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Abstract The Hyperbolic Augmented Lagrangian Algorithm (HALA) is a

novel algorithm proposed in this work for solving the constrained nonlinear

programming problem. Under mild assumptions, such as: convexity, Slater’s

qualification and differentiability, the convergence of the proposed algorithm

is proved. Finally, in order to illustrate the algorithm, we present some com-

putational experiments.

Keywords Hyperbolic augmented Lagrangian · Nonlinear programming ·

Constrained optimization · Constraint qualification · Hyperbolic penalty ·

Convergence · Convex problem

Mathematics Subject Classification (2000) 90C30 · 90C25 · 90C46 ·
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1 Introduction

We are interested in the nonlinear programming problem subject to inequal-

ity constraints

min {f(x) | x ∈ S} , (1.1)

where S = {x ∈ IRn | gi(x) ≥ 0, i = 1, ...,m} , f and gi, i = 1, ...,m are real-

valued functions defined on IRn.

The primal methods solve the problem (1.1), some of them are the gradient

projection method (see [32]), cutting-plane method (see [16]) and the feasible

direction methods (see [50]). For a better idea of these methods, see the book
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of Minoux [22]. On the other hand, the dual methods also solve the prob-

lem (1.1) are for example: the barrier methods, where the logarithmic barrier

function (LBF) or also the inverse barrier function (IBF) is used (see [10]);

penalty methods (see [5]) and mixed interior-exterior penalty method (see [10]

and [22]) also have an important role.

Later the augmented Lagrangian algorithms are studied, some basic refer-

ences are [12] and [27]. Now, in [3], the advantages of using the multiplier meth-

ods (also called the augmented lagrangian method) over the penalty methods

are shown, also see Chapter 6 of [22]. The augmented Lagrangian methods are

widely used for problems with constraints (1.1). The idea of these methods

is to convert the constrained problem into a sequence of the unconstrained

problems.

Currently, there are a wide variety of augmented Lagrangian algorithms

that solve problem (1.1), for example: entropy-like multiplier methods, see [14];

nonlinear rescaling algorithm, see [25]; penalty/barrier multiplier method, see

[2] and multiplier methods based on second order homogeneous kernels, see

[1]. The functions LBF and IBF are modified and used in the context of the

augmented Lagrangian algorithms, see [24].

A solution of the problem (1.1) subject to equality constraints is proposed

in Hestenes [12] and Powell [27]. Later, thus Hestenes-Powell formulation was
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adapted for the nonlinear programming problem subject to inequality con-

straints (see [30]). This adaptation defines an augmented Lagrangian func-

tion without continuous second derivatives. This new formulation is known

as Hestenes-Powell-Rockafellar augmented Lagrangian function. This function

had a very important role to construct a new augmented Lagrangian function,

which is continuously differentiable, see [8]. Other differentiable augmented

Lagrangian functions are proposed, see [21], [17], [1] and [26].

The authors in [36] study the exponential multiplier method, proposed by

[19]. They study two rules for choosing the penalty parameters and guarantees

that the primal sequence converges in an ergodic sense. Other works, where

the convergence of the sequence primal is studied in an ergodic sense, are [14],

[15], [18] and [25]. In what follows of this work, we are going to introduce a

novel augmented Lagrangian algorithm in continuous optimization.

A Novel Algorithm

In [38] the hyperbolic penalty algorithm (HPA) is proposed, later this algo-

rithm is studied in [39], [40] and [42]. Some works where good computational

results of HPA can be observed in [43] and [37]. HPA motivates the devel-

opment of the hyperbolic smoothing method (HSM), to see details of this

connection see [37]. The HSM shows a good computational performance in

solving different nondifferentiable problems from mathematical optimization,
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see: [44], [45], [35], [46], [47] and [48].

The HPA also induces ideas to build a new algorithm of augmented La-

grangian type, called HALA-1992 (see [41]). The characteristic of HALA-1992

is that it considers the updating of the penalty parameter and consider condi-

tions on the dual function, so then the first ideas of convergence are proposed

in [41]. Now on this occasion, unlike HALA-1992, we consider the fixed penalty

parameter and without the need to consider conditions on the dual function.

Therefore we propose in this work a new algorithm, which henceforth we will

call HALA.

