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UM FRAMEWORK PARA DETECÇÃO DE POSTAGENS COORDENADAS
DE BOTS EM REDES SOCIAIS ONLINE
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Julho/2021
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A crescente popularidade das redes sociais online mudou a maneira pela qual as
pessoas geram, consomem e interagem com a informação. Entretanto, essa transição
levanta diversos questionamentos sobre a credibilidade do conteúdo compartilhado
nessas redes, uma vez que elas podem ser utilizadas por diferentes segmentos da
sociedade para disseminar desinformação e manipular a opinião pública. Uma parte
crucial das estratégias utilizadas por essas organizações são os usuários automa-
tizados (bots), que são mobilizados para coordenar suas ações, com o intuito de
promover conteúdo de maneira direcionada e popularizar artificialmente assuntos
ou personalidades. Os métodos tradicionais para identificação de bots falham em
identificar esse comportamento sincronizado e coordenação contextual, uma vez que
eles analisam as contas de usuários individualmente. Para suprir essa defiência, este
trabalho propõe uma metodologia para identificação de grupos de bots que coorde-
nam suas postagens nas redes sociais online, utilizando as similaridades de conteúdo
entre as contas para criar redes de usuários que revelam esses grupos e seus tópi-
cos. Utilizando duas bases de dados reais do Twitter, as diferenças estruturais e
linguísticas entre os grupos compostos por usuários autênticos e automatizados são
investigadas. Além disso, um método para classificar automaticamente os grupos
como bots ou humanos é desenvolvido. A metodologia proposta é aplicada em três
bases de dados de acontecimentos recentes no Brasil para identificar os grupos de
bots e o foco de suas ações.

v



Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

A FRAMEWORK FOR DETECTING COORDINATED POSTS OF BOTS IN
ONLINE SOCIAL NETWORKS

Victor Garritano Noronha

July/2021

Advisors: Daniel Ratton Figueiredo
Gerson Zaverucha

Department: Systems Engineering and Computer Science

The growing popularity of online social networks have changed the way people
generate, consume and interact with information. However, this transition brings
several concerns on the credibility of the content shared in such networks, as they
can be used by different segments of society to spread misinformation and manip-
ulate public opinion. A crucial part of the strategies used by such organizations
are the automated accounts (bots), that are mobilized to coordinate their actions
in order to promote targeted content and artificially increase the popularity of a
topic or a person. Traditional approaches for bot detection fail to identify this syn-
chronized behavior and contextual coordination, as they analyze the user accounts
individually. To bridge this gap, this work proposes a framework for detecting com-
munities of bots that coordinate their posts in online social networks, leveraging
content similarities between users to build user networks that reveal such communi-
ties and their topics. Using two real datasets of Twitter accounts, we investigate the
structural and linguistic differences between communities composed of automated
and authentic user accounts. Moreover, we design a procedure to automatically
classify the communities as bots or humans based on their linguistic and structural
characteristics. The framework is also applied to three datasets comprising recent
events in Brazil to uncover communities of bots and the focus of their actions.
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Chapter 1

Introduction

Over the past decade, the number of online social network users has increased ex-
ponentially. In the beginning of 2021, the barrier of 4 billion active users has been
broken, corresponding to 53.6% of the global population and an increase of 490 mil-
lion compared to the number of users in the previous year [4]. Besides connecting
people from different places around the world, these social networks have been re-
placing traditional media outlets and are becoming a the major source of information
for a considerable portion of their users [5].

However, online social networks are also extensively used to spread disinforma-
tion, due to the ease with which information can be propagated as users actively post
and share content, contributing to the dissemination of rumors, spam and fake news
[6]. This kind of content has started to be used by government agencies, political
parties and private firms to manipulate public opinion around the world [7].

These organizations use actors known as “ cyber troops ” to deploy their agen-
das in online social networks, which includes visible government representatives,
social media influencers and even private companies that offer computational pro-
paganda as a service, focused on spreading pro-government content, attacking and
propagating smear campaigns against opposition parties, suppressing attendance at
democratic events and encouraging division and polarization among citizens [7].

These troops are often composed of several types of accounts that support their
actions, like authentic accounts, operated by humans and responsible for engaging in
specific discussions towards promoting a certain narrative, and automated accounts,
known as bots, that act to artificially increase the popularity of a specific topic
or point of view and undermine the credibility and reach of others. The “2020
Global Inventory of Organized Social Media Manipulation” from the Oxford Internet
Institute [7] has found evidence that automated accounts have been used to spread
disinformation in 57 (70%) out of 81 monitored countries around the world.

Bot accounts actively influence the discussions and consequently the viral top-
ics in online social networks, especially information originating from low-credibility
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sources, targeting susceptible users with tailored information that are reshared by
them afterwards, providing a false sense of authenticity for these potentially fraud-
ulent contents [8]. Thus, it is crucial to disclose these bot accounts, as they play a
fundamental role in the spread of disinformation and the opinion formed by indi-
viduals.

Different approaches have been introduced to detect bots in online social net-
works: several methods extract features from the metadata and shared content of
accounts to classify them in a supervised way [9], [10], [11], [12]. Methods that
analyze the structure of the interaction networks of bot and human accounts have
also been proposed [13], [14], [15], [16]. At the same time, unsupervised techniques
have been introduced as an way to alleviate the need for annotated datasets of bot
accounts [17], [18], [19].

However, identifying automated accounts is a challenging task, since bot devel-
opers are constantly evolving the behavior of their agents in order to evade the most
recent detection systems [20]. This makes existing methodologies quickly obsolete,
as they are unable to generalize and recognize the characteristics of unseen types of
bots [21]. Moreover, bot developers constantly create new accounts, as the account
are identified and shutdown by online social network administrators [22]. Therefore,
the bot detection systems also have to continuously evolve. The Botometer system,
for example, have deployed several versions of its framework over the recent years,
in order to map the newer bot behaviors and enhance the generalization capabilities
of the system [9], [23], [12].

Besides this evolution, bot developers are also changing their modus operandi,
putting aside individual and isolated actions to create large groups of coordinated
accounts, that act together to reshape political discussions and increase the popular-
ity of target users [24], [2]. This coordination among multiple automated accounts
is much more effective in disseminating misinformation and forming opinion.

This new behavior imposes an additional challenge, as the standard machine
learning approaches to identify automated accounts traditionally analyze each pro-
file individually, thus being ultimately unable to detect groups of accounts that
coordinate their actions. Moreover, the existing literature of detection systems for
identification of coordinated groups of bots is still very scarce [2].

In order to help bridge this gap, this work introduces a novel framework for
detecting groups of coordinated bot accounts in online social networks. The key
idea is to link bot accounts based on the content generated by them (e.g. posts).
The similarities among their content is used to uncover groups of users that act
together to promote a topic of interest. While the key idea leverages content, the
proposed methodology is language-agnostic, as it relies only on statistical features
of the vocabulary to characterize and establish similarities among accounts. The
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framework is also system-agnostic, as it can be applied to any online social network
where accounts post information (e.g. Twitter).

1.1 Contributions

This work makes the following contributions:

• Propose a novel and unsupervised framework for detecting groups of users that
post and share similar content in online social networks, as an indication of
coordinated action. Our framework builds representations of users based on
their content, and use these representations to establish a similarity among
them. This information is used to construct a network of users where edges
represent very similar accounts. The network is then used to reveal groups
(communities) of accounts that possibly coordinate their actions (posts).

• Conduct an analysis using two datasets of bot accounts in Twitter to assess the
existence of structural differences between different types of users with respect
to the connectivity among their peers, and verify whether these differences
could indicate coordinated actions. The impact of different parameters of the
framework in the quality of the resulting coordinated groups is also evaluated.

• Investigate the main topic that circulated inside the resulting communities
returned by the framework in the two datasets. We also compare the observed
results and communities with the ones reported in the original works of each
of the datasets.

• Formulate a machine learning classifier to evaluate the resulting communi-
ties according to their features as either automated (bot) or organic (human)
coordination, using features derived from both structural and linguistic char-
acteristics of communities. Using the two datasets jointly, the classifier had an
accuracy of 0.85 and F1-score of 0.83, indicating its effectiveness in revealing
the kind of community (bot or human).

• Apply the proposed framework to three datasets collected in Twitter during
recent events in Brazil, uncovering the coordinated groups in each of them, as
well as a comparison with Botometer v4 [12], a state-of-the-art system for bot
detection in Twitter.

1.2 Thesis structure

The remainder of the text is organized as follows:

3



• Chapter 2 reviews the recent literature regarding the main aspects of the
proposed framework. We cover previous works related to language models,
community detection in networks and bots classification in online social net-
works.

• Chapter 3 presents the proposed framework, detailing its main components
and methods.

• Chapter 4 presents the results of the framework when applied to two publicly
available dataset of Twitter accounts, investigating structural distinctions be-
tween the two classes of users (bots and humans) as well as how different
parameters settings affect the quality of the identified communities of users.

• Chapter 5 we presents the structural and linguistic features used to train a
classifier to determine the kind of a community identified by the unsupervised
framework (bot or human), as well as the training methodology and general-
ization performance.

• Finally Chapter 6 draws some conclusions and point out directions for future
work.

4



Chapter 2

Related Work

This chapter briefly reviews the recent literature regarding the main components of
the proposed framework. We cover works related to the different methods such as
language models, community detection in networks and detection of bot accounts
in social networks.

2.1 Language Models

The first step of the proposed framework is responsible for characterizing users using
a Language Model (LM). Different variations of the simplest LM have been proposed
across the years, and this section briefly presents some of those techniques.

2.1.1 N-gram Language Models

A Language Model is a model that assigns probabilities over sequences of words,
computing P (W ) = P (w1, w2, . . . , wk), where w1, w2, . . . , wk is a sequence of words.
Using the chain rule of probability, we can decompose P (W ) as:

P (W ) = P (w1, w2, . . . , wk)

=
∏
i

P (wi|w1, w2, . . . , wi−1) (2.1)

Thus, we can rewrite P (W ) as a product of conditional probabilities, com-
puting the probability of a word wi given the previous words w1, w2, . . . , wi−1 in
the sequence. Furthermore, assuming the Markov property, we can approximate
P (wi|w1, w2, . . . , wi−1) by only considering a window of n previous words, instead of
the complete sequence of i− 1 words observed so far, as shown in Eq. 2.2.

P (wi|w1, w2, . . . , wi−1) ≈ P (wi|wi−n, . . . , wi−1) (2.2)
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This approximation leads to one of the simplest language models, the n-gram
model, which considers the n− 1 previous words during the computation of P (W ).

