciclo de aprendizagem com foco na extração de
conceitos. Nós investigamos modelos semânticos não supervisionados para apoiar
professores de ciência da computação nesta tarefa e propomos um método para
transformar soluções de código fornecidas por professores em documentos de texto,
incluindo as informações da estrutura do código. Primeiro, projetamos, implemen-
tamos e implantamos um ambiente de aprendizado para coletar dados de professores
e alunos. Este ambiente foi construído baseado em uma metodologia de ensino. Em
seguida, extraímos a relação latente entre os exercícios e avaliamos os resultados
usando um conjunto de dados externo. Consideramos a interpretabilidade dos con-
ceitos recuperados utilizando dados de 14 professores, e os resultados confirmaram
seis clusters semanticamente coerentes, atingindo 0,75 na métrica normalizada de
informação mútua pontual. Esta métrica está positivamente correlacionada com a
percepção humana, tornando o método proposto útil na anotação e agrupamento
semântico de códigos. Por fim, comparamos este método com métodos focados no
conhecimento do aluno de modo a extrair a relação semântica latente das questões
através da perspectiva do aluno. Por fim, propusemos uma visualização que agregue
a performance dos alunos para acompanhar seu desempenho e identificar possíveis
pontos de dificuldade.

vii

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Doctor of Science (D.Sc.)

UNSUPERVISED CONCEPT EXTRACTION IN AN INTRODUCTION TO
PROGRAMMING COURSE

Laura de Oliveira Fernandes Moraes

February/2021

Advisor: Carlos Eduardo Pedreira

Department: Systems Engineering and Computer Science

Manually determining concepts present in a group of questions is a challeng-
ing and time-consuming process. However, the process is an essential step while
modeling a virtual learning environment since a mapping between concepts and
questions using mastery level assessment and recommendation engines are required.
This thesis provides tools to assist in closing the learning feedback loop focused on
concept extraction. We investigated unsupervised semantic models (known as topic
modeling techniques) to assist computer science teachers in this task and propose
a method to transform Computer Science 1 teacher-provided code solutions into
representative text documents, including the code structure information. First, we
projected, implemented, and deployed a learning environment based on a teaching
methodology to collect professors and student data. Then, we extracted the un-
derlying relationship between questions and validated the results using an external
dataset by applying non-negative matrix factorization and latent Dirichlet alloca-
tion techniques. We considered the interpretability of the learned concepts using
14 university professors’ data, and the results confirmed six semantically coherent
clusters, achieving 0.75 in the normalized pointwise mutual information metric. The
metric correlates with human ratings, making the proposed method useful and pro-
viding semantics for large amounts of unannotated code. Finally, we compare this
method with methods focused on the students’ knowledge to extract the questions’
latent semantic relationship through the students’ perspective. As we could not find
a significant relationship between concepts found using the student-focused methods
and the ones provided by the professors, we proposed a new visualization to track
student performance and pinpoint students’ difficulties and achievements.

viii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Objective . 2
1.2 Contribution . 3
1.3 Document Organization . 4

2 Related Work 5
2.1 Programming Learning Environments 5
2.2 Early Dropout Prediction . 7
2.3 Extracting Questions General Attributes 8
2.4 Extracting Concepts from Code . 9
2.5 Extracting Concepts from Student Performance 10

2.5.1 Unsupervised Student Performance Models 10

3 Data Acquisition System and User Interaction 15
3.1 Teaching Methodology . 15
3.2 User Stories . 16
3.3 System Architecture . 17

3.3.1 Collected Data . 17
3.4 User Interaction . 19

4 Database and Exploratory Analysis 22
4.1 Revision Dataset . 22
4.2 Semester Dataset . 23
4.3 Exploratory Analysis . 23
4.4 Early Dropout Prediction . 26

5 Mapping Methodology 29
5.1 Research Method . 29

ix

5.2 Q-Matrix Discovery from Code . 30
5.2.1 Data Transformation . 31
5.2.2 Topic Extraction . 33
5.2.3 Topic Filter and External Evaluation 34
5.2.4 Topics Contextualization . 35

5.3 Q-Matrix Discovery from Student Performance 37
5.3.1 Factorization methods to predict student performance 37
5.3.2 Evaluation . 39

5.4 Analysis of Similarities . 39

6 Results and Discussion 42
6.1 Q-Matrix Discovery from Code . 42

6.1.1 Experiment 1 . 42
6.1.2 Experiment 2 . 44
6.1.3 Coherence Evaluation . 51
6.1.4 Discussion about Experiments 1 and 2 52
6.1.5 Topics Contextualization . 53

6.2 Q-Matrix Discovery from Student Performance 55
6.2.1 Train and test split . 55
6.2.2 Prediction results . 56

6.3 Analysis of Similarities . 56
6.4 Student Survey . 60

7 Conclusion 65
7.1 Final Remarks . 66
7.2 Future Work . 67

References 69

x

List of Figures

3.1 Abstract view of the system architecture. 18
3.2 System IDE . 20
3.3 Student dashboard . 20
3.4 Overview interface for a class. Detailed information on students’ out-

comes, with the respective timestamp and overall performance. 21
3.5 Single problem view. Students’ submissions are presented side-by-side

for easy viewing of common errors. 21

4.1 Distribution of questions’ success and failed attempts 24
4.2 Distribution of students per number of questions 25
4.3 Active students per week . 25
4.4 Decision tree for dropout prediction 28

5.1 Code-clustering pipeline overview. 31
5.2 A code snippet and its augmented version. The augmented version

will be processed in the augmented tokenizer, whereas the regular one
will be processed in the standard tokenizer. 32

5.3 Matrix factorization conceptual visualization. 33
5.4 Matrix factorization illustrative example. 34
5.5 Input based on performance data. 38
5.6 Student matrix factorization conceptual visualization. 38
5.7 Tensor factorization. Both matrix and tensor factorizations produce

a matrix called Q-matrix (Concepts x Questions). FDTF has one
more dimension than NMF: attempt. 38

5.8 Q-matrix comparison. 40

6.1 Documents projected into the first two dimensions using principal
component analysis. Points with the same color and marker belong
to the same cluster. 43

xi

6.2 Term importance for the four most populated topics. Each row repre-
sents a term, the size of the point corresponds to the term’s weight for
the topic, and red points are the points above the 75th percentile of
all weights. The green points denote words above the 75th percentile
limit on only one of the four topics. 44

6.3 Topic distribution per document. Darker cells indicate a better de-
scription of the document by the topic. 45

6.4 Topics are represented as circles proportional to the number of terms
whose weights are most associated with the topic and the distance
between the circles is the intertopic distance. 45

6.5 Topic distribution per document. Darker cells indicate a better de-
scription of the document by the topic. 46

6.6 Intertopic distance map for experiment 2. Topics are represented as
circles proportional to the number of terms whose weights are most
associated with the topic and the distance between the circles is the
intertopic distance. Topics in red are further discussed in detail. . . . 47

6.7 Topic dissimilarity matrix. The darker the cell more distant the topics
are from each other. 51

6.8 Normalized confusion matrix for the intruder-identification task. . . . 55
6.9 Question dendrogram using Euclidean distance. Each color (each

dotted rectangle) represents a cluster. 58
6.10 Each color represents the main concept in the cluster and the size, its

popularity among students. 59
6.11 Each color represents the main concept in the cluster and the size, its

popularity among students. This figure zooms in the dense left size
of plot 6.10. 60

6.12 Boxplots for user interface satisfaction questions 62
6.13 Software used by students to write code 63
6.14 Boxplots for feedback coverage questions 63
6.15 Boxplots for learning perception questions 64

xii

List of Tables

2.1 List of programming PLSs that support automated assessment. . . . 7

3.1 Course Syllabus . 16
3.2 User Requirements in User Stories Format 17

4.1 Revision Dataset Statistics . 24
4.2 Semester Dataset Statistics . 24
4.3 Previously Published Relevant Features to Predict Course Comple-

tion Included in this Experiment . 26
4.4 Dropout Prediction Results . 27

5.1 Overview of the research classification. 30
5.2 Example of Document-Term Matrix. A Set of Terms from the Com-

plete Document-Term Matrix after Augmenting and Tokenizing the
Document from Fig. 5.2 . 32

5.3 List of CS1 Concepts . 36

6.1 Set of Hyperparameters for Each Experiment 42
6.2 Number of Documents per Topic in Experiment 1 43
6.3 Number of Documents per Topic in Experiment 2 46
6.4 Five Most Relevant Terms for Each of the Analyzed Topics. The

Terms Starting with ‘Is’ Are the Special Annotated Terms Explained
in Section 5.2.1 (Data Transformation) 48

6.5 Number of Test Set Documents per Topic for Experiment 2 50
6.6 The Mean and Standard Deviation of UCI Coherence Using NPMI . . 52
6.7 The relation between the Found Topics and the Main CS1 Concept

Related to the Topic . 53
6.8 Prediction Results . 56
6.9 ANOSIM statistics . 57

xiii

Chapter 1

Introduction

It has been a while since educators have been challenged by the idea of using tech-
nology to support affordable and scalable personalized educational experiences while
keeping learning quality. Even before the COVID-19 pandemic, technology and ped-
agogical strategies for distance learning were already being broadly discussed [1–5].
The Google Trends engine shows that the search for “distance education” has dou-
bled between February and March 2020 in the world [6]. More than ever, there
is a demand for tools to support delivering these personalized learning experiences
while still incorporating students’ environments’ difficulties. Besides individual and
targeted support for each student, some other needed features are asynchronicity
and ubiquity, letting students learn at their own pace in whichever device they have
available for them [4, 7, 8].

This thesis is inserted in the educational data mining (EDM) context, an emerg-
ing research area centered on developing methods to better understand students by
analyzing large-scale data from educational settings [9]. It derives from regular data
mining, the field of discovering novel and potentially meaningful patterns from large
amounts of data in automatic or semiautomatic ways [10]. However, EDM differs
from it by integrating psychometric methods to consider the statistical data depen-
dence and the multiple levels of information hierarchy in educational data [11, 12].

In regular classrooms, educators perform “knowledge discovery” (in the EDM
sense) every day by observing student behavior and outcomes in assignments and
tests. From their observations, they can determine which concepts students have
mastered or are still struggling with and consequently adapt teaching strategies.
In distance learning, this observation is limited, and, therefore, we need enhanced
tools to support this task. Also, student log analysis can provide insights to improve
teaching and learning strategies, course curricula and support other sense-making
processes. However, for it to be useful, this amount of data has to be presented in a
way for stakeholders to act on it. Recent learning analytics reports pointed out that
we need to approximate the already rich published research to actual deployment

1

and practice [13–15]. Also, to further advance the field, hybrid approaches should be
considered, inserting the instructors on the learning loop to interpret the outcomes
of the algorithms and take appropriate actions [13, 16, 17]. Rosé et al. [14] advocate
the use of explanatory learner models to provide actionable insights, in addition to
accurate predictions.

This thesis uses as a case study the introduction to programming classes at the
Universidade Federal do Rio de Janeiro (UFRJ). Learning to program is admit-
tedly a difficult task, already studied by several authors [18, 19]. Understanding
the cognitive processes involved in this task significantly improves teaching-learning
proposals [19, 20]. Lately, there have been attempts to mine virtual learning envi-
ronments students’ interaction data [21] to obtain insights about students’ behavior,
but few of them have shown how to approximate the research findings with practice.

1.1 Objective

According to Lan et al. [22], the learning feedback loop consists of (1) continuous
analysis of learners’ interaction with learning resources to monitor learning evolution
and (2) react to the results of the monitor and analysis by providing timely feedback,
recommendations, and remediation to students. Previous intelligent tutoring sys-
tems (ITSs) and personalized learning systems (PLSs) used rule-based approaches
to close the learning feedback loop [22]. We would like to add a third step into this
loop that consists of a longitudinal analysis of the results to improve pedagogical
methodologies [23, 24].

This thesis’s general goal is to provide tools to assist in closing the learning
feedback loop applied to computer science education. Aiming to improve step (1),
we reviewed the existing literature on tools to collect learners’ interaction data on
computer science and proposed and implemented an enhanced architecture scheme
that better suits our objective. Concerning step (2), we built an early dropout pre-
diction model, revisiting and consolidating results from exploratory research found
in the literature. A common requirement in every step of the learning feedback loop
consists of mapping the concepts needed in each learner interaction since students’
mastery level assessment, feedback production, and next steps recommendation de-
pend on these mappings. However, manually identifying the concepts required to
answer questions can be time-consuming and difficult, increasing the need for tools
to assist teachers in the tasks. Desmarais [25] suggested that even partial automa-
tion of the process can be highly desirable. Besides decreasing the manual labeling
required from the experts, the process automation also results in a more objective
and replicable mapping.

This thesis is focused on concept extraction, and our main goal is to explore the

2

problem of extracting the skills that students need to solve the learning activities,
in which single or multiple skills are required. Our proposal focuses on extracting
unsupervisedly these latent skills combining two different approaches: deriving it
from the solutions for each problem and students’ performance. The first one is more
suitable for human-interpretability, whereas the second considers student knowledge
and can grasp easier and harder concepts. Therefore, combining both allows us to
navigate between interpretable concepts and student knowledge estimation of each
concept. We propose unsupervised semantic methods, known as topic modeling
techniques [26–29], as more interpretable methods for experts, to be applied in
introductory computer science problems.

1.2 Contribution

This thesis researches different improvements around the learning feedback loop,
providing contributions to different areas. The main contributions of this thesis are:

• On the data collection and availability domain:

1. Use of methodological teaching theory to construct a learning environ-
ment.

2. Improvement of personalized learning environment architecture proposed
in the literature.

3. An anonymous open-source student interaction database for multiple
classes and a Python problems database with corresponding solutions
and categories.

4. Real user studies from multiple CS1 courses at the Federal University of
Rio de Janeiro.

5. Deployment of a large-scale functional system at the Federal University
of Rio de Janeiro.

6. Early dropout prediction, revisiting results from exploratory research
found in the literature.

• On the unsupervised concept extraction domain:

1. A tokenization structure to transform raw code snippets into a document-
term matrix.

2. A code-clustering method to optimize positively correlated metrics for
human-interpretability.

3. Experts validation, illustrating how the proposed method can support
questions’ exercise labeling using each topic’s terms.

3

1.3 Document Organization

The text is organized as follows:

• Chapter 2 reviews the literature on computer science intelligent tutoring sys-
tems, personalized learning systems, and question attribute extraction.

• Chapter 3 describes the proposed architecture and developed system. The sys-
tem requirements are detailed along with the collected data and their possible
use.

• Chapter 4 performs an exploratory data analysis, providing a better under-
standing of the most relevant features that determine student outcomes. Part
of this chapter was presented at the 4th Educational Data Mining in Computer
Science Education (CSEDM) Workshop [30].

• Chapter 5 presents the used methodology to extract concepts unsupervisedly.
The concepts are extracted from code solutions provided by professors and
from student performance data. Part of this and the next chapters were pub-
lished at the IEEE Transactions on Learning Technologies [31].

• Chapter 6 presents the results obtained using the methodology described in
Chapter 5. This chapter also presents the students’ evaluation of the learning
environment described in Chapter 3.

• Chapter 7 discusses the general conclusions and presents the next steps.

4

Chapter 2

Related Work

This thesis proposes improvements around the learning feedback loop as introduced
in Chapter 1. The main results are the two different perspectives to discover which
latent skills are involved in a given learning task. Our first approach uses textual
solutions for the problems as input and clusters them accordingly to the used terms.
Our second approach extracts the skills by observing students’ outcomes at each
problem. Therefore, this chapter begins by reviewing learning environments that
support automated assessment for Python exercises and drop-out prediction liter-
ature findings. Then, we review methods to associate general attributes to each
exercise. These attributes can vary from question style to the concepts needed to
solve a problem. We then review approaches to cluster code and extract its under-
lying concepts (or skills). Finally, we review methods to derive unsupervisedly these
concepts based on the observed student outcomes.

2.1 Programming Learning Environments

In this section, intelligent tutoring systems and personalized learning systems to
support learning the Python language are revised. Personalized Learning Systems
(PLS) are systems designed to assist students’ tutoring on a personalized level.
They have been around since the 1960s [32], having its first formal definition in the
1990s [33]. Nowadays, several different PLSs cover a broad range of subjects with
success used by hundreds of thousands of students a year. Concerning the subject
of PLSs in programming languages, Table 2.1 shows a selected list gathered from
the 2015 and 2018 reviews [34, 35]. Even though different environments can support
students in learning, this list is restricted to those that provide an automated Python
exercises assessment. Python is a general-purpose language, which means it can be
used in a large variety of projects and can be great to stimulate students since
they can work on projects they relate to. Python also is user-friendly, and for the
past seven years, it has been the fastest-growing programming language [36], being

5

correlated with trending careers, such as DevOps and Data Scientist [37]. According
to the 2015 literature review on educational data mining and learning analytics in
programming [34], only 11% of the papers about programming courses reported
using Python as the course language. However, this is changing. A 2017 review
on the introductory programming courses in Australasia universities [38] reported
a shift from Java to Python in the past years. The 2018 review on introductory
programming literature [35] already presents a higher number of papers using Python
as the course language.

Our proposed system (Machine Teaching) and the presented systems were ana-
lyzed, comparing their theoretical foundation, system functionalities, log granularity,
and evaluation, producing the benchmark from Table 2.1. About half of the sys-
tems are not built upon a teaching or pedagogical methodology; they are mostly
an environment to write and correct code. All of the systems support students and
professors use. For students, the systems usually work like an integrated develop-
ment environment (IDE), where students can write code and receive impromptu
feedback. However, the functionalities for professors may vary. In UUhistle, for
example, the professors use the system to run simulations and examples. Most of
the systems allow the professors to see if the student passed or not an individual
question. However, just the URI Online Judge and PCRS provide in-depth analysis
of student submissions through learning analytics dashboards.

Ihantola et al. [34] also define a typical architecture for these systems in their
2015 review. This architecture will be detailed in Section 3.3 with an enhanced
proposed architecture.

6

Table 2.1: List of programming PLSs that support automated assessment. Adapted
from [34, 35]

System

Is it developed
based on a
teaching or
pedagogical

methodology?
Which one?

In-depth
analysis of
student

submissions

Log
granularity

System
evaluation

CloudCoder
[39, 40] No No Keystrokes Not evaluated

CodeWorkout
[41] Drill-and-practice No Keystrokes Survey

PCRS [42] Peer Instruction Yes Submissions Not evaluated
URI Online
Judge [43, 44] No Yes Submissions Survey

UUhistle [45] Visual Program
Simulation No N/A Survey and

control group
Pythy [46] No No Keystrokes Survey
Web-CAT [47] No No Submissions Control group

Machine Teaching [30]
Imperative
programming
(functions first)

Yes Submissions Survey

2.2 Early Dropout Prediction

Early prediction in the educational context is the ability to predict students’ out-
comes based on their performance in the course’s first weeks to provide professors
enough time to plan and execute interventions. Models to predict student perfor-
mance and course non-completion (dropout) using data from the first weeks have
been widely studied in the literature [48–55].

On the dropout prediction matter, initial research had been limited to sin-
gle courses, which led to questions about the generalizability and replicability of
these findings [56]. Therefore, Andres et al. [56] proposed a replication framework
(MORF) to evaluate the previous findings across a multitude of massive open online
courses (MOOCs). They were corroborated: forum participation and time dedica-
tion for the course (either finishing assignments or browsing in forums) were good
predictors for course completion, as studies before have stated. Alamri et al. [51]
focused on using only two features to predict student dropout in a group of five
different MOOCs. They concluded that the time spent and the number of accesses
were the best predictors for course completion.