The main contribution of our work is to have guaranteed the convergence

of HALA and we also ensure existence of solutions for the subproblem gen-

erated by HALA, considering usual assumptions of the literature. In order

for us to guarantee the convergence of the algorithm proposed in this work,

we use the classic assumptions, such that the Slater constraint qualification

and convexity, some works that consider these assumptions are [1], [2] and [25].

The paper is organized as follows: In Chapter 2 we present some basic re-

sults, we also present HPA and some of its properties. In Chapter 3 we present

the hyperbolic augmented Lagrangian function and HALA. We study some

characteristics of this algorithm. In Chapter 4 we guarantee the convergence

of the HALA. In Chapter 5 computational results are illustrated. In Chapter
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6 we give some conclusions of our work. In Chapter 7 we propose some future

work.

2 Preliminaries

Throughout this paper we are interested in studying the following optimiza-

tion problem

(P ) x∗ ∈ X∗ = argmin{f(x) | x ∈ S},

where

S = {x ∈ IRn | gi(x) ≥ 0, i = 1, ...,m},

is the convex feasible set of the problem (P) and where the function f : IRn →

IR is convex, gi : IR
n → IR, i = 1, ...,m, are concave functions, we assume that

f, gi are continuously differentiable. That way (P) is a convex optimization

problem. So (P) will be called as the primal problem. We consider the follow-

ing assumptions.

C1. The optimal set X∗ is nonempty, closed, bounded and, consequently,

compact.

C2. Slater constraint qualification holds, i.e., there exists x̂ ∈ S which satisfies

gi(x̂) > 0, i = 1, ...,m.

A consequence of C1 (see the Theorem 24 and Corollary 20 of [10]) is that

the level set {x ∈ S | f(x) ≤ β} remains bounded for any value β. The C2
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assumption guarantees that the interior of S set is nonempty. The condition

C1 also imply the existence of a finite vector x∗ and a number f∗ such that

f(x∗) = f∗ = infS f(x) = minS f(x).

The Lagrangian function of the problem (P) is L : IRn × IRm
+ → IR,

defined as

L(x, λ) = f(x)−
m∑
i=1

λigi(x), (2.2)

where, λi ≥ 0, i = 1, ...,m, are called dual variables or Lagrange multipli-

ers. Since the problem (P) is convex, we know that due to assumption C2,

the following results will occur: there exists λ∗ = (λ∗
1, ..., λ

∗
m), such that, the

Karush-Kuhn-Tucker (KKT) conditions hold true, i.e.,

∇xL(x
∗, λ∗) = ∇f(x∗)−

m∑
i=1

λ∗
i∇gi(x

∗) = 0, (2.3)

λ∗
i gi(x

∗) = 0, i = 1, ...,m, (2.4)

gi(x
∗) ≥ 0, i = 1, ...,m, (2.5)

λ∗
i ≥ 0, i = 1, ...,m. (2.6)

Moreover, the set of optimal Lagrange multipliers λ∗ is denoted by

Λ∗ =

{
λ ∈ IRm

+ | ∇f(x∗)−
m∑
i=1

λi∇gi(x
∗) = 0, x∗ ∈ X∗

}
,

it is known that Λ∗ is a bounded set (and hence compact set) due to C2. The

dual function Φ : IRm
+ → IR, is defined as follows

Φ(λ) = inf
x∈IRn

L(x, λ), (2.7)
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and the dual problem consists of finding

(D) λ ∈ Λ∗ = argmax{Φ(λ) | λ ∈ IRm
+}.

2.1 Hyperbolic Penalty

The hyperbolic penalty is meant to solve the problem (P). The penalty

method adopts the hyperbolic penalty function (HPF)

P (y, λ, τ) = −λy +

√
(λy)

2
+ τ2, (2.8)

where P : (−∞,+∞)× IR+ × IR++ → IR. Notice that, P (y, λ, τ) > 0.

Remark 2.1 The HPF is originally proposed in [38] and studied in [42]. In

these works, the following properties are important for HPF:

(a) P (y, λ, τ) is asymptotically tangent to the straight lines r1(y) = −2λy and

r2(y) = 0 for τ > 0.

(b) � P (y, λ, 0) = 0, for y ≥ 0.

� P (y, λ, 0) = −2λy, for y < 0.

Due to the properties (a) and (b) the HPF is equivalent to a smoothing of

the penalty studied by Zangwill, in [49].