2.1.2 Language Models Based on Shallow Neural Networks

Due to its simplicity, there are some limitations regarding the n-gram language
model: as we increase the number of possible word sequences, and thus parameters,
grows exponentially, which can be prohibitive when dealing with a large corpus.
Moreover, the n-gram models will assign a zero probability to unseen words or
sequence of words, which degrades their generalization capabilities.

In order to overcome these shortcomings, several improvements have been pro-
posed in the literature. In [25], a neural network methodology was proposed to
compute P (wi|wi−n, . . . , wi−1), decomposing in two parts: in the first step, each
word is associated with a real-valued vector of fixed dimension, known as an em-
bedding; in the second step, a neural network learns a probability function over
words, taking the embeddings associated with the previous words wi−n, . . . , wi−1 as
the input and the word wi as the expected output.

During the optimization phase, both embeddings and neural networks parame-
ters are learned. The proposed methodology scales linearly with the vocabulary size
and can generalize better because semantically and syntactically similar words are
expected to have similar embeddings.

One major drawback of this approach is that the context size is still limited to a
fixed window of n− 1 previous words, preventing the model from capturing longer
contextual information.

In [26], a Language Model based on Recurrent Neural Networks (RNNs) was
proposed. The RNNs encode context information of arbitrary length, and were used
to enhance the contextual capabilities of prior Language Models, outperforming n-
gram models in a variety of tasks [27]. However, the RNNs have difficulties to handle
long-term contexts that may appear in long sequences, due to the its vanishing and
exploding gradient problems, which slows down the training process and leads to
overfitting [28].

As an alternative to RNNs, the Long short-term memory (LSTM) unit was intro-
duced [29]. The LSTM is explicitly designed to avoid the aforementioned gradient
problems and learn long-term dependencies, using a more complex and expensive
structure to perform computations. A Language Model using these units has been
proposed in [30].
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2.1.3 Language Models Based on Deep Learning

In recent years, several works have been introduced for Language Models using
architectures based on Deep Learning. The Embeddings from Language Models
(ELMo) model [31] uses a bidirectional LSTM (biLSTM) to compute contextual
embeddings considering words appearing before and after wi in the sequence. The
Universal Language Model Finetuning (UMLFiT) introduces a procedure for fine-
tuning a pretrained LM for different NLP tasks, like text classification and sentiment
analysis, exhibiting meaningful performance improvements in these tasks [32].

Another promising approach is the Transformer model [33], that replaced the
recurrent units in favor of attention mechanisms, as an alternative for capturing
contextual dependencies. This modification makes the Transformer model suit-
able for parallel computations, unlike LSTM and RNN units, that fundamentally
relies on sequential computations. Several Transformer variations have been pro-
posed, like Bidirectional Encoder Representations from Transformers (BERT) [34],
Transformer-XL [35] and GPT-2 [36], exhibiting an exponentially increasing num-
ber of parameters and establishing new state-of-the-art results in several natural
language inference and language modeling benchmarks.

In the opposite direction, several works introduce strategies to reduce the com-
putational complexity associated with the Transformer model, while retaining their
linguistic capabilities, like the DistilBert model, [37] which has been able to preserve
97% of the performance of the pre-trained BERT model with 40% fewer parame-
ters on the GLUE benchmark for Natural Language Understanding tasks [38]; the
Reformer model [39], which have reduced to computational and memory complex-
ity of the attention mechanism from O(L2) to O(L logL) (where L is the sequence
length); and the Linformer model [40], which has achieved a linear complexity in
the attention computation using low-rank matrix approximations.

2.2 Network Community Detection

The main goal of the proposed framework is to identify coordinated groups of users
in social networks. This objective can be interpreted as the task of Community
Detection in Network Science, one of the most studied topics in the area [1]. The task
aims to partition the network vertices into different groups (communities) according
to the network structure and possibly node attributes. A community can be defined
as a set of vertices where the density of edges among nodes inside the cluster is
relatively higher than the density of edges between nodes inside and outside the
cluster, as exemplified in Fig. 2.1.
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Figure 2.1: Network with 10 communities. The groups are composed by more
densely connected subgraphs.

Given a specific partition of vertices, one should be able to assess the quality
of this division. A commonly used metric is the modularity [41], which compares
the density of edges inside a cluster with the density in the same group of vertices
in a random network model, indicating whether the vertices inside the clustering
do exhibit a community structure or the connections among them have emerged by
chance. The maximum modularity value is 1 and the higher the value, the better
the partition quality.

Considering a network with n vertices, m edges, Aij as an element of adjacency
matrix associated with the network, pij as the probability that an edge exists be-
tween vertices i and j, as well as a network partition into K communities, where Vk
represents the set of vertices in cluster k, the modularity (M) is computed as:

M =
1

2m

∑
k∈K

∑
i,j∈Vk

(Aij − pij) (2.3)

If one assumes a random network model known as configuration model [42], pij
is simply defined as:

pij =
didj
2m

(2.4)

where di and dj denotes the degrees of vertices i and j, respectively. Thus, Eq. 2.3
can be written as:
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M =
1

2m

∑
k∈K

∑
i,j∈Vk

(
Aij −

didj
2m

)
(2.5)

The task of finding the partition that maximizes the modularity is however a
strongly NP-complete problem [43], for which several heuristic methods have been
proposed.

2.2.1 Girvan-Newman Algorithm

The Girvan-Newman (GN) algorithm is a greedy method for finding good community
structure in terms of modularity [44]. The procedure is defined as follows:

1. Initially, each vertex belongs to its own community;

2. For each pair of communities, one computes the increase in the modularity
value by joining this pair into a single community;

3. Merge the pair of communities that provides the highest increase.

4. Return to step 2, until reaching a single partition.

The best partition scheme and modularity values in each iteration are recorded.
Finally, the partition with the highest overall modularity across the iterations is
returned.

The entire algorithm runs in time O((m + n)n), which can be prohibitive for
large graphs in real-world applications.

2.2.2 Louvain Algorithm

The Louvain algorithm [45] proposes an alternative greedy algorithm, with linear
complexity in the number of edges in the network, O(m). Instead of computing
the modularity gain for each pair of clusters, the proposed method computes the
increase when moving a vertex into the partition of one of its neighbors only. The
complete procedure is defined as follows:

1. Initially, each vertex belongs to its own community;

2. For each vertex, compute the increase in the modularity value by merging this
vertex into one of its neighbors’ communities;

3. Retain the new community that gives the highest modularity increase.

4. Build a new network, where each community is represented by a single vertex.
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5. Return to step 2, until no further improvement can be achieved

This method has been widely used and is available in many network science
libraries, since it is computationally efficient and often yields good partitions [46],
[47], [48].

2.2.3 Walktrap

Alternative approaches have been explored to identify communities in networks.
One such approach is based on random walks. The intuition is that a walker tends
to visit vertices in the same community for a significant number of steps, as the
density among nodes inside the community is expected to be considerably higher
than the density with vertices outside the community, which could be used to exploit
the underlying community structure.

The Walktrap method, introduced in [49], explores this idea, proposing metrics
of structural similarity between vertices and communities, and using these metrics
to iteratively merge vertices into groups.

The distance metric between vertices is:

ri,j =

√√√√ n∑
k=1

(P t
ik − P t

jk)
2

d(k)
(2.6)

where P t
ik and P t

jk encodes the probability of reaching vertex k, departing from
vertex i and j in t steps respectively, and d(k) is the degree of vertex k. Note that
t is a parameter of the method.

The distance between vertices is generalized to represent the distance between
communities in the following way:

rC1,C2 =

√√√√ n∑
k=1

(P t
C1,k
− P t

C2,k
)2

d(k)
(2.7)

P t
C·,k =

1

|C·|
∑
i∈C·

P t
ik (2.8)

where P t
C·,k

represents the probability of reaching a vertex k departing from a com-
munity C·, which is defined in terms of the probability of reaching vertex k departing
from any vertex i belonging to group C·, as shown in Eq. 2.8.

Using rC1,C2 as the distance metric, a hierarchical clustering algorithm is applied
for finding communities: initially, each vertex belongs to its own community; then
the pair of communities with smallest distance is selected and merged into a sin-
gle group. The distance values between communities are updated and the process
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is repeated, until obtaining a single community. The final partition is chosen by
selecting the set of communities with the highest modularity value. The distance
computations and updates are only performed between adjacent communities (i.e.
communities with at least one edge connecting them), in order to reduce complexity
and ensuring connected groups. The algorithm runs in time O(mn2).

2.2.4 Self-avoiding random walks for community detection

A method based on self-avoiding random walks (SAW) has been proposed in [50]. In
this special random walk, the walker is not allowed to return to an already visited
vertex, being forced to continue its walk only over unseen nodes. The proposed
method computes the following for each pair of vertices i and j.

pi,j =
mi,j

Mi

(2.9)

li,j =
1

mi,j

∑
wk

i

l
wk

i
i,j (2.10)

fi,j =
pi,j
li,j

(2.11)

In Eq. 2.9, mi,j is the number of walkers that reach j starting from i and Mi is
that number of walkers that started their walks in vertex i, indicating how easy it is
to reach j from i. Eq. 2.10 resembles a mean distance between vertices, where lw

k
i

i,j is
the number of steps that wk

i , the k-th walker that started in vertex i, took to reach
j. Finally, the equations are combined into a single metric fi,j, as shown in Eq.
2.11. The method computes fi,j for each pair of vertices, storing them in a matrix
F . The work points out that high values of fi,j are expected between vertices of
densely connected subgraphs, which are likely to correspond to communities. The
method works as follows:

1. Run a sufficient number of SAWs starting from each vertex;

2. Compute F ;

3. Apply the PCA method, a dimensionality reduction technique, upon F ;

4. Extract the two principal components and project F into the new basis defined
by the principal components, obtaining F ′;

5. Run an hierarchical clustering algorithm upon F ′, computing the modularity
value in each iteration;

6. Record the partition that gives the highest modularity value;
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7. Increment the number of principal components considered, obtaining a new
F ′;

8. Return to step 5 and repeat the process, until using all components in the
computation of F ′;

9. Return the partition with overall highest modularity ;

The algorithm runs in timeO(n3 log n), producing communities with highermod-
ularity scores than prior approaches in real-world network benchmarks [50].

2.2.5 Consensus Clustering

Another approach for finding communities in networks is combining the information
of different partitions, that may arise either from different methods or several runs
of the same algorithm, which generates different outputs due to different choices of
initial conditions or random seeds.