Al-Shabandar et al. [57] also use MOOC data to investigate if geographical and
behavioral features are correlated with course completion. They found out that
location matters, probably due to language and educational level barriers. Also,

7

they noted that clicks and the number of unique days that learners interact with
the system are the most important features to predict student course withdrawal.

Damasceno et al. [21] cross-checked literature results in course completion using
a Brazilian dataset. They used random forest and decision trees and combined
different features. They found that assignment completion is a good predictor of
course completion. Pereira et al. [54] proposed using CART4.5 to predict dropout
in a face-to-face introduction to programming course at a Brazilian university. They
used data from the first two weeks of the course from an online judge system used
in class to predict the outcome. Unlike the MOOCs research, the dataset is small
to medium-sized due to its course restriction in this study. Therefore, the same
verified results could not be previously assumed. Their relevant features were the
percentage of correct test cases for each submission, the access frequency, and the
total number of submissions. In this thesis, we aim to verify these literature results
by reproducing this experiment in our dataset.

2.3 Extracting Questions General Attributes

The existing methods to identify concepts from a set of CS1 exercises involve manual
work and input from experts [58, 59]. For example, Sheard et al. [58] characterized
introductory programming examination questions according to their concept areas,
question style, and required skills. Participants manually classified the questions
and the determined topics covered alongside the necessary skill levels to solve them.
Nonetheless, applying a successful approach in a different set of exercises requires a
new manual labeling stage, which may not be achievable.

One strategy to overcome this issue and minimize the domain experts’ work-
load is to apply supervised learning. Previous research in question classifications
used supervised learning to classify questions according to the level of difficulty [60],
Bloom’s taxonomy [61], answer type [62], and subject [63]. In Godea et al. [62], the
features are derived from the questions, using part-of-speech tags, word embeddings,
inter-class correlations, and manual annotation. Supraja et al. [61] use a grid search
to analyze different combinations of weight schemes and methods to find the best
set of parameters to build a supervised model to classify questions given Bloom’s
Taxonomy. Its main cost is the manual annotation of all labels, impractical when
applying to large datasets. Unsupervised learning can group similar items without
a predefined label, but it is harder to ascertain the results since there is no objective
goal to analyze, and evaluating the clustering outcomes becomes a subjective task.
Unsupervised learning techniques have been used to address EDM problems [64–
68]. For example, Trivedi et al. [69] use spectral clustering with linear regression to
predict student performance. In the questions’ classification context, an unsuper-

8

vised approach using K-means, as a clustering algorithm [70], was proposed to group
similar learning objects (such as handouts, exercises, complementary readings, and
suggested activities). Still, K-means does not provide a list of features that best
characterize each cluster, making the expert infer them manually by reading a sam-
ple of each cluster’s exercises.

2.4 Extracting Concepts from Code

It is possible to use the code provided as answers to the exercises as input while
restricting the concept identification to the CS1 domain. Unsupervised learning
using code as input is achieved by calculating their abstract syntax trees (ASTs)
and clustering the most similar ones; besides, various strategies calculate similarity
among trees. Huang et al. [71] and Nguyen et al. [72] use edit tree distance, Paasen
et al. [73] apply sequential clustering algorithms, and Price et al. [74] and Mokbel
et al. [75] fragment each AST into subgraphs, pair similar subgraphs and compute
the distance between the subgraphs within a pair. Concepts identification in these
scenarios requires experts to read samples of exercises from each cluster to infer the
relevant features. It is also unclear how to generalize it to other domains where the
answers are not constructed directly using a tree or a graph.

We propose a CS1 concept identification method to support experts in label-
ing concepts by providing the relevant features in each cluster in Section 5.2. This
method could potentially be extended to different domains since it only requires text
inputs. We develop a code tokenizer that uses its code structure to augment and
improve the corpus. We apply topic modeling techniques where the documents are
the code provided as answers to the exercises. In the software engineering field, con-
cepts are extracted from code using programmers’ annotations [76]. Similarly, code
clustering, identifying similar features/concepts in a repository, predicting bugs,
analyzing/predicting source code evolution, tracing links between modules, and de-
tecting clones are widely applied in the same field [77]. For the EDM, Azcona et
al. [78] created a Python code submission tokenizer to setup features to generate
code embeddings. Unlike the software engineering context, code snippets in CS1 are
small in size and lack annotations.

Although the LDA in Blei et al. [27] is a common technique in topic modeling, it
does not perform well in short texts (code in this context) because the traditional way
of extracting terms does not provide enough textual words to characterize a specific
topic [79, 80]. It is necessary to decrease the latent document-topic or word-topic
spaces, making them more specific for each context. Hsiao et al. [81, 82] propose
a topic-facet LDA model using sentence LDA (SLDA) with a facet representing a
more specific topic and all words from a sentence belonging to the same facet. Zhao

9

et al. [83] decrease the latent space by creating a common word distribution with
denominated background words, which are the same for every topic. Steyers et
al. [84] and Rosen-Zvi et al. [85] adopted a similar strategy. In their method, the
generative process to create a document decreases the space by choosing an author
and then choosing a topic. Li et al. [86] use a distribution over tags to restrict the
latent topic space before inferring the documents’ topic distribution.

Another approach to overcome the lack of textual words is to increase the repre-
sentation, so Weng et al. [87] proposed an LDA to cluster subjects’ twitterers (peo-
ple who tweet). Their method increases document representation by aggregating
all tweets from a single user into one document. Abolhassani and Ramaswamy [80]
enhance short semi-structured texts by augmenting the corpus’ structure, which
is similar to the method we adopted in this thesis. In comparison with the stan-
dard literature tokenizer, our proposed tokenizer increased the vocabulary size (total
terms) from 287 to 2388 and the average of terms per document from 23 to 137. We
maintain a 95% sparsity, which agrees with the sparsity of the long-text documents
from Syed and Spruit [88] and Zhao et al. [83], i.e., successfully clustered using topic
modeling techniques.

2.5 Extracting Concepts from Student Performance

A second approach to extract the skills a student needs to solve a problem is to
use actual student data. Student performance data concern all data acquired on
a student’s level while interacting with an intelligent learning environment. They
are primarily used to create a student model to assess students’ knowledge. The
most widely used model families for this task are the bayesian knowledge tracing
(and derivatives) [89–97] and logistic models [94, 98–100]. In both model families,
this process is done in two steps: define the skills needed in each question and then
train a supervised model to infer the students’ mastery of each skill based on their
outcomes for each question. However, associating each question’s skills, as stated in
Section 2.3, requires extensive effort and time, being static for the set of problems
to which they were defined.

2.5.1 Unsupervised Student Performance Models

Researchers have attempted to extract the question-skill association automatically
using as input student item-response data. According to Barnes [101], Patrick
Brewer started investigating questions’ underlying relationship extraction methods
directly from student data. When using student data, the goal is to capture students’
differential performance (patterns) when answering questions [101].

10

The question-skill association table is called Q-matrix, and it is represented as a
binary matrix where the rows are the latent concepts/skills and the columns are the
questions. If the concept is needed to solve the question, the corresponding cell is
filled with one; otherwise, it is filled with zero [92, 101, 102]. In his master’s disser-
tation, Brewer started with a predefined Q-matrix and created simulated students
with different knowledge levels. Then, he generated students’ outcomes based on
their knowledge and the Q-matrix. He then used the “Q-matrix method” [101] and
factor analysis [103] to retrieve Q-matrices based only on student-generated out-
comes. Factor analysis is a data reduction technique to find latent factors from the
underlying data structure. It searches for the maximum common variance between
the variables. The Q-matrix is a method based on the hill-climbing optimization
technique [101]. It starts by creating a random Q-matrix and improves it at each
iteration by flipping random bits on the previous Q-matrix. If the total error after
flipping the bits is smaller than the previous iteration, the modification is saved.
The total error is calculated by comparing students’ real outcomes and their ex-
pected/predicted outcome, derived from the generated Q-matrix. Barnes [101] com-
pares the Q-matrix method with factor analysis and k-means clustering using the
Hamming distance. The Q-matrix method performed better than factor analysis and
similar to k-means. Compared to the k-means clustering approach, the Q-matrix
method provides an interpretable model, being a more appropriate tool for teachers
to understand students’ knowledge and misconceptions. However, when compared
with expert Q-matrices, they often do not correspond. Barnes predicted this be-
havior because the Q-matrix method’s primary motivation was to reflect students’
differential patterns that expert Q-matrices were already not reflecting. Neverthe-
less, is it possible to extract and connect unsupervisedly both Q-matrices, one that
contains students’ differential patterns and another for the experts’ intuition?

Researchers kept trying to find this Q-matrix using theory from other domains.
Estimating the latent concepts from questions and students’ outcomes can be posed
as an item recommendation problem. If we use a movie recommendation system as
an example, each movie’s user ratings are represented by the student outcome in each
question. They are both the observable information we have about a user prefer-
ence/student knowledge. In both scenarios, we understand the latent characteristics
involving the movies/questions and how each user/student likes/understands each
latent characteristic. So, we can import techniques from collaborative filtering re-
search to solve this problem, such as non-negative matrix factorization (NMF). A
straightforward algorithm to solve the NMF optimization is a gradient descent ap-
proach to discover the latent matrices. However, as in a recommendation system
setting, not all students may have answered the same questions in an authentic class.
Winters et al. [104] propose using an alternative NMF optimization to estimate stu-

11

dent knowledge and extract concepts from questions unsupervisedly. Following the
item-response theory (IRT) guidelines, they propose two enhancements: 1) using
IRT to estimate missing values and then use standard NMF, and 2) an NMFmodified
algorithm that applies a logistic regression on the factorized matrices multiplication
since this could better match the mental model behind the student skills. They call
this method GGLLM. They also propose an NMF extension called NMF+K, where
they query an expert for some portion of the Q-matrix (called relevance matrix in
the paper). Unlike the other papers, they are mainly interested in these algorithms’
ability to extract a valid Q-matrix. They used experts to manually group each ques-
tion into a concept cluster (they call topics in the study) and calculated precision
and recall metrics after hard-assigning each question to a single concept. They also
calculated the reconstruction error between their found Q-matrix and a Q-matrix
provided by experts. When using matrix factorization, the order of the latent factors
may vary in the latent dimension. It is not clear on the paper how they align the
extracted latent concepts and the concepts from experts to assess the reconstruction
error correctly. Winters et al. paper’s key result is to show the feasibility of these
methods, even though the results’ precision was too low and inconclusive to build
useful tools. This result indicates the need for more research and new proposals to
address this issue, one of the motivations for this thesis.

Desmarais [105] replicated part of Winters’s study to understand in which con-
ditions the NMF technique is effective. To investigate these conditions, he proposed
a simulator where: 1) each question is only associated with one concept, and 2) the
students’ performance depends either on the topic skill or a topic skill, item diffi-
culty, and student general expertise combination. In the simulated scenario where
the topic skill is the only factor that affects students’ performance, NMF is highly
effective. However, when applying it to a real dataset, it does not achieve good
results, indicating that student performance is not based only on this assumption.
In the second scenario, where students’ outcome depends on topic skill, item dif-
ficulty, and student general expertise, NMF only performs well if the topic skills
factor influences the outcome in the same proportion as the other two factors. His
results indicate that topic skill has a much lower influence on student performance
than generally thought. These results were also a motivation for this thesis. Can
we complement student performance data to extract a better Q-matrix?

In Lan et al. [22], sparse factor analysis (SPARFA) was defined as a problem
of factor analysis under three assumptions: 1) low dimensionality (the number of
latent concepts is small relative to both the number of learners and the number
of questions); 2) sparsity (each question is associated with just a few concepts,
creating a sparse Q-matrix), and 3) non-negativity (the entries in the Q-matrix
are non-negative, providing interpretable values for the student knowledge model).

12

Compared to the NMF assumptions, the SPARFA problem tries to estimate an
extra parameter: the question difficulty, which is not present when solving the
NMF problem, and that Desmarais suggested it as a factor that influences student
performance. They propose two algorithms to retrieve the latent dimensions under
these assumptions: SPARFA-M, based on maximum-likelihood, and SPARFA-B,
using a Bayesian approach based on Markov chain Monte Carlos (MCMC). They
experimented with synthetic and real education datasets, showing the SPARFA
algorithms’ efficacy in estimating student performance. Compared to the Q-matrix
method, NMF and the SPARFA family retrieve question-concept associations in
real-scaled values instead of binary values, which allows for different weights between
questions and the underlying concepts. In these experiments, they did not directly
validate the Q-matrix; they associated tags provided by experts to each question and
created a bridge to navigate between the extracted abstract latent concepts and the
tags, representing the experts’ point of view. In this way, even though the extracted
Q-matrix does not match the concepts imagined by experts, this methodology can
still be used to provide the experts’ insights about students’ knowledge according
to the experts’ perspective.

The four methods described above (factor analysis, Q-matrix method, NMF, and
SPARFA) do not consider student learning improvements while solving the exercises,
relying on static student knowledge states. More recent methods, such as Topical
HMM [106] and tensor factorizations [107, 108] consider a time dimension that can
account for student knowledge improvement between student attempts in answering
questions. Topical HMM creates a joint model of topic modeling and hidden Markov
model. However, this approach has a trade-off between model interpretability and
performance. The feedback-driven tensor factorization (FDTF) [108] method is a
tensor factorization technique initially designed for student performance prediction
tasks. It models the student’s knowledge over attempts (as a time dimension) and
assumes that it would be monotonically increasing after each learning material in-
teraction. This method will be explained in Chapter 5.

This literature review included methods to estimate student knowledge based on
student performance data without a predefined concept to question mapping. In
summary, these methods provide interpretability, do not need previous association,
and can be used to predict student performance. In all the methods, the inter-
pretability is given by the Q-matrix’s sparsity and non-negativity constraints, which
is a proxy to the human intuition of additive parts to form a whole [26]. In this
case, student performance is seen as a result of several factors that can only increase
success probability.

On the other hand, we have little information on how the extracted latent
question-concept associations relate to experts’ perceptions. Barnes [101] visually

13

compared different clustering schemes highlighting which elements are put in the
same cluster by the Q-matrix method and experts. Winters et al. [104] validated
it with experts but did not get conclusive results. Lan et al. [22] asked experts to
manually label the concepts and propose a way to linearly transform the extracted
unsupervised Q-matrix into a manually annotated one.

Our main goal is to extract unsupervisedly a Q-matrix that fulfills both require-
ments: it contains student data and experts’ perceptions. Therefore, we use topic
modeling to extract the concepts from the experts’ point of view unsupervisedly and
relate them to student performance. We compare one static method (NMF) with a
dynamic method (FDTF) for student performance.

14

Chapter 3

Data Acquisition System and User
Interaction

This chapter presents the teaching methodology used to design and implement the
learning environment, named Machine Teaching. Then, we present the web system
developed to acquire student data and interact with students and educators. The
main features are presented as user stories, and then the system architecture is pro-
posed as an improvement from a typical architecture from the personalized learning
environment literature.

3.1 Teaching Methodology

The introductory programming course currently offered by the Computer Science
Department of the Universidade Federal do Rio de Janeiro (DCC/UFRJ) for stu-
dents of non-computing careers aims to develop the skills for building readable and
modular Python programs. This methodology is based on the structured imper-
ative approach, emphasizing problem-solving, procedural decomposition and basic
skill mastery. This didactic proposal inverts the usual order of structured imperative
teaching that usually starts with a complete program structure and user interaction
such as “print”, “input”, and “__main__” statements. The proposal differential is
that most of the emphasis consists of building concise code modules, leaving the user
interaction mechanisms to the end of the course (when the student already mastered
the basics). The syllabus is divided into 12 weeks [109] , as shown in Table 3.1. The
adopted approach provides the student with an orientation towards the most ab-
stract cognitive tasks of program design and construction since the beginning of the
learning process. The detailed methodology description can be seen in Delgado et
al. [110].

15

Table 3.1: Course Syllabus

1. Introduction and Functions
2. Functions
3. Data types, strings, and conditional structures
4. Variables and attribution, strings
5. String manipulation, tuples, and lists
6. Lists
7. Repetition structures - while
8. Repetition structures - for
9. Nested loops and arrays
10. Dictionary
11. User interaction and the main program
12. Modularization

3.2 User Stories

Requirements are a set of descriptions determining what a system should do and
its operating restrictions. Sommerville [111] divides them into two types: system
requirements and user requirements. System requirements are detailed descriptions
with objective metrics that can be tested afterward, whereas user requirements are
natural language statements expressing features desired by the users. In this thesis,
we focus on the user requirements, understanding which functionalities our system
should offer to acquire data for the proposed analyses.

A template can be used to express the desired features and create the user
stories: “As a <role>, I want <goal>, so that <benefit>” [112, 113], answering the
who?, what?, and why? questions respectively. For the Machine Teaching web-
system, aim at two different types of users: the students and the educators, which
can be teachers, professors, teaching assistants, pedagogues, parents and any other
individual interested in understanding the dynamics of a class. Table 3.2 presents
the defined user stories.

16

Table 3.2: User Requirements in User Stories Format

ID Who? What? Why?
1 Student Solve exercises To study and learn and for

the system to understand my
strengths and difficulties.

2 Student Visualize my and my peers’
statistics

To better understand my
strengths and difficulties and
better guide my studies.

3 Educator Provide exercises with auto-
matic correction

To decrease my overload with
repetitive manual tasks and in-
crease my quality time with
students.

4 Educator Visualize students’ submissions
to a problem

To understand each student’s
gaps in knowledge and to di-
agnose misunderstandings and
misconceptions.

5 Educator Visualize learning analytics for
a class

To have an overview of the
class’ general difficulties and
grasp students’ patterns.

3.3 System Architecture

A typical architecture for personalized learning environments is defined in the 2015
literature review on educational data mining [34]. Among the front-end features
are an integrated development environment (IDE) for students to write, edit and
execute code, a submission interface (can be embodied in the IDE or a separate
part of the system), feedbacks for students’ actions, and visualization schemes for
teachers and researchers. Back-end usually supports saving data in some kind of
storage, usually a relational database. However, part of this proposal is to integrate
the proposed didactic approach described in Section 3.1. Therefore, none of the
existing and revised systems in Section 2.1 could be used without modifications. To
better control the desired features and captured data and avoid legacy code, it was
decided to build a system from scratch using open-source Python and Javascript
libraries. Fig. 3.1 illustrates an abstract view of the system, adapted from Ihantola
et al. [34]. It shares most of the functionalities with the other systems. The main
differences are the course weekly exercises defined by the professors and used by
the students (Fig. 3.1(f)) and the assessment system (Fig. 3.1(b)), which takes into
consideration the teaching methodology.

3.3.1 Collected Data

The collected log attributes (Fig. 3.1(c)) and their intended use within the system
are:

17

Figure 3.1: Abstract view of the system architecture. Adapted from [34].

Outcome features:

1. Percentage of test cases: The percentage of succeeded test cases. It is used to
calculate the outcome and can be used to estimate student course completion
(see Section 4.4).

2. Outcome: Can be either passed, failed, or skipped. Passed means that the
student submitted code snippets passed all the test cases, failed means that
it did not pass at least one, and skipped means that the student skipped that
question and did not answer. This information can be used to understand
students’ difficulties.

Code features:

3. Student solution (code snippet): Run the test cases to correct the exer-
cise, discover the concepts used by the student, discover students’ code er-
rors/exceptions.