Let us note the following properties of the function P (which are also studied

in [38]):

P0) P (y, λ, τ) is k−times continuously differentiable for any positive integer k

for τ > 0.
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P1) P (y, λ, τ) is convex function of y, i.e.,

∇2
yyP (y, λ, τ) =

λ2τ2

((λy)2 + τ2)
3
2

> 0.

3 Hyperbolic Augmented Lagrangian

We define the Hyperbolic Augmented Lagrangian Function (HALF) of prob-

lem (P) by LH : IRn × IRm
++ × IR++ → IR,

LH(x, λ, τ) = f(x) +

m∑
i=1

P (gi(x), λi, τ)

= f(x) +

m∑
i=1

(
−λigi(x) +

√
(λigi(x))

2
+ τ2

)
, (3.9)

where τ > 0 is the penalty parameter. Note that this function belongs to class

C∞ if the involved functions f(x) and gi(x), i = 1, ...,m, are too. On the

other hand, a variation of (3.9) is proposed and studied in the work of [7] and

[28].

By comparing (2.2) and (3.9), we see that the function LH may be put in

the form

LH(x, λ, τ) = L(x, λ) +

m∑
i=1

√
(λigi(x))2 + τ2. (3.10)

Analysis of expression (3.10) allows us to see that the modified objective

function associated with the hyperbolic penalty may be decomposed as the

sum of the Lagrangian function along with a summation of terms contain-

ing squares of the products between the values of the constraints and their

corresponding multipliers (complementary slacks). We are aware that at any
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optimal point (x∗, λ∗) we must have λ∗
i gi(x

∗) = 0, i = 1, ...,m, and therefore

at this point the summation takes on a minimum value equal to
∑m

i=1 τ = mτ.

From this point of view the summation in expression (3.10) may be interpreted

as a penalty for the noncompliance with the condition of complementarity of

the slacks which is added to the Lagrangian function. In the composition

of the modified objective function, when we attempt to minimize this por-

tion, we will automatically be seeking the optimal solution where equalities

λ∗
i gi(x

∗) = 0, i = 1, ...,m prevail.

C3. For every τ > 0 and λ > 0, the level set

M = {x ∈ IRn | LH(x, λ, τ) ≤ α} ,

is bounded, for every α < ∞.

Remark 3.1 We know that the function P is convex by P1). When f is

strongly convex, we get that LH is strongly convex. Then, we can ensure that

the assumption C3 is verified. Other authors who study the assumption of

strong convexity are: Auslender et al. ([1]), Kiwiel ([18]), Rockafellar ([31]),

Kort and Bertsekas ([21]), Kort and Bertsekas ([20]), Sabach and Teboulle

([33]) and Silva et al. ([34]).

Now we present the HALA to solve the nonlinear problem (P).
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3.1 Algorithm

Step 1. Let k := 0 (initialization).

Take initial values λ0 = (λ0
1, ..., λ

0
m) ∈ IRm

++, τ ∈ IR++.

Step 2. Solve the unconstrained minimization problem (primal update):

xk+1 ∈ argminx∈IRn LH(x, λk, τ)

= argminx∈IRn

{
f(x) +

m∑
i=1

(
−λk

i gi(x) +

√(
λk
i gi(x)

)2
+ τ2

)}
.

Step 3. Updating of Lagrange multipliers (dual update):

λk+1
i = λk

i

(
1− λk

i gi(x
k+1)√

(λk
i gi(x

k+1))2 + τ2

)
, i = 1, ...,m. (3.11)

Step 4. If the pair (xk+1, λk+1) satisfies the stopping criteria: Then Stop.

Step 5. k := k + 1. Go to Step 2.

The HALA considers an initial vector λ0 > 0 and τ > 0 which is fixed.

Considering a fixed penalty parameter can also be observed in the works of

[15], [19], [20] and [30]. With this information, the HALA generate the primal

sequence in Step 2 and the multiplier estimates in Step 3. In Step 4, we can

consider different stopping criteria. For example, we can consider some of the

following criteria studied in [6]:

− min
i=1,...,m

gi(x
k) < β and

∣∣f(xk)− f(xk−1)
∣∣

1 + |f(xk−1)|
< 10−2β,

or

max

{
− min

i=1,...,m
gi(x

k),

∑m
i=1 λ

k
i

∣∣gi(xk)
∣∣

1 + ∥xk∥2
,

∥∥∇f(xk)−
∑m

i=1 λ
k
i∇gi(x

k)
∥∥
∞

1 + ∥xk∥2

}
< β,
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where β > 0.