The Consensus Clustering algorithm [51] is based on this idea. In order to
consider several partitions when dividing the network into communities, the ap-
proach introduces a Consensus Matrix C, which stores the relative frequency of
co-occurrence of vertices in clusters from different partitions, using C to define a
new network, with a set of weighted edges that represents the co-occurrences, as
exemplified in Fig. 2.2:

Figure 2.2: An example of the Consensus Clustering algorithm. The four partitions
in the left part are used to compute the Consensus Matrix C that defines the network
in the right part. The thickness of each edge is proportional to its value in C.
Extracted from [1]

The new network increases the cohesion between vertices in the same community
and the separation between vertices in different communities, making the underlying
community structure more evident.
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Given a community detection algorithm A, the following procedure is applied:

1. Apply A on the network p times, producing p partitions;

2. Compute the Consensus Matrix C;

(a) Cij is defined as the number of partitions where vertices i and j are in
the same group, divided by p;

(b) C is expected to be denser than the original adjacency matrix;

(c) Heavier edges are expected to occur between vertices in the same commu-
nity while lighter ones may occur between nodes in different communities;

(d) Optionally, one can define a threshold τ to remove edges that are too
light;

3. Apply A p times, upon the network defined by C and go to Step 2;

This process are repeated, until every element of C assumes a value 0, indicating
that i and j belongs to different communities, or 1, when i and j are in the same
community.

The communities extracted from the final C correspond to the partition of the
initial network. As the algorithm considers the co-occurrence between every pair of
vertices, it scales quadratically in the number of nodes, which can be prohibitive in
large networks. A variation of the algorithm that computes the co-occurrence only
between adjacent vertices in the original network has been proposed [52], reducing
the complexity of computing C to O(m).

2.2.6 Infomap

The Infomap [53] uses information about the dynamics in a network to highlight
its community structure. The dynamics are encoded using the map equation, which
describe the trajectory of a random walk in the network.

Each vertex will be associated with a codeword, following the Huffman coding
scheme [54], that provides an optimal way to encode the vertices by assigning shorter
codewords to nodes that are visited more often and longer ones to less visited nodes.

The method also attributes codes to network modules, that corresponds to com-
munities, enabling the sharing of codewords between vertices, given that they be-
long to different communities, producing an additional reduction in the overall code
length.

The codewords for nodes and modules are stored in different codebooks: the
index codebook identifies the module where the walker is, and are composed by a
collection of m module codebooks. The codes are derived from the frequency the
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walker visits each module. In a similar way, the module codebooks encodes the
vertices that belong to each module, that are derived from the frequency the walker
visits a vertex. Each module codebook also contains a code to indicate when the
walker leaves the module.

Considering both codebooks, the average code length that describes a step of
the random walk is defined by the map equation L(M), whereM is a partition of
n nodes in m modules:

L(M) = qyH(Q) +
m∑
i=1

pi�H(P i) (2.12)

The first term encodes the average code length in the index codebook, weighted
by the probability that the random walker switches modules. The second term
represents the average code length of module codebook i, weighted by the fraction
of time that the random walker spends on module i. Both terms are expressed in
terms of the entropy because it provides a lower bound for the average code length
needed to describe a single step of the random walk [53].

Each term in the map equation is computed using the values of PageRank [55]
for each node in the network. The algorithm used to find the optimal partition that
minimizes the Eq. 2.12 is similar to the Louvain algorithm described in subsection
2.2.2 and is defined as follows:

1. Initially, each vertex belongs to its own community;

2. For a randomly chosen vertex, move it into the neighbor’ module that results
in the highest decrease in the map equation value;

(a) If no movement reduces the Eq. 2.12, the vertex remains in its original
module

3. The process is repeated until no movement decreases the map equation;

4. A new network is built, where each module is represented by a single vertex,
and the process of combination of modules starts again, until the map equation
reaches its minimum;

Similar to the Louvain algorithm, the method scales as O(m), where m is the
number of edges in the network. The infomap was used to identify bioregions of
animals from species location data [56].
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2.3 Bot Detection in Online Social Networks

This section briefly reviews recent works and methods for the task of identifying
automated and inauthentic users in online social networks, investigating their actions
in different contexts and how their operational strategy evolved over time to avoid
the most recent detection systems.

2.3.1 Hateful People or Hateful Bots?

The usage of automated accounts for spreading hate speech against religious minori-
ties in Arabic tweets has been recently investigated [57]. The goal was to quantify
the impact of bots regarding their number of posts and active accounts, as well as
to verify the effectiveness of bot detection frameworks trained on English data in
detecting automated accounts in the Arabic language.

The work introduces a dataset of 450 accounts, extracted from a sample of 6000
tweets in Arabic Language, manually annotated using a scale from 0 to 5, indi-
cating the likelihood that an account is a bot. Using this dataset, a evaluation of
Botometer’s performance on classifying Arabic accounts is conducted, and the ob-
tained results suggest that there is need for more specific methodology focused on
the Arabic Language.

Thus, the work proposes a method for Arabic bots classification, using features
derived from content, like average length of tweets and mentions; proportion of
replies, retweets and original posts; average sentiment score of posts and user meta-
data, like number of followers, favorites and account age. The 200 most recent posts
of each user were used to build the features for each of them.

Using these derived features, several Random Forest Regressors were trained,
using different combinations of features groups, considering only characteristics ex-
tracted from content; combining content features with user metadata, and so on.

The best model reported exhibits a Spearman and Kendall correlation coefficients
of 0.74 and 0.60 respectively, when its predictions are compared with the manually
annotated scores of the dataset. The Botometer obtained coefficients of 0.43 and
0.33, which indicates that the development of a language-specific methodology was
advantageous to detect Arabic bots.

The work also investigates the most informative features during the decision pro-
cess, and found that the average number of mentions, alongside the proportion of
replies, retweets and original tweets, were the features exhibiting the highest impact
in classifying an account as bot or human. It is worth noticing that the least infor-
mative features were the ones related to user metadata, like the presence or absence
of a profile description, location and URL link, suggesting that there is no significant
distinction between organic and automated accounts in these characteristics.
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The study founds that 11% of hateful tweets were authored by bot accounts, and
the Arabic bot exhibits some different traits from their English counterparts, with
a higher rate of original tweets and a much higher number of followers.

2.3.2 Botometer

The Botometer [9] is a framework used to detect bots in Twitter, leveraging 1150
features from different classes in its detection process. For a given user u, the system
extracts information from the following six categories, as described in [58]:

• User-based features: user’s metadata, such as number of digits in screen
name, default profile and account age, as well as the number of original tweets,
retweets, mentions and replies per hour, considering the 200 most recent posts
of u, which is the limit of return of the corresponding endpoint in the Standard
Twitter API.

• Friends features: These features are computed considering other accounts
that interact with u in some way. These accounts are divided in 4 groups:
profiles that u retweets; profiles that u mentions; profiles that retweet u and
profiles that mention u. For each group, one extracts the number of distinct
languages in the group’s tweets, the fraction of users with a default profile, as
well as the descriptive statistics regarding the number of followers, friends and
tweets distribution, such as mean, median, standard deviation and skewness.

• Network features: The framework considers 3 types of networks, based on
the users’ interactions: retweet, mention, where the nodes correspond to users
and an edge (u, v) exists if u retweets v, and hashtag co-occurrence networks,
where the different hashtags as treated as nodes, and an edge (h1, h2) exists if
the hashtags h1 and h2 occur in the same tweet, weighted by the frequency of
the occurrence. For each network, the framework computes the edge density
and clustering coefficient, as well as descriptive statistics for in and out-degree
distributions.

• Temporal features: Given the 200 most recent posts of the users, the system
groups them into 3 categories: original tweets, retweets and mentions. For each
group, the associated posts are sorted by their creation date, the time intervals
between two consecutive activities are computed, and the descriptive statistics
are extracted from these intervals.

• Content and Language features: The system extracts statistics regarding
the number of words and word entropy distribution from users’ most recent
posts. Additionally, a Part-of-Speech (POS) Tagging algorithm is applied to
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each of them, and the descriptive statistics are computed for each tag distri-
bution.

• Sentiment Features: The framework applies several sentiment analysis tech-
niques, to quantify English-specific sentiment features, such as arousal, va-
lence, happiness and polarization scores.

The original framework was trained using a dataset of 15K manually annotated
bot accounts and 16K verified human profiles. The classifier performance was evalu-
ated by computing the ROC AUC in 5-fold cross-validation with different classifiers.
The best reported model achieved a mean AUC of 0.95 using the Random Forest
algorithm with 100 estimators.

In recent years, some modifications and improvements have been proposed upon
the original Botometer model [23], [12]. A reformulation of the original methodology
was also introduced in [59]. This alternative framework, known as BotometerLite,
aims to resolve two major limitations of currently prevailing models: scalability and
generalization.

The issues regarding scalability involve the Twitter API rate limits and the huge
volume of data continuously generated in social networks, which prohibits real-time
evaluation by current models, given their intrinsic high computational complexity.

In turn, the limitations regarding generalization are associated with the constant
evolution of automated accounts, whose behavior is constantly upgraded to evade
the most recent detection systems. A model exhibiting a great performance in
validation sets could easily be deceived by recent unauthentic users.

In order to overcome these limitations, the BotometerLite framework employs a
methodology that considers only user metadata, giving up most of the other contex-
tual information for improved computational performance. This choice enables an
analysis of 8.6M accounts per day using a single credentials set, which is over 200
times the rate limit of the original Botometer framework [9]. Besides, given that
each tweet object from the Twitter API has an embedded user object on it, there is
no need for additional requests before applying the BotometerLite framework, and
it also reflects the user behavior at the moment the tweet was retrieved from the
API.

The proposed framework was trained using a compilation of 11 publicly available
datasets of human and bot accounts, in addition to three new datasets. All datasets
are available at Botometer’s Bot Repository. Altogether, the compiled database
is composed by 94124 bots accounts and 43396 human profiles. The compilation
includes datasets ranging from 2011 to 2019, extracted from different contexts, such
as politics and financial market, in a effort to capture the evolution of social bots
over time.

17

https://botometer.osome.iu.edu/bot-repository/datasets.html


The work also proposes a more strict evaluation strategy, setting some datasets
aside for the training process, and using these holdout datasets for generalization
tests. Thus, 8 datasets were considered during the training phase and 4 during the
generalization test phase (some datasets were merged because they contain only a
single class). Considering the 8 training databases, the work applied a data selec-
tion scheme, treating each dataset as a single unit and training a Random Forest
model for each combination of these units (247 combinations, yielding 247 candidate
models) and evaluating the performance for each of them via ROC AUC score in a
5-fold cross-validation scheme.

The performance of each model for each test dataset was computed, and the
work also evaluated the trained models’ performance on a sample of 100K random
users, measuring their correlation with the predictions of the original Botometer
model.

In order to select the final model among the 247 candidates, the work ranks each
candidate model by their performance, with the best model in the first place, for
each of the 6 tests (AUC score during cross-validation, AUC score on the 4 holdout
datasets and correlation with the predictions of the original Botometer model). The
selected model was the one that presented the lowest product of the 6 ranks, being
considered as the one with the best overall generalization capabilities. The best
candidate was trained with only 5 out of 8 available databases.