4. Console output: Students’ submission output. It may contain output values
or errors. It is useful to understand if students’ outputs present the expected
types and format and understand in which test cases the solution pass or fails.

18

5. Number of lines: Derived from the code snippet feature, this feature is used
to estimate code complexity and question difficulty.

6. Error: Discover students’ code errors/exceptions, discover if student solution
exceeded time limit constraint.

Temporal features:

7. Seconds in code, seconds in page, and seconds to begin: These three features
combined are used to measure students’ difficulties.

8. Timestamp: This feature can be used to analyze short-term and long-term
learning.

3.4 User Interaction

This section presents the main Machine Teaching user interfaces. We connect them
to the user requirements and the system architecture defined in the previous sec-
tions. We used an agile methodology to develop the system [114]; therefore, not all
interfaces were deployed and available at the same time. The interfaces presented
in this section are already in their third version.

In the integrated development environment (Fig. 3.1(a)), the students are pre-
sented with a problem, and they should write the expected answer in a free-text
coding format. For each exercise, a test case function generator was defined to cor-
rect the results (Fig. 3.1(a.2)). The students get feedback every time they submit
an answer, and they can see whether they passed or failed a unit test case. If they
get all of them correct, the task is considered done, and the student may move on
to another problem. The system saves a state every time a student submits an
answer. This IDE with the automated assessment fulfills requirements 1 and 3, and
its interface can be seen in Fig. 3.2.

Students have access to a dashboard where they can visualize their completion
statistics and compare themselves to their peers, as shown in Fig. 3.3. This dash-
board shows how long the student took to finish the class, the number of errors, and
each class’ and total progress. This interface is related to requirement 2, and it is
inserted in Fig. 3.1(e) module (visualization).

Requirements 4 and 5 are also included in Fig. 3.1(e) module (visualization).
The Machine Teaching system provides two interfaces for the professors to under-
stand students’ submissions at class or individual levels. Fig. 3.4 presents the overall
interface for a class, including students’ outcome and their respective timestamps.
Fig. 3.5 was directly requested by professors to be able to compare individual sub-
missions from students. This interface shows every student submission, side-by-side,

19

Figure 3.2: System IDE

Figure 3.3: Student dashboard

with their respective timestamp and test case percentage for a single problem. In
this way, the professor can spot common errors among students.

20

Figure 3.4: Overview interface for a class. Detailed information on students’ out-
comes, with the respective timestamp and overall performance.

Figure 3.5: Single problem view. Students’ submissions are presented side-by-side
for easy viewing of common errors.

21

Chapter 4

Database and Exploratory Analysis

In this chapter, we present the data acquisition methodology used to generate the
datasets [30]. We used two complementary approaches: the system would be used
before finals or at the beginning of the next semester for revision purposes, called
the revision dataset, and the system would be used throughout a whole course (one
semester) with weekly exercises, accompanying students from the 3rd to the 10th
week of the course, called semester dataset. We also perform an exploratory data
analysis comparing the student behavior in both datasets. Finally, we reproduce
an early dropout prediction model, revisiting exploratory research results from the
literature.

4.1 Revision Dataset

The first approach uses 48 CS1 problems crawled from four Python web tutorials:
Practice Python [115], Python School [116], Python Programming Exercises [117],
and W3Resource [118] that provided both solutions and exercise statements. Since
the sources do not have label topics or follow a course curriculum with structured
syllabus topics, we work in an unsupervised environment. We crawled 54 exercises
for the training set. The code snippets are functions with an average of 9 lines/code.
Students’ responses to these exercises were collected using the Machine Teaching
web-system, presented in Chapter 3, in 10 different classes at the Introduction to
Programming courses at the Universidade Federal do Rio de Janeiro (UFRJ) over
two course periods. Students were assigned to two different strategies: either the
system showed random problems or they would follow a predefined path. The system
was introduced at the end of the semester (before their finals exams) or the beginning
of the next semester.

In total, there are 3,632 records from 192 students with an average of 18.4 at-
tempts in 4.4 problems in an imbalanced dataset: it is 764 (21%) successful attempts
versus 2,868 (79%) failed attempts. It means that, on average, each student attempts

22

a problem 4 times before succeeding in the fifth.

4.2 Semester Dataset

Our second approach accompanied the students throughout a whole semester in
four different Introduction to Programming courses (they had the same syllabus but
different professors). Every week, an exercise list concerning the subject given in
class was available in the system. They had one week as a deadline to finish them,
and their performance on these lists composed part of their final grade. In total,
there are 65 different problems with their respective solutions. Like the revision
dataset, the code snippets are functions with an average of 7 lines/code.

This dataset is 7.5 times larger in the number of attempts than the previous
one, containing 27,491 attempt records. However, since it accompanied the same
students for an entire semester, the number of students is smaller: 181 different
students. This dataset has a slightly higher success rate than the previous one,
although it is still very imbalanced. It contains 6,849 (24.91%) success attempts
against 20,642 (75.09%) unsuccessful ones. This difference can be explained by the
fact that each exercises’ weekly set mostly covers what was seen in class in the same
week, so students did not have much time to forget the subject [93, 96, 119–121], in
contrast to the review exercises that were done before finals or at the beginning of
the next semester.

4.3 Exploratory Analysis

Some simple statistics for both datasets are shown in Tables 4.1 and 4.2. Fig. 4.1 is
a histogram showing the distribution of success and failures per problem on the revi-
sion dataset. Similar behavior is found in the second dataset. Both success attempt
distributions have smaller variance and smaller mean than the corresponding fail
attempt distributions. This distribution is the expected designed system behavior
since the students are given several tries to submit a correct response before moving
on to the next problem.

Another interesting difference between the datasets is the maximum number of
successful attempts per student. Whereas in the revision dataset, it is lower than the
total number of questions, indicating that not all the questions were answered, in the
semester dataset, it is two times the total number of available questions, indicating
that some students redid the exercises even though they had already succeeded at
it. This information can be used to measure if the students are using the system and
the exercises to study and review the content, for example. Our survey concerning
how the students perceived and used the system will be presented in Section 6.4.

23

Table 4.1: Revision Dataset Statistics

Revision
Avg Median Min Max

attempts per question 75.67 55 10 304
attempts per student 18.44 11 2 266
successful attempts per student 4.34 3 1 36
different students per question 18.17 14 4 71
different questions per student 4.43 3 1 44

Table 4.2: Semester Dataset Statistics

Semester
Avg Median Min Max

attempts per question 422.94 349 85 1291
attempts per student 151.88 114 2 1002
successful attempts per student 38.26 32 1 159
different students per question 87.22 87 39 145
different questions per student 31.32 31 1 65

Figure 4.1: Distribution of questions’ success and failed attempts

Fig. 4.2 shows the number of students per number of questions histogram on
the semester dataset. We can notice that only 15 out of the 181 (8%) students
attempted more than 59 out of the 65 (92%) different exercises. The exercise dis-
tribution is relatively flat (Pearson correlation = 0.28). If we divide it into thirds,
approximately one-third of the class (64 students, 35%) attempted only one-third
of the exercises, one third (60 students, 33%) attempted two-thirds of the exercises
and the last third (57 students, 31%) attempted between 45 and 65 exercises. When
provided in real-time, the professors can use this information to find students who
are having difficulties finishing exercises and provide personalized assistance. Histor-
ically, courses that adopt the structured imperative approach have a high percentage

24

of failure and dropouts [110]. In this course, from the 181 students that participated
in the study, 108 (60%) did the exercises from the last two weeks and 125 (69%)
when we consider the last three weeks of exercises within the system. Notice that
this is not properly a dropout rate since the course already had two more weeks
(with user input subject that is not covered by the Machine Teaching exercises)
and the students could do the exams even though they did not attempt every list.
However, Fig. 4.3 depicts a decreasing trend in the number of different students that
submitted exercises per week (Pearson correlation = −0.98 and p-value < 0.001).

Figure 4.2: Distribution of students per number of questions

Figure 4.3: Active students per week

25

4.4 Early Dropout Prediction

Given the decreasing trend of active students during the semester, we decided to
investigate if it was feasible to create a prediction model to alert professors at the
beginning of the semesters. To produce this model, we used data from the first two
weeks of exercise to predict if the students will submit at least half of the exercises
from the last two weeks as it was done in previous studies [54]. If a student is likely
to withdraw from the course, a professor may perform a personalized intervention.

Similar to Pereira et al. [54], our dataset is small to medium-sized and collected
in a face-to-face university setting. We aim at reproducing and verifying these
literature results in our dataset.

For this task, we engineered features based on literature findings as reported
in Section 2.2. In literature, we found models that aggregated all the features
independently of the week. We propose separating these features per week. We
created models using both approaches and compared the results. Our final list of
features is shown in Table 4.3.

Table 4.3: Previously Published Relevant Features to Predict Course Completion
Included in this Experiment

Feature Source(s)
Number of attempts (or submission clicks) [54, 57]
Success rate (or assignment completion rate) [21, 54]
Time doing the exercise, measured by three dif-
ferent variables: seconds in page, seconds to
begin, and seconds in code

[56]

Number of unique days submitting exercises [57]

The Machine Teaching system does not have a forum and does not store access
frequency. Therefore, these two features could not be verified in this experiment.
Previous research on dropout prediction has achieved good results using classifica-
tion trees, providing interpretability [54]. We used the CART [122] algorithm with
Gini Index as the splitting criterion and 10-fold cross-validation, with 80% of the
observations in the train set and the remaining 20% in the test set. We would like
to optimize the model for the F1 metric: balancing sensitivity and specificity for the
“not likely to submit exercises” class. The dataset is slightly imbalanced: it has 60%
of “not likely to submit exercises” against 40% of “likely to submit exercises”. We
tuned the model for tree max depth, varying it from 2 to 4. The best results were
achieved using max depth = 3. The resulting tree is shown in Fig. 4.4. Table 4.4
compares the CART algorithm using weekly features (CART+Weekly) and using
the aggregated features (CART+Total). We also added as the baseline the average
success rate from week 3, which was the most informative criterion, and the adjusted

26

value of success rate from week 3, using it as 0.39 instead of the average as given
by the decision tree. Using weekly features, the CART algorithm performed best on
the desired metrics (F1 and Recall), which values the correct classification of “not
likely to submit exercises” students.

Table 4.4: Dropout Prediction Results

CART+Weekly CART+Total Avg. Week 3
Success Rate

Avg. Adj. Week
3 Success Rate

F1 0.81 0.7 0.58 0.67
Recall 0.88 0.7 0.58 0.58
Acc. 0.72 0.56 0.72 0.81

We can also extract from Fig. 4.4, where true stands for “likely to submit ex-
ercises” and false for “not likely to submit exercises”, the most important variables
to predict student withdrawal. The weekly success rates are found to be the best
predictors in this dataset, corroborating the findings from Pereira et al. [54] and
Damasceno et al. [21]. They are followed by the number of attempts and the num-
ber of unique days submitting exercises. This result also validates Al-Shabandar et
al.’s findings [57], which encountered a positive correlation between these features
and course completion. The time features did not appear as relevant ones. It could
be because we are measuring the time per session (it restarts counting if the student
refreshes the page) and not considering a continuous calculation of time.

27

Figure 4.4: Decision tree for dropout prediction

28

Chapter 5

Mapping Methodology

In this chapter, we present our research methodology and the methodology used
to map questions to concepts. Our goal is to provide automated tools to build a
Q-matrix: a matrix inspired in the cognitive diagnostic test used in psychometrics
where the rows are questions, and the columns are pieces of knowledge (skills or
concepts). The cell values are closer to 1 where the corresponding knowledge is
necessary to solve the respective question and closer to 0, otherwise [92, 101, 102].
We present two methods to extract in an unsupervised way the underlying concepts.
Both methods are validated with an unseen test set and by experts. The first method
uses topic modeling techniques to cluster code written solutions and obtain the terms
that characterize each cluster [31]. The second method uses student performance
data to extract concepts. Besides retrieving a matrix containing the questions and
concept relationships, it also outputs a student knowledge model. Finally, we provide
a way to compare both extracted concepts with the ones provided by experts.

5.1 Research Method

In this thesis, we adopted a mixed-methods research approach, which seeks to use
both qualitative and quantitative methods to provide narrative and precision to the
results [45]. One of its advantages is to allow the researcher to pick different methods
for different research questions [45]. Malmi et al. [123] created a classification system
for research in computing education, which we used to categorize this research.
Table 5.1 provides an overview of the research classification used in this thesis,
based on Sorva [45] and Malmi et al. [123].

29

Table 5.1: Overview of the research classification according to Malmi et al. [123].

Sec. Research question Research
purpose

Research
framework Data source Form of

analysis

5.2
6.1

How can semantic
relationships
be extracted and
structured from code?

formulative
method

construc-
tive

code snippets
from CS1
problems

exploratory
statistical
analysis

5.2
6.1

How can humans read,
interpret, and use the
extracted relationships?

formulative
method

construc-
tive

code snippets
from CS1
problems

qualitative
analysis

5.4
6.3

How similar are the
factorized latent
variables from the
concepts annotated
by the professors?

quantitative
evaluation survey

annotated
dataset and
results from
Sections 5.2
and 5.3

exploratory
statistical
analysis

6.4 How do students
perceive the system?

qualitative
evaluation survey online

questionnaire

descriptive
statistics,
qualitative
analysis

5.2 Q-Matrix Discovery from Code

In this methodology, we create a code-clustering pipeline to build a Q-matrix us-
ing solution code snippets from the revision dataset as input. We validate the re-
sults with the semester solutions acting as an external dataset. The code-clustering
pipeline takes as input Python code snippets, which are semi-structured text doc-
uments. By using topic modeling techniques, the pipeline outputs an underlying
structure within the semi-structured corpus. It contains the topics present in the
code snippets and the most relevant words that characterize them. This method is
based on the assumption that code snippets with similar CS1 concepts share iden-
tical terms. Therefore, based on this assumption, the extracted topic underlying
structure can be interpreted as CS1 concepts or groups of CS1 concepts present in
the code snippets.

The code-clustering pipeline starts by transforming the original data to the
proper format expected by the topic modeling methods. We augmented the data
and constructed a matrix D (the document-term matrix) where each element Dij

contains the weight of term wj in document di. Then, using topic modeling, we
calculated the relevance of each topic tk for each document di and the relevance of
each term wj for each topic tk. Finally, we applied a grid search and topic coherence
to choose the best models and evaluate the external corpus results. In the topic
filter and selection phase, we also processed the resulting topics by merging similar
or removing topics with few documents. These results are presented in Section 6.1,

30

while Fig. 5.1 illustrates the code-clustering pipeline. External evaluation is not
depicted in this overview.

Figure 5.1: Code-clustering pipeline overview. Adapted from Abolhassani et al. [80].

5.2.1 Data Transformation

In this application, the CS1 code solutions written in Python are considered doc-
uments. The document-term matrix creation process starts by splitting each code
snippet into words. The first proposed tokenizer includes only split word tokens.
Henceforth this tokenizer will be referred to as the standard tokenizer. As stated in
the related work section: 1) the LDA usually does not perform well on short texts
and 2) augmenting the corpus by adding the text’s structure on semi-supervised
documents demonstrated improved results [79, 80]. We propose a new tokenizer to
augment the standard tokenizer with extra features and refer to it as the augmented
tokenizer. The augmented tokenizer parses the code and makes special annotations
by adding extra features if the token is a number, an array (or a list), a dictionary,
a string, a logical (or arithmetic) operator, a class method, or indentation. The
word itself is added to the document-term matrix if the token is a reserved word.
Besides adding single tokens, this tokenizer also considers bigrams and trigrams.
Although the document-term matrix does not consider the terms’ order, this can
be enforced by adding n-grams as a matrix feature. For example, the code snippet
in Fig. 5.2(a) is first transformed to its augmented version (see Fig. 5.2(b)). Then,
every single word, including the bigrams and the trigrams, are added as tokens to
the document-term matrix. Table 5.2 presents some examples of the document-term
matrix terms, and, in total, the document is tokenized into 75 terms.

After the document-term matrix creation, we applied some transformations to
enhance document representation and decrease matrix sparsity. First, we removed
tokens with document frequency below a fixed threshold to perform feature selection.
This threshold was determined using a hyperparameter grid search ranging from
5% to 50% with a 5% step. Second, we decided how to count a token frequency:
either the token is counted once per document (binary appearance) or every time
it appears. Finally, some tokens may be more important than others. For example,

31

(a) Original code snippet

(b) Augmented code snippet

Figure 5.2: A code snippet and its augmented version. The augmented version will
be processed in the augmented tokenizer, whereas the regular one will be processed
in the standard tokenizer.

Table 5.2: Example of Document-Term Matrix. A Set of Terms from the Com-
plete Document-Term Matrix after Augmenting and Tokenizing the Document from
Fig. 5.2

Terms Count
is_block 3
is_indent 3
is_number 2
is_op_logic 3
if 1
is_op_logic is_number 2
is_block is_indent 3
is_op_logic is_number is_op_logic 3

term frequency by inverse document frequency (TF-IDF) [124, 125] recalculates the
tokens’ weights by balancing two factors: 1) a term that occurs in many documents
should not be as important as a more exclusive term, since it does not characterize
documents well. Also, 2) a term that appears in a small number of documents may
only be particular to those documents and not enough to distinguish a topic. Yan
et al. [126] propose another way of recalculating the terms’ weights. Their method
(called NCut) comes from the normalized cut problem on term affinity graphs. This

32

weighting scheme modifies terms’ counts based on terms cooccurrence and not on
document frequency. Their experiments show NMF’s performance increase on short
text clustering using the NCut weighting scheme.

5.2.2 Topic Extraction

As stated earlier, after document processing, a document-term matrix D is gen-
erated. The matrix rows represent points in an Rn feature space, where n is the
total number of terms, and each term wj corresponds to a dimension. It becomes a
classical clustering problem where we expect similar documents to be in surround-
ing regions in space. So, clustering algorithms like K-means, hierarchical clustering,
and nearest neighbors are applicable here. However, for topic modeling tasks, algo-
rithms like the NMF [26, 127] and the LDA [27] are effective since they interpret
terms’ counts as a set of visible variables generated from a set of hidden variables
(topics) [128, 129]. Accordingly, the documents can be modeled as a distribution of
topics and topics as a distribution of terms. Fig. 5.3 presents a conceptual visualiza-
tion of how the original document term-matrix can be factorized into two matrices.
Fig. 5.4 shows an illustrative example of the expected matrices. We used two topic
modeling techniques:

1. NMF: a matrix factorization technique with a particular property of only
allowing non-negative values in its entries, which is well-suited for human-
interpretability [26].

2. LDA: a generative probabilistic model that describes how to create documents
in a collection. Once you have a dataset, a group of already written documents,
we find the distributions that created these documents. The LDA algorithm
tries to backtrack this probabilistic model to find a set of topics that are likely
to have generated the dataset [28].

Figure 5.3: Matrix factorization conceptual visualization.

33

Figure 5.4: Matrix factorization illustrative example.

