A New Computational Approach for the Fermat-Weber Problem and Extensions

Nelson Maculan (UFRJ), Marcos Negreiros (UEC), Renan Pinto (UFRRJ)

March 2021

Abstract

In this technical note we propose a new computational approach for the Fermat-Weber problem and two extensions of this problem.

1 Introduction

A more detailed work on the Fermat-Weber problem [7] can be found in [2], [6]. In a didactic way, we show in the next section an optimization model presented in [3] and we comment on numerical results for 1,000 points in R^{3} with this formulation. In section 3 we present the multi-source Weber problem as a DC programming formulation. Finally, in section 4 we introduce a discrete multisource Weber problem and its formulation

2 A Mathematical Formulation

Given $a^{i} \in R^{n}, i \in P=\{1,2, \ldots, p\}$, the Fermat-Weber [7] optimization problem $(F W P)$ requires finding a point $x \in R^{n}$, that minimizes the sum of weighted Euclidean distances to all points in P. Let $w_{i} \geq 0, i \in P$ a weight associated with the Euclidean distance from x to a^{i}.

The Euclidean distance between x and a^{i} is

$$
\left\|a^{i}-x\right\|_{2}=\sqrt{\sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}\right)^{2}}, i \in P
$$

Thus $(F W P)$ can be written as follows:

$$
(F W P): \quad \min \sum_{i=1}^{p} w_{i} \sqrt{\sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}\right)^{2}} .
$$

Where $x=\left(x_{1} x_{2} \ldots x_{n}\right)^{\top}$ is the vector with the variables. $(F W P)$ is a convex optimization problem, but it is not smooth.

Another way of representing ($F W P$) :

$$
(F W P 1): \quad \min \sum_{i=1}^{p} w_{i} z_{i},
$$

subject to:

$$
\begin{equation*}
z_{i} \geq \sqrt{\sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}\right)^{2}}, \quad i=1,2, \ldots, p \tag{1}
\end{equation*}
$$

Each constraint i in (1) is known as a second order cone, which can be also written:

$$
\begin{equation*}
z_{i}^{2} \geq \sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}\right)^{2}, \quad z_{i} \geq 0, \quad i=1,2, \ldots, p \tag{2}
\end{equation*}
$$

You can also write:

$$
\begin{equation*}
(F W P 2): \quad \min \sum_{i=1}^{p} w_{i} z_{i} \tag{3}
\end{equation*}
$$

subject to:

$$
\begin{gather*}
z_{i}^{2} \geq \sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}\right)^{2}, \quad i=1,2, \ldots, p \tag{4}\\
z_{i} \geq 0, \quad i=1,2, \ldots, p \tag{5}
\end{gather*}
$$

This last formulation (FWP2) is a smooth and convex optimization problem, it was presented in [3], however, no computational results were achieved.

The constraints (4) and (5) define a second order cone, where interior point methods developed in [9] can be used. The commercial software XPRESS [8] can recognize automatically constraints (4) and (5) as a second order cone, and uses an interior point algorithm [9] for solving (FWP2). We did some computational toy tests for $p=1,000$ and $n=3$ with XPRESS, the CPU time is negligible.

3 Multi-source Weber Problem (MWP)

Given $a^{i} \in R^{n}, i \in P=\{1,2, \ldots, p\}$, geometrical position of customers and q a number of facilities whose we have to find their physical locations $x^{j} \in R^{n}, j=$ $1,2, \ldots, q$. We know $d_{i} \in R_{+}, i=1,2, \ldots, p$ the given demand required by the $i^{t h}$ customer, and $o_{j} \in R_{+}, j=1,2, \ldots, q$, the maximum offering of the $j^{t h}$ facility.

$$
\begin{equation*}
(M W P): \min \sum_{i=1}^{p} \sum_{j=1}^{q} w_{i j} \sqrt{\sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}^{j}\right)^{2}}, \tag{6}
\end{equation*}
$$

subject to:

$$
\begin{gather*}
\sum_{j=1}^{q} w_{i j} \geq d_{i}, i=1,2, \ldots, p, \quad \sum_{i=1}^{p} w_{i j} \leq o_{j}, j=1,2, \ldots, q \tag{7}\\
w_{i j} \geq 0, \quad i=1,2, \ldots, p, \quad j=1,2, \ldots, q \tag{8}\\
x_{k}^{j} \in R, \quad k=1,2, \ldots, n, \quad j=1,2, \ldots, q \tag{9}
\end{gather*}
$$

Where $w_{i j}$ denotes the unknown allocation from the $j^{t h}$ facility to the $i^{t h}$ customer, we assume that the involved transportation costs are proportional to the corresponding distances, see ([5]).

We suppose $\sum_{i=1}^{p} d_{i} \leq \sum_{j=1}^{q} o_{j}$, thus the set of constraints (7) and (8) will not be empty.
$(M W P)$ is neither convex, nor smooth.