As a final test to verify whether the proposed methodology would be able to
evaluate tweets and users in real time, an offline experiment was designed to as-
sess the classification speed, and the reported results show that the BotometerLite
framework would be able to evaluate almost 900M tweets per day, which is beyond
the average volume of 500M daily tweets, reported in [60].

2.3.3 RTBust

A methodology for detecting automated users based on their retweeting temporal
patterns was proposed in [2]. The work introduces a novel visualization for uncover
possibly coordinated behaviors of users, as well as an unsupervised technique for
detecting groups of automated users retweeting messages in a coordinated fashion.

Given a set of users and its retweets, the proposed visualization consists of a
scatter plot where the timestamp of a retweet and the corresponding original tweet
are shown in the x-axis and y-axis, respectively. A point near diagonal represent a
retweet performed right after the publication of the original tweet, while points away
from the diagonal indicates a longer time interval between the two posts. The work
reports three suspicious retweeting behaviors, probably associated with automated
users: in the first one, the user always retweets a message almost immediately after
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the original tweet was posted, stopping by a short inactivity interval and starting its
retweeting session again; in the second one, the user retweets past messages up to a
fixed period of time and stop its current activity session in a very regular behavior,
as shown in Fig. 2.3, where a triangular pattern is observed below diagonal.

Figure 2.3: Triangular pattern of retweeting activity. Extracted from [2]

The last one is associated with users whose activity goes way back on time, sys-
tematically retweeting messages from several days ago, and also exhibiting sessions
of activity. Motivated by the observation of these patterns, the work proposes a
methodology for detecting retweeting bots, based on their activity time series.

In the first step of the proposed framework, the user u is represented by a time se-
ries of retweet intervals [ru,0, ru,1, ru,2, . . . , ru,n], with granularity of 1 second, starting
from timestamp tREF = 2018-06-17T00:00:00 associated with ru,0. Each compo-
nent of the time series is computed in the following way: for a given timestamp t,
ru,t is equals to t(x) − tREF seconds, if the user u retweeted the message x in time
t, or 0, if the user did not retweet any message in time t.

In general, the time series associated with each user will be very sparse. Thus, in
the next step of the proposed framework, the work employs a technique to compress
sequences of consecutive 0’s, substituting them by negative value of their sequence
lengths (i. e., a series [3, 0, 0, 0, 4, 0, 7] will become [3, -3, 4, -1, 7]),
generating a compact time series that encodes both inactivity periods and retweeting
activities.

The time series of each user is then mapped to a vector of fixed length, using a
unsupervised technique known as variational autoencoders. The technique is imple-
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mented using two LSTM networks: one will act as the encoder, that compress the
input data into a representation in the latent space of features and the other one
will be the decoder, which aims to reconstruct the original input, using the latent
representation. After training, the encoder will serve as an unsupervised feature
extractor for the users’ retweeting behaviors.

Using the representations obtained from the encoder, a density-based clustering
algorithm known as HDBSCAN [61] is applied to find groups exhibiting common
retweeting patterns. All accounts that were clustered by HDBSCAN labeled as bots,
and the ones that are not clustered as legitimate accounts.

The work evaluates the performance of the proposed framework using a manually
annotated dataset of ≈ 1000 accounts classified as bots or humans in a binary
classification setting, reporting the results in terms of precision, recall and F1-score,
among others. The reported F1-score was 0.87, outperforming Botometer [9] by a
large margin (F1 = 0.42) in all evaluated metrics.

Finally, the work reports 2 previously unknown botnets: a group of 44 automated
accounts focused on retweeting posts from European car manufactures; and a group
of almost 300 bot profiles, that seems to be focused on artificially increasing the
popularity and reach of an Italian pop singer.
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Chapter 3

Proposed Framework

This chapter presents the proposed framework to detect groups of users that act in
a coordinated fashion in online social networks. The framework is organized in two
major components, an unsupervised component and supervised component. The
main units that compose them are summarized in Fig. 3.1, where the unsupervised
component is highlighted in red, while the supervised component is pointed out in
blue.

User
Characterization 

Dissimilarity
Matrix Users Network Users

Partitioning
Communities
Description

Communities
Classification

Figure 3.1: Main components of the proposed framework

We start by generating representations of the social network users, using their
posts to build vector representations that will feed a language model. Thus, each
user will be assigned a language model. In the following step, we establish the degree
of similarity among different users, using the representations from the previous stage.

Then, we construct a network that encodes the similarities between the most
similar users, using the values computed in the previous step. Thereon, we divide
the network into communities, using only the network structure to uncover the
set of users that coordinate their posts. We proceed by automatically extracting a
description of the main language topic circulating inside each community, combining
the users’ language models and their structural importance in the group.

Finally, we categorize the kind of coordination of the community, distinguishing
between automated (bot) and organic (human) synchronized actions, using informa-
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tion from the community language model as well as the structure of the relationship
of users inside the community. Each component of the framework is presented in
the following sections.

3.1 User Characterization

The starting point of our framework generates representations of users, using the
language models discussed in the previous Chapter. In our framework, we employ
the unigram model to characterize each user, using its posts to parametrize the
language model, which corresponds to the simplest n-gram model with n = 1. In
this model, P (W ) will be defined as the product of relative frequency of each word
wi ∈ W , as shown in Eq. 3.1:

P (W ) ≈
∏

wi∈W

P (wi) (3.1)

Thus, the language model of user u (LMu) will be represented by a vector Pu =

[P (w1), P (w2), . . . , P (wT )], where T is the vocabulary size of the whole corpus of
posts, considering all users in the dataset. Moreover, Pu(wi) for user u is given by
the relative frequency of the word wi across all words posted by user u in the corpus.

3.2 Dissimilarity Matrix

The language model for each user can be interpreted as a probability distribution
over the vocabulary defined by users’ posts. Thus, the LMs can be used to compute
a distance between users. In our framework, we employ the Jensen-Shannon (JS)
Divergence [62] as our dissimilarity measure. The JS Divergence is a symmetric
version of the Kullback-Leibner (KL) Divergence [63], limited in the interval [0, 1],
as defined in Eq. 3.2.

DKL(p ‖ q) =
∑
x

p(x) log
p(x)

q(x)

DJS(p ‖ q) =
1

2
DKL

(
p

∥∥∥∥ p+ q

2

)
+

1

2
DKL

(
q

∥∥∥∥ p+ q

2

)
(3.2)

where p and q are probability distributions over the same sample space (in our
case, two language models over the same vocabulary). We use the JS Divergence
to compute the dissimilarities matrix between pairs of users, in order to establish a
degree of similarity among them. In particular, the similarity between users u and
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v is given by DJS(Pu ‖ Pv), where Pu an Pv are the probability distribution for the
language models of users u and v, respectively.

3.3 Users Network

Given the similarities among users, we proceed to the next step of our framework,
generating a multilayer network that encodes similarities among users’ language
models. In this kind of network, each layer represents a different type of relationships
between nodes, and all layers shares the same set of vertices.

The nodes will correspond to the set of users in the dataset, and an edge (u, v)

will exists between users u and v if and only if the user v is among the T most similar
users from the point of view of user u, according to the JS Divergence computed in
the previous step. Note that the out-degree of every node is exactly T . Moreover,
an edge (u, v) does not imply an edge (v, u), as v may not have u among its T most
similar users.

Lower values of parameter T leads to a stronger signal of similarity and coor-
dination among accounts, while higher values generates more connected networks,
with a possibly clearer community structure. In our case, each layer will represent
the edges associated with a different value of T , ranging from 1 to L. Note that all
edges in the network of layer T are present in the network of layer T + 1. Thus, as
T increases the network becomes denser.

3.4 Users Partitioning

The next step of the framework aims to detect the coordinated groups present in the
dataset. We formulate the task as a community detection problem in multilayer net-
works. As previously mentioned, different values of parameter T leads to networks
with different and desirable characteristics, like stronger signal of coordination and
clearer community structure.

The goal is to leverage these traits during the process of community detection.
Thus, we employ the multilayer version of the Louvain algorithm for network com-
munity detection using a network with L layers [64]. Similar to the version present
in Chapter 2, the multilayer Louvain algorithm aims to find the partition of vertices
that maximizes the modularity metric. In the multilayer setting, the quality of a
particular partition of users will be defined as a weighted sum of the modularity
values in each layer (since each of them is a network), as shown in Eq. 3.3:

Q(C) =
∑
k

wkqk(C) (3.3)
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where wk and qk(C) corresponds to the weight and the modularity value of the
user partition C in the k-th layer, respectively. Note that the partition C is common
to all layers, and that C = (C1, . . . , Ck) divides the users into k communities.

The algorithm in the multilayer variation is essentially the same: the vertices
are moved to the community providing the highest modularity gain, considering the
individual contribution of each layer. A new network is built, where each community
will be represented as a single vertex, and the process is repeated, until no further
improvement can be achieved (see details in Section 2.2.2).

We explore the effect of different values of L (number of layers) as well as different
weight schemes (values for wk) to ponder the contribution of each layer in a later
chapter. Intuitively, these parameters will play a role in the effectiveness of the
framework.

3.5 Communities Description from User’s Language

Models

The next step of the framework defines a method to identify the main topic discussed
in each community. It works as follows:

• The induced subgraph with the subset of nodes belonging to a community is
extracted from the last layer of the network (layer L);

• The centrality of each node in the induced subgraph is computed, using the
PageRank (PR) algorithm [55];

• The language model of the community is defined as a linear combination of the
LM of each user in the community, weighted by user’s centrality. In particular,
the language model of community Ck will be defined as:

LMCk
=
∑
u∈Ck

PR(u) · LMu (3.4)

where PR(u) and LMu represent the centrality and the language model of user
u in the community, respectively. After that, we normalize LMCk

in order to
obtain a well-defined probability distribution over the corpus vocabulary.

• The five highest probability words in the language model of the community
LMCk

are extracted. These words will be taken as the community description.
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3.6 Communities Classification

The final step of the framework is to classify the communities as bot or human acting
as a coordinated group. The communities classified as bot correspond to synchro-
nized groups of automated accounts, coordinating their posts to often promote and
artificially increase the popularity of a specific content or topic. On the other hand,
the communities labeled as human correspond to organic groups of users engaged
with a common cause, whose actions (posts) are similar due to their common inter-
ests.