5.2.3 Topic Filter and External Evaluation

Given several document-term matrix creation options and two different topic model-
ing methods, we need to find the best set of hyperparameters. There are strategies in
the literature to find a near-optimal set of models’ hyperparameters, such as manual
search, grid search, and random search [130]. Although random search demonstrates
promising results in general machine learning tasks [130], Chuang et al. [131] and
Wang and Blei [132] results were competitive using grid search in topic modeling
tasks. We chose to use a grid search approach. There was a prior manual stage
to define the regions in which grid search would act. Since the dataset is not large
and the number of hyperparameters to try is not extensive, it is efficient to run
an exhaustive search combining hyperparameters. In total, there are 1680 possible
combinations: 10 minimum document frequencies (ranging from 5% to 50% with
5% step increment), 2 binary appearance options, 3 token weights (counts) trans-
formation possibilities (none, TF-IDF, and NCut), 2 clustering methods (LDA and
NMF), and 14 number of clusters (i.e., 10 × 2 × 3 × 2 × 14 = 1680). The grid
search was set to search between 2 and 15 clusters (the upper bound is based on the
number of concepts from Table 5.3 in Section 5.2.4).

To determine whether topics are well-defined, we can use topic coherence and
pointwise mutual information (PMI) metrics, which correlated well with human-
interpretability [133–135]. As explained in Section 5.2.2 (topic extraction), when
using NMF or LDA, each topic is mapped to a list of top-N words that best define
the topic. Topic coherence calculates the ratio between the cooccurrence of these
top-N words and their total occurrence. The assumption is that the words that
best characterize a topic often appear together if a topic is well-defined. We ap-
plied two types of topic coherence metrics: UCI [136] and UMass [133]. The UCI
metric based on PMI is calculated using an external validation source. The PMI
can be substituted using normalized PMI (NPMI) to better correlate with humans’
ratings [134]. The UMass metric uses the conditional probability of one word occur-
ring given that one other high-ranked word occurred and can be measured using the
modeled corpus, without depending on an external reference corpus. We used the
UMass coherence to choose the best models since it is an internal validation metric

34

(it only evaluates the clustered data). To assess the models, we used an external
dataset with the UCI NPMI metric.

Defining P (wi) as the probability of the term wi occurring and P (wi, wj) as the
probability of terms wi and wj cooccurring, we calculated the coherence for a single
topic tk using (5.1), (5.2), and (5.3). The topic coherence for a single topic was
calculated using top-5 and top-10 terms. After calculating each topic’s coherence in
a single hyperparameter combination, this combination’s coherence was reported as
the median of all topic coherence.

CUMass(W) =
N∑
i=1

N∑
j=1

log
P (wi, wj) + ε

P (wi)
(5.1)

CUCI(W) =
N∑
i=1

N∑
j=1

NPMI(wi, wj) (5.2)

NPMI(W) =
log

P (wi,wj)+ε

P (wi)P (wj)

−log(P (wi, wj) + ε)
(5.3)

where W = (w1, w2, ..., wN)are the top-N terms for calculating the coherence. An ε
value of 0.01 was used to avoid taking a zero logarithm.

We performed hard-assignment to cluster documents by topic by assigning each
document to the topic with the most relevance (weight) in the document-topic ma-
trix. The hard-assignment was achieved with minimal loss of information when a
topic strongly characterized a document. In addition to assigning documents to
topic clusters, the set of features/terms that best characterize each cluster/topic
were extracted for further analysis.

As a final step, we also merged semantically similar topics and removed those
not containing relevant information.

5.2.4 Topics Contextualization

To relate concepts and topics, we first defined the most commonly seen concepts in
CS1 exercises. The following four references were used to create a list of concepts
commonly used in CS1 courses:

1. Computer Science Curricula 2013 [137]: a document jointly built by the Asso-
ciation of Computer Machinery and the IEEE Computer Society. The docu-
ment recommends curricular guidelines for computer science education, which
we used as the main concept list. We used the papers in items 2, 3, and 4 to
improve it.

2. Exploring programming assessment instruments: A classification scheme for

35

examination questions [58]: creates a classification scheme characterizing exam
questions by their concept areas, question style, and skills a student needs to
solve them. We used the list of the proposed concepts as a second source to
enhance the main list.

3. Reviewing CS1 exam question content [59]: this paper used nine experienced
CS1 instructors to review the concepts required in examinations from different
North American institutions. It created a list of concepts using the intersection
of three other experiments [138–140].

4. Identifying challenging CS1 concepts in a large problem dataset [141]: this pa-
per identifies the most challenging CS1 concepts for students based on 266,852
web-based code-writing student responses. Their concept list is based on the
course structure from the CS1 class where they experimented.

Table 5.3 shows the final list of consolidated concepts.

Table 5.3: List of CS1 Concepts

1. Syntax 6. Logic 11. Conditional
2. Assignment 7. Data type: string 12. Loop
3. Data type: number 8. Data type: array 13. Nested loop
4. Data type: boolean 9. Data type: tuple 14. Function
5. Math 10. Data type: dict 15. Recursion

Then, to interpret the meaning of the topics, we asked 14 professors to perform
three tasks. The professors (with 2 to 20 years of teaching experience) teach CS1 or
other programming-related subjects.

• Theme identification: we present some code snippets belonging to the topic
and found essential tokens for each topic. The professors were asked to la-
bel each topic with free-text descriptions. We tokenized the descriptions and
counted the terms. We also created the topic titles based on the terms that
appeared more frequently in the descriptions.

• Concept identification: each professor was asked to associate up to three
concepts (from the 15 available in Table 5.3) to 15 randomly assigned code
snippets. Then, we aggregated the concepts related to each code to the as-
sociated topics. In this way, it is possible to understand the most relevant
concepts in each topic and calculate how well the concepts inside a cluster
agree to them. A similar approach was used by Lan et al. [22] to contextualize
concept clusters.

36

• Intruder identification: Chang et al. [142] proposed quantitative methods
to analyze the interpretability of the latent space created using topic model-
ing techniques. Their paper proposed a method to identify an intruder topic
given a document. We adapted this method because we hard-assigned each
document to a single topic. For our analysis, the professors were asked to
identify the intruder document given a topic. This approach has been used
by Mahmoud and Bradshaw [143] to assess the quality of their topic modeling
approach on Java-based systems.

5.3 Q-Matrix Discovery from Student Performance

Discovering the underlying concepts of questions by grouping their solutions using
topic modeling techniques may provide insightful interpretable concepts. However,
they do not consider each student; they provide a specialists’ expected concepts view.
An approach to include the student perspective is to examine students’ performance
and outcomes (if the student did or did not get the question correctly) instead of
looking at the written solutions. The presented methods are widely used to predict
student performance. In this thesis, we are using these methods to verify if the
obtained Q-matrices (a matrix that related latent variables and questions) agree
with specialists’ annotations.

5.3.1 Factorization methods to predict student performance

In this section, we describe two state-of-the-art methods to extract Q-matrices based
on student performance (if the student did or did not get the question correctly):
1) Non-negative matrix factorization (NMF) [25, 105], 2) Feedback-driven tensor
factorization (FDTF) [108]. NMF was already introduced in Section 5.2.2 as a topic
modeling method. As it is a matrix factorization method, it can be used for differ-
ent tasks if modeling the input differently. Fig. 5.5 presents an example of how to
model the input based on student performance data, whereas Fig. 5.6 shows how
the factorization occurs when using this modeling approach. To predict student per-
formance, we model its input as the outcome of the first student response at each
question or an average of all students’ responses. In this way, when the factorization
is performed, two matrices are obtained: the Q-matrix and a latent students skill
matrix (also called student knowledge model). When modeling the student perfor-
mance data using tensors instead of a matrix, we gain an extra dimension: each
response (or attempt). There is no need to choose between the first response or an
average: the extra dimension corresponds to each student response. In this thesis,
we use the FDTF algorithm for tensor factorization. Fig. 5.7 depicts how the tensor

37

factorization decomposes the student performance tensor into a student knowledge
tensor and a Q-matrix.

Figure 5.5: Input based on performance data.

Figure 5.6: Student matrix factorization conceptual visualization.

Figure 5.7: Tensor factorization. Both matrix and tensor factorizations produce a
matrix called Q-matrix (Concepts x Questions). FDTF has one more dimension
than NMF: attempt.

Non-negative Matrix Factorization

In the NMF model, we formulate the problem as:

min
T∈Rp×r,Q∈Rr×n

‖X − TQ‖2F + λ(
t∑
i=1

‖T‖2 + ‖Q‖2)

s.t. T ≥ 0 and Q ≥ 0

(5.4)

where X represents the students’ performance matrix, T represents the students’
knowledge matrix, Q represents the Q-matrix and λ controls the amount of regular-
ization applied to the model.

38

The student performance matrix containing students’ outcomes may be filled
with a summarized result (average outcome, for example) or a single result (outcome
at the nth attempt, for example). This is set as one of the model’s hyperparameters.

Feedback-Driven Tensor Factorization

FDTF is a tensor factorization method that assumes that student knowledge would
be monotonically increasing while answering questions. The objective function of
FDTF is formulated as:

min
Tt∈Rp×r,Q∈Rr×n

t∑
i=1

‖Xt − TtQ‖2 + λ(
t∑
i=1

‖Ti‖2 + ‖Q‖2) (5.5)

Tt = 2Tt−1 +
2(1− Tt−1)

1 + exp(−µXtQ′)
− 1 (5.6)

where Xt is the students’ performance matrix at time t, Tt is students’ knowledge
matrix at time t, Q is the Q-matrix, µ is a hyper-parameter that captures how
much a student knowledge increases in each attempt and λ controls the amount of
regularization applied to the model.

The maximum number of attempts to use in the training phase is set as a model
hyperparameter.

5.3.2 Evaluation

The described methods factorize the student performance matrix or tensor in two
components: student knowledge and Q-matrix. Usually, we cannot assess these
two components directly since student knowledge is difficult to measure by only
observing the students’ outcomes, and many times a Q-matrix is not provided. The
best model is the one that better predicts students’ performance in an test dataset
using root means square error (RMSE).

5.4 Analysis of Similarities

We want to evaluate how the discovered Q-matrices relate to professors’ manually
annotated Q-matrix in this scenario, as represented in Fig. 5.8. How similar to
the manually annotated Q-matrix are the factorized ones? Our proposed approach
to compare the factorized Q-matrices with the one annotated by the professors
is to use analysis of similarities (ANOSIM) with hierarchical clustering, described
below. We then relate student performance with the factorized Q-matrix by plotting
the clusters, their respective concepts and providing insights to the teachers by
aggregating the students’ attempts and success rate information into the plot.

39

Figure 5.8: Q-matrix comparison.

In order to assess how well the factorization methods are retrieving the Q-matrix,
the non-parametric ANOSIM statistical test [144–146] was used. The ANOSIM
test is a non-parametric ANOVA-like test statistic widely used in ecology to ver-
ify if similarities within animal groups with smaller spatial distances are statisti-
cally more significant than similarities between animal groups with larger spatial
distances [145, 146]. Translating it to a machine learning clustering problem: it
measures if the distances within clusters (the intracluster distance) is statistically
smaller than the distances between clusters (the intercluster distance). The test
statistic is constrained between -1 and 1, where positive numbers suggest that within-
group similarities are higher than between groups, 0 indicates random grouping (null
hypothesis), and negative values indicate that the similarities between groups are
higher than within groups [145]. The dissimilarity matrix is transformed to its rank
version, and the value of ANOSIM statistic, called R, is given by [146, 147]:

R =
rb − rw

n(n− 1)/2
(5.7)

where rb represents the average of all rank similarities among observations in
different clusters (intercluster distances), rw represents the average of all rank simi-
larities among observations in the same clusters (intracluster distance), and n is the
number of observations. Permuted R statistics are also calculated to test whether
the R statistic in the proposed grouping scheme is consistent. The ANOSIM test
permutes the groups to which the observations belong and recalculates the R statis-
tic. The p-value is given by the proportion of permuted R statistics that are greater
than the original R. Therefore if the result of the original clustering is unlikely to be

40

found at random, we reject the null hypothesis and accept that there is some degree
of discrimination between groups [147].

In our case, we need to compare the groups created from the factorized Q-
matrices with the actual distances between questions provided by the manually
annotated Q-matrix. A hierarchical clustering algorithm was used to group the
questions based on their factorized Q-matrices’ distances. The central intuition is
to measure if both Q-matrices contain the same underlying structure, meaning that
if the factorization is assigning to questions the same concepts from the reference
Q-matrix, these questions will belong to the same group after clustering them and
their distance in the reference Q-matrix will also be small.

41

Chapter 6

Results and Discussion

In this chapter, we present each method’s results and compare them to a refer-
ence Q-matrix. We also present the results of a survey conducted with students to
understand their perception of the system.

6.1 Q-Matrix Discovery from Code

We run each hyperparameter combination from the 1680 possibilities 10 times and
calculated their average coherence and standard deviation. Next, the two best-
ranked results are analyzed. They were calculated using Fagin’s algorithm [148] for
top-5 and top-10 terms UMass coherence. Table 6.1 shows the set of hyperparame-
ters for each experiment.

Table 6.1: Set of Hyperparameters for Each Experiment

Min DF Binary Vectorizer Method # of clusters
Exp. 1 0.35 True NCut NMF 7
Exp. 2 0.05 True Count LDA 12

6.1.1 Experiment 1

After the document-term matrix factorization, we hard-assigned each document to
the topic with the highest relevance (highest weight in the document-topic distribu-
tion). Table 6.2 shows the number of documents assigned per topic. After assigning
each document to its related topic in this experiment, the documents are only as-
signed to four of the seven topics. Fig. 6.1 shows the documents projected to two
dimensions using principal component analysis (PCA) [149].

Using a minimum document frequency of 35% kept only 23 valid terms. Fig. 6.2
shows the essential terms per topic where the terms that are exclusively important
for a single topic (a term is vital if it is above the 75th percentile of all weights) are

42

Table 6.2: Number of Documents per Topic in Experiment 1

Topics 1 2 3 4 5 6 7
of documents 5 4 26 19 0 0 0

−0.4 −0.2 0.0 0.2 0.4
PC1

−0.4

−0.2

0.0

0.2

0.4

PC
2

Documents projected using PCA - First 2 components
Topic 1
Topic 2
Topic 3
Topic 4

Figure 6.1: Documents projected into the first two dimensions using principal com-
ponent analysis. Points with the same color and marker belong to the same cluster.

denoted in green. In this plot, topics 3 and 4 share almost all terms. By adjusting
the document-term matrix values using the NCut vectorizer, the factorization split
topics 3 and 4 using the conditional if term. Topic 4 is exclusive for code snippets
that are solved using conditional statements, whereas topic 3 comprises the opposite.

Fig. 6.3 shows the topic distribution per document. As explained in Section 5.2.2
(topic extraction), distribution over topics describes a document. Darker cells imply
that the topic characterizes a document better. As stated before, if a topic strongly
characterizes a document, then we can hard-assign it to a single topic. However,
Fig. 6.3 shows that most documents assigned to topics 1 and 2 (top part of the plot)
spread throughout the topics. It suggests we have to combine the most important
terms for each topic to interpret these code snippets.

Analyzing the code snippets from topic 1, they combine for-loops with condi-
tional statements. Topic 2 is a mixture containing the code snippets that do not
belong to any other topic.

Fig. 6.4, using the LDAVis tool [150], calculates the topics’ distance and projects
them to 2D using principal coordinate analysis. Topics 3 and 4 are located close to
each other, and they correspond to 45% of the terms and 83% of the documents.
Fig. 6.4 also validates that these topics are not that different when their crucial
terms are analyzed. Still, the conditional statements that characterize topic 4 are

43

To
pic
 1

To
pic
 2

To
pic
 3

To
pic
 4

for
in

is_dedent return
is_attribution

is_list
is_number is_block

is_number is_block is_indent
is_number
is_op_logic

def
is_block

is_block is_indent
is_dedent
is_indent

return
is_op_arit

is_block is_indent if
is_indent if

is_dedent is_dedent
if

is_class
is_op_arit is_number

is_string

Figure 6.2: Term importance for the four most populated topics. Each row repre-
sents a term, the size of the point corresponds to the term’s weight for the topic,
and red points are the points above the 75th percentile of all weights. The green
points denote words above the 75th percentile limit on only one of the four topics.

enough to produce a linearly separable 2D data projection, except for a few outliers,
as shown in Fig. 6.1.

6.1.2 Experiment 2

Table 6.3 shows the number of assigned documents per topic with hyperparameters
combination producing a more uniform grouping scheme than the previous one.
Although we initially set 12 clusters, two of them (topics 9 and 11) are empty after
assigning each document to the topic with the highest relevance (weight). Topics 6,
8, 10, and 12 have the largest number of documents. Fig. 6.5 shows the topic per

44

To
pic
 1

To
pic
 2

To
pic
 3

To
pic
 4

44
51

41
42

28
1

5
39

53
20

19
38

10
17

37
47

43
30

2
16

9
24

23
27

7
33

13
Do

cu
m
en

t I
D

Topic distribution per document

0.0

0.2

0.4

0.6

0.8

1.0

To
pi
c
we

ig
ht

Figure 6.3: Topic distribution per document. Darker cells indicate a better descrip-
tion of the document by the topic.

Figure 6.4: Topics are represented as circles proportional to the number of terms
whose weights are most associated with the topic and the distance between the
circles is the intertopic distance.

45

document distribution where the topics better characterize each document.

Table 6.3: Number of Documents per Topic in Experiment 2

Topics 1 2 3 4 5 6 7 8 9 10 11 12
of

documents 2 1 1 2 1 13 1 14 0 7 0 12

Figure 6.5: Topic distribution per document. Darker cells indicate a better descrip-
tion of the document by the topic.

The complete term per topic plot for this experiment is omitted because it is long
and challenging to read. Using a minimum document frequency of 5% increased the
number of terms to 236.

Fig. 6.6 shows the intertopic map. The main topics 6, 8, 10, and 12 correspond
to 85% of the documents and 77.4% of the terms and we do not observe any main
topic overlap in this plot. The next subsections analyze these main topics in detail.
Topics 2 and 4 will also be analyzed since they occupy a different space on the map.
This step belongs to the topic filter and selection phase from the code-clustering
pipeline depicted in Fig. 5.1. After hard-assigning the documents to the clusters

46

(removing topics 9 and 11), merging topics 2 and 4, and removing topics with a few
documents (less than three documents per topic: topics 1, 3, 5, and 7), it resulted
in five conceptual clusters (six from the original topics in total) to be analyzed in
detail.

Figure 6.6: Intertopic distance map for experiment 2. Topics are represented as
circles proportional to the number of terms whose weights are most associated with
the topic and the distance between the circles is the intertopic distance. Topics in
red are further discussed in detail.

Using the Sievert and Sheley relevance metric implemented in the LDAVis
tool [150], the top-30 most relevant terms per topic were extracted. Table 6.4 shows
the five most relevant terms. We wrote a description for each topic after analyz-
ing the essential terms and code snippets from each class. Pages 49 and 50 show
examples of code snippets for each topic and highlights the terms used to define
them.

• Topic 8 is strongly characterized by conditional statements, logical operators,
and Boolean values.

• Topic 6 does not seem to have a clear definition by just inspecting its terms.
Indentation terms appear among the most relevant ones. By analyzing the
code snippets, topic 6 comprises code with one indentation structure (simple
coding structures), sometimes without assigning variables to solve the exercise.

47

• Topic 12 is characterized by for-loops, especially range loops combined with
arithmetic operations.

• Topics 2 and 4 present for-loops, conditionals, and lists, and these tools are
used to perform string operations. A strong mark is the presence of the aux-
iliary functions split and join.

• Topic 10 is about lists and their usual operations: for-loops, conditionals, and
appending elements.