Notice that HALA is based in the exact unconstrained minimization of

the HALF. In [21] an exact unconstrained minimization of the augmented

Lagrangian is also discussed, also see [2].

3.2 Study of the HALA

By C3 hence there exists xk+1 ∈ IRn such that

LH(xk+1, λk, τ) = minx∈IRnLH(x, λk, τ),

thus ∇xLH(xk+1, λk, τ) = 0 holds, i.e.,

∇f(xk+1)−
m∑
i=1

λk
i

(
1− λk

i gi(x
k+1)√

(λk
i gi(x

k+1))2 + τ2

)
∇gi(x

k+1) = 0, (3.12)

substituting (3.11) in (3.12), we have

∇xLH(xk+1, λk, τ) = ∇f(xk+1)−
m∑
i=1

λk+1
i ∇gi(x

k+1) = ∇xL(x
k+1, λk+1) = 0,

(3.13)

for any τ > 0. We observe that xk+1 and λk+1 satisfy ∇xL(x
k+1, λk+1) = 0,

shows that xk+1 is the minimizer of L(x, λk+1) (i.e., xk+1 attains the minimum

in (2.7)), i.e.,

Φ(λk+1) = L(xk+1, λk+1) = min
x∈IRn

L(x, λk+1) and λk+1 ∈ IRm
++,

thus, it follows that

Φ(λk+1) = f(xk+1)−
m∑
i=1

λk+1
i gi(x

k+1). (3.14)
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From (3.14) we obtain

−g(xk+1) =
(
−g1(x

k+1), · · · ,−gm(xk+1)
)T ∈ ∂Φ(λk+1),

where ∂Φ(λk+1) is the subdifferential of Φ(λ) at λ = λk+1. In the following

remark, we analyze what happens with Lagrange multipliers (iteration (3.11))

depending on the type of restriction we have. First, for x ∈ IRn, we define the

following sets of indices

I0 = {i ∈ {1, ...,m} | gi(x) = 0} ,

I− = {i ∈ {1, ...,m} | gi(x) < 0} ,

I+ = {i ∈ {1, ...,m} | gi(x) > 0} ,

such that I0∩I+ = ∅, I0∩I− = ∅, I+∩I− = ∅ and I0∪I+∪I− = {1, ...,m} .

Remark 3.2 Let {λk} be a sequence generated by HALA such that λk
i >

0, i = 1, ...,m and let τ > 0 fixed. Let us consider the following cases:

(c1) If i ∈ I0, then we have at the k-th iteration gi(x
k+1) = 0, then by (3.11),

we get, λk+1
i = λk

i . We also obtain:

(
λk
i − λk+1

i

)
gi(x

k+1) = 0, ∀i ∈ I0.

(c2) If i ∈ I+, then we have at the k-th iteration gi(x
k+1) > 0, then by (3.11),

we get, λk
i > λk+1

i . We also obtain:

(
λk
i − λk+1

i

)
gi(x

k+1) > 0, ∀i ∈ I+.

(c3) If i ∈ I−, then we have at the k-th iteration gi(x
k+1) < 0, then by (3.11),

we get, λk
i < λk+1

i . We also obtain:

(
λk
i − λk+1

i

)
gi(x

k+1) > 0, ∀i ∈ I−.
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Of the three previous cases, we can note that we have the following

(
λk
i − λk+1

i

)
gi(x

k+1) ≥ 0, i = 1, ...,m.

Now, we will demonstrate the positivity of the updated Lagrange multipli-

ers.

Proposition 3.1 Let
{
λk = (λk

1 , ..., λ
k
m) | k = 1, 2, ...

}
⊂ IRm. If

λk ∈ IRm
++ then λk+1 ∈ IRm

++, i = 1, ...,m.

Proof. Let τ > 0 be fixed. Since we have 0 < τ2, we can obtain the following

(
λk
i gi(x

k+1)
)2

<
(
λk
i gi(x

k+1)
)2

+ τ2, i = 1, ...,m,

from this, we can get

−1 <
λk
i gi(x

k+1)√(
λk
i gi(x

k+1)
)2

+ τ2
< 1, i = 1, ...,m,

from the latter it follows that

0 < λk
i

1− λk
i gi(x

k+1)√(
λk
i gi(x

k+1)
)2

+ τ2

 < 2λk
i , i = 1, ...,m, (3.15)

then from the expression above and by (3.11), we get that, λk+1
i > 0, i =

1, ...,m.