Features extracted from the community language model, alongside features ex-
tracted from the network structure, are used as the input to a Random Forest model
[65], using the majority class of each community as its label. Thus, a supervised
classification procedure is designed using labeled data for each user in the dataset
(bots and humans). Note that the goal here is to classify a community and not in-
dividual users. The training details and evaluation of the classifier will be presented
in a later chapter.
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Chapter 4

Empirical Analysis of the
Unsupervised Component

This Chapter presents an analysis of the unsupervised component of the proposed
framework using real data. We briefly introduce the two bot datasets used through-
out the experiments and submit them to the first steps of the methodology, highlight-
ing aspects like the similarities between user’s language models and the structural
differences between the two classes of users. We also analyze the impact of several
weight schemes and number of layers in the final quality of users partitions, using a
metric of homogeneity to assess the quality of a community. Finally, we investigate
the main topic that circulated in the communities identified by the framework in
both datasets.

4.1 Datasets

Two datasets of labeled bot and humans accounts in Twitter as well as tweets of
such accounts are considered in the following evaluation, both of which are publicly
available in Botometer’s Bot Repository 1.

4.1.1 cresci-stock

The first dataset, that we refer as cresci-stock throughout the following sections,
consists of bot accounts performing financial market coordinated campaigns, named
by the authors as cashtag piggybacking, in order to artificially promote low-value
stocks alongside high-value ones on Twitter [66]. The work reports that there’s a
positive correlation between the market value of a stock and its presence in social
media discussions, so interest groups could use automated accounts to increase the
stock price of target companies.

1https://botometer.osome.iu.edu/bot-repository/datasets.html
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In the monitored period, large coordinated groups of bots were mobilized to
perform massive publications of cashtags (a tag associated to a company or stock,
like $APPL for Apple, Inc. and $AMZN for Amazon.com, Inc.) where both high and
low-value stock tags were present together. The cashtags are visually highlighted
on Twitter’s interface, capturing the attention of users and potential investors.

The authors collected ∼ 9M tweets containing cashtags from a list of 6689 stocks
traded on US Markets between May and September 2017, posted by ∼ 2.5M distinct
user accounts. After that, a subsample of 25957 accounts was labeled as either bot
or human account using a bot spam detection system [67].

Due to limited computational resources, we perform an additional subsample,
randomly selecting a subset of 2000 accounts labeled as bots and 2000 labeled as
humans (all accounts of each class had the same probability of being chosen), re-
sponsible for 105062 tweets.

4.1.2 rtbust

The second dataset, introduced in [2] and referenced here as rtbust, consists of all
Italian retweets posted between 17 and 30 June of 2018, containing 9989819 mes-
sages from 1446250 distinct user accounts. The original work proposed a framework
for detecting coordinated behavior of bot accounts based on temporal patterns of
retweets, as discussed in Chapter 2.

The original dataset was filtered to only include users whose mean number of
retweets per days was between 2 and 50. After this preprocessing, the original
dataset was reduced to 63762 distinct accounts. Finally, a subsample of almost 1000
users was taken, and then the selected accounts were manually annotated by the
authors [2].

The available version of dataset, obtained from Botometer’s Bot Repository,
contains 759 labeled users, alongside their 95777 retweet ids. Using the Standard
Version of Twitter API 2, we were able to retrieve 74014 posts, associated with 643
of the 759 annotated users in the dataset.

Table 4.1 reports the descriptive statistics of the number of tweets per user
in each dataset, and Figure 4.1 shows their respective Empirical Complementary
Cumulative Distribution Function (ECCDF) plots, where it is evident that both
datasets exhibit a heavy-tail characteristic in the distribution of the number of
tweets per user account.

2https://developer.twitter.com/en/docs/twitter-api/v1
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Table 4.1: Descriptive statistics for tweets per user in each dataset

max min mean median
cresci-stock 7341 1 26.3 6

rtbust 598 1 115.1 66
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Figure 4.1: ECCDF of the number of tweets per user for cresci-stock (left) and
rtbust (right) datasets.

4.2 Dissimilarity Matrices and User Networks

We applied the proposed framework upon the two datasets. Figure 4.2 shows a
fragment (subset of user accounts) of the computed dissimilarity matrix for each
dataset, based on the language models for each user account. Due to the symmetry
property of the JS Divergence, we report only the lower diagonal of each matrix.
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Figure 4.2: Fragments of dissimilarity matrices for cresci-stock (left) and rtbust
(right) datasets.

Each matrix element (denoted as a single square) represents a pair of users,
and its color encodes the dissimilarity value between them. A hue towards red
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indicates a relatively high dissimilarity (near 1.0) between users’ language models
(constructed using all tweets posted by the user), while a hue towards blue indicates
a low dissimilarity (near 0.0), representing users with aligned content in social media.

Considering the matrix associated with the cresci-stock dataset, we observe
some pairs of similar users in the upper part of the fragment. The same can be
observed for rtbust, where many pairs of users have a similar (and in some cases,
almost identical) language model. This trait indicates that some accounts could
be posting and/or sharing the same content during the period that comprises each
dataset, possibly in an orchestrated way.

Using the computed dissimilarities among users, we built the directed user net-
work. Figures 4.3, 4.4 and 4.5 show the resulting networks for cresci-stock when
each user connects to its 1, 2 and 3 most similar users, respectively. Blue nodes
represent users labeled as human in the dataset, while red nodes corresponds to bot
accounts. Figures 4.6, 4.7, 4.8 show the corresponding networks for rtbust.
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Figure 4.3: cresci-stock users network (L = 1)
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Figure 4.4: cresci-stock users network (L = 2)
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Figure 4.5: cresci-stock users network (L = 3)
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Figure 4.6: RTBust users network (L = 1)
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Figure 4.7: RTBust users network (L = 2)
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Figure 4.8: RTBust users network (L = 3)

Lower values of parameter L represent networks with a stronger signal of sim-
ilarity and a larger number of connected components, while higher values gener-
ate denser networks and fewer connected components. Note that some connected
components exhibit a clear majority user label, which emerges directly from the
process of building of the networks. For example, the rtbust network with L = 3

yields 4 connected components, three of which are composed of only bot accounts,
and the other is mostly composed of human accounts (see Figure 4.8). Moreover,
some connected components are clearly formed by distinct communities, such as
the cresci-stock network with L = 2 (see Figure 4.4), where a larger number of
bot accounts (in red) is connected to the other nodes in the component through a
single node. This characteristic suggests that representing a user by its linguistic
features (using a Language Model, in our case) can be useful to differentiate among
the different types of coordinated behaviors.
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4.2.1 Structural analysis of induced subgraphs of bots and

humans

Before proceeding to the next step of the framework, we investigate structural net-
work characteristics of the different types of user. Given the networks using 1, 2, and
3 nearest-neighbors for each dataset, we extract two induced subgraphs: the first one
preserves the edges between users labeled bots, while the second one preserves the
edges between users labeled humans. The remaining types of edges (human → bot
and bot→ human) were removed from each subgraph. In our analyses, we consider
two structural metrics: the edge reciprocity and the global clustering coefficient.

The edge reciprocity metric (ER) [68] computes the ratio between the number of
edges in both directions (i.e. (u1, u2) and (u2, u1), where u1 and u2 represent different
users) and total number of edges in the network. Its value can be interpreted as
the probability that the edge (u1, u2) exists in the network, given the existence of
the edge in the opposite direction, which could indicate some sort of coordination
between pairs of accounts in our case, as two users whose LMs are the most similar
to each other will be connected in both directions.

The second metric, the global clustering coefficient (GCC) [69] is defined as:

GCC = 3 ∗ number of triangles in the network
number of connected triples of vertices

(4.1)

This metric can be interpreted as the probability that two vertices that share
a neighbor are also neighbors, which could also indicate a degree of coordination
among triplets of vertices. For this metric, the direction of the edge has been ignored.

We have also computed descriptive statistics of the in-degree distribution of each
subgraph (recall that all nodes have the same out-degree, given by L). Tables 4.2,
4.3, 4.4 show the results for the subgraphs of each class extracted from cresci-stock

networks with L = 1, 2 and 3, respectively. Figures 4.9, 4.11, 4.13 show the ECCDF
for in-degree distribution of each subgraph, and Figures 4.10, 4.12, 4.14 provide
visualizations for each induced subgraph.

36



Table 4.2: Structural analysis of induced subgraphs - cresci-stock (L = 1)

ER GCC
in-degree distribution

max min mean median
humans 0.124 0 394 0 0.97 0
bots 0.252 0 109 0 0.95 0
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Figure 4.9: ECCDF for in-degree distribution of induced subgraphs of human (left)
and bot accounts (right) - cresci-stock (L = 1)

Figure 4.10: Induced subgraphs of human (left) and bot accounts (right) -
cresci-stock (L = 1)
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Table 4.3: Structural analysis of induced subgraphs - cresci-stock (L = 2)

ER GCC
in-degree distribution

max min mean median
humans 0.161 0.029 394 0 1.76 0
bots 0.304 0.057 109 0 1.72 1
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Figure 4.11: ECCDF for in-degree distribution of induced subgraphs of human (left)
and bot accounts (right) - cresci-stock (L = 2)

Figure 4.12: Induced subgraphs of human (left) and bot accounts (right) -
cresci-stock (L = 2)
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Table 4.4: Structural analysis of induced subgraphs - cresci-stock (L = 3)

ER GCC
in-degree distribution

max min mean median
humans 0.177 0.057 394 0 2.55 0
bots 0.334 0.105 109 0 2.52 1

100 101 102

k

10 2

10 1

100

P[
K

k]

100 101 102

k

10 2

10 1

100

P[
K

k]

Figure 4.13: ECCDF for in-degree distribution of induced subgraphs of human (left)
and bot accounts (right) - cresci-stock (L = 3)

Figure 4.14: Induced subgraphs of human (left) and bot accounts (right) -
cresci-stock (L = 3)
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Similarly, Tables 4.5, 4.6, 4.7 show the metrics for the induced subgraphs of each
class extracted from rtbust networks with L = 1, 2 and 3, respectively. Figures
4.15, 4.17, 4.19 show the ECCDF for the in-degree distribution of each subgraph,
and Figures 4.16, 4.18, 4.20 provide visualizations for each induced subgraph.

