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Abstract

In this technical note we propose a new computational approach for
the Fermat-Weber problem and two extensions of this problem.

1 Introduction

A more detailed work on the Fermat-Weber problem [7] can be found in [2], [6].
In a didactic way, we show in the next section an optimization model presented
in [3] and we comment on numerical results for 1,000 points in R3 with this
formulation. In section 3 we present the multi-source Weber problem as a DC
programming formulation. Finally, in section 4 we introduce a discrete multi-
source Weber problem and its formulation

2 A Mathematical Formulation

Given ai ∈ Rn, i ∈ P = {1, 2, ..., p}, the Fermat-Weber [7] optimization problem
(FWP ) requires finding a point x ∈ Rn, that minimizes the sum of weighted
Euclidean distances to all points in P. Let wi ≥ 0, i ∈ P a weight associated
with the Euclidean distance from x to ai.

The Euclidean distance between x and ai is

||ai − x||2 =

√√√√ n∑
k=1

(aik − xk)2, i ∈ P.

Thus (FWP ) can be written as follows:

(FWP ) : min

p∑
i=1

wi

√√√√ n∑
k=1

(aik − xk)2.

Where x = (x1 x2 ... xn)> is the vector with the variables. (FWP ) is a convex
optimization problem, but it is not smooth.
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Another way of representing (FWP ) :

(FWP1) : min

p∑
i=1

wizi,

subject to:

zi ≥

√√√√ n∑
k=1

(aik − xk)2, i = 1, 2, ..., p. (1)

Each constraint i in (1) is known as a second order cone, which can be also
written:

z2i ≥
n∑

k=1

(aik − xk)2, zi ≥ 0, i = 1, 2, ..., p. (2)

You can also write:

(FWP2) : min

p∑
i=1

wizi, (3)

subject to:

z2i ≥
n∑

k=1

(aik − xk)2, i = 1, 2, ..., p, (4)

zi ≥ 0, i = 1, 2, ..., p, (5)

This last formulation (FWP2) is a smooth and convex optimization problem,
it was presented in [3], however, no computational results were achieved.

The constraints (4) and (5) define a second order cone, where interior point
methods developed in [9] can be used. The commercial software XPRESS [8]
can recognize automatically constraints (4) and (5) as a second order cone, and
uses an interior point algorithm [9] for solving (FWP2). We did some compu-
tational toy tests for p = 1, 000 and n = 3 with XPRESS, the CPU time is
negligible.

3 Multi-source Weber Problem (MWP)

Given ai ∈ Rn, i ∈ P = {1, 2, ..., p}, geometrical position of customers and q a
number of facilities whose we have to find their physical locations xj ∈ Rn, j =
1, 2, ..., q. We know di ∈ R+, i = 1, 2, ..., p the given demand required by the ith

customer, and oj ∈ R+, j = 1, 2, ..., q, the maximum offering of the jth facility.

(MWP ) : min

p∑
i=1

q∑
j=1

wij

√√√√ n∑
k=1

(aik − xj
k)2, (6)
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subject to:

q∑
j=1

wij ≥ di, i = 1, 2, ..., p,

p∑
i=1

wij ≤ oj , j = 1, 2, ..., q. (7)

wij ≥ 0, i = 1, 2, ..., p, j = 1, 2, ..., q, (8)

xj
k ∈ R, k = 1, 2, ..., n, j = 1, 2, ..., q. (9)

Where wij denotes the unknown allocation from the jth facility to the ith cus-
tomer, we assume that the involved transportation costs are proportional to the
corresponding distances, see ([5]).

We suppose
∑p

i=1 di ≤
∑q

j=1 oj , thus the set of constraints (7) and (8) will
not be empty.

(MWP ) is neither convex, nor smooth.

3.1 A DC programming formulation

Since wij ≥ 0, i = 1, 2, ..., p, j = 1, 2, ..., q we can also write (6) as following:

(MWP ) : min

p∑
i=1

q∑
j=1

wijzij , (10)

subject to:

zij ≥

√√√√ n∑
k=1

(aik − xj
k)2, i = 1, 2, ..., p, j = 1, 2, ..., q. (11)

(11) will be replaces by

z2ij ≥
n∑

k=1

(aik − xj
k)2, zij ≥ 0 i = 1, 2, ..., p, j = 1, 2, ..., q. (12)

We define
wij = tij − vij , zij = tij + vij , tij ∈ R, vij ∈ R, i = 1, 2, ..., p, j = 1, 2, ..., q.
Thus wijzij = t2ij − v2ij , i = 1, 2, ..., p, j = 1, 2, ..., q.