Remark 3.3 From inequality (3.15), we can see that iteration (3.11) has the

following characteristic

0 < λk+1
i < 2λk

i , i = 1, ...,m. (3.16)

Remark 3.4 From C3 and Proposition 3.1 we obtain that HALA is well de-

fined.
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Theorem 3.1 Let {λk} be a sequence generated by HALA. The sequence

{Φ(λk)} is monotone nondecreasing for all k ∈ IN.

Proof. From the concavity of Φ(·) and since −g(xk+1) ∈ ∂Φ(λk+1), we obtain

Φ(λk+1)− Φ(λk) ≥
m∑
i=1

(
gi(x

k+1)
) (

λk
i − λk+1

i

)
. (3.17)

On the other hand, we can rewrite (3.11), as follows,

λk
i − λk+1

i =

(
λk
i

)2
gi(x

k+1)√(
λk
i gi(x

k+1)
)2

+ τ2
, i = 1, ...,m, (3.18)

this expression (3.18), is replaced on the right side of inequality (3.17), we get

Φ(λk+1)− Φ(λk) ≥
m∑
i=1

 (
λk
i gi(x

k+1)
)2√(

λk
i gi(x

k+1)
)2

+ τ2

 ≥ 0, (3.19)

so, we have, Φ(λk+1) ≥ Φ(λk).

Proposition 3.2 The sequence of dual objective function values {Φ(λk)} is

bounded and monotone nondecreasing, hence it converges.

Proof. By Theorem 3.1 we obtain Φ(λk+1) ≥ Φ(λk), then {Φ(λk)} is nonde-

creasing sequence for all k ∈ IN and considering the weak duality theorem, we

obtain Φ(λk) ≤ Φ(λk+1) ≤ f∗, ∀k, i.e., {Φ(λk)} is bounded from above by the

optimal value. Then {Φ(λk)} is convergent.

Proposition 3.3 The sequence {λk} generated by the HALA is bounded.

Proof. From C2 we know that Λ∗ is nonempty and compact. So, one level

set of Φ(·) is compact. Then, all of these level sets are compact, see Corol-

lary 8.7.1 of [29]. By Proposition 3.2 we obtain in particular λk ∈ Γ = {λ ∈
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IRm
+ | Φ(λ0) ≤ Φ(λ)} for all k ∈ IN and hence {λk} is a bounded sequence.

We present a preliminary result which will be used to guarantee the com-

plementarity condition in our algorithm.

Lemma 3.1 Let d > 0 and a sequence {ak} ⊂ IR+. If

lim
k→∞

(
ak/
√

ak + d
)
= 0 then lim

k→∞
ak = 0.

Proof. Let us fix ϵ ∈ (0, 1). By hypothesis, there exists k0 ∈ IN such that

ak

2
√
ak + d

< ϵ, ∀k ≥ k0. (3.20)

On the other hand, we know that
(√

ak + d− 1
)2

≥ 0, then, ak + d+ 1 ≥

2
√
ak + d, from (3.20) and from the previous inequality, we obtain

ak

ak + d+ 1
≤ ak

2
√
ak + d

< ϵ, ∀k ≥ k0, (3.21)

then of (3.21), we get ak ≤ (ϵ(1 + d)/(1− ϵ)) , ∀k ≥ k0, which implies,

limk→∞ ak = 0.

Theorem 3.2 Let the sequences {xk} and {λk} be generated by HALA. Then

lim
k→∞

(
λk
i gi(x

k)
)
= 0, i = 1, ...,m.

Proof. Let be τ > 0 fixed. Since Φ(·) is concave we have the expression (3.19).