Table 4.5: Structural analysis of induced subgraphs - rtbust (L = 1)

ER GCC
in-degree distribution

max min mean median
humans 0.136 0 19 0 0.97 0
bots 0.188 0 9 0 0.95 0
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Figure 4.15: ECCDF for in-degree distribution of induced subgraphs of human (left)
and bot accounts (right) - rtbust (L = 1)

Figure 4.16: Induced subgraphs of human (left) and bot accounts (right) - rtbust
(L = 1)
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Table 4.6: Structural analysis of induced subgraphs - rtbust (L = 2)

ER GCC
in-degree distribution

max min mean median
humans 0.168 0.148 27 0 1.80 0
bots 0.256 0.264 12 0 1.79 1
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Figure 4.17: ECCDF for in-degree distribution of induced subgraphs of human (left)
and bot accounts (right) - rtbust (L = 2)

Figure 4.18: Induced subgraphs of human (left) and bot accounts (right) - rtbust
(L = 2)
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Table 4.7: Structural analysis of induced subgraphs - rtbust (L = 3)

ER GCC
in-degree distribution

max min mean median
humans 0.176 0.196 35 0 2.67 0
bots 0.285 0.355 20 0 2.63 2
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Figure 4.19: ECCDF for in-degree distribution of induced subgraphs of human (left)
and bot accounts (right) - rtbust (L = 3)

Figure 4.20: Induced subgraphs of human (left) and bot accounts (right) - rtbust
(L = 3)

For all analyzed networks, the ER and GCC metrics in the Bots subgraphs
were consistently higher than their counterparts in Human subgraphs, being twice
larger for the cresci-stock networks. This observed behavior suggests that the
automated accounts were indeed acting in a coordinated way, by posting more similar
content among them than humans post in the analyzed time interval.
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Interestingly, the in-degree distribution of bots has a tail that is shorter (lighter)
than that of humans, in both networks and for all values of L. This suggests that
bot accounts are possibly acting in a distributed fashion, where the accounts di-
vide the similar posts among them, as opposed to post the same content of a few
accounts. This characteristic may indicate that these bot users were at service of
diverse interests, popularizing different stock cashtags or retweeting content about
several topics during the analyzed period in cresci-stock and rtbust datasets,
respectively.

4.3 Purity scores and multilayer community detec-

tion

Proceeding with the framework, the next step generates partitions of users into co-
ordinated groups in a unsupervised way, using the multilayer version of the Louvain
algorithm for community detection in networks.

As mentioned in Chapter 3, we have to choose the maximum number of layers in
the network as well as the contribution (weight) of each layer during the partitioning
process. We analyzed different settings for these parameters and evaluated the
quality of the different partitions using a metric for homogeneity that we call purity
score.

The purity score computes the fraction of users belonging to the majority class
in a given community. For example, consider a community of 5 users, where 4
users belong to the c1 class, and the remaining one belongs to c2 class. Thus,
the purity score will be 4

5
= 0.8 in this case. As we are aiming to obtain highly

homogeneous groups with respect to the class of their members (bots or humans),
therefore highlighting different types of coordinated actions, we employ the purity
score as a metric for choosing the best parameter configuration.

The following weight schemes for the multilayer community detection were eval-
uated (each scheme defines the contribution of the k-th network layer):

• square:
1

k2

• linear:
1

k

• sqrt:
1√
k

• uniform: 1

As aforementioned, the edges from layers with lower values of k provides a
stronger signal of similarity among user’s language models, while higher values of
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this parameter generates denser networks, providing a clearer community structure,
facilitating the identification of communities within the connected components that
exhibit traits of content coordination. Note that the square scheme is the one that
penalizes higher layers (larger values for k), while the uniform scheme gives the
same weight to all layers.

Figures 4.21, 4.22, 4.23 and 4.24 show purity and community results considering
5, 10, 15 and 20 layers per dataset. The x-axis represents the different weight schemes
evaluated, and in the y-axis we have the median of the purity score (across all
communities), after labeling the communities by the majority class of users present
in each of them. Considering this division, we can verify whether the Louvain
algorithm can better identify the coordinated groups of a particular class of users or
whether it can successfully partition both types of users into highly homogeneous
communities.

The red and blue points encodes the median purity score for communities labeled
as bots and humans, respectively. Finally, the size and the annotation near each
point provides the number of communities of that type.
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Figure 4.21: Median purity scores for different weight schemes in the cresci-stock
(left) and rtbust (right) datasets - 5 layers
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Figure 4.22: Median purity scores for different weight schemes in the cresci-stock
(left) and rtbust (right) datasets - 10 layers
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Figure 4.23: Median purity scores for different weight schemes in the cresci-stock
(left) and rtbust (right) datasets - 15 layers

square linear sqrt uniform
weight scheme

0.90

0.92

0.94

0.96

0.98

pu
rit

y 
m

ed
ia

n

17 11 9 9

38

24

21 18

majority class
human
bot

number of communities
10
15
20
25
30
35

square linear sqrt uniform
weight scheme

0.75

0.80

0.85

0.90

0.95

1.00

1.05

pu
rit

y 
m

ed
ia

n

14 6 5 4

11 8

6

5

majority class
human
bot

number of communities
4
5
6
8
11
14

Figure 4.24: Median purity scores for different weight schemes in the cresci-stock
(left) and rtbust (right) datasets - 20 layers

The results indicate that the purity of bot communities is significantly higher
than human communities, for both datasets and different weight schemes. A possible
explanation of this result is that the bot communities are highly focused on their
target content, while human communities post about more diverse topics, that can
also be the focus of some bot communities, or engage themselves in discussions
initiated by different types of users.

Moreover, the number of communities of each class remains relatively constant
as the number of layers increase. Furthermore, the results show that the sqrt and
uniform weight schemes generate communities with the highest purity scores for
all number of layers. The first scheme provides the best overall results in both
datasets, even though is less effective than the uniform configuration in the 10-
layer setting. These weight schemes also partition the nodes into a smaller number
of communities, compared to the square and linear counterparts. In the latter
(square and linear), the contribution of higher layers vanishes faster than the
former (square and uniform), preventing the Louvain algorithm from effectively
using the information and community structure of these higher layers.

We resume the analysis by evaluating the impact of the number of layers in the
final results, considering the purity score of communities as the quality measure.
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The Figures 4.25, 4.26, 4.27 and 4.28 show the results for different number of layers,
ranging from 1 to 20 layers. Similar to the previous experiment, the y-axis encodes
the median purity score across the communities, separated by the majority class.
The x-axis is the number of layers in each network. Also, the size of each point
(as well as the annotation near the point) represents the number of communities
found by the Louvain algorithm (left plot), and the size of each point (as well as the
annotation) represents the median size of the communities (right plot).
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Figure 4.25: Median purity scores for different number of layers in the cresci-stock
dataset Using sqrt weight scheme. Left plot provides the number of communities,
right plot provides the median size of the communities.
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Figure 4.26: Median purity scores for different number of layers in the rtbust
dataset Using sqrt weight scheme. Left plot provides the number of communities,
right plot provides the median size of the communities.
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Figure 4.27: Median purity scores for different number of layers in the cresci-stock
dataset Using uniform weight scheme. Left plot provides the number of communi-
ties, right plot provides the median size of the communities.
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Figure 4.28: Median purity scores for different number of layers in the rtbust
dataset Using uniform weight scheme. Left plot provides the number of communi-
ties, right plot provides the median size of the communities.

Note that, in general, the median purity score increases as we introduce more
layers. Also, note that the purity score for bot communities is always higher, for
both datasets and almost all layers, reaching the maximum value (1) in the rtbust
dataset for all layers and both weight schemes, which also indicates the existence of
targeted and coordinated actions. Moreover, the number of communities decreases
while the median size of communities increases as more layers are considered. In
the cresci-stock dataset, this increase in the number of layers also generated
communities with higher purity score. In the meantime, after the 12-layer setting,
the median purity score in the rtbust dataset starts decreasing.

As mentioned before, networks from higher layers tend to present a clearer com-
munity structure, making potentially coordinated groups more evident, which may
reflect in a higher purity score for both classes of orchestration. Note that the Lou-
vain algorithm tends to output a smaller number of communities as the number of
layer increases, since it will receive denser networks.

The quality of results exhibits a stable trend after 15 layers, showing negligible
variations for higher values. Based on these observations, the suggestion is to apply
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the framework using the multilayer Louvain algorithm with 15 layers and sqrt

weight scheme, for obtaining a good compromise within the results.
Considering this parametrization, the number of communities in each dataset

divided by the majority class as well as the descriptive statistics for the purity score
are described in Tables 4.8 and 4.9. Note that the purity for the bot communities
is very larger, being perfect (value 1) for all communities in rtbust. Interestingly,
rtbust exhibits the same number of communities for bots and humans, while in
cresci-stock human communities is almost twice as many.

Table 4.8: Descriptive statistics of purity score for communities in the cresci-stock
dataset

number of
communities

min max mean median

humans 22 0.53 1 0.89 0.97
bots 13 0.62 1 0.89 0.99

Table 4.9: Descriptive statistics of purity score for communities in the rtbust
dataset

number of
communities

min max mean median

humans 6 0.57 0.96 0.83 0.88
bots 6 1 1 1 1

4.4 Communities description from user’s language

models

We applied the procedure defined in the framework to generate a description for
the topic that is posted within some of the communities. In cresci-stock, two
communities composed by bots had the following topic:

• $AAPL $FB $SPY @NasdaqReporter $SHIP

• $CHRO $OWCP $BVTK $DOLV $AMLH

In the first, we observe cashtags from big tech companies, like Apple and Inc.
and Facebook, Inc. , whose stocks values surpasses hundreds of dollars, alongside
the SHIP cashtag, whose stocks worth considerably less, indicating that the cor-
responding bot community was performing the cashtag piggybacking technique to
artificially increase the popularity of this specific company.
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In the second, we have the CHRO cashtag, whose stock reach a peak value of
44.98 dollars in Feb 2020, alongside cashtags from companies that are worth less
than one cent of dollar per stock, indicating another case of a coordinated group
that artificially promotes low-value stocks.

In the rtbust dataset, two of the bot communities have the following topic,
according to the methodology of the proposed framework:

• @Valerio_Scanu grande #capovolgoilmondo nuovo singolo

• @peugeotitalia @citroenitalia @motorionline #Peugeot Nuovo

The first community is a coordinated group promoting the latest album release of
an Italian Pop singer. We also detect other bot communities with similar description,
indicating a distributed effort of several bot groups in promoting the artist’s album.
The second group corresponds to bots focused on cars, mentioning European car
manufacturers. Interestingly, the communities described here were also reported in
the original rtbust work [2].

Using the communities detected by the Louvain algorithm, we proceed to the
next step of the framework, that aims to automatically differentiate between or-
ganic orchestrations, which naturally emerges from users engagement in supporting
a subject or cause, and artificial coordination, where automated user accounts are
mobilized to share and increase the reach and/or popularity of a topic.
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Chapter 5

Empirical Analysis of the Supervised
Component

This Chapter covers results regarding the supervised component of the proposed
framework, responsible for classifying communities according their features of or-
ganic or automated coordination. We start presenting preliminary investigations
and exploratory analysis of structural and linguistic characteristics of communities
mainly composed by bots and humans, highlighting their similarities and differences.
We proceed by training a classifier using features of the communities returned by
the framework as the dataset, taking the majority class inside each community as its
label. Using the trained model, we apply the framework to recent events in Brazil,
using data collected from the Twitter API in the appropriate period. Finally, we
compare the predictions of the framework at user-level, with the predictions of a bot
detection system used as reference in the literature.