3.1 A DC programming formulation

Since $w_{i j} \geq 0, i=1,2, \ldots, p, \quad j=1,2, \ldots, q$ we can also write (6) as following:

$$
\begin{equation*}
(M W P): \min \sum_{i=1}^{p} \sum_{j=1}^{q} w_{i j} z_{i j} \tag{10}
\end{equation*}
$$

subject to:

$$
\begin{equation*}
z_{i j} \geq \sqrt{\sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}^{j}\right)^{2}}, i=1,2, \ldots, p, j=1,2, \ldots, q \tag{11}
\end{equation*}
$$

(11) will be replaces by

$$
\begin{equation*}
z_{i j}^{2} \geq \sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}^{j}\right)^{2}, z_{i j} \geq 0 i=1,2, \ldots, p, j=1,2, \ldots, q \tag{12}
\end{equation*}
$$

We define
$w_{i j}=t_{i j}-v_{i j}, z_{i j}=t_{i j}+v_{i j}, t_{i j} \in R, v_{i j} \in R, i=1,2, \ldots, p, j=1,2, \ldots, q$. Thus $w_{i j} z_{i j}=t_{i j}^{2}-v_{i j}^{2}, i=1,2, \ldots, p, j=1,2, \ldots, q$.

$$
\begin{equation*}
(D C: M W P): \min \sum_{i=1}^{p} \sum_{j=1}^{q}\left(t_{i j}^{2}-v_{i j}^{2}\right) \tag{13}
\end{equation*}
$$

subject to:

$$
\begin{equation*}
w_{i j}=t_{i j}-v_{i j}, \quad z_{i j}=t_{i j}+v_{i j}, i=1,2, \ldots, p, j=1,2, \ldots, q \tag{14}
\end{equation*}
$$

$$
\begin{gather*}
z_{i j}^{2} \geq \sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}^{j}\right)^{2}, z_{i j} \geq 0 i=1,2, \ldots, p, j=1,2, \ldots, q, \tag{15}\\
t_{i j} \in R, v_{i j} \in R, i=1,2, \ldots, p, j=1,2, \ldots, q \tag{16}\\
\sum_{j=1}^{q} w_{i j} \geq d_{i}, i=1,2, \ldots, p, \quad \sum_{i=1}^{p} w_{i j} \leq o_{j}, j=1,2, \ldots, q \tag{17}\\
w_{i j} \geq 0, i=1,2, \ldots, p, \quad j=1,2, \ldots, q \tag{18}\\
x_{k}^{j} \in R, k=1,2, \ldots, n, \quad j=1,2, \ldots, q \tag{19}
\end{gather*}
$$

We minimize the difference of two convex functions known as DC programming in a convex set, see [4], $(D C: M W P)$ can be solved using branch-andbound techniques, [1].

4 A Discrete Multi-source Weber Problem

We propose another approach, Discrete Multi-source Weber Problem (DMWP). We will define for each $i=1,2, \ldots, p$, and $\forall j, w_{i j} \in S_{i}=\left\{s_{1}^{i}, s_{2}^{i}, \ldots, d_{i}\right\}$, where $0=s_{1}^{i}<s_{2}^{i}<\ldots<s_{\left|S_{i}\right|}^{i}=d_{i}$.
We consider

$$
M=\max _{1 \leq i<j \leq p}\left\|a^{i}-a^{j}\right\|_{2}
$$

From (6):

$$
\begin{equation*}
w_{i j} \sqrt{\sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}^{j}\right)^{2}}=\sqrt{\sum_{k=1}^{n} w_{i j}^{2}\left(a_{k}^{i}-x_{k}^{j}\right)^{2}} \tag{20}
\end{equation*}
$$

We define $t_{i j k}=w_{i j}\left(a_{k}^{i}-x_{k}^{j}\right)$. We will be able to write:

$$
\begin{gather*}
t_{i j k} \geq-M\left(1-y_{i j l}\right)+s_{l}^{i}\left(a_{k}^{i}-x_{k}^{j}\right), l=1, . .,\left|S_{i}\right|, k=1, . ., n, i=1, . ., p, j=1, . ., q, \\
t_{i j k} \leq s_{l}^{i}\left(a_{k}^{i}-x_{k}^{j}\right)+M\left(1-y_{i j l}\right), l=1, . .,\left|S_{i}\right|, k=1, . ., n, i=1, . ., p, j=1, \ldots, q, \tag{21}\\
\sum_{l=1}^{\left|S_{i}\right|} y_{i j l}=1, i=1,2, \ldots, p, j=1,2, \ldots, q, \tag{22}\\
y_{i j l} \in\{0,1\}, i=1,2, \ldots, p, j=1,2, \ldots, q, l=1,2, \ldots,\left|S_{i}\right|, \tag{24}\\
w_{i j}=\sum_{j=1}^{p} s_{l}^{i} y_{i j l}, i=1,2, \ldots, p, l=1,2, \ldots,\left|S_{i}\right|, \tag{25}\\
\sum_{j=1}^{q} w_{i j} \geq d_{i}, i=1,2, \ldots, p, \quad \sum_{i=1}^{p} w_{i j} \leq o_{j}, j=1,2, \ldots, q . \tag{26}
\end{gather*}
$$

