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Abstract

In this technical note we propose a new computational approach for
the Fermat-Weber problem and two extensions of this problem.

1 Introduction

A more detailed work on the Fermat-Weber problem [7] can be found in [2], [6].
In a didactic way, we show in the next section an optimization model presented
in [3] and we comment on numerical results for 1,000 points in R with this
formulation. In section 3 we present the multi-source Weber problem as a DC
programming formulation. Finally, in section 4 we introduce a discrete multi-
source Weber problem and its formulation

2 A Mathematical Formulation
Givena' € R",i € P ={1,2,...,p}, the Fermat-Weber [7] optimization problem
(FW P) requires finding a point € R™, that minimizes the sum of weighted

Euclidean distances to all points in P. Let w; > 0, i € P a weight associated
with the Euclidean distance from x to a'.

The Euclidean distance between z and a' is

la* — z|| =

Thus (F'W P) can be written as follows:

Z(afC — xp)2.

P
(FWP): min Z w;
i=1 k=1

Where z = (21 o3 ... 7,) " is the vector with the variables. (FW P) is a convex
optimization problem, but it is not smooth.



Another way of representing (FW P) :

(FWPI) : manwlzz,

subject to:

Each constraint ¢ in (1) is known as a second order cone, which can be also
written:

3

22 C—ap)?, 2 >0, i=1,2,..,p. (2)
k=

—

You can also write:

(FWP2): min Z w; 2, (3)

subject to:

Z Z 71716 ) 1= 1727"'7p7 (4)

2120 2—12 - Py (5)

This last formulation (FW P2) is a smooth and convex optimization problem,
it was presented in [3], however, no computational results were achieved.

The constraints (4) and (5) define a second order cone, where interior point
methods developed in [9] can be used. The commercial software XPRESS [8]
can recognize automatically constraints (4) and (5) as a second order cone, and
uses an interior point algorithm [9] for solving (F'W P2). We did some compu-
tational toy tests for p = 1,000 and n = 3 with XPRESS, the CPU time is
negligible.

3 Multi-source Weber Problem (MWP)

Given a' € R",i € P = {1,2,...,p}, geometrical position of customers and ¢ a
number of facilities whose we have to find their physical locations 7 € R®, j =
1,2,...,q. We know d; € Ry, i =1,2,...,p the given demand required by the 7*"
customer, and o; € Ry, j =1,2,...,q, the maximum offering of the gt facility.

n

> (g, —a})?, (6)

k=1

(MWP): manZwU

=1 j=1




subject to:

q p
Sowig>di, i=1,2,,p, Y wij<oj, j=12,..,q (7)
j=1 i=1
wlj 207 Z: 1727"'7p7 J: 172)"'7q7 (8)
wl €R, k=1,2...,n, j=1,2,..,q (9)

Where w;; denotes the unknown allocation from the j** facility to the i*" cus-
tomer, we assume that the involved transportation costs are proportional to the
corresponding distances, see ([5]).

We suppose 7 d; < >39_, 0j, thus the set of constraints (7) and (8) will
not be empty.

(MW P) is neither convex, nor smooth.

3.1 A DC programming formulation
Since w;; >0, i=1,2,...,p, j=1,2,...,q we can also write (6) as following:
(MWP) : mlnz Zw”z”, (10)
=1 j=1

subject to:

c Dy .7 = 1a2a - (- (11)

(11) will be replaces by
n
22 Z ) 2> 00=1,2,.p, j=1,2,...,q. (12)
We define

Wij = tij — Vij, Rij = tij + vij, tij € R, Vij € R, i=1,2,....,p, 7=1,2,....q.

Thus wy;zi; = t; — v, i =1,2,..,p, 7 =1,2,...,q.

(DC : MWP): min Zp:zq: 2 (13)

subject to:

Wi = tij — Vij, zij = bij +vgg, t=1,2,..p, j=1,2,...,q, (14)



22> (ap—al)? 25 20i=1,2,..p, j=1,2,...q, (15)

k=1
ty €R, vij €R, i=1,2,...,p, j=1,2,...,q, (16)
q p
Zwij >di, 1=1,2,...,p, Zwij <o, j=1,2,..,q, (17)
Jj=1 i=1
wi; >0, i=1,2,...p, j=1,2..4q, (18)
¥l €R, k=1,2..n, j=1,2,..,q (19)

We minimize the difference of two convex functions known as DC program-
ming in a convex set, see [4], (DC : MW P) can be solved using branch-and-
bound techniques, [1].

4 A Discrete Multi-source Weber Problem

We propose another approach, Discrete Multi-source Weber Problem (DM W P).
We will define for each i = 1,2, ...,p, and Vj, w;; € S; = {s!, s, ...,d;},

where 0 = s{ < sh < .. <slg =d.

We consider

M= max ||a' —ad||.
1<i<y<p
From (6):
n n
wig | Y (al —2l)? = | > w(a, — x})? (20)
k=1 k=1

We define ¢, = wi;(al — z1). We will be able to write:

tijk > _M(l_yiﬂ)—’—s?(a’% —(Ei),l = 17") |Sl|ak = 1,"377’71' = 1; "7paj = 13 - q,

. (21)
tljk S S;(a’;v - x;@) + M(l - yljl)7l = 1a =y |Sl|a k = 17 ..,'I’L7i = 17 "apaj = 1) - q,
(22)
[Si]
Sy =1i=12..p j=12..4q (23)
=1
yijl € {071}5’5 = 1727"'7p7j = 172a "'7q7l = 1’27"'7 |S’L|5 (24)
P
wij = Zs;yijl, i=1,2,...,p, 1=1,2,...,]Si, (25)
j=1
q p
sz‘j >di, 1=1,2,...,p, Zwi]‘ <o, j=1,2,..,q. (26)
=1 i=1



wij\/ZZzl(afg \/Zk 1w ) \/Zk 1 Uk

Thus we can write:

(DMWP) : mlnz Zz”,

=1 j=1

subject to: (21), (22), (23), (24), (25), (26), and

n
2 20| D B i =120, 5= 1,200
k=1

Constraints (28) can be replaced by
Z'LJ>Ztl]k7 7:: 7 ,"7p7 j:1727"'7Q7

2520, 1=1,2,...,p, 1=1,2,...,q
zl €R, k=1,2,..,n, j=1,2,..,q

As we have seen above, the constraints (29), (30) form a second order cone [9].

Finally, we will present a new optimization model whose continuous relaxation
is a convex and smooth optimization problem, which we would like to solve

using XPRESS:

(DMWP): min Z Z 2,

=1 j=1

Subject to:

tijr > M(lfylﬂ)+sl( f:rk)l S k=1, ni=1,..

tige < si(ah — ) + M1 —yij),l=1,.,|Si,k=1,.,ni=1,..

S|

Zyzjl = laZ = 1a2a ~y Py .] = 1727"'7qa
=1

Yijl € {07 1}u2 = 1727 ~--7P7j = 1727 '“7qvl = 1a27"‘7 |S’L|u

P
wij =Y Sy, i =1,2,.,p, 1=1,2,..,|Si,
j=1

"7q5



q p
Zwij > di7 i= 1727"'7p7 Zwm < 0y, .7: 1727"'7Q'

j=1 i=1

n
Z’LZJ Z Zt?]kv 1= 1325 < Dy ] = 1727"'7(15
k=1

2i; >0, i=1,2,..,p, j=1,2, .4,
¥l €R, k=1,2...,n, j=1,2,...q.

Note: In order for the (DM W P) optimization problem to have a solution, we
guarantee that:>1_, 0; > >0 d;.
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