5.1 Preliminary investigations upon community

language models

The first experiment aims to assess whether there are linguistic differences between
communities labeled as bots and humans. In order to exploit potential distinctions,
we compute a language model for each community, considering the union of all tweets
belonging to all users in the group as the community corpus, and plotting the LM
in a way that resemble the Zipf’s Law [70]: the words are sorted by their frequency
(in our case, their relative frequency) in descending order, and plotted according to
their ranks, as shown in Figure 5.1. The x-axis is the rank of a term and y-axis is its
relative frequency, in logarithmic scale. Each curve represents a distinct community
language model, where a hue towards red represent communities labeled as bots, and
a hue towards blue represent communities labeled as humans, for both datasets.
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Figure 5.1: Zipf’s Law for community language models in cresci-stock (left) and
rtbust (right) datasets

The results show that there is no apparent differences among LM’s from bots and
human communities in the cresci-stock dataset. We hypothesize that, due to the
nature of the dataset, focused on financial market and cashtags, both organic and
automated groups share a common vocabulary, posting content about companies
and using similar financial jargons with relative similar frequencies. As mentioned
in the section where the datasets were introduced, the coordinated action of bots
accounts promoting specific low-value stocks could initiate organic discussions about
these stocks by authentic users, as their popularity increase. Also, as the cashtag
piggybacking technique leverages the popularity of high-value companies to promote
low-value ones, it is reasonable to expect that both types of users share content at
similar frequencies and participates in discussions concerning the same organizations.

On the other hand, we can observe a clearer distinction among the language
models of bots and human communities in the rtbust dataset. In particular, the
human communities exhibit a heavier tail in their distribution, suggesting that the
content shared by human communities is more diverse and decentralized, as differ-
ent groups engages themselves with discussions about different topics, leading to a
broader vocabulary and a broader range of relative frequencies. In turn, bots com-
munities tend to be mobilized towards the promotion of a specific subject, which
results in a more restricted set of terms and shorter tail in the distribution, as they
are focused on delivering and popularizing the same content.

5.2 Analysis of features for the community classifier

We resume our investigation of features that could be used to distinguish between
bots and humans communities. Recall the metrics analyzed in Chapter 4: edge reci-
procity, global clustering coefficient and the descriptive statistics of the in-degree
distribution of nodes in each kind of community. Moreover, we consider the com-
munity size and the density of edges in the induced subgraph. Finally, we compute
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some features derived from the community language model, namely: the mean and
the standard deviation of the rank distribution, and the vocabulary size. Table 5.1
summarizes the chosen features.

Table 5.1: Features for classification

Community
Language Model

Community
Structural Characteristics

mean rank community size
standard deviation edge density
vocabulary size edge reciprocity

global clustering
coefficient

in-degree max
in-degree median

We calculate the metrics upon communities resulting from the multilayer Lou-
vain algorithm, using 15 layers and the sqrt weight scheme ( 1√

k
discussed in the

previous chapter). As in the previous experiments, we split the communities by
their majority class. Figures 5.2 and 5.3 show the distribution of each feature across
the communities in the cresci-stock and rtbust datasets respectively, where the
values have been standardized (subtracting the feature mean and then dividing the
difference by the feature standard deviation) for better visualization. The red box-
plots indicate the distribution for communities for bot communities, while the blue
ones correspond to communities labeled as humans.

edge reciprocity global clustering community size vocabulary size lm_mean lm_std-dev density in-degree max in-degree median
2

0

2

4

6 bot
human

Figure 5.2: Boxplot of features, splitted by the majority class in communities -
cresci-stock dataset

Considering the features extracted from the cresci-stock dataset, we observe
that the median edge reciprocity for bot communities is higher than for humans,
indicating a stronger signal of coordination between pairs of users in this scenario. In
the meantime, we observe a considerably lower GCC median from bot communities,
which may indicate that the automated accounts are not acting in a pattern that
forms triangles in the network. The median community size for bot communities
is also higher than the human communities, which suggests that the automated
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users have been organized in larger coordinated groups. In accordance with results
observed in the previous section, there is no clear distinction between the features
extracted from the language models of bots and humans communities.

edge reciprocity global clustering community size vocabulary size lm_mean lm_std-dev density in-degree max in-degree median
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Figure 5.3: Boxplot of features, splitted by the majority class in communities -
rtbust dataset

In contrast, the rtbust dataset exhibits clearer distinctions in the distributions
of humans and bots communities across all features. In particular, the bot commu-
nities show stronger signals of coordination, considering both ER and GCC, with
considerably higher values for Q1, Q2 and Q3 quartiles in the distributions, com-
pared to the human counterparts. Furthermore, the bots communities present a more
concentrated distribution of their language model features, compared to the human

groups’ distribution, corroborating with the hypothesis that automated users were
acting in a coordinated and targeted pattern, increasing the popularity of specific
subjects, leading to less diversity in the vocabulary, while the human communities
participate in a broader number of topics and use a more diverse vocabulary. The
edge density of bots groups also shows considerably higher values for all quartiles,
which indicates a clearer community structure and stronger traits of coordination
in these communities.

5.3 Classifier training and evaluation

In order to determine whether a coordinated group exhibits traits of organic or auto-
mated actions, we built a classifier using the communities obtained by the framework
in the cresci-stock and rtbust datasets, extracting the features presented in the
previous section for each of them, and labeling the communities according to their
majority class. This choice of labels for communities is motivated by the high values
of the mean and median of the purity scores observed in the previous chapter, indi-
cating a high degree of homogeneity inside communities detected by the framework.
The compiled dataset in summarized in Table 5.2:
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Table 5.2: Dataset of communities used in the classifier

cresci-stock rtbust Total
bot 13 6 19

human 22 6 28

We proceed by training a Random Forest model for supervised classification
using nested cross-validation [71], considering both datasets jointly, fitting a single
model for both. The Random Forest classifier has been previously used in several
bot detection datasets, exhibiting a great performance in all of them [58], [72], [73],
[59].

The method of nested cross-validation is exemplified in Figure 5.4, where five
folds are considered in the external k-fold (outer loop) and two in the internal k-fold
(inner loop).

Figure 5.4: Nested cross-validation scheme. Extracted from [3].

In each iteration of the outer loop, one fold is taken as the test set, and the
remaining ones will comprise the training folds. Then, an additional k-fold is per-
formed upon the training folds in the inner loop, where one of the folds is taken as
the validation set, and the remaining ones will compose the training set.

The internal k-fold (inner loop) comprises the model selection and hyperparame-
ter tuning stages, where the models are trained with several configurations, and their
generalization capabilities are estimated using the validation set. Thereon, a new
model is trained considering all training folds and using the hyperparameter setting
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with best performance in the validation set. Finally, the generalization performance
of this trained model is evaluated using the test set, and an iteration of the outer
loop is finished. Averaging the results obtained in the external k-fold (outer loop),
one gets an almost unbiased estimate of the generalization performance [74].

The experiments have used k = 5 folds for both internal and external k-folds,
implemented using the scikit-learn python library [75]. In both stages, the folds
have been made in a stratified fashion, preserving the proportion of samples for each
kind of community.

In the internal k-fold, the following hyperparameters have been tuned (the range
of values evaluated for each of them is described below):

• Forest hyperparameter

– overall number of trees;

∗ [10, 20, 30, 40, 50, 100]

• Tree-specific hyperparameters

– maximum depth of the tree;

∗ [3, 5, 7]

– maximum number of features when choosing the best split;

∗ [3, 5, 7]

– minimum number of samples to split an internal node;

∗ [2, 4, 8, 10]

– minimum number of samples for a node to be considered as a leaf node;

∗ [1, 2, 4]

– whether use bootstrap (drawn training samples with replacement);

∗ [True, False]

– percentage of samples to draw from the training set (only applicable if
bootstrap is used);

∗ [0.5, 0.8, 0.95]

– weights associated with classes in the training set;

∗ [None, balanced, balanced_subsample]

Furthermore, in the internal k-fold, a randomized search procedure has been
used, where each setting is sampled from the possible combinations of hyperparam-
eters [76]. In each iteration, 2000 configurations have been selected. The candidate
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models were evaluated using the F1-score metric, which provides the best trade-off
between precision and recall.

The descriptive statistics of the performance in the external k-fold for several
different performance metrics are reported in Table 5.3. The results indicate a good
generalization performance, in particular since the two datasets are very different
and a single model was trained to classify the communities. In subsequent analysis,
the model with the highest F1-score in the test set across the iterations of the
external k-fold have been used.

Table 5.3: Model performance in external k-fold

mean std. dev. min max median
F1-score 0.83 0.1 0.75 1 0.8
Precision 0.8 0.19 0.6 1 0.75
Recall 0.9 0.14 0.75 1 1

Accuracy 0.85 0.1 0.78 1 0.8

Using the impurity-based criterion for feature importance in the Random Forest
model, the 5 most important features for the best model are the following:

• mean rank;

• standard deviation;

• vocabulary size;

• community size;

• in-degree median;

The set of most important features are composed by features derived from both
language model and structure of the communities. Interestingly, the linguistic fea-
tures are the most helpful features to distinguish the different kinds of coordination,
which corroborates with the hypothesis of the existence of significant differences in
the way human and bot communities post content in online social networks.

5.4 Application in novel contexts

We proceed by applying the proposed framework in different scenarios, in order
to investigate the presence of coordinated and automated groups of users in other
contexts.

We consider three recent events in Brazil, namely:
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(i) The beginning of vaccination campaign against COVID-19. The analyzed
period was from 17 to 19 Jan, 2021 (inclusive);

(ii) The public pronouncement of the current Brazilian President when he can-
celed an early agreement for COVID vaccines with a Chinese laboratory in late 2020.
The analyzed period was the day of 21 Out, 2020;

(iii) A public campaign against the most popular TV station in Brazil, the Rede
Globo, in early 2021. The analyzed period was from 02 to 04 Jan, 2021 (inclusive);

The data was collected by the TWIST Systems 1 company, using the Standard
Tier version of the Twitter API. Considering the collected tweets that fall inside each
timestamp and are related to each of the topics (via hashtags and other keywords),
we performed a subsample of 5000 profiles, biased by their number of posts in the
respective period. Thus, users with a higher number of posts had a higher probability
of being chosen to be part of the dataset to be analyzed. The selected users for
each context were submitted to the framework, and the results are described in the
following subsections.

5.4.1 Beginning of vaccination campaign against COVID-19

in Brazil

The framework returned a partition of the 5000 selected users into 34 different com-
munities, where 8 of them were classified as human communities, and the remaining
26 ones were considered as bot. These 5000 users were responsible for 39981 of the
collected tweets.