(DC : MWP ) : min

p∑
i=1

q∑
j=1

(t2ij − v2ij), (13)

subject to:

wij = tij − vij , zij = tij + vij , i = 1, 2, ..., p, j = 1, 2, ..., q, (14)
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z2ij ≥
n∑

k=1

(aik − xj
k)2, zij ≥ 0 i = 1, 2, ..., p, j = 1, 2, ..., q, (15)

tij ∈ R, vij ∈ R, i = 1, 2, ..., p, j = 1, 2, ..., q, (16)

q∑
j=1

wij ≥ di, i = 1, 2, ..., p,

p∑
i=1

wij ≤ oj , j = 1, 2, ..., q, (17)

wij ≥ 0, i = 1, 2, ..., p, j = 1, 2, ..., q, (18)

xj
k ∈ R, k = 1, 2, ..., n, j = 1, 2, ..., q. (19)

We minimize the difference of two convex functions known as DC program-
ming in a convex set, see [4], (DC : MWP ) can be solved using branch-and-
bound techniques, [1].

4 A Discrete Multi-source Weber Problem

We propose another approach, Discrete Multi-source Weber Problem (DMWP ).
We will define for each i = 1, 2, ..., p, and ∀j, wij ∈ Si = {si1, si2, ..., di},
where 0 = si1 < si2 < ... < si|Si| = di.
We consider

M = max
1≤i<j≤p

||ai − aj ||2.

From (6):

wij

√√√√ n∑
k=1

(aik − xj
k)2 =

√√√√ n∑
k=1

w2
ij(a

i
k − xj

k)2 (20)

We define tijk = wij(a
i
k − xj

k). We will be able to write:

tijk ≥ −M(1−yijl) + sil(a
i
k−xj

k), l = 1, .., |Si|, k = 1, .., n, i = 1, .., p, j = 1, .., q,
(21)

tijk ≤ sil(a
i
k − xj

k) + M(1− yijl), l = 1, .., |Si|, k = 1, .., n, i = 1, .., p, j = 1, .., q,
(22)

|Si|∑
l=1

yijl = 1, i = 1, 2, ..., p, j = 1, 2, ..., q, (23)

yijl ∈ {0, 1}, i = 1, 2, ..., p, j = 1, 2, ..., q, l = 1, 2, ..., |Si|, (24)

wij =

p∑
j=1

silyijl, i = 1, 2, ..., p, l = 1, 2, ..., |Si|, (25)

q∑
j=1

wij ≥ di, i = 1, 2, ..., p,

p∑
i=1

wij ≤ oj , j = 1, 2, ..., q. (26)

From (20), (21), (22), (23), (24):
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wij

√∑n
k=1(aik − xj

k)2 =
√∑n

k=1 w
2
ij(a

i
k − xj

k)2 =
√∑n

k=1 t
2
ijk.

Thus we can write:

(DMWP ) : min

p∑
i=1

q∑
j=1

zij , (27)

subject to: (21), (22), (23), (24), (25), (26), and

zij ≥

√√√√ n∑
k=1

t2ijk, i = 1, 2, ..., p, j = 1, 2, ..., q. (28)

Constraints (28) can be replaced by

z2ij ≥
n∑

k=1

t2ijk, i = 1, 2, ..., p, j = 1, 2, ..., q, (29)

zij ≥ 0, i = 1, 2, ..., p, j = 1, 2, ..., q. (30)

xj
k ∈ R, k = 1, 2, ..., n, j = 1, 2, ..., q. (31)

As we have seen above, the constraints (29), (30) form a second order cone [9].

Finally, we will present a new optimization model whose continuous relaxation
is a convex and smooth optimization problem, which we would like to solve
using XPRESS:

(DMWP ) : min

p∑
i=1

q∑
j=1

zij ,

Subject to:

tijk ≥ −M(1− yijl) + sil(a
i
k − xj

k), l = 1, .., |Si|, k = 1, .., n, i = 1, .., p, j = 1, .., q,

tijk ≤ sil(a
i
k − xj

k) + M(1− yijl), l = 1, .., |Si|, k = 1, .., n, i = 1, .., p, j = 1, .., q,

|Si|∑
l=1

yijl = 1, i = 1, 2, ..., p, j = 1, 2, ..., q,

yijl ∈ {0, 1}, i = 1, 2, ..., p, j = 1, 2, ..., q, l = 1, 2, ..., |Si|,

wij =

p∑
j=1

silyijl, i = 1, 2, ..., p, l = 1, 2, ..., |Si|,
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q∑
j=1

wij ≥ di, i = 1, 2, ..., p,

p∑
i=1

wij ≤ oj , j = 1, 2, ..., q.

z2ij ≥
n∑

k=1

t2ijk, i = 1, 2, ..., p, j = 1, 2, ..., q,

zij ≥ 0, i = 1, 2, ..., p, j = 1, 2, ..., q,

xj
k ∈ R, k = 1, 2, ..., n, j = 1, 2, ..., q.

Note: In order for the (DMWP ) optimization problem to have a solution, we
guarantee that:

∑q
j=1 oj ≥

∑p
i=1 di.
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