We are going to verify that the series in (3.19) is convergent; (3.19) gives

by summation

0 ≤
∞∑
k=1

m∑
i=1

 (
λk
i gi(x

k+1)
)2√(

λk
i gi(x

k+1)
)2

+ τ2

 ≤
∞∑
k=1

(
Φ(λk+1)− Φ(λk)

)
,
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we notice that
∑∞

k=1

(
Φ(λk+1)− Φ(λk)

)
is a convergent series (i.e., the partial

sum is bounded above), it follows

∞∑
k=1

m∑
i=1

 (
λk
i gi(x

k+1)
)2√(

λk
i gi(x

k+1)
)2

+ τ2

 ≤ lim
k→∞

(
Φ(λk)− Φ(λ1)

)
≤ f∗ −Φ(λ1) < ∞,

therefore, for the test of comparison, we obtain

lim
k→∞

m∑
i=1

 (
λk
i gi(x

k+1)
)2√(

λk
i gi(x

k+1)
)2

+ τ2

 = 0. (3.22)

We note each term in the summation of (3.22) is nonnegative, thus

lim
k→∞

 (
λk
i gi(x

k+1)
)2√(

λk
i gi(x

k+1)
)2

+ τ2

 = 0, i = 1, ...,m, (3.23)

in (3.23), we can apply the Lemma 3.1 with ak =
(
λk
i gi(x

k+1)
)2

and d = τ2

and thus we obtain limk→∞
(
λk
i gi(x

k+1)
)2

= 0, i = 1, ...,m, so,

lim
k→∞

(
λk
i gi(x

k+1)
)
= 0, i = 1, ...,m. (3.24)

Because Φ(·) is a concave function and by Remark 3.2 we get

Φ(λk+1)− Φ(λk) ≥
m∑
i=1

(
gi(x

k+1)
) (

λk
i − λk+1

i

)
≥ 0, (3.25)

and by Proposition 3.2 we know that {Φ(λk)} is convergent, so, it follows

limk→∞
{
Φ(λk+1)− Φ(λk)

}
= 0, and so from (3.25) we obtain

lim
k→∞

m∑
i=1

(
gi(x

k+1)
) (

λk
i − λk+1

i

)
= 0, (3.26)

now since
(
gi(x

k+1)
) (

λk
i − λk+1

i

)
≥ 0, of (3.26) and (3.24), it follows that

lim
k→∞

(
λk+1
i gi(x

k+1)
)
= 0, i = 1, ...,m. (3.27)
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4 Convergence Result

In this section, we are going to consider the following assumption.

C4. The whole sequence
{
xk
}
is convergent to x̄, where x̄ is assumed a feasible

point, i.e., gi(x̄) ≥ 0, i = 1, ...,m.

Similar to assumption C4 can also be seen in [11], [23], [4] and [9]. Finally,

we ensure that the subsequence generated by the algorithm HALA converges

to a KKT point.

Theorem 4.1 The convex problem (P) satisfies C1, C2, C3 and C4. Let

sequences {xk} and {λk} generated by HALA. Then any limit point of a sub-

sequence {xk} and {λk} are an optimal solution-Lagrange multiplier pair for

the problem (P).

Proof. Let be τ > 0 fixed. By C3 follows the boundedness of the sequence

{xk}, and also we know that the sequence {λk} of the Lagrange multipliers

generated by the HALA is bounded, see Proposition 3.3. So, there are limit

points x̄ and λ̄. Henceforth, we can consider the following convergent subse-

quences limk→∞ xk = x̄ and limk→∞ λk = λ̄ with k ∈ K1 ⊂ IN.

Now by C4, we have limk→∞ gi(x
k) = gi(x̄) ≥ 0, i = 1, ...,m. From

Proposition 3.1 we obtain,

lim
k→∞

λk
i = λ̄i ≥ 0, i = 1, ...,m. (4.28)
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Passsing the limit in (3.27), we have

lim
k→∞

(
λk
i gi(x

k)
)
= λ̄igi(x̄) = 0, ∀i = 1, ...,m. (4.29)

Moreover, passing the limit in (3.13), we obtain

∇xL(x̄, λ̄) = ∇f(x̄)−
m∑
i=1

λ̄i∇gi(x̄) = 0.

Thus (x̄, λ̄) satisfies (2.3)− (2.6) for all i = 1, ...,m, hence (x̄, λ̄) is a KKT

point. Thus x̄ is optimal for the problem (P) and λ̄ is a Lagrange multiplier.