From (20), (21), (22), (23), (24):
$w_{i j} \sqrt{\sum_{k=1}^{n}\left(a_{k}^{i}-x_{k}^{j}\right)^{2}}=\sqrt{\sum_{k=1}^{n} w_{i j}^{2}\left(a_{k}^{i}-x_{k}^{j}\right)^{2}}=\sqrt{\sum_{k=1}^{n} t_{i j k}^{2}}$.
Thus we can write:

$$
\begin{equation*}
(D M W P): \min \sum_{i=1}^{p} \sum_{j=1}^{q} z_{i j}, \tag{27}
\end{equation*}
$$

subject to: $(21),(22),(23),(24),(25),(26)$, and

$$
\begin{equation*}
z_{i j} \geq \sqrt{\sum_{k=1}^{n} t_{i j k}^{2}}, i=1,2, \ldots, p, j=1,2, \ldots, q \tag{28}
\end{equation*}
$$

Constraints (28) can be replaced by

$$
\begin{gather*}
z_{i j}^{2} \geq \sum_{k=1}^{n} t_{i j k}^{2}, i=1,2, \ldots, p, j=1,2, \ldots, q \tag{29}\\
z_{i j} \geq 0, i=1,2, \ldots, p, j=1,2, \ldots, q \tag{30}\\
x_{k}^{j} \in R, k=1,2, \ldots, n, \quad j=1,2, \ldots, q \tag{31}
\end{gather*}
$$

As we have seen above, the constraints (29), (30) form a second order cone [9].
Finally, we will present a new optimization model whose continuous relaxation is a convex and smooth optimization problem, which we would like to solve using XPRESS:

$$
(D M W P): \min \sum_{i=1}^{p} \sum_{j=1}^{q} z_{i j}
$$

Subject to:

$$
\begin{gathered}
t_{i j k} \geq-M\left(1-y_{i j l}\right)+s_{l}^{i}\left(a_{k}^{i}-x_{k}^{j}\right), l=1, . .,\left|S_{i}\right|, k=1, . ., n, i=1, . ., p, j=1, . ., q, \\
t_{i j k} \leq s_{l}^{i}\left(a_{k}^{i}-x_{k}^{j}\right)+M\left(1-y_{i j l}\right), l=1, . .,\left|S_{i}\right|, k=1, . ., n, i=1, . ., p, j=1, . ., q, \\
\sum_{l=1}^{\left|S_{i}\right|} y_{i j l}=1, i=1,2, \ldots, p, j=1,2, \ldots, q \\
y_{i j l} \in\{0,1\}, i=1,2, \ldots, p, j=1,2, \ldots, q, l=1,2, \ldots,\left|S_{i}\right| \\
w_{i j}=\sum_{j=1}^{p} s_{l}^{i} y_{i j l}, i=1,2, \ldots, p, l=1,2, \ldots,\left|S_{i}\right|
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{j=1}^{q} w_{i j} \geq d_{i}, i=1,2, \ldots, p, \quad \sum_{i=1}^{p} w_{i j} \leq o_{j}, j=1,2, \ldots, q . \\
& z_{i j}^{2} \geq \sum_{k=1}^{n} t_{i j k}^{2}, i=1,2, \ldots, p, j=1,2, \ldots, q, \\
& z_{i j} \geq 0, \quad i=1,2, \ldots, p, \quad j=1,2, \ldots, q, \\
& x_{k}^{j} \in R, k=1,2, \ldots, n, \quad j=1,2, \ldots, q .
\end{aligned}
$$

Note: In order for the $(D M W P)$ optimization problem to have a solution, we guarantee that: $\sum_{j=1}^{q} o_{j} \geq \sum_{i=1}^{p} d_{i}$.

References

[1] Le Thi Hoai An and Pham Dinh Tao. A branch and bound method via d.c. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. Journal of Global Optimization, 13:171-206, 1998.
[2] J. Brimberg. The Fermat-Weber location problem revisited. Mathematical Programming, 71:71-16, 1995.
[3] R. Chandrasekaran and A. Tamir. Algebraic optimization Fermat-Weber location problem. Mathematical Programming, 46:219-224, 1990.
[4] T. Q. Phong. An algorithm for solving general D.C. programming problems. Operations Research Letters, 15(2):73-79, 1994.
[5] A. Raeisi Dehkordi. The optimal solution set of the multi-source Weber problem. Bulletin of the Iranian Mathematical Society, 45:495-514, 2019.
[6] H. Venceslau, M. Karam-Venceslau, A. E. Xavier, and N. Maculan. A geometric perspective of the Weiszfeld algorithm for solving the Fermat-Weber problem. RAIRO Operations Research, 50:157-173, 2016.
[7] A. Weber. Über den Standort der Industrien (1909) - English translation: The Theory of the Location of Industries. Chicago, Chicago University Press, 1929.
[8] XPRESS. http://www.maths.ed.ac.uk/hall/xpress/.
[9] G. Xue and Y. Ye. An efficient algorithm for minimizing a sum of euclidean norms with applications. SIAM Journal on Optimization, 4(7):1017-1036, 1997.