Table 6.4: Five Most Relevant Terms for Each of the Analyzed Topics. The Terms
Starting with ‘Is’ Are the Special Annotated Terms Explained in Section 5.2.1 (Data
Transformation)

Topics
2 & 4 Topic 6 Topic 8 Topic 10 Topic 12

split is_op_arit is_op_logic append range
is_string is_indent if is_list is_op_arit
join def else for for
for is_number True is_attribution is_number
if len False if is_attribution

48

Topic 2
1 def sort_csv(csv):

2 items = csv.split(", ")

3 items.sort()

4 return ", ".join(items)

Topic 4
1 def sort_dedupe(words):

2 items = words.split(" ")

3 items_dedupe = []

4 for word in items:

5 if word not in items_dedupe:

6 items_dedupe.append(word)

7 items_dedupe.sort()

8 return " ".join(items_dedupe)

Topic 6
1 import math

2 def formula(D):

3 C = 50

4 H = 30

5 Q = round(math.sqrt(2*C*D/float(H)))

6 return Q

Topic 8
1 def is_prime(number):

2 """Returns True for prime numbers, False otherwise"""

3 # Edge cases

4 if number == 1:

5 prime = False

6 elif number == 2:

7 prime = True

8 # All other primes

9 else:

10 prime = True

11 for check_number in range(2, int(number//2)+1):

12 if number % check_number == 0:

13 prime = False

14 break

15 return prime

49

Topic 10
1 def dedupe(dup_list):

2 nodup_list = []

3 for i in dup_list:

4 if i not in nodup_list:

5 nodup_list.append(i)

6 return nodup_list

Topic 12
1 def fatorial(number):

2 total = 1

3 for i in range(number, 1, -1):

4 total = total * i

5 return total

To better understand the topics’ differences, we performed a topic dissimilarity
analysis shown in Fig. 6.7, representing the real distances of the topics, not reduced
to two dimensions as in Fig. 6.6. In this analysis, topic 8 (conditional) is the furthest
from all others. Topic 10 is central, being slightly closer to topic 4 than to topic 12.
This result is reasonable as it contains elements between these two topics (numeric
and range loops vs. loops with strings). Table 6.4 shows their differences as being
the data types, which can be observed in the most important terms (“range” and
“is_number” for topic 12, “append” and “is_list” for topic 10 and “split”, and “is_-
string” for topics 2 and 4).

We also analyzed how the test dataset fits into the six (including topics 2 and 4)
valid topics to understand if the topics are representative of the possible concepts
present in an unseen code. We assigned each code to the topic with the highest
weight as we did for the training set. Table 6.5 shows the number of assigned
documents per topic. Except for two documents, all the others belong to one of the
six valid topics. It confirms that the different topics (the ones considered invalid)
detect specific code traits and not their general concepts. It is important to notice
that topic modeling is a soft clustering technique: a document has a probability of
belonging to each topic and can be associated with more than one. So, a document
can be related to the main topic with its specificity related to minor ones.

Table 6.5: Number of Test Set Documents per Topic for Experiment 2

Topics 1 2 3 4 5 6 7 8 9 10 11 12
of

documents 2 4 0 1 0 23 0 17 0 3 0 15

50

8 6 12 4 10

8
6

12
4

10

0.00
0.08
0.16
0.24
0.32

Topic dissimilarity matrix

Figure 6.7: Topic dissimilarity matrix. The darker the cell more distant the topics
are from each other.

6.1.3 Coherence Evaluation

Both experiments were analyzed using the UCI coherence metric with NPMI [134],
as described in Section 5.2.3 (topic filter and external evaluation), to validate how
well the proposed methodology performs in an external dataset. Although AST trees
have been used to cluster code, they do not provide an intuitive way to analyze the
important features besides reading it. We compare our results with a K-means
clustering method using the proposed augmented tokenizer and logistic regression
to extract the important features per cluster as a baseline. We also compared our
best results using the standard tokenizer instead of our proposed tokenizer. We
used k = 5 for K-means since there were five main conceptual clusters found in
the LDA. We ran each method 100 times and averaged their UCI coherence metric.
Statistical difference was measured using the Mann–Whitney U test [151], and all
the results were statistically significant with p < 0.001. Table 6.6 reports the mean
and standard deviation for each experiment. In the UCI coherence with NPMI
metric, the values are bounded between 1 and -1, where 1 means that the top
words only occur together, zero means that they are distributed as expected under
independence, and -1 means that they only occur separately. The UCI coherence for
the standard tokenizer using the top-10 terms could not be measured because there
were no important top-10 term pairwise combinations in this setting that appeared

51

in at least one document. The NMF experiment with the augmented tokenizer
considering the top-10 terms demonstrated the best UCI occurrence metric, followed
by the LDA experiment, which had the best performance considering the top-5
terms.

Table 6.6: The Mean and Standard Deviation of UCI Coherence Using NPMI

CUCI (NPMI)
Top-5 terms Top-10 terms

NMF (experiment 1 with
augmented tokenizer) 0.73 (0.03) 0.83 (0.02)

LDA (experiment 2 with
augmented tokenizer) 0.75 (0.06) 0.76 (0.04)

K-Means (with
augmented tokenizer) 0.55 (0.09) 0.53 (0.03)

LDA (best result for
standard tokenizer) 0.53 (0.03) —

6.1.4 Discussion about Experiments 1 and 2

Experiments 1 and 2 are the two best-ranked results on the top-5 and top-10 UMass
coherence metric. Both experiments have different hyperparameters. Experiment
1 uses a minimum document frequency of 35%, NCut to weight the terms, and
then perform NMF to extract the topics. Experiment 2 uses a minimum document
frequency of 5%, regular count of words, and LDA to extract the topics.

We found both experiments to have their main concepts in a few clusters (two
main clusters in Experiment 1 and six main clusters in Experiment 2). The re-
maining clusters are associated with code specificity. In the case of Experiment 1,
using NCut and a high document frequency threshold, the topic modeling from Ex-
periment 1 focused on finding structures with high volume and cooccurrence rates,
resulting in separation of the if/else structure from the rest. The conditional struc-
ture was first separated from a hierarchical perspective, and the remaining structures
were all grouped in a cluster. In Experiment 2, the conditional topic (topic 8) is
also the furthest from the other topics. As shown in the hierarchical clustering of
Fig. 9, this topic is the last one to be aggregated (or the first one to be separated).
The common code snippets between the conditional clusters in each experiment also
validate this result. From the 14 code snippets associated with the conditional topic
(topic 8) in Experiment 2, 11 of them (79%) belong to the conditional topic in Ex-
periment 1 (topic 4). Therefore, Experiment 2 demonstrates more granularity than
Experiment 1.

52

6.1.5 Topics Contextualization

Experiment 2 shows a better distribution of exercises and less overlap among topics
than Experiment 1; we followed up the analysis with this experiment, which was the
second-best result considering the CUCI with NPMI metric.

• Theme identification: after tokenizing the labels given by the professors,
we separated the most frequent tokens and manually created the topic titles,
as follows. All the tokens in the presented titles appeared in at least 50% of
the labels.

1. Topics 2 & 4: string manipulation,

2. Topic 6: math functions,

3. Topic 8: conditional structure,

4. Topic 10: list loops,

5. Topic 12: math loops.

• Concept identification: each professor was asked to associate up to three
concepts (from the 15 available in Table 5.3) to each presented code. Four
professors analyzed each code. In 37 of the 54 code snippets, there was at
least one concept in common between all four professors. In 53 of the 54
code snippets, at least one concept was common between three out of the
four professors (75%). Therefore, we decided to use the 75% threshold of the
agreement to relate the exercises’ concepts. The concepts in each topic were
aggregated to provide an overview of the main concepts needed to solve the
cluster’s problems, as summarized in Table 6.7. These results validate the
topic themes defined in the previous task: the professors also elected each
topic’s main concept as a word in free-text labels. Notice that we performed
the two tasks independently.

Table 6.7: The relation between the Found Topics and the Main CS1 Concept
Related to the Topic

Topic Main Concept Agreement
inside cluster

2 & 4 - String manipulation 7. Data type: string 66.7%
6 - Math functions 14. Function 50%
8 - Conditional structure 11. Conditional 86.7%
10 - List loops 12. Loop 71.4%
12 - Math loops 12. Loop 75%

• Intruder identification: four code snippets were presented in each of the
five groups, three belonging to the same topic (randomly chosen from the topic

53

pool) and an intruder (also randomly chosen from another topic). Fig. 6.8
shows a confusion matrix, presenting how well the professors could distinguish
the intruder in each topic. In this figure, each row sums to 1 and represents
how often the professors correctly guess the intruder (the diagonal values) and
how often the professors confuse the intruder (the intruder cluster is depicted
in the columns). We can draw some insights from this analysis:

– The “conditional structure” topic performed well, with the intruder code
being identified 79% of the time, meaning that identifying a code snippet
from a different cluster can be done 4 out of 5 times.

– The intruder code inside the “math loops” topic was identified 2 out of 3
times (64%), being confused with “list loops” the last third of the time.
These topics work on the same main concept, as seen in the concept
identification task.

– The same behavior is not seen for the “list loops” topic. This topic and
the “string manipulation” topic present very similar behavior. They can
be distinguished frequently (2x better than the 25% random baseline),
but we do not see a confusion pattern.

– On the other hand, the “math functions” topic seemed to confuse the pro-
fessors, being switched half of the time with the “math loops” topic. By
backtracking the previous two tasks and analyzing them with this point
of view, this topic’s main concept was function, present in all exercises.
As stated in Section 6.1.2, this topic does not have well-defined terms;
indentation terms appeared among the most relevant. Although the in-
dentations when programming in Python can indicate the difficulty of an
exercise, they are not a natural human way of splitting them. Therefore,
it is hard for humans to interpret this kind of clustering scheme.

54

St
rin

g
m
an
ip
ul
at
io
n

M
at
h
fu
nc
tio

ns

Co
nd
iti
on
al
 st
ru
ct
ur
e

Lis
t l
oo
ps

M
at
h
lo
op
s

String manipulation

Math functions

Conditional structure

List loops

Math loopsCo
de
 sn

ip
pe
ts
 tr
ue
 c
lu
st
er 0.5 0.14 0.071 0.14 0.14

0 0.21 0.21 0.071 0.5

0 0.071 0.79 0 0.14

0.14 0.14 0.071 0.5 0.14

0 0.071 0 0.29 0.64

Normalized confusion matrix

0.00

0.15

0.30

0.45

0.60

0.75

Figure 6.8: Normalized confusion matrix for the intruder-identification task.

6.2 Q-Matrix Discovery from Student Performance

We first evaluate the fit of the models using the student performance prediction
task. We choose each setting’s best model to conduct the ANOSIM experiment and
compare the extracted Q-matrix with the validated one.

6.2.1 Train and test split

We used 10-fold cross-validation to choose the best set of parameters. For each
fold, we randomly selected 70% of the users (with all their records) as train and
the remaining 30% as test. Notice that we are splitting users (not individual stu-
dents’ attempts) to avoid leaking information from the training dataset into the test
dataset. This prediction task faces the cold start problem: there is no data to begin
the test students’ predictions. Therefore, we moved 20% of the test students’ first
attempts into the training dataset and predicted only the remaining 80% of the test
students’ attempts.

For FDTF, since some student sequences can be way longer than others, we cut
off some sequences. We vary this maximum cut-off value and report it as the number
of attempts.

55

6.2.2 Prediction results

Student performance prediction is a binary problem: either the student solves the
exercise correctly (pass) or incorrectly (fail). We use Root Mean Squared Error
(RMSE) to evaluate this task, as it has been traditionally used in the literature. We
examine the prediction performance of both NMF and FDTF methods according to
their RMSE.

We select the best training results for each configuration and compare their test
results. Table 6.8 summarizes the best results for each method and task. FDTF
is used to predict each student’s attempt and NMF is used to predict the first
student attempt or the average grade considering all attempts. For the FDTF
method, similar train RMSE was obtained when using 20, 50, and 150 attempts
and mu = 0.1. Notice that FTDF improves its performance prediction on test data
as the number of attempts increases. NMF’s best average attempt configuration
is when using L2 regularization with λ in the 0 (no regularization) to 0.2 range.
Its first attempt configuration performs better when using seven concepts and L2
regularization penalty with λ in the range of 0.2 to 0.4. Although NMF has a
low training error, it does not perform well for predicting the average outcome in
the test set, even with a high λ (0.2), to avoid overfitting. After finding the best
configuration for each method, we retrained the models using all available data (not
in folds) and factorized the matrix or tensor into a student knowledge matrix or
tensor and a Q-matrix for the Q-matrix evaluation.

Table 6.8: Prediction Results

Method Concepts Train RMSE Test RMSE
FDTF (training with 20 attempts) 3 0.437 (0.003) 0.517 (0.057)

FDTF (training with 50 attempts) 6 0.437
(0.003)

0.469
(0.038)

FDTF (training with 150 attempts) 12 0.438 (0.002) 0.43 (0.021)
NMF (averaging attempts) 3 0.465 (0.003) 0.617 (0.049)
NMF (first attempt) 7 0.378 (0.002) 0.598 (0.043)

6.3 Analysis of Similarities

We conducted the ANOSIM experiment to verify if there is a positive correlation
between the groups that are found in the factorized Q-matrices and the distances
between questions on the human-annotated Q-matrix. We clustered the factorized
Q-matrices for each experiment using a hierarchical clustering algorithm with ward
linkage [152] and euclidean distance. We used the clustering results as the group-
ing scheme to be analyzed and provided the Jaccard dissimilarity metric from the

56

reference Q-matrix as intra-cluster and inter-cluster distances. Since the ANOSIM
test transforms distances to ranking and does not compare them directly, there is
no problem using different similarity metrics. We opted for the Jaccard similarity
in the reference Q-matrix because this matrix, differently from the extracted one
(that each row sums up to one), contains several ones or zeros per row, indicat-
ing either the presence or absence of a concept. The Jaccard similarity calculates
the proportion of the shared concepts between the two questions. According to
Provost and Fawcet [153] this similarity metric is useful when a common absence of
a characteristic is not as important as a shared one.

We varied the number of clusters from 2 to 15 (maximum number of concepts
as defined in Table 5.3) using 100,000 permutations for each. Table 6.9 reports our
findings. None of the experiments using student performance data can produce a
Q-matrix significantly correlated with the human-annotated Q-matrix distances, as
seen inconclusively in Winters et al. [104]. On the other hand, statistical significance
is achieved using the topic modeling techniques described in Chapter 5. The best
overall results are using the raw data from the topic modeling technique, group-
ing them into 14 clusters. These results validates what was seen by Barnes [101]
and Winters et al. [104] in their research: the needed skills for each question (for-
malized through the Q-matrix) based solely on student performance data does not
correspond to professors’ expected skills for each question.

Table 6.9: ANOSIM statistics

Method Statistical Significance
(p <0.01) Concepts Best R Statistic

FDTF (20 attempts) No – –
FDTF (50 attempts) No – –
FDTF (150 attempts) No – –
NMF (averaging attempts) No – –
NMF (first attempt) No – –
Topic Model (raw result) Yes 12 0.21 (14 clusters)
Topic Model
(result after refinement) Yes 5 0.16 (14 clusters)

Figure 6.9 depicts the resulting dendrogram with the respective clusters. We
used the Ward method [152] with the euclidean distance as a dissimilarity metric.
From this structure, we can notice three major concept clusters divided into several
small subclusters.

To analyze the relationship between the 14 created clusters from the factorized
Q-matrix and the reference Q-matrix, Figs. 6.10 and 6.11 shows the average student
attempt versus the percentage of successful attempts per cluster. The point size
is proportional to the number of students that have attempted questions in that

57

Figure 6.9: Question dendrogram using Euclidean distance. Each color (each dotted
rectangle) represents a cluster.

cluster, which is also indicated by the number inside the point. Each color represents
the concepts in which 60% of the questions belonging to the cluster agree on. For
example, most of the questions inside the orange cluster work on the “Conditional”
concept.

Figs. 6.10 and 6.11 depict an overview picture of the exercises, their concepts,
and the students’ interactions with them. Fig. 6.10 depicts all the clusters and
Fig. 6.11 zooms in the dense part between 0 and 6 average attempts per student
per problem. This image can be seen as four quadrants: on the top left are the easy
questions (high successfully attempts percentage and attempts on average); on the
bottom left are the medium questions (questions with low success rate but also a low
attempts average); on the top right there are not any questions (it would be questions
with high success rate but also a high number of tries, which is unlikely) and finally,
on the bottom right are the questions where students have difficulties. Excluding
the outlier and analyzing by the quadrants, the red cluster (1st quadrant) requires
the use of the “Function” concept, which are introductory CS1 exercises where the
student is supposed to write a function with simple math operations directly in
the return statement. The exercises belonging to this cluster are solved in a smaller
number of attempts and have a higher success rate than the other clusters. There are
some surprising clusters with a high successful rate involving conditional and loops
in lists, which are considered complex concepts for CS1. However, each of these
clusters has only one exercise, becoming outliers of the concepts they represent.
The clusters around 1 to 3 attempts on average involve more advanced concepts
such as strings, loops, and conditionals. Finally, some clusters have more than four

58

Figure 6.10: Each color represents the main concept in the cluster and the size, its
popularity among students.

attempts on average per student per problem and a low success rate. They mostly
involve loops combined with some other concept.

Another interesting thing from this overview picture is to understand the stu-
dents beyond the averages. In section 4.1, we reported the average successful attempt
of the dataset as approximately 21%. From this figure, we can easily spot the “out-
liers”. The clusters between 1 to 2.5 attempts bring the average to this value, while
the easier clusters or the harder ones are increasing or decreasing the success rate.
With this information in real-time, educators can provide better assistance where
students have more difficulties (4th quadrant, challenging exercises) or decreasing
the workload where students have already mastered the concept (1st quadrant, easy
exercises).

59

Figure 6.11: Each color represents the main concept in the cluster and the size, its
popularity among students. This figure zooms in the dense left size of plot 6.10.

6.4 Student Survey

The Machine Teaching web system was developed not only to acquire student data
and perform code and concept analyses but also to improve professors’ and students’
experience while solving exercises, studying, or teaching a class. In this section, we
present the results of a survey conducted with the students from the four classes that
used the system regularly for one entire semester, as described in section 4.2.2. Since
we are using an agile methodology to develop the system, the survey did not include
the student dashboard presented in Section 3.4, available only on the most recent
version of the system. Participation was anonymous and voluntary, and the survey
was conducted on Google Forms using a Likert scale on nine items with five values
ranging from “Disagree completely” to “Agree completely”. There was an extra item

60

asking which software the students were using to write and test their code and an
open-ended suggestion part. We were investigating user perception in three areas:

1. Interface satisfaction: subjects found the Machine Teaching system easy to
use; they could find the exercises that had to be done, exercises that they had
already done and where they preferred to write their code (inside or outside
the system).

I. The system has a friendly interface.

II. It was easy for me to find past exercises to study.

III. It was easy for me to find this week’s exercises.

IV. Which software did you use to prepare the answers for the questions?

2. Feedback coverage: subjects were inquired about the debugging features
and their feedback relevance.

V. When the answer was wrong, using the Console output helped me solve
the exercise.

VI. When the answer was wrong, checking the wrong inputs helped me solve
the exercise.

3. Learning perception: subjects responded if they perceived the system as a
tool to help them study and learn.

VII. Using the system to solve the exercises has helped me learn.

VIII. I used the system to study for the exams.

IX. I would recommend the system for a student in a CS1 course.

X. I would like to have used the system when studying the user input subject.

In total, 41 students replied. Figs. 6.12 and 6.13 show the students’ responses
concerning Interface satisfaction. In general, they were able to navigate through
the system and find past and current exercises. Current exercises had a higher
median than past exercises since the system was projected to present the most
recent exercises on top. Friendly interface perception had a higher dispersion than
the other two questions, but it still received a median of 4 out of 5 on the Likert scale.
Fig. 6.13 presents the proportion of students who used only the system compared
to the students who used other software to write their code. Almost half of the
students (48.8%) that replied used only the system to write and test the code. The
other half was divided between using other software directly and using the system
just to submit the answer when they thought it was correct (29.3%), and trying it

61

on the system first but changing to another software if they could not get the answer
correctly in the first tries (22%).