5 Computational Illustration

The computer illustrations presented below were obtained with a prelimi-

nary Fortran implementation for HALA. The program were compiled by the

GNU Fortran compiler version 4:7.4.0-1ubuntu2.3. The numerical Experiments

are conducted on a Notebook with operating system Ubuntu 18.04.5, CPU i7-

3632QM and 8GB RAM. The unconstrained minimization tasks were carried

out by means of a Quasi-Newton algorithm employing the BFGS updating

formula, with the function VA13 from HSL library [13]. The algorithm stop

when the solution is viable (feasible) an the absolute value of the difference of

the two consecutives solutions
∣∣xk − xk−1

∣∣ is less than 10−5.

5.1 Test Problem
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Problem 5.1

min
x∈IRn

f(x) = xTAx+ xT b

s.t. 10 ≤ xi ≤ 100,

where x, b ∈ IRn, A is a symmetric matrix n× n and b is a vector with all its

variables equal to 10.

The construction rule for matrix A is as follows: ai,i = 1+
√
i and ai,j =

ai,i+aj,j

n(i+j) . In particular we will only show details for case n = 2, where matrix

A is symmetric and positive definite.

Problem 5.2

min
x∈IR2

f(x) = xT

 2 3+
√
2

6

3+
√
2

6 1 +
√
2

x+ xT

 10

10



s.t. 10 ≤ x1 ≤ 100,

10 ≤ x2 ≤ 100.

We are going to rewrite the constraints above as:

g1(x) = 100− x1 ≥ 0,

g2(x) = x1 − 10 ≥ 0,

g3(x) = 100− x2 ≥ 0,

g4(x) = x2 − 10 ≥ 0.
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5.2 Results

The Tables 1-2 summarize the computational results for the problem 5.2.

For each table, k is the number of iterations, it is the total number of it-

erations, λ is the multiplier Lagrange, x is the primal variable, f(x) is the

objective value, gi(x) are the constraints of each problem, LH(x, λ, τ) is the

value of the HALF and via = viable = feasible where, in each iteration, the

obtained point can be viable, then its value is “0 = yes” or the point can be

inviable, then the value is “1 = not”.

In the Table 1, we reports the optimal solutions, the value of the objec-

tive function and the value of HALF found by our proposed algorithm. In the

Table 2, we reports the behavior of the multipliers, this issue is studied in

Subsection 3.2 of this work. For the Problem 5.2 our algorithm converges to

the exact solution within the precision of the computer.

Finally in Table 3, we solve problem 5.1 for cases n = 2, 50, 100, 150, 200.

In this table we show the time used to solve each case and the number of

iterations. In all cases we use the value of τ = 0.10E−02. We only assure that

for the case n = 2 the matrix A is positive definite.
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Table 1 Problem 5.2 with τ = 0.10E − 02

k x1 x2 f(x) LH(x, λ, τ) via

0 0.500000000E+02 0.500000000E+02 0.157140452E+05 0.157140452E+05 0

1 0.195759857E+01 0.147451342E+01 0.514816799E+02 0.382839440E+03 1

2 0.587279571E+01 0.442354027E+01 0.257408400E+03 0.645556960E+03 1

3 0.999998038E+01 0.999996351E+01 0.788557875E+03 0.788565160E+03 1

4 0.100000000E+02 0.100000000E+02 0.788561812E+03 0.788565808E+03 0

5 0.999999994E+01 0.999999997E+01 0.788561802E+03 0.788565808E+03 0

6 0.100000000E+02 0.100000000E+02 0.788561814E+03 0.788565808E+03 0

7 0.999999998E+01 0.999999994E+01 0.788561803E+03 0.788565808E+03 0

8 0.100000000E+02 0.100000000E+02 0.788561812E+03 0.788565808E+03 0

9 0.100000000E+02 0.999999994E+01 0.788561804E+03 0.788565808E+03 0

10 0.100000000E+02 0.100000000E+02 0.788561812E+03 0.788565808E+03 0

11 0.100000000E+02 0.100000000E+02 0.788561812E+03 0.788565808E+03 0

6 Conclusions

• In this work, we mainly introduce new algorithms of the augmented La-

grangian type in the area of continuous optimization.

• The results presented in this work provide the necessary theoretical frame-

work for the construction of a new algorithm to which we give the name

Hyperbolic Augmented Lagrangian Algorithm. The convergence of the al-

gorithm proposed was also demonstrated.