After inspection of tweets in some communities, we observe that, among the
organic coordinated groups, the main subject that circulated inside each of them
corresponds to support to the beginning of vaccination campaign; the news coverage
from TV Channels about the regulatory approval of CoronaVac (the first vaccine
approved by Anvisa, the Regulatory Agency of Food and Drugs in Brazil), and the
application of the first shot of vaccine by the state of São Paulo.

Among the automated coordinated communities, we detected a group discussing
the anticipation of the beginning of vaccination by the state of São Paulo before other
states have received doses, as well as a supposed obligation of mandatory vaccination
by the Supreme Federal Court of Brazil. It’s worth noticing that most tweets of users
inside this group are retweets of messages from a Brazilian Congressman aligned with
the government, whose Twitter account is currently disabled. We also identified
a community labeled as bot criticizing the lack of public pronouncements by the
Brazilian president regarding the start of vaccination in Brazil.

1https://www.twist.systems/en/
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5.4.2 Cancellation of an early agreement for COVID vaccines

The selected users were partitioned in 33 communities, where 14 of them were clas-
sified as human groups and the remaining (19) as bots. The users inside this sample
authored 28620 posts.

Among the organic communities (labeled as humans), some disseminate a post
from a Brazilian journalist about the large financial support by the Federal Govern-
ment on the medicine called Hydroxychloroquine and the vaccine produced by the
University of Oxford, both without proven efficiency at the time. It’s worth notic-
ing that Oxford vaccine had its effectiveness attested afterwards. We also identified
communities inquiring about the CoronaVac vaccine and the lack of efficiency results
(at the time). Groups criticizing the government campaign about the medicine and
the anti-vaccine movement in Brazil were also observed.

Considering the communities labeled as bots, we observed users positing them-
selves in favor of Hydroxychloroquine, arguing that the medicine has been tested for
more than 50 years and therefore could be widely used against COVID. This group
also supported the subject by retweeting content from a large Twitter influencer and
government supporter. We also identified communities discussing and reverberating
the declarations of the Brazilian president about the cancellation of the agreement
for CoronaVac vaccines.

5.4.3 Public campaign against Rede Globo

The campaign was focused on promoting the hashtag #GloboLixo in Twitter in Jan
3, 2021. The sampled users were partitioned in 31 communities, 14 human and 17
bot, and were responsible for 30336 posts during the analyzed period.

We identified human communities supporting the rejection of Big Brother Brazil,
a reality show exhibited by Rede Globo, and the repulsion directed towards peo-
ple who post about the program. Some communities were pointing out a supposed
agglomeration induced by a journalist and host of a news program in the TV Chan-
nel, on an occasion when the journalist was not wearing a face mask. Later it was
clarified that the situation happened in 2019. Other organic groups were retweeting
posts from a Twitter influencer showing her support to the campaign.

Among the bot communities, we observe users supporting the campaign and
criticizing the TV Channel for positioning itself against Rede Globo the actions of
the Federal Government during the pandemic.
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5.5 Comparison of individual accounts with

botometer predictions

The communities classified as bot by the framework are expected to be mainly com-
posed of accounts that are actually bots. In order to verify this hypothesis, we
conduct an experiment to evaluate the agreement between the communities gener-
ated by the framework and the predictions of Botometer v4 [12], a state-of-the-art
tool for identifying bot accounts in Twitter and used as reference in the literature
[59], [77], [78]. Although our work proposes a method for identifying bot groups, and
not bot accounts individually, we compare it with a method for classifying individual
accounts.

For each of the 3 datasets analyzed in the previous section, we selected a com-
munity classified as bot and another classified as human. We submit the users that
compose each community to the Botometer v4 API 2, which returns the probability
that the account is a bot. We have collected the Botometer predictions for 1925
users altogether. Figures 5.5, 5.6 and 5.7 show the ECCDF of Botometer scores
(probability that a profile is a bot) for each dataset, where the red curve represents
the distribution for accounts belonging to the bot community, while the blue curve
corresponds to the human community, according to the framework.
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Figure 5.5: ECCDF of Botometer scores for a bot and human community - “Begin-
ning of vaccination campaign against COVID-19 in Brazil”

2https://rapidapi.com/OSoMe/api/botometer-pro/

59



0.0 0.2 0.4 0.6 0.8 1.0
bot_prob

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

class
bot
human

Figure 5.6: ECCDF of Botometer scores for a bot and human community - “Cancel-
lation of an early agreement for COVID vaccines”
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Figure 5.7: ECCDF of Botometer scores for a bot and human community - “Public
campaign against Rede Globo”

We observe a clear distinction between the bot score distributions of each class
across the datasets. This distinction is clearer in the first event (Beginning of vac-
cination campaign against COVID-19 in Brazil), where less than 20% of the users
in the human community exhibits a bot score higher than 0.2, while almost 40% of
users belonging to the bot group have a bot score higher than 0.4. Moreover, note
that no user in the human community has a bot score higher than 0.65 in the tail of
the distribution, while almost 30% of the users in the bot community have a score
higher than 0.65.

In the third scenario (Public campaign against Rede Globo), we observe that
less than 30% of users from the human community received a bot score higher than
0.4, while almost 60% of the users in the bot community scored higher than 0.4.
Furthermore, only 20% of the profiles in the human community had a score higher
than 0.6, while this value is almost 50% for users in the bot community. Interestingly,
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there is no clear difference in the tail of the distribution for the bot and human

communities, as both communities have users exhibiting very high bot scores.
In the meantime, we observe a relative small difference between the distributions

in the second event (Cancellation of an early agreement for COVID vaccines), though
the users belonging to the bot community did received higher bot scores.

The results suggest that, in general, the communities classified as bot or human
are in fact composed by users that share exhibit features that identify them as
bots or humans, taking the predictions generated by Botometer as reference. Thus,
the framework can effectively and automatically reveal communities that are likely
comprised of bots or humans.
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Chapter 6

Conclusion and Future Work

The growing popularity and adoption of online social networks led to several chal-
lenges regarding the dissemination of low-credibility and fraudulent content. Differ-
ent segments of the society have been using online social networks to manipulate
opinion and support their interests, using different strategies to achieve their goals,
like automated accounts, known as bots, that can coordinate their actions (posts)
to promote the goals of their operators.

This work proposed a framework to identify groups of automated and authentic
users that post similar content in online social networks, possibly indicating coor-
dinated action among them, by leveraging the linguistic similarities among users’
language models to build networks and uncover these communities. To the best of
our knowledge, this is the first framework to identify coordinated content posted by
bots, since all existing methodologies and frameworks in the literature focus on the
individual bot identification, putting aside the aspects of synchronization reported
in the recent literature [24], [2].

The proposed framework is organized in two major components: an unsupervised
and supervised component. In the former, using the language model representations
generated for each user, the framework builds several networks that encodes differ-
ent levels of similarities among users, capturing both signals of coordination between
users and the community structure generated by large groups of bots. In the lat-
ter component, using linguistic traits and structural characteristics of a community,
the framework introduces a method to assess whether users within this community
exhibits traits of organic (the human class), where real users engage themselves to-
wards a common cause, or automated coordination (the bot class), where bots are
mobilized to artificially popularize a topic or subject of interest.

The analyses upon the unsupervised component clearly indicated the struc-
tural differences between the different types of communities, reporting considerably
stronger signals of coordination between pairs and triplets of automated users when
compared to communities of users labeled as humans in both analyzed datasets
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(rtbust and cresci-stock). Observed results have indicated that the edge reci-
procity and the global clustering coefficient metrics in the induced subgraphs of bots
are almost twice as high as the human counterparts. We have also investigated the
impact of several weight schemes and different number of layers in the quality of
the communities identified by the variation of the Louvain algorithm for multilayer
community detection, finding the most suited parameter configuration for obtaining
high-quality communities.

Considering the supervised component, the differences between language models
of communities of bots and humans users in both datasets show that automated
users tend to be focused on promoting specific topics, yielding a distribution over
the vocabulary with a lighter tail. We have also introduced a methodology to classify
the nature of coordination of a group, using the resulting communities returned by
the unsupervised component as the dataset for training and evaluating the classifier.
Observed results have indicated a good generalization performance, with an accuracy
of 0.85 and F1-score of 0.83 when considering a single classifier for the combined
dataset.

Last, the proposed framework was applied to different scenarios, investigating
the presence of coordinated groups in each of them as well as the focus of these
groups (in terms of topics). We have observed groups of bots supporting Brazil-
ian congresspersons, a medicine without proven efficiency against COVID-19 and a
campaign against a brazilian TV Station. We have also evaluated the agreement
between the predictions of the kind of communities identified by the framework at
individual user level and a bot detection system used as reference in the literature,
showing that, in general, users in communities labeled as bots are likely to have
a higher bot score, in comparison to users in communities labeled as humans. For
example, in the “Beginning of vaccination campaign against COVID-19 in Brazil”
dataset, no user in the human community have exhibited a bot score higher than
0.65, while almost 30% of the users in the bot community have had a score higher
than 0.65.

6.1 Future Work

The following is a list of possible extensions and promising directions to investigate
in order to enhance the proposed framework:

• Explore language models of higher orders: this work uses the unigram language
model to represent users. Despite its simplicity, the model has proved itself
useful to encode textual similarities among profiles, facilitating the identifica-
tion of coordinated groups. However, higher order LMs could capture more
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complex similarities and relationships, highlighting more elaborate coordina-
tion among bot accounts, like an effort of bots towards promoting semantically
similar contents.

• Define a similarity threshold to connect two profiles: in our framework, every
user will be connected to its K nearest neighbors, independently of the actual
similarity value between them. We hypothesize that, by defining a minimum
similarity threshold among users LMs, we would be able to make the networks
more sparse, isolating accounts with a more unique discourse, while preserv-
ing the connections among users exhibiting highly similar LMs, which would
highlight the community structure and facilitate their identification.

• Use a suitable data structure for fast nearest-neighbor searches: In the current
framework, the distance between the language models of every pair of users
is computed, which scales as O(n2), where n is the number of users. This
step is needed in order to identify the K most similar user of every user. This
computational complexity could be prohibitive for very large networks. One
possible way reduce this complexity is to perform a preprocessing step, using
a data structure like a Ball Tree [79] or a VP-Tree [80] to organize the LMs
in the V-dimensional space (V corresponds to the vocabulary size) in order to
enable fast nearest-neighbors searches, scaling as O(n log n).

• Evaluate the framework in different online social networks: the evaluation
performed in this work considered only Twitter but the framework can be
applied to any online social network (OSN) where users generate content.
It would be interesting to see results for other OSNs, such as Facebook or
Instagram.
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