When analyzing feedback coverage responses in Fig. 6.14, the overall user grades
for this category are lower, especially when inquired about the “Console” feature.
Complementing it with the responses for item IV (Which software did you use to
prepare the answers for the questions?) and with some suggestions done in free-text
format, we can determine which enhancements need priority in the students’ point
of view. Of the 41 students, 21 wrote improvement suggestions. From these 21,
five mentioned features related to the feedback coverage topic. The most mentioned
enhancement was to point errors more clearly, followed by an ad-hoc testing scheme
(not just autocorrect), where users could test arbitrary argument values.

Students also responded to four questions relating their learning achievements
and the web system, as shown in Fig. 6.15. In general, they thought that the way
the system was structured has helped them learn, and they would recommend it
to other students. However, it was divided whether they used it for studying for
the exams or not. It is important to highlight that the exams are done on paper,
not on the computer. Even though we need more information to understand why
they did not use it for studying for the exams, this difference could justify why
they did not see the system as a primary resource while studying. The system was
not available for the last two course subjects (user interaction, main program, and
modularization). Most of the students responded that they would like to have used
the system to make the exercises from this part as well.

Figure 6.12: Boxplots for user interface satisfaction questions

62

Figure 6.13: Software used by students to write code

Figure 6.14: Boxplots for feedback coverage questions

63

Figure 6.15: Boxplots for learning perception questions

64

Chapter 7

Conclusion

This thesis presented improvements to assist in closing the learning feedback loop
applied to computer science education. Besides contributing by proposing new meth-
ods to extract concepts from code and student performance in an unsupervised way,
our research was able to approximate research and practice by designing and deploy-
ing a web-system currently in use at the Universidade Federal do Rio de Janeiro.
During the year 2020, UFRJ has become completely remote due to the COVID-19
pandemic. Having an already tested and deployed system tailored for the teaching
methodology used in the introduction to programming classes helped in the transi-
tion from face-to-face classes to remote classes. At the present moment, the built
web-system is being used by 15 classes and 500 students. In total, more than 1200
students have used the system in the past three years.

We designed and implemented a learning environment based on a teaching
methodology, inserting the professors and students into the designing loop. User
stories were created to gather the desired features, and system architecture was pro-
posed as an enhanced version from the literature. The Machine Teaching system was
developed to assist students and professors in modularized function-based Python
classes. Since we are using a formal didactic approach to construct the learning
environment, the findings from our work will be used to adapt the teaching method-
ology, which will reflect again on the system, running a loop improvement process.
We surveyed the students from the previous two semesters about their perceptions
of the system. The student survey showed that, even though students perceived
the system as helpful for learning, they did not use it to optimize their studying
strategies. Students’ experience using the system was positive overall, and we could
identify improvement points, especially on the feedback coverage topic.

The exploratory analysis found a decreasing trend in the number of active stu-
dents during the semester and reproduced early dropout prediction models, corrob-
orating the literature findings. We gathered relevant findings from the literature
on this task and attested their validity when working with this dataset. We pro-

65

posed an enhanced model dividing the features by week instead of aggregating them.
The weekly features improved the model results and provided finer-grained relevant
features for professors. Using explainable models such as decision trees and hi-
erarchical clustering to perform the analyses can integrate the professors into the
decision-making process.

7.1 Final Remarks

This thesis’s main contribution is to propose a methodology to extract concepts from
code unsupervisedly by clustering code optimizing metrics that are positively corre-
lated with human-interpretability. With the associated evaluation metric, the pro-
posed method was able to find semantically related code-clustering schemes suited
for human interpretability with minimal supervision. The method is expected to
provide semantics for large amounts of unannotated code. Although we did not in-
vestigate the methodology’s applicability to other domains, we believe that it could
potentially be generalized, in future work, by modifying the tokenizer step.

Although code clustering in the CS1 context has been widely applied using the
AST trees, the advantages of working with topic modeling are the terms per topic re-
sults that may help experts better assess each cluster’s contents. The methodology
has also been shown to overcome the small-sized code snippets challenge by ex-
tending the tokenizer to augment the corpus with the code structure. The standard
tokenizer could not create semantically related topics, but adding structural informa-
tion, as features: indents and data types, and enforcing the order using n-grams en-
riched the code representation and found topics suitable for human-interpretability.
For example, augmenting the corpus with structural information as indents/blocks
(in Python, indents indicate how deep a block of code is; other languages like C++
and Java could count the number of “{” and “}”) helps to separate single loops from
nested loops. Combining trigrams (to enforce order) with structural information
can distinguish subtle differences in precondition and postcondition loops. Notice
that postcondition loops do not exist in Python, so we could not verify this specific
assumption. In our dataset, we expect trigram tokens to be enough to capture these
varieties because a typical CS1 solution does not have more than three or four nested
structures. Still, it may limit our model in identifying large nested structures on
more complex code. Also, even though there is a recursion concept in the concepts
list, there was no exercise using this technique in our dataset to verify how it would
be clustered.

In the second experiment, we set the best number of topics to 12, but only
six (considering the merge of topics 2 and 4) were valid. Standard topic modeling
techniques with the augmented tokenizer yielded the best results. The LDA-based

66

clustering demonstrates better interpretable results, as shown by our detailed topic
analysis. When tested with an unseen dataset, the six topics comprised the main
concepts present in the test set. Except for a few exceptions, most of them relate
to the six main topics, and a few of them account for code specificity.

To understand how humans could read and interpret the extracted relationships,
we asked 14 professors to contextualize CS1 concepts. Our results showed that
professors could relate topics and concepts with 54 observations in the training set.
Each cluster’s main topic was explicit in the theme label task, and the clusters
contained different concepts per topic. The professors can use this information to
understand how often concepts cooccur while solving exercises. A future research
direction is necessary to investigate if more specific clusters could be produced by
increasing the number of samples or using more complex models.

We also investigated how an extracted Q-matrix from student performance differs
from a Q-matrix made with specialists’ input. We compared NMF and FDTF, two
methods usually employed in student performance prediction tasks, in their ability to
discover the latent skills only based on students’ history (success or failure in solving
the problems). To evaluate the item to skill mapping task and calculate the similarity
between the extracted Q-matrices and the human-annotated matrix, the ANOSIM
statistic showed to be a useful tool by providing a correlation coefficient and the
number of clusters. As a result, none of the Q-matrices extracted from student
performance data presented a statistical correlation with the human-annotated Q-
matrix. The lack of relation between unsupervised and annotated Q-matrices was
a result that was already seen in previous studies. In this thesis, we overcame this
issue by using topic modeling techniques to create an unsupervised Q-matrix that
is positively correlated with the original Q-matrix.

For interpreting the results and relating the extracted Q-matrix with student
performance, a simple visualization was used, where it was possible to get a general
overview of concept popularity and to pinpoint students’ difficulties and achieve-
ments. This tool has the potential to be used to assist teachers in discovering do-
main models (in the absence of a validated Q-matrix) and edit or enhance learning
materials based on students’ achievement and struggles.

7.2 Future Work

The work presented in this thesis has opened several research directions concerning
the use of these experiments in a real-world environment. We plan to keep improving
the system based on feedback given by professors and students. We want to inves-
tigate how to assist students, professors, educators, and faculty in making sense of
their own (in the case of students) or their classes’ learning (for educators). This

67

research’s challenge is to process all collected data and present it in meaningful ways
to improve learning outcomes. A first step was already done by creating a student
dashboard. The next steps consist of understanding how the students can effectively
use the dashboard to improve their studying strategies. The same idea can be ap-
plied to professors and faculty. They can use the collected data to understand if
the tasks are compatible with the expected time to solve them and how the class
responds to the content, if there are outlier students, among other questions. One
feature requested by students is the inclusion of extra exercises for them to practice
and study. We plan on creating a recommendation engine to provide personalized
exercise recommendations.

We also foresee exploring the relation between different latent concepts as fu-
ture work. Using student data to extract the Q-matrix does not correlate to the
Q-matrix extracted from the professors or specialists’ perspective. A future step
would be to extract a common Q-matrix even when working with different sources.
The shared Q-matrix could provide insights into understanding the main differences
between the actual students’ knowledge and the knowledge expected by the profes-
sors. To improve this understanding, an index to calculate the degree of agreement
between students and teachers could be created as well as visualizations to highlight
the differences between students’ perceptions of difficulties and those perceived by
teachers.

Finally, one of the outstanding contributions of this work is to collect data over
several semesters. An observable target indicator should be set to measure the
actual effects of using learning environments on learning. Especially in education,
some achievements may take a long time to be observed. However, the proposal
of this research is also to lay the ground for longitudinal experiments. A control
experiment can be done to evaluate the effects on students. However, for professors
and faculty staff, this kind of experiment is more complicated because it is harder
to isolate confounding variables. Further research should be done on this matter.

68

References

[1] JAFFEE, D. “Asynchronous Learning: Technology and Pedagogical Strategy in
a Distance Learning Course”, Teaching Sociology, v. 25, n. 4, pp. 262–277,
out. 1997. ISSN: 0092-055X. doi: 10.2307/1319295.

[2] PERREAULT, H., WALDMAN, L., ALEXANDER, M., et al. “Overcoming
Barriers to Successful Delivery of Distance-Learning Courses”, J. Educ.
Business, v. 77, n. 6, pp. 313–318, jul. 2002. ISSN: 0883-2323. doi:
10.1080/08832320209599681.

[3] BOUHNIK, D., MARCUS, T. “Interaction in distance-learning courses”, J.
American Society Inf. Sci. Technol., v. 57, n. 3, pp. 299–305, nov. 2005.
ISSN: 1532-2890. doi: 10.1002/asi.20277.

[4] SOUZA, S. D., FRANCO, V. S., COSTA, M. L. F., et al. “Educação a distância
na ótica discente”, Educação e Pesquisa, v. 42, n. 1, pp. 99–114, mar.
2016. ISSN: 1517-9702. doi: 10.1590/s1517-9702201603133875.

[5] ROCHA, S. S. D., JOYE, C. R., MOREIRA, M. M. “A Educação a Distância na
era digital: tipologia, variações, uso e possibilidades da educação online”,
Research, Society and Development, v. 9, n. 6, abr 2020. ISSN: 2525-3409.
doi: 10.33448/rsd-v9i6.3390.

[6] GOOGLE. “Google Trends”. 2020. Disponível em: <https://trends.google.
com.br/trends/explore?date=2016-07-02%202021-02-02&q=%2Fm%

2F02h32>. Online; accessed 02-February-2021.

[7] GEWIN, V. “Five tips for moving teaching online as COVID-19 takes hold”,
Nature, v. 580, n. 7802, pp. 295–296, mar. 2020. doi: 10.1038/
d41586-020-00896-7.

[8] COOK, D. A., DUPRAS, D. M. “A practical guide to developing effective web-
based learning”, J. General Internal Medicine, v. 19, n. 6, pp. 698–707,
jun. 2004. doi: 10.1111/j.1525-1497.2004.30029.x.

69

https://trends.google.com.br/trends/explore?date=2016-07-02%202021-02-02&q=%2Fm%2F02h32
https://trends.google.com.br/trends/explore?date=2016-07-02%202021-02-02&q=%2Fm%2F02h32
https://trends.google.com.br/trends/explore?date=2016-07-02%202021-02-02&q=%2Fm%2F02h32

[9] INTERNATIONAL EDUCATIONAL DATA MINING SOCIETY. “education-
aldatamining.org”. www.educationaldatamining.org, 2021. [Online; ac-
cessed 13-Jan-2021].

[10] WITTEN, I. H., FRANK, E., HALL, M. A., et al. Data Mining Practical
Machine Learning Tools and Techniques. 4 ed. Cambridge, MA, USA,
Morgan Kaufmann (Publishers, Inc.), 2017. ISBN: 978-0-12-804291-5.
doi: 10.1016/C2015-0-02071-8.

[11] BAKER, R. S. J. D., YACEF, K. “The State of Educational Data Mining in
2009 : A Review and Future Visions”, J. Educational Data Mining, v. 1,
n. 1, pp. 3–17, out. 2009. doi: 10.5281/zenodo.3554657.

[12] BAKER, R. S., D’MELLO, S. K., RODRIGO, M. M. T., et al. “Better
to be frustrated than bored: The incidence, persistence, and impact
of learners’ cognitive-affective states during interactions with three dif-
ferent computer-based learning environments”, Int. J. Human Comput.
Stud., v. 68, n. 4, pp. 223–241, abr. 2010. ISSN: 1071-5819. doi:
10.1016/j.ijhcs.2009.12.003.

[13] PARDO, A., BARTIMOTE, K., SHUM, S. B., et al. “OnTask: Delivering Data-
Informed, Personalized Learning Support Actions”, Learning Analytics,
v. 5, n. 3, pp. 235–249, dez. 2018. doi: 10.18608/jla.2018.53.15.

[14] ROSÉ, C. P., MCLAUGHLIN, E. A., LIU, R., et al. “Explanatory learner
models: Why machine learning (alone) is not the answer”, British Journal
of Educational Technology, v. 50, n. 6, pp. 2943–2958, nov. 2019. doi:
10.1111/bjet.12858.

[15] JOVANOVIĆ, J., DAWSON, S., JOKSIMOVIĆ, S., et al. “Supporting action-
able intelligence: reframing the analysis of observed study strategies”. In:
Proceedings of the 10th International Conference on Learning Analytics
& Knowledge, LAK ’20, pp. 161–170, New York, NY, USA, mar. 2020.
Association for Computing Machinery. doi: 10.1145/3375462.3375474.

[16] BULL, S., KAY, J. “SMILI: a Framework for Interfaces to Learning Data in
Open Learner Models, Learning Analytics and Related Fields”, Int J Artif
Intell Educ, v. 26, n. 1, pp. 293–331, mar. 2016. ISSN: 1560-4306. doi:
10.1007/s40593-015-0090-8.

[17] BAKER, R. S. “Stupid tutoring systems, intelligent humans”, International
Journal of Artificial Intelligence in Education, v. 26, n. 2, pp. 600–614,
2016. doi: 10.1007/s40593-016-0105-0.

70

www.educationaldatamining.org

[18] NIKULA, U., GOTEL, O., KASURINEN, J. “A Motivation Guided Holistic
Rehabilitation of the First Programming Course”, ACM Trans. Comput.
Educ., v. 11, n. 4, nov. 2011. doi: 10.1145/2048931.2048935.

[19] ROGALSKI, J., SAMURCAY, R. “Task Analysis and Cognitive Model as
a Framework to Analyse Environments for Learning Programming”. In:
Lemut, E., du Boulay, B., Dettori, G. (Eds.), Cognitive models and
intelligent environments for learning programming, v. 111, pp. 6–19,
Berlin, Heidelberg, 1993. Springer Berlin Heidelberg. doi: 10.1007/
978-3-662-11334-9_2.

[20] ABDUL-RAHMAN, S.-S., DU BOULAY, B. “Learning programming via
worked-examples: Relation of learning styles to cognitive load”, Com-
put. Human Behav., v. 30, pp. 286 – 298, 2014. ISSN: 0747-5632. doi:
10.1016/j.chb.2013.09.007.

[21] DAMASCENO, A., ALMEIDA, C., FERNANDES, W., et al. “What Can Be
Found from Student Interaction Logs of Online Courses Offered in Brazil”,
Brazilian Symposium on Computers in Education (Simpósio Brasileiro de
Informática na Educação - SBIE), v. 30, n. 1, pp. 1641, nov. 2019. doi:
10.5753/cbie.sbie.2019.1641.

[22] LAN, A. S., WATERS, A. E., STUDER, C., et al. “Sparse Factor Analysis
for Learning and Content Analytics”, J. Mach. Learn. Res., v. 15, n. 1,
pp. 1959–2008, 2014. ISSN: 1532-4435.

[23] HUNDHAUSEN, C. D., OLIVARES, D. M., CARTER, A. S. “IDE-Based
Learning Analytics for Computing Education: A Process Model, Critical
Review, and Research Agenda”, ACM Trans. Comput. Educ., v. 17, n. 3,
pp. 11:1–11:26, ago. 2017. doi: 10.1145/3105759.

[24] SCHWENDIMANN, B. A., RODRIGUEZ-TRIANA, M. J., VOZNIUK, A.,
et al. “Perceiving learning at a glance: A systematic literature review of
learning dashboard research”, IEEE Trans. Learn. Technol., v. 10, n. 1,
pp. 30–41, jan. 2017. doi: 10.1109/TLT.2016.2599522.

[25] DESMARAIS, M. C. “Mapping Question Items to Skills with Non-Negative Ma-
trix Factorization”, SIGKDD Explorations Newslett., v. 13, n. 2, pp. 30–36,
maio 2012. doi: 10.1145/2207243.2207248.

[26] LEE, D. D., SEUNG, H. S. “Learning the parts of objects by non-negative
matrix factorization”, Nature, v. 401, pp. 788–791, out. 1999. doi: 10.
1038/44565.

71

[27] BLEI, D. M., NG, A. Y., JORDAN, M. I. “Latent Dirichlet Allocation”, J.
Mach. Learn. Res., v. 3, pp. 993–1022, jan. 2003.

[28] STEYVERS, M., GRIFFITHS, T. “Probabilistic Topic Models”. In: Landauer,
T., McNamara, S. D., Kintsch, W. (Eds.), Handbook of Latent Semantic
Analysis, 1 ed., Psychology Press, cap. 21, pp. 427–448, New York, NY,
USA, 2007. doi: 10.4324/9780203936399.

[29] HOFMANN, T. “Probabilistic Latent Semantic Analysis”. In: Laskey, K. B.,
Prade, H. M. (Eds.), Proc. 15th Conf. Uncertainty Artificial Intelligence,
pp. 289–296, Stockholm, Sweden, 30 jul.–1 ago. 1999.

[30] MORAES, L. O., PEDREIRA, C. E. “Designing an Intelligent Tutoring System
Across Multiple Classes”. In: 4th Educational Data Mining in Computer
Science Education Workshop, 10 jul. 2020.

[31] MORAES, L. O., PEDREIRA, C. E. “Clustering Introductory Computer Sci-
ence Exercises Using Topic Modeling Methods”, IEEE Trans. Learn. Tech-
nol., 2021. doi: 10.1109/TLT.2021.3056907.

[32] VANLEHN, K. “The Behavior of Tutoring Systems”, Int. J. Artif. Intell. Ed.,
v. 16, n. 3, pp. 227–265, ago. 2006. ISSN: 1560-4292.

[33] SELF, J. “Theoretical Foundations for Intelligent Tutoring Systems”, J. Artif.
Intell. Educ., v. 1, n. 4, pp. 3–14, set. 1990. ISSN: 1043-1020.

[34] IHANTOLA, P., VIHAVAINEN, A., AHADI, A., et al. “Educational Data
Mining and Learning Analytics in Programming: Literature Review and
Case Studies”. In: Proc. 2015 ITiCSE Working Group Report, pp. 41–63,
Vilnius, Lithuania, jul. 2015. doi: 10.1145/2858796.2858798.