• The HPF belongs to class C∞. Hence, LH(x, λ, τ) will be class C∞ if

the involved functions f(x) and gi(x), i = 1, ...,m, are too. This is an

outstanding property from the computational point of view.
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Table 2 Problem 5.2, with τ = 0.10E − 02

g
1
(x

)
g
2
(x

)
g
3
(x

)
g
4
(x

)

k
v
ia

λ
6

v
ia

λ
7

v
ia

λ
8

v
ia

λ
9

0
0

0
.1
0
0
0
0
0
0
0
0
E
+
0
2

0
0
.1
0
0
0
0
0
0
0
0
E
+
0
2

0
0
.1
0
0
0
0
0
0
0
0
E
+
0
2

0
0
.1
0
0
0
0
0
0
0
0
E
+
0
2

1
1

0
.2
0
0
0
0
0
0
0
0
E
+
0
2

1
0
.2
0
0
0
0
0
0
0
0
E
+
0
2

0
0
.5
2
0
1
3
9
4
8
7
E
-1
1

0
0
.5
1
5
1
4
3
4
8
3
E
-1
1

2
1

0
.4
0
0
0
0
0
0
0
0
E
+
0
2

1
0
.4
0
0
0
0
0
0
0
0
E
+
0
2

0
0
.5
2
0
1
3
9
2
3
2
E
-1
1

0
0
.5
1
5
1
4
3
2
3
0
E
-1
1

3
1

0
.6
4
6
9
5
1
5
5
5
E
+
0
2

1
0
.7
2
9
9
7
0
8
0
5
E
+
0
2

0
0
.5
2
0
1
3
8
9
8
9
E
-1
1

0
0
.5
1
5
1
4
2
9
9
1
E
-1
1

4
0

0
.6
4
5
4
3
4
5
3
9
E
+
0
2

0
0
.7
2
9
1
9
9
0
4
5
E
+
0
2

0
0
.5
2
0
1
3
8
7
4
5
E
-1
1

0
0
.5
1
5
1
4
2
7
5
2
E
-1
1

5
0

0
.6
4
8
0
9
0
4
5
9
E
+
0
2

0
0
.7
3
0
9
9
8
8
3
5
E
+
0
2

0
0
.5
2
0
1
3
8
5
0
2
E
-1
1

0
0
.5
1
5
1
4
2
5
1
3
E
-1
1

6
0

0
.6
4
6
5
6
8
0
9
6
E
+
0
2

0
0
.7
2
8
6
4
7
4
1
7
E
+
0
2

0
0
.5
2
0
1
3
8
2
5
8
E
-1
1

0
0
.5
1
5
1
4
2
2
7
4
E
-1
1

7
0

0
.6
4
7
4
2
9
4
9
8
E
+
0
2

0
0
.7
3
1
6
2
0
3
3
7
E
+
0
2

0
0
.5
2
0
1
3
8
0
1
5
E
-1
1

0
0
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1
5
1
4
2
0
3
6
E
-1
1

8
0

0
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4
7
2
5
0
5
8
0
E
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0
2

0
0
.7
2
9
2
6
4
9
1
9
E
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0
2
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0
.5
2
0
1
3
7
7
7
1
E
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1
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0
.5
1
5
1
4
1
7
9
7
E
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1

9
0

0
.6
4
7
1
6
5
8
5
0
E
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0
2
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0
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3
2
2
4
2
8
8
0
E
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0
2

0
0
.5
2
0
1
3
7
5
2
8
E
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1

0
0
.5
1
5
1
4
1
5
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E
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1

1
0

0
0
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0
2
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0
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0
2
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0
.5
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3
7
2
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1
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0
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1
5
1
4
1
3
1
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E
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1

1
1

0
0
.6
4
7
0
9
0
8
5
1
E
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0
2
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0
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2
7
5
3
9
2
0
5
E
+
0
2

0
0
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2
0
1
3
7
0
4
1
E
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1

0
0
.5
1
5
1
4
1
0
8
0
E
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1

• The smooth behavior of the modified objective function offers the possi-

bility to use the best unconstrained minimization techniques, which use

second-order derivatives.
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Table 3 Problem 5.1

n time it

2 0.001159 11

50 0.122072 14

100 0.514586 15

150 1.350671 12

200 2.379733 6

7 Future Work

⋆ Although important theoretical points have been developed, we are far from

having exhausted our studies. In fact, the connections between hyperbolic

penalty and the Lagrangian function extend even further the horizons of

new theoretical lines and practical experimentation to be researched.
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