[35] LUXTON-REILLY, A., SIMON, ALBLUWI, I., et al. “Introductory Program-
ming: A Systematic Literature Review”. In: Proc. Companion 23rd Annu.
ACM Conf. Innovation and Technology in Computer Science Education,
ITiCSE 2018 Companion, p. 55–106, Larnaca, Cyprus, jul. 2018. doi:
10.1145/3293881.3295779.

[36] ROBINSON, D. “The Incredible Growth of Python”. https://stackoverflow.
blog/2017/09/06/incredible-growth-python/, 2017. Online; accessed
01-November-2020.

[37] STACK OVERFLOW. “Developer Survey Results 2018”. https://insights.
stackoverflow.com/survey/2018/, 2019. Online; accessed 12-June-
2020.

72

https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/

[38] MASON, R., SIMON. “Introductory Programming Courses in Australasia in
2016”. In: Proc. 19th Australasian Computing Educational Conference, p.
81–89, Geelong, VIC, Australia, jan. 2017. doi: 10.1145/3013499.3013512.

[39] HOVEMEYER, D., SPACCO, J. “CloudCoder: A web-based programming
exercise system”, J. Comput. Sci. in Colleges, 2013. ISSN: 1937-4771.

[40] PAPANCEA, A., SPACCO, J., HOVEMEYER, D. “An open platform for
managing short programming exercises”. In: Proc. 2013 ACM Conf. Int.
Computing Education Research, pp. 47–52, San Diego, CA, USA, 12–14
ago. 2013. doi: 10.1145/2493394.2493401.

[41] PANAMALAI MURALI, K. CodeWorkout: Design and implementation of an
online drill-and-practice system for introductory programming. Thesis,
Virginia Tech, jun. 2016. Disponível em: <https://vtechworks.lib.
vt.edu/handle/10919/81072>.

[42] ZINGARO, D., CHERENKOVA, Y., KARPOVA, O., et al. “Facilitating code-
writing in PI classes”. In: Proc. 44th ACM Technical Symp. Computer
Science Education, pp. 585–590, Denver, CO, USA, 6–9 mar. 2013. doi:
10.1145/2445196.2445369.

[43] DAGOSTINI, J., LIMA, M. V. D. M., BEZ, J. L., et al. “URI Online
Judge Blocks: Construindo soluções em uma plataforma online de pro-
gramação”, Brazilian Symp. Computers Education (Simpósio Brasileiro de
Informática na Educação - SBIE), v. 29, n. 1, pp. 168, out. 2018. doi:
10.5753/cbie.sbie.2018.168. 1.

[44] BEZ, J. L., TONIN, N., SELIVON, M. “URI Online Judge Academic: Inte-
gração e consolidação da ferramenta no processo de ensino/aprendizagem”.
In: Anais do XXIII Workshop sobre Educação em Computação, pp. 188–
195, 20–23 jul. 2015. doi: 10.5753/wei.2015.10235.

[45] SORVA, J., SIRKIÄ, T. “UUhistle: a software tool for visual program simu-
lation”. In: Proc. 10th Koli Calling Int. Conf. Computing Education Re-
search, pp. 49–54, Koli, Finland, out. 2010. doi: 10.1145/1930464.1930471.

[46] EDWARDS, S. H., TILDEN, D. S., ALLEVATO, A. “Pythy: improving the
introductory python programming experience”. In: Proc. 45th ACM tech-
nical symposium on Computer science education, pp. 641–646, Atlanta,
GA, USA, 5–8 mar. 2014. doi: 10.1145/2538862.2538977.

73

https://vtechworks.lib.vt.edu/handle/10919/81072
https://vtechworks.lib.vt.edu/handle/10919/81072

[47] EDWARDS, S. H., PEREZ-QUINONES, M. A. “Web-CAT: automatically grad-
ing programming assignments”. In: Proc. 13th Annu. Conf. on Innovation
and Technology Computer Science Education, p. 328, Madrid, Spain, 30
jun.–2jul. 2008. doi: 10.1145/1384271.1384371.

[48] HU, Y.-H., LO, C.-L., SHIH, S.-P. “Developing early warning systems to pre-
dict students’ online learning performance”, Comput. in Human Behavior,
v. 36, pp. 469–478, jul. 2014. ISSN: 07475632. doi: 10.1016/j.chb.2014.04.
002. Disponível em: <https://linkinghub.elsevier.com/retrieve/
pii/S0747563214002118>.

[49] MARBOUTI, F., DIEFES-DUX, H. A., MADHAVAN, K. “Models for early
prediction of at-risk students in a course using standards-based grading”,
Computers and Education, v. 103, pp. 1–15, dez. 2016. doi: 10.1016/j.
compedu.2016.09.005.

[50] COSTA, E. B., FONSECA, B., SANTANA, M. A., et al. “Evaluating the
effectiveness of educational data mining techniques for early prediction of
students’ academic failure in introductory programming courses”, Comput.
Human Behavior, v. 73, pp. 247–256, ago. 2017. doi: 10.1016/j.chb.2017.
01.047.

[51] ALAMRI, A., ALSHEHRI, M., CRISTEA, A., et al. “Predicting MOOCs
Dropout Using Only Two Easily Obtainable Features from the First
Week’s Activities”. In: Coy, A., Hayashi, Y., Chang, M. (Eds.), Intel-
ligent Tutoring Systems. Lecture Notes in Computer Science, v. 11528,
Lecture Notes in Computer Science, pp. 163–173, Cham, 2019. ISBN:
978-3-030-22244-4. doi: 10.1007/978-3-030-22244-4_20.

[52] CHEN, W., BRINTON, C. G., CAO, D., et al. “Early Detection Prediction
of Learning Outcomes in Online Short-Courses via Learning Behaviors”,
IEEE Trans. on Learn. Technol., v. 12, n. 1, pp. 44–58, jan. 2019. ISSN:
1939-1382. doi: 10.1109/TLT.2018.2793193.

[53] GRAY, C. C., PERKINS, D. “Utilizing early engagement and machine learning
to predict student outcomes”, Computers and Education, v. 131, pp. 22–
32, abr. 2019. doi: 10.1016/j.compedu.2018.12.006.

[54] PEREIRA, F. D., OLIVEIRA, E., CRISTEA, A., et al. “Early Dropout Predic-
tion for Programming Courses Supported by Online Judges”. In: Isotani,
S., Millán, E., Ogan, A., et al. (Eds.), Artificial Intelligence in Education,
Lecture Notes in Computer Science, pp. 67–72, Cham, 2019. Springer
International Publishing. doi: 10.1007/978-3-030-23207-8_13.

74

https://linkinghub.elsevier.com/retrieve/pii/S0747563214002118
https://linkinghub.elsevier.com/retrieve/pii/S0747563214002118

[55] PEREIRA, F. D., OLIVEIRA, E. H. T., FERNANDES, D., et al. “Early
performance prediction for CS1 course students using a combination of
machine learning and an evolutionary algorithm”. In: 2019 IEEE 19th Int.
Conf. on Advanced Learning Technologies, pp. 183–184, Maceió, Brazil,
15–18 jul. 2019. doi: 10.1109/ICALT.2019.00066.

[56] ANDRES, J. M. L., BAKER, R. S., GAŠEVIĆ, D., et al. “Studying MOOC
completion at scale using the MOOC replication framework”. In: Pro-
ceedings of the 8th International Conference on Learning Analytics and
Knowledge, pp. 71–78, Sydney New South Wales Australia, mar. 2018.
ACM. doi: 10.1145/3170358.3170369.

[57] AL-SHABANDAR, R., HUSSAIN, A. J., LIATSIS, P., et al. “Analyzing Learn-
ers Behavior in MOOCs: An Examination of Performance and Motiva-
tion Using a Data-Driven Approach”, IEEE Access, v. 6, pp. 73669–73685,
2018. doi: 10.1109/ACCESS.2018.2876755.

[58] J. SHEARD ET AL. “Exploring Programming Assessment Instruments: A
Classification Scheme for Examination Questions”. In: Proc. 7th Int. Com-
puting Education Research Workshop, pp. 33–38, Providence, RI, USA,
8–9 ago. 2011. doi: 10.1145/2016911.2016920.

[59] PETERSEN, A., CRAIG, M., ZINGARO, D. “Reviewing CS1 Exam Question
Content”. In: Cortina, T. J., Walker, E. L., King, L. A. S., et al. (Eds.),
Proc. 42nd ACM Technical Symp. Computer Science Education, pp. 631–
636, Dallas, TX, USA, 9–12 mar. 2011. doi: 10.1145/1953163.1953340.

[60] FEI, T., HENG, W. J., TOH, K. C., et al. “Question classification for e-learning
by artificial neural network”. In: Proc. 2003 Joint Conf. 4th Int. Conf.
Information, Communications and Signal Processing and 4th Pacific Rim
Conf. Multimedia, pp. 1757–1761, Singapore, 15–18 dez. 2003. doi: 10.
1109/ICICS.2003.1292768.

[61] SUPRAJA, S., HARTMAN, K., KHONG, A. W. H. “Toward the Automatic
Labeling of Course Questions for Ensuring their Alignment with Learning
Outcomes”. In: Hu, X., Barnes, T., Hershkovitz, A., et al. (Eds.), Proc.
10th Int. Conf. Educational Data Mining, pp. 56–63, Wuhan, China, 25–
28 jun. 2017.

[62] GODEA, A., TULLEY-PATTON, D., BARBEE, S., et al. “Classifying Educa-
tional Questions Based on the Expected Characteristics of Answers”. In:
Penstein Rosé, C., Martínez-Maldonado, R., Hoppe, H. U., et al. (Eds.),

75

Int. Conf. Artificial Intelligence Education, pp. 104–108, London, United
Kingdom, 20 jun. 2018. doi: 10.1007/978-3-319-93846-2_20.

[63] GONZÁLEZ, P., GIBAJA, E., ZAPATA, A., et al. “Towards Automatic Classi-
fication of Learning Objects: Reducing the Number of Used Features”. In:
Hu, X., Barnes, T., Hershkovitz, A., et al. (Eds.), Proc. 10th Int. Conf.
Educational Data Mining, pp. 394–395, Wuhan, China, 25–28 jun. 2017.

[64] NUNN, S., AVELLA, J. T., KANAI, T., et al. “Learning Analytics Methods,
Benefits, and Challenges in Higher Education: A Systematic Literature
Review”, Online Learning, v. 20, n. 2, jun. 2016. doi: 10.24059/olj.v20i2.
790.

[65] DUTT, A., ISMAIL, M. A., HERAWAN, T. “A Systematic Review on Educa-
tional Data Mining”, IEEE Access, v. 5, pp. 15991–16005, jan. 2017. doi:
10.1109/ACCESS.2017.2654247.

[66] RODRIGUES, M. W., ISOTANI, S., ZÁRATE, L. E. “Educational Data Min-
ing: A review of evaluation process in the e-learning”, Telematics and
Inform., v. 35, n. 6, pp. 1701–1717, set. 2018. doi: 10.1016/j.tele.2018.04.
015.

[67] HERNÁNDEZ-BLANCO, A., HERRERA-FLORES, B., TOMÁS, D., et al.
“A Systematic Review of Deep Learning Approaches to Educational Data
Mining”, Complexity, v. 2019, maio 2019. doi: 10.1155/2019/1306039.

[68] ALDOWAH, H., AL-SAMARRAIE, H., FAUZY, W. M. “Educational data
mining and learning analytics for 21st century higher education: A review
and synthesis”, Telematics and Inform., v. 37, pp. 13–49, abr. 2019. doi:
10.1016/j.tele.2019.01.007.

[69] TRIVEDI, S., PARDOS, Z., SÁRKÖZY, G., et al. “Spectral Clustering in
Educational Data Mining”. In: Pechenizkiy, M., Calders, T., Conati, C.,
et al. (Eds.), Proc. 4th Int. Conf. Educational Data Mining, pp. 129–138,
Eindhoven, the Netherlands, 6–8 jul. 2011.

[70] FIGUEIRA, A. P. D. B. B. R. “A repository with semantic organization for
educational content”. In: 2008 8th IEEE Int. Conf. Advanced Learning
Technologies, pp. 114–116, Santander, Spain, 1–5 jul. 2008. doi: 10.1109/
ICALT.2008.60.

[71] HUANG, J., PIECH, C., NGUYEN, A., et al. “Syntactic and functional vari-
ability of a million code submissions in a machine learning MOOC”. In:

76

Walker, E., Looi, C.-K. (Eds.), Proc. Workshops 16th Int. Conf. Artificial
Intelligence Education 2013, v. 1, pp. 25–32, Memphis, TN, USA, 9–13
jul. 2013. doi: 10.1007/978-3-642-39112-5.

[72] NGUYEN, A., PIECH, C., HUANG, J., et al. “Codewebs: Scalable Homework
Search for Massive Open Online Programming Courses”. In: Proc. 23rd
Int. Conf. World Wide Web, pp. 491–502, Seoul, Korea, 7–11 abr. 2014.
doi: 10.1145/2566486.2568023.

[73] PAASSEN, B., MOKBEL, B., HAMMER, B. “Adaptive structure metrics for
automated feedback provision in intelligent tutoring systems”, Neurocom-
puting, v. 192, pp. 3–13, jun. 2016. doi: 10.1016/j.neucom.2015.12.108.

[74] PRICE, T., ZHI, R., BARNES, T. “Evaluation of a Data-driven Feedback
Algorithm for Open-ended Programming”. In: Hu, X., Barnes, T., Her-
shkovitz, A., et al. (Eds.), Proc. 10th Int. Conf. Educational Data Mining,
pp. 192–197, Wuhan, China, 25–28 jun. 2017.

[75] MOKBEL, B., GROSS, S., PAASSEN, B., et al. “Domain-Independent Proxim-
ity Measures in Intelligent Tutoring Systems”. In: D’Mello, S. K., Calvo,
R. A., Olney, A. (Eds.), Proc. 6th Int. Conf. Educational Data Mining,
pp. 334–335, Memphis, TN, USA, 6–9 jul. 2013.

[76] LU, Y., HSIAO, I.-H. “Modeling Semantics between Programming Codes and
Annotations”. In: Lee, D., Sastry, N., Weber, I. (Eds.), Proc. 29th Hyper-
text and Social Media, pp. 101–105, Baltimore, MD, USA, 9–12 jul. 2018.
doi: 10.1145/3209542.3209578.

[77] CHEN, T. H., THOMAS, S. W., HASSAN, A. E. “A survey on the use of topic
models when mining software repositories”, Empirical Softw. Eng., v. 21,
n. 5, pp. 1843–1919, out. 2016. doi: 10.1007/s10664-015-9402-8.

[78] AZCONA, D., ARORA, P., HSIAO, I.-H., et al. “User2code2vec: Embeddings
for Profiling Students Based on Distributional Representations of Source
Code”. In: Proc. 9th Int. Learning Analytics and Knowledge Conf., pp.
86–95, Tempe, AZ, USA, 4–8 mar. 2019. doi: 10.1145/3303772.3303813.

[79] CHEN, Q., YAO, L., YANG, J. “Short text classification based on LDA topic
model”. In: 2016 Int. Conf. Audio, Language and Image Processing, pp.
749–753, Shanghai, China, 11-12 jul. 2016. doi: 10.1109/ICALIP.2016.
7846525.

77

[80] ABOLHASSANI, N., RAMASWAMY, L. “Extracting Topics from Semi-
structured Data for Enhancing Enterprise Knowledge Graphs”. In: Wang,
X., Gao, H., Iqbal, M., et al. (Eds.), Int. Conf. Collaborative Computing:
Networking, Applications and Worksharing, v. 292, pp. 101–117, London,
United Kingdom, 19–22 ago. 2019. doi: 10.1007/978-3-030-30146-0_8.

[81] HSIAO, I.-H., AWASTHI, P. “Topic Facet Modeling: Semantic Visual Analytics
for Online Discussion Forums”. In: Baron, J., Lynch, G., Maziarz, N.,
et al. (Eds.), Proc. 5th Int. Conf. Learning Analytics Knowledge, pp. 231–
235, Poughkeepsie, NY, USA, 16–20 mar. 2015. doi: 10.1145/2723576.
2723613.

[82] HSIAO, I.-H., LIN, Y.-L. “Enriching programming content semantics: An eval-
uation of visual analytics approach”, Comput. Human Behav., v. 72,
pp. 771–782, jul. 2017. doi: 10.1016/j.chb.2016.10.012.

[83] ZHAO ET AL. “Comparing Twitter and Traditional Media Using Topic Mod-
els”. In: Clough, P., Foley, C., Gurrin, C., et al. (Eds.), Proc. 33rd Euro-
pean Conf. Advances Information Retrieval, v. 6611, pp. 338–349, Dublin,
Ireland, 18–21 abr. 2011. doi: 10.1007/978-3-642-20161-5_34.

[84] STEYVERS, M., SMYTH, P., ROSEN-ZVI, M., et al. “Probabilistic Author-
Topic Models for Information Discovery”. In: Kohavi, R., Gehrkeand,
J., DuMouchel, W., et al. (Eds.), Proc. 10th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, pp. 306–315, Seattle, WA, USA,
22-25 ago. 2004. doi: 10.1145/1014052.1014087.

[85] ROSEN-ZVI, M., CHEMUDUGUNTA, C., GRIFFITHS, T., et al. “Learning
Author-Topic Models from Text Corpora”, ACM Trans. Inf. Syst., v. 28,
n. 1, pp. 1–38, jan. 2010. doi: 10.1145/1658377.1658381. Art. no. 4, doi:
10.1145/1658377.1658381.

[86] LI, S., LI, J., PAN, R. “Tag-Weighted Topic Model for Mining Semi-Structured
Documents”. In: Rossi, F. (Ed.), Proc. 23rd Int. Joint Conf. Artificial
Intelligence, pp. 2855–2861, Beijing, China, 3–9 ago. 2013.

[87] WENG, J., LIM, E.-P., JIANG, J., et al. “TwitterRank: Finding Topic-
Sensitive Influential Twitterers”. In: Davison, B. D., Suel, T., Craswell,
N., et al. (Eds.), Proc. 3rd ACM Int. Conf. Web Search and Data Mining,
pp. 261–270, New York, NY, USA, 3–6 fev. 2010. doi: 10.1145/1718487.
1718520.

78

[88] SYED, S., SPRUIT, M. “Full-Text or Abstract? Examining Topic Coherence
Scores Using Latent Dirichlet Allocation”. In: 2017 IEEE Int. Conf. Data
Science and Advanced Analytics, pp. 165–174, Tokyo, Japan, 19–21 out.
2017. doi: 10.1109/DSAA.2017.61.

[89] CORBETT, A. T., ANDERSON, J. R. “Knowledge tracing: Modeling the
acquisition of procedural knowledge”, User Model. User-Adapted Interact.,
v. 4, pp. 253–278, dez. 1994. doi: 10.1007/BF01099821.

[90] YUDELSON, M. V., KOEDINGER, K. R., GORDON, G. J. “Individual-
ized bayesian knowledge tracing models”. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), pp. 171–180, 2013. doi:
10.1007/978-3-642-39112-5_18.

[91] WILSON, K. H., KARKLIN, Y., HAN, B., et al. “Back to the basics: Bayesian
extensions of IRT outperform neural networks for proficiency estimation”.
In: Proc. 9th International Conference on Educational Data Mining, p. 6,
2016.

[92] VANLEHN, K., NIU, Z., SILER, S., et al. “Student Modeling from Conventional
Test Data: A Bayesian Approach without Priors”. In: Goettl, B. P., Halff,
H. M., Redfield, C. L., et al. (Eds.), Intelligent Tutoring Systems, pp. 434–
443, Berlin, Heidelberg, 1998. doi: 10.1007/3-540-68716-5_49.

[93] QIU, Y., QI, Y., LU, H., et al. “Does Time Matter? Modeling the Effect of
Time with Bayesian Knowledge Tracing.” In: Pechenizkiy, M., Calders,
T., Conati, C., et al. (Eds.), Proc. 4th International Conference on Educa-
tional Data Mining, pp. 139–148, Eindhoven, the Netherlands, jul. 2011.

[94] PELÁNEK, R. “Bayesian knowledge tracing, logistic models, and beyond:
an overview of learner modeling techniques”, User Model. User-Adapted
Interact., v. 27, pp. 313–350, 2017. ISSN: 15731391. doi: 10.1007/
s11257-017-9193-2.

[95] PARDOS, Z. A., HEFFERNAN, N. T. “Modeling individualization in a
Bayesian networks implementation of knowledge tracing”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), v. 6075, pp. 255–266,
2010. doi: 10.1007/978-3-642-13470-8_24.

[96] NEDUNGADI, P., REMYA, M. S. “Incorporating forgetting in the Per-
sonalized, Clustered, Bayesian Knowledge Tracing (PC-BKT) model”.

79

In: Proc. 2015 Int. Conf. cognitive computing and information process-
ing (CCIP), Noida, India, maio 2015. ISBN: 978-1-4799-7171-8. doi:
10.1109/CCIP.2015.7100688.

[97] LIN, C., CHI, M. “Intervention-BKT: Incorporating instructional interventions
into Bayesian knowledge tracing”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), v. 9684, pp. 208–218, 2016. ISBN: 978-3-319-
39582-1. doi: 10.1007/978-3-319-39583-8_20. ISSN: 16113349.

[98] VIE, J.-J., KASHIMA, H. “Knowledge Tracing Machines: Factorization Ma-
chines for Knowledge Tracing”. In: Proc. AAAI Conf. Artificial Intelli-
gence, v. 33, pp. 750–757, nov. 2018. doi: 10.1609/aaai.v33i01.3301750.

[99] PAVLIK, P. I., CEN, H., KOEDINGER, K. R. “Performance factors anal-
ysis - A new alternative to knowledge tracing”. In: Frontiers in Arti-
ficial Intelligence and Applications, v. 200, pp. 531 – 538, 2009. doi:
10.3233/978-1-60750-028-5-531.

[100] GALYARDT, A., GOLDIN, I. “Convergent Validity of a Student Model:
Recent-Performance Factors Analysis”. In: Proc. 8th Int. Conf. Educa-
tional Data Mining, pp. 548–551, 2015.

[101] BARNES, T. M. The Q-matrix Method of Fault-Tolerant Teaching in Knowl-
edge Assessment and Data Mining. Tese de Doutorado, North Carolina
State University, 2003.

[102] TATSUOKA, K. K. “Toward an integration of item-response theory and cog-
nitive error diagnosis.” In: Diagnostic monitoring of skill and knowledge
acquisition., Lawrence Erlbaum Associates, Inc, pp. 453–488, Hillsdale,
NJ, US, 1990. ISBN: 0-89859-992-X (Hardcover).

[103] CEN, H., KOEDINGER, K., JUNKER, B. “Learning Factors Analysis – A
General Method for Cognitive Model Evaluation and Improvement”. In:
Hutchison, D., Kanade, T., Kittler, J., et al. (Eds.), Intelligent Tutor-
ing Systems, v. 4053, Springer Berlin Heidelberg, pp. 164–175, Berlin,
Heidelberg, 2006. doi: 10.1007/11774303_17.

[104] WINTERS, T., SHELTON, C., PAYNE, T., et al. “Topic extraction from
item-level grades”. In: American Association for Artificial Intelligence
2005 Workshop on Educational Datamining, 2005.

80

[105] DESMARAIS, M. “Conditions for effectively deriving a q-matrix from data
with non-negative matrix factorization”. In: Pechenizkiy, M., Calders, T.,
Conati, C., et al. (Eds.), Proc. 4th Int. Conf. Educational Data Mining,
pp. 41–50, Eindhoven, the Netherlands, 6–8 jul. 2011.

[106] GONZÁLEZ-BRENES, J. “Modeling Skill Acquisition Over Time with Se-
quence and Topic Modeling”. In: Lebanon, G., Vishwanathan, S. V. N.
(Eds.), Proceedings of the Eighteenth International Conference on Arti-
ficial Intelligence and Statistics, v. 38, Proceedings of Machine Learning
Research, pp. 296–305, San Diego, California, USA, 09–12 May 2015.
PMLR.

[107] DOAN, T.-N., SAHEBI, S. “Rank-Based Tensor Factorization for Student
Performance Prediction”. In: Proceedings of The 12th International Con-
ference on Educational Data Mining (EDM 2019), v. 288, p. 293. ERIC,
2019.

[108] SAHEBI, S., LIN, Y.-R., BRUSILOVSKY, P. “Tensor Factorization for Stu-
dent Modeling and Performance Prediction in Unstructured Domain.” In-
ternational Educational Data Mining Society, 2016.

[109] DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO - UFRJ. “Python
UFRJ”. https://dcc.ufrj.br/~pythonufrj/python1_37.html, 2019.
Online; accessed 01-November-2020.

[110] DELGADO, C., DA SILVA, J., MASCARENHAS, F., et al. “The teaching of
functions as the first step to learn imperative programming”. In: Anais do
Workshop sobre Educação em Computação (WEI), pp. 388–397. Sociedade
Brasileira de Computação - SBC, jan. 2016. doi: 10.5753/wei.2016.9683.

[111] SOMMERVILLE, I. Engenharia de software. 9 ed. São Paulo, Brasil, Pearson
Prentice Hall, 2011. ISBN: 9788579361081.

[112] COHN, M. User Stories Applied: For Agile Software Development. 1 ed. IL,
USA, Addison-Wesley Professional, mar. 2004.

[113] LUCASSEN, G., DALPIAZ, F., WERF, J. M. E. M. V. D., et al. “The Use
and Effectiveness of User Stories in Practice”. In: International working
conference on requirements engineering: Foundation for software quality,
v. 9619, LNCS, pp. 205–222, 2016. ISBN: 978-3-319-30282-9. doi: 10.
1007/978-3-319-30282-9_14.

81

https://dcc.ufrj.br/~pythonufrj/python1_37.html

[114] PRESSMAN, R. S., MAXIM, B. Software Engineering: A Practi-
tioner’s Approach. 8ª edição ed. New York, NY, McGraw-Hill Sci-
ence/Engineering/Math, jan. 2014. ISBN: 978-0-07-802212-8.

[115] PRATUSEVICH, M. “Practice Python”. www.practicepython.org, 2017.
[Online; accessed 07-Jan-2021].

[116] SENTANCE, S., MCNICOL, A. “Python School”. https://pythonschool.
net/, 2016. [Online; accessed 07-Jan-2021].

[117] HU, J. “Python Programming Exercises”. https://github.com/zhiwehu/
Python-programming-exercises, 2018. [Online; accessed 07-Jan-2021].

[118] W3RESOURCE. “W3Resource”. https://www.w3resource.com/python/

python-tutorial.php, 2018. [Online; accessed 07-Jan-2021].

[119] CHOFFIN, B., POPINEAU, F., BOURDA, Y., et al. “DAS3H: Modeling
Student Learning and Forgetting for Optimally Scheduling Distributed
Practice of Skills”. In: Proceedings of 12th International Conference on
Educational Data Mining, pp. 29–38, Montreal, Canada, jul. 2019.

[120] LALWANI, A., AGRAWAL, S. “What Does Time Tell? Tracing the For-
getting Curve Using Deep Knowledge Tracing”. In: Isotani, S., Mil-
lán, E., Ogan, A., et al. (Eds.), International Conference on Artifi-
cial Intelligence in Education, LNCS, pp. 158–162, jun. 2019. doi:
10.1007/978-3-030-23207-8_30.

[121] NAGATANI, K., CHEN, Y. Y., ZHANG, Q., et al. “Augmenting knowledge
tracing by considering forgetting behavior”. In: Proceedings of The World
Wide Web Conference, WWW ’19, San Francisco, CA, USA, maio 2019.
doi: 10.1145/3308558.3313565.

[122] BREIMAN, L., FRIEDMAN, J., OLSHEN, R., et al. Classification and re-
gression trees. 1st ed. Boca Raton, FL, USA, CRC Press, 1984.

[123] MALMI, L., SHEARD, J., SIMON, et al. “Characterizing Research in Com-
puting Education: A Preliminary Analysis of the Literature”. In: Proc.
6th Int. Workshop on Computing Education Research, p. 3–12, Aarhus,
Denmark, 9–10 ago. 2010. doi: 10.1145/1839594.1839597.

[124] SALTON, G., MCGILL, M. J. Introduction to Modern Information Retrieval.
New York, NY, USA, McGraw-Hill, 1986. ISBN: 0070544840.

82

www.practicepython.org
https://pythonschool.net/
https://pythonschool.net/
https://github.com/zhiwehu/Python-programming-exercises
https://github.com/zhiwehu/Python-programming-exercises
https://www.w3resource.com/python/python-tutorial.php
https://www.w3resource.com/python/python-tutorial.php

[125] ZHANG, W., YOSHIDA, T., TANG, X. “A comparative study of TF*IDF,
LSI and multi-words for text classification”, Expert Syst. Appl., v. 38, n. 3,
pp. 2758–2765, mar. 2011. doi: 10.1016/j.eswa.2010.08.066.

[126] YAN, X., GUO, J., LIU, S., et al. “Clustering Short Text Using Ncut-Weighted
Non-Negative Matrix Factorization”. In: Proc. 21st ACM Int. Conf. In-
formation and Knowledge Management, pp. 2259–2262, Maui, HI, USA,
29 out.–2 nov. 2012. doi: 10.1145/2396761.2398615.

[127] CICHOCKI, A., PHAN, A. H. “Fast Local Algorithms for Large Scale Non-
negative Matrix and Tensor Factorizations”, IEICE Trans. Fundam. Elec-
tron., Commun. and Comput. Sci., v. E92.A, n. 3, pp. 708–721, mar. 2009.
doi: 10.1587/transfun.E92.A.708.

[128] O’CALLAGHAN, D., GREENE, D., CARTHY, J., et al. “An analysis of
the coherence of descriptors in topic modeling”, Expert Syst. Appl., v. 42,
n. 13, pp. 5645–5657, ago. 2015. doi: 10.1016/j.eswa.2015.02.055.

[129] CHEN, Y., ZHANG, H., LIU, R., et al. “Experimental explorations on short
text topic mining between LDA and NMF based Schemes”, Knowledge-
Based Syst., v. 163, pp. 1–13, jan. 2019. doi: 10.1016/j.knosys.2018.08.011.

[130] BERGSTRA, J., BENGIO, Y. “Random Search for HyperParameter Opti-
mization”, J. Mach. Learn. Res., v. 13, pp. 281–305, fev. 2012.

[131] CHUANG, J., GUPTA, S., MANNING, C., et al. “Topic model diagnos-
tics: Assessing domain relevance via topical alignment”. In: Dasgupta,
S., McAllester, D. (Eds.), Proc. 30th Int. Conf. Machine Learning, pp.
612–620, 16–21 jun. 2013.

[132] WANG, C., BLEI, D. M. “Collaborative Topic Modeling for Recommending
Scientific Articles”. In: Proc. 17th ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, pp. 448–456, San Diego, CA, USA, 21–24
ago. 2011. doi: 10.1145/2020408.2020480.

[133] MIMNO, D., WALLACH, H. M., TALLEY, E., et al. “Optimizing Semantic
Coherence in Topic Models”. In: Barzilay, R., Johnson, M. (Eds.), Proc.
Conf. Empirical Methods Natural Language Processing, pp. 262–272, Ed-
inburgh, Scotland, United Kingdom, 27–29 jul. 2011.

[134] ALETRAS, N., STEVENSON, M. “Evaluating Topic Coherence Using Dis-
tributional Semantics”. In: Koller, A., Erk, K. (Eds.), Proc. 10th Int.
Conf. Computational Semantics, pp. 13–22, Potsdam, Germany, 19–22
mar. 2013.

83

[135] LAU, J. H., NEWMAN, D., BALDWIN, T. “Machine Reading Tea Leaves:
Automatically Evaluating Topic Coherence and Topic Model Quality”. In:
Wintner, S., Goldwater, S., Riezler, S. (Eds.), Proc. 14th Conf. European
Chapter Association Computational Linguistics, pp. 530–539, Gothen-
burg, Sweden, 26–30 abr. 2014. doi: 10.3115/v1/E14-1056.

[136] NEWMAN, D., LAU, J. H., GRIESER, K., et al. “Automatic Evaluation of
Topic Coherence”. In: Human Language Technologies: 2010 Annu. Conf.
North American Chapter Association Computational Linguistics, pp. 100–
108, Los Angeles, CA, USA, 1–6 jun. 2010.

[137] JOINT TASK FORCE ON COMPUTING CURRICULA, ASSOCIATION
FOR COMPUTING MACHINERY (ACM) AND IEEE COMPUTER
SOCIETY. Computer Science Curricula 2013: Curriculum Guidelines
for Undergraduate Degree Programs in Computer Science. New York,
NY, USA, Association for Computing Machinery, dez. 2013. ISBN:
9781450323093. doi: 10.1145/2534860.

[138] SCHULTE, C., BENNEDSEN, J. “What Do Teachers Teach in Introductory
Programming?” In: Anderson, R., Fincher, S. A., Guzdial, M. (Eds.),
Proc. 2nd Int. Workshop Computing Education Research, pp. 17–28, 9–10
set. 2006. doi: 10.1145/1151588.1151593.

[139] ROBINS, A., HADEN, P., GARNER, S. “Problem Distributions in a CS1
Course”. In: Tolhurst, D., Mann, S. (Eds.), Proc. 8th Australasian Conf.
Computing Education, v. 52, pp. 165–173, Hobart, Australia, jan. 2006.

[140] GOLDMAN ET AL. “Setting the Scope of Concept Inventories for Intro-
ductory Computing Subjects”, ACM Trans. Comput. Educ., v. 10, n. 2,
pp. 1–29, jun. 2010. Art. no. 5, doi: 10.1145/1789934.1789935.

[141] CHERENKOVA, Y., ZINGARO, D., PETERSEN, A. “Identifying Challeng-
ing CS1 Concepts in a Large Problem Dataset”. In: Dougherty, J., Nagel,
K., Decker, A., et al. (Eds.), Proc. 45th ACM Technical Symp. Computer
Science Education, pp. 695–700, Atlanta, GA, USA, 5–8 mar. 2014. doi:
10.1145/2538862.2538966.

[142] CHANG, J., GERRISH, S., WANG, C., et al. “Reading Tea Leaves: How Hu-
mans Interpret Topic Models”. In: Bengio, Y., Schuurmans, D., Lafferty,
J. D., et al. (Eds.), Advances in Neural Information Processing Systems
22, Proc. 23rd Annu. Conf. Neural Information Processing Systems, pp.
288–296, Vancouver, British Columbia, Canada, 7–10 dez. 2009.

84

[143] MAHMOUD, A., BRADSHAW, G. “Semantic topic models for source code
analysis”, Empirical Softw. Eng., v. 22, n. 4, pp. 1965–2000, ago. 2017.
doi: 10.1007/s10664-016-9473-1.

[144] ANDERSON, M. J., WALSH, D. C. I. “PERMANOVA, ANOSIM, and the
Mantel test in the face of heterogeneous dispersions: What null hypothesis
are you testing?” Ecological Monographs, v. 83, n. 4, pp. 557–574, 2013.
ISSN: 1557-7015. doi: 10.1890/12-2010.1.

[145] CHAPMAN, M., UNDERWOOD, A. “Ecological patterns in multivariate as-
semblages:information and interpretation of negative values in ANOSIM
tests”, Mar. Ecol. Prog. Ser., v. 180, pp. 257–265, 1999. ISSN: 0171-8630,
1616-1599. doi: 10.3354/meps180257.

[146] CLARKE, K. R. “Non-parametric multivariate analyses of changes in com-
munity structure”, Australian J. Ecology, v. 18, n. 1, pp. 117–143, 1993.
ISSN: 1442-9993. doi: 10.1111/j.1442-9993.1993.tb00438.x.

[147] BÜNDCHEN, C. Avaliação da distribuição da estatística R e nível descritivo
amostral na Análise de Similaridade – ANOSIM: um estudo de caso do
Projeto MAPEM. Monografia, Universidade Federal do Rio Grande do
Sul, 2010.

[148] FAGIN, R. “Combining Fuzzy Information from Multiple Systems”. In: Hull,
R. (Ed.), Proc. 15th ACM SIGACT-SIGMOD-SIGART Symp. Principles
Database Systems, pp. 216–226, Montreal, Canada, 3–5 jun. 1996. doi:
10.1145/237661.237715.

[149] ABDI, H., WILLIAMS, L. J. “Principal component analysis”, WIREs Compu-
tational Statistics, v. 2, n. 4, pp. 433–459, jul. 2010. doi: 10.1002/wics.101.

[150] SIEVERT, C., SHIRLEY, K. “LDAvis: A method for visualizing and inter-
preting topics”. In: Proc. Workshop Interactive Language Learning, Visu-
alization, and Interfaces, pp. 63–70, Baltimore, MD, USA, 27 jun. 2014.
doi: 10.3115/v1/W14-3110.

[151] MANN, H. B., WHITNEY, D. R. “On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other”, Ann. Math. Statist.,
v. 18, n. 1, pp. 50–60, mar. 1947. doi: 10.1214/aoms/1177730491.

[152] MURTAGH, F., LEGENDRE, P. “Ward’s hierarchical agglomerative cluster-
ing method: which algorithms implement Ward’s criterion?” J. Classifi-
cation, v. 31, n. 3, pp. 274–295, out. 2014.

85

[153] PROVOST, F., FAWCETT, T. Data Science para Negócios: O que Você Pre-
cisa Saver Sobre Mineração de Dados e Pensamento Analítico de Dados.
1st ed. Rio de Janeiro/RJ, Brazil, Alta Books, 2016.

86

	List of Figures
	List of Tables
	Introduction
	Objective
	Contribution
	Document Organization

	Related Work
	Programming Learning Environments
	Early Dropout Prediction
	Extracting Questions General Attributes
	Extracting Concepts from Code
	Extracting Concepts from Student Performance
	Unsupervised Student Performance Models

	Data Acquisition System and User Interaction
	Teaching Methodology
	User Stories
	System Architecture
	Collected Data

	User Interaction

	Database and Exploratory Analysis
	Revision Dataset
	Semester Dataset
	Exploratory Analysis
	Early Dropout Prediction

	Mapping Methodology
	Research Method
	Q-Matrix Discovery from Code
	Data Transformation
	Topic Extraction
	Topic Filter and External Evaluation
	Topics Contextualization

	Q-Matrix Discovery from Student Performance
	Factorization methods to predict student performance
	Evaluation

	Analysis of Similarities

	Results and Discussion
	Q-Matrix Discovery from Code
	Experiment 1
	Experiment 2
	Coherence Evaluation
	Discussion about Experiments 1 and 2
	Topics Contextualization

	Q-Matrix Discovery from Student Performance
	Train and test split
	Prediction results

	Analysis of Similarities
	Student Survey

	Conclusion
	Final Remarks
	Future Work